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Abstract
This article presents an efficient numerical algorithm to compute eigenvalues
of stochastic problems. The proposed method represents stochastic eigenvec-
tors by a sum of the products of unknown random variables and deterministic
vectors. Stochastic eigenproblems are thus decoupled into deterministic and
stochastic analyses. Deterministic vectors are computed efficiently via a few
number of deterministic eigenvalue problems. Corresponding random variables
and stochastic eigenvalues are solved by a reduced-order stochastic eigenvalue
problem that is built by deterministic vectors. The computational effort and
storage of the proposed algorithm increase slightly as the stochastic dimension
increases. It can solve high-dimensional stochastic problems with low computa-
tional effort, thus the proposed method avoids the curse of dimensionality with
great success. Numerical examples compared to existing methods are given to
demonstrate the good accuracy and high efficiency of the proposed method.
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1 INTRODUCTION

Developments in numerical techniques and computing hardware have made it possible to solve high-resolution models
in various computational physics problems. The considerable influence of uncertainties on system behavior has led to
the development of dedicated numerical methods for uncertainty analysis. Predicting uncertainty propagation on the
physical models has become an essential part of the analysis and design of practical engineering systems.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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As an important part of structural dynamics analysis, the eigenvalue problem has received extensive attention and
is well understood for deterministic problems.1,2 Its extension, known as the stochastic eigenvalue problem, is intro-
duced to consider influence of uncertainties on system dynamics analysis. There are several kinds of methods for solving
stochastic eigenvalue problems. The first kind of method is Monte Carlo simulation (MCS).3 As a most powerful tool
for stochastic analysis, MCS can be applied to almost all kinds of stochastic problems. MCS is very easy to imple-
ment by use of the already existing deterministic solvers but has poor convergence. A large number of deterministic
eigenvalue problems are solved in order to compute high-accuracy stochastic eigenvalues, which are computationally
expensive, especially for large-scale problems. Several improvements, for example, quasi-MCS and multilevel MCS,4
are used to save computational costs of MCS. The second kind of method is perturbation methods.5 The perturbation
approach expands the random variables around their mean values to first/second order by use of Taylor series. It is easy
to implement and has high computational efficiency. However, being limited to small variability and only giving sta-
tistical moments make the method unsuitable for complex stochastic problems. Several improvements of perturbation
methods are given in References 6 and 7. The third kind of method is the Polynomial chaos-based (PC) method.8 In this
kind of method, the stochastic matrices, the stochastic eigenvectors, and the stochastic eigenvalues are projected onto
a stochastic space spanned by (generalized) PC basis. Stochastic Galerkin method is then used to transform the origi-
nal stochastic eigenvalue problem into a nonlinear system of coupled deterministic equations whose size is much larger
than that of the original problem. The Newton–Raphson method is adopted to solve the nonlinear system. PC-based
methods have rigorous mathematical foundation and good convergence. It is general-purpose and can be applied to both
real- and complex-valued stochastic eigenvalue problems. However, the computational efficiency of the PC-based method
needs to be further improved. Several improvements7,9 are proposed to reduce computational costs. Other extensions
of PC-based methods are to solve stochastic eigenvalue problems by combing PC expansion and deterministic numer-
ical techniques, for example, power method,10 inverse power method,11-13 subspace iteration.14-16 Other methods are
also proposed to solve stochastic eigenvalue problems. The stochastic collocation method17 is to approximate stochas-
tic eigenvalues and eigenvectors via an interpolation approach. It is non-intrusive and only uses deterministic solvers
to solve a set of random samples of the solutions. The methods in References 18 and 19 transform the stochastic eigen-
value problem into initial equations with a pseudo time parameter, which is then solved by the PC-based method. The
homotopy approach is proposed in the Reference 20, which expands stochastic eigenvalues and eigenvectors by an infi-
nite multivariate series and adopts homotopy analysis to compute expanded coefficients. Stochastic eigenvalues and
eigenvectors are solved by combining PC expansion and dedicatedly iterative algorithms for low-rank approximations in
References 21 and 22.

We mention another method, known as reduced-order method (ROM). In this method, stochastic eigenvalues and
eigenvectors are solved by a reduced-order (normally small-scale) eigenvalue problem, which is obtained by projec-
tion subspace of the large-scale problem. Solutions of the reduced-order eigenvalue problem are very close to the exact
solutions if the subspace is similar to the space of stochastic eigenvectors of the original problem.1 The key of this
kind of method is to construct a good projection approximation subspace. Several methods are proposed for this pur-
pose, for example, perturbation-based subspace,23 optimization-based subspace,24,25 stochastic Krylov subspace,26 and
subspace of mean matrices.27 Another point that needs to pay more attention is the stochastic dimension, which has
significant influence on the computational accuracy and efficiency of numerical methods for stochastic eigenvalue
problems. There are usually a large number of uncertain parameters in many applications, for example, the input is
approximated by random fields with a large number of random variables, which leads to the curse of dimensional-
ity in high-dimensional stochastic spaces. MCS and its extensions4 can overcome curse of dimensionality but a large
number of deterministic simulations are needed. Stochastic collocation method17 needs to construct high-dimensional
interpolation formulas of the solutions based on a certain amount of deterministic simulations. The computational
effort of PC-based methods increases dramatically as the number of stochastic dimensions and/or the order of PC
basis increase, which is prohibitively expensive. Sparse PC method is an available tool to reduce the computational
effort.28

We also highlight another kind of method called polynomial dimension decomposition (PDD).29 Similar to PC-based
methods, orthogonal polynomial bases are used in the PDD method to approximate stochastic responses. The PDD
method develops a dimensional hierarchy of the stochastic response, which alleviates the curse of dimensionality suffered
from PC-based methods. The application of the PDD method in stochastic eigenvalue problems is given in References 30
and 31, which allows lower-variate approximations of stochastic eigenvalues and lower-dimensional numerical integra-
tion for the statistical moments. To avoid the difficulty that the polynomial basis does not work well in capturing strongly
local variations of solutions, for example, nonsmooth and discontinuous stochastic solutions, a spline chaos expansion32
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is also proposed, which represents stochastic solutions by using orthogonal B-spline bases. Combining and generalizing
ideas of the dimension decomposition and the spline chaos expansion, the spline dimensional decomposition method is
developed to solve the high-dimensional and dynamical stochastic problems,33,34 which avoids the curse of dimension-
ality to a great extent. The above methods have become powerful methods in uncertainty quantification and have great
potential for very complex stochastic problems.

Although a lot of excellent work have been discussed above, the development of numerical methods for stochastic
eigenvalue problems is still an attractive topic, especially robust, efficient, and accurate methods for solving large-scale,
high-dimensional stochastic eigenvalue problems. In this article, we focus on developing efficient numerical algorithms
to compute first several maximum/minimum stochastic eigenvalues of problems with high stochastic dimensions and
large scale. The stochastic eigenvectors are first approximated by summing a set of products of random variables and
deterministic vectors. The deterministic vectors (also considered as a set of reduced basis) are computed via a few
number of decoupled deterministic eigenvalue problems and a dedicated iterative algorithm, where the deterministic
eigenvalue problems are obtained by combining an approximation of the stochastic eigenvector and stochastic Galerkin
method. A reduced-order stochastic eigenvalue problem based on the obtained reduced basis is used to solve stochas-
tic eigenvalues of the original problem and random coefficients of the reduced basis. All stochastic analysis, including
solving reduced basis and solving the reduced-order stochastic eigenvalue problem, are implemented by non-intrusive
sampling methods, which has less computational effort and is almost independent of the stochastic dimension. The
curse of dimensionality induced by the high-dimensional stochastic problem is thus avoided, which is demonstrated by
using a numerical example with up to a hundred stochastic dimensions. Also, compared to PC and PDD methods, the
non-intrusiveness of the proposed method is highlighted, which does not require dedicated approximation structures
of the solutions in stochastic spaces. The proposed method is easy to implement and existing solvers can be embedded
into solving procedure. It combines the fast convergence of intrusive methods and the weak dimensionality dependency
of non-intrusive methods. Another advantage is that the proposed method obtains sample representations of stochas-
tic eigenvalues and semi-explicit representations of stochastic eigenvectors, which provides a pathway to describe the
probability density function of the quantity of interest and can be readily applied to structural stochastic dynamical
analysis.35-37

The article is organized as follows: Section 2 gives the basic setting of the stochastic eigenvalue problem and a brief
description of the PC method for solving stochastic eigenvalue problems. In Section 3, we propose a new reduced-order
method to solve stochastic eigenvalue problems, including the construction of stochastic eigenvectors, the solution of
reduced basis, the applicability to high-dimensional stochastic problems and the proofs of convergence and optimal
approximation. The algorithm implementation of the proposed method is elaborated in Section 4. Following that, sev-
eral numerical examples of low- and high-dimensional cases are given to demonstrate the performance of the proposed
method in Section 5, and conclusions and discussions follow in Section 6.

2 STOCHASTIC EIGENVALUE PROBLEMS

In this article, let (Θ,Σ,) be a complete probability space, where Θ denotes the space of elementary events,
Σ is the 𝜎-algebra defined on Θ and  is the probability measure. We consider the following stochastic eigenvalue
equation,

K (𝜃)u (𝜃) = 𝜆 (𝜃)u (𝜃) , (1)

where 𝜃 ∈ Θ, K (𝜃) ∈ Rn×n is the real symmetric and positive definite stochastic stiffness matrix related to stochastic prop-
erties of the physical models, 𝜆 (𝜃) ∈ R and u (𝜃) ∈ Rn are stochastic eigenvalues and stochastic eigenvectors, respectively.
The orthonormal condition

uT
i (𝜃)uj (𝜃) = 𝛿ij, 𝜃 ∈ Θ, (2)

is met for the eigenvectors ui (𝜃) and uj (𝜃), where 𝛿ij is the Kronecker delta function. In a general setting, the matrix K (𝜃)
depends on a finite set of real valued random variables reduced from the infinite-dimensional probability space. When
the inputs are random fields represented with a set of random variables, the number of random variables may be large,
which possibly induces the so called curse of dimensionality.
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ZHENG et al. 5887

2.1 Polynomial Chaos expansion for solving stochastic eigenvalue problems

Polynomial Chaos expansion is a powerful tool for stochastic analysis and has been applied to many kinds of stochastic
problems. A PC-based method8 is proposed in order to solve Equation (1). In this method, K (𝜃), 𝜆 (𝜃), and u (𝜃) are
represented by PC basis in the form,

K (𝜃) =
l−1∑

i=0
𝜓i (𝜃)Ki, um (𝜃) =

p−1∑

i=0
𝜓i (𝜃) u(i)m , 𝜆m (𝜃) =

p−1∑

i=0
𝜓i (𝜃) 𝜆(i)m , (3)

where {Ki}l−1
i=0 ∈ Rn×n are deterministic matrices,

{
u(i)m

}p−1

i=0
∈ Rn are deterministic vectors and

{
𝜆

(i)
m

}p−1

i=0
∈ R are

expanded coefficients. All of them are unknown and need to be computed by a coupled system of equations. Moreover,
the orthonormal condition Equation (2) is written as

uT
k (𝜃)um (𝜃) =

p−1∑

i=0

p−1∑

j=0
𝜓i (𝜃)𝜓j (𝜃)u(i)Tk u(j)m = 𝛿km. (4)

Substituting the expansion Equation (3) into Equation (1) and applying stochastic Galerkin method38,39 to Equations (1)
and (4) yield a deterministic system of equations

l−1∑

i=0

p−1∑

j=0
cijqKiu(j) =

p−1∑

i=0

p−1∑

j=0
cijq𝜆iu(j), (5)

and the equation of the orthonormal condition

p−1∑

i=0

p−1∑

j=0
cijqu(i)Tk u(j)m = 𝛿km𝛿q0, (6)

where the coefficients is given by cijq = E
{
𝜓i (𝜃)𝜓j (𝜃)𝜓q (𝜃)

}
, q = 0, … , p − 1. Equations (5) and (6) can be rewritten as

a compact system of nonlinear equations,

p−1∑

i=0

p−1∑

j=0
(Bi𝚪i − 𝜆i𝚪i)u = 0, Bi = 0, i > l, (7)

and

uT
k𝚪qum = 𝛿km𝛿q0, (8)

where the matrices Bi and 𝚪i are given by

Bi =
⎡
⎢
⎢
⎢⎣

Ki 0
⋱

0 Ki

⎤
⎥
⎥
⎥⎦
∈ R

np×np
, 𝚪i =

[
cijqIn
]p−1

j,q=0 ∈ R
np×np

, (9)

In ∈ Rn×n is the identity matrix.
The above PC-based method gives a powerful tool to solve stochastic eigenvalue problems. It has a rigorous mathe-

matical foundation and is of high accuracy. The method can provide probability density descriptions for eigenvalues and
eigenvectors instead of moments. However, it needs to be further improved in terms of computational efficiency. On one
hand, it requires to solve the augmented nonlinear system Equation (7) for each eigenpair {𝜆 (𝜃) ,u (𝜃)}. On the other
hand, the size of Equation (7) is prohibitively large as the stochastic dimension, the order of PC basis and the degree
of freedom (DOF) of the physical model increase, whose solution is time-consuming. We remark that the dimension
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5888 ZHENG et al.

decomposition method, including PDD29 and the spline dimension decomposition,34 can be used to reduce the compu-
tational cost and capture high-accuracy stochastic solutions. Similar to the PC method, the method adopts orthogonal
polynomial/spline bases to approximate stochastic solutions and develops a hierarchical decomposition to overcome some
difficulties arising in PC methods, for example, the curse of dimensionality, capturing discontinuous stochastic solutions.
An exhaustively comparative study of the two methods of solving stochastic eigenvalue problems can be found in the Ref-
erence 31. In this article, we will explore a non-intrusive method instead of intrusive solution approximations in stochastic
spaces.

3 A REDUCED- ORDER METHOD FOR STOCHASTIC EIGENVALUE
ANALYSIS

In this section, we develop an efficient method to solve the stochastic eigenproblem Equation (1). A new expansion
similar to the PC expansion is used to approximate stochastic eigenvectors, but the random coefficients and deterministic
vectors are not known a priori. A numerical algorithm is proposed to compute corresponding deterministic vectors and
a reduced-order eigenequation is then used to solve stochastic eigenvalues of the original eigenproblem.

3.1 Reduced-order stochastic eigenvalue equation

Similar to the expansion Equation (3), we decompose the stochastic eigenvector into the deterministic and stochastic
spaces and consider the expansion of the stochastic eigenvector um (𝜃) in a form

um (𝜃) =
k∑

i=1
𝜙

(i)
m (𝜃) di = D𝜙m (𝜃) ∈ R

n
, (10)

where the deterministic vector di ∈ Rn, the random variable 𝜙(i)m (𝜃) ∈ R, the deterministic matrix D =
[
di
]k

i=1 ∈ Rn×k, the

random vector 𝜙m (𝜃) =
[
𝜙

(i)
m (𝜃)
]k

i=1
∈ Rk. All of them are not known a priori and need to be solved. Moreover, we let the

orthonormal condition DTD = Ik hold, that is, the vectors {di}k
i=1 are orthogonal dT

i dj = 𝛿ij. The original eigenproblem
Equation (1) thus becomes as

K (𝜃)D𝜙m (𝜃) = 𝜆m (𝜃)D𝜙m (𝜃) . (11)

It is noted that Equation (11) is insoluble since both the matrix D and the random vector 𝜙m (𝜃) are unknown. If one
of them has been known, the other is readily computable. In this way, an available way is to fix one of them and then to
solve the other. Inspired by the classical subspace iteration method1,2 for solving deterministic eigenvalue problems and
reduced basis methods, we assume the matrix D has been known and then solve the unknown random vector 𝜙m (𝜃). By
use of the matrix D, a reduced-order eigenvalue problem can be obtained,

̃Kk (𝜃)𝜙m (𝜃) = 𝜆m (𝜃)𝜙m (𝜃) , (12)

where the reduced-order stochastic matrix ̃Kk (𝜃) is given by ̃Kk (𝜃) = DTK (𝜃)D ∈ Rk×k and {𝜙m (𝜃)}m meets the orthonor-
mal condition 𝜙T

i (𝜃)𝜙m (𝜃) = 𝛿im almost everywhere (a.e.) since they are eigenvectors of the eigenequation (12). In this
way, we recall the orthonormal condition Equation (2) of the original eigenproblem,

uT
i (𝜃)uj (𝜃) = 𝜙T

i (𝜃)DTD𝜙j (𝜃) = 𝛿ij, (13)

holds naturally, thus extra equations (like Equation (4)) are not needed to impose the orthonormal condition. The
size of the reduced-order problem Equation (12) is k, which is much lower than the size of the original eigenproblem
Equation (1). In our experience, a small number k normally achieves a good approximation of the stochastic eigenvectors
of the original eigenproblem. Several methods can be used to solve Equation (12) efficiently and accurately, for example,
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ZHENG et al. 5889

the Monte Carlo simulation and the PC-based method described in Section 2.1. In order to enable the proposed method
to solve high-dimensional stochastic eigenproblems, we adopt a non-intrusive sampling method to solve Equation (12)
in this article, which is easy to implement and has high accuracy and high efficiency thanking to the small size k. By
Equation (12), the randomness of the matrix K (𝜃) is transferred to the reduced-order matrix ̃Kk (𝜃). Thus the input random
variables are propagated through a reduced-order eigenvalue system to the stochastic eigenvalues of both reduced-order
and original eigenequations and the stochastic eigenvectors of the reduced-order eigenequations. However, compared to
the PC method, the proposed method cannot provide an explicit representation between the input random variables and
the stochastic eigenvalues/eigenvectors. To avoid this point, an available method is to represent the obtained 𝜆m (𝜃) and
𝜙m (𝜃) using the PC basis.

The key part of the proposed method is to determine the matrix D =
[
di
]k

i=1. For this purpose, we solve the vector di
one by one by considering the following approximation of the stochastic eigenvector u (𝜃),

min
d∈Rn
‖u (𝜃) − d‖2

, (14)

where ‖⋅‖2 is defined as ‖u (𝜃)‖2 = E
{

u(𝜃)Tu (𝜃)
}

and d ∈ Rn is an unknown deterministic vector. From a vector
approximation point of view, we approximate the stochastic eigenvector u (𝜃) by using the deterministic vector d. The
approximation accuracy is very low due to the loss of randomness in the vector d, thus it is wrong to some extent. To illus-
trate the reasonableness of the approximation, we consider Equation (14) from a subspace point of view. In Section 3.5,
we will show that the stochastic eigenvalues of Equation (12) converge to the stochastic eigenvalues of Equation (1) if the
stochastic vector u (𝜃) is nearly in the subspace obtained by deterministic vectors {di}i. In this sense, Equation (14) is used
to construct a subspace that nearly includes the stochastic vector u (𝜃). In practice, the stochastic eigenvector u (𝜃) is not
known a priori, thus the vector d cannot be computed directly by using Equation (14). To avoid this difficulty, we substitute
the stochastic vector u (𝜃) = d into the eigenproblem Equation (1) and thus obtain the following stochastic residual

 (𝜃) = [K (𝜃) − 𝜆 (𝜃) In] d ∈ R
n
, (15)

only the random variable 𝜆 (𝜃) and the deterministic vector d in which are unknown. Thus the problem is to find 𝜆 (𝜃)
and d to minimize ‖ (𝜃)‖2,

min
𝜆(𝜃)∈R, d∈Rn

‖ (𝜃)‖2 = min
𝜆(𝜃)∈R, d∈Rn

‖K (𝜃) d − 𝜆 (𝜃) d‖2
. (16)

Remark 1. From a vector approximation point of view, a better approximation of the stochastic eigenvector u (𝜃) is given
as follows

min
𝜑(𝜃)∈R, d∈Rn

‖u (𝜃) − 𝜑 (𝜃) d‖2
, (17)

where𝜑 (𝜃) ∈ R is a unknown random variable. Equation (17) can be considered as a kind of rank-1 random singular value
decomposition (SVD) of u (𝜃). Specifically, giving the sample representation u (𝜽) ∈ Rn×ns (ns is the number of random
samples) of u (𝜃) we have the following rank-1 SVD,

u (𝜽) ≈ d𝜑 (𝜽) , 𝜑 (𝜽) ∈ R
1×ns

. (18)

In the sense of sample representation, Equation (17) is the optimal rank-1 approximation40 of u (𝜃). But it is not easy to
solve the couple {𝜑 (𝜃) , d} since both of them are unknown. The solution of Equation (17) needs further study and we
only consider the approximation Equation (14) in this article.

We now focus on computing the random variable 𝜆 (𝜃) and the deterministic vector d in Equation (16). To this end,
we develop an alternating minimization iteration, the idea of which is to fix one of 𝜆 (𝜃) and d to solve the other and then
to update the fixed one according to the solution. Specifically, for a known random variable 𝜆 (𝜃) (or a given initial value),
we apply the stochastic Galerkin method38,39 to the stochastic residual Equation (15) and transform it as

E{𝜆 (𝜃) (𝜃)} = 0, (19)
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5890 ZHENG et al.

which is used to solve the vector d and can be rewritten as a compact form,

K∗d = 𝜆∗d, (20)

where the deterministic matrix K∗ = E {𝜆 (𝜃)K (𝜃)} ∈ Rn×n and 𝜆∗ = E
{
𝜆

2 (𝜃)
}
∈ R. Equation (20) is a classically deter-

ministic eigenvalue equation, which can be solved by use of existing methods, for example, power method, Lanczos
method and QR method.2 The details will be discussed in the next subsection. After solving the vector d by Equation (20),
the random variable 𝜆 (𝜃) is updated by the Galerkin procedure,

dT
 (𝜃) = 0, (21)

equivalently,

𝜆 (𝜃) =
dTK (𝜃) d

dTd
∈ R, (22)

which can be simplified as 𝜆 (𝜃) = dTK (𝜃) d by considering the normalization dTd = 1.
There are stochastic computations involved in Equations (20) and (22), that is, the expectation E {𝜆 (𝜃)K (𝜃)} and

the deterministic vector-stochastic matrix multiplication dTK (𝜃) d. A common method is to approximate K (𝜃) and 𝜆 (𝜃)
by use of an Equation (3)-like expansion. In this method, the size of the equation for solving expanded coefficients of
𝜆 (𝜃) is (m + p)!∕ (m!p!), where (⋅)! represents the factorial operator, m and p are the number of random variables and
the order of PC basis. It increases dramatically as the stochastic dimension increases, for instance, the size is about
1 × 103 when m = 10, p = 4 and 4.6 × 106 when m = 100, p = 4. An available method to avoid the difficulty is sparse
PC expansion.28 In order to overcome the dependence on stochastic dimensions, we adopt a non-intrusive sampling
method,

E {𝜆 (𝜃)K (𝜃)} = E {𝜆 (𝜽)K (𝜽)} , 𝜆 (𝜽) = dTK (𝜽) d ∈ R
ns
, (23)

where 𝜆 (𝜽) ∈ Rns and K (𝜽) ∈ Rn×n×ns represent samples of the random variable 𝜆 (𝜃) and the matrix K (𝜃), respectively.
It is noted that Equation (23) has low computational effort even for very high stochastic dimensions, the applicability of
which to high-dimensional problems will be discussed in Section 3.3.

It is seen from Equations (20) and (22) that dTK (𝜃) d ≠ 0 needs to be hold. In other words, the proposed method
does not work on the case 𝜆 (𝜃) = 0. If there are zero eigenvalues in the problem, we can adopt the frequency-shifting
strategy2 to move the eigenvalues away from zero. We remark that although the proposed method is derived from real
symmetric and positive definite stochastic matrices, it can be extended to more general stochastic matrices, for example,
the non-symmetric complex stochastic matrices, which is simply illustrated in Section 5.1.3. Also, nonlinear stochastic
eigenvalue problems arise in many practical problems.31,33 The current version of the proposed method cannot solve non-
linear stochastic eigenvalue problems well. The proposed method is possible to be extended to the nonlinear eigenvalue
problems by combining the idea in this article and deterministic nonlinear eigenvalue methods,41,42 which is out of the
scope of this article and an exhaustive study of which will be presented in following-up studies. In addition, the proposed
method does not require the correlation of input random variables. As shown in Equation (23), we adopt a non-intrusive
way to perform stochastic computations. After generating samples of correlated/independent input random variables, all
computations of the proposed method are the same. Thus the proposed method can be applied to both correlated and
independent input random variables.

3.2 Solution of deterministic eigenvectors

In this section, we simply discuss the method for solving the deterministic eigenproblem Equation (20). For each
vector d, the single vector iteration method is enough for our purpose. In this article, we adopt the power itera-
tion for the explanation of our method. For complex and large-scale problems in practice, other numerical meth-
ods can be found in the Reference 2 and they can be readily used as an alternative to the power method in
this article.
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ZHENG et al. 5891

By adopting the power iteration to compute the maximum eigenvalue of Equation (20), a new solution d(j) is computed
based on a known approximation d(j−1),

d(j) = K∗d(j−1)
, (24)

where the deterministic matrix is inherited from Equation (20) and d is the deterministic vector to be solved. The iteration
Equation (24) is stopped until d converges.

Although Equation (24) is only used to solve a single vector d, it can be readily extended to solve a set of vectors
d1, … , dk. To illustrate this point, assuming that the first k − 1 vectors d1, … , dk−1 have been known, we calculate the
kth vector dk. Equation (24) is still adopted

d(j)k = K∗d(j−1)
k , (25)

which is stopped until the vector dk converges. It is noted that dk is the eigenvector of the different matrix K∗ =
E {𝜆k (𝜃)K (𝜃)} since 𝜆k (𝜃) are different random variables that vary with k. To speed up the computation and to avoid the
overlapping eigenmodes, we let the vector d(j)k orthogonal to the already obtained vectors d1, … , dk−1. Here we utilize
Gram–Schmidt orthonormalization

d(j)k = d(j)k −
k−1∑

i=1

d(j)Tk di

dT
i di

di, d(j)k = d(j)k

/(
d(j)Tk d(j)k

)
, (26)

which needs to hold along whole iterative process of Equation (25) until dk converges. The iterations Equations (25)
and (26) are very similar to the classical power method for solving the eigenvectors of a deterministic matrix, but the
randomness is embedded into the matrix K∗ in this article, which allows the subspace obtained by

[
d1, … , dk

]
to be a

good approximation of the space of the first few stochastic eigenvectors. In the same way, we can compute new vector
dk+1, dk+2, … by using Equation (25) until the specified number of items is calculated. Similarly, the inverse power method
can be used to compute deterministic vectors {di}i that are used to approximate the first several minimum stochastic
eigenvectors.

We remark that it is suggested to only use the proposed method to compute the first few maximum and mini-
mum stochastic eigenvalues and eigenvectors, although it can be used to solve more eigenvalues and eigenvectors.
Much more reduced basis {di}i are required when a large number of stochastic eigenvalues and stochastic eigenvectors
are considered. Although the calculation of deterministic vectors {di}i is readily implemented and can be accelerated
and improved by other methods, for example, the Lanczos method and the QR method, the size of the reduced-order
eigenequation (12) increases as the number of reduced basis {di}i. More computational effort is needed for the solution
of Equation (12). Hence, although the proposed method can be applied to calculate a large number of eigenvalues and
eigenvectors, it only speeds up the computation to a lesser extent. An extreme case is that when we consider all eigen-
values and eigenvectors of the matrix K (𝜃), the size of reduced-order matrix D is the same as the stochastic matrix K (𝜃)
and the size of the reduced-order Equation (12) is the same as the original problem, which makes the “reduced-order” no
sense.

3.3 High-dimensional stochastic eigenvalue problems

In this section, we show that the proposed method can be applied to high-dimensional stochastic eigenvalue problems
without any modification and extra computational effort. We assume that the stochastic matrix K (𝜃) can be represented
in a series expansion form

K (𝜃) =
r∑

j=1
𝜉j (𝜃)Kj, (27)

where
{
𝜉j (𝜃)
}r

j=1 are random variables described by probability distributions, random samples or PC approximation,
{

Kj
}r

j=1 ∈ Rn×n are deterministic matrices. High-dimensional cases are induced by a large value of r. For non-separated
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5892 ZHENG et al.

stochastic matrices, Equation (27) can be obtained by PC expansion in Equation (3), or a third-order tensor of random
samples K (𝜽) ∈ Rn×n×ns is generated by using non-intrusive methods.

We introduce the following sample matrix of random variables
{
𝜉j (𝜃)
}r

j=1,

𝜉 (𝜽) =
⎡
⎢
⎢
⎢⎣

𝜉1
(
𝜃

(1)) · · · 𝜉r
(
𝜃

(1))

⋮ ⋱ ⋮

𝜉1

(
𝜃
(ns)
)

· · · 𝜉r

(
𝜃
(ns)
)

⎤
⎥
⎥
⎥⎦
∈ R

ns×r
, (28)

and the sample vector of 𝜆 (𝜃) is 𝜆 (𝜽) =
[
𝜆

(
𝜃

(1))
, … , 𝜆

(
𝜃
(ns)
)]T

∈ Rns . Thus stochastic computations in Equation (23)
are reformulated as

E {𝜆 (𝜽)K (𝜽)} =
r∑

j=1
E
{
𝜆 (𝜽) 𝜉j (𝜽)

}
Kj, 𝜆(𝜽) =

r∑

j=1
𝜉j (𝜽) dTKjd = 𝜉 (𝜽) c ∈ R

ns
, (29)

where the coefficient vector c =
[
dTK1d, … , dTKrd

]T ∈ Rr and the expectation E
{
𝜆 (𝜽) 𝜉j (𝜽)

}
are calculated efficiently

in a non-intrusive way

[
E
{
𝜆 (𝜽) 𝜉j (𝜽)

}]r
j=1 =

1
ns
𝜆(𝜽)T𝜉 (𝜽) ∈ R

r
. (30)

In this way, we use the same method for solving both low- and high-dimensional stochastic problems and do not need
to design dedicated algorithms for high-dimensional cases. The computational effort increases slightly as the dimension
increases since only extra memories for storing 𝜉 (𝜽) ∈ Rns×r and

{
Kj
}r

j=1 are needed.

Remark 2. Combining Equations (20) and (22) we have

E
{[

dTK (𝜃) d
]

K (𝜃)
}

d = 𝜆∗d, (31)

or the separated form

( r∑

j=1
gj (d)Kj

)
d = 𝜆∗d, (32)

where the scalar function gj (d) =
∑r

i=1E
{
𝜉i (𝜃) 𝜉j (𝜃)

} (
dTKid

)
∈ R and E

{
𝜉i (𝜃) 𝜉j (𝜃)

}
are given by

[
E
{
𝜉i (𝜽) 𝜉j (𝜽)

}]r
i,j=1 =

1
ns
𝜉(𝜽)T𝜉 (𝜽) ∈ R

r×r
. (33)

Equations (31) and (32) are deterministic nonlinear eigenvalue problems. The vector d can be considered as
the eigenvector of the matrix obtained by the combination of

{
Kj
}r

j=1. In this article, we solve stochastic eigen-
problems by iteratively solving linear eigenvalue problems. Compared to the proposed method, only one stochastic
computation Equation (33) is required for solving Equation (32) and the vector d is solved only by determinis-
tic problems. However, nonlinear eigenvalue problems are beyond the scope of this article and can be found in
References 41 and 42.

3.4 Maximum and minimum stochastic eigenvalues

The proposed method utilizes a two-step strategy to compute eigenvalues of the original eigenproblem Equation (1), that
is, the first step is to solve deterministic eigenvalue problems to generate a set of reduced basis and the second step is
to solve a reduced-order stochastic eigenvalue problem. In this section we discuss computing original maximum and
minimum stochastic eigenvalues by combining two-step eigenvalue analysis.

 10970207, 2022, 23, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7092 by T
echnische Inform

ationsbibliothek, W
iley O

nline L
ibrary on [16/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ZHENG et al. 5893

The maximum and minimum eigenvalues of Equation (1) are given by

𝜆max (𝜃) = max
u(𝜃)≠0

uT (𝜃)K (𝜃)u (𝜃)
uT (𝜃) u (𝜃)

, 𝜆min (𝜃) = min
u(𝜃)≠0

uT (𝜃)K (𝜃) u (𝜃)
uT (𝜃) u (𝜃)

. (34)

In the first step, maximum/minimum stochastic eigenvectors u (𝜃) are approximated by the vector d that is solved by the
minimization Equation (16),

max
d≠0

dTK∗d
dTd

→ dmax, min
d≠0

dTK∗d
dTd

→ dmin, (35)

which indicates that dmax∕dmin are the maximum/minimum eigenvectors of K∗. Further, maximum/minimum stochastic
eigenvectors of the original eigenproblem are solved by the eigenvalues problem Equation (12) in the second step,

𝜙max (𝜃) = max
𝜙(𝜃)≠0

𝜙

T (𝜃) ̃Kk (𝜃)𝜙 (𝜃)
𝜙

T (𝜃)𝜙 (𝜃)
, 𝜙min (𝜃) = min

𝜙(𝜃)≠0

𝜙

T (𝜃) ̃Kk (𝜃)𝜙 (𝜃)
𝜙

T (𝜃)𝜙 (𝜃)
. (36)

which indicates that 𝜙max (𝜃) ∕𝜙min (𝜃) are the maximum/minimum eigenvectors of the reduced-order stochastic eigen-
value problem.

Thus the maximum/minimum stochastic eigenvalues and eigenvectors of the original eigenproblems are obtained by
two-step maximum/minimum eigenvalue problems,

umax,i (𝜃) = Dmax𝜙max,i (𝜃) , umin,i (𝜃) = Dmin𝜙min,i (𝜃) , i = 1, 2, … (37)

where Dmax =
[
dmax,1, … , dmax,k

]
∈ Rn×k, 𝜙max,i (𝜃) ∈ Rk and Dmin =

[
dmin,1, … , dmin,k

]
∈ Rn×k, 𝜙min,i (𝜃) ∈ Rk are the

first several maximum/minimum eigenvectors obtained by Equations (20) and (12).

3.5 Convergence analysis of stochastic eigenvalues

In this section, we extend the analysis of deterministic eigenvalue problems to stochastic cases. We will demon-
strate that if an eigenvector of the matrix K (𝜃) is nearly in the subspace  (Dk) consisting of the reduced-order
matrix Dk (we denote the matrix D in Equation (10) as Dk in this section), the corresponding stochastic eigenvalue of
the reduced-order eigenproblem Equation (12) converges to the stochastic eigenvalue of the full-order eigenproblem
Equation (1).

We adopt some concepts from the perturbation theory of eigenspaces.2,43 The acute angle between a vector v and a
subspace is defined as the smallest acute angle between v and all vectors w ∈ 

∠ (v,) = min
w∈

∠ (v,w) , (38)

where ∠ (v,w) is defined as the acute angle between the nonzero vectors v and w and

cos∠ (v,w) =
|(v,w)|
‖v‖2 ‖w‖2

, 0 ≤ ∠ (v,w) ≤ 𝜋

2
. (39)

In this way, recalling Equations (1) and (12), the angle between the eigenvector u (𝜃) of the full-order eigenproblem and
the subspace (Dk) is given by

𝛼 (𝜃) = ∠ (u (𝜃) , (Dk)) . (40)

As illustrated in Figure 1, we decompose the eigenvector u (𝜃) into two parts

u (𝜃) = u∈ (𝜃) + u
⊥
(𝜃) a.e., (41)
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5894 ZHENG et al.

F I G U R E 1 Decomposition of the eigenvector u (𝜃)

where the components are

u∈ (𝜃) = DkDT
k u (𝜃) ∈  (Dk) , u

⊥
(𝜃) =

(
I − DkDT

k
)

u (𝜃)⊥ (Dk) . (42)

According to Equations (38) and (39), the relationships between the L2 norms of u∈ (𝜃), u
⊥
(𝜃) and the angle 𝛼 (𝜃) are

given by

‖u∈ (𝜃)‖2 = cos 𝛼 (𝜃) , ‖u
⊥
(𝜃)‖2 = sin 𝛼 (𝜃) . (43)

Considering K (𝜃)u (𝜃) by Equation (41) we have

K (𝜃) u (𝜃) = K (𝜃) u∈ (𝜃) + K (𝜃)u
⊥
(𝜃) = K (𝜃)DkDT

k u (𝜃) + K (𝜃) u
⊥
(𝜃) , (44)

Substituting which into Equation (1) and multiplying by DT
k from left yields

DT
k K (𝜃) u (𝜃) = ̃Kk (𝜃)DT

k u (𝜃) + DT
k K (𝜃)u

⊥
(𝜃) = 𝜆 (𝜃)DT

k u (𝜃) , (45)

which is equivalent to

(
𝜆 (𝜃) I − ̃Kk (𝜃)

)
DT

k u (𝜃) = DT
k K (𝜃)u

⊥
(𝜃) a.e. (46)

Further, the eigendecomposition of the matrix ̃Kk (𝜃) is

̃Kk (𝜃) = ̃U (𝜃) ̃Λ (𝜃) ̃U(𝜃)T a.e., (47)

where ̃Λ (𝜃) ∈ Rk×k is a diagonal matrix consisting of the eigenvalues ̃𝜆 (𝜃) of the reduced-order matrix ̃Kk (𝜃). Substituting
Equation (47) into Equation (46) we have

̃U (𝜃)
(
𝜆 (𝜃) I − ̃Λ (𝜃)

)
̃U(𝜃)TDT

k u (𝜃) = DT
k K (𝜃) u

⊥
(𝜃) , (48)

multiplying which by ̃U(𝜃)T from left we have
(
𝜆 (𝜃) I − ̃Λ (𝜃)

)
̃U(𝜃)TDT

k u (𝜃) = ̃U(𝜃)TDT
k K (𝜃) u

⊥
(𝜃) a.e. (49)

Thus the following inequality holds

min
𝜆(𝜃)∈eig(K(𝜃))

|||𝜆 (𝜃) −
̃
𝜆 (𝜃)|||

‖‖‖
̃U(𝜃)TDT

k u (𝜃)‖‖‖2
≤
‖‖‖‖

(
𝜆 (𝜃) I − ̃Λ (𝜃)

)
̃U(𝜃)TDT

k u (𝜃)
‖‖‖‖2
= ‖‖‖

̃U(𝜃)TDT
k K (𝜃)u

⊥
(𝜃)‖‖‖2

, (50)

equivalently,
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ZHENG et al. 5895

min
𝜆(𝜃)∈eig(K(𝜃))

|||
̃
𝜆 (𝜃) − 𝜆 (𝜃)||| ≤

‖‖‖
̃U(𝜃)TDT

k K (𝜃) u
⊥
(𝜃)‖‖‖2

‖‖‖
̃U(𝜃)T

(
DT

k Dk
)

DT
k u (𝜃)‖‖‖2

≤
‖K (𝜃)‖2 ‖u⊥ (𝜃)‖2

‖u∈ (𝜃)‖2
= ‖K (𝜃)‖2 tan 𝛼 (𝜃) a.e. (51)

The right side of Equation (51) only depends on the values ‖K (𝜃)‖2 and tan 𝛼 (𝜃). The value ‖K (𝜃)‖2 is fixed for a
given matrix K (𝜃). Hence we can conclude |||

̃
𝜆 (𝜃) − 𝜆 (𝜃)|||→ 0 as the angle 𝛼 (𝜃) → 0. In other words, if the eigenvector

u (𝜃) of the matrix K (𝜃) is nearly in  (Dk), the stochastic eigenvalue ̃𝜆 (𝜃) of the reduced-order matrix ̃Kk (𝜃) converges
to the stochastic eigenvalue 𝜆 (𝜃) of the full-order matrix K (𝜃). It is noted that we need to make sure that the subspace
 (Dk) is “good” enough such that the target eigenvector is nearly in it. A simple way for this purpose is to increase the
dimension of the subspace. Furthermore, only symmetrically positive definite matrix K (𝜃) is considered in this article.
Equation (51)-like bound estimations for more generally deterministic matrices can be found in the References 43 and 44
and we can extend these theories to the corresponding stochastic cases.

3.6 Optimal approximation

In this section, we will demonstrate that the stochastic eigenvalues and eigenvectors of the reduced-order matrix ̃Kk (𝜃)
are considered optimal approximations to the stochastic eigenvalues and eigenvectors of the full-order matrix K (𝜃) from
the given subspace (Dk). For this purpose, we will show that

min
Q(𝜃)∈Rk×k

‖K (𝜃)Dk − DkQ (𝜃)‖2 , (52)

reaches its minimum value when Q (𝜃) = DT
k K (𝜃)Dk (i.e., the reduced-order stochastic matrix in Equation (12)).

Let D = [Dk,Dr] ∈ Rn×n be an orthogonal matrix, where the reduced-order matrix Dk ∈ Rn×k, the supplementary
matrix Dr ∈ Rn×r, r = n − k. Thus we have

̃K (𝜃) = DTK (𝜃)D = [Dk,Dr]TK (𝜃) [Dk,Dr] =

[
DT

k K (𝜃)Dk DT
k K (𝜃)Dr

DT
r K (𝜃)Dk DT

r K (𝜃)Dr

]
=

[
̃Kkk (𝜃) ̃Kkr (𝜃)
̃Krk (𝜃) ̃Krr (𝜃)

]
. (53)

To proof Equation (52), we let

Q (𝜃) = ̃Kkk (𝜃) + S (𝜃) , ∀S (𝜃) ∈ R
k×k
. (54)

Hence we have

[K (𝜃)Dk − DkQ (𝜃)]T [K (𝜃)Dk − DkQ (𝜃)]

=
[

K (𝜃)Dk − Dk

(
̃Kkk (𝜃) + S (𝜃)

)]T [
K (𝜃)Dk − Dk

(
̃Kkk (𝜃) + S (𝜃)

)]

=
[

K (𝜃)Dk − Dk̃Kkk (𝜃)
]T [

K (𝜃)Dk − Dk̃Kkk (𝜃)
]
−
[

K (𝜃)Dk − Dk̃Kkk (𝜃)
]T
(DkS (𝜃))

− (DkS (𝜃))T
[

K (𝜃)Dk − Dk̃Kkk (𝜃)
]
+ (DkS (𝜃))T (DkS (𝜃))

=
[

K (𝜃)Dk − Dk̃Kkk (𝜃)
]T [

K (𝜃)Dk − Dk̃Kkk (𝜃)
]
−
(

DT
k K(𝜃)TDk − ̃Kkk(𝜃)T

)
S (𝜃)

− S(𝜃)T
(

DT
k K (𝜃)Dk − ̃Kkk (𝜃)

)
+ S(𝜃)TS (𝜃)

=
[

K (𝜃)Dk − Dk̃Kkk (𝜃)
]T [

K (𝜃)Dk − Dk̃Kkk (𝜃)
]
+ S(𝜃)TS (𝜃) a.e., (55)

which reaches the minimum when S (𝜃) = 0, that is, Q (𝜃) = ̃Kkk (𝜃), thus Equation (52) is proved. Furthermore, the
minimum value is given by

‖‖‖K (𝜃)Dk − Dk̃Kkk (𝜃)
‖‖‖2

= ‖‖‖[Dk,Dr] [Dk,Dr]TK (𝜃)Dk − Dk̃Kkk (𝜃)
‖‖‖2
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5896 ZHENG et al.

=
‖‖‖‖

[
Dk̃Kkk (𝜃) + Dr̃Krk (𝜃)

]
− Dk̃Kkk (𝜃)

‖‖‖‖2

= ‖‖‖
̃Krk (𝜃)

‖‖‖2
a.e. (56)

4 ALGORITHM IMPLEMENTATION

The proposed method for solving the stochastic eigenvalue problem Equation (1) is summarized in Algorithm 1, which
includes two parts in turn. The first part is from step 1 to 17, which is to compute the reduced-order matrix D and
includes a triple-loop iteration. The innermost loop, which is from step 4 to 10, is used to solve the vector d(j)k from a given
random variable 𝜆(j)k (𝜃), where the subscript k represents the kth reduced basis, the superscript j represents the jth itera-

tion
{
𝜆

(j)
k (𝜃) , d

(j)
k

}
and the superscript q only locally works on the power iteration for deterministic eigenproblems. The

maximum/minimum eigenvector d(j)k is solved by power/inverse power methods in step 6 and the orthonormalization is
processed in step 7. The convergence error in step 8 is defined as

𝜀d,k,j,q =
‖‖‖d

(j,q)
k − d(j,q−1)

k
‖‖‖2

‖‖‖d
(j,q−1)
k
‖‖‖2

= ‖‖‖d
(j,q)
k − d(j,q−1)

k
‖‖‖2
, (57)

which measures the convergence of the eigenvector d(j)k of the deterministic eigenproblem Equation (20). The middle
loop from step 2 to 14 corresponds to computing the kth couple {𝜆k(𝜃), dk}. The random variable 𝜆k (𝜃) is initialized
by ns random samples in step 2 and is updated in step 11 based on the vector d(j)k obtained by the innermost loop. The
convergence error in step 12 is defined as

𝜀l,k,j =
‖‖‖d

(j)
k − d(j−1)

k
‖‖‖2

‖‖‖d
(j−1)
k
‖‖‖2

= ‖‖‖d
(j)
k − d(j−1)

k
‖‖‖2
, (58)

ALGORITHM 1. Algorithm for solving stochastic eigenvalue problems

1: while k ≤ kmax do
2: Initialize 𝜆(0)k (𝜽) =

{
𝜆

(0)
k

(
𝜃

(i))
}ns

i=1
∈ Rns

3: while 𝜀l,k,j > 𝜀l do
4: Initialize d(j,0)k ∈ Rn

5: while 𝜀d,k,j,q > 𝜀d do
6: Compute d(j,q)k by Equation∼(25) (inverse power method for the minimum eigenvectors)
7: Orthogonalize d(j,q)k ⊥di,∼ i = 1,… , k − 1 and normalize ‖‖‖d

(j,q)
k
‖‖‖2
= 1

8: Compute the iterative error 𝜀d,k,j,q
9: q ← q + 1

10: end while
11: Compute 𝜆(j)k (𝜃) by Equation (23)
12: Compute the iterative error 𝜀l,k,j
13: j ← j + 1
14: end while
15: Update the matrix D =

[
D, dk
]
∈ Rn×k

16: k ← k + 1
17: end while
18: Compute eigenpairs {𝜆m (𝜃) , 𝜙m (𝜃)}m by Equation∼(12)
19: Compute the mth stochastic eigenvector um (𝜃) = D𝜙m (𝜃)
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ZHENG et al. 5897

which measures the difference between d(j)k and d(j−1)
k . The iteration is stopped when d(j)k is almost the same as d(j−1)

k . The
outermost loop from step 1 to 17 is used to compute the deterministic vector dk one after another, where kmax is the
specified number of retained terms. For the second part, the stochastic eigenvalues of both reduced-order and original
eigenequations and the stochastic eigenvectors of the reduced-order eigenequation (12) are solved in step 18. The stochas-
tic eigenvectors of the original eigenproblem Equation (1) are then calculated in step 19 by combining reduced basis and
stochastic eigenvectors of the reduced-order eigenproblem. Although only the standard eigenvalue problem is consid-
ered, Algorithm 1 can be readily extended to generalized eigenvalue equations, which will be demonstrated in numerical
examples.

5 NUMERICAL EXAMPLES

Numerical implementations of the proposed method are illustrated with the aid of five examples. For all considered
examples, convergence errors in steps 3 and 5 of Algorithm 1 are set as 𝜀l = 𝜀d = 1 × 10−4. 1 × 104 random samples are
adopted in step 2 of Algorithm 1. Reference solutions are computed by adopting 1 × 104 MCS. All examples are tested on
a laptop (dual-core, Intel Core i7, 2.40 GHz).

5.1 Eigenvalues of stochastic matrices

In this example, we test the proposed method using separated and non-separated stochastic matrices and compare the
performance of the proposed method, MCS and PC method.

5.1.1 Separated stochastic matrix

In this case, we consider the stochastic eigenvalue problem Equation (1) and compute stochastic eigenvalues of the
following stochastic matrix,

K (𝜃) =
r∑

i=1
𝜉i (𝜃)Ki ∈ R

n×n
, (59)

where {𝜉i (𝜃)}r
i=1 are mutually independent uniform random variables on [1, 2] and deterministic matrices {Ki}r

i=1 ∈ Rn×n

are given by

Ki = UT
i DiUi ∈ R

n×n
. (60)

We set the matrix size n = 50, the stochastic dimension r = 5 and the retained number of Algorithm 1 kmax =
10 in this case. Deterministic matrices Di and Ui are a sample realization of stochastic matrices Di (𝜃) and Ui (𝜃),
where the diagonal matrix Di (𝜃) = diag ([𝜂i1 (𝜃) , … , 𝜂in (𝜃)]) ∈ Rn×n,

{
𝜂ij (𝜃)

}
i=1,… ,r,j=1,… ,n are mutually indepen-

dent uniform random variables on [10,100] and Ui (𝜃) ∈ Rn×n is a matrix formed by the orthonormal basis of the
stochastic matrix [𝜍ikl (𝜃)]nk,l=1 ∈ Rn×n, {𝜍ikl (𝜃)}i=1,… ,r; k,l=1,… ,n are mutually independent uniform random variables
on [0, 1].

Figure 2 shows probability density functions (PDFs) of first four minimum and maximum stochastic eigenvalues
obtained by the proposed ROM and MCS. For both minimum and maximum stochastic eigenvalues, PDFs obtained
by ROM have good agreements with MCS, which demonstrate good accuracy of the proposed ROM. It is seen from
Figure 2B that the proposed method works well even for highly close eigenvalues, which allows the proposed method
to deal with the problems with close eigenmodes. It is noted that the rank order of each sample realization of stochas-
tic eigenvalues is fixed, for instance, 𝜆1

(
𝜃

(i))
> 𝜆2
(
𝜃

(i)), i = 1, … ,ns must hold if we consider 𝜆1 (𝜃) and 𝜆2 (𝜃) as the
largest and second largest stochastic eigenvalues, which means that there is strong correlations between stochastic
eigenvalues. We compute the correlations of eight stochastic eigenvalues (including the first four minimum eigenval-
ues shown in Figure 2A and the first four maximum eigenvalues shown in Figure 2B) and the Pearson correlation
coefficient
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F I G U R E 2 PDFs of first four minimum and maximum eigenvalues. (A) PDFs of first four minimum eigenvalues; (B) PDFs of first four
maximum eigenvalues

T A B L E 1 Correlations between stochastic eigenvalues

Eigenvalues 𝝀
MinEv
1 (𝜽) 𝝀

MinEv
2 (𝜽) 𝝀

MinEv
3 (𝜽) 𝝀

MinEv
4 (𝜽) 𝝀

MaxEv
1 (𝜽) 𝝀

MaxEv
2 (𝜽) 𝝀

MaxEv
3 (𝜽) 𝝀

MaxEv
4 (𝜽)

𝜆

MinEv
1 (𝜃) 1.0000

𝜆

MinEv
2 (𝜃) 0.9755 1.0000

𝜆

MinEv
3 (𝜃) 0.9973 0.9825 1.0000 sym.

𝜆

MinEv
4 (𝜃) 0.9952 0.9819 0.9939 1.0000

𝜆

MaxEv
1 (𝜃) 0.9969 0.9749 0.9937 0.9916 1.0000

𝜆

MaxEv
2 (𝜃) 0.9935 0.9750 0.9891 0.9894 0.9975 1.0000

𝜆

MaxEv
3 (𝜃) 0.9954 0.9816 0.9935 0.9947 0.9984 0.9975 1.0000

𝜆

MaxEv
4 (𝜃) 0.9955 0.9804 0.9932 0.9947 0.9977 0.9983 0.9994 1.0000

Abbreviations: 𝜆MinEv
i (𝜃), the ith minimum eigenvalues; 𝜆MaxEv

i (𝜃), the ith maximum eigenvalues.

𝜌ij =
E
{
𝜆i (𝜃) 𝜆j (𝜃)

}
− E {𝜆i (𝜃)}E

{
𝜆j (𝜃)
}

√
E
{
𝜆

2
i (𝜃)
}
−
[
E {𝜆i (𝜃)}

]2
√

E

{
𝜆

2
j (𝜃)
}
−
[
E
{
𝜆j (𝜃)
}]2

, (61)

is adopted. As listed in Table 1, minimum stochastic eigenvalues are strongly correlative to maximum stochastic eigen-
values, which verifies the correlations between stochastic eigenvalues. The correlation decreases if the values of two
stochastic eigenvalues are far away.

As a comparison, we solve the problem by use of the PC method described in Section 2.1. Two-order Legendre PC basis
of five uniform random variables are adopted. The number of PC basis is 21 and the size of the derived nonlinear system
of equations is 1050. It is seen from Figure 3A that both ROM and PC method are in very good accordance with MCS.
Relative errors (defined by |||

PDF−PDFMCS

PDFMCS

||| × 100%) depicted in Figure 3B indicate both of their errors are small enough, but
PC method has a bit better accuracy than ROM.

We test computational efficiencies of the proposed method, MCS and PC method. Table 2 shows computational times
of minimum and maximum eigenvalues obtained by ROM, MCS, and PC methods. The computational costs of ROM
are obviously less than MCS for both minimum and maximum eigenvalues, which demonstrate the high efficiency of
the proposed ROM. Compared to ROM, the PC method needs more effort since the size of the derived nonlinear sys-
tem of equations is larger than that of the original problem and Newton–Raphson is used to solve the nonlinear system.
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F I G U R E 3 Comparisons of PDFs of first two maximum eigenvalues obtained by MCS, ROM, and PC method and corresponding
relative errors. (A) Comparisons of PDFs; (B) errors of PDFs of ROM and PC relative to MCS

T A B L E 2 Computational costs of minimum and maximum eigenvalues.

MinEv MinEv (MC) MaxEv MaxEv (MC) MaxEv (PC)

Solving costs (D) 1.70 1.37

Solving costs (ROM) 6.98 6.62

Total costs (s) 8.68 91.05 8.99 93.40 46.28

Abbreviations: MaxEv, maximum eigenvalues; MinEv, minimum eigenvalues.

This difficulty will be more pronounced for large-scale and high-dimensional stochastic problems. More efficient meth-
ods are necessary to reduce the computational effort of the PC method. Total computational times of ROM consist of
the cost for computing the matrix D and the cost for solving the reduced-order stochastic eigenvalue problem and the
former is normally much higher than the latter. It is the opposite in this example since only a small matrix size is
tested.

5.1.2 Non-separated stochastic matrix

In this case, we consider a non-separated stochastic matrix

Kij (𝜃) = exp
(
−
||xi − xj||

lx (𝜃)

)
∈ R

n×n
, xi, xj ∈ [0, 1] , (62)

which is discretized with n = 100 DOFs, where lx (𝜃) is the uniform random variable on [0.5, 1].
Expansion methods are available to approximate Kij (𝜃), for instance, Equation (3)-like can be obtained by

adopting PC method to expand K (𝜃). It is noted that the proposed method can be applied to non-separated
stochastic matrices without any modification. In this case, we use ns = 1 × 104 random samples K (𝜽) ∈ Rn×n×ns

instead of the approximation of K (𝜃) and set kmax = 10. PDFs of first four maximum eigenvalues compared
to MCS are shown in Figure 4, which indicates our method has good accuracy for non-separated stochas-
tic matrices. The computational time are 103.19 s for MCS and 21.08 s for ROM, including 13.72 s for com-
puting the matrix D and 7.36 s for solving the reduced-order eigenvalue problem. Compared to separated
cases, more effort are needed to compute E {𝜆 (𝜽)K (𝜽)} ∈ Rn×n and dTK (𝜽) d ∈ Rns for non-separated stochastic
matrices.
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F I G U R E 4 PDFs of first four maximum eigenvalues

5.1.3 Non-symmetric complex stochastic matrix

In this case, we consider a non-symmetric complex stochastic matrix

Kij (𝜃) = exp
(
−
||xi − xj||
lx,1 (𝜃)

)
+ exp

(
−
√

xi − xj

lx,2 (𝜃)

)
∈ C

n×n
, xi, xj ∈ [0, 1] , (63)

which is discretized with n = 100 DOFs, where lx,1 (𝜃) and lx,2 (𝜃) are uniform random variables on [0.5, 1] and [1, 1.5],
respectively, and their Pearson correlation coefficient is 0.5.

In this case, we adopt ns = 1 × 104 random samples K (𝜽) ∈ Rn×n×ns to describe the stochastic matrix and set kmax = 10.
The complex stochastic eigenvalue has the form 𝜆 (𝜃) = 𝜆real (𝜃) + i

𝜆
⋅ 𝜆imag (𝜃), where i

𝜆
=
√
−1 is the imaginary unit,

𝜆real (𝜃) and 𝜆imag (𝜃) are real-part and imaginary-part random variables. PDFs of first four maximum eigenvalues com-
pared to MCS are shown in Figure 5, where PDFs of the first four real-part random variables

{
𝜆j,real (𝜃)

}4
j=1 are depicted

in Figure 5A and PDFs of the first four imaginary-part random variables
{
𝜆j,imag (𝜃)

}4
j=1 are depicted in Figure 5B. The

PDFs of both real-part and imaginary-part random variables have good agreements with that of MCS, which demonstrates
the proposed method still works well in this case. The computational times are 143.96 s for MCS and 31.27 s for ROM,
including 27.17 s for computing the matrix D and 4.10 s for solving the reduced-order eigenvalue problem. The proposed
method saves a lot of costs compared with MCS.

5.2 Stochastic vibration modes of a membrane

This example is to calculate the stochastic vibration modes of a membrane, which requires the solution of the following
eigenvalue partial differential equation,

−∇ ⋅ [c (x, y, 𝜃) ∇u (x, y, 𝜃)] = 𝜆 (𝜃) u (x, y, 𝜃) , (64)

defined on the domain shown in Figure 6A and u (x, y, 𝜃) = 0 holds on all boundaries (including inner and outer bound-
aries). The finite element mesh is depicted in Figure 6B, including np = 1157 nodes ne = 1874 triangular elements. The
coefficient c (x, y, 𝜃) is a Gaussian random field with mean function c0(x, y) = 2 and covariance function

Ccc (x1, y1; x2, y2) = 𝜎2
c exp

(
− |x1 − x2|

lx
−
|y1 − y2|

ly

)
, (65)

where the variance 𝜎c = 0.1 and correlation lengths li = max (i) −min (i), i = x, y.
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F I G U R E 5 PDFs of first four maximum eigenvalues. (A) PDFs of the real parts of first four maximum eigenvalues; (B) PDFs of the
imaginary parts of first four maximum eigenvalues

(A) (B)

F I G U R E 6 Model of the membrane and its finite element mesh. (A) Geometry; (B) finite element mesh

By use of Karhunen–Loève expansion,45,46 the random field c (𝜃, x, y) is approximated as

c (x, y, 𝜃) =
r∑

j=0
𝜉j (𝜃)
√
𝜅jcj (x, y) , (66)

where 𝜉0 (𝜃) ≡ 1, 𝜅0 ≡ 1, r is the truncated number,
{
𝜉j (𝜃)
}r

j=1 are mutually independent standard Gaussian random

variables and
{√

𝜅j, cj (x, y)
}r

j=1
are solved by the following homogeneous Fredholm integral equation of the second kind,

∫Ω
Ccc (x1, y1; x2, y2) cj (x1, y1) dx1dy1 = 𝜅jcj (x2, y2) . (67)

In order to ensure the well-posedness of Equation (64), we need to keep min
x,y∈Ω

(c (x, y, 𝜃)) > 0, ∀𝜃 ∈ Θ in the practical

numerical implementation. For this purpose, the sample realization 𝜃(i) such that min
x,y∈Ω

(
c
(

x, y, 𝜃(i)
))
< 1 × 10−3 will be

dropped out. Thus c (x, y, 𝜃) is considered as a truncated Gaussian random field in the numerical processing. In this
example, we truncate Equation (66) at r = 10 and the first six

{
cj (x, y)

}6
j=1 obtained by Equation (67) are depicted in

Figure 7.
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5902 ZHENG et al.

F I G U R E 7 First six eigenvectors
{

cj (x, y)
}6

j=1

Considering the weak form of Equation (64) we have

𝜆 (𝜃)
∫Ω

u (x, y, 𝜃) v (x, y) dxdy =
∫Ω

c (x, y, 𝜃) ∇u (x, y, 𝜃) ∇v (x, y) dxdy (68)

=
r∑

j=0
𝜉j (𝜃)
√
𝜅j
∫Ω

cj (x, y) ∇u (x, y, 𝜃) ∇v (x, y) dxdy, (69)

where v(x, y) is the test function. A stochastic eigenequation is thus generated as

K (𝜃)u (𝜃) = 𝜆 (𝜃)Mu (𝜃) , (70)

where K (𝜃) =
∑r

j=0𝜉j (𝜃)Kj ∈ R
np×np , matrices

{
Kj
}r

j=0 and M are computed by using shape functions {𝜛k (x, y)} of
triangular elements,

Kj,kl =
√
𝜅j
∫Ω

cj (x, y) ∇𝜛k (x, y) ∇𝜛l (x, y) dxdy, (71)

Mkl =
∫Ω

𝜛k (x, y)𝜛l (x, y) dxdy, k, l = 1, … ,n. (72)

From the perspective of practical engineering applications, it is more concerned about the first several minimum
eigenvalues since they are related to structural frequencies and natural vibration modes. We only compute the first five
minimum eigenvalues in this example. By use of the proposed ROM, the first nine vectors {di}9

i=1 of the matrix D are
shown in Figure 8. It is seen that the mode of di becomes less important as the number i increases. In other words, we can
use fewer {di} to approximate stochastic eigenvectors in this example. Different retained terms kmax = 5, 10, 20 are thus
tested. It is seen from Figure 9A that all PDFs of three cases are good enough to approximate the reference solutions and
they have similar approximation errors (seen from Figure 9B), which demonstrate five retained terms {di}5

i=1 are enough
for this example. However, we cannot determine the retained term kmax a priori for practical problems. The preselection
of kmax as small as possible is still an open problem for our method and needs further study. Also, the computational time
18.73 s (including 9.97 s for computing the matrix D and 8.76 s for solving reduced-order eigenvalue problem) of ROM is
much lower than 4.03 × 103 s for 1 × 104 MCS, which verifies the high efficiency of the proposed ROM again.

5.3 Stochastic eigenvalue analysis for a single part of robotic arm

This example considers a linear elastic robotic arm shown in Figure 10A, stochastic eigenvalue analysis of only single
part of which is proceed. The finite mesh is depicted in Figure 10B, including np = 2062 nodes and ne = 6729 tetrahedron
elements. Material properties of the arm are Poisson’s ratio 𝜈 = 0.30 and mass density 𝜌 = 2000 kg∕m3. The Young’s
modulus E(x, y, 𝜃) is considered as a Gaussian random field with mean function E0(x, y) = 1.50 × 1011 Pa and covariance
function
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F I G U R E 8 First nine reduced basis {di}9
i=1
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F I G U R E 9 PDFs of first five maximum eigenvalues obtained by different numbers of reduced basis and corresponding relative
errors. (A) PDFs of first five minimum eigenvalues from MCS and 5, 10, 20 reduced basis; (B) errors of PDFs of 5-, 10-, 20-term ROM relative
to MCS

CEE (x1, y1, z1; x2, y2, z2) = 𝜎2
E exp

(
− |x1 − x2|

lx
−
|y1 − y2|

ly
− |z1 − z2|

lz

)
, (73)

where the variance 𝜎E = 1.50 × 1010 and correlation lengths li = max (i) −min (i), i = x, y, z.
Similar to Section 5.2, we expand the random filed E(x, y, 𝜃) by use of Equation (66) and obtain a same stochastic

eigenequation as Equation (70). Similar to the random field c (x, y, 𝜃) considered in Equation (66), the sample realization
𝜃

(i) such that min
x,y,z∈Ω

(
E
(

x, y, z, 𝜃(i)
))
< 1 × 10−3 is discarded to ensure that the Young’s modulus is positive. The retained

number is set as kmax = 20 in this case and the first six minimum eigenvalues are computed. A low-dimensional case
r = 10 is first considered. It is seen from Figure 11 that PDFs of the first six minimum eigenvalues are still in very good
accordance with MCS.

The computational time of the case r = 10 is 73.12 s (seen from Table 3) and corresponding MCS cost is 1.52 × 104 s. For
large-scale problems, ROM is more efficient since it only solves a few number of large-scale deterministic eigenequations.
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(A) (B)

F I G U R E 10 Arm model and its finite element mesh. (A) Model; (B) finite element mesh
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F I G U R E 11 PDFs of first six minimum eigenvalues

T A B L E 3 Computational costs of different stochastic dimensions r.

Dimensions 10 30 60 100

Solving costs (D) 63.21 101.63 225.97 251.94

Solving costs (ROM) 9.91 8.09 9.80 10.59

Total costs (s) 73.12 109.72 235.27 262.53
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To verify the validity of the proposed method for high-dimensional stochastic problems, different stochastic dimensions
r = 10, 30, 60,100 are tested and their computational times are listed in Table 3, which indicate that the proposed ROM
is efficient even for a stochastic dimension up to 100. As the stochastic dimension increases, computational times for
computing the matrix D increase since extra effort and storage are needed to a large number of matrices

{
Kj
}r

j=1. Com-
putational times for solving reduced-order stochastic eigenequations are almost changeless since the size kmax is chosen
to be fixed.

6 CONCLUSIONS

This article proposes an efficient reduced-order algorithm for solving stochastic eigenvalue problems and certifies its
accuracy and efficiency with the aid of several numerical examples. By constructing an approximation of stochas-
tic eigenvectors and developing a dedicated iterative algorithm, solutions of reduced basis are transformed into a few
number of deterministic eigenproblems. Existing solvers can be readily incorporated into the computational proce-
dure. Based on the obtained reduced basis, the original eigenequation is transformed into a reduced-order eigenvalue
problem, whose solution is solved by use of a non-intrusive sampling method. The proposed method has low compu-
tational effort even for very high-dimensional stochastic problems. The curse of dimensionality is thus avoided with
great success, which has been illustrated by the numerical example of up to 100 dimensions. In these senses, the pro-
posed method is particularly appropriate for large-scale and high-dimensional stochastic eigenvalue analysis of practical
interests.
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