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Abstract
We investigate a specific truck scheduling problem at cross-docks in the postal service 
industry on an operational level aiming to maximise the number of duly parcels assum-
ing fixed departure times of the outbound trucks. The inbound gates and the convey-
ors as means of transportation inside the hub constitute the bottleneck resources. As a 
novel extension, we propose flexible unloading speeds to efficiently utilise the scarce 
resources. We formalise the problem with a mixed integer program and explicitly incor-
porate controllable unloading speeds of the inbound trucks. We determine the computa-
tional complexity and develop a genetic algorithm to efficiently solve the problem. Our 
investigation focuses on both the performance of the genetic algorithm and the applica-
bility of the results in a real-world environment by implementing scheduling policies in 
a simulation model that considers individual parcel interactions. Based on our experi-
mental results, we can state that especially in problem settings with scarce conveyor 
capacities, our approach to incorporate controllable unloading speeds has the potential 
of significantly increasing the number of duly parcels.

Keywords  Truck scheduling · Parcel hubs · Simulation · MIP · Genetic algorithms · 
Scheduling policies

1  Introduction

1.1 � Decision problems at parcel hubs

In the postal service industry, parcel hubs are widely used to consolidate fright on 
an intermediate stage of the distribution network. By consolidating parcels, the 
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utilisation of trucks is increased and unnecessary stocks can be avoided, cf. Apte 
and Viswanathan (2000). Parcel hubs are often designed as cross-docking termi-
nals where parcels are unloaded from inbound trucks, sorted according to their 
destination, transferred and finally loaded onto waiting outbound trucks. Figure 1 
illustrates the basic transshipment process in a cross-docking terminal.

In the context of planning the design and operation of cross-docking facili-
ties, a variety of decision problems arise. We will give a rough summary, but 
refer to Boysen and Fliedner (2010) for an overall overview. On a strategic level, 
decisions on the location and layout of the hub have to be made. Decisions on 
the assignment of destinations to outbound docks are relevant on a tactical level. 
On an operational level, mainly the inner transport scheduling and particularly 
inbound truck scheduling are key areas to optimise the efficiency of a cross-dock-
ing facility, cf. Stephan and Boysen (2011). Our paper focuses on the latter prob-
lem. Equivalent to other scheduling problems, the truck scheduling problem at 
cross-docking hubs deals with allocating tasks of a process to scarce resources 
over a given time horizon. In this case, the inbound gates as well as the means 
of transportation inside the hub are those bottleneck resources, see Boysen and 
Fliedner (2010). This leads to the question of how to efficiently schedule incom-
ing trucks in the specific context of parcel hubs.

1.2 � Motivation for the consideration of conveyor capacities and controllable 
unloading speeds

We consider a parcel hub as shown in Fig.  2. Each outbound door is connected to 
a single conveyor. At the outbound doors, outbound trucks with a predefined desti-
nation and an individual deadline wait to be loaded. Each inbound gate is connected 
to all conveyors. Since each inbound truck typically contains parcels for a variety of 

Fig. 1   Schematic layout of a cross-docking terminal
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destinations, the decision which inbound trucks are unloaded at the same time has sig-
nificant implications on the workload of the conveyors. If for example several inbound 
trucks with numerous parcels for the outbound trucks connected to the same conveyor 
are unloaded at the same time, an overloaded conveyor could slow down the process.

The detailed and general assumptions of our approach are described in Chapter 2. 
However, the impact of the conveyor capacities on the processes in a parcel hub can 
be demonstrated using a small illustrative example. We consider a parcel hub with 
four inbound trucks i1–i4 and two inbound gates u1 and u2. They are unloaded with 
a speed of 10 parcels per minute. Parcels coming from the inbound gates are trans-
ferred on two conveyors k1 and k2 with a capacity of 11 parcels per minute each. 
Each conveyor is attached to a single outbound gate, at which a single outbound 
truck is docked. We consider the outbound trucks o1 and o2 that wait for incom-
ing parcels until their deadline dlo1 = 15 and dlo2 = 20 . Generally, the objective is 
to maximise the number of parcels arriving before their deadline. The shipments 
between the trucks are shown in Table 1.

Under consideration of the limited conveyor capacities, the resulting truck 
schedule and conveyor utilisation is shown in Fig. 3a, b. Inbound trucks i1 and 
i3 are unloaded at the beginning of the planning horizon. We can observe that 
inbound trucks i2 and i4 can not be processed concurrently as the resulting work-
load would violate the limited capacity of conveyor k1 of 11 parcels per minute. 
Since inbound truck i2 is scheduled after inbound truck i4 in this case, all parcels 
unloaded from inbound truck i2 are tardy. This results in only 275 parcels without 
delay out of a total number of 400 parcels. This shows that the sole consideration 
of the conveyor capacity leads to feasible, but not very reasonable results.

Therefore, in parcel hubs, the system flow management may decide to slow down 
the unloading speed of individual inbound trucks to control the workload on convey-
ors in such situations, cf. McWilliams et al. (2005). The motivation and contribution 

Fig. 2   Exemplary conveyor layout in a parcel hub
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of our paper are to allow such a reduction of the unloading speed of the inbound 
trucks. If we allow a reduction of the unloading speed, the truck schedule and con-
veyor utilisation in Fig. 3c, d results. Inbound trucks i2 and i4 are unloaded con-
currently as the unloading speed of inbound truck i2 is decreased to 6 parcels per 
minute. Even though the unloading process of truck i2 takes longer now, the total 
number of duly parcels increases significantly to 330 parcels as at least some of the 
parcels in inbound truck i2 are processed before the respective deadlines dlo1 and 
dlo2 . After inbound truck i4 is fully unloaded, the unloading speed of truck i2 is 
increased for one period, and in the following last period, all remaining parcels are 
unloaded. The example shows that incorporating controllable unloading speeds of 
the inbound trucks seems to be a promising approach to efficiently utilise conveyor 
capacities and increase the number of non-delayed parcels. Thus, we seek to investi-
gate the potentials of controlling unloading speeds in this paper in detail.

1.3 � Outline of the paper

The remainder of the paper is structured as follows: In Sect. 2, we present the prob-
lem setting and provide a literature review. In Sect.  3, we describe the assump-
tions and model formulation of the Parcel Hub Scheduling Problem with Limited 

Table 1   Shipment from inbound 
truck i to outbound truck o 

o1 o2

i1 100 0
i2 70 30
i3 10 90
i4 50 50

(a) (b)

(d)(c)

Fig. 3   Comparison of different exemplary truck schedules
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Conveyor Capacities and controllable unloading speeds (PHSP-LCC-flex) and dis-
cuss the complexity of the problem. In Sect. 4, we introduce a biased random-key 
genetic algorithm to efficiently solve the problem. We evaluate both the application 
of the genetic algorithm as well as of the standard solver Gurobi for a set of test 
instances as part of a performance analysis in Sect. 5. To evaluate how the results 
of the mathematical model can be applied in a real-world environment, we present 
a discrete-event simulation model in Chapter 6. We define different scheduling poli-
cies that use the results of the mathematical model and test their performance on the 
instances generated in the previous chapter. The paper ends in Sect. 7 with a short 
summary of the results and an outlook.

2 � Truck scheduling with limited conveyor capacity and deadlines

2.1 � Problem setting

We investigate a specific truck scheduling problem at cross-docks in the postal 
service industry. McWilliams et al. (2005) state that parcel hubs can process up to 
500.000 parcels each day. With regards to Germany, larger hubs such as the distribu-
tion centre in Obertshausen operated by DHL process up to 50.000 parcels per hour, 
cf. Tripp (2021).

As in other less-than-truckload logistic networks, in the postal service industry, 
the transported goods are mostly small and have comparatively low value, cf. Jarrah 
et al. (2009). The exact composition of the set of parcels in the inbound trucks is 
only roughly known. Under these circumstances, the lack of information would lead 
to frequent delays if all outbound trucks would have to wait until all parcels of all 
inbound trucks are unloaded. Accordingly, fixed outbound schedules are applied to 
ensure a steady flow of trucks in the distribution network. Otherwise, a truck would 
not arrive in time for the (un)loading process at the next step of the supply chain. 
Therefore, outbound trucks leave the facility at predetermined deadlines even if they 
are not fully loaded. Tardy parcels have to either be temporarily stored until the next 
dispatch period or day, possibly causing a delayed delivery to the customer, or are 
redirected to costly additional vehicles, e.g. faster vans, cf. Boysen et al. (2013). As 
both types of cost associated with tardy parcels are not clearly quantifiable, we aim 
to maximise the number of duly parcels.

The large quantities of parcels require automated or semi-automated conveyor 
systems to enable an efficient sortation process inside of the hub. In an aggregated 
view, we consider a parcel hub in so-called line configuration where each conveyor 
connects all inbound doors with a subset of outbound doors, cf. Haneyah et  al. 
(2014). Of course, the outbound organisation is highly relevant on a tactical level 
but not part of operational planning. Therefore, the allocation of outbound trucks to 
outbound doors is assumed to be given. Oftentimes available freight trailers or con-
tainers wait at the outbound doors without an actual truck and are only connected 
with the truck once they are fully loaded. Thus, parcels can always be loaded at the 
outbound doors and the loading process at the outbound side does not constitute the 
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bottleneck of the system. Accordingly, each parcel has a known path through the 
hub as soon as the inbound truck is assigned to a door.

The daily operations at parcel hubs are usually organised into several shifts, cf. 
Khir et  al. (2021). The process of unloading the parcels in each shift starts with 
the assignment of the first truck to a dock door. Once any inbound truck has been 
assigned to a dock door, the parcels start leaving the truck in a random sequence. 
With a given unloading speed, the parcels are unloaded and transferred on the con-
veyor one after another. If at any time during the process too many parcels are cur-
rently on one conveyor, the unloading process for parcels designated for that blocked 
conveyor is halted until the next parcel leaves the conveyor. After unloading the last 
parcel of an inbound truck, a new inbound truck is assigned to the dock according to 
the chosen assignment of trucks to the inbound doors.

A fully loaded outbound truck is replaced with an empty one if the deadline of 
the last outbound truck is not exceeded yet. As parcels can be intermediately stored 
at an outbound door to a certain extent, this truck exchange does not influence the 
unloading process. For this reason, we do not have to take it into account. As the 
transfer times of parcels through the hub are very short compared to the overall 
duration of the unloading process and do not differ significantly between pairs of 
inbound and outbound gates, we neglect them in our approach.

2.2 � Related literature for truck scheduling with limited conveyor capacity 
and deadlines

The truck scheduling problem at cross-docking hubs as an operational planning 
problem has been extensively studied. For different supply chains, the assumptions 
for the truck scheduling problem concerning the objective and operational features 
such as the type of dock doors, mode of internal transportation and storage, inbound 
and outbound organisation or interchangeability of products may differ greatly. For 
a detailed classification and review of the problem, we refer to Boysen and Fliedner 
(2010). For further extensive literature reviews of the field of cross-dock schedul-
ing refer to Van Belle et al. (2012), Ladier and Alpan (2016) and Theophilus et al. 
(2019).

In this paper, we consider a truck scheduling problem taken from the postal ser-
vice industry. A key component of the setting is fixed outbound departures man-
dated by predefined delivery schedules. Similar problem settings arise in supply 
chains with air cargo terminals where fixed outbound departures defined by flight 
schedules are relevant, cf. Ou et al. (2010) and Selinka et al. (2016). Tootkaleh et al. 
(2016) assume fixed deadlines in a setting in which product substitution is possible. 
In the context of the postal service industry, fixed outbound departures have been 
considered by Boysen et al. (2013) who seek to minimise contract penalties due to 
delayed shipments by scheduling inbound trucks.

As the parcels are not interchangeable but individual and should be delivered 
fast, parcel hub operators seek to transfer shipments directly without temporary stor-
age. Related circumstances are prevalent in the food retail industry where goods are 



1 3

The parcel hub scheduling problem with limited conveyor capacity…

mostly perishable and thus cannot be stored temporarily in the terminal, cf. Qijun 
et al. (2009) and Boysen (2010).

Another important aspect of the problem setting is conveyors as means of trans-
portation inside the hub. The means of transportation inside the hub can be seen 
as a scarce resource. McWilliams et  al. (2005) incorporate the effects of conges-
tion inside a parcel hub with conveyors that directly connect inbound and outbound 
docks into the scheduling problem. They simulate the parcel flows resulting from a 
given truck schedule and use the information to minimise the time span of the trans-
fer operation. Mathematical approximations for the transfer times are investigated in 
McWilliams and McBride (2013). Similarly, Clausen et al. (2017) use a combined 
simulation and optimisation approach where they utilise an optimisation model to 
balance the workload in the terminal. Another frequently used type of parcel hub is 
terminals with closed loop sortation systems where parcels are transported on cyclic 
conveyor belts. Truck scheduling in these systems is investigated by Boysen et al. 
(2017) and Molavi et al. (2018).

Further research considering limited handling capacities inside the hub irrespec-
tive of the employed means of transportation can be found in Li et al. (2004), Car-
rera et al. (2008) and Serrano et al. (2017). As previously mentioned, for cross-dock 
terminals with conveyors as the means of transportation for transferring shipments, 
McWilliams et al. (2005) describe that terminal operators manage the flow of par-
cels by controlling the unloading speeds of inbound trucks. However, they do not 
include the decision on unloading speeds in their optimisation approach. In the gen-
eral context of truck scheduling at cross-docking terminals, Tadumadze et al. (2019) 
have explored flexibility in unloading speeds by incorporating operational personnel 
planning into the truck scheduling problem. Similarly, Corsten et al. (2020) combine 
truck scheduling with tactical shift planning.

The problem setting of truck scheduling including flexibility in the unloading pro-
cess bears some similarities with the resource-constrained project scheduling prob-
lem with flexible resource profiles (FRCPSP) as described by Naber and Kolisch 
(2014). Another similar problem setting can be found in the field of machine sched-
uling with controllable processing times, cf. Shabtay and Steiner (2007) and Cheng 
et al. (1996). In both cases, the authors assume that the resource usage of a job can 
be altered by shortening or expanding the duration of a job just as we assume to be 
able to shorten and lengthen the unloading process of the inbound trucks. The main 
differences of both approaches to the truck scheduling problem are that the resource 
consumption for each job is assumed to be constant whereas we assume the resource 
consumption to be varying with time and controllable.

Another field of research with similarities to our problem setting is the energy-
constrained scheduling problem (ECSP) with flexible energy demands as investi-
gated for example by Artigues et al. (2013) and Nattaf et al. (2016). In the problem 
setting, tasks compete for a limited renewable resource and are finished once they 
receive a sufficient amount of energy. Thus, the processing time of the tasks is flex-
ible as in our case. However, the characteristics of parcel transport are not covered 
by these approaches.

To our best knowledge, the problem setting of scheduling inbound trucks at 
parcel hubs with fixed outbound departures considering conveyor capacities and 
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explicitly modelling flexible unloading speeds has not been explored yet. Therefore, 
we seek to investigate the effects of controllable unloading speeds in the context of 
parcel hub truck scheduling.

3 � Truck scheduling at parcel hubs with limited conveyor capacity 
and flexible unloading speeds (PHSP‑LCC‑flex)

3.1 � Model assumptions

In the following, the detailed assumptions of our approach to model the problem 
setting introduced in Sect. 2.1 are explained. The notation of the Parcel Hub Sched-
uling Problem with Limited Conveyor Capacity and Flexible Unloading Speeds 
(PHSP-LCC-flex) is summarised in Table 2.

We follow a time-discrete modelling approach using periods t ∈ T  with 
T = {1,… , T} . An inbound truck i ∈ I  with I = {1,… , I} arrives at the begin-
ning of period ati . Therefore, this truck can be unloaded in periods t ∈ Ti with 
Ti = {ati,… , T} . We define i ∈ It ⊂ I  as the set of inbound trucks i that are avail-
able in period t with It = {i|t ≥ ati}.

The cross-docking terminal has U inbound doors. Since we assume negligible 
transfer times for the parcels through the hub, the decision on which specific door 
an inbound is assigned to has no effect. Thus, the doors are not modelled separately 
as it is irrelevant which inbound door is selected for unloading with regards to the 
duration of the overall process.

Each outbound truck o ∈ O with O = {1,… ,O} is uniquely assigned to one out-
bound door. Therefore, we do not distinguish between outbound doors and outbound 
trucks in our approach. We do not model each single parcel as the distribution of 
parcels inside an inbound truck is not known and the formulation would become 
mathematically intractable. Instead, we use the assumption that a number of parcels 
from inbound truck i for outbound truck o shipio is determined and imply a homoge-
neous distribution inside the truck.

Conveyor k ∈ K with K = {1,… ,K} has a capacity of rk parcels per period. 
Each inbound door can access each conveyor. In contrast, each outbound door is 
assigned to only one conveyor, as exemplarily shown in Fig.  2. We introduce the 
subset Ok ⊆ O containing all outbound doors that are connected to conveyor k.

We define the maximal unloading speed of parcels per period at a single door as 
xmax . The minimal unloading speed is denoted as xmin . The objective function of our 
model aims at maximising the weighted number of duly parcels with a weight wi 
for parcels from inbound truck i. The weighting factor wi for each inbound i factor 
represents the priority of inbound truck i and can be used for example in case delays 
for shipments of a certain customer are deemed more severe. For the remainder of 
the paper, all inbound trucks have the same priority of 1. A deadline in period dlo 
represents an outbound truck o leaving at the beginning of this period, meaning that 
it can be loaded until period dlo − 1 . The time periods before the deadline of truck o 
are defined as t ∈ To.
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The model is used to build an optimal inbound schedule, i.e., to answer the ques-
tion whether an inbound truck i is located at any dock door at the beginning of 
period t or not, represented by the binary decision variable zit . The continuous vari-
able xit ≥ 0 states the number of parcels that are unloaded in period t from inbound 
truck i and thus reflects the unloading speed. Assuming a continuous decision varia-
ble rather than an integer variable for the number of unloaded parcels is a slight sim-
plification of the problem as parcels are naturally not dividable. However, as we deal 
with a large number of parcels for most applications, the deviations are negligible.

In order to reduce the time horizon used in the model, we assume the period after 
the last deadline, i.e. T = maxo∈O(dlo) , to be a dummy period. In the last (dummy) 
period, the capacity restrictions of the conveyors and of the doors are relaxed. Thus, 
all inbound trucks that are not (fully) unloaded until the deadline are scheduled to be 
unloaded in this period. Of course, the resulting schedule is most likely not directly 
applicable to a real-world-setting. However, with regard to the objective function value, 
all parcels unloaded in or after the last deadline are tardy, no matter how late they are 
unloaded. This aspect does not have an influence on the realisability of the plan. In a 
post-processing step, we can always allocate the inbound truck to specific doors and 
arbitrarily schedule the remaining inbound trucks in the periods after the last deadline 

Table 2   Notation of the PHSP-LCC-flex

Indices and (ordered) sets
i ∈ I Inbound trucks I = {1,… , I}

i ∈ It ⊆ I Inbound trucks available in period t with It = {i|t ≥ ati}

k ∈ K Conveyor belts K = {1,… ,K}

o, � ∈ O Outbound trucks O = {1,… ,O}

o ∈ Ok ⊆ O Outbound trucks designated to conveyor k
t, � ∈ T Periods T = {1,… ,T}

t ∈ Ti ⊆ T Available periods for inbound truck i with Ti = {ati,… ,T}

t ∈ To ⊆ T Available periods for outbound truck o
Parameters
ati Arrival time of inbound truck i
dlo Deadline of outbound truck o
rk Capacity of conveyor k in parcels per period
shipio Number of parcels for outbound truck o in inbound truck i
U Number of inbound doors
wi Weighting factor for inbound i
xmax Maximal unloading speed
xmin Minimal unloading speed
Decision variables
xit ≥ 0 Number of parcels that are unloaded in period t from inbound truck i
zit

=

{
1, if inbound truck i is located at a door in period t

0, otherwise
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to generate a viable plan. This entails the basic assumption that the time window until 
the following dispatching period is sufficiently large to process all trucks scheduled in 
the dummy period.

According to the classification scheme of truck scheduling problems at cross-
docking hubs by Boysen and Fliedner (2010), we can describe the problem as 
[E�aj, tj = 0, d̃o, fix, r̄k, pi = var�∑Uo] where pi = var refers to controllable unloading 
speeds. We add r̄k to signify limited conveyor capacities.

3.2 � Mathematical model

We now describe the model the Parcel Hub Scheduling Problem with Limited Con-
veyor Capacity and Flexible Unloading Speeds (PHSP-LCC-flex) formally. After-
wards, the verbal explanation of the equations follows.

Model PHSP-LCC-flex

subject to

(1)max Z =
�

o∈O

�

t∈To

�

i∈It

xit ⋅ wi ⋅
shipio∑
�∈O shipi�

(2)
∑

i∈It

zit ≤ U ∀t ∈ T⧵{T}

(3)
�

i∈It

�
xit ⋅

∑
o∈Ok

shipio
∑

o∈O shipio

�
≤ rk ∀k ∈ K,∀t ∈ T⧵{T}

(4)
∑

t∈Ti

xit =
∑

o∈O

shipio ∀i ∈ I

(5)xit ≤ xmax ⋅ zit ∀i ∈ I,∀t ∈ Ti⧵{T}

(6)xit ≥ xmin ⋅ zit ∀i ∈ I,∀t ∈ Ti

(7)
t∑

�=ati

zi� ≤ t ⋅ (1 + zit − zit+1) ∀i ∈ I,∀t ∈ Ti⧵{ati, T}

(8)
T∑

�=t

zi� ≤ (T − t + 1) ⋅ (1 + zit − zit−1) ∀i ∈ I,∀t ∈ Ti⧵{ati, T}
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The Objective Function (1) assures the maximisation of the duly parcels. The value 
of shipio∑

�∈O shipi�
 specifies the fraction of parcels from inbound truck i that are designated 

for outbound truck o.
The limitations due to the doors are represented by Restrictions (2). Con-

straints (3) model the conveyor capacity. Both limitations are excluded for the last 
(dummy) period T.

Constrains (4) assure that over all periods between the arrival ati of the inbound 
truck  i and the dummy period T all parcels of each inbound truck  i are unloaded. 
Parcels can only be unloaded from an inbound truck i if this truck is located at a 
door in the respective period t ( zit = 1 ), see Restrictions (5). At the same time, these 
restrictions limit the unloading of parcels to a maximum speed xmax for each inbound 
truck and each period except the dummy period. The minimal speed is addressed in 
Equations (6).

Constraints (7) restrict zi� to 0 for all previous periods � ≤ t if the truck i was 
newly located at a door in period t + 1 ( zit = 0 and zi,t+1 = 1 ). Analogously, Con-
straints (8) force zi� to 0 for subsequent periods � ≥ t if the truck was removed from 
the door in the previous period t − 1 ( zi,t−1 = 1 and zit = 0 ). In combination, the con-
straints define an uninterrupted presence of the inbound truck at a door. Note that 
there may be periods in which the unloading of the truck is halted ( xit = 0 ) even if 
it is located at the door. The formulation bears similarities to the on/off event-based 
formulation of the resource-constrained project scheduling problem, cf. Koné et al. 
(2011). Constraints (9) and (10) define the variable types.

Please note that when using xmin = xmax , the unloading speeds of all trucks are 
fixed to the given value. In this case, we receive a model that does not allow any 
flexibility in the unloading process.

3.3 � Computational complexity of the problem

To determine the NP-hardness of the PHSP-LCC-flex, we can refer to the problem 
of scheduling jobs on a single machine minimising the total tardiness of all jobs 
which was proven to be NP-hard by Du and Leung (1990). A similar approach can 
be found in Boysen et al. (2013) for a truck scheduling problem at cross-docks with 
fixed departure times. The single machine job scheduling problem minimising total 
tardiness is defined as follows:

For a given set of jobs j ∈ J with processing times p′
j
 and due dates d′

j
 , find a 

schedule that minimises the objective function

(9)zit ∈ {0, 1} ∀i ∈ I,∀t ∈ Ti

(10)xit ≥ 0 ∀i ∈ I,∀t ∈ Ti
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where Cj is the completion time of job j.
According to the Graham Notation found in Graham et  al. (1979), the prob-

lem is represented by the tuple 1��∑ Tj . Representing an instance of 1��∑ Tj as 
an instance of the PHSP-LCC-flex first involves assuming a hub with only a single 
gate reflecting the single machine and thus U = 1 . Each inbound truck i represents a 
job j. We set the maximum and minimum unloading speed to the standard unload-
ing speed xmax = xmin = 1 . This assumption leads to the situation that each inbound 
truck that is located at a door in a period is unloaded with a speed of exactly 1 parcel 
per minute and thus to xjt = zjt . Additionally, this can be easily shown mathemati-
cally by inserting the values in Restrictions (5) and (6).

The single inbound door in combination with an unloading speed of 1 parcel per 
period assures that Restriction (3) is never binding for any rk ≥ 1 and can be omitted 
as Restriction (2) is stricter in any case.

We assume that each job and inbound truck, respectively, are available in the first 
period, i.e., ati = 0 and Ti = T  as well as It = I  . We define shipjo as

Together with the definition of shipjo , the equation 
∑

o∈O shipjo = p�
j
 holds. There-

fore, Restriction (4) assures that each inbound truck and job respectively is sched-
uled for exactly p′

j
 time units. For Restrictions (7) and (8), there are no adjustments 

necessary. With this interpretation of the PHSP-LCC-flex, all restrictions of the sin-
gle machine problem are considered.

Concerning the objective function, for each period t′ of the machine scheduling 
problem, an outbound truck o is created that is available in exactly this period, i.e., 
o = t� and To = {t�}.

We assume

If we then minimise the objective function value given in Eq. (1) multiplied with 
minus 1 instead of maximising the original value, we get:

(11)
∑

j∈J

max{0,Cj − d�
j
}

(12)shipjo =

max

�
0,

�
o−d�

j

p�
j

��

∑
� max

�
0,

�
�−d�

j

p�
j

�� ⋅ p�
j
.

(13)wj = −
∑

t�

max

{
0,

⌈
t� − d�

j

p�
j

⌉}
.
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To assure that Objective Function (14) equals Objective Function (11), the fol-
lowing equation has to hold:

As zit′ equals 1 exactly in periods Cj − p�
j
+ 1 to Cj , this can be written as

which is always true.
With the stated reduction, any instance of 1��∑ Tj can be represented as an 

instance of the PHSP-LCC-flex as stated above. As 1��∑Tj is proven to be strongly 
NP-hard, the PHSP-LCC-flex is also strongly NP-hard as well.

4 � Heuristic for the PHSP‑LCC‑flex

4.1 � Genetic algorithm

As the truck scheduling problem at parcel hubs constitutes an operational planning 
problem, finding a good solution in a short time frame is often of high importance. 
As heuristic approaches are able to generate adequate solutions comparably fast, 
they enjoy great popularity in literature, cf. Theophilus et  al. (2019). Especially 
genetic algorithms are frequently used. Thus, we develop a genetic algorithm to 
solve the PHSP-LCC-flex heuristically.

Genetic algorithms are metaheuristics inspired by the principles of natural selec-
tion and were first introduced by Holland (1975). Genetic algorithms mimic the 
process of natural selection by using a population of individuals (solutions) and 
subjecting them to variations through genetic operators, such as recombination and 
mutation, to generate individuals for subsequent populations over several genera-
tions (iterations). In each generation, a number of individuals is discarded through 
the selection operator. As solutions of higher quality are selected for the following 

(14)min Z =
∑

t�∈T�

∑

j∈J

zjt� ⋅max

{
0,

⌈
t� − d�

j

p�
j

⌉}

(15)
∑

t�∈T�

zjt� ⋅max

{
0,

⌈
t� − d�

j

p�
j

⌉}
= max{0,Cj − d�

j
}

(16)
Cj∑

t�=Cj−p
�
j
+1

max

{
0,

⌈
t� − d�

j

p�
j

⌉}
= max{0,Cj − d�

j
},
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generation, the population drifts towards promising sections of the solution space. 
The algorithm avoids local optima through this usage of a population of solutions, 
cf. Rothlauf (2011).

4.2 � Solution representation

The performance of a genetic algorithm is highly dependent on an adequate rep-
resentation of the solutions of the problem setting. For the PHSP-LCC-flex, we 
employ a random-key representation that encodes solutions as a vector � of |I| real 
values taken from the range between 0 (reflecting a high priority) and 1 (reflecting a 
low priority) as exemplarily shown in Fig. 4. The random keys are first used to cre-
ate a sequence of trucks by sorting them in non-descending order according to their 
random-key values. This sequence is then used to generate a feasible truck schedule 
according to a decoding scheme.

The advantage of a random-key representation lies in its feature to guarantee that 
only feasible solutions are generated throughout the execution of the algorithm, cf. 
Mendes et al. (2009). As the decoding scheme is designed to always generate fea-
sible truck schedules, solutions can be altered through recombination and mutation 
without ever leading to infeasible solutions. Thus, additional computational effort 
for repair procedures of infeasible solutions can be avoided.

With the given sequence of trucks, we can start the decoding scheme as shown 
in Algorithm 1. The decoding scheme always creates a feasible truck schedule with 
regard to the restrictions of the problem setting concerning conveyor capacities 
and the availability of gates. Further, it allows flexibility in the unloading speed. 
We assume that the unloading speed does not have a lower limit and thus xmin = 0 . 
Each inbound truck is assigned to an empty inbound door in the order of the given 
sequence seq as early as possible. Then, as many parcels as possible are unloaded in 
the following periods until the inbound truck is empty. The number of unloaded par-
cels in a period tc is either limited by the remaining conveyor capacity rrem

ktc
 in rela-

tion to the share of parcels rshare
ik

 that are designated to this conveyor, the maximum 
unloading speed xmax or the number of remaining parcels in the inbound truck loadi . 
After the truck has been fully unloaded, the next truck in the sequence is scheduled. 
Once each inbound is fully unloaded in this manner, the decoding procedure stops. 
The procedure always generates a feasible, but not necessarily optimal, truck sched-
ule for the given sequence. The fitness of the resulting truck schedule is determined 
similarly to the Objective Function (1) of the PHSP-LCC-flex.

Fig. 4   Exemplary sequence in 
random-key representation
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In the decoding procedure, deadlines are not considered. This is no limitation of 
our approach as the whole framework assures that inbound trucks with many parcels 
for urgent outbound trucks are prioritised in the course of the algorithm. However, 
the performance of the procedure is limited by another aspect. Unloading flexibility 
is limited since the unloading speed is chosen as high as possible. Thus, intended 
extension of the unloading time of an inbound truck, e.g. due to a reduction of the 
unloading speed (maybe even to zero), is generally disregarded. The procedure is 
myopic in its nature and does not give the option of delaying the unloading process 
of a specific inbound truck to reserve capacities for other inbound trucks that might 
have closer deadlines.

To combat these limitations, we propose an LP-based improvement proce-
dure that we apply at the end of the genetic algorithm. It utilises the feasible 
truck schedule by fixing the periods in which an inbound truck is located at an 
inbound door but recalculates the number of unloaded parcels for all trucks using 
a reduced formulation of the problem setting. To enforce the inbound gate assign-
ment in the reduced formulation, the parameter xup

it
 is introduced which reflects 

the maximum number of unloaded parcels for each inbound per period. The 
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parameter xup
it

 is set to the maximum number of unloaded parcels xmax for those 
periods in which inbound i is unloaded for the given inbound gate assignment and 
to 0 for the rest of the periods as given by the following formula.

Since the decoding procedure only generates feasible inbound gate assignments, the 
number of concurrently assigned trucks never exceeds the number of available gates. 
Thus, the reduced formulation only has to encompass restrictions concerning con-
veyor capacity, complete unloading of the inbound trucks and the maximum num-
ber of unloaded parcels in each period as all other restrictions are already fulfilled. 
The model for the reduced formulation of the PHSP-LCC-flex is formally defined as 
follows.

Reduced Model for the PHSP-LCC-flex

subject to

The objective function (18) maximises the number of non-delayed parcels. Con-
straints (19) restrict the number unloaded parcels for each conveyor k to the con-
veyor capacity. Constraints (20) ensure that each inbound truck is fully unloaded. 
The given truck schedule is enforced by Restrictions (21). Lastly, Eq. (22) define xre

it
 

as a positive continuous variable.
With the LP-based improvement procedure, we can address the limitations of the 

decoding procedure regarding the number of unloaded parcels. However, intended 
extensions of unloading processes are still not possible since the starting times 
and ending times are fixed based on Restriction (17). This means that even with 
the improvement procedure, only a subsection of the overall solution space of the 

(17)x
up

it
=

{
xmax, xit > 0

0, else

(18)max Z =
�

o∈O

�

t∈To

�

i∈It

xre
it
⋅ wi ⋅

shipio∑
�∈O shipi�

(19)
�

i∈It

�
xre
it
⋅

∑
o∈Ok

shipio
∑

o∈O shipio

�
≤ rk ∀k ∈ K,∀t ∈ T⧵{T}

(20)
∑

t∈Ti

xre
it
=

∑

o∈O

shipio ∀i ∈ I

(21)xre
it
≤ x

up

it
∀i ∈ I,∀t ∈ Ti⧵{T}

(22)xre
it
≥ 0 ∀i ∈ I,∀t ∈ Ti
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problem is covered by the random-key representation of the solution. Consequen-
tially, for some instances, an optimal solution might not be covered by the represen-
tation. However, we can still use the procedure to find good solutions quickly.

4.3 � Elements of the genetic algorithm: initialisation, crossover, mutation 
and selection

The algorithm is initialised by generating Nind randomly generated individuals. 
As we use a biased random-key approach, each individual receives a vector � of 
|I| uniformly distributed random numbers taken from the range between 0 and 1.

In the definition of the crossover operator, we favour individuals with higher 
fitness. The Nelite <

Nind

2
 fittest individuals of the current population are designated 

as the elite. Each time two parents are selected for the crossover operator, the first 
parent �p1 has to be taken from elite. Thereby, individuals can be selected more 
than once. The second parent �p2 is randomly selected from the rest of the cur-
rent population. Based on the parents �p1 and �p2 , we apply the crossover opera-
tor to generate a single offspring �o . We generate a uniformly distributed random 
number q from the interval [0,  1] ( q ∼ U(0, 1) ) for each random key �o

i
 of the 

solution and compare it with the selection probability ps . If the generated value 
q is smaller than ps , the respective random key �o

i
 of the offspring receives the 

random key of the first (elite) parent �p1
i

 . Otherwise, �o
i
 is set to the respective ran-

dom key of the second parent �p2
i

 . Applying the crossover operator with selection 
probability ps = 0.75 is illustrated in Fig. 5. In total, Ncross individuals are gener-
ated in this way.

The biased approach has a strong tendency to converge to a local optimum. Thus, 
we use a mutation operator that introduces completely new solutions. In each gen-
eration, Nmut randomly generated mutants are created. Each random-key value �i of 
such an individual is set to a random value between 0 and 1. In this way, we intro-
duce new random-key values in each generation and the diversity of the population 
is greatly enhanced to counteract premature convergence to a local optimum.

Fig. 5   Crossover in random-key 
representation with ps = 0.75
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Figure 6 illustrates the creation of new generations. The Nelite individuals from 
elite are directly copied to the next generation. The majority of the new genera-
tion consists of Ncross offspring generated by the crossover operator. The remain-
der are Nmut randomly generated individuals. Therefore, the total number of indi-
viduals per generation is Nind = Nelite + Ncross + Nmut. Generally, the procedure 
leads to a fast convergence to local optima through the preferential treatment of 
good solution and still allows for a high degree of population diversity due to the 
rigorous mutation operator.

5 � Numerical analysis

5.1 � Test design

To investigate the performance of the mathematical model and the genetic algo-
rithm, we use three distinct data sets of different sizes. An overview over the dif-
ferent instance sets is shown in Table 3 and explained in the following. One class of 
instances represents a parcel hub that is comparably small, with |I| = 19 inbound 
trucks, |O| = 27 outbound destinations and |K| = 4 connecting conveyor belts. The 
second data set represents a medium-sized hub with |I| = 36 inbound trucks and 
|O| = 55 outbound destinations connected by |K| = 5 conveyor belts. The param-
eters used for the small and medium class of instances are based on data for par-
cel hubs we actually observed in practice. The third instance class represents a 
large parcel hub with |I| = 100 inbound trucks, |O| = 100 outbound destinations 
and |K| = 15 connecting conveyor belts. For the large class of instances we do not 
have any direct data to use as a reference from practice but hubs of similar size are 
described in Boysen et al. (2017). Generally, we mainly seek to investigate the com-
putational performance of our solution methods with this more synthetic instance 
set. For all instances, each conveyor transports parcels to a specified subset of out-
bound trucks.

Fig. 6   Selection between generations
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For all types of hubs, we consider a broad variety of different instances. For all 
instances, we define the number of parcels in inbound truck i as li = 650 and a 

weighting factor wi = 1 ∀i ∈ I  . We set the maximal speed xmax to 65 parcels

period
 and a 

minimal speed xmin to 0 parcels

period
 , i.e., full flexibility. The individual parcels are ran-

domly assigned to a number of destinations represented by outbound trucks o 
according to the parameter � ∈]0, 1] . The parameter determines the heterogeneity 
of the parcels inside the inbound trucks with regard to their destination. For a het-
erogeneity � = 1 , each inbound truck potentially includes parcels for all destina-
tions. A heterogeneity � = 0.5 refers to the case where the parcels are designated 
for 50% of destinations, etc. To achieve this property, at first a random subset 
Osub

i
⊂ O with ⌈�O� ⋅ �⌉ elements is generated

Then, a preliminary number of parcels shipraw
io

 per destination o is randomly 
determined:

Afterwards, the preliminary values are adjusted to equal the total number of par-
cels li for each inbound truck. Thus, for each inbound truck, we decrease or increase 
the number of parcels for a random destination until the total number of parcels ∑

o∈Osub
i
shipio equals li.

The referenced time horizon is set to Tmax = 36 . Thus, with a period length of 
5 min, the referenced planning horizon has a length of 180 min. To set the dead-
line dlo of each outbound destination, we use a parameter � ∈ [0, 1] . Lower values 
of � represent less scattered deadlines.

(23)Osub
i

= sample(O, ⌈�O� ⋅ �⌉) ∀i ∈ I.

(24)shipraw
io

= rand(0.5, 1.5) ⋅
li

|Osub
i

|
∀o ∈ Osub

i
,∀i ∈ I.

(25)dlo = ⌈rand(1 − �, 1 + �) ⋅ Tmax⌉ ∀o ∈ O

Table 3   Instance data Parameter Small Medium Large

Inbound trucks |I| 19 36 100
Outbound destinations |O| 29 55 100
Conveyor belts |K| 4 5 15
Parcels in inbound trucks li 650
Maximal speed xmax 65
Latest deadline Tmax 36
Parcel heterogeneity factor � {0.4,0.6,0.8}
Deadline time window factor � {0.1,0.2,0.3}
Conveyor scarcity factor � {0.9,1,1.1}
Gate scarcity factor � {0.9,1,1.1}
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Note that the actual time horizon can be longer than the referenced time horizon 
Tmax due to late deadlines.

The arrival time ati is set to the first period of the time horizon for 70% of 
inbounds and randomly taken between period t2 and t5 for the remaining 30% of 
inbounds.

In the numeric study, we seek to investigate hubs with different levels of 
resource scarcity, namely the conveyor scarcity and gate scarcity. We first deter-
mine a lower bound for the conveyor capacity rLB

k
 under the assumption that all 

parcels 
∑

i∈I li are equally distributed over the complete time horizon Tmax as well 
as over all conveyors |K| and are unloaded in time:

We then introduce the parameter 𝜎 > 0 to set the conveyor scarcity. Note that it is 
not essential to use a integer value for this parameter.

We apply the same idea of an evenly distribution of the unloading process over the 
whole planning horizon Tmax to compute the minimal number of gates ULB.

Using the gate scarcity 𝛽 > 0 , we can compute the number of gates of an instance:

If we set the scarcity parameters � or � to values lower than one, the available 
resources are certainly insufficient and tardy parcels are inevitable. Accordingly, if 
the scarcity parameters � or � are greater than one, we can potentially find a solution 
where all parcels reach their destinations before the deadline. Our analysis focuses 
on the influence of the scarcity of both gate and conveyor capacities. Thus, we set 
the conveyor scarcity factor � and the gate scarcity factor � to the values {0.9, 1, 1.1} 
for all instance classes and assess the impact on performance and the potentials of a 
higher degree of flexibility.

We generate five instances with different random seeds for each combination of 
the given parameters and each class hub size. Thus, the total number of instances we 
consider for each hub size is 34 ⋅ 5 = 405 . With 3 classes of instances, we receive 
3 ⋅ 405 = 1215 instances in total.

5.2 � Performance analysis of the genetic algorithm and the MIP model

In this section, we evaluate the computational performance of the PHSP-LCC-flex 
solved with the standard solver Gurobi and the genetic algorithm. Both the results 
for the standard solver Gurobi 9.5 as well as the genetic algorithm were calculated 

(26)rLB
k

=

∑
i∈I li

�K� ⋅ Tmax

(27)rk = ⌈rLB
k

⋅ �⌉

(28)ULB =

∑
i∈I li

Tmax
⋅ xmax

(29)U = ⌈ULB
⋅ �⌉
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on the university’s computer cluster with a 2.93  GHz Intel Westmere-EP Xeon 
X5670 processor and 48 gigabytes of RAM. Both were implemented in Python.

For the genetic algorithm, we assume a population size Nind of 50 individuals. 
20% of individuals are taken from the elite part of the population ( Nelite = 10 ) and 
70% of the individuals of the following generation are generated through the cross-
over operator ( Ncross = 35 ). The remaining 10% of the population consists of ran-
domly generated mutants ( Nmut = 5 ). The selection probability equals ps = 0.75 for 
all instances. We apply the LP-based improvement procedure to the elite part of the 
population in the last iteration of the algorithm. We present the results for a time 
limit of t̄ = 1 , t̄ = 10 and t̄ = 30 s. For Gurobi, we set the time limit to t̄ = 30 and 
t̄ = 3600 s.

In Fig. 7, we present the influence of the instance parameters on the solutions. We 
refer to the results of the genetic algorithm with a time limit of 30 s, as this approach 
is able to generate results with a reasonable solution quality for all instance classes. 
Each bar in this figure shows the average share of duly parcels over 135 instances for 
each instance parameter under consideration. Please note that we refer to the share 
of duly parcels instead of the total number of duly parcels as the interpretation of 

Fig. 7   Influence of instance parameters



	 S. Bugow, C. Kellenbrink 

1 3

this value is easier. Of course, this conversion has no influence on the behaviour of 
the results.

The heterogeneity � of parcels in the truck does not have a large influence on the 
share of duly parcels with around 90% for all instance classes. Only for the large 
instances, a higher heterogeneity has a positive influence on the punctuality of the 
parcels. The deadline time window � influences the tardiness slightly, but for all 
instance classes in the same manner: A higher variability, i.e. higher values of � , 
makes it harder to load the parcels in time. The conveyor scarcity � , which is the 
main focus of our paper, has the highest influence on the performance of the cross-
dock. For low values for � , the conveyor capacities are particularly scarce and the 
share of duly parcels decreases. The gate scarcity � has a similar influence as a 
higher scarcity, i.e. low values for � , decreases the share of duly parcels. As both the 
conveyor scarcity � and the gate scarcity � influence the performance of the cross-
docking hub, we will focus the following analysis on these aspects.

Table 4 depicts the numeric results for the instances corresponding to small, medium 
and large hubs. For the small and medium instances, each row represents the average 
results over 45 instances with the respective values for � and � . Note that regarding 
the large instance class, for two instances only trivial solutions with gap = ∞ could be 
found. Thus, we excluded those instances.

Gurobi3600 refers to results obtained using Gurobi with a time limit of 3600 s and is 
used as the benchmark. We present the average share of non-delayed parcels ("obj"), 
the average relative optimality gap displayed by the solver after the time limit ("gap"), 
the average computation time ("time") and the share of instances solved to optimality 
within the time limit ("%opt"). For Gurobi30 , we show the share of duly parcels found 
by Gurobi after a time limit of 30 s ("obj"), the gap to the solution found by Gurobi3600 
("gapGurobi"), the gap to the best found solution by all methods ("gapbest ") and the share 
of instances for which the best solution has been found by Gurobi30 ("%best ") . For 
the genetic algorithm, GA1 , GA10 and GA30 show the results for a time limit of t̄ = 1 , 
t̄ = 10 and t̄ = 30 s, respectively. We use the same metrics as for Gurobi30. The entries 
in bold font refer to the averages over all instances of the respective instance class.

Gurobi could only find a proven optimal solution for the PHSP-LCC-flex for 155, 
i.e. 38.3 %, of the 405 small instances and could not solve any of the medium or large 
instances to optimality within the time limit of 3600 s. Especially for instances with 
gate scarcity factor � = 0.9 and thus the gate capacity constituting the bottleneck of 
the system, we observe a comparatively large optimality gap for the small and medium 
instances. For the large instances, the solutions found by Gurobi are generally poor as 
we observe an average optimality gap of 81.2 % even with a time limit of 3600 s. For 
a time limit of 30 s, only trivial solutions with an objective function value of 0 can be 
found for the majority of these large instances. For the small and medium instances, 
we can observe a comparatively small deviation of 1.3 and 1.4 % between the solutions 
with a time limit of 30 s and 3600 s.

Comparing the results of the genetic algorithm with those generated by Gurobi 
shows that the genetic algorithm is able to find better solutions on average for all 
instance classes if we apply a time limit of 30 s for both approaches. We can observe for 
instances where Gurobi is able to prove optimality or shows an insignificant remaining 
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optimality gap, such as the small instances with � = 1.1 , the gap GA30 is only between 
0.9 and 1.8 %. Thus, we can conclude that the genetic algorithm is generally capable 
of finding solutions very close to the proven optimum. Especially for instances with 
the gate scarcity factor � = 0.9 , the genetic algorithm performs better than Gurobi. 
Additionally, the genetic algorithm is able to provide adequate solutions for the large 
instances where Gurobi only generates solutions of poor quality. Concerning the influ-
ence of the time limit of the genetic algorithm, we can see a steady increase in the 
solution quality for all instances as expected. Particularly, for instances with scarce 
conveyor capacities ( � = 0.9 ), the difference between the solutions found after 1 s and 
those found after 30 s is more pronounced.

6 � Practical application using a simulation model

6.1 � Discrete‑event simulation model of the parcel hub

To examine the applicability of the PHSP-LCC-flex in real-world environments, we 
consider the transshipment process for the hub illustrated in Fig. 2. The U-shaped 
hub has eight inbound doors u1 to u8 and 27 outbound doors o1 to o27 connected 
by four conveyors k1 to k4. Suppose 19 inbound trucks i1–i19 contain 650 parcels 
each. Thus, 19 ⋅ 650 = 12350 parcels are transferred in total. We assume that each 
inbound truck is unloaded with a fixed rate of 13 parcels per minute and that a maxi-
mum of 85 parcels can be transported on each conveyor per minute.

Figure 8 shows an optimised inbound truck schedule of the PHSP-LCC-flex. For 
the following analysis, we denote the number of duly parcels for outbound truck o 
as Uo . We receive a result of 

∑
o Uo = 10264 non-delayed parcels with a makespan 

of 230  min as shown in Fig.  8a. With regards to the conveyor utilisation we can 
observe in Fig. 8b that in the results of the optimisation model the conveyors are 
used to the fullest extend for the majority of the time. Further, all the dock doors are 
used to unload inbound trucks.

However, the mathematical model does not consider parcel interactions but 
aggregates the individual parcels into a homogenised parcel flow as modelling 
detailed interactions would render the model mathematically intractable. In a real-
world environment, the parcel flow originating from an inbound truck is mostly het-
erogeneous since the parcels leave the trucks in a random sequence. Thus, we may 
observe an accumulation of transfers for a specific conveyor, especially when inter-
acting with the parcel flows from concurrently unloaded inbound trucks. This can 
lead to the blocking of said conveyor and delays in the overall process.

To answer the question how the results of the optimisation model can be used 
in a real-world setting, we use a discrete-event model for simulating the parcel 
hub with a custom-made simulation framework in Python. We define system 
states, events and an event list to model the transfer of the parcels through the 
hub. The main entities of the model are the parcels, which are generated once a 
truck is assigned to an inbound door. As a benchmark policy for the comparison 
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and reference case of the operations at the parcel hub, we assume a simple first-
come first-serve scheduling policy for the assignment of the inbound trucks.

Figure  9a shows the resulting schedule, the total makespan Cmax of 252  min 
until all parcels are unloaded and the number of duly parcels 

∑
o Uo = 8257 for a 

FCFS policy. Thus, the results differ significantly from those of the deterministic 
model. The resulting conveyor utilisation is shown in Fig.  9b. We can observe 
that conveyor k3 constitutes the bottleneck of the system since it is operated close 
to its maximum capacity most of time, whereas the other conveyors have fluctuat-
ing capacity usage throughout the planning horizon. The unloading time of the 
individual trucks is significantly slowed down by the conveyors operating close 

(a) (b)

Fig. 8   Exemplary optimisation results

(a) (b)

Fig. 9   Exemplary simulation results
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to their maximum capacity. For example, although loaded with the same number 
of parcels, unloading truck i9 takes much longer than that of truck i19. This indi-
cates that the trucks compete for the scarce conveyor capacity with the result of 
slowing down their unloading process, eventually leading to delays.

As observable in the example, a FCFS scheduling policy does neither consider 
limited conveyor capacities nor outbound deadlines. For that reason, conveyors 
may for instance be occupied by parcels with a loose deadline or by parcels that 
are already too late to reach their corresponding outbound truck in time. In addi-
tion, by finding a better schedule for the inbound trucks, the utilisation of the 
remaining conveyors could be improved and would lead to a higher share of duly 
parcels for the corresponding outbound trucks.

Our goal is to develop a more sophisticated decision support system for con-
trolling the assignment of inbound trucks to inbound doors with the help of the 
results of PHSP-LCC-flex. To achieve this, we define scheduling policies that use 
the results of the PHSP-LCC-flex.

6.2 � Scheduling policies

The result of the PHSP-LCC-flex is a truck schedule that includes the time peri-
ods in which each inbound truck is unloaded at a gate and the number of parcels 
that are unloaded in each period. We use the information provided by these truck 
schedules to develop different scheduling policies. We define three distinct sched-
uling policies that are based on the results of the PHSP-LCC-flex and use two 
simple scheduling rules as a reference for the assignment of the inbound trucks 
to door:

Basic scheduling policies

•	 First-Come First-Serve (FCFS): Sort the inbound trucks in non-descending 
order according to their arrival time and assign them to a dock once it is free.

•	 Sort by Priority (Prio): Sort the inbound trucks according to their urgency-based 
priority value prioi =

∑
o∈O dlo ⋅ shipio∕

∑
�∈O shipi� in ascending order and 

assign them once a gate is free. Thus, inbound trucks containing many parcels 
for outbound trucks with early deadlines are prioritised.

Scheduling policies based on the PHSP-LCC-flex model

•	 Starting Times of the PHSP-LCC-flex (Flex): Use the starting times of the solu-
tion of the PHSP-LCC-flex and assign the inbound trucks once a dock is free 
after their starting time.

•	 Starting Times and Unloading Speeds of the PHSP-LCC-flex (Flex+ ): Use the 
starting times and the calculated unloading speeds of the solution of the PHSP-
LCC-flex and assign the inbound trucks once a dock is free after their starting 
time.
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	   Please note that the unloading speed refers to the actual start period and thus 
a fixed sequence of speeds is implemented. As an example, assume an inbound 
truck that should—according to the solution of the mathematical model—start in 
period 5 with a speed of 40 parcels in this period and then accelerates to a speed 
of 65 parcels per period in period 6 and the following. If this truck actually starts 
in period 7 in the simulation, the fixed speed of the first unloading period 7 is set 
to 40 parcels per period and the speed is than accelerated to 65 parcels per period 
in its second unloading period, namely period 8.

•	 Starting Times and Priorities of the PHSP-LCC-flex (Flexprio ): Use the start-
ing times of the solution of the PHSP-LCC-flex and assign the inbound trucks 
once a dock is free after their starting time. In case a conveyor reaches its maxi-
mal capacity, prioritise those trucks that would have had to unload the highest 
number of parcels until the current time period according to the solution of the 
PHSP-LCC-flex. The priority of truck i at simulation time t′ is formally calcu-
lated according to the following formula: 

To illustrate the effect of implementing scheduling policies based on the results 
of the PHSP-LCC-flex, we apply the Flex+ scheduling policy to the example given 
above. The resulting truck schedule and conveyor utilisation is shown in Fig.  10. 
We observe that conveyors cannot be fully utilised, cf. Fig.  10b. Variations in 
the workload induced by random accumulations of parcels for specific conveyors 
cause delays and result in a reduced number of non-tardy parcels 

∑
Uo = 9335 

and a longer makespan of Cmax = 238 compared to the results of the model with ∑
Uo = 10264 and Cmax = 230 as shown in Fig.  8. Thus, the potentials observed 

(30)prioit� =

t�∑

t=1

x
opt

it

(a) (b)

Fig. 10   Schedule and conveyor utilisation for Flex+
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in the deterministic setting cannot be fully exploited in the real-world application. 
However, if we compare the results to those of the simple FCFS policy, we observe 
a significant improvement as we can increase the number of parcels arriving on time 
from 8257 to 9335.

In Sect. 6.3, we present more extensive numerical results for the different sched-
uling policies to investigate their performance for the test instances illustrated in 
Sect. 5.1.

6.3 � Numerical results for the scheduling policies using the simulation model

We employ the simulation model to assess the applicability of the optimised 
inbound schedules using the stated scheduling policies. We apply results of the 
genetic algorithm using a time limit of 30  s ( GA30 ) as input values to get the 
information on starting times and speed, respectively, required for implementing 
the scheduling policies. For each instance, we conduct 100 simulation runs with 
different random unloading sequences for the parcels leaving the inbound trucks 
and apply all scheduling policies in each simulation run. Thus, the unloading 
sequence is the same for each scheduling policy for an individual run. We present 
the average number of non-delayed parcels over all simulation runs.

In Table  5, each line represents the averages for 3 ⋅ 3 ⋅ 5 = 45 instances for 
given scarcity factors � and � . Thus, each row shows the averages for 45 instances. 
We present the results for the FCFS policy (FCFS), the priority-based scheduling 
policy (Prio), using the starting times generated with the PHSP-LCC-flex (Flex), 
employing both the starting times and unloading speeds from the PHSP-LCC-
flex ( Flex+ ) and using a combination of the starting times of the PHSP-LCC-flex 
together with the prioritisation of inbound trucks according to the planned num-
ber of unloaded parcel until the current period ( Flexprio).

The results show that the share of non-delayed parcels is increased with an aver-
age of 3.7% for the small instances, of 2.1% for the medium instances and 0.9% for 
the large instances when using the Flex policy compared to the implementation of 
the FCFS policy. The Flex+ policy only yields minor improvements with regards to 
the number of non-delayed parcels for the large instances. For the small and medium 
instances, applying the Flex+ policy can even be detrimental compared to the Flex 
policy. An explanation for this is that the unloading speeds of the Flex+ scheduling 
policy are highly dependent on the current state of the system with regard to the gate 
and conveyor utilisation. Thus, the results are only directly applicable if the inbound 
truck schedule is executed as planned in the model. Smaller variations of the plan 
due to, e.g., the discretisation of the parcel flow or small delays induced by the ran-
dom accumulation of parcels for a certain conveyor in the simulation model have 
implications on the state of the system. As a consequence, we observe desynchroni-
sation of the unloading speeds and the system state.

With an improvement of 5.4, 3.3 and 2.4%, respectively, for the small, medium 
and large instances compared to the FCFS policy, Flexprio generates the best results. 
The higher performance compared to Flex policy can be explained by the indirect 
usage of the unloading speeds provided by the PHSP-LCC-flex. Flexprio is not as 



1 3

The parcel hub scheduling problem with limited conveyor capacity…

susceptible to smaller variations as the Flex+ policy as it only prioritises certain 
trucks instead of assuming predefined and fixed unloading speeds for each parcel as 
an input. Thus, deviations between the system state in the simulation and the opti-
mised truck schedule become less severe.

For further insights on the opportunities of employing the scheduling policies in 
specific circumstances, refer to Fig.  11. We present the results of the simulations 
study with fixed values for the instance parameters � , � , � and �, respectively. We 
only present the results of the medium instances as a reference case as the other 
instance classes show the similar tendencies. Each bar illustrates the average 
improvement for a specific scheduling policy compared to the FCFS scheduling 

Table 5   Percentage of duly 
parcels for the scheduling 
policies

Size � � FCFS Prio Flex Flex+ Flexprio

Small 0.9 0.9 70.9 71.1 75.0 74.5 75.9
1.0 0.9 77.5 78.3 80.8 80.5 81.3
1.1 0.9 82.6 83.7 85.1 85.0 85.5
0.9 1.0 72.9 73.3 75.9 75.9 77.7
1.0 1.0 79.5 79.9 82.3 82.1 83.5
1.1 1.0 86.6 87.4 89.3 89.0 90.0
0.9 1.1 73.2 73.2 75.9 76.5 78.5
1.0 1.1 80.8 81.7 82.9 83.8 85.5
1.1 1.1 86.9 88.1 89.7 90.1 91.3

79.0 79.6 81.9 81.9 83.3
Medium 0.9 0.9 71.6 71.8 73.8 73.1 74.4

1.0 0.9 78.0 78.9 79.2 79.2 79.5
1.1 0.9 83.0 83.9 83.0 83.0 83.3
0.9 1.0 72.6 72.8 75.1 74.4 76.3
1.0 1.0 78.9 79.5 81.2 80.5 81.8
1.1 1.0 84.8 85.5 86.1 86.0 86.3
0.9 1.1 73.8 74.1 75.9 75.6 78.2
1.0 1.1 81.3 82.2 83.7 83.3 85.2
1.1 1.1 88.7 89.4 90.4 90.4 91.5

79.2 79.8 80.9 80.6 81.8
Large 0.9 0.9 68.1 68.0 68.9 69.0 69.9

1.0 0.9 74.7 75.0 75.3 75.3 75.6
1.1 0.9 80.0 80.6 79.9 79.9 80.1
0.9 1.0 69.7 69.7 70.4 70.7 72.1
1.0 1.0 76.6 76.6 77.3 77.3 78.3
1.1 1.0 81.9 82.4 83.2 83.0 83.5
0.9 1.1 70.7 70.7 71.1 71.9 73.6
1.0 1.1 77.8 78.0 78.3 78.4 80.0
1.1 1.1 83.9 84.1 84.9 84.8 85.7

75.9 76.1 76.6 76.7 77.7
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policy with the given parameter value for � , � , � and �, respectively, thus 135 
instances each.

We can observe that Flexprio performs best for all instance parameters. Especially 
in instances with a low level of heterogeneity � with regards to the parcel destina-
tions, the Flex, Flex+ and Flexprio policies perform well. Varying levels of deadline 
tightness � have a lower influence on the performance of the Flex and Flex+ pol-
icy. For a very high scarcity of the conveyors, i.e. low values of � , Flexprio shows 
the highest improvement. Similar results can be seen for instances with high val-
ues of � and thus a comparably high number of gates. In both cases, the conveyor 
capacities are more likely to constitute the bottleneck of the system. Accordingly, 
if the conveyor capacity � increases and gate capacity � decreases, the effect is less 
pronounced.

To reiterate, the main focus of our approach is to efficiently use limited con-
veyor capacities by allowing flexibility. Thus, the most relevant instances are those 
instances where the conveyors are actually the limiting factor of the system, hence, 
especially � = 0.9 and � = 1.1. We can observe that for those instances the number 
of non-delayed parcels when applying Flexprio is significantly higher compared to 
FCFS with 4.75% and 4.43%, respectively. Naturally, the performance of Flexprio is 
much lower for instances where the conveyor capacities are not the bottleneck, such 
as those with � = 1.1. This shows that allowing flexibility in the unloading process 
is a promising approach if the conveyor capacities are actually the limiting factor of 
the system.

Fig. 11   Comparison FCFS and advanced scheduling policies
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7 � Conclusions and outlook

In this paper, we considered a specific truck scheduling problem for parcel hubs 
where limited conveyor capacities and outbound deadlines are assumed. We pre-
sented an extension to the problem setting by incorporating controllable unloading 
speeds and formalise the problem with a mathematical model. As the problem is 
proven to be NP-hard, we present a genetic algorithm to provide an efficient solu-
tion method. The model formulation and the genetic algorithm were investigated in 
a performance analysis using a problem-specific set of instances. Further, we inves-
tigated the applicability of the results in a real-world environment by implementing 
a simulation model that considers individual parcel interactions.

Based on our experimental results, we can state that a standard solver has dif-
ficulties to generate good solutions for the medium and large instance class. In con-
trast, the genetic algorithm was shown to be efficient for all instances. Our simula-
tion study further showed that especially in problem settings with scarce conveyor 
capacities � , high gate capacities � and high parcel heterogeneity �, incorporating 
controllable unloading speeds by integrating the results of the PHSP-LCC-flex has 
the potential of significantly increasing the number of non-tardy parcels compared 
to a simple FCFS policy.

For future research, it would be interesting to have a more detailed modelling 
approach with regards to its granularity that disaggregates the conveyors into several 
sorters. Even though the computational complexity would surely increase, a more 
detailed view on the hub might offer further insights. Another approach would be 
to utilise the simulation model in a combined simulation-optimisation procedure to 
estimate the objective function value. This would incorporate parcel interactions in 
the solution procedure and has the potential to improve the applicability of the gen-
erated truck schedules.
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