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example has proven to be very sensitive for errors in mill-
ing processes [2]. Based on uni- or multivariate signals, the 
monitoring system indicates an alarm. Depending on the 
user preference, an alarm may cause an emergency stop of 
the machine tool or a flashing warning light.

The difficulty faced by systems relying on hard-coded 
knowledge suggests that machine learning (ML) systems 
such as monitoring systems need the ability to acquire 
knowledge from raw data [3, 4]. ML systems have two 
parameter types: Model parameters, which can be updated 
through a training process, and hyper-parameters that can-
not be estimated via training [5]. In Fig. 1, a monitoring 
model and its parameters are shown. Based on machining 
data, the monitoring model predicts either an alarm or no 
alarm. While the hyper-parameters may apply to multiple 
machining processes, the model parameters are process 
specific.

Monitoring models that are only trained with input data 
(unsupervised learning) have already been studied (Fig. 1 
green checkmarks) [6, 7]. Additional to the training, a 

1 Introduction

To manufacture parts of high quality, it is important to detect 
machining errors. Permanent supervision by a human opera-
tor is costly. Moreover, the error detection rate is limited to 
what can be identified by a human operator. While the role of 
human operators in today’s machining shop floor turns more 
and more to an administrative job, the autonomous collec-
tion of reliable production information is of high interest 
[1]. Monitoring systems automatically monitor machining 
processes by acquiring data from the machine control (e.g., 
spindle current or control data) or external sensors (e.g., 
acceleration or acoustic emission). The spindle current for 
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Errors in milling processes such as tool breakage or material inhomogeneities are a major risk to the quality of machined 
workpieces. Errors like a broken tool may also lead to damages to the machine tool. Process monitoring systems allow 
for autonomous detection of errors, therefore, promoting autonomous production. The parameterization of these systems 
is a trade-off between high robustness (low false alarm rate) and high sensitivity. Even though several monitoring systems 
have been introduced for single-item and series production, a universal parameterization technique that weighs off sensi-
tivity and robustness does not exist. In this paper, a novel, model-independent and adjustable parameterization technique 
for monitoring systems is introduced. The basis for the parameterization is the material removal rate that indicates the 
temporal and quantitative impact of process errors (ground truth). The ground truth allows calculation of the established 
Fβ-score, which is used to evaluate the monitoring system. An adjustment of the β-parameter influences the weighting of 
sensitivity and robustness. Accordingly, the β-parameter allows to easily control the sensitivity-robustness trade-off so that 
the monitoring system is economic for the company’s specific situation. In this paper, a look-up table for hyper-parameters 
of the state-of-the-art tolerance range monitoring model is provided using the introduced parameterization approach. With 
this table companies and researchers can set the hyper-parameters of their monitoring models for 5-axis-milled single 
items user-specifically. To demonstrate, that introduced parameterization approach works for different kinds of monitoring 
models, a one-class support vector machine (SVM) is parameterized also.
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approach for monitoring of machine tools [13], the simula-
tion is usually not used as ground truth for process errors. As 
shown in Fig. 1, the definition of ground truth is necessary 
to execute the parameterization.

A common procedure for evaluating monitoring systems 
does not exist (D2). Metrics like accuracy are still used, 
even though they depend on the error density and param-
etrization [11]. Universal evaluation functions from funda-
mental statistics, that are widespread in areas like computer 
science or medicine are rarely considered. A metric is nec-
essary to parametrize monitoring models with the approach 
from Fig. 1. In this work the Fβ-score is proposed as a com-
mon evaluation metric.

A method for intuitive manipulation of a user-specific 
trade-off between sensitivity and robustness does not exist 
(D3) [14]. Therefore, setting the robustness sensitivity 
trade-off with a single parameter is currently not possible.

For the mentioned reasons, in this work, a parameter-
ization of two monitoring systems is conducted using the 
approach shown in Fig. 1. To use this universal parameter-
ization, the deficits of defining a ground truth (D1), evaluat-
ing a monitoring system (D2) and defining a user-specific 
trade-off (D3) are addressed sequentially. Afterward, the 
universal parameterization approach is demonstrated for a 
state-of-the-art tolerance range model and a one-class sup-
port vector machine.

2 State of the art

In Fig. 2 an established “tolerance range” monitoring sys-
tem is shown. Exemplary the spindle current is used as the 
monitored signal. This monitoring system defines a toler-
ance range that should not be exceeded. The tolerance range 
(green) surrounds an estimated optimal signal îsp(t) (blue). 
Without any errors, the monitoring system expects the esti-
mated spindle current îsp(t). The estimated spindle current 
îsp(t) and the measured spindle current isp(t) are the input 
signals for the monitoring system. To generate a tolerance 
range, the safety factor sy (hyper-parameter 1) is multiplied 
with the certainty of the estimated signal c(îsp (t)) and added 
(upper bound) and subtracted (lower bound) from the esti-
mated spindle current îsp(t). Therefore, a high certainty leads 
to a narrow tolerance range, while a low certainty leads to 
a wide tolerance range. Additionally, to sy, a safety fac-
tor st (hyper-parameter 2) is applied to guarantee a secure 
distance in the temporal direction. A variety of extensions 
of the described model exist, e.g. distinguishing sy for the 
upper and lower boundary [15]. However, these more com-
plex approaches are usually special solutions and require 
more hyper-parameters for parameterization.

parameterization is necessary. Not all sensors are sensitive 
towards process errors. This is because the measured sig-
nals contain noise and the accuracy of sensors is generally 
limited [8]. Therefore, false predictions are unavoidable. 
Based on key performance indicators (KPI) from produc-
tion planning, the user decides with the parameterization 
how to deal with false predictions. A system can either be 
optimized towards high sensitivity or high robustness. A 
single, optimal set of hyper-parameters, therefore, does not 
exist. It depends on the preference of the production planer.

Different monitoring approaches for machining have 
been introduced and compared over the last years [9–12]. 
However, their parameterization is either not covered suf-
ficiently or is specific to an individual user preference. 
Therefore, this paper proposes a universal parameterization 
approach for single-item and series production. It is argued 
that the poorly addressed parameterization in literature is 
caused by three major deficits (D), that are shown in Fig. 1.

Monitoring systems reviewed in previous work use 
different methods for labeling of errors [11]. Therefore, a 
common procedure for labeling errors does not exist (D1). 
Previous studies show detection rates for individually gen-
erated process errors [12]. However, as the detected errors 
are labeled with varying methods, the comparability of the 
models is limited significantly. The labeling defines a ground 
truth that specifies, whether an error exists or not. This work 
introduces a material removal simulation for labeling pro-
cess errors. Even though simulations are a well-known 

Fig. 1 Introduced approach for parameterization of monitoring sys-
tems: The model-parameters are only applicable for a single machin-
ing process, while the hyper-parameters can be applicable for multiple 
processes
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modeled spindle current for several parts (single items) that 
are used for the training of the model MSE(im(pos)-isp(t)).

3 Experimental setup and methodology

To examine the sensitivity and robustness of monitoring 
systems in a complex machining situation, a 5-axis-milling 
process is examined. An impeller geometry that comprises 
only free-form surfaces is used as an exemplary geometry. 
In Fig. 4, this impeller is shown. The milling process is 
performed using a ball-end milling tool with a diameter of 
6 mm. In this manufacturing case, process monitoring is a 
challenge because the tool engagement conditions and the 
material removal rate change continuously. All experiments 
are performed with the turn-mill center DMG Mori NTX 
1000. The machine is connected to a Beckhoff industrial 
computer that records positions, currents and control errors 
of all machine axes. The data acquisition rate is 10 ms.

The machining data of five milled impeller pockets are 
used to demonstrate the parametrization approach. The data 
is divided into training, validation and test data to ensure 
valid results, as shown in Table 1. All algorithms consid-
ered in this work classify as unsupervised anomaly detec-
tion. Anomalies are patterns in data that do not conform to 
a well-defined notion of normal behavior [18]. The training 
process defines normal behavior and, therefore, the training 
data does not contain errors. However, setting hyper-param-
eters (parameterization) requires processes errors. The 
parameterization is conducted based on the validation data-
set. The validation dataset contains labeled process errors. 
For each dataset, different milling areas on the workpiece 
are used as segments to minimize overfitting. In Fig. 4, the 
last 12 of 60 segments are shown (tool path segments). The 

As shown in Fig. 3, the calculation of the estimated 
spindle current îsp(t) and its certainty c(îsp(t)) differ for the 
production type. The certainty of the estimation is a num-
ber between zero and one that represents, how “certain” the 
system is about the predicted value. For example, might the 
certainty of the current prediction be lower at rapidly accel-
erating feeds then at a constant feed velocity. This has to be 
considered by the process monitoring system.

The type of production is determined by the repetitive-
ness of certain workpieces and by the number of pieces 
produced [16]. In series production, the spindle current is 
recorded for numerous processes (Fig. 3 left: black curves) 
to train the algorithm. Calculating the mean values for every 
timestamp µ(t) generates the expected spindle current îsp(t) 
(Fig. 3 left: red line) [15]. The standard deviation in every 
time step σ(t) (Fig. 3: exemplary shown for time t1 and t2) 
represents the certainty for the expected signal. A best prac-
tice in series production is setting factor sy to a value of 6 
[15]. With this parameter for a standard distributed signal, 
only 0.00034% of the samples are classified falsely [17]. As 
the false alarm rate is defined per sample, the actual occur-
rence of false alarms in production also depends on the 
sampling rate. The described approach only parametrizes a 
single hyper-parameter for series processes. However, with-
out considering the error distribution this parameterization 
could still lead to an unnecessarily sensitive system.

In the case of single-item production, previously machined 
parts do not exist. Therefore, the estimated spindle current 
îsp(t) must be modeled based on a material removal simula-
tion. The tool position is the input for the material removal 
simulation. In Fig. 3 (right), the position-dependent estima-
tion im(pos) and the actual measurement isp(t) are shown 
for an exemplary cutting process. Even though the model 
estimates the spindle current, the model does not provide 
certainty for this estimation. Hence, a constant certainty is 
calculated that does not change with time. The certainty is 
the mean squared error (MSE) between the measured and 

Fig. 3 Monitoring of serial and single item production

 

Fig. 2 Tolerance limits with constant distances
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alarms, a metric is necessary. However, the verification of 
classified alarms requires knowledge about the quantitative 
and temporal impact of an error. This knowledge is referred 
to as ground truth. To generate this so-called ground truth, 
the simulation of the workpiece is executed with and with-
out a notch. The difference in the material removal rate Qw  
of both simulations constitutes the missing material due 
to the notch. In Fig. 6, the results of both calculations are 
shown. The differential material removal rate ∆Qw  iden-
tifies the milling affected by the material error. In the fol-
lowing evaluation and parameterization, this information is 
used as ground truth.

The differential material removal rate is quantitative 
ground truth for process errors. Therefore, the deficit D1 is 
addressed successfully. The approach labels the temporal 
occurrence and intensity of the errors. Also, the simulation 
of a material removal rate works for other cutting processes 
like turning or drilling [19].

The performance evaluation of a monitoring system is 
conducted through the comparison of the prediction with 
the simulation-based ground truth. In Fig. 7, the principle of 
evaluation is shown. The monitoring system uses the esti-
mated data (spindle current îSp(t)) and the measured data 
(spindle current isp(t) and its change rate ˙isp (t)considering 
the last five samples) to estimate if a process error is pres-
ent. The prediction p is either an alarm (p = 1) or no alarm 

segments are spitted sequentially into training, validation 
and test data. Therefore, the 12 segments displayed in Fig. 4 
belong to the test dataset.

4 Evaluation of monitoring systems

Process errors are required as a reference to evaluate the per-
formance of a monitoring system. Therefore, process errors 
are introduced artificially in the experiments. In Fig. 5, a 
simulation of the unmachined part is shown. The part con-
tains a notch that represents a material anomaly. Depending 
on the milling tool path, the notch has different impacts on 
the machining process. For certain positions, the tool only 
slightly “touches” the notch, whereas, for others, the tool 
is fully immersed into the notch, not cutting any material. 
Accordingly, the notch simulates a wide range of possible 
workpiece errors variants.

To determine optimal parameters for the process monitor-
ing system and to evaluate the correctness of the predicted 

Table 1 Train-, validation- and test split
Dataset Segments Labels required Contains errors
Training 0–30 no no
Validation/
parameterization

31–45 yes yes

Test 46–60 yes yes

Fig. 7 Monitoring system and confusion matrix

 

Fig. 6 Difference of material removal rate due to artificial error 
(ground truth)

 

Fig. 5 Part with artificial material error (notch)

 

Fig. 4 Experimental workpiece and exemplary tool path
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5 Parameterization approach

Before parameterization, the model must be trained. In 
the case of the tolerance model, a single certainty value is 
optimized, which is trained by setting it to the root mean 
squared error (RMSE) between estimation and measure-
ment for the training interval. For the considered training 
data, the certainty is 21.5 mA. To identify the ideal hyper-
parameters for the tolerance range model, the Fβ-score is 
calculated for the validation data. With β set to a value of 1, 
Fβ is calculated for a wide range of possible sy- and st-values 
(Fig. 8). The simulated ground truth is used to evaluate the 
parameterization quality. A grid search for the Fβ=1-score is 
conducted by varying the parameters sy (0–8) and st (0–2 s). 
The grid search leads to global optimum at sy = 4.7 and st = 
0.22 s. This parameterization is the ideal balance between 
robustness and sensitivity of the system.

The described parameter optimization is repeated several 
times for a range of β values from 0.01 to 100. As the model 
has low complexity, the computation time is insignificant, 
less than 10 s. The resulting Fβ-score is depicted in Fig. 9a. 
Additionally, the values for sy and st that were identified 
during the optimization of the Fβ-score are used to perform 
the classification and the calculation of precision and recall 
separately.

A strongly dominant weighting of either recall or preci-
sion in the optimization leads to an increase of the Fβ-score. 
Regarding the corresponding precision and recall separately, 
a decrease of the lower weighted metric is observed. For 
a low β value, wide tolerance limits as depicted in Fig. 9b 
(left) are the result. In the context of a monitoring system for 

(p = 0). With the simulated ground truth, it is possible to 
evaluate whether a prediction is true or false. The confusion 
matrix shown in Fig. 7 differentiates the decisions of the 
monitoring system into four categories: True positive (TP), 
false positive (FP), false negative (FN), and true negative 
(TN).

An optimal monitoring system only returns true results, 
as seen in Fig. 7 marked green. However, given the signal 
noise and limited sensitivity of the sensors towards process 
errors, it is impossible to achieve only true predictions. 
Since a certain percentage of false alarms are not avoidable, 
it is necessary to decide how to cope with them. The val-
ues “recall” (1) and “precision” (2) constitute metrics that 
consider true and false classifications in a combined manner 
[20]. The recall (also called hit-rate or sensitivity) describes 
how many actual errors are detected. If a system only out-
puts alarms, the recall is one and the precision zero. The 
precision (robustness of the system) describes how many 
alarms are correct. If a system does not output any alarm the 
precision is one and the recall zero.

 
Recall =

TP

TP + FN  (1)

 
Precision =

TP

TP + FP  (2)

In the industrial context, this means that a high recall ensures 
a high detection rate of process errors but is accompanied by 
a higher percentage of false alarms. High precision, in turn, 
means that a high percentage of alarms is correct but also 
entails higher negligence of actual errors. An all-encom-
passing metric for the monitoring performance is calculated 
using the established Fβ-score that combines precision and 
recall to give an overall evaluation [20].

 
Fβ =

(
1 + β2) · precision · recall

(β2 · precision) + recall  (3)

Adjusting β  weights off the formerly mentioned trade-off 
between precision and recall. The recall is β -times more 
important than the precision. Accordingly, if β  is one, pre-
cision and recall are equally weighted [21]. The Fβ-score 
is introduced as a general evaluation metric for monitoring 
systems. The parameter β allows setting the sensitivity-
robustness trade-off with the single parameter. Therefore, 
the Fβ-score solves the deficit of quantitative evaluation of 
monitoring systems (D2) and the deficit of a single parame-
ter trade-off adjustment (D3) is solved with the parameter β.

Fig. 8 Optimal parameters for the monitoring model
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6 Generalization of the parameterization 
approach

In the preceding sections, a method is presented to identify 
an adjustable range of ideal hyper-parameters for a com-
paratively simple tolerance model. However, with the recent 
advances in machine learning, more general classifiers, like 
neural networks or support vector machines promise to 
increase performance. Therefore, the introduced parametri-
zation approach is demonstrated on a more advanced and 
general classifier, the one-class support vector machine 
(SVM).

The considered one-class SVM uses the amplitude and 
the change rate of the spindle current as input parameters. 
Similar to the safety factors in the tolerance model, in a one-
class SVM, the compromise of false alarms and not detected 
errors is defined by hyper-parameters. Unlike the tradi-
tional tolerance range model, the hyper-parameters of the 
one-class SVM do not correlate to the physical values. In 
Table 3 the major hyper-parameters of the one-class SVM in 
comparison to the hyper-parameters of the tolerance model 
are shown. The one-class SVM has a radial basis function 
(RBF) kernel. The parameter ν  represents the margin of the 
one-class SVM. Intuitively, the γ -parameter represents how 
far the influence of a single training sample reaches. The γ
-parameter can be regarded as the inverse of the radius of 
the influence of samples selected by the model as support 
vectors [22].

To achieve comparability between the tolerance range 
and the one-class SVM, the hyper-parameters of the SVM 
where optimized equivalent to the values sy and st in the 
previous method. The computing time for a grid search 

machining processes, this means fewer false alarms occur 
but the system is prone to miss actual errors. The case of 
high value for β is depicted in Fig. 9b (right). The high recall 
value contributes more to the Fβ -score than the decreased 
precision. By introducing a slider for β  in Fig. 9, the tol-
erance limits can either be pulled towards high robustness 
and few false alarms or to high sensitivity and few missed 
errors.

The evaluation of process monitoring systems using the 
Fβ-score allows parameterizing process monitoring systems 
ideally. The introduced slider and the precision and recall 
graphs allow companies to set the trade-off between sensi-
tivity and robustnesseasily and intuitively.

Table 2 is a look-up table for the optimal hyper-parame-
ters that were identified in this paper for the tolerance range 
model. The look-up table has only proven validity for the 
introduced material anomalies and the impeller workpiece 
with the spindle current as the monitored signal. In future 
work the hyper-parameters should be compared with hyper 
parameters from different milling operations and defect 
types.

Table 2 Look-up table for user specific parameterization of tolerance 
range monitoring models for 5-axis milling
β sy st Interpretation
0.1 7.53 0.62 Robust
0.16 7.53 0.42
0.25 7.53 0.22
0.40 7.53 0.22
0.63 4.74 0.22
1 4.74 0.22 Balanced
1.58 3.81 0.22
2.51 2.88 0.22
3.98 1.02 0.02
6.31 0.10 0.02
10 0.09 0.2 Sensitive

Table 3 Hyper-parameters of the models
Model Hyper-parameters
Tolerance model Sy, St
One-class SVM γ, ν, St

Fig. 9 Adjustment of the precision recall compromise based on the 
validation data
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alerts depends on the specific use case of a process monitor-
ing system, the adjustment of the β  value was introduced 
to set the desired weighing. The tailored evaluation of the 
monitoring output was used to optimize the hyperparame-
ters of a tolerance range model and a one-class support vec-
tor machine. The influence of a varying the β  value on the 
corresponding best set of hyperparameters and the results of 
the applied classification was presented in details for a toler-
ance range model. By using the same methodology with a 
one class SVM as monitoring model the generic applicabil-
ity of the presented approach could be proven. Both clas-
sification algorithms exhibit similar results.

In future work the application on different types of 
machine tools and process errors is suggested. Especially 
artificial errors that lead to an increase of the spindle cur-
rent, such as inserts of harder material should be consid-
ered as well as the transferability of hyperparameter sets 
between process configurations. Moreover, the approach 
could be advanced by replacing the one-class support vector 
machine with an even more advanced technique, like a one-
class neural networks.

Funding This research was funded by the Federal Ministry of Eco-
nomics (BMWi), project “IIP Ecosphere” (01MK20006A). The au-
thors would also like to thank the “Sieglinde Vollmer Stiftung” for the 
financial support of this research work.

Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Prinz C, Morlock F, Freith S, Kreggenfeld N, Kreimeier D, 
Kuhlenkötter B (2016) Learning Factory Modules for Smart Fac-
tories in Industrie 4.0. Procedia CIRP 54:113–118. https://doi.
org/10.1016/j.procir.2016.05.105.

2. Denkena B, Bergmann B, Becker J, Blech H (2021) Sensorlose 
Prozessüberwachung für die Einzelteilfertigung: Künstliche 
Intelligenz zur strombasierten Prozessüberwachung komplexer 
Bauteilgeometrien. wt Werkstattstechnik online 111:305–308

3. Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT 
Press

4. Kißkalt D, Fleischmann H, Kreitlein S, Knott M, Franke J (2018) A 
novel approach for data-driven process and condition monitoring 

increases exponentially with the number of hyper-param-
eters. Therefore, for the one-class SVM, the grid search 
is replaced with a successive halving algorithm [23]. For 
every step during the successive halving algorithm, a train-
ing of the SVM based on the simulated ground truth is con-
ducted. The classification is evaluated using the Fβ-score. 
For both approaches the hyper-parameters that lead to the 
best Fβ-score were used to calculate tolerance limits based 
on the estimated spindle current.

As shown in Fig. 10, the one-class SVM recognizes the 
artificial error zones where the material is missing. How-
ever, using the test dataset, the performance of the one-class 
SVM does not improve. Both monitoring algorithms detect 
12 out of 15 errors and produce three false alarms in one 
milled pocket. In all cases, false alarms and undetected 
errors are caused by inaccurate current predictions.

The introduced parametrization approach works for both 
the existing, specially designed monitoring models and 
more advanced machine learning models like a one-class 
SVM. With the new parameterization method, it is possible 
to identify hyper-parameters for any kind of monitoring 
model and user preference. With the look-up table Table 2, 
a state-of-the-art tolerance range model can be parametrized 
for 5-axis milling without process errors.

7 Conclusion and outlook

This work presents an overall approach to parametrize any 
type of process monitoring system with a user specific sen-
sitivity-robustness trade-off. A material removal simulation 
determines the exact amount of missing material in a work-
piece. The simulated, missing material was used as a quan-
titative ground truth for process errors. This ground truth 
is the basis for the calculation of the established Fβ-score, 
which evaluates the monitoring system. Since the trade-off 
between high sensitivity and high robustness towards false 

Fig. 10 Comparison of the monitoring boundaries of a traditional toler-
ance model and the one-class SVM

 

741

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.procir.2016.05.105
http://dx.doi.org/10.1016/j.procir.2016.05.105


Production Engineering (2022) 16:735–742

1 3

14. Denkena B, Dahlmann D, Damm J (2015) Self-adjusting process 
monitoring system in series production. Procedia CIRP 33:233–
238. https://doi.org/10.1016/j.procir.2015.06.042.

15. Brinkhaus J-W (2009) Statistische Verfahren zur selbstlernenden 
Überwachung spanender Bearbeitungen in Werkzeugmaschinen. 
PZH, Produktionstechn. Zentrum, Garbsen.

16. Mathieu L (2004) Wörterbuch der Fertigungstechnik III. 
Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.
org/10.1007/978-3-642-18960-9.

17. Morgan J, Brenig-Jones M (2015) () Lean Six Sigma For Dum-
mies, 3. Aufl. John Wiley & Sons, Hoboken

18. Chandola V, Banerjee A, Kumar V (2009) Anomaly 
detection: A Survey. ACM-CSUR 41:1–58. https://doi.
org/10.1145/1541880.1541882.

19. Böß V, Denkena B, Breidenstein B, Dittrich M-A, Nguyen HN 
(2019) Improving technological machining simulation by tailored 
workpiece models and kinematics. Procedia CIRP 82:224–230. 
https://doi.org/10.1016/j.procir.2019.04.157.

20. Chinchor N (1992) () MUC-4 evaluation metrics. In: 
Unknown (ed) Proceedings of the 4th conference on Mes-
sage understanding - MUC4 ‘92. Association for Computa-
tional Linguistics, Morristown, NJ, USA, p 22. https://doi.
org/10.3115/1072064.1072067

21. Dalianis H (2018) Clinical Text Mining. Springer International 
Publishing, Cham. https://doi.org/10.1007/978-3-319-78503-5.

22. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, 
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Van-
derplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duch-
esnay E (2011) Scikit-learn: Machine Learning in Python. J Mach 
Learn Res 12:2825–2830

23. Hertel L, Collado J, Sadowski P, Ott J, Baldi P (2020) Sherpa: 
Robust hyperparameter optimization for machine learning. Soft-
wareX 12:100591. https://doi.org/10.1016/j.softx.2020.100591.

Publisher’s note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

systems on the example of mill-turn centers. Prod Eng Res Devel 
12:525–533. https://doi.org/10.1007/s11740-018-0797-0.

5. Yang L, Shami A (2020) On Hyperparameter Optimiza-
tion of Machine Learning Algorithms: Theory and Practice. 
Neurocomputing 415:295–316. https://doi.org/10.1016/j.
neucom.2020.07.061.

6. Denkena B, Dittrich M-A, Noske H, Witt M (2020) Statistical 
approaches for semi-supervised anomaly detection in machin-
ing. Prod Eng Res Devel 14:385–393. https://doi.org/10.1007/
s11740-020-00958-9.

7. Liang YC, Wang S, Li WD, Lu X (2019) Data-Driven Anomaly 
Diagnosis for Machining Processes. Engineering 5:646–652. 
https://doi.org/10.1016/j.eng.2019.03.012.

8. Lauro CH, Brandão LC, Baldo D, Reis RA, Davim JP (2014) 
Monitoring and processing signal applied in machining processes 
– A review. Measurement 58:73–86. https://doi.org/10.1016/j.
measurement.2014.08.035.

9. Jemielniak K (1999) Commercial Tool Condition Monitor-
ing Systems. Int J Adv Manuf Technol 15:711–721. https://doi.
org/10.1007/S001700050123.

10. Teti R, Jemielniak K, O’Donnell G, Dornfeld D (2010) Advanced 
monitoring of machining operations. CIRP Annals - Manu-
facturing Technology 59:717–739. https://doi.org/10.1016/j.
cirp.2010.05.010.

11. Kim D-H, Kim T, Wang X, Kim M, Quan Y-J, Oh JW, Min S-H, 
Kim H, Bhandari B, Yang I, Ahn S-H (2018) Smart Machining 
Process Using Machine Learning: A Review and Perspective on 
Machining Industry. Int J of Precis Eng and Manuf -Green Tech 
5:555–568. https://doi.org/10.1007/s40684-018-0057-y.

12. Abellan-Nebot JV, Romero Subirón F (2010) A review of 
machining monitoring systems based on artificial intelligence 
process models. Int J Adv Manuf Technol 47:237–257. https://
doi.org/10.1007/s00170-009-2191-8.

13. Altintas Y, Aslan D (2017) Integration of virtual and on-line 
machining process control and monitoring. CIRP Ann 66:349–
352. https://doi.org/10.1016/j.cirp.2017.04.047.

742

http://dx.doi.org/10.1016/j.procir.2015.06.042
http://dx.doi.org/10.1007/978-3-642-18960-9
http://dx.doi.org/10.1007/978-3-642-18960-9
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1016/j.procir.2019.04.157
http://dx.doi.org/10.3115/1072064.1072067
http://dx.doi.org/10.3115/1072064.1072067
http://dx.doi.org/10.1007/978-3-319-78503-5
http://dx.doi.org/10.1016/j.softx.2020.100591
http://dx.doi.org/10.1007/s11740-018-0797-0
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://dx.doi.org/10.1007/s11740-020-00958-9
http://dx.doi.org/10.1007/s11740-020-00958-9
http://dx.doi.org/10.1016/j.eng.2019.03.012
http://dx.doi.org/10.1016/j.measurement.2014.08.035
http://dx.doi.org/10.1016/j.measurement.2014.08.035
http://dx.doi.org/10.1007/S001700050123
http://dx.doi.org/10.1007/S001700050123
http://dx.doi.org/10.1016/j.cirp.2010.05.010
http://dx.doi.org/10.1016/j.cirp.2010.05.010
http://dx.doi.org/10.1007/s40684-018-0057-y
http://dx.doi.org/10.1007/s00170-009-2191-8
http://dx.doi.org/10.1007/s00170-009-2191-8
http://dx.doi.org/10.1016/j.cirp.2017.04.047

	User-Specific Parameterization of Process Monitoring Systems
	Abstract
	1 Introduction
	2 State of the art
	3 Experimental setup and methodology
	4 Evaluation of monitoring systems
	5 Parameterization approach
	6 Generalization of the parameterization approach
	7 Conclusion and outlook
	References


