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Abstract

Structural health monitoring has gained more and more interest over the recent
decades. As the technology has matured and monitoring systems are employed
commercially, the development of more powerful and precise methods is the log-
ical next step in this field. Especially vibration sensor networks with few mea-
surement points combined with utilisation of ambient vibration sources are at-
tractive for practical applications, as this approach promises to be cost-effective
while requiring minimal modification to the monitored structures. Since effi-
cient methods for damage detection have already been developed for such sensor
networks, the research focus shifts towards extracting more information from
the measurement data, in particular to the localisation and quantification of
damage.

Two main concepts have produced promising results for damage localisation.
The first approach involves a mechanical model of the structure, which is used
in a model updating scheme to find the damaged areas of the structure. Second,
there is a purely data-driven approach, which relies on residuals of vibration es-
timations to find regions where damage is probable. While much research has
been conducted following these two concepts, different approaches are rarely
directly compared using the same data sets. Therefore, this thesis presents ad-
vanced methods for vibration-based damage localisation using model updating
as well as a data-driven method and provides a direct comparison using the
same vibration measurement data.

The model updating approach presented in this thesis relies on multi-
objective optimisation. Hence, the applied numerical optimisation algorithms
are presented first. On this basis, the model updating parameterisation and
objective function formulation is developed. The data-driven approach employs
residuals from vibration estimations obtained using multiple-input finite
impulse response filters. Both approaches are then verified using a simulated
cantilever beam considering multiple damage scenarios. Finally, experimentally
obtained data from an outdoor girder mast structure is used to validate
the approaches. In summary, this thesis provides an assessment of model
updating and residual-based damage localisation by means of verification
and validation cases. It is found that the residual-based method exhibits
numerical performance sufficient for real-time applications while providing a
high sensitivity towards damage. However, the localisation accuracy is found
to be superior using the model updating method.

Keywords: structural health monitoring, damage localisation, finite im-
pulse filter, model-updating, multi-objective optimisation
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Zusammenfassung

Die Zustandsüberwachung von Bauwerken hat in den letzten Jahrzehnten zu-
nehmendes Interesse in Forschung und Industrie geweckt. Nachdem erste Über-
wachungssysteme bereits kommerziell eingesetzt werden, ist die Entwicklung
leistungsfähigerer und präziserer Methoden der logische nächste Schritt. Insbe-
sondere Sensornetzwerke mit wenigen Schwingungs-Messpunkten und Nutzung
ambienter Erregungsquellen sind für praktische Anwendungen attraktiv, da die-
ser Ansatz kostengünstig und mit minimalen Änderungen an den überwachten
Strukturen umgesetzt werden kann. Da für solche Sensornetzwerke bereits effizi-
ente Methoden zur Schadensdetektion entwickelt wurden, rückt die Extraktion
weiterer Informationen zur Schadenslokalisierung und -quantifizierung in den
Fokus der Forschung.

Insbesondere zwei Ansätze liefern vielversprechende Ergebnisse für die Scha-
denslokalisierung: Der erste Ansatz basiert auf einem mechanischen Modell der
Struktur, welches mittels einer Modellanpassung zur Lokalisierung möglicher
Schäden genutzt wird. Der zweite Ansatz ist rein datengestützt und nutzt Re-
siduen von Schwingungsschätzungen, um Schäden zu lokalisieren. Diese beiden
Ansätze wurden bereits ausgiebig erforscht, aber nur selten direkt auf Grundlage
derselben Datensätze verglichen. In dieser Dissertation werden daher Methoden
zur schwingungsbasierten Schadenslokalisierung mittels Modellanpassung sowie
einer datengestützten Methode weiter entwickelt und ein direkter Vergleich un-
ter Verwendung derselben Schwingungsmessdaten durchgeführt.

Der in dieser Arbeit vorgestellte Ansatz zur Modellanpassung basiert
auf einer Mehrziel-Optimierung. Daher werden zunächst die verwendeten
numerischen Optimierungsalgorithmen eingeführt. Die Parametrisierung der
Modellanpassung und die Formulierung der Zielfunktion werden auf Grundlage
der Optimierungsalgorithmen entwickelt. Der datengetriebene Ansatz verwen-
det Residuen aus Schätzungen, welche mithilfe von finiten Impulsantwortfiltern
mit mehreren Eingängen ermittelt werden. Beide Ansätze wurden anhand
eines simulierten Kragarms unter Berücksichtigung mehrerer Schadensszenarien
verifiziert. Anschließend wurden experimentell erhobene Daten einer Mast-
struktur verwendet, um die Ansätze zu validieren. Zusammenfassend bietet
diese Arbeit eine Bewertung der Modellanpassung und der residualbasierten
Schadenslokalisierung anhand von Verifikations- und Validierungsfällen. Es
wurde festgestellt, dass die residualbasierte Methode eine für Echtzeitanwen-
dungen ausreichende numerische Effizienz aufweist und gleichzeitig eine hohe
Empfindlichkeit gegenüber Schäden bietet. Mit der Modellanpassung lässt sich
hingegen eine genauere Lokalisierung erreichen.
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Chapter 1

Introduction

1.1 Motivation

As infrastructure becomes increasingly complex and growing numbers of facili-
ties need to be operational at all times, maintenance becomes more and more
important. Traditionally, maintenance is carried out based on a predetermined
schedule of inspections and planned overhauls. To reduce the workload of tech-
nicians and reduce cost, monitoring data can be leveraged to facilitate more
flexible maintenance schemes. Based on this data, algorithms are continuously
employed to observe the data and decide in real-time whether damage is likely.
The monitoring then makes it possible to reduce down-time and enhance the
maintenance planning by detection of damage in an early stage. A condition-
based maintenance plan therefore enables deferring inspections to a point in
time where overhauls are actually necessary and intermediate inspections can
be largely skipped [95].

Because maintenance costs account for a large part of the operational ex-
penditure of infrastructure facilities, Structural Health Monitoring (SHM) has
received more and more attention in the past decades [60]. The anticipated op-
timisation of maintenance procedures and the associated cost savings as well as
the potential benefits to public safety also lead to a high interest from industry
in this area. A major drawback of monitoring solutions, however, is the cost of
equipping structures and machinery with sensors, recording and continuously
processing the data. Recently, miniaturisation and dropping costs of sensors
and network-capable devices make industrial applications economically feasible
[23].

This thesis therefore addresses the topic of vibration-based damage local-
isation in an effort to advance the algorithms that enable structural health
monitoring. To this end, a damage localisation method based on a mechani-
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Chapter 1. Introduction

cal model as well as a data-driven method are presented and evaluated using
numerical simulations and measurement data.

1.2 Structural health monitoring

According to Farrar and Worden [36], the capabilities of SHM methods can
be classified using five levels, as shown in Figure 1.1. These SHM levels are
ordered and depend on each other. In this scheme, the most basic functionality,
and thus the fundamental level, is damage detection. On top of the detection,
the subsequent levels are localisation, classification, quantification and lifetime
prognosis. The specificity and practical usefulness increases with the SHM level,
however, achieving higher levels also requires the use of more complex methods
and algorithms.

Lifetime prognosis

Quantification

Classification

Localisation

Detection

Figure 1.1: Levels of SHM according to Farrar and Worden [36].

In this work, the three levels detection, localisation and quantification are ad-
dressed. In this context, detection refers to identifying that a damage occurred
somewhere in the monitored structure. A method is capable of localisation,
when it can constrain the damage to specific geometric regions of the structure.
Finally, quantification is the capability to determine the extent of the damage.
Classification is less of an issue due to the unsupervised nature of the methods
discussed in this thesis. Hence, damage is expected to manifest as a decrease
in the structural stiffness and a detailed classification is therefore skipped im-
plicitly. This is not only true for the experimental structures considered in this
work, but also for more practical setups and construction materials [73].

SHM methods rely on sensors and measurement data from the monitored
engineering structure. In structures such as wind turbines, bridges, skyscrapers
or hydroelectric dams, there exist a multitude of possible physical quantities
which can be measured. Strain, displacement, velocity, acceleration, tilt angle
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1.2. Structural health monitoring

and temperature are commonly used. The capabilities of a monitoring system
are dependent on the measurement locations and the types of sensors. De-
pending on the measurement setup, local techniques which monitor material
integrity on smaller length scales as well as global techniques, which can detect
structural changes anywhere in the structure, can be used.

On the one hand, SHM systems can be implemented using a passive setup
which only relies on measurement signals present due to the environmental and
operational dynamic excitation experienced by the monitored structure. Such
systems are also referred to as ‘output-only’ setups, as there is no active transfer
of energy to the structure. On the other hand, an SHM system can also employ
an active monitoring strategy, which involves actuators that can manipulate the
structure in a controlled way to obtain an insight into the structural response
[112]. Passive systems are usually cheaper and simpler, while active systems
may provide better data quality due to the known signals that actuators can
provide.

While in laboratory settings it is possible to apply predetermined mechani-
cal excitation signals to a structure, such as active local monitoring of plate-like
structures using Lamb waves [109], this is usually complex and expensive in
a long-term monitoring setting on large structures. This thesis therefore con-
centrates on methods which extract information about the mechanical integrity
of the monitored structure based on passive excitation using ambient vibra-
tion sources. The ambient nature of the exciting forces also means that they
can usually not be directly measured [36]. As a result, vibration time series
measured under ambient excitation cannot be directly employed for analysis.
Rather, the data has to be processed using an identification method, which
yields information about the underlying structural dynamic behaviour of the
structure monitored. Ambient vibration-based monitoring approaches can be
classified by the amount of information that is available in addition to the actual
vibration measurement signals.

• Model-based methods rely on an accurate mechanical model of the struc-
ture to be monitored and judge upon its integrity by comparing the be-
haviour of the model to measured data

• Data-driven methods, also known as model-free methods, take a signal
processing approach and deduce structural changes purely from differences
in the characteristics of the measurement data

An issue, that affects many areas of monitoring, is the variability of envi-
ronmental and operating conditions. Due to these fluctuations, e.g. ambient
temperature, wind speeds or rotational speeds of machinery, the mechanical
system properties may change over time. This poses a challenge for monitor-
ing, as it is often hard to discern whether changes in the structure are due

3



Chapter 1. Introduction

to environmental factors or due to damage. Since environmental fluctuations
happen on a rather long timescale compared to the vibration period of typical
engineering structures, a distinction can be made between short-term and long-
term dynamics. Here, short-term dynamics refers to the structural vibration in
the lowest eigenfrequencies of the structure, while long-term dynamics refers to
the changes in structural behaviour due to changes in the environmental and
operating conditions. As this thesis focuses on the development of localisa-
tion methods using short-term dynamics, the treatment of long-term dynamics
effects is intentionally omitted for the sake of clarity and brevity.

This thesis presents novel approaches for monitoring based on ambient vibra-
tion using both model-based and data-driven techniques. Specifically, a model
updating approach based on multi-objective optimisation and damage distribu-
tion functions is pursued. The data-driven approach presented in this thesis is
based on a residual power metric obtained using multiple-input finite impulse
response filters. Verification and validation is carried out using simulations and
measurement data of an experimental structure, respectively.

1.3 Damage detection and localisation

As implied by Figure 1.1, damage localisation poses a substantially harder chal-
lenge than damage detection. More precisely, a localisation method can also
detect a damage, while a detection method cannot necessarily localise a dam-
age. Hence, for damage detection, many structural dynamic identification ap-
proaches are suitable when combined with statistical methods. For example,
Tsiapoki [117] presented advanced damage-sensitive features extracted using
auto-regressive models. Haeckell et al. [50] and Penner [89] presented damage
detection approaches based on the operational modal analysis methods Stochas-
tic Subspace Identification and Frequency-Domain Decomposition, respectively.

Damage localisation requires a more specialised approach than damage de-
tection. To achieve this, many authors follow a model-based approach using a
finite element discretisation of the structure to be monitored. In this approach, a
model updating scheme is used to fit the model to the measurement data, which
thereby recovers the damage position as well as its severity. This approach was
followed by Jahjouh [54] and Schröder et al. [104], who proposed different opti-
misation methods for the model updating problem. A more recently developed
approach is the damage localisation using a purely data-driven approach. To
this end, Wernitz et al. [123] presented a damage localisation method based on
state-space projection and Kalman filtering.

The following sections discuss the model-based and data-driven localisation
approaches in more detail.
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1.4. Localisation using mechanical models

1.4 Localisation using mechanical models

Model-based approaches rely on a mechanical model of the structure to be
monitored. For vibration-based monitoring, the model has to be able to capture
the vibration behaviour of the structure. In simple cases, this can be achieved
by employing mass and spring models which form a multiple degree of freedom
system. For more complex structures, the finite element method is employed to
aid in the analysis.

Using the mechanical model, information captured by the measurement in-
strumentation can be interpreted in terms of changes in the structural prop-
erties. Therefore, the model is parameterised and these parameters are tuned
numerically so that the model matches the measured data as closely as possible.
This concept is known as model updating in literature [37, 82]. Some ways to
implement the model update are

• Analytical gradients of stiffness and mass matrices with respect to modal
parameters [71]

• Approaches based on proportional flexibility matrices [34]

• Finite element solver and a local optimisation algorithm [107]

• Finite element solver and a global optimisation algorithm [45, 104]

• Finite element-based multi-objective approaches [91]

• Finite element solver combined with neural networks [69]

A major problem that has to be dealt with in model updating using real-
world measurement data arises due to the systematic error between the model
and the actual structure. While analytical methods deliver correct results in ver-
ification settings where the damaged state is simulated in a mechanical model,
they tend to break down when applied to measurement data. Hence, a trend
towards more resilient and error-tolerant methods, which suppress systematic
errors using advanced error metrics, can be observed in the literature [1]. The
inevitable mismatch between the model and the actual structure as well as mea-
surement uncertainty lead to an undetermined optimisation problem, which of-
ten has several local minima. In this regard, the methods can be ranked by
their resilience, starting with the lowest: analytical, local optimisation, global
optimisation, multi-objective optimisation. Neural networks and meta-model
approaches impose additional limitations when compared to numerical optimi-
sation, as they need to be trained before they can be used, which tends to
increase the numerical cost [14].
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Chapter 1. Introduction

The mechanical model can be parameterised using different strategies. A
popular method is to assign parameters to the stiffness of individual elements or
to the stiffness of regions of the model which are comprised of multiple elements
[106]. A more rarely used method is the use of an analytical function with
few parameters which prescribe the distribution of stiffness to the whole model
[114]. In addition to the various methods of updating and parameterisation,
there are also several ways to process the vibration measurement data prior
to updating. For example, eigenmodes [113], eigenfrequencies [106], frequency
response functions and transmissibility functions [75] can be identified. As a
result, there are numerous ways in which updating algorithms, parameterisation
and data processing can be combined to yield a model updating procedure.

The choice of the parameterisation has to be considered together with the
updating method, since the resulting computational effort is dependent on both.
For example, to solve a model updating problem using global optimisation, it
has to have only few unknown variables, hence it should not be parameterised
using individual stiffness values of several hundred elements. Conversely, a
parameterisation with few unknown variables tends to generate a non-convex
optimisation problem, which can not be efficiently solved using a local optimiser
[113].

This thesis pursues a global optimisation approach using modal parameters
and especially focuses on a parameterisation which yields unique identification
results. Ambiguities often arise as a result of too many parameters which lead
to an under-determined mathematical problem with multiple non-physical can-
didate solutions. Therefore, in this work, damage distribution functions with
only three design variables are used to increase the chance of obtaining unique
identification results [45].

Furthermore, efforts towards dealing with uncertainty in the model updat-
ing process were made by various researchers [61, 65, 106]. This thesis, how-
ever, only deals with deterministic methods and intentionally omits statistics
in favour of a more in-depth discussion concentrating on the core concepts of
damage localisation.

1.5 Localisation using data-driven methods

Data-driven output-only monitoring methods allow for damage detection and
localisation without a model of the physical structure. Since only the measure-
ment data and no further knowledge of the structure is required, data-driven
methods can be fully automated. Hence, this approach is particularly attractive
when accurate modelling is too time-consuming to be practical or no documen-
tation of the structure exists. Over the last decades, many different methods
were proposed, most of them founded on statistical and signal processing the-
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1.5. Localisation using data-driven methods

ory [36]. Due to the higher mathematical complexity compared to model-based
monitoring methods, data-driven localisation methods are often more abstract
and the results harder to interpret. Some prominent examples for such methods
are

• Damage localisation using mode shape curvature [86]

• Power of difference processes obtained using state estimators [68, 125]

• Damage-sensitive features based on transmissibility functions [25, 75]

Modal parameters are widely used for structural dynamic identification and
are therefore an obvious basis for monitoring methods. Dedicated modal analy-
sis algorithms focus on this task only, while some parametric and non-parametric
methods provide modal parameters as a by-product. Prominent examples of
dedicated operational modal analysis methods are the frequency domain de-
composition [18] and an improved Bayesian approach known as BayOMA [4].
The mode shape curvature method [86] directly employs identified mode shapes
to identify kinks that relate to damage positions. However, this method is only
applicable to beam-like structures and depends on a high sensitivity of the un-
derlying modal analysis technique, which may not be the case under real-world
conditions.

Over the last decades, several parametric identification methods were pro-
posed. Notably, vector auto-regressive identification [92] as well as stochastic
subspace identification [88] were applied successfully for structural health mon-
itoring. Both of these approaches are based on identifying a limited number of
structural modes, hence the name ‘parametric’. Mathematically, the structural
modes are treated as the damped poles of the system. Based on such system
identifications, damage localisation schemes can be implemented, for example
by employing residuals [68]. A typical drawback of methods based on paramet-
ric identification is associated with high model orders, which increases the risk
of obtaining non-structural modes. This makes it difficult to obtain models for
a wide spectral range, hence, usually the model order is determined to be as
low as possible and only as high as necessary [97, 131]. Concerning the compu-
tational effort associated with parametric methods, the resulting relatively low
model orders are an advantage, since data can be processed rapidly.

Non-parametric identification methods do not consider individual modes
of the underlying mechanical system, but rather the full vibration spectrum.
However, the term ‘non-parametric’ is a bit misleading, as in the usual case of
discrete measurement data, these techniques still employ a finite model order.
Rather, the model order of non-parametric approaches is typically orders of
magnitude higher than in a parametric approach. Since non-parametric meth-
ods are concerned with identifying the full spectral behaviour of structures,
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Chapter 1. Introduction

many methods employ the Fourier transformation to obtain spectral responses.
A popular approach considers transmissibility functions, which are obtained by
the division of the spectra of two different sensor signals [75]. Since the vibra-
tion behaviour at a given point in the structure is dependent on the vibration of
all other points in the structure, multiple input signals should be considered to
obtain more accurate identification results. Such multiple-input transfer func-
tions are enabled by a H1 or H2 estimation technique [3] and were employed for
structural health monitoring [121]. However, the frequency-domain multiple-
input identification is only possible if several uncorrelated excitation sources
are present [74], which is not generally the case. Albeit, a major advantage of
non-parametric approaches is the numerical stability of the identified systems.
Further, post-processing is usually not needed after the identification to obtain
a functioning model.

In this work, a variant of the transmissibility function method is pursued.
An advantage of this approach is that it uses a non-parametric identification
which is relatively insensitive towards its tuning parameters, making it well-
suited for dealing with real-world measurement data. The proposed method
uses an identification of the transfer characteristics in terms of finite impulse
response filters. Using the identified characteristics, a vibration estimation is
carried out and the residuals between the estimation and the measured signal
are calculated. By analysing the residuals, structural changes linked to damage
can be uncovered.

1.6 Research gap

The overview given in the preceding sections shows that there are some as-
pects of damage localisation methods which can still be improved. In case
of model-based approaches, not many efforts have been made towards rugged
multi-objective formulations. While objective functions based on modal param-
eters are well established, research by Perera and Ruiz [90] and Jin et al. [56]
shows, that there is potential for improvement in the parameterisation of the
finite element model. Additionally, the reciprocity between the model updating
formulation, the optimiser and the numerical performance is often neglected.
To tackle these issues, an efficient multi-objective approach using damage dis-
tribution functions and a relative error metric based on modal parameters is
investigated in this thesis.

Regarding data-driven approaches, residual-based damage localisation has
been a relatively recent development when compared to model updating. As
such, well-established numerical methods have not yet emerged in this field. In
this thesis, the aspects of rugged system identification and numerically efficient
methods are addressed.
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1.7. Scope and structure of the work

In addition to improvements of the individual methods, this thesis also pro-
vides a comprehensive comparison of model-based and data-driven approaches
using verification and validation data sets. As most research articles are focused
on a single method, to date there have not been many attempts at direct com-
parisons [7]. In this regard, this thesis especially examines issues related to the
damage localisation.

1.7 Scope and structure of the work

The objective of this thesis is to develop advanced methods for damage lo-
calisation using both a data-driven approach as well as an approach based on
mechanical models. The numerical solution of the model updating problem re-
quires efficient optimisation algorithms. Hence, the development of numerical
optimisation algorithms is also a topic this thesis focuses on.

The optimisation algorithm employed for the model updating is detailed in
Chapter 2 while the overall updating method is described in Chapter 3. The
details of the proposed data-driven damage localisation method are explained in
Chapter 4. A validation and comparison of both damage localisation methods
is given in Chapter 5. Finally, Chapters 6 and 7 point out the benefits and
limitations of the proposed methods and summarise the findings of this thesis.
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Chapter 1. Introduction
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Chapter 2

Numerical optimisation algorithms

In this thesis, the model updating problem is treated as a numerical optimisa-
tion problem and a global optimisation method is applied to solve it. The latter
is required, because the objective function space arising from complex engineer-
ing optimisation problems usually contains multiple local minima. In addition,
the objective space also contains numerical noise which further necessitates
the usage of global methods. In the following, deterministic global optimisa-
tion algorithms based on the Pattern Search approach [33] are presented and
the numerical performance is evaluated. The benchmark results show that the
presented algorithms are well-suited to the aforementioned requirements. The
EngiO framework [10], which was co-developed by the author of this thesis, is
used to implement and run the presented algorithms.

This chapter contains parts of research published by the author of this thesis
as well as submitted articles [10, 44, 45, 51].

2.1 Global optimisation

Global optimisation algorithms are used when the objective function space of
an optimisation problem features many local minima. In such cases, local opti-
misation algorithms can find the true global optimum only by chance. Further,
the use of local optimisation algorithms is hindered when no analytical deriva-
tives of the objective function are available, which is the case for the model
updating formulation considered in this thesis. Derivative-free global optimisa-
tion algorithms treat the objective function as a black box without knowledge
of the internal structure of the optimisation problem. These derivative-free al-
gorithms generally have a lower numerical performance than derivative-based
methods, however, they impose no restrictions to the type of objective function
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and are more robust. Thus, formulating the model updating problem as a global
derivative-free problem makes it adaptable and readily applicable.

Depending on the engineering application at hand, the global optimisation
problem comprises one or more objectives and may involve constraint equa-
tions. In the following sections, the single- and multi-objective formulations are
introduced and constraint handling strategies are discussed.

2.1.1 Optimisation problems

Single-objective optimisation is concerned with minimising or maximising a
scalar function. In the following, only minimisation is discussed, however max-
imisation can readily be achieved using a negative sign. Numerous basic engi-
neering optimisation problems fall in the category of scalar, bounded, uncon-
strained, non-linear and derivative-free optimisation problems [105]

minimise f(x) for f ∈ R, x ∈ Rn, (2.1)

where f is the scalar objective function and x is the n-dimensional vector of
design variables. In essence, the goal is to find the design variable space point
with the most extreme associated objective function value. The space of the
design variables is bounded to the volume of a hypercube

xlb ≤ x ≤ xub, (2.2)

where xlb and xub are the lower and upper bounding vectors, respectively.
Multi-objective optimisation differs from single-objective optimisation by

considering a vector-valued objective function instead of a scalar one. In multi-
objective optimisation, the bounded, unconstrained, non-linear and derivative-
free optimisation problem is solved

minimise f(x) for f ∈ Rm, x ∈ Rn, (2.3)

where f , in contrast to Equation 2.2, is an m-dimensional objective function
vector.

As a consequence, usually no single most extreme point results from the op-
timisation. Instead, there is an infinite number of compromise solutions which
favour some of the objectives while disregarding others. The compromise solu-
tions are situated on a hyper-dimensional surface in the objective space, which
is referred to as the Pareto frontier, named after Vilfredo Pareto [81]. In a
given set of objective value vectors, the compromise solutions can be identified
using the Pareto non-dominance criterion and a corresponding non-dominated
sorting algorithm. The non-dominance criterion mandates that a point x̂ is on
the Pareto frontier, if there exists no point x such that f(x) ⪯ f(x̂) [76]. This
means that the solutions on the frontier are better than others at least in one
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objective. A sketch of the objective value space of a multi-objective problem is
shown in Figure 2.1.
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Figure 2.1: Sketch of objective value space in multi-objective optimisation and Pareto
dominance.

Multi-objective optimisation algorithms recover an approximation of the
Pareto frontier, which can be extracted using the Pareto non-dominance crite-
rion. In Figure 2.1, the points marked by squares constitute the non-dominated
set. The points marked as dominated are Pareto-dominated by several other
points and are therefore not on the Pareto frontier. For the example of a two-
objective problem this means that there must be no point below or to the left
of a point on the frontier, as illustrated by the arrows in Figure 2.1.

2.1.2 Constrained optimisation

Some engineering problems require the use of constraints, which define a fea-
sible region inside the bounded design variable space. The constrained multi-
objective optimisation problem can be stated similar to Equations 2.2 and 2.3

minimise f(x) s.t. g(x) ≥ 0

h(x) = 0

for f ∈ Rm, g ∈ Rp, h ∈ Rq,x ∈ Rn,

(2.4)

where g(x) consists of one-sided inequality constraints and h(x) contains equal-
ity constraints with p and q constraint equations, respectively. Since Equation
2.4 poses a fundamental maths problem, many methods have been proposed to
deal with constraints in numerical optimisation tasks. A popular and simple
way to handle such problems is the expansion of the objective function using
static penalty techniques. Following this approach, the constrained optimisation
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problem is redefined as

minimise f(x) + Φ(g(x),h(x))

for f ,Φ ∈ Rm, g ∈ Rp, h ∈ Rq, x ∈ Rn,
(2.5)

where Φ is the vector-valued penalty function.
According to Coello Coello [26], penalty techniques are divided into interior

and exterior approaches. Interior methods restrict the design space to feasible
solutions only. On the one hand, if there is only a very small feasible region,
an application of these approaches can result in entirely missing the feasible
region. On the other hand, in case of success they will definitively provide
feasible solutions only. In contrast, exterior methods do not restrict the design
space and thus are suited for problems with small or even non-existent feasible
regions. However, the optimal solution obtained using an exterior approach
will often not be inside the feasible region. The choice whether to employ an
interior or exterior penalty function has to be made before actually running the
optimisation. In practice, numerical experiments are usually required in order
to find a penalty formulation that delivers satisfying results for a given objective
function.

As an example, using the exterior linear penalty technique, the violation of
a single inequality constraint g(x) is penalised by

Φg
i =

{
−rgi · g(x) g(x) < 0

0 g(x) ≥ 0,
(2.6)

where rgi are the corresponding penalty vector entries and i denotes the objective
function index. In the case of a single equality constraint h(x), the linear penalty
function

Φh
i = rhi · |h(x)| (2.7)

evaluates the constraint violation weighted by penalties rhi specified for each
objective i. This vector formulation of the penalty functions enables imposing
constraints on multi-objective optimisation problems as well. The final penalty
added to the objective function is expressed by the sum over all equality as well
as inequality penalty values

Φi =
∑
g

Φg
i +

∑
h

Φh
i . (2.8)

2.2 Classification of numerical optimisation algorithms

Since general-purpose computers were invented, they have been used to solve
numerical optimisation problems. This led to the development of an immense
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number of algorithms dedicated to this topic. To contextualise the method
outlined in the following, this section provides a classification of the currently
predominating algorithm types. The formulation chosen for the model updating
problem in this thesis requires the usage of single-objective or multi-objective
global algorithms. Convex or local optimisation approaches are therefore not
discussed further.

The sample generation of global optimisation algorithms can be either based
on random numbers or based on a deterministic approach. Derivatives of the
objective function are not employed by the currently predominating approaches.
Additional features make some algorithms distinctive, such as special constraint
handling strategies. However, since constraint handling can also be incorporated
into the objective function via penalties, as outlined in Section 2.1.2, these
intricacies are not regarded in the following.

Hence, for suitable global algorithms, the main differences lie in the employed
sample generation schemes. The following sections outline the differences be-
tween these sample generation schemes as well as the state of research in this
field. As the single and multi-objective approaches only differ in the handling of
objective function evaluations, no further distinctions are made in the discussion
below.

2.2.1 Algorithms based on random numbers

The most commonly used global derivative-free algorithms are based on random-
number sample generation schemes. The random numbers are obtained nu-
merically using a pseudo-random number generating algorithm. Thereby, a
stochastic exploration of the design variable space of the optimisation problem
is achieved. Many optimisation algorithms that utilise random numbers are in-
spired by natural processes like biological or chemical phenomena [130]. These
algorithms are also referred to as metaheuristic algorithms.

Many optimisers based on random numbers belong to the class of evolution-
ary algorithms. Two very popular approaches are Evolution Strategies [105]
and Genetic Algorithms [40]. The essence of both approaches is the abstrac-
tion of the Darwinian evolution theory as well as natural selection of biological
systems. The natural process “survival of the fittest” is represented in terms
of mathematical operators like crossover, recombination, mutation and fitness
evaluation. Other examples of metaheuristic algorithms based on random num-
bers are Simulated Annealing [64], inspired by the annealing process of metals,
Particle Swarm optimisation [59], inspired by swarm intelligence of fish and bird
behaviour, and Harmony Search [39], inspired by the arrangement of musical
harmonies.

The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [28, 29] is
a multi-objective expansion of the evolution-inspired Genetic Algorithm and
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known to perform well on most problems [20]. In this algorithm, solutions are
ranked by the computation of non-dominated sets and a crowding distance is
assigned to find members of the new population. To date, it is arguably the
most popular multi-objective optimisation algorithm.

More recent global optimisation methods include the Grey Wolf optimiser
[79], Spotted Hyena optimiser [31] and the Whale Optimisation Algorithm [78].
As the naming suggests, the ideas behind these algorithms are motivated by
animal behaviour. More generally, these motivations and inspirations can be
referred to as metaphors. The use of such metaphors, however, has been crit-
icised recently, since it may obscure the mathematical nature of the actual
algorithm. For example, Sörensen [110] showed that some algorithms published
under different names and using different metaphors were actually mathemati-
cally identical. In particular, Harmony Search was shown to be a variant of the
Evolution Strategy algorithm. For this reason, the author of this thesis tries to
avoid metaphors and instead focuses on the mathematical concepts behind the
algorithms.

A property often associated with metaphor-based algorithms is a high num-
ber of parameters. Since e.g. animal behaviour is hard to put into mathematical
formulae, the numerical modelling needs to be tuned to obtain the desired ef-
fect. This mathematical tuning in turn leads to numerous free parameters which
have to be set in a problem-specific way to obtain optimal performance. While
very good numerical performance can be obtained when tuning the algorithm
to specific benchmark problems, the performance on real-world problems using
default parameter settings is often sub-optimal. This is exacerbated by complex
interactions between the parameters, which may lead to parameter tuning by a
‘trial-and-error’ approach and high computational effort to obtain satisfactory
solutions. To tackle this issue, metaphor-free algorithms were proposed recently
by Rao [99], which have as little as a single parameter, while retaining an ac-
ceptable numerical performance. The numerical benchmark in Section 2.3.6
discusses several currently popular random number-based approaches.

2.2.2 Deterministic algorithms

Contrary to algorithms based on random numbers, deterministic methods gen-
erate samples in a predetermined and predictable way. Hence, deterministic
algorithms do not rely on random permutations in order to converge to an op-
timal solution. The design space trajectory of a deterministic algorithm is only
dependent on the objective function. Thus, the result for a given optimisation
problem is always the same and does not vary for different runs as is the case
for algorithms based on random numbers.

Deterministic approaches are most often applied for convex and gradient-
based optimisation. Popular methods from this class are Coordinate Descent
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[128], Pattern Search [48] and Sequential Quadratic Programming [16]. How-
ever, these convex optimisers can not reliably find the global optimum in a
problem with several local minima. Only few deterministic global optimisation
algorithms were proposed thus far. A popular one is the DIviding RECT-
angles algorithm (DIRECT) algorithm [57], which exploits geometric patterns
and shapes to traverse the design variable space. Evtushenko and Posypkin [35]
proposed an approach which employs box-constraints and a branch-and-bound
optimisation scheme to tackle multi-objective problems. However, some of these
approaches lack numerical robustness and there have not been many attempts
made at comparing them to more mainstream methods, like NSGA-II.

2.2.3 Research gap

Even though the currently predominating global optimisation algorithms are
based on random numbers, deterministic algorithms have interesting numerical
properties which can be advantageous for some applications. The numerical
performance in many engineering optimisation problems is dependent on the
number of samples needed to achieve results sufficiently close to the global
optimum. Deterministic algorithms are interesting in this regard, since the
positioning of sampling points is predetermined in such approaches, which can
be exploited to speed up computations. One such application is the fuzzy α-
level optimisation, where a deterministic algorithm proposed by Hübler and the
author of this thesis [51] is able to provide similar or better results compared to
state of the art methods by employing a sample reusing approach. A reason for
the relative unpopularity of deterministic global optimisation algorithms lies in
their low suitability for problems with high numbers of design variables. This,
however, can be countered by employing a formulation of the objective function
with a low number of variables.

In multi-objective optimisation, there aren’t many successful algorithms
to begin with. The current literature is mostly dominated by the algorithm
NSGA-II [28] and attempts to create equally versatile and high-performance
approaches have mostly failed [20]. There have been some contributions consid-
ering deterministic multi-objective approaches [35], however these have mostly
not been employed to solve practical engineering problems. Hence, novel meth-
ods with a different set of strengths and weaknesses compared to NSGA-II are
needed to enhance the number of options to choose from.

This thesis thus follows a deterministic approach which is outlined in the
following sections.
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2.3 Global Pattern Search

The Global Pattern Search (GPS) algorithm was introduced by the author et
al. [45] and is a core innovation of this thesis. It is based on the local Pattern
Search algorithm [33] and augmented by the simultaneous tracking of multiple
local minima in order to yield a global technique. The resulting global algorithm
belongs to the deterministic class of optimisation algorithms and thus does not
rely on pseudo-random numbers to generate its samples. The GPS algorithm
is also related to the concepts of Coordinate Descent [128] and Direct Search
[43], as it employs the round-robin design variable variation applied by these
methods. The GPS algorithm was published as an open-source code written in
MATLAB syntax by Berger et al. [10].

2.3.1 Search pattern

As its name implies, the Global Pattern Search approach is based on a search
pattern, which is used to sample the design variable space. This pattern is
centred around a current best sample b, as depicted in Figure 2.2. The distance
between the current best sample and the generated samples sj is controlled
by the step width vector w, which comprises the step widths associated with
the design variables. The search pattern is aligned with the design variable
axes, which leads to a cruciform shape. Additionally, all points generated by
the algorithm are located on a regular grid. The grid spacing is defined by the
parameter N , which is discussed in detail in Section 2.3.3.
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Figure 2.2: Sample generation scheme of the Pattern Search algorithm. A variation
along the axes is performed around the base vector b using the step width vector w,
resulting in the sample coordinates sj . The integer grid is indicated using grey lines.
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In each iteration of the algorithm, the sampling points sj are evaluated using
the objective function. The results of these evaluations are then used to deter-
mine whether the sampling points led to improved objective values compared to
the currently best sample b. When a sampling point with an improved objective
value is found, the current best sample is replaced with the improved sampling
point. This way, the search pattern is used to traverse the search domain in the
direction of improved objective function values. When no more sampling points
with improved objective function values can be found, the algorithm reduces the
step width by half its original length. This way, the search pattern is spatially
refined to allow for convergence of the optimisation scheme.

The main difference between the local Pattern Search algorithm and GPS
is that the latter employs a set of currently best samples instead of a single
one. The number of simultaneously tracked best samples is represented by
the parameter T , which is the only parameter that influences the trajectory of
the GPS algorithm during the optimisation run. When choosing T = 1, GPS
becomes a local optimisation method which resembles the local Pattern Search
approach. Higher values of T lead to increasingly more global search domain
coverage. The GPS approach can be thought of as a parallelised local optimiser,
where multiple local minima are tracked and refined. In contrast to a multi-
start approach, however, GPS only tracks local minima until all T points are
close to the global minimum, after which it only refines the global minimum
solution. This behaviour is further discussed in Section 2.3.5.

While this thesis does not attempt the mathematical proof of convergence
properties, a proof for the local Pattern Search algorithm, essentially the T = 1
case, was published by Torczon [116]. When approaching T → ∞, the GPS
algorithm becomes a full-factorial grid sampling approach, where convergence
is also guaranteed. Therefore, a proof for the cases 1 < T <∞ remains a topic
for future research.

2.3.2 Algorithm description

The pseudo-code of GPS is given in Algorithm 1. In this algorithm, the currently
tracked global minima are stored in the matrix H, which has T rows to store
their sample coordinates. Since H contains the best samples, it is also referred
to as the ‘hall of fame’ in the following.

In the first two lines of Algorithm 1, the coordinates of the initial sample
and the initial step width are calculated depending on the resolution parameter
N . As the initial sample is the best sample known to the algorithm upon ini-
tialisation, it is assigned to the first row of the ‘hall of fame’ H as the currently
best sample. The value 2N−1 is chosen so that the initial sample is exactly
in the middle of the design variable space and the initial step width spans ex-
actly half the design variable space. This leads to an initial search pattern
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Algorithm 1 Global Pattern Search (GPS)

1: wi ← 2N−1 {initialise step width vector}
2: H1,i ← 2N−1 {initialise hall of fame}
3: loop
4: bk ←Hk {take T base coordinates from hall of fame}
5: for k = 1 to T do
6: generate 2n sampling coordinates sj for each bk
7: deduplicate sj

8: clamp sampling coordinates sj to domain boundaries
9: calculate xj from sj

10: yj ← f(xj) {sample using cache}
11: end for
12: update hall of fame H using y
13: if H changed in update, then
14: continue loop
15: end if
16: if every wi is 1, then
17: break loop
18: end if
19: wmax ← 1

2
wmax {reduce largest step width}

20: end loop

which touches the boundaries of the design variable space and thus covers the
maximum possible hypervolume. The algorithm always starts its optimisation
run with exactly one point situated in the middle of the design variable space,
making it a deterministic approach.

Lines 3 to 20 of Algorithm 1 comprise the iteration loop of the algorithm,
which can be divided into sample generation using the search pattern, sampling
and updating the ‘hall of fame’ as well as step width control. These parts of
the iteration loop are addressed in the following.

The pattern-based sampling of GPS is described in lines 5 to 11 of Algorithm
1. In a loop over the current globally best samples taken from the ‘hall of fame’,
the search pattern is applied to generate the sampling coordinates sj . If the
number of samples available in H is less than T , all samples in H are used
instead. In other words, the ‘hall of fame’ is filled up with points until it reaches
the size T , at which point it maintains its size. For each of the base points bk
taken from the ‘hall of fame’, variations along all n design variables are carried
out. Since there is one sample in the positive as well as in the negative direction
of each of the n axes of the search domain, 2n samples are generated per base
coordinate bk. A graphical representation of the sample generation scheme
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is shown in Figure 2.2. Since some of the samples may have been generated
multiple times due to overlapping search patterns, these are deduplicated to
remove redundant samples. In the next step, each sample is clamped to the
search domain boundaries. If a sample is outside of the boundaries, it is moved
onto the boundary. Since the sample coordinates are generated on an integer
grid, the real-valued sample coordinates xj are calculated before the objective
function can be evaluated. The integer grid is explained in more detail in Section
2.3.3.

The real-valued sample coordinates xj are used to evaluate the objective
function using a caching mechanism. This caching mechanism is further spec-
ified in Section 2.3.4. The result of the objective function evaluation is then
stored to the vector y, which contains the objective values calculated during
each iteration of the algorithm. The outlined sample generation scheme is only
dependent on the samples in the ‘hall of fame’. Hence, all samples of an itera-
tion can be evaluated independently, which means that the sample evaluation
can be parallelised to increase numerical efficiency on many-core computers.
After the evaluation of the samples, the ‘hall of fame’ matrix H is updated
using all samples generated in the iteration. This is facilitated by sorting the
objective function values y and assigning the best T samples to H.

The step width control is described in lines 13 to 19 of Algorithm 1. If the
updated ‘hall of fame’ changed during the update, the iteration loop is restarted
using the same step width as before. This enables an exploratory search of the
design space. Lines 16 to 18 of the pseudo-code contain a stopping criterion for
the corner case where the step width is 1. When no change in the ‘hall of fame’
is achieved in an iteration, the step width is reduced. This is performed one axis
at a time by determining the axis with the maximum step size and subsequently
reducing it by half its length. The stopping criterion is encountered, when the
step widths of all design variables reach 1. At this point, the algorithm can not
produce any new candidate points on the integer grid. A further reduction of
the step width on the integer grid would lead to a meaningless step width of
zero and thus the algorithm is terminated. The algorithm is also aborted once
a specified number of objective function evaluations is reached.

A major advantage of the GPS approach is that only one parameter controls
the convergence behaviour. This is contrasted by the parameter count for tradi-
tional metaheuristics like Particle Swarm Optimisation or Genetic Algorithms,
which employ four or more parameters. The parameter T defines the number
of tracked points and thereby controls the balance between convergence rate
and design variable space exploration. If T is chosen too low for a given prob-
lem, the search pattern fails to place samples close to the position of the global
optimum, and convergence occurs at a local optimum instead. By choosing suf-
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ficiently high values for T , the global optimum is discovered and the algorithm
constricts its search pattern at that point.

Having only a single parameter means that GPS can be tuned to new optimi-
sation tasks without much numerical experimentation. Furthermore, it prevents
the emergence of complicated interactions between parameters. Another benefit
stems from the deterministic nature of the algorithm: Since the grid is indepen-
dent of the parameter choice, samples of previous runs can be reused to speed
up the optimisation process of later runs. This strongly reduces the numerical
effort when an increase of the parameter T is deemed necessary in a rerun.

2.3.3 Discretisation of the design variable space

The design variable space is discretised by introducing integer coordinates which
form a Cartesian grid. This grid is defined using a resolution of 2N , where N
is only limited by the numerical capabilities of the programming language and
computer architecture the algorithm is implemented in. This grid is depicted
in Figure 2.2. New sampling points are generated in every iteration of the
algorithm based on the coordinates of the T globally best points, as described
in Section 2.3.1. The sample coordinates s are located on the discrete integer
grid and transformed onto the continuous design variable space by

xi = xlb,i + si(xub,i − xlb,i) · 2−N . (2.9)

The definition of the resolution using powers of two stems from the way
that the search pattern is modified during the flow of Algorithm 1: When the
algorithm can not find better samples using the current search pattern, the
pattern is reduced in size by exactly half, which leads to a grid coincident with
2N resolution.

If not stated otherwise, the resolution parameter is set to N = 24 in this
thesis. This leads to a precision of 2−24 = 6 × 10−8 relative to the size of
the design space, which is generally sufficient to meet the numerical accuracy
demands of practical engineering problems. As an example, when GPS is used
to identify the location of a defect on a structure with a length of 100 m using
N = 24, an accuracy of 6 µm is achieved. This by far exceeds the practical
requirements to such an identification, hence, the parameter N is not further
considered in the following chapters.

2.3.4 Reuse of cached samples

As the design space is discretised using a grid and the search pattern is aligned
on this grid, it is inevitable that points of the design space are sampled multiple
times. To avoid the associated computational overhead, the result of every
objective function evaluation y = f(x) is stored to a cache.
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Is f(x) in cache?

Return f(x)

Request f(x)

No

Evaluate f(x)

Store f(x) to cache

Take f(x) from cache

Yes

Figure 2.3: Flowchart of the Global Pattern Search caching scheme for objective
function evaluations.

The logic of the cache is captured in Figure 2.3. This caching mechanism is
invoked whenever the objective function f(x) is requested. In case of a cache
miss, the objective function is evaluated and the result is stored to the cache. In
case of a cache hit, the result is taken from a matrix which stores the coordinates
and the objective value of each sample in a separate row.

For the reuse of samples, it is very beneficial to employ a grid-based ap-
proach. This leads to exact matches when querying the sample cache. In con-
trast, when using an optimisation approach which generates its samples using
pseudo-random numbers as the basis, the variability of the coordinates of cached
samples has to be taken into account. Thus, random-based methods need to
be designed, so that the statistical bias introduced by sample recycling does
not negatively impact the convergence properties. As a result, sample reuse is
rarely used in metaheuristic optimisers based on random numbers.

2.3.5 Verification using test functions

The sampling pattern of GPS is demonstrated in Figures 2.4 and 2.5 using the
well-established Himmelblau test function [43]

f(x) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2. (2.10)

In these plots, the topology of the test function is visualised using contour lines.
The samples of the algorithm are colour-coded according to the iteration in
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which they were generated. The Himmelblau function is a multi-modal function,
i.e. it has multiple equally valued global minima.

The initial sample is situated in the centre of the design variable space
and is therefore indicated using a dark blue colour. The samples from the last
iterations of the optimisation runs are indicated using red colour and are located
near a single global optimum or all of the the global optima of the Himmelblau
test function, respectively. These examples also showcases the regular sampling
grid and its refinement close to the optima of the test function.
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Figure 2.4: Sampling pattern of GPS on the Himmelblau test function using T=1.
Samples are colour-coded based on the iteration they were generated in.

For Figure 2.4, GPS is run with its parameter set to T = 1. This setting
resembles the local Pattern Search algorithm. Consequently, the algorithm con-
verges locally on one of the minima. Setting the parameter to T = 20 results
in the algorithm converging towards all global minima simultaneously, as il-
lustrated in Figure 2.5. This showcases that the GPS algorithm can be used
to reliably solve multi-modal optimisation problems. This capability originates
from a combination of the step width control and the ‘hall of fame’. Since the
algorithm first explores the design variable space using a coarse grid, points close
the global optima with large distances between them can be identified. The step
width control then leads to local refinement and more and more points close to
the global optima are evaluated. If one of the minima is actually lower than
the others, eventually all T samples will end up in the vicinity of that global
optimum. This occurs because the ‘hall of fame’ operates on all previously
evaluated sampling points, which globally steers the sample generation towards
areas with the lowest objective function values. However, in the Himmelblau
function all minima have the same value, so that the best samples are located
in all four minima and convergence occurs simultaneously at all locations. Of
course, for this to happen, T needs to be high enough that at least one of the
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‘hall of fame’ points stays close to each global optima at all times. Additionally,
higher values of T lead to significantly increased computational cost.
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Figure 2.5: Sampling pattern of GPS on the Himmelblau test function using T=20.

Figures 2.6 to 2.8 show the design variable history as well as the sampling
patterns obtained by applying Algorithm 1 to various two-dimensional opti-
misation test functions. The corresponding objective value space is visualised
using contour lines. Generally, a self-similar search pattern appears in the de-
sign variable space near the optima as the optimisation algorithm converges. In
these plots, iterations are visualised using a colour bar. The parameter T was
adjusted to the respective problem for robust convergence while maintaining a
low number of objective function evaluations to illustrate best case performance.
Higher values of T would lead to the same results, however the numerical cost
would be higher. For most practical applications, reasonable parameter choices
can be found in the range 5 < T < 50. Section 2.3.6 discusses the optimal
choice of T by means of numerical benchmarks.
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Figure 2.6: Convergence on Camel6 function [80], T=5.
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Figure 2.7: Convergence on Rosenbrock function [101], T=20.
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Figure 2.8: Convergence on Schwefel function No. 128 [105], T=20.

The non-uniform scaling of the step width improves the performance of
the algorithm on smooth problems. As can be seen in the sampling of the
optimisation test functions, refinement on only one axis is often sufficient to
improve the corresponding objective function value. The unbiased tracking
of local optima leads to the discovery of all minima in the multi-modal test
functions Camel6 [80] and Himmelblau [43].

The solutions to multi-modal problems are conducive to cluster analysis, e.g.,
by using an agglomerate hierarchical approach. This way, up to T distant solu-
tions in the design variable space can be identified with only one optimisation
run. This can also be useful in engineering optimisation tasks, feature many
local minima. In that case, the near-optimal design solutions obtained using
the optimisation algorithm may even contain a better solution than the actual
global optimum. Such cases arise when there are other objectives or design as-
pects that are not considered by the objective function. Classical metaheuristic
algorithms converge on only one minimum, restarts are thus required to iden-
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tify all global minima. This issue is also addressed by multi-modal variants of
metaheuristic algorithms [41], however, at the expense of added complexity.

The histories of the design variables show, that the algorithm performs as
intended with an initial uniform exploration of the design space followed by a
convergence close to local optima. Figure 2.8 shows that after 15 iterations,
corresponding to about 250 samples, the algorithm constricts the sampling to-
wards three local minima on the Schwefel test function. After several more
iterations, however, the 20 ‘hall of fame’ samples all lie in the vicinity of the
global minimum and the final convergence occurs at this point. Figures 2.6 and
2.7 show optimisation runs using the Camel6 and Rosenbrock test functions,
which do n0t feature pronounced local minima. Here, the convergence towards
the global minima follows immediately after the initial global exploration.

2.3.6 Benchmark using test functions

After making sure, that the proposed algorithm is able to converge to the de-
sired global optima, it is compared to other algorithms from literature. The
goal of this benchmark is to check whether the numerical efficiency is satis-
factory. Further, the benchmark also yields data to judge upon the benefits
and drawbacks of the proposed algorithm when compared to established global
optimisation methods.

The benchmark is conducted using the engineering optimisation framework
EngiO [10]. This framework is designed to provide an object-oriented interface
between optimisation problems and algorithms, which makes it well-suited for
benchmark tasks. The single-objective global optimisation algorithms Simu-
lated Annealing [64], Particle Swarm Optimisation [59] and Genetic Algorithm
[40] are used as the reference in this benchmark. Additionally, a pseudo-random
sampling strategy is used as a worst-case baseline for the comparison. A bench-
mark regarding the multi-objective variant of GPS can be found in Section
2.4.4.

A parameter study is carried out to consider the influence of the hyper-
parameters related to the number of function evaluations per iteration for the
four considered global optimisation algorithms. The results of the parameter
study can be used to determine the best-case performance and also to judge
upon the sensitivity towards the numerical values of these hyper-parameters.
The hyper-parameters considered for the algorithms are chosen according to
Table 2.1. The hyper-parameters varied in the parameter study are denoted
using intervals, while the fixed hyper-parameters are given as constant values.
The fixed hyper-parameters in this benchmark are set to default values taken
from literature, as they are mainly affect the fine-tuning of the algorithms and
do not have a drastic impact on their convergence. In contrast, the hyper-
parameters chosen for variation are the ones responsible for setting the balance

27



Chapter 2. Numerical optimisation algorithms

between global exploration and local convergence. Therefore, these parameters
have to be set up such that the algorithm’s optimisation strategy matches the
complexity of the objective function. That way, the comparison to the proposed
GPS algorithm is carried out on a similar basis.

Table 2.1: Optimisation hyper-parameter settings for benchmarks.

Algorithm Hyper-parameter Interval / Value

Random - -

Particle Swarm Optimisation Number of particles [2, 120]
c1 2.0
c2 2.0
ω1 0.9
ω2 0.4

Genetic Algorithm Population size [4, 240]
Crossover percentage 0.8
Crossover range 0.4
Mutation range 0.2
Selection type Roulette wheel

Simulated Annealing Number of particles [4, 60]
T0 1
α 0.95

Global Pattern Search T [1, 100]

The optimisation test functions and design variable intervals are summarised
in Table 2.2. While many test functions operate on a fixed dimension, the func-
tions chosen here can be used in N -dimensional settings. In the following, the
cases N = 2 and N = 10 are investigated, i.e. the design variable spaces are
comprised of two and ten design variables, respectively. To provide sufficient
statistical significance, each test problem is run 100 times. For each of the algo-
rithms, the maximum number of objective function evaluations is set to 2000,
which is a number within a reasonable realm for many engineering optimisa-
tions and sufficient to allow for convergence on the considered test problems.
Additionally, the boundary of the design variable space of individual optimi-
sation runs for each algorithm is randomly shifted by 1% of its size for each
run to obtain bias-free data. The median and 90% percentile values of the best
objective function value achieved within each of these runs is then used for
the evaluation. The six resulting benchmark cases are shown in Figures 2.9 to
2.14. In these figures, the best choice for the respective varied hyper-parameters
coincides with the location of the minimum error value.
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Table 2.2: Optimisation test function for benchmarks.

Test function Interval Formula

Sphere [66] [-10, 10] f(x) =

N∑
i=1

x2
i

Rosenbrock [101] [-2, 2] f(x) =

N−1∑
i=1

100
(
xi+1 − x2

i

)2
+ (1− xi)

2

Schwefel [105] [-500, 500] f(x) =

N∑
i=1

sin
√
|xi|
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Figure 2.9: Benchmark results for Sphere function in 2 dimensions.

The optimisation test problems are set up so that the global optimum is
shifted to the value zero, which facilitates a logarithmic axis scaling. Thereby,
minute differences in the algorithm performance close to the minimum can be
clearly distinguished. In all of the benchmark cases, the random search results
are shown as constant over the parameter range, as it has no parameter. Al-
gorithms with medians and 90% percentile values higher than those provided
by random search therefore point to a poor performance of the optimisation
algorithm.

Figures 2.9 and 2.10 show the results for the most straightforward test func-
tion investigated in the benchmark. The Sphere test function is symmetrical,
convex and has only one minimum, therefore the conditions are ideal for quick
convergence. The two-dimensional case shows that Particle Swarm Optimisa-
tion and the Genetic Algorithm behave similarly with respect to the varying
hyper-parameter. The achieved error first sinks to a minimum and rises again
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Figure 2.10: Benchmark results for Sphere function in 10 dimensions.
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Figure 2.11: Benchmark results for Rosenbrock function in 2 dimensions.

as the parameter is increased. In contrast, Simulated Annealing and Global
Pattern Search start at the minimum and the error only increases from there.
This behaviour arises because both of these algorithms essentially become local
optimisation algorithms with their hyper-parameters set to the minimum value.
This is amplified in the 10-dimensional case, in which these two algorithms excel,
while Particle Swarm Optimisation and the Genetic Algorithm exhibit minima
in the error function similar to the two-dimensional case. For all algorithms,
the 90% percentiles closely follow the median values, which indicates that the
algorithms perform robustly.

Figures 2.11 and 2.12 display the results obtained for the Rosenbrock test
function previously depicted in Figure 2.7. For this function, all algorithms
exhibit a pronounced minimal error value with respect to the hyper-parameter
values. This may be attributed to the design of the Rosenbrock function, which
makes it very hard to solve using local optimisation strategies. In the two-
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Figure 2.12: Benchmark results for Rosenbrock function in 10 dimensions.
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Figure 2.13: Benchmark results for Schwefel function in 2 dimensions.

dimensional case, the Genetic Algorithm shows relatively poor performance
which is rarely better than random sampling. In the 10-dimensional case, the
algorithms reach similar error values. Notably, Global Pattern Search exhibits
a significant dip around T = 20.

The last benchmark case considers the Schwefel test function, which features
multiple local minima as depicted in Figure 2.8. The results shown in Figure
2.13 indicate that all algorithms except Simulated Annealing show pronounced
minima in the errors in the two-dimensional case. In fact, Simulated Annealing
did not produce satisfying results at all for this test problem. Figure 2.13 also
exemplifies the robustness of the Global Pattern Search algorithm, as the 90%
percentiles stay close to the medians, while the 90% percentiles of all other
algorithms are strongly elevated. This indicates that Global Pattern Search
was able to converge to solutions close to the optimum in all of the 100 runs,
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Figure 2.14: Benchmark results for Schwefel function No. 128 in 10 dimensions.

while the other algorithms struggled to discern between the global and local
optima in many cases.

The 10-dimensional case depicted in Figure 2.14 shows that complex high-
dimensional problems are problematic for the Global Pattern Search approach.
Both the medians and the 90% percentiles are above the levels of Random
Search and therefore the algorithm performed poorly. In contrast, the other
algorithms exhibit a close grouping of the respective graphs. The relatively poor
performance of Global Pattern Search can be attributed to a slow convergence
speed under these circumstances. In case of the Schwefel function, the algorithm
has to track multiple local minima, which are far apart in the design variable
space. For each of the tracked minima, it then has to evaluate a high number
of axis-aligned variations, considering the high number of design variables. The
sample caching scheme, which reduces the number of samples significantly when
the tracked global best samples are clumped together, fails to reduce the number
of samples in this case. That way, convergence is reached only after a high
number of objective function evaluations, and objective function values have
not declined sufficiently when reaching the 2000 evaluations set as the limit in
this benchmark. Chapter 7.2 contains a brief discussion on possible ways to
improve the GPS algorithm in this regard.

2.4 Multi-Objective Global Pattern Search

In this section, the design principle of the GPS algorithm is extended to account
for multi-objective problems. To distinguish it from the single-objective variant,
the multi-objective algorithm is referred to as Multi-Objective Global Pattern
Search (MOGPS). This extension is designed to retain the benefits of the grid-
based deterministic approach as well as having only a single parameter. The
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following subsections introduce the algorithm in more detail and point out the
extensions with respect to the single-objective algorithm. Finally, the complete
pseudo-code is given.

2.4.1 Non-dominated sorting and Pareto frontiers

The process of identifying the non-dominated set in a set of points is referred to
as non-dominated sorting [29]. This involves the numerical sorting of the objec-
tive function values and the application of the Pareto dominance operator [67].
Due to the high computational cost involved, the optimal algorithmic implemen-
tation is still an active topic of research [102]. Non-dominated sorting is not
only used to identify the final non-dominated set resulting from an optimisation
run, but is also applied as a part of optimisation algorithms themselves. For
instance, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [28] de-
rives its name from this feature. NSGA-II also includes the notion of secondary
frontiers, which are obtained by repetitive application of non-dominated sort-
ing. Figure 2.15 illustrates this concept and shows how a second and third
frontier emerge in parallel to the primary frontier. Numerically, the second
frontier is obtained by subtracting the first frontier from the whole set of points
and applying non-dominated sorting to the remaining subset. This process can
be repeated, providing a set of frontier points for each application of the sort-
ing algorithm. Hence, after carrying out i sorting operations, the i-th frontier
emerges. Each frontier can contain an arbitrary number of samples, depending
on their coordinates in the objective value space.
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2 Analytical
1st Frontier
2nd Frontier
3rd Frontier

Figure 2.15: Illustration of secondary frontiers resulting from repeated non-
dominated sorting.

The i-th frontiers are usually employed in the sample generation scheme,
whenever the first frontier does not contain enough samples to account for the
minimum number required by the algorithm. For instance, evolutionary algo-
rithms like NSGA-II [30] are designed to maintain a constant population size.
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If the first frontier contains too few points to fill up the chosen population size,
points from the second frontier are utilised as well. In approaches with a con-
stant population size, the case may also arise, in which not all points on an i-th
frontier can be included in the determination of the next sample generation.
Thus, a mechanism of reducing the number of points on a frontier has to be
employed. In case of NSGA-II, this is achieved by a crowding distance metric.

2.4.2 Multi-objective extension for Pattern Search

Taking only a subset of non-dominated samples into account may lead to a sta-
tistical bias and thus to a non-uniform coverage of the design variable space.
To circumvent this issue, the Multi-Objective Global Pattern Search algorithm
takes the frontiers into account as a whole. Due to the varying number of
samples on the i-th frontiers, this leads to a varying number of points being
tracked in each iteration of the algorithm. Hence, MOGPS does not simultane-
ously track a constant number of globally best solutions. Instead, it tracks at
least T globally best solutions taken from i-th frontiers in the objective function
space. This set of tracked samples from the objective space is referred to as the
‘hall of fame’, as previously introduced.

The updating scheme for the ‘hall of fame’ of MOGPS is shown schemat-
ically in Figure 2.16. In this plot, the set of points sampled in all previous
iterations is referred to as Y , with |Y | indicating the number of samples con-
tained in it. This set is split using repetitive non-dominated sorting to yield the
primary and several secondary frontiers, as indicated by division lines in Figure
2.16. Hence, the cumulative number of samples contained in all i-th frontiers
is |Y |. The parameter T is then used to decide how many frontiers are used to
populate the ‘hall of fame’ vector h. This is done by summing up the number
of points contained in each of the frontiers and once exceeding T , the result is
rounded up by a full frontier. In the example shown in Figure 2.16, the first,
second and third frontiers are included in the ‘hall of fame’, since the first and
second frontiers alone would include less than T samples. As this approach
rounds up to a full frontier, the first frontier is always included in its entirety.

The design of the ‘hall of fame’ updating scheme comes with the benefit of
not needing an algorithm for the reduction of points on a frontier, as is the
case for evolutionary algorithms like NSGA-II. Further, the variable number of
tracked globally best solutions represents a contrast to the single-objective GPS
algorithm. Thereby, the most important consequence of the proposed scheme
for tracking non-dominated solutions is that the whole primary frontier is al-
ways tracked. In late iterations of an optimisation run, this can lead to several
thousand points being tracked simultaneously. When compared to tracking only
a constant number T of globally best solutions, as is the case for evolutionary
algorithms including NSGA-II, this has a positive effect: Since especially sam-
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Figure 2.16: Illustration of the ’hall of fame’ updating scheme based on non-
dominated sorting of Y and the parameter T . The resulting ‘hall of fame’ is comprised
of at least T points, rounded up to full i-th frontiers.

ples near the primary frontier are used as the base vectors in every iteration,
virtually all new samples will eventually be situated on the frontier. This often
results in a relatively uniform and well-resolved sampling of the Pareto frontier.
However, if T is chosen too small, the algorithm may entirely miss parts of the
frontier and converge locally.

2.4.3 Details of the algorithm

The procedure for the ‘hall of fame’ update is shown as a pseudo-code in Al-
gorithm 2. In the MOGPS algorithm, the updated ‘hall of fame’ indices ĥ are
initialised with an empty set and then iteratively filled using the matrix of
previously sampled points Y . In this iterative update, a set e is computed
which excludes the indices to all points already belonging to ĥ. Using the set
e, non-dominated sorting is applied and the resulting frontier is added to ĥ.
This process is repeated until at least T indices are stored in ĥ or all previously
sampled points contained in Y are exhausted. The latter case occurs in the first
few iterations of the algorithm, while less than T points have been sampled, and
|Y | ≤ T .

The complete MOGPS scheme is shown in Algorithm 3. As introduced for
the single-objective GPS, the caching works with integer coordinates while the
evaluation of the objective function takes place in Rn. The ‘hall of fame’ h com-
prises indices of the sample cache instead of directly containing the coordinates
to facilitate the set operations needed for the ‘hall of fame’ update.

During run-time, the algorithm needs to store the coordinates of every sam-
pled point as well as the corresponding objective function values. This is facili-
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Algorithm 2 Update the ‘hall of fame’

ĥ← ∅
while

(
|ĥ| < T

)
∧
(
|ĥ| < |Y |

)
do

e← {j : j ∈ [1..|Y |] , j /∈ ĥ} {Exclude hall of fame}
ĥ← ĥ ∪ nonDominatedSort(Ye) {Add non-dominated set}

end while

Algorithm 3 Multi-Objective Global Pattern Search (MOGPS)

wi ← 2N−1 {Initialise step width vector}
S ← (w), h← (1) {Initialise sample cache and ‘hall of fame’}
loop

bk ← S(hk) {Get base coordinates using ‘hall of fame’}
for k = 1 to |h| do

Generate 2n sampling coordinates sj for bk
Clamp sampling coordinates sj to [0, 2N ]
Deduplicate sj using cache, calculate xj from sj

yj ← f(xj) {Sampling}
Update cache S and objective value matrix Y

end for
ĥ← updateHallOfFame(Y )
if |ĥ| ≠ |h| then

h← ĥ
continue loop

end if
if every wi is 1 then

break loop
end if
wmax ← 1

2
wmax {reduce largest step width}

end loop
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tated by the matrices S, containing the integer coordinates sj , and Y , contain-
ing the objective function vectors yj , respectively. The sample coordinates are
needed to deduplicate samples, while the objective function values are needed
for non-dominated sorting.

When using the MOGPS algorithm on a single-objective problem, non-
dominated sorting becomes equivalent to linear sorting and the ‘hall of fame’
update thus becomes identical to that of the single-objective GPS algorithm.
This means that the single-objective algorithm is a special case of the multi-
objective method. Therefore, the MOGPS can also be regarded as a multi-
objective generalisation of GPS. Further, the number of samples generated in
each iteration is even larger than in the single-objective case. Since the evalu-
ations of samples in a given iteration of the algorithm are independent of each
other, it is ideally suited for parallel computing.

2.4.4 Verification using test functions

In this section, the MOGPS algorithm is numerically compared to the bench-
mark algorithm NSGA-II [28] by means of analytical optimisation test functions.
The objective of the comparison is to verify that the numerical performance of
the MOGPS method is appropriate for practical engineering optimisation tasks.
The intention is to discuss characteristics of the considered algorithms on the
basis of different kinds of optimisation problems rather than proving superior
numerical properties. NSGA-II is chosen as the benchmark algorithm because it
is arguably the most successful derivative-free multi-objective optimiser to date.
Despite its age of 20 years, NSGA-II is still among the most efficient methods
[20].

In the following, the performance and convergence properties of the MOGPS
algorithm are discussed using the Poloni test function [93]. Due to the preva-
lence of metaheuristic approaches, most test problems are not designed with
grid-based approaches in mind. Since grid-based approaches generate sample
points on the boundaries and along the axes of the design variable space in early
stages of the optimisation run, they are very likely to converge towards optima
in these regions. In essence, this means that grid-based approaches have an
unfair advantage when applied to optimisation problems with optimal regions
on the boundaries or axes. The Poloni test function featured in this section is
chosen for detailed analysis, because its optimal solutions are situated in part
directly on boundaries and in part arbitrarily in the design variable space. This
helps to reduce possible bias effects introduced by the test function itself when
considering the grid-based MOGPS algorithm. The definition of the Poloni test
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function is given by Poloni et al. [93]

f(x) =

([
1 + (A1 −B1 (x1, x2))2 + (A2 −B2 (x1, x2))2

]
(x1 + 3)2 + (x2 + 1)2

)
(2.11)

where

A1 = 0.5 sin (1)− 2 cos (1) + sin (2)− 1.5 cos (2)

A2 = 1.5 sin (1)− cos (1) + 2 sin (2)− 0.5 cos (2)

B1 (x1, x2) = 0.5 sin (x1)− 2 cos (x1) + sin (x2)− 1.5 cos (x2)

B2 (x1, x2) = 1.5 sin (x1)− cos (x1) + 2 sin (x2)− 0.5 cos (x2)

s.t.
[
−π −π

]T ≤ x ≤
[
π π

]T
.

The results of the benchmark runs are assessed on the basis of numerical
quality metrics. These metrics are chosen for the comparison of the numerical
performance with respect to the total number of samples as well as the vol-
ume of the dominated objective function space. This approach is motivated by
engineering optimisations with numerically expensive objective functions like
finite element calculations. In such optimisation problems, the computing time
is proportional to the number of calculated samples and optimisers thus have to
be assessed accordingly. To this end, two quality metrics are employed: The hy-
pervolume metric, which measures the dominated objective function space, and
the yield ratio, which measures the ratio of non-dominated samples generated
by the algorithm.

The hypervolume metric is used extensively in literature [13, 100, 133] and
evaluates the dominated hypervolume relative to a fixed reference point

HV ≡ Λ

( ⋃
y∈Y

{
y′ | y ≺ y′ ≺ yref

} )
, (2.12)

where Λ denotes the Lebesgue measure, Y is the set of evaluated objective func-
tion vectors and yref is a reference point. The point yref has to be dominated by
all points on the Pareto frontier, which essentially means that its components
must be larger than those of every point on the frontier. Equation 2.12 therefore
describes the space enclosed between the non-dominated points generated by
the algorithm and the fixed reference point yref. An introduction of the Pareto
dominance concept can be found in Section 2.1.1. Figure 2.17 shows an example
of the hypervolume metric when applied to a set of points in two dimensions.
Because the reference point has to be dominated by all points, a higher hy-
pervolume metric indicates a better approximation of the Pareto frontier. The
maximum value depends on the geometry of the Pareto frontier associated with
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the optimisation problem as well as on the chosen reference point. Since the
hypervolume metric is based on the dominated space, it is influenced by the
Pareto-optimality of individual points as well as the resolution of the frontier.
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Figure 2.17: Illustrated example for the hypervolume metric. Shaded area corre-
sponds to the hypervolume considered in Equation 2.12.

Further, the yield ratio is proposed as a measure of the efficiency in finding
non-dominated points

YR ≡ Number of non-dominated samples

Number of total samples
=
|{ŷ ∈ Y | ∄ y ∈ Y : y ⪯ ŷ}|

|Y | ,

(2.13)
where |Y | denotes the cardinality of the set Y . This concept is similar to
other cardinality-based metrics, including the comparative metrics Ratio of
Non-dominated Individuals [63, 100, 111] as well as the Set Coverage Metric
[134]. A similarly motivated intrinsic metric is the Overall Non-dominated Vec-
tor Generation Ratio [119]. Yield ratios are defined in the interval [0, 1], where
low values indicate poor performance in terms of finding non-dominated points.
Contrarily, the value 1 resembles an ideal solution to the optimisation problem,
in which every sample is also a non-dominated solution. Thus, a high yield ratio
indicates that the algorithm efficiently uses samples to improve the resolution
of the non-dominated set. A ‘perfect’ algorithm would therefore maximise the
hypervolume metric while achieving a yield ratio of 1.

Figures 2.18 and 2.19 show results obtained with MOGPS for the Poloni
test function. The algorithm is parameterised using T = 16 and terminated
after 500 objective function evaluations. These values were chosen as they are
close to the ones used in practical optimisation runs in Chapters 3 and 5. The
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figures display all samples generated in the optimisation run as well as the final
non-dominated set frontier. The frontier is highlighted using a colour gradient
based on the first objective value to provide a mapping between the objective
and the design variable space.
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Figure 2.18: Objective value space obtained using MOGPS, showing all samples
(black dots) and the final non-dominated set using a colour bar with respect to objective
value 1.

The sampling pattern displayed in Figure 2.19 reflects the grid-based and
self-similar search pattern of the MOGPS algorithm. The plot demonstrates
a good balance between global sampling and a strong convergence near the
Pareto-optimal areas. Regarding the objective value space shown in Figure
2.18, the concentration of sampling points near the Pareto frontier is evident.
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Figure 2.19: Design variable space and sampling pattern for the Poloni test function
obtained using MOGPS. Colour bar same as Figure 2.18.

In order to compare the performance and convergence properties of the
MOGPS algorithm to NSGA-II, the dependencies of the yield ratio and the
hypervolume metric on the number of objective function evaluations are evalu-
ated for different parameter sets for the value T and the population size ‘pop’,
respectively. The results are shown in Figure 2.20. For this comparison, the
benchmark algorithm NSGA-II is run with the mutation probability pmut = n−1

and the crossover probability pcross = 0.9, as suggested by the original authors
[28]. According to the same literature, the simulated binary crossover distribu-
tion parameters are set to ηc = 10 and ηm = 10. To account for the metaheuris-
tic nature of NSGA-II, the results are averaged over 10 optimisation runs.

Figure 2.20 a) shows the trend of the hypervolume metric over the number
of objective function evaluations for both algorithms and different settings. The
hypervolume metric is plotted using logarithmic scaling and is normalised using
the maximum hypervolume achieved in all runs and by both algorithms. The
metric was evaluated with the reference point (20|30) in the objective value
space, leading to max(HV) ≈ 536.09 for the best run overall. Using this value,
the individual runs and algorithms can be compared in terms of a common
metric. Figure 2.20 depicts horizontal trends of the hypervolume metric for
T = 1 and for pop = 8 indicate local convergence. This occurs because parts
of the Pareto frontier are not discovered and the algorithms thus concentrate
on only one part of the frontier. Higher settings for T and pop lead to a
higher global coverage of the design variable space, which can result in the
recovery of more separate parts of the frontier, but at the same time slows down
the convergence. Except for the two aforementioned parameter settings, both
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Figure 2.20: Evolution of a) the hypervolume metric and b) the yield ratio over
the number of objective function evaluations on the Poloni test function for different
parameter sets for MOGPS and NSGA-II.

algorithms continually converge towards the Pareto frontier, which is evident
from the continually increasing hypervolume metric.

Figure 2.20 b) shows the evolution of the yield ratio metric over the course of
the optimisation runs. The cases T = 1 and pop = 8 exhibit a high yield ratio
metric, however they have been identified as locally convergent using Figure
2.20 a) and can therefore be disregarded. In general, the MOGPS algorithm is
able to consistently improve the yield ratio over the course of an optimisation
run. Low settings of T lead to high yield ratios early in the optimisation run.
As the algorithm becomes increasingly more local for lower T , this behaviour
is expected. The reason for the convergence of the yield ratios of the runs with
T > 1 is that the number of non-dominated samples increases for high numbers
of objective function evaluations. As the ‘hall of fame’ is always populated
with the non-dominated samples, the included globally best solutions become
identical for high numbers of objective function evaluations, as discussed in
Section 2.4.2. In contrast, the NSGA-II runs exhibit peaks in the yield ratio,
where the corresponding number of objective function evaluations depend on
the chosen population sizes: Lower population sizes are suitable for optimisation
runs with few objective function evaluations, whereas higher settings lead to a
more global coverage of the design variable space. The yield ratios of NSGA-II
eventually converge once the whole population is located in Pareto-optimal areas
of the design variable space. In this example, the yield ratio achieved using
MOGPS is significantly better than could be achieved using NSGA-II. This can
be attributed to the deterministic nature of the algorithm, which places new
samples directly adjacent to the Pareto-optimal regions instead of stochastically
sampling across larger regions of the design variable space.
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There is, however, a downside inherent to grid-based multi-objective ap-
proaches in general: For highly non-linear problems, the grid-based sampling
in the design variable space can lead to a non-uniform resolution of the result-
ing non-dominated set, since the non-linearity distorts the sampling grid. An
example for this behaviour is shown in Figure 2.21. This plot focuses on the
lower part of the Pareto frontier shown in Figure 2.18. The Pareto frontier is
shown in a cyan colour and the non-dominated points obtained with a run of
the MOGPS algorithms are shown in magenta. In this plot, the non-dominated
samples are positioned on a stepped pattern. This behaviour is the result of
the grid-based approach, where the samples are uniformly distributed in the
design variable space. Due to the non-linear nature of the Poloni test function,
the grid-like sampling of the design variable space is distorted when it is trans-
formed to the objective value space. This results in non-uniform distributions,
which also vary along the Pareto frontier. While not an issue for the practical
applications discussed in this thesis, there may be other research fields, where
this behaviour is not desirable.
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Figure 2.21: Part of the objective value space of the Poloni test function showing
the distribution of samples obtained with MOGPS using T = 16 and 500 evaluations.

A practical mitigation of the non-uniform coverage issue is not easily achiev-
able for MOGPS, since a regularisation of the design variable space would be
necessary, which requires prior knowledge of the underlying problem. Deb [29]
also discussed the biasing problems associated with non-uniform objective func-
tions. His solution to this issue was the design of an explicit crowding distance
metric for NSGA-II. This results in an unbiased and undistorted distribution
of the non-dominated points, as depicted in Figure 2.22.
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Figure 2.22: Part of the objective value space of the Poloni test function showing the
distribution of samples obtained with NSGA-II using pop = 32 and 500 evaluations.

Due to the positioning of the Pareto optimal areas, the Poloni test function is
ideally suited to additionally discuss the issue of local convergence. The trend
of the hypervolume metric shown in Figure 2.20 indicates local convergence
for T = 1. The same behaviour is observed when NSGA-II is run with the
insufficiently small population size pop = 8. Hence, a setting of T = 1 is
used to investigate the local convergence phenomenon for MOGPS. Figure 2.23
displays the resulting objective value space of the Poloni function. In this case,
the algorithm fails to discover the upper part of the Pareto frontier, cf. Figure
2.18.

The local convergence behaviour is caused by a failure to track sampling
points close to the position of the upper section of the Pareto frontier in the first
few iterations. Figure 2.24 shows the corresponding design variable space. Due
to the initially small size of the ‘hall of fame’, the algorithm converges rapidly
without much global exploration. This, in turn, means that the algorithm
entirely misses the part of the Pareto frontier close to x = [1 2]T and thus
converges locally. In contrast, by choosing a sufficiently high value for T , global
convergence is achieved, as demonstrated in Figure 2.19. As is the case for
the population size parameter in NSGA, some numerical experimentation or
experience is required in order to determine the minimum setting for T , which
leads to global convergence.
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Figure 2.23: Objective value space of the Poloni test function obtained with MOGPS
using T = 1 and 500 evaluations.
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Figure 2.24: Design variable space of the Poloni test function obtained with MOGPS
using T = 1 and 500 evaluations.
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Chapter 3

Damage localisation using model

updating

Using the optimisation algorithm described previously, a model-based damage
localisation method is presented in this chapter. The finite element method is
used for the mechanical modelling. The dynamic properties of the finite element
model can thereby directly be compared to the properties of the measured
structure. By exploiting this direct comparability, an optimisation problem
is formulated to update the model to reflect the measured structure, therefore
identifying structural damage.

This chapter contains parts of research published by the author of this thesis
as well as submitted articles [44, 45, 126].

3.1 Fundamentals of model updating

3.1.1 Finite element model updating

Finite Element (FE) model updating was first proposed in the 1990s, notable
early contributors were Friswell and Mottershead [37] as well as Link [71]. While
the basic idea of modifying the FE model to match the observed behaviour of
the structure is followed by all approaches, there is a multitude of possibilities to
achieve this goal. These possibilities mainly arise because the parameterisation
of the model and the objective function of the optimisation problem are indepen-
dent of each other. The following sections present some of these possibilities in
detail. Hence, almost any combination of parameterisation and objective func-
tion formulation yield a valid model updating strategy. Of course, only some
of these combinations are advisable. The research in this field therefore mainly
deals with finding robust, accurate and numerically efficient formulations.
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In the model updating framework, there are at least four separate states and
associated data sets of the monitored structure involved. They are generated
by combinations of measured and simulated systems, as well as of reference and
analysis states. The reference and analysis states are also referred to as healthy
and damaged, respectively. In Table 3.1, the states are denoted using M (mea-
sured), S (simulated), 0 (reference) and 1 (analysis). For damage localisation,
the states M0, M1 as well as S0 are constant and only S1 is variable and subject
to model updating.

Table 3.1: States of the structure considered in model updating.

Measurement Simulation

Reference (healthy) M0 S0
Analysis (damaged) M1 S1

3.1.2 Parameterisations

The parameterisation of the FE model is an important aspect of model up-
dating. While the goal of parameterisation is always to make the mechanical
properties of the structure dependent on a number of parameters, this can be
achieved in different ways. The most straightforward option is to assign one
parameter for each individual element. As FE models often have hundreds or
thousands of elements, this approach leads to a large amount of parameters. To
reduce the number of parameters, a strategy commonly used is the assignment
of one design variable to a group of elements supposedly having similar mechan-
ical properties, which are then referred to as substructures or super-elements
[62, 70]. Following this approach, the super-elements are assigned using various
criteria. They can be uniformly distributed along the structure, or manually
assigned to regions, where the probability of an emerging defect is known to
be high. Further, super-elements can be assigned based on experience, prior
knowledge or in accordance with results of preprocessing methods. The more
super-elements are employed, the higher the number of parameters becomes.
A different approach, which is motivated by a smooth variation of the proper-
ties along the structure, uses damage distribution functions. The distribution
functions can take various forms, for example quadratic polynomials [113]. The
damage distribution functions further lead to a formulation with comparatively
few parameters.

In this thesis, a parameterisation based on damage distribution functions is
chosen, due to the advantages of this formulation for numerical optimisation.
A detailed discussion is given in Section. The reasoning and details behind this
choice are given in Section 3.2.1.
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3.1.3 Objective functions

Besides the parameterisation, the formulation of the objective function is an-
other important factor in the process of model updating. The objective function
numerically compares the experimental results with the results of the FE analy-
sis. For this reason, it has to be sensitive even to small changes in the structural
behaviour [53, 62].

The objective function is formulated on the basis of the available measure-
ment data from the structure monitored. Using this data, metrics are extracted,
which are used to calculate a difference between the model and the measure-
ment. In the context of model updating, the difference between measurement
and model is also referred to as the error. By minimising the error, the clos-
est possible match is achieved, thereby fitting the model to the data. Several
metrics have been proposed as the basis for the error, such as the modal assur-
ance criterion [21], squared frequency differences [104] as well as transmissibility
functions [75]. Another possibility is the formulation of compound metrics, e.g.
a weighted sum of the mode shape and eigenfrequency errors [106].

The choice of metrics is dependent on the context and the goals of the
monitoring task at hand. In this thesis, structures are assumed to be loaded by
ambient excitation sources. Under these circumstances, approaches based on the
comparison of time-domain signals obtained under transient loading are usually
not applicable, since the ambient excitation forces are unknown. A natural way
to extract the dynamic properties of a structure with ambient excitation is the
operational modal analysis, which is introduced in more detail in Section 3.1.4.
Hence, modal analysis is the method of choice to analyse the vibration data in
a way that is directly comparable to finite element model calculations. Error
metrics for model updating are, therefore, often based on modal parameters,
i.e. eigenfrequencies, mode shapes, and possibly damping characteristics.

A popular approach for the objective function is based on mode shapes, since
these dynamic features can be obtained experimentally in a relatively high qual-
ity [15]. Even though the accuracy achievable for the extraction of mode shapes
is lower than for eigenfrequencies, the information content is considerable, due
to their vectorial nature. To evaluate the correlation between the relevant mode
shapes, the Modal Assurance Criterion (MAC) [2] is calculated. This criterion
determines the degree of similarity between two mode shape vectors ΦM1 and
ΦS1

MACi(x) =

(
ΦT

M1,iΦS1,i(x)
)2(

ΦT
M1,iΦM1,i

) (
ΦT

S1,i(x)ΦS1,i(x)
) , (3.1)

where i denotes the mode number and the indices M and S denote measured
and simulated quantities, respectively. The MAC returns a value of one, if
the compared mode shapes are linearly dependent and a value of zero, if they
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are linearly independent. For point-symmetrical structures, the MAC should
be replaced with the S2MAC [27], which takes into account rotations of the
mode shapes along the symmetry axis. A common way to formulate the error
between numerical and experimental data is to sum up individual MAC values
over multiple modes [71]. Considering Nmodes eigenfrequencies, the objective
function is formulated as

εMAC(x) =

Nmodes∑
i=1

1−MACi(x), (3.2)

where εMAC(x) is the error metric based on the MAC. The differences in indi-
vidual modes are obtained by the term (1−MAC) and are accumulated over all
considered modes. A drawback of this approach is that the simulation model
has to be calibrated to closely match the actual measurement data, which may
be hard to achieve in practice.

Alternatively, the mode shapes vectors can be compared directly

εΦ(x) =

Nmodes∑
k=1

|(ΦS1,k(x)−ΦS0,k)− (ΦM1,k −ΦM0,k)|2, (3.3)

where εΦ is the mode shape error based on the measured mode shapes ΦM and
the simulated mode shapes ΦS. The subscript (·)0 refers to the undamaged
state, while (·)1 refers to the damaged one. The design variables only influence
the simulation results for the damaged case, with all other terms of Equation 3.3
remaining constant during the optimisation run. While Equation 3.1 accepts
arbitrarily scaled mode shapes vectors Φ(·), Equation 3.3 requires the mode
shapes to be normalised. The normalisation is necessary due to the subtraction
of mode shape vectors, which is similar to the enhanced COMAC metric [49].
The objective function according to Equation 3.3 is formulated in a way that
cancels out much of the modelling error by subtracting the reference state from
the analysis state. This is achieved, because the metric compares the relative
change due to the damage between the model and measurement data. Such a
formulation can be advantageous, as the difference between a damaged state and
the reference state is often smaller than the difference between the simulation
model and the actual structure. By cancelling out the initial mismatch, only
the sensitivity towards damage is taken into account, which usually matches the
actual structural behaviour significantly better than the absolute values of the
modal parameters. As a result, the application of a relative metric often allows
for omitting a model calibration, while still achieving a reasonable sensitivity.
This can lead to a more practical approach overall, as demonstrated in Section
5.2.
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Another common method to compute the difference between numerical and
experimental data is based on the eigenfrequencies [71]. A least squares error
metric considering Nmodes eigenfrequencies is

εf (x) =

Nmodes∑
k=1

(
fS1,k(x)− fS0,k

fS0,k
− fM1,k − fM0,k

fM0,k

)2

, (3.4)

where εf is the eigenfrequency error. The eigenfrequencies extracted from mea-
surement and the simulated eigenfrequencies are denoted as fM and fS, re-
spectively. The notation for the reference and analysis state is the same as in
Equation 3.3. In Equation 3.4, the eigenfrequencies are normalised to weigh the
contribution of all modes equally. This normalisation prevents higher frequen-
cies from dominating the metric and means that changes in lower frequencies
will also affect the objective function. This frequency normalisation is similar
to the formulation of εΦ(x), where the normalised mode shapes are used. Since
this formulation employs the same difference scheme as Equation 3.3, it also
allows for the usage of uncalibrated models.

In previous works on model updating, the mode shape and eigenfrequency
error metrics are frequently weighted and summed up to yield a compound
metric [104, 106]. This is expressed by an objective function according to

ε(x) = αfεf (x) + αΦεΦ(x), (3.5)

where αf and αΦ are the weighting factor for the frequency and mode shape
metric respectively. However, the weighting factors which yield the best model
updating result are unknown prior to the optimisation run. A common way to
solve this issue is to weigh all metrics equally [104], but this assumption may
lead to sub-optimal identification results.

The application of multi-objective optimisation can remove this shortcom-
ing [83], since both error metrics can be solved for simultaneously. In fact, the
Pareto frontier resulting from the multi-objective formulation contains the opti-
mal solutions for all conceivable weighting factor combinations. This approach
thus provides additional information about the uncertainty of the damage anal-
ysis. In contrast, such information is not available in a single-objective optimi-
sation formulation, where only a single solution results from the optimisation.

3.1.4 Modal analysis

The model updating approach presented in this thesis is based on modal param-
eters which result from modal analyses of FE models and based on measurement
data. Generally, the equation of motion for a structure with multiple degrees
of freedom is expressed as
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Mü(t) + Bu̇(t) + Ku(t) = p(t), (3.6)

where M ,B and K denote the mass, damping and stiffness matrices, respec-
tively. Further, u(t) is the time-dependent displacement vector, p(t) is an ex-
citing force vector and t expresses time [87]. The derivatives with respect to
time lead to a differential equation system capable of damped oscillation.

Since most civil engineering constructions can not be directly modelled us-
ing multiple degree of freedom systems, they are spatially discretised. For the
purpose of this thesis, FE modelling is employed to achieve this [12]. By also
discretising time, Equation 3.6 can be solved numerically to yield the transient
dynamic response of a structure. By disregarding the damping and under the
absence of an exciting force, the structure will oscillate in its eigenfrequencies.
This oscillation takes the form of a harmonic vibration, such that Equation 3.6
can be simplified to

(K − ω2
0iM)u0i = 0, (3.7)

where ω0i is the angular frequency of the vibration and u0i contains the am-
plitudes of the shape of the deformation. Since this is a generalised eigenvalue
problem, ω0i is referred to as the eigenfrequency and u0i is referred to as the
eigenvector or alternatively as the mode shape vector. The modal parameters
of an FE model can thus be directly computed by solving the generalised eigen-
value problem stated in Equation 3.7.

In addition to the modal parameters of the mechanical model, the mode
shapes and eigenfrequencies from measurement data are necessary to perform
model updating using objective functions based on modal parameters. As the
dynamic exciting forces are usually unknown, operational modal analysis is nec-
essary. To this end, many data-driven methods to extract modal parameters
have been proposed, with notable methods being the Stochastic Subspace Iden-
tification (SSI) [118] and Frequency-Domain Decomposition (FDD) [18]. For
the purpose of model updating, the results of any modal analysis method can
be used. Because the structures investigated in this thesis exhibit well-separated
modes [17], the relatively simple FDD method is used, which yields adequate
results for these structures.

Vibration data can be captured using a multitude of sensor types, includ-
ing displacement gauges, geophones, accelerometers or strain gauges. Of these
sensor types, accelerometers are the simplest ones to handle since they can be
employed independently of their orientation relative to earth’s gravity field, do
not require a fixed reference system and are easily removable. Hence, the sim-
ulations as well as the experiments considered in this thesis were carried out
using accelerometer time series data.
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3.2 Damage localisation method

The damage localisation using model updating presented in this thesis is
achieved using a multi-objective formulation based on both eigenfrequency and
mode shape error metrics. The finite element model is parameterised using dam-
age distribution functions. This novel combination enables a balance between
accuracy, robustness and computing times, which can not be readily achieved
using a single-objective formulation. The details of this parameterisation and
the objective function are given in the next sections.

3.2.1 Parameterisation of damage distribution

The FE model is parameterised using the damage distribution functions defined
by Bruns et al. [22]. These distribution functions are intended for use with slen-
der beam-like structures. The approach features only three parameters, namely
the damage position, intensity and extent. To obtain a high spatial resolution
using the super-element approach, a lot more parameters would be necessary.
The low number of parameters is a major advantage, since the numerical com-
plexity of optimisation problems grows exponentially with the number of vari-
ables. This rapid growth also came to be known as the ‘curse of dimensionality’
[9]. In addition to the computational costs, the problem can become ill-posed
when too many parameters are used [106]. Ill-posed problems can have several
local minima in addition to the actual solution which do not represent physi-
cally meaningful solutions. This can lead to the ‘wrong’ local minimum being
picked as the solution, which in turn leads to identification results which do not
match reality. In the context of model updating, the optimisation problem is
usually uniquely solvable when the number of variables is in the low to medium
single-digit range.

The parameterisation using damage distribution functions controls the struc-
tural stiffness and the associated parameters are expressed as

x =
[
µ D σ

]T
, (3.8)

where µ is the centre of the damage, D is the damage intensity and σ describes
the spatial extent of the damage distribution. These parameters are summarised
in the design variable vector x, which is solved for by the numerical optimiser.

The damage distribution function is used to scale the initial stiffness EI0 of
each element. This is accomplished using a scaling factor θi for each element i

EIθi = θi · EI0i . (3.9)

The values of θi are calculated using a cumulative distribution function
F (si|µ, σ) which operates on the node positions si along the structure. Ad-
ditionally, the cumulative distribution function is clamped within the interval
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0 ≤ si ≤ L, which is written as F (si|µ, σ, 0,L). The parameter L denotes the
length of the structure. Following this approach, the stiffness scaling factors θi
are defined as

θi = 1−DL
F (si+1|µ, σ, 0,L)− F (si|µ, σ, 0,L)

si+1 − si
. (3.10)

Since the value range of the stiffness scaling factors is not restricted to pos-
itive values by Equation 3.10, it is possible that negative θi values may arise
for low values of σ. However, negative stiffness values would lead to meaning-
less results. To avoid this issue, all models with negative stiffness values are
rejected prior to FE calculation. Since this approach creates a discontinuity in
the objective function, a constraint is added in order to soften this disconti-
nuity. Therefore, the minimum stiffness scaling factor is used to formulate an
inequality constraint, which restricts values below 15% of the original stiffness.
The constraint is mathematically expressed as

min
i

(θi) > 0.15. (3.11)

For the relatively mild damage cases regarded in this thesis, Equation 3.11
does not significantly influence the outcome of the optimisation runs. It rather
only becomes relevant in the initial iterations of the optimisation algorithm,
when the sampling pattern is not yet focused close to the global optimum.
However, the constraint helps to guide the optimisation algorithm away from
unreasonable areas in the design variable space and, thus, aids in increasing the
convergence speed.

3.2.2 Objective function formulation

The model updating formulation chosen in this thesis has two objectives. The
eigenfrequency error as well as the mode shape error are minimised according
to

minimise

(
εf
εΦ

)
s.t.
[
0 0 0

]T ≤ x ≤
[
L Dmax σmax

]T
s.t. min

i
(θi) > 0.15,

(3.12)

where x is the design variable vector, L is the length of the structure, Dmax is
the maximum damage intensity and σmax is the maximum damage extent to be
considered. The inequality constraint given in Equation 3.11 is also part of this
formulation.

54



3.3. Verification using numerical simulation

The multi-objective approach leads to a more complex numerical problem
compared to a single-objective problem. However, there are also several advan-
tages associated with employing multiple objectives. First, a weighting of the
objectives prior to the optimisation run is not necessary, as detailed in Equation
3.5. This lack of weighting removes the chance of misidentifying the damage
due to improperly chosen weighting factors. Second, multi-objective optimisa-
tions are more robust, since the tendency of convergence towards local minima
is damped by the presence of secondary objectives which help to guide the algo-
rithm. Third, there are multiple solutions to a multi-objective problem, which
convey an impression of the certainty of damage identification.

3.3 Verification using numerical simulation

For the numerical verification of the proposed optimisation algorithm and model
updating method, a cantilever beam structure is chosen to represent a typical
engineering problem. Mechanical parameters of this structure are given in Table
3.2. The beam is discretised using 36 one-dimensional finite elements which
obey Bernoulli linear beam theory. Nine virtual acceleration sensors are placed
uniformly along the structure, starting at the tip. A schematic illustration
of the considered finite element model is shown in Figure 3.1. The dynamic
excitation consists of pink noise which is applied uniformly along the structure.
Additionally, Gaussian-distributed white noise is added to the time series of
the virtual sensors to simulate measurement noise. The resulting amplitude
spectrum is shown in Figure 3.2 using a singular value spectrum plot [98]. The
peaks at the eigenfrequencies are well-separated due to the one-dimensional
nature of the simulated beam.

Table 3.2: Properties of simulated cantilever beam

Property Value

Elastic Modulus 200 GPa
Length 1 m
Height 5 mm
Width 50 mm
Density 7850 kg/m3

Damping Ratio 0.15 %

Damage is simulated by reducing the element stiffness in predetermined re-
gions. The objective of the model updating therefore is to identify the damage
in terms of severity and location. Since the same numerical model is used to
simulate the damaged structure and for the model updating, it would in princi-
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Figure 3.1: Illustration of simulated cantilever beam structure, finite element dis-
cretisation and sensor positions.
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Figure 3.2: Singular value spectrum of undamaged simulated cantilever beam showing
the peaks belonging to the first five vibration modes.

ple be possible to perfectly solve such a problem. However, in practice there are
modelling, measurement and modal identification errors which make obtaining
a valid solution for a model updating problem considerably harder due to the
added uncertainty. In this regard, some measures were taken to complicate the
task and rule out the possibility of a perfect solution: First, the time domain
simulation contains significant amounts of noise from the excitation and added
measurement noise. Second, a relatively short duration of the time series data
is chosen to increase the uncertainty in the modal analysis. Third, the modal
parameters for the ‘measured’ reference and analysis states are identified from
time domain simulations using operational modal analysis, thus introducing un-
certainty in the modal parameters. As a last measure, the distribution of the
actual damage intentionally does not match the distribution function used for
the model updating. The effect of the intentionally added noise is also reflected
in the singular value spectrum shown in Figure 3.2. Naturally, the quality of the
results would improve relative to the ones presented here, if less noise, longer
analysis times and a damage distribution function matching the actual damage
were used instead.

Twelve scenarios were simulated, which consist of the reference state as well
as regions of reduced stiffness with varying damage severity. The damage leads
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to a decrease in the eigenfrequencies of the structure as well as to alterations
in the bending mode shapes. The simulated scenarios are summarised in Table
3.3. The first three scenarios function as control samples, in which realisations
of the reference state are simulated using an undamaged model. The remaining
nine scenarios feature damage in three positions along the beam with increasing
severity. The centres of the damage distribution are located at a quarter, half
and three quarters of the beam length, respectively. Damage is applied by uni-
formly reducing the stiffness of four neighbouring elements close to the damage
centre. The smallest damage features a 3 % stiffness reduction and is designed
to be quite hard to identify. The 10 % damage level represents a structural de-
fect which should be above the threshold of monitoring systems, while the 30 %
damage level is severe enough to judge upon the accuracy of the localisation
and quantification of the model updating method.

Table 3.3: Damage scenarios and numbering.

Damaged elements
8 . . . 11 17 . . . 20 26 . . . 29

Relative
stiffness

reduction

0 % 1 2 3
3 % 4 5 6
10 % 7 8 9
30 % 10 11 12

The influence of the damage scenarios on the eigenfrequencies as well as
their absolute values are shown in Figure 3.3. The frequency deviation due
to the smallest damage is much less than 1 %, while the largest considered
damage leads to a deviation of approximately 5 %. The eigenfrequencies exhibit
a relatively low sensitivity towards damage which has to be compensated for by
very accurate modal parameter extraction techniques.

An illustration of the three most severe damage scenarios is shown in Figure
3.4, which also depicts the first five bending mode shapes. In these mode shapes,
the local effect of damage can be observed based on the mode shapes. Deviations
between the reference case and the damage scenarios are most pronounced at
locations with a high mode shape curvature close to the damage. The figure
also makes clear that mode shapes by themselves are not very sensitive towards
structural damage. Even though the stiffness reduction of 30 % is quite severe,
the changes in the mode shapes are barely visible. Hence, monitoring based on
modal parameters is dependent on highly accurate modal identification methods
in order to produce significant damage identification results.

For the verification, the modal parameters are extracted from time-domain
simulations with a duration of one minute each. The beam model is excited
dynamically using a pink noise force spectrum uniformly distributed along the
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Figure 3.3: Illustration of relative frequency deviation of the considered damage
scenarios for the first five bending modes. Note, that the damage scenarios are sorted
according to damage position.

beam. The discrete time domain simulation is carried out using a sampling fre-
quency of 8000 Hz and an output sampling frequency of 4000 Hz. The relatively
high data rate is necessary to avoid aliasing effects. The enhanced frequency do-
main decomposition method [19, 120] is used to identify modal parameters from
the time series data. For model updating, the identification results obtained for
the reference state represent the measured healthy state M0, as defined in Table
3.1. The identification results of the twelve damage scenarios are considered as
the analysis state M1.

To verify the robustness of the model updating scheme towards mismatched
damage distributions, a Gaussian damage distribution is chosen for the model
updating procedure. This distribution therefore intentionally differs from the
uniform distribution used to simulate the damage scenarios. The damage distri-
bution is parameterised according to the formulation introduced in Section 3.2.1
using the centre of damage µ, the damage intensity D and the damage extent σ.
The domain of the optimisation is restricted to a hypercube which encompasses
the length of the structure for the damage location, a maximum damage level
of 0.3 and a maximum damage extent of 1 m. These values were chosen such
that the considered damage scenarios are situated inside the domain.

The MOGPS algorithm is run with its parameter set to T = 50 and con-
sidering 5000 objective function evaluations for each of the damage scenarios.
Figure 3.5 shows the evolution of the design variables for an exemplary optimi-
sation run. This figure demonstrates, that the sampling pattern does not fully
converge towards a single value for each design variable, which would appear as
a straight line in the plot. Instead, a broader band forms, in which the sam-
pling pattern still remains discernible. This band corresponds to points near
the Pareto-optimal areas of the design space. The damage parameter for the
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depicted scenario can be calculated analytically as

Dactual =
(1− θ) LD

L
≈ 0.03, (3.13)

where θ is the stiffness scaling factor, LD is the length of the damage and L is
the length of the beam. In Equation 3.13, the L and LD can also be expressed
in terms of number of finite elements, as the element lengths are uniform. The
damage location for the depicted scenario is µactual = 0.5 m and was also ac-
curately identified by the model updating scheme. The damage extent for all
the scenarios is approximately σactual ≈ 0.05 m. The objective space for the
same damage scenario is shown in Figure 3.6. It reveals, that an unsymmetri-
cal continuous Pareto frontier has formed which includes large variations of the
mode shape error and small variations concerning the eigenfrequency error. It
exemplifies that predetermining weighting factors in order to obtain a single-
objective model updating problem would be a hard task in practice due to the
severe non-linearity of the frontier.

The non-dominated solutions for all damage scenarios can further be visu-
alised in terms of the stiffness distribution along the beam, as shown in Figure
3.7. This plot also allows for the visual confirmation of the damage quantifica-
tion and localisation. Here, the impact of the statistical variance created by the
simulated noisy measurement data becomes apparent, as the model updating
method struggles to identify the smaller damage scenarios.

The top row of Figure 3.7 shows the control cases with no damage and the
identified distributions reflect that. The second row contains the results for the
smallest damage. While the method yields solutions different from the control
case, the damage distributions were not recovered very well. For scenarios 4 and
6, the solutions which emphasise the mode shape error fit the actual damage
better, while in scenario 5, solutions with a higher weight on the eigenfrequency
error lead to better results. The mediocre performance for these scenarios is
expected, as the short simulation time leads to a low spectral resolution for the
operational modal analysis and the small damage leads to very small changes
in the dynamic behaviour. Even though damage localisation is not successful
in most of the previously discussed cases, the identification is possible in all
cases. In this instance, damage identification refers to model updating results
which point to damage distributions that are significantly different from those
obtained in the reference cases. The third row shows the results for the medium
damage cases and at least one distribution found by the multi-objective ap-
proach matches the actual damage well in each case. However, the results also
showcase the downside of this approach, as many identified distributions point
to incorrect damage locations. Notably, solutions with more weight towards
the eigenfrequency error lead to a localisation mirrored about the centre point
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of the structure in scenario nine. This may be attributed to the lower spatial
information contained in the eigenfrequencies as opposed to mode shapes.

The results for damage scenario 11, which is showcased in Figures 3.5 and
3.6, can be seen in the centre of the last row. While the other two scenarios
in the last row are identified with a tight damage distribution, a higher scatter
is apparent for scenario 11 due to the large extent of the Pareto frontier for
this particular scenario. Here, solutions which emphasise the eigenfrequency
error more than the mode shape error lead to a less accurate localisation. The
relatively high scatter in this scenario can be attributed to nodes in the mode
shapes close to the damage, as shown in Figure 3.4. Since there is no mode shape
curvature at the nodes of vibration modes, damage occurring at the nodes does
not impact the respective mode shapes or eigenfrequencies. This essentially
conceals the damage from detection using the affected modes and hence reduces
the information available to the model updating method.

Minor deficiencies aside, these findings confirm that the model updating
method as well as the optimisation algorithm can fulfil their respective tasks
in a verification setting. The localisation and quantification are adequately
accurate for higher damage severity levels. Additionally, the results confirm
that an optimal a-priori weighting between eigenfrequency errors and mode
shape errors is not possible. The multi-objective approach also highlights the
high uncertainty in the identification of some damage scenarios. Consequently,
the multi-objective approach is able to provide significantly more information
from a single optimisation run than would be possible using single-objective
optimisation. In addition, the single-objective results are also recovered by
the multi-objective approach in form of the end-points of the Pareto frontier.
While conceptually, it would be preferable to obtain a single solution, the re-
sults show that monitoring methods need to deal with the vagueness inherently
contained in the underlying measurement data. Of course, the results presented
in this section only give a rough insight into the performance of the proposed
method, as only a single statistical realisation was examined for each damage
scenario. Further, just one type of structure with a single sensor layout was
shown here, so further research is necessary to generalise the presented findings.
For instance, investigations regarding the effect of employing different damage
distribution functions were carried out by Wolniak et al. [126]. A validation of
the presented multi-objective approach, using measurement data obtained from
an experimental structure, is presented in Chapter 5.
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Figure 3.4: Illustration of stiffness distribution and first five bending mode shapes
for damage scenarios 10 to 12.
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Figure 3.5: Evolution of design variables during the optimisation run for damage
scenario 11.
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Figure 3.7: Stiffness distribution of damage scenarios and identification results of
model updating. The order is according to Table 3.3.
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Chapter 4

Damage localisation using impulse

response identification

Damage localisation using data-driven vibration measurement data has been an
active research topic for a long time and many methods have been developed
to tackle the problem. Data-driven damage identification based on output-only
methods allows for a quick real-time assessment of the monitored structure. The
results can be used to decide whether more computationally intensive methods,
such as model updating, should be employed to evaluate potential damage.
Hence, data-driven monitoring is a crucial part of practical damage localisation
frameworks.

In this thesis, a data-driven damage localisation scheme based on multiple-
input Finite Impulse Response (FIR) filters is proposed. To the knowledge of
the author, this approach has not yet been covered in the context of structural
health monitoring and may have conceptual advantages over more traditional
approaches. Since a relatively high filter model order is required, novel tech-
niques to increase the numerical efficiency are proposed as well. The following
sections introduce the identification of FIR filters, describe the resulting damage
localisation method and present the verification results.

This chapter contains parts of research published by the author of this thesis
as well as preprints [46, 47].

4.1 Theory of impulse response filters

Damage localisation in an output-only setting and without a physics-based
model is generally achieved by detecting changes in the characteristics of the
dynamical system. This is accomplished by comparing the reference behaviour,
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which is identified from a reference measurement data, to the observed be-
haviour when monitoring the structure. Based on this comparison, damage-
sensitive features are extracted, which are used to identify potential damage
and its location.

4.1.1 Data-driven damage localisation

A central idea in data-driven damage localisation is pinpointing sensor positions
close to structural changes, which may indicate damage. Depending on the
way that the underlying structural dynamic identification is formulated, the
extracted damage-sensitive features take various forms. This section describes
some notable damage localisation methods and damage-sensitive features, that
were proposed in the past decades.

As demonstrated in Chapter 3, accurate localisation results can be obtained
using modal parameters and finite element model updating. However, in a
purely data-driven context, modal parameters are much harder to interpret be-
cause no information on the modal dynamics of the structure is available beyond
the observations contained in the data. Nonetheless, damage localisation based
on modal parameters can be accomplished e.g. by using the mode shape cur-
vatures [86]. This method exploits the local change in stiffness of structures
due to damage and the sensitivity of mode shapes towards this effect. While
for beam-like structures with a uniform stiffness distribution, this works rea-
sonably well, the mode shape curvature does not perform particularly well for
non-uniform structures. This is due to the correlation between the stiffness
distribution of the underlying structure and the resulting curvature changes.
Another downside of this method is that the mode shape curvatures are com-
puted for each eigenmode separately and it is often unclear which combination
of modes provides the best localisation accuracy.

While many authors have proposed damage detection methods based on
parametric identification [117, 131], the localisation based on parametric models
is a considerably harder endeavour. A method based on the power of difference
processes obtained using state estimators was proposed by Lenzen and Vollmer-
ing [68] and was extended by Wernitz et al. [123]. This method is based on the
stochastic subspace identification of system models and a projection method to
enhance the sensitivity. While control theory-based parametric approaches are
powerful tools, they are often mathematically complicated and some have many
parameters which have to be tuned appropriately to achieve satisfying results.

Several authors successfully applied localisation approaches, which use trans-
missibility functions to describe the dynamic behaviour on a local level [75, 121].
This approach, however, has drawbacks regarding the numerical stability, as
discussed by Chesné and Deraemaeker [25]. Due this practical limitation in
the frequency-domain identification of multiple-input transmissibility functions,
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usually only the single-input topology is used. In the latter case, the transmissi-
bility from one sensor to another sensor is identified for several pairs of sensors.
Additionally, transmissibility functions are very sensitive to changes in the loca-
tion of excitation sources. These limitations associated with the multiple-input
frequency-domain identification, however, can be reduced using time-domain
identification [46].

In this thesis, the modal parameter approach is used as part of the pre-
sented model updating method. Thus, to supplement the relatively complex
model updating process with a less computationally complex method, a non-
parametric time-domain multiple-input approach is taken for the data-driven
method introduced in this thesis.

4.1.2 Transmissibility functions and impulse response filters

Impulse response filters can capture the transmission behaviour of linear time-
invariant systems. In mechanical structures, they can be used to describe the
vibration transmission between sensor positions. Transmissibility functions in a
discrete time setting provide a mapping from a transient signal x(z) to another
transient signal ŷ(z), where z denotes the time-discrete Laplace symbol [108].
This can be expressed graphically as a signal flow, where the transmissibility
function T (z) acts as a digital filter.

x(z) T (z) ŷ(z)

The transmissibility function corresponding to the same filter is

T (z) =
ŷ(z)

x(z)
, (4.1)

where T (z) is the transmissibility function, x(z) is the spectrum of the measured
signal and ŷ(z) is the spectrum of the estimated signal. The transmissibility
can in practice be computed from the frequency response of the system [121].

In contrast, the finite impulse response filter corresponding to the transmis-
sibility function shown above can be expressed as [96]

ŷ[i] =

M∑
j=0

b[j] x[i− j], (4.2)

where M is the filter order and the coefficient vector b is comprised of M + 1
elements. The indices i and j denote the time step and the filter coefficients,
respectively. This formulation implies that the finite impulse response filter
ignores all samples outside the range [i −M, i]. The finiteness of FIR filters is
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due to the fact that they do not consider input samples which lie more than
M samples in the past. The impulse response is thus truncated in time. With
the formulation according to Equation 4.2, causality of the filter is also implied,
which means that changes at the output ŷ must not temporally precede changes
in the input x.

Impulse response filters and transmissibility functions express the same con-
cept, i.e. they provide a mathematical description of the transmission path
between two measurement points. The difference is that the former is formu-
lated in time domain and the latter in frequency domain.

4.1.3 System and control theory considerations

In this section, the FIR filter topology is analysed from a system and control the-
ory standpoint. In detail, the properties finiteness, controllability, observability
and invertability are regarded, as these constitute the defining characteristics
for any given linear filter model.

In terms of the discrete version of the Laplace transformation, also known
as the z-transformation, the structure of a single-input and single-output finite
impulse response filter can be expressed as [108]

G(z) =
b[0] + b[1]z−1 + b[2]z−2 + . . . + b[M ]z−M

1
, (4.3)

where G(z) is the transfer function and b[0...M ] are the coefficients of the FIR
filter. The denominator of the transfer function is unity, which indicates that the
filter has no poles and is thus unconditionally stable. Due to the unconditional
stability, for any finite input, the filter response will always be finite. This is
important for practical dynamic systems, since the predicted amplitude must
be bounded for any conceivable input signal.

To examine the controllability and observability, the state-space model of a
single-input/single-output system is formulated

xss[i + 1] = Assxss[i] + bssx[i]

y[i] = cTssxss[i] + dssx[i],
(4.4)

where Ass is the (M ×M)-dimensional state matrix, bss is the input vector, cTss
is the output vector and dss is the feedthrough factor. The input time series x
and the output time series y are incorporated into the system using the time
step i. In order to represent a FIR filter, the parameters are set to

Ass,kl = δk−1,l bss,k = δk,1

cTss,l = b[l + 1] dss = b[0],
(4.5)
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where the Kronecker delta function δ is used to describe the contents of Ass

and bss. In this formulation, the state space matrix Ass has ones on the lower
secondary diagonal and is zero otherwise. This means that the entire internal
state is shifted in each time step. The input vector bss feeds the most recent
input x[i] to the beginning of this delay line. The output vector cTss contains the
coefficients b[j] of the FIR filter, starting from the second coefficient. Since the
first coefficient b[0] of the filter needs to be applied without any delay, it is con-
tained in the feedthrough factor dss. The controllability matrix following from
this state space representation is C = [bss Assbss · · · AM

ss bss] = I, mean-
ing that the output is unconditionally controllable. The observability matrix
O = [css AT

sscss · · · (AM
ss )Tcss]

T only has full rank if all filter coefficients
are non-zero, in which case the system is observable as well.

Since there are no restrictions imposed on the filter coefficients contained in
css, the zeros of Equation 4.3 are usually not bounded to the unit circle. This
means that an inverse filter obtained by flipping the numerator and denominator
of the transfer function is generally unstable. However, it is possible to obtain a
stable least-squares optimal inverse finite impulse filter using Equation 4.9 [94].

4.2 Damage localisation method

To localise structural damage, the reference structure is dynamically excited
and finite impulse filters are derived using acceleration data. In this process,
data from multiple adjacent sensors is used as an input to derive the impulse
response to the neighbouring sensor positions. The derived filters are applied
to obtain an estimation of the transient response for the reference as well as
analysis states. Residual signal energies between measured and predicted data
are calculated, which increase locally when structural damage occurs, enabling
the localisation.

The filter identification and the computation of the residuals are discussed
in the following sections.

4.2.1 Single-input impulse response identification

An FIR filter is identified by finding a vector of filter coefficients b, which
transforms the input signal x, so that it approximates the measured output
signal y as good as possible. This time domain identification enables capturing
transient dynamics as well as the stationary response. This means that the
residual signal power between the filter response and the measured output signal
has to be minimised. Filter identification also requires that the time series x
and y have to be recorded using a fixed sampling rate and be synchronised
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to prevent temporal drift over time. The unconstrained linear least-squares
optimisation problem yielding b can be expressed as [96]

minimise
b

m∑
i=M+1

(
y[i]−

M∑
j=0

b[j] x[i− j]

)2

, (4.6)

where m denotes the number of measured time steps x and y. In contrast
to Equation 4.2, both the signal x and the signal y are measured quantities.
In order to make this problem tractable using linear algebra, Equation 4.2 is
rewritten using a matrix-vector multiplication [96]

T · b = y, (4.7)

where T is an (m −M − 1) × (M + 1) Toeplitz matrix containing data from
m measurement time steps. The matrix contains the samples of the filter input
x[i] shifted to the respective temporal positions as defined in Equation 4.2, so
that

Tij = x[i− j]. (4.8)

Equation 4.7 assumes the form of an over-determined system of equations,
when the number of samples m is larger than twice the order of the FIR M .
To attenuate the influence of measurement noise and signal contamination, it is
beneficial to derive the coefficients b with m≫M , so that an average solution is
achieved. In practical applications, this usually means several minutes of mea-
surement data are used, which can easily amount to several hundred thousand
data samples.

In this thesis, only causal filter responses are considered, i.e., no temporally
preceding samples are used as inputs. This is done in an effort to make the
method capable of real-time monitoring. However, the method is not restricted
to that and by adjusting the indices that establish the shift matrix, it is possible
to also consider non-causal filters [108].

Using the Moore-Penrose pseudoinverse, a least-squares optimal solution to
Equation 4.7 is obtained, which is known as the Affine Projection Algorithm
[85]

b =
(
T TT

)−1

T Ty. (4.9)

Equation 4.9, however, usually does not yield a usable filter in practice,
since measurement noise can deteriorate the quality of the identification. This
can be mitigated in part by providing large amounts of measurement data from
diverse excitation states. However, the high-frequency response usually contains
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artefacts caused by overfitting, since the signal-to-noise ratio worsens in the
high-frequency domain due to low excitation forces.

A method to reduce the effects of overfitting is the regularisation of the
system of equations. This can be achieved by employing the Tikhonov reg-
ularisation [115], which results in a regularised form of the Affine Projection
Algorithm [32]

b =
(
T TT + λI

)−1

T Ty, (4.10)

where λI is the identity matrix multiplied by a regularisation factor. Low values
of λ lead to solutions close to those obtained without any regularisation applied.
High values lead to very smooth spectra, while underestimating the vibration
level significantly. The regularisation therefore serves to minimise the energy
contained in the filter coefficients. As a result, the value of the regularisation
parameter is a compromise between accuracy and smoothness and has to be
tuned to specific measurement setups to obtain good identification results.

The smoothing effect of the regularisation parameter defined in Equation
4.10 is dependent on the filter order and the signal amplitude of the input.
Hence, it is normalised to achieve a comparable effect across a wide range of
scenarios. A normalised regularisation parameter is proposed

λ = λ0

∥∥T TT
∥∥
F

M + 1
, (4.11)

where || · ||F indicates the Frobenius norm and λ0 ∈ R≥0 is the normalised
smoothing factor. The Frobenius norm is linked to the energy of the input
signal and its usage as the basis for the regularisation parameter leads to a
smoothing effect proportional to the signal amplitude. It is defined as

∥A∥F :=

√∑
i

∑
j

|Aij |2, (4.12)

where Aij are the elements of a matrix A.
The smoothing is thus also invariant to the number of samples considered

in the shift matrix T . To eliminate the dependency on the filter order as well,
Equation 4.11 includes a division by M + 1.

4.2.2 Expansion to the multiple-input/multiple-output case

Even though vibration estimation can be achieved using a single sensor time
series as an input, it can be drastically improved by considering multiple input
sensors. This is the case, since the vibrations recorded at additional sensor
positions can contribute additional information about the vibration state of
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the considered structure. Hence, the filter identification method is extended to
account for several input time series. The basic idea for multiple-input finite
impulse response filters was presented by Powell et al. [94]. An advanced
method for data-driven identification of such filters was introduced by Chen
et al. [24] and is incorporated in the MATLAB system identification toolbox
[72]. As these previous approaches are numerically expensive and thus very
time-consuming for high model orders, special consideration is given to the
numerical performance of the identification procedure presented in this thesis.

The multiple-input/multiple-output finite impulse response estimation can
be graphically modelled as follows

 x1

x2

x3

  b11 b12 b13
b21 b22 b23
b31 b32 b33

  ŷ1
ŷ2
ŷ3


,

where the 1, 2 and 3 measurement directions of triaxial sensors are considered
as an example. The matrix containing the filter coefficients b is generally un-
symmetrical, thus identifications have to be carried out individually for each
filter in the matrix. For the sake of convenience, a triaxial case is assumed in
this derivation, however, the formulation can be readily extended to account
for any number of input and output channels. For example, measurement data
from two triaxial sensors could be used as the inputs x1...6, and data from
only one triaxial sensor could be used as the outputs ŷ1...3. Consequently, the
matrix b would assume a rectangular shape. Since the system of equations is
overdetermined anyway, no special treatment is required for such cases.

Similar to Equation 4.7, there is also an equivalent matrix expression that
is conducive to the solution by a pseudoinverse

T · b =
[
T1 T2 T3

]
·

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 = Y , (4.13)

where T1 denotes the shift matrix associated with the first input channel, T2

denotes the second channel and so forth. The time series of the measured
outputs are denoted using the matrix Y , which has a size of (m−M − 1)×ny,
where ny denotes the number of output channels. The coefficients of the impulse
responses b11 through b33 can therefore be determined simultaneously, according
to Equation 4.10. Since the pseudoinverse itself is not dependent on the output
vectors y, it only needs to be computed once, independently of the number of
output channels. In the case of one triaxial input and one triaxial output, the
filter coefficients are obtained using
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 b11 b12 b13
b21 b22 b23
b31 b32 b33

 =

 T T
1

T T
2

T T
3

 · [ T1 T2 T3

]
+ λI

−1

·

 T T
1

T T
2

T T
3

 · Y .

(4.14)

Equation 4.14 thus yields the nine filter coefficient vectors describing the
vibration transfer from every input channel to every output channel.

The regularisation parameter as per Equation 4.11 also applies to the
multiple-input case. Since the matrix T has more elements in the multiple-
input case compared to the single-input case, the numerical value of its matrix
norm increases. Consequently, the value of the regularisation parameter λ ac-
cording to Equation 4.11 increases as well. Thus, the smoothing effect of the
regularisation remains constant.

In the following sections, the equations are derived without loss of generality
using the single-input/ single-output topology to simplify the notation.

4.2.3 Interpolated finite impulse response filters

It is possible to solve Equation 4.14 efficiently by exploiting the Toeplitz struc-
ture of the matrix T to evaluate the expression T TT . However, the computer
memory required to store the square matrix T TT is in many cases prohibitively
large. Therefore, the numerical filter identification scheme outlined above can
be further improved by considering a filter topology with less coefficients. Sparse
finite impulse response filters, also known as ‘tap delay’ filters [108], can sig-
nificantly reduce the numerical complexity of FIR filters while maintaining a
high fidelity. Instead of identifying M + 1 filter coefficients for the full model
order, a smaller number of N + 1 coefficients is used. The non-zero coefficients
are referred to as filter ‘taps’ while the remaining coefficients are usually set to
zero.

The achievable sparsity depends on the high frequency damping of the sys-
tem, where strongly damped systems are conducive to high reduction ratios.
For band-stop filter design, a reduction of non-zero coefficients exceeding 50%
can be achieved in practice [55].

To achieve the best possible sparse filter quality, it is advisable to place the
filter taps where the amplitude of the dense filter coefficients is highest. Gener-
ally, in mechanical systems with viscous damping, high frequency components
decay faster than low frequency components. This means that most of the en-
ergy and high-frequency oscillation is contained in the beginning of the impulse
response. The filter taps should thus be placed densely at the beginning of the
impulse response, in order to be able to capture the high frequency content.
The taps in the tail of the filter should be placed at larger distances, since low-
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frequency signals dominate in this section [55]. For this purpose, a quadratic
function to place the filter taps is proposed

tk = k − 1 + (M −N)

(
k − 1

N

)2

, (4.15)

where k ≥ 1 denotes the filter tap index and tk is the corresponding tap position.
Equation 4.15 forces a tap spacing greater than one, i.e., above the sampling
period. This prevents the coefficients from being overdetermined in the iden-
tification process. Further, the tap position for the index k = N + 1 coincides
with the filter coefficient M + 1, placing the last tap at the end of the filter.

The tap positions tk resulting from Equation 4.15 are real-valued. For a
direct application of sparse filters, they would have to be rounded to the next
integer. However, the use of sparse filters leads to a poor spectral signal qual-
ity. This can be overcome by employing Interpolated Finite Impulse Response
(IFIR) [84]. IFIR are based on interpolation functions, which are assigned to
each filter tap. These interpolation functions act as window functions, and are
usually of the Bartlett type [77]. A more detailed discussion of these functions
is provided in the latter part of this section.

The interpolation functions can be formulated using the real-valued tap
positions tk derived using Equation 4.15. The use of interpolation functions
results in a bandwidth limitation and thus improves the spectral quality. The
interpolation functions are combined in the M ×N interpolation matrix H. By
applying this matrix to the sparse filter coefficients, the dense filter coefficients
are recovered

b = Hb̃, (4.16)

where b̃ are the sparse coefficients. Further, the interpolation coefficients are
constrained to have a unit sum for each sparse coefficient k

∞∑
j=−∞

Hjk
!
= 1. (4.17)

Equation 4.17 leads to a normalisation of the signal content in each of the
sparse coefficients and is beneficial for regularisation. Even if the filter coeffi-
cients are only defined in the interval [0,M ], the interpolation functions may
extend beyond this interval. The sum in Equation 4.17 is thus defined over the
interval [−∞,∞] to achieve a consistent formulation.

Equation 4.7 can be rewritten using Equation 4.16

THb̃ = y, (4.18)
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again representing an overdetermined system of equations. The order of multi-
plications in Equation 4.18 is modified

T̃ = TH =⇒ X̃ik =

M∑
j=0

Hjk x[i− j], (4.19)

where the shift matrix T is eliminated and replaced by a convolution of the
input with the interpolation matrix to yield the sparse shift matrix T̃ . A similar
scheme was put forward for adaptive IFIR filters by Wu et al [129]. Equation
4.10 can be used to determine the sparse filter coefficients by substituting T for
T̃ and b for b̃

b̃ =
(
T̃ TT̃ + λI

)−1

T̃ Ty. (4.20)

The regularisation parameter λ defined in Equation 4.11 also applies for
interpolated filters, since the signal energy content in T and T̃ is roughly the
same. This is the case, since Equation 4.17 forces the interpolation filters to
have a unit gain in the passband. The dense filter coefficients b are recovered
from the sparse filter coefficients b̃ using Equation 4.16, and can subsequently
be used for the vibration prognosis.

Triangular interpolation functions, also known as Bartlett windows, are of-
ten used for computational resource efficiency in real-time processing [77]. In
this work, Gaussian window functions are proposed, which allow for smoother
interpolations than Bartlett windows while sacrificing some numerical efficiency.

The centres of the Gaussian windows are placed at the real-valued tap po-
sitions, such that µk = tk. A parametrisation of the window using

σk =
1

2


tk+1 − tk if k = 1

tk − tk−1 if k = N + 1

tk+1 − tk−1

2
otherwise

(4.21)

is proposed, where σk is the standard deviation of the Gaussian interpolation
function associated with the k-th filter tap. This way, neighbouring tap positions
have a distance of approximately two standard deviations. The different cases
arise due to the first and last tap position, which do not have neighbours to both
sides. Since the area under the curve of a Gaussian distribution is always one,
Equation 4.17 is readily fulfilled. An illustration of the interpolation matrix
is shown in Figure 4.1, which also depicts the overlap between the windows
resulting from Equation 4.21. The interpolation functions are clipped outside
the interval [0,M ], however, this only affects the first and last function and, thus,
has negligible influence on the results. Figure 4.2 displays a single interpolation
function taken from this matrix.
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Figure 4.1: Plot of the interpolation co-
efficient matrix with N = 10 and M = 40.
The individual interpolation functions are
each highlighted with a different colour.
The coefficients are connected with solid
lines.
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Figure 4.2: Interpolation coefficients of
interpolation function k = 8 from Figure
4.1 shown using stem plot. Centre of the
function at tk = 21.7 indicated using a
dashed line.

Another benefit of Gaussian window functions is the theoretically infinite
side lobe suppression in the frequency domain [103]. In practice, the window
length is limited to M + 1, but side lobe suppression down to the numerical
noise floor is still achievable. This is indicated by Figure 4.3, which is obtained
from the interpolation function shown in Figure 4.2, where the flat section of the
graph close to −250 dB is caused by the numerical round-off error. To reduce
the number of non-zero elements in H and, thus, minimise the multiplications
required to compute Equation 4.19, a truncated Gaussian function is used.
This truncation is carried out by setting the filter coefficients with values below
1 × 10−5 to zero. This truncation is tuned to obtain a side lobe suppression
greater than −100 dB. The spectrum resulting from truncation is superimposed
in Figure 4.3.
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Figure 4.3: Frequency response spectrum for the Gaussian interpolation function
shown in Figure 4.2. A truncation of the interpolation function leads to the emergence
of side lobes.
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4.2.4 Computational performance

The evaluation of equation 4.20 is computationally intensive, due to the matrix
multiplication T̃ TT̃ . The computational complexity is of the order O(mN2),
where m is the number of measurement data samples and N is the number
of filter taps. This is valid under the assumption that m ≫ M , i.e., that the
number of considered measurement data samples is much larger than the filter
order. The numerical complexity implies that the number of filter taps N should
be as low as possible, since it has a quadratic impact on the computing time.

Further, the shift matrix T̃ takes up more memory than typically available
on a desktop computer, even for small numbers of measurement samples. This
slows down the computation of T̃ TT̃ , because the speed of this matrix multi-
plication is limited by the memory bandwidth. To reduce the size of the shift
matrix, Equation 4.19 is computed in a batch operation for small chunks of
measurement data. The terms T̃ TT̃ as well as T̃ Ty can thus be summed up
iteratively to minimise the computing time. Additionally, splitting the mea-
surement data into batches enables parallel computation, since the batches can
be processed independently. Thus, the batch computation scheme also enables
an efficient computation on many-core computers.

Due to the relatively low dimension of T̃ TT̃ , the matrix inversion in Equa-
tion 4.20 has an insignificant impact on the computing time, if long time series
of measurement data are employed. Hence, no special consideration of perfor-
mance aspects is required for the matrix inversion.

4.2.5 Damage-sensitive residuals

Using the multiple-input filter topology, a vibration estimation can be calculated
considering K input signals

ŷ[i] =

K∑
k=1

M∑
j=0

bk[j] xk[i− j], (4.22)

where k is the index corresponding to the input signals. For slender structures,
it is straightforward to use adjacent sensors for the estimation of a measure-
ment position in between. Figure 4.4 illustrates this concept for a simple beam
structure using a biaxial sensor setup.

The impulse responses identified using Equation 4.13 contain the structural
dynamics on a local level and for the full spectrum. When structural changes due
to damage, environmental or operating conditions occur, the vibration prognosis
will then no longer reflect the actual structural behaviour. Residuals are used
to detect such changes with respect to the reference state. The residual ε is
therefore defined as the difference between the estimated vibration signal and
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𝑦
𝑧

Figure 4.4: Sketch of beam structure with three measurement locations. The time
series y[i] is estimated using the coefficient vectors b1 through b4 and the signals x1

through x4 obtained at adjacent sensor locations. Signals measured in the x-direction
and y-direction are marked red and blue, respectively.

the measured one

ε[i] = y[i]− ŷ[i]. (4.23)

The average residual power P is calculated by accumulating the residuals for
the whole time series as a root mean square value to obtain a damage-sensitive
feature

P =

√
1

|ε|
∑
i

(ε[i])2, (4.24)

where |ε| refers to the number of samples – or cardinality – of ε. For long data
series with a zero mean value, this metric yields similar results to the statistical
standard deviation.

Using the residuals of the reference state and the damaged cases, a relative
metric can also be constructed. The comparison between the two states is
achieved by dividing the analysis state power by the reference power

P̃ =
Pana

Pref
− 1, (4.25)

where the subscripts ‘ana’ and ‘ref’ refer to the analysis and reference states,
respectively. Relative metric calculations are conducted individually for each
sensor position. Subsequently, potential damage sites are localised by determin-
ing the relative residual power with the maximum value. The metric according
to Equation 4.25 can lead to negative values for P̃ when the analysis data set
contains less signal power compared to the reference data set. However, since
the residuals can not be directly interpreted in a mechanical sense, this is not
deemed to be a major issue. It rather shows that damage quantification is not
easily possible using residual methods.
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Figure 4.5: Exemplary spectrum of ‘measured’, estimated and residual signal of
reference case for the fifth sensor.

4.3 Verification using numerical simulation

To verify the FIR-based damage localisation scheme, the simulation model and
damage cases introduced in Section 3.3 are reused. The multiple-input filters
representing the reference state are identified using the exact same one-minute
time series data sets as were employed for the model updating approach, in an
effort to compare both methods on the same basis. These filters are employed
to compute the residuals for the reference and analysis data sets. The filters
are set up so that the two neighbouring sensor positions are used as the input
for the prognosis, similar to the scheme depicted in Figure 4.4. For the outer-
most sensors, the closest two sensors were chosen as the inputs. For the filter
identification, the parameters M = 2000, N = 550 and λ0 = 0.03 were used,
based on a model order selection method [47]. Considering the sampling rate of
4000 Hz, this means that the impulse response filters have a time-span of 0.5 s.

Figure 4.5 shows an exemplary spectrum of an acceleration sensor on the
simulated beam as well as the spectrum estimated by the FIR filters. Addi-
tionally, the residual spectrum is given, which is computed from the difference
of the actual signal and the estimation time series using Equation 4.23. The
spectrum of the estimation precisely follows the actual signal, which means that
the two signals are close to identical. Consequently, the residual spectrum is
dominated by the noise floor. This finding indicates a very good match between
the identified filters and the observed system.

Since the residuals at all sensor positions have to be regarded for damage
localisation, all the spectra of all sensors should be examined at once for a
better overview. Hence, Figure 4.6 shows the spectra of all sensor positions and
the respective residuals. The spectra of the estimations themselves are left out
to reduce the amount of redundant information. A slight correlation between
the residuals and the actual signal can be observed in some channels, which
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Figure 4.6: Exemplary spectrum of ‘measured’ and residual signals for reference case
and all sensors.
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Figure 4.7: Exemplary spectrum of ‘measured’ and residual signals for all sensors
and damage scenario 11, according to Table 4.1.

means that the residual spectra rise in frequency ranges where the ‘measured’
spectrum has peaks. This indicates sub-optimally identified filters or excitation
signals which could not be picked up at the sensors which were used as the filter
inputs. However, overall the residuals mostly exhibit a flat frequency response,
which points to an adequate identification quality.

The relatively flat residual spectra observed in the reference case are con-
trasted by the damaged case as displayed in Figure 4.7. In this plot, the residual
spectrum has significant sharp peaks rising from the noise floor. These peaks
are exactly correlated with the frequencies of the peaks observed in the ‘mea-
sured’ spectrum. This, in turn, means that the estimation does not match well
with measurement and a system change, e.g. due to damage, is likely. For
residual-based methods, the sensitivity towards damage depends on the ratio
between the amplitude of the peaks in the damaged case and the noise floor in
the reference case. This sensitivity depends on many factors, such as the model
order, the signal-to-noise ratio in the measurement data, modal damping or the
density of the sensor network.
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Figure 4.8: Residual power for all considered scenarios. Sensor indices indicated
according to Figure 3.1.

The rise of the residual spectrum due to damage is also reflected by the
residual power, which is calculated using Equation 4.24. Figure 4.8 shows this
metric at all sensor locations and for all 12 damage scenarios as defined in Table
4.1. It shows that damage increases the residual power at all sensor locations
and in each damage case. This rise in the power is especially recognisable in
the damage scenarios 10 through 12. For reference, the damage cases defined
in Section 3.3 are reproduced in Table 4.1.

Table 4.1: Damage scenarios and numbering.

Damaged elements
8 . . . 11 17 . . . 20 26 . . . 29

Relative
Stiffness

Reduction

0 % 1 2 3
3 % 4 5 6
10 % 7 8 9
30 % 10 11 12

The general idea behind residual-based damage localisation is that the lo-
cation of the maximum residual power should match the actual position of the
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damage. A localisation of the damage directly from the residual power shown
in Figure 4.8 is, however, not possible in this numerical example. Figure 4.9
shows that the relative residual power metric, i.e. Equation 4.25, improves the
quality of the damage-sensitive feature substantially and leads to the desired
results.

The first three scenarios depicted in Figure 4.9 are realisations of the ref-
erence state and show a distribution of the relative residual power without
prominent features. Further, the amplitude of the relative power in these sce-
narios reaches 0.03 at maximum. The diagrams for the other scenarios have
a distinctly different characteristic. In the damaged cases, the relative power
is significantly higher than in the reference case. In the scenarios 4 through
6, which belong to the 3 % stiffness reduction, the maximum power doubles to
about 0.06. The larger damage introduced in the scenarios 7 through 12 leads
to more pronounced elevations of the residual power levels. Aside from the ab-
solute amplitude, the distributions of the relative power in the damaged cases
appear similar to each other. This relates to the damage positions, which are
the same for each level of damage severity. The actual damage positions for the
damage scenarios are indicated in the diagrams using dashed ellipses. As de-
sired for damage localisation, the maxima of the relative residual power roughly
coincides with the position of the damage. While localisation can be verified in
this case, the residual power at sensor locations far away from the damage is
still significant. This can be attributed to the changes in global dynamics which
accompany local damage. An ideal residual-based method would yield zero at
all sensor positions except the one close to the damage location. The presented
method therefore has much room for improvement in this regard.

The data-driven localisation method based on multiple-input FIR filters is
very sensitive toward damage and can detect even the smallest damage case
which features only 3 % stiffness reduction. However, the localisation accuracy
can not exceed the resolution of the sensor network. This means that when a
high spatial resolution is desired, a large effort has to be undertaken for the
experimental instrumentation. While a data-driven approach can be employed
without knowledge of the mechanical properties of the structure monitored,
the vibration data still reflects its structural dynamics in terms of the modal
parameters. Hence, sensor placement can also have an decisive effect on the
quality of the results, even though mode shapes are not employed explicitly in
such an approach. Additionally, this numerical example shows that residuals
by themselves are not capable of damage quantification, as the relative residual
power amplitudes have no straightforward relation to the stiffness reduction
introduced into the structure. A thorough comparison of the model updating
approach and the data-driven method presented in this section can be found in
Chapter 7.
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Figure 4.9: Relative residual power and damage locations. Scenarios with equal
damage severity are combined into one diagram, respectively. Grey area denotes aver-
age power level of reference state, note the different axis scaling of the relative power
metric.

83



Chapter 4. Damage localisation using impulse response identification

84



Chapter 5

Experimental validation

The two damage localisation methods presented in the preceding chapters are
validated using an experimental structure. The experimental setup, damage
mechanisms, data sets and the results are discussed in the following sections.
The validation is performed exemplarily using a single damage position to show
that the methods are able to localise damage considering real-world measure-
ment data. The first investigated damage scenario is a symmetrical damage
case and the second scenario considers an unsymmetrical damage case.

This chapter contains parts of research published by the author of this thesis
as well as submitted articles [44, 46, 52, 124].

5.1 Girder-mast structure

The experimental structure is a girder-mast, which is situated in an outdoor
test facility. It consists of three equal sections which are bolted together. The
segments have a length of 3 m, resulting in a total height of 9 m. Each segment
has three legs and consists of seven bracing levels as well as short connecting
sections at the ends. The legs are manufactured from steel tubing with an outer
diameter of 30 mm and the bracings are solid steel rods with an diameter of
10 mm. The bay height is 400 mm. The structure is placed on a massive steel
plate which is rigidly connected to a concrete foundation, providing a clamped
boundary condition. A photograph of the structure is shown in Figure 5.1.

The measurement setup consists of nine measurement levels, which are
each instrumented with biaxial Integrated Electronics Piezo Electric (IEPE)
accelerometers in the horizontal plane. The locations of the measurement levels
as well as the damage location are indicated in Figure 5.2. The sensors are
mounted to one of the three legs using clamps and the cabling is run down on
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Figure 5.1: Girder-mast structure located
at the outdoor facility. Acceleration sensors
are arranged in a biaxial setup along one of
the three legs.

Damage 𝑧

𝑦
𝑥

Figure 5.2: Schematic figure of
measurement levels (ML), damage
location as well as definition of
global coordinate system.

that same leg of the structure. A temperature sensor to measure the material
temperature is fitted as well. Besides the dynamic excitation by environmental
conditions, no further sources of vibration are present close to the mast, which
prevents the contamination of the measurement data. Wind excitation is thus
the main contributor to the structural acceleration. Detailed information re-
garding the considered girder-mast structure was published by Wernitz et al.
[124]. This publication also contains a link to an open-access archive containing
the measurement data.

5.1.1 Measurement campaign

On several levels of the structure, a reversible damage mechanism enables the
disconnection of the bracings, which changes the structural stiffness locally. The
damage position used in the proceeding discussion is illustrated in Figure 5.2.

86



5.1. Girder-mast structure

A photograph of the damage mechanism is depicted in Figure 5.3 and shows
threaded connecting rods inserted into the bracings. The damage is activated
by unscrewing and removing the rods in one or multiple bracings. By removing
the rods, the structural stiffness of the respective bracing effectively becomes
zero which consequently leads to a different dynamic response of the structure.
For the purpose of the examined measurement campaign, either all braces or
a single brace were removed from the respective bay. This means that the
considered damage is either symmetrical or unsymmetrical about the axis of
the structure. In addition, the removal of a single brace has less impact on
the structural stiffness than the removal of all three braces. The threaded rods
were completely removed from the structure, which technically also leads to a
mass difference. However, the impact of the mass deficiency is negligible in
comparison to the effect of the stiffness change.

Figure 5.3: Closeup of reversible damage mechanism incorporated into the structure.

For the validation, two time series are used, with one representing the state
when all bracings were intact. In the second time series, the damage is activated.
To obtain a reasonable baseline for comparison, the temperature and excitation
level of the two time series were selected to be close to each other. In particular,
both data sets were recorded at a temperature of 11 °C and a wind speed of 5 m/s
for the symmetrical damage. The data sets for the unsymmetrical damage
were each recorded a temperature of 10 °C and a wind speed of 5 m/s. The
measurement time series were digitised using a sampling rate of 1652 Hz and
each have a length of 600 s. The symmetrical damage is discussed in Sections
5.2 and 5.3, whereas the unsymmetrical damage is discussed in section 5.5.
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5.1.2 Impact of structural damage

To obtain an initial impression of the damage impact on the structural dynamics,
it is useful to regard the power spectral density of the vibration data. Since the
structure is unconstrained at the top end, the maximum vibration amplitude
due to wind excitation occurs at the top. Therefore, the spectra of the sensors at
the top of the structure are depicted in Figure 5.4, considering the symmetrical
damage scenario.
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Figure 5.4: Spectra of reference and damaged states at the top measurement level
for symmetrical damage. Graphs show x-direction (top) and y-direction (bottom).

From Figure 5.4, two main conclusions can be drawn: First, the power
spectral density graphs of the two data sets exhibit a vertical offset. This
points to an elevated vibration amplitude of the damaged time series compared
to the reference time series. This is not only caused by the damage but mainly
due a differing wind load which leads to a higher excitation level. Second, a
horizontal shift to the left can be recognised in the spectra. This indicates a
decrease of the eigenfrequencies of the structure, caused by the damage. These
observations hold for measurement data obtained for both the x-direction and
the y-direction.
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5.2 Model-based localisation of symmetrical damage

The finite element model updating method is validated using the measurement
data obtained from the girder-mast structure for the symmetrical damage sce-
nario. Operational modal analysis is used to obtain eigenfrequencies and eigen-
modes of the structure. A finite element model of the structure is parameterised
using a Gaussian damage distribution function. The model updating problem is
then solved using the Multi-Objective Global Pattern Search algorithm. More
details are given in the following sections.

5.2.1 Modal analysis

The modal parameters of the structure are identified by applying the frequency
domain decomposition method [19] on the measured 10 min data sets. The
first three bending modes as well as the first torsion mode are considered for
the model updating process. These modes are chosen due to a high spectral
power and signal to noise ratio. Visualisations of the mode shapes and the
corresponding eigenfrequencies are shown in Figure 5.5 for the undamaged and
the damaged conditions, respectively.
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Figure 5.5: Mode shapes and eigenfrequencies identified from measurement data for
the girder-mast structure shown in Figures 5.1 and 5.2. Undamaged state indicated
using dashed blue lines, damaged state indicated using solid red lines.

The damage location at the bottom of the structure clearly influences the
modal behaviour on a local scale, as the mode shapes show significant deviations
close to the damage position. Regarding the eigenfrequencies, the damage has
quite significant impact, leading to deviations exceeding 10% in most of the
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considered modes. Considering the first bending mode, the damage only has a
minor impact.

5.2.2 Finite element model

The model updating is performed using a finite element model of the girder-
mast structure, in which the legs and braces are modelled using first-order
beam elements. The cross-sections are assigned according to the measured
dimensions of the structure. As the structure is made of construction steel,
a Young’s modulus E = 210 GPa and a Poisson’s ratio of ν = 0.3 are used as
the mechanical material properties. The density is specified as ρ = 7850 kg/m3.
The modal analysis of the model is carried out using the finite element solver
Abaqus. Figure 5.6 shows the resulting mode shapes and eigenfrequencies,
which closely resemble the results obtained from the measurement data of the
undamaged structure shown in Figure 5.5.

1st bending
3.28Hz

1st torsion
15.48Hz

2nd bending
19.0Hz

3rd bending
48.6Hz

𝑧

𝑦
𝑥

Figure 5.6: Finite element results for mode shapes and eigenfrequencies of the un-
damaged state.

While the mode shapes of the model fit to the measured data, the eigen-
frequencies exhibit systematic discrepancies of approximately 15 %. The most
likely explanation for the observed deviation is that the elastic modulus or wall
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5.2. Model-based localisation of symmetrical damage

thickness of the steel structure are slightly lower than assumed in the finite
element model. This prohibits direct comparisons between the model and the
measured data. However, the relative metrics defined in Section 3.1.3 are specif-
ically designed to compensate for such errors. Hence, a meticulous calibration
of the model can be omitted, which means that it can be directly employed for
damage localisation without any modifications. While this saves time and effort,
it also leads to a more stringent procedure compared to an approach involving
model calibration. In particular, the mechanical model and the measurement
data are kept separate from each other before the application of the error met-
ric. Therefore, the mixing of these domains happens at the last possible stage
of the procedure.

5.2.3 Parameterisation

The finite element model is parameterised using the damage distribution func-
tion formulation introduced in Section 3.2.1. The stiffness scaling factors θi used
to scale the elastic modulus of the respective bays prior to the modal analysis
of the model are

θi = 1−DL
F (si+1|µ, σ, 0 m, 9 m)− F (si|µ, σ, 0 m, 9 m)

si+1 − si
. (5.1)

where i denotes the index of the bay, si is the bay’s height above ground and
F is a truncated Gaussian cumulative distribution function. Equation 5.1 there-
fore links the damage distribution parameters to the stiffness of each element
in the model. These parameters are contained in the vector of unknowns

x =
[
µ D σ

]T
, (5.2)

where µ describes the damage location, D represents the damage intensity and
σ parameterises the spatial damage extent. Even though the actual damage is
introduced only to the diagonal braces, the stiffness scaling is applied to the
legs as well in each bay of the model. This is done to obtain a more generalised
approach, in which it is not necessary to know in advance, whether the damage
occurred in a brace or in a leg. By applying the stiffness scaling to the whole
bay, the model updating method is sensitive to damage both in the braces and
the legs.

This leads to the formulation of the bounded and constrained multi-objective
optimisation problem

minimise

(
εf
εΦ

)
s.t.
[
0 0 0

]T ≤ x ≤
[
9 m 0.3 2 m

]T
s.t. min

i
(θi) > 0.15.

(5.3)
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Equation 5.3 restricts the domain of the optimisation to a hypercube which
encompasses the length of the structure for the damage location, a maximum
damage level of 0.3 and a maximum damage extent of 2 m. These values were
chosen to reflect realistic damage scenarios and such that the actual damage in-
tensity and extent are contained within this domain. The objective functions for
the multi-objective optimisation are based on the relative eigenfrequency and
mode shape errors, as defined in Equations 3.3 and 3.4. The relative formula-
tions of these metrics provide a compensation for systematic deviations between
the actual mechanical structure and the finite element model. An inequality con-
straint is applied to the minimum value of the stiffness scaling factors θi. This
prevents the optimisation from searching for solutions which belong to exces-
sively damaged structures and also prevents the occurrence of negative stiffness
values. The constraint is enforced using the exterior linear penalty method
[26]. Since the model updating is formulated in a multi-objective setting, the
resulting penalty term is applied equally to both objective function values.

5.2.4 Damage identification and localisation

The MOGPS and NSGA-II algorithms are run with 2000 objective function
evaluations using T = 16 and a population size of 64, respectively. These values
were chosen according to the results obtained in the test function benchmarks
discussed in Section 2.4.4. The resulting non-dominated solutions are shown in
Figure 5.7. In this plot, the NSGA-II results are shown as black circles, while
the MOGPS results are colour-coded according to εf . Both algorithms con-
verge to similar solutions, with MOGPS achieving a higher resolution along the
Pareto frontier, which confirms the findings made in Section 2.4.4. In practice,
however, the results of both algorithms are sufficient for the purpose of damage
localisation.

Figures 5.8 and 5.9 show the design variable space resulting from the two
optimisation runs. Since the design space is three-dimensional, two projections
of the design variable space are displayed. The colour-coding in these figures is
consistent with the one used in Figure 5.7. These plots show that all Pareto-
optimal solutions are concentrated in a region close to µ = 1 m. The highest
scatter is along the σ axis which means that the geometrical extent of the
damage is identified with a relatively high uncertainty. Interestingly, the scatter
is associated with solutions which belong to low eigenfrequency errors, while the
solution which favour minimising the mode shape error are more concentrated.
This may be attributed to the higher amount of spatial information contained
in mode shape vectors as opposed to the scalar eigenfrequencies.

When comparing Figures 5.8 and 5.9, the different approaches to sample gen-
eration between deterministic optimisation algorithms and those based on ran-
dom numbers becomes apparent. The MOGPS samples follow its axis-aligned
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Figure 5.7: Pareto frontier of the multi-objective model updating problem.

pattern and concentrate towards the optimal regions. The shape of the optimal
region is clearly discernible and uniformly surrounded by non-optimal samples.
On the contrary, the NSGA-II results are dominated by scattering along the
axes emanating from the optimal regions. Further, the outlines of the region
containing solutions with low eigenfrequency errors are hardly recognisable in
the NSGA-II samples, which correlates with the low number of points on the
Pareto frontier shown in Figure 5.7.
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Figure 5.8: Design variable space for the multi-objective model updating using
MOGPS.

Another way to analyse the optimisation results is to regard the sampling
history. Therefore, Figure 5.10 displays the progression of samples during the
optimisation runs of the two algorithms. For both algorithms, a convergence
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Figure 5.9: Design variable space for the multi-objective model updating using
NSGA-II.

towards the optimal regions can be observed over the course of the runs, which is
indicated by a denser sampling as the number of objective function evaluations
increases. Contrary to the test functions shown for single-objective optimisation
in Section 2.3.5, the sampling pattern does not narrow down to a line but instead
to a broader interval. This is the case since the optimal region of the multi-
objective model updating formulation is not point-like but rather a volumetric
shape, which is shown using two orthogonal projections in Figure 5.8.

The non-dominated points identified by the algorithms can also be illus-
trated by the stiffness scaling factors associated with the corresponding design
variables. Figure 5.11 shows the distributions with the same colour coding
based on the eigenfrequency error as was used in Figures 5.7 to 5.9. In Figure
5.11, the distributions belonging to the lowest eigenfrequency error εf (i.e., blue
colour) indicate a damage at the root of the structure. The distributions with
the highest εf (i.e., red colour) point to damage at a height of approximately
1 m. The most accurate damage localisation is produced by solutions belonging
to εf ≈ 0.05 (i.e., cyan colour), which place the centre of the distribution in the
bay where the damage actually occurred as indicated in Figure 5.11 by dashed
lines.

The use of multi-objective optimisation in this verification enables a com-
prehensive insight into the most probable damage distributions of the structure.
The assessment of the stiffness distribution functions in Figure 5.11 shows that
no matter how the eigenfrequency and mode shape errors are weighted, the
damage is always identified close to the actual damage location. However, the
extremes of the Pareto frontier, i.e. the solutions belonging to single-objective
optimisation using either only mode shapes or only eigenfrequencies, are lo-
cated relatively far apart in the design variable space. This means that the
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Figure 5.10: History of design variables for NSGA-II (top panel) and MOGPS (bot-
tom panel).

multi-objective model updating approach is able to significantly increase the
confidence level in terms of damage localisation compared to single-objective
formulations. While NSGA-II is able to produce useful localisation results, the
MOGPS algorithm exhibits favourable performance in this practical example as
it is able to provide a significantly higher resolution of the Pareto frontier.
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Figure 5.11: Stiffness scaling factors computed of the Pareto-optimal results for
MOGPS (left panel) and NSGA-II (right panel). Position of experimentally damaged
bay indicated with dashed lines.

5.3 Data-driven localisation of symmetrical damage

Using the same measurement data as before, the damage localisation method
based on multiple-input finite impulse response filters is applied. In a first
step, the coefficients of the finite impulse responses for the reference state are
identified and discussed. In a second step, the residual power metric is applied
to localise the damage.

5.3.1 Identification of impulse response filters

The scheme shown in Figure 4.4 is used to identify the filters using the validation
measurement data set. The tower has a biaxial sensor setup with two sensors
at each measurement level, hence, two estimation time series are calculated for
each measurement level. Since the neighbouring measurement levels contain
two sensors each, these are regarded as the inputs for the filters. Therefore, the
14 sensors in measurement levels ML2 through ML8, as defined in Figure 5.2,
each have four contributing filters from the neighbouring levels. The filter in-
puts for the measurement levels ML1 and ML9 are set up to use the four closest
sensors from the adjacent measurement levels. Using Equation 4.13, the filter
coefficients are determined. In total, 72 finite impulse responses of the order
M = 4000 were identified to obtain the vibration estimation for the local dy-
namics of the structure. Further, the parameters N = 550 for Equation 4.15
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Figure 5.12: First 400 coefficients of the finite impulse responses contributing to the
prognosis of sensor 5y. These correspond to sensors from measurement levels ML4 and
ML6 in both x and y-direction.
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Figure 5.13: Spectra of the four finite impulse response filters for the adjacent sensors
contributing to the acceleration signal prognosis for sensor 5y.

and λ0 = 0.01 for Equation 4.11 were used in this instance. An automatic model
order selection method for these parameters was proposed by the author of this
thesis [47]. As an example, the finite impulse response coefficients contributing
to the prognosis of sensor 5y are shown in Figure 5.12.

The spectra corresponding to the filters are depicted in Figure 5.13. This
figure shows that even though the estimated sensor is oriented in the y-direction,
there are significant contributions of both the x and y-directions. This can be
attributed to vibration modes, in which the different directions of motion are
coupled, e.g. because the vibration occurs diagonally. Hence, the choice to
include the orthogonal measurement direction in the filter identification process
was reasonable.
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5.3.2 Damage identification and localisation

To localise the structural damage, the residuals for the different damage states
are calculated. The damage was introduced to weaken both the x and y-
directions of the structure, therefore, residuals were expected to be roughly
the same in both directions for this damage case.

Since the girder-mast structure is dynamically excited by ambient wind,
the data exhibits varying signal amplitudes. To obtain useful results with the
residual power method introduced in Section 4.2.5, the residuals need to be
normalised to the signal amplitudes encountered in the respective data sets
[38]. Therefore, Equation 4.23 is modified

ε[i] =
y[i]− ŷ[i]√
1

|y|
∑
j

(y[j])2
, (5.4)

where the residuals are divided by the root mean square value associated with
the vibration data. The power spectral densities of the reference and damaged
case are shown in Figures 5.14 and 5.15. These plots also show the spectrum
of the residuals. A clear difference between the reference and damaged cases
can be observed in the frequency range between 0 Hz and 200 Hz, which is dis-
played separately in the graphs. While in the reference state, the residuals are
close to the noise floor, they are strongly correlated with the measured signals
in the damaged state. This suggests that the identified filters provide an ade-
quate estimation of the structural dynamics up to 200 Hz and that the damage
sensitivity is sufficient. In the range above 200 Hz, the residuals become more
congruent with the measured spectra as the frequency increases. This means
that the filters fail to capture the dynamic response in the high frequency range.
When compared to the residual spectra shown in Section 4.3, which are obtained
from a simulation, the filters perform a lot worse when applied to real measure-
ment data. This is expected, since simulations usually fail to capture all of the
environmental variability acting on an outdoor experimental structure. Addi-
tionally, the assumption of linear time invariance may be broken to some extent,
as friction and aerodynamic interactions may contribute nonlinear effects.

To obtain an understanding of the stability of the residual power metric, two
separate time series for the reference state are analysed. This is achieved by
splitting the 10 min interval into two pieces of 5 min and using only the first 5 min
for identification, while calculating residuals for both 5 min sets. The results of
this procedure are shown in Figure 5.16. For the graphical presentation of the
residuals, the two measurement directions are evaluated separately. The results
show, that there is some variability of the residual power. However, this is to
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Figure 5.14: Measured spectrum and residual spectrum showing all 18 sensors for
the reference state.
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Figure 5.15: Measured spectrum and residual spectrum showing all 18 sensors for
the damaged state.

be expected due to the stochastic wind excitation. Further, the variability is
small compared to the absolute residual power.

The residuals are not zero in the reference state because of effects, which
are not adequately captured by the finite impulse response filters. These effects
include inaccuracies in the filter identification, measurement noise, non-linear
dynamics, etc. Residuals for the upper measurement levels of the structure
are elevated, because the vibration amplitude in the considered girder-mast
structure is highest at the locations farthest away from the foundation.

The damaged state was also analysed using the residual power metric, as
presented in Figure 5.17. The measurement levels close to the damage location
exhibit the highest residuals. However, judging only from this result, it would
appear that more damage occurred in the y-direction, since the residual power
in this direction is significantly higher than for the x-direction. This may also
be exacerbated by the eccentric sensor layout, which captures translations as
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Figure 5.16: Comparison of the two reference states before introducing any damage.
Residual power is shown for x-direction (left panel) and y-direction (right panel).

well as torsional motions in the y-direction, while capturing solely translations
in the x-direction. To alleviate these issues, the relative residual power, as
introduced in Equation 4.25, is used to further process the residuals. Figure 5.18
therefore displays the numerical results obtained using this metric. A significant
improvement over the result shown in Figure 5.17 is achieved in terms of damage
sensitivity. This way, Figure 5.18 demonstrates that a roughly equal damage in
both directions of the structure as well as the approximate damage position can
be clearly recovered from the residuals. While the relative residual is highest
close to the actual damage at measurement level 9 in the x-direction, it is off
by one measurement level in the y-direction.

As is typical for damage-sensitive features based on residuals, the relative
power metric reacts to the structural damage at all positions. This ‘leakage’
is associated with changes in the global behaviour of the structure, which are
overlaid with the local changes. Thus, a perfectly localised rise of the residual
power at the position of the damage is not achieved. Rather, a gradual increase
of the residuals towards the damage location is observed.
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Figure 5.17: Comparison of the reference state and the damage state. Residual power
is shown for x-direction (left panel) and y-direction (right panel). The true damage
location is marked using a dashed ellipse.
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Figure 5.18: Damage localisation results obtained using the relative residual power
metric. Values are shown for x-direction (left panel) and y-direction (right panel). The
true damage location is marked using a dashed ellipse.
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5.4 Comparison of localisation results

The parameterisation of the model updating problem is designed under the as-
sumption of a singular defect area. In contrast, the residuals of the filter-based
estimation are not constrained to the detection of damage at a single location.
Further, the model updating parameterisation allows for damage localisation
on a continuous scale, as the damage location µ is a real number. Conversely,
the data-driven method is limited in its spatial resolution by the sensor posi-
tions. Additionally, the model-based approach allows for the quantification of
the damage in terms of mechanical stiffness, which the data-driven approach can
not provide. Hence, the conceptual differences between these two approaches
make it hard to compare the localisation results using a uniform metric.

Qualitatively, both methods were able to detect the introduced structural
damage and narrow the damage position down to a region of approximately 1 m.
Even though the localisation certainty is numerically expressed differently in the
two approaches, the individual distributions resulting from the multi-objective
optimisation and the relative residual power metrics point to a similar area
of the structure. The damage distribution function used to parameterise the
model updating problem leads to an exclusion of damage in the top part of the
structure. This is due to the assumption of a single damage in the distribution
function. Since the residuals are not constrained to find single damage location,
they rise at all locations of the structure due to the damage. Thus, damage at
the top of the structure can not be excluded by the data-driven method.

All in all, both methods deliver validation results which are in line with the
findings of the verification. The localisation quality and accuracy are sufficient
to clearly identify the damage introduced into the structure. Therefore, the
validation with a symmetrical damage is concluded with satisfactory results.

5.5 Unsymmetrical damage scenario

Another pair of data sets was evaluated for damage at the same position but
with a different severity. In this scenario, only a single brace was removed,
leading to an unsymmetrical damage scenario. As a result, an unsymmetrical
change of the vibration modes occurs, which leads to an overall unsymmetrical
vibration behaviour of the structure.

Due to the unsymmetrical structural dynamic behaviour, the model updat-
ing method can not be applied in the same manner as in case of a symmetrical
damage. An issue preventing the direct application of the formulation presented
in Section 5.2.3 is shown in Figure 5.19. The figure illustrates a simulation result
for the first torsional mode as well as the result of operational modal analysis
based on measurement data. In the simulation, the damaged brace was com-
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pletely removed from the model to closely resemble the actual damage scenario.
Contrary to the symmetrical damage scenario depicted in Figure 5.5, the tor-
sional mode shape does not bulge outwards close to the damage location, but
rather inwards. With no further information given, this would point to stiffening
of the structure, rather than structural damage. The reason for this behaviour
is the sensor placement on a single leg of the structure, in which the sensors
are situated on the opposite side of the damaged brace. As the neutral axis of
the structure shifts away from the damaged brace, it moves closer to the leg
equipped with sensors, which means that this leg experiences less vibration am-
plitude compared to the reference state. Due to this apparent stiffening effect,
it is not possible to apply the radially symmetrical damage assumption stated
in Equation 5.1, and, thus, a different model updating formulation needs to be
used in the unsymmetrical scenario.

Figure 5.19: Comparison of first torsion mode for reference state and unsymmetrical
damage close to the bottom. Simulation results shown in the left panel and experi-
mental results shown in the right panel. Reference mode shape shown in black and
damaged mode shape shown in red. Sensor amplitudes in the simulation result shown
in blue and green, respectively.
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In addition to the apparent stiffening effect shown in Figure 5.19, several
more issues occur in the unsymmetrical damage scenario, which can not be
readily addressed using the theory laid out in this thesis. First, the assumption
of a radially homogeneous damage distribution along the structure is broken
due to the asymmetry. While discrepancies between the damage distribution
function and the actual damage are admissible to a small extent, the asym-
metrical damage fundamentally changes the sensitivity of torsional modes. To
tackle this issue, an alternative parameterisation of the finite element model
would need to be employed. This alternative parameterisation would need to
be designed to allow for individual stiffness alterations at each brace. Second,
the operational modal analysis needs to be direction-sensitive to capture the
asymmetry in the dynamic behaviour. This can be challenging for symmetrical
structures like the girder mast investigated in this thesis. In such structures,
the bending modes occur in orthogonal pairs at almost the same frequency [27].
Due to their spectral proximity, the closely spaced modes are hard to separate
from each other, and therefore a clear identification is hard to achieve. To over-
come this issue, a modal analysis technique more sophisticated than the basic
Frequency-Domain Decomposition (FDD) would need to be employed. Third,
in order to apply the mode shape error stated in Equation 3.3, the mode spaces
of both the operational modal analysis domain and the finite element modal
analysis domain need to be aligned with each other. This is not generally the
case, since the bending mode shape pairs are usually not spatially orientated
in the same direction in these domains. Additionally, in this specific structure,
some torsional modes are spectrally close to bending modes, which can lead to a
mixing of the modal subspace of the torsion and bending modes. This issue may
be solved using rotations in the modal subspace in order to align the simulation
mode space with the experimental one. The aforementioned challenges may
eventually be overcome by employing advanced techniques not directly related
to the model updating routine itself, which are therefore outside of the scope of
this thesis.

The asymmetric damage scenario also poses challenges to the data-driven
filter approach. The spectra for the reference and the damaged state are shown
in Figures 5.20 and 5.21. While in the reference state, the residuals mostly
stay close to the noise floor in the frequencies below 200 Hz, the damaged state
exhibits a notable increase in the residual spectrum in Figure 5.21. From this
observation, it can be concluded that damage detection is successful in this
scenario. An interesting difference between the unsymmetrical damage scenario
and the symmetrical one shown in Figure 5.15 is that the residuals only rise at
some particular eigenfrequencies and not at all of them.

However, as the residual power metric shown in Figure 5.22 indicates, the
residuals do not increase most at the damage location. In fact, the strongest
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Figure 5.20: Measured spectrum and residual spectrum showing all 18 sensors for
the reference state.
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Figure 5.21: Measured spectrum and residual spectrum showing all 18 sensors for
the damaged state.

increase of the metric is situated at the top of the structure, opposite to the
damage location. When applying the relative residual power metric, as depicted
in Figure 5.23, it becomes clear that the damage caused a major change in the
structural dynamic behaviour of the structure. While the increase in the relative
residual power is significant close the damage location, it is multiple times higher
at the top of the structure. Similar to the findings made using modal analysis,
these unexpected results may be caused by a combination of sensor placement
and geometry. This may also explain why the residuals rise only at some of the
eigenfrequencies and not at all of them. Hence, the results are coherent with the
ones obtained by Wernitz [122], who found that damage detection was possible
for the removal of a single brace, but localisation mostly failed.

As pointed out in this section, while the overall concept of the damage local-
isation approaches discussed in this thesis is sound, the application to particular
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Figure 5.22: Comparison of the reference state and the damage state. Residual power
is shown for x-direction (left panel) and y-direction (right panel). The true damage
location is marked using a dashed ellipse.

structures and damage scenarios can be very challenging. As such, future im-
provements are needed to overcome these problems.
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Figure 5.23: Damage localisation results obtained using the relative residual power
metric. Values are shown for x-direction (left panel) and y-direction (right panel). The
true damage location is marked using a dashed ellipse.

5.6 Comparison of numerical performance

The model-based and the data-driven localisation method follow vastly different
concepts, so the numerical complexity also varies greatly.

To conduct localisation on a given set of data using the data-driven method,
the measurement has to be processed using the identified estimation filter model.
The filter model itself has to be identified only once for a single reference state,
while it can be applied to an unlimited number of analysis states. While the
identification of a 10 min data set takes several computing minutes, the applica-
tion of the filters to obtain residuals can be computed in seconds. This means
that vast amounts of measurement data can be processed quickly using this
approach.

In contrast, the damage localisation using finite element model updating
takes several hours of computation, which is dominated by the time allocated
for the finite element solver. In principle, this amount of computing time has
to be dedicated to each analysis data set. Significant reductions in computing
time of the finite element could in principle be achieved by reducing the spatial
resolution of the mesh, but this would negatively affect the obtainable localisa-
tion precision. However, a significant advantage of the Global Pattern Search
optimisation algorithm is its deterministic nature. Since it samples at the exact
same points in the design variable space when solving an optimisation problem
for a second time, this can be used to cut down the computational cost. Since
the modal parameters of a monitored structure usually do not vary significantly
in consecutive data sets, a vast part of the optimisation trajectory during model
updating is coincident with previous runs. By memorising previous results of
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the finite element model evaluations, many modal analysis calculations could
thus be be omitted by following this approach.

Still, even a single evaluation of the finite element model takes approximately
as long as the application of the finite impulse filters to a complete 10 min data
set. As a conclusion, the data-driven approach based on finite impulse response
filters is well-suited for continuous monitoring systems. Conversely, the finite
element model updating method should only be applied to a limited number of
selected data sets due to its high demand on computing power.
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Chapter 6

Benefits and limitations

6.1 Numerical optimisation

As the ‘no free lunch’ theorems of optimisation [127] state, there can not be
an optimisation algorithm, which performs well on every optimisation problem.
That said, in certain applications such as model updating, the objective func-
tions are mostly smooth. Thus, it is possible to tailor algorithms such that they
exhibit robust and quick convergence under these circumstances. Considering
the Global Pattern Search approach presented in this thesis, very good results
were achieved when applied to the multi-objective model updating formulation.
A prototype version of the MOGPS algorithm was also successfully applied to
practical engineering problems by Berger et al. [11] as well as by Haldar et al.
[42].

The presented algorithms however also have conceptual weaknesses. Due
to the deterministic sample generation scheme, the method lacks robustness
when applied to very noisy objective functions. Further, the sampling pattern
formulated using Cartesian coordinates performs increasingly worse the higher
the number of design variables of the problem becomes. A possible way to
fix this issue is discussed in Section 7.2. Another weakness is the reliance on
Pareto sorting, which is a complex and time-consuming process especially for
high numbers of objectives and many objective function evaluations.

6.2 Damage localisation based on model updating

There are many ways to formulate the model updating problem on the basis
of modal parameters. The formulation chosen here was especially guided by
the strengths of the optimisation algorithm proposed in this thesis. Hence, a
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low-dimensional parametrisation was used, which is conducive to the solution
with the Global Pattern Search algorithm. The low dimensionality also leads
to unique solutions and enhances the numerical stability. However, this for-
mulation is only able to detect a single defect, while it will not yield proper
results for multiple-defect cases. Additionally, a Gaussian shape is assumed
for the distribution of the stiffness reduction, which does not always represent
the actual damage distribution accurately. To tackle these issues, additional
knowledge about the most probable defects would have to be incorporated into
the method. A general weakness of the proposed model updating approach
prevented the application of this approach to the validation scenario with an
unsymmetrical damage: Model updating can only be applied if the damage dis-
tribution parameterisation is able to approximate the actual damage and if the
vibration modes of the measurement and the simulation can be exactly matched
to each other.

The multi-objective formulation chosen to include both mode shapes and
eigenfrequencies has both positive and negative implications. On the posi-
tive side, the robustness of the damage localisation is increased compared to
a single-objective formulation. This is the case, since all possible combinations
of weighting ratios between mode shapes and eigenfrequencies are employed to
find the best-fitting damage scenarios. This greatly increases the chance, that
the actual damage distribution is among these solutions. On the negative side,
the multi-objective scheme does not result in a single damage identification, but
in multiple identifications. Thus, a sensible post-processing scheme needs to be
employed to reduce the number of solutions and yield a manageable damage
metric. Further, the verification using numerical simulation examples shows,
that the sensitivity towards damage may increase for cases with small damage,
when compared to a single-objective formulation.

Uncertainties exist in the measurement data, identification of modal param-
eters and the finite element model. However, in this thesis these uncertainties
were ignored and the model updating problem was treated as a deterministic
one. While proper results could be achieved overall, some identifications yielded
erroneous damage distributions. Hence, uncertainty quantification of the modal
parameters and a probabilistic model updating approach would enable damage
localisation with a higher statistical confidence.

6.3 Data-driven damage localisation

An advantage of the localisation based on finite impulse response identification
is its simplicity and the low number of parameters that have to be adjusted to
obtain acceptable results. Energy residuals can be computed in real-time even
on low-end computers, because the necessary signal convolution can be imple-
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mented very efficiently using vector processing. This enables online monitoring
and damage localisation using existing hardware.

However, data-driven output-only methods are only capable of giving a first
indication about the damage location and their usefulness is highly dependent
on the density and positioning of the sensor network. The validation scenario
with an unsymmetrical damage showed that while the damage could be de-
tected, the localisation failed, partly due to the complexity of the structure and
the sensor setup. Moreover, the interpretation of energy residuals is not trivial
for real structures, due to the ‘leakage’ of changes in the global behaviour to
residuals at positions far away from the damage location. This problem is com-
mon to most localisation techniques based on residual energies. To some extent,
sophisticated classifiers can overcome this limitation and increase the selectiv-
ity. Additionally, damage quantification based on residual values is not trivial,
due to the nonlinear relation between the residuals and mechanical properties
of the monitored structure. Farrar and Worden [36] even go as far as ruling out
the possibility of quantification in an unsupervised output-only setting. Thus,
model-based techniques would be well-suited to accurately pinpoint and also
quantify damages indicated by data-driven methods during online monitoring.

6.4 Environmental and operating conditions

The methods and numerical examples discussed in this thesis are not applied
to data sets containing variable environmental and operating conditions such as
temperature, wind speed, actuator positions etc. However, they are designed
with varying conditions in mind.

Due to the mathematical structure of finite impulse response filters, the
mixing of several identified systems is achievable by linear interpolation. Even
extrapolations are possible to a limited extent with basic linear methods. As
a result, filter identifications can be carried out for a range of environmental
and operating conditions and can later be interpolated to match the conditions
encountered in the analysis time frame. Such interpolations can even be ap-
plied on a sample-by-sample basis, given that the changes in the environmental
conditions are slow compared to the eigenfrequencies of the observed structure.

Regarding the model updating scheme, many environmental and operating
conditions can be implemented directly into the physically-based finite element
model. That way, the model can represent diverse influences such as softening
and residual stresses due to temperature, stiffening due to body forces or vary-
ing boundary conditions. As these effects need to be modelled explicitly, this
approach is evidently more labour-intensive than the interpolation scheme pos-
sible for the finite impulse response filters. However, the relative error metrics
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used to formulate the objective function may help in reducing the modelling
fidelity necessary to achieve satisfactory sensitivity towards damage.

Another aspect omitted in this thesis is the statistical post-processing of the
identification results. Statistical analysis is especially required when dealing
with varying conditions and large data sets acquired in long-term monitoring
campaigns. Considering the data-driven method presented in this thesis, a
detection threshold has to be derived from the reference data, which needs to be
high enough to suppress false positives but also low enough to enable detection
of minor damage cases. Similarly, thresholds also have to be applied to the
results of the model updating approach. For this purpose, the objective values
may also be considered in order to judge the quality of particular identification
runs.
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Chapter 7

Conclusion

7.1 Summary

This thesis presented a novel approach to damage localisation based on model
updating using multi-objective optimisation and an innovative approach based
on multiple-input finite impulse response filters. Both of the approaches con-
tain elements which represent advancements over the state of research. These
include a novel deterministic multi-objective optimisation algorithm, a multi-
objective model updating approach using relative error metrics, as well as the
residual-based damage localisation using multiple-input FIR filters. Addition-
ally, a comparison between the two approaches was conducted using the same
numerical and experimental data, and the advantages and disadvantages were
elaborated. On the one hand, model updating allows for a relatively precise
and rugged damage identification using modal parameters, which can readily
be physically interpreted. To yield meaningful results, an appropriate numeri-
cal model of the structure has to be created and validated. On the other hand,
the impulse response filters can be identified purely using measurement data,
making it easily applicable. However, the localisation accuracy and robustness
using the data-driven approach are worse than what is achievable with model
updating.

In summary, a multi-stage approach seems to be advisable for practical
monitoring applications, where a data-driven method is used to detect and
coarsely locate possible damages and a method based on a mechanical model
is used to pinpoint and quantify them afterwards. That way, efficient filtering
techniques can be used for real-time analysis and the numerically expensive
mechanical model has to be employed only when necessitated by indications of
the filtering technique.
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7.2 Future research topics

Regarding the Global Pattern Search optimisation algorithm, changes to the
sampling pattern to increase the performance for high-dimensional problems
should be explored. Several authors [5, 8, 116] have proposed generalised sam-
pling patterns, which should be investigated in this regard. Another interesting
area is the development of enhancements to tackle reliability-based and robust
optimisation problems. Here, metamodel-based approaches similar to the con-
cept of Efficient Global Optimisation [58] may be an interesting approach. Such
algorithms can be used in robust model updating schemes which take into ac-
count the identification uncertainty of modal parameters and, therefore, enable
quantifying the confidence of damage identifications.

Due to the grid-based sampling strategy of Global Pattern Search, the model
updating scheme introduced in this thesis may even be suitable for efficient long-
term monitoring. In this setting, the model updating has to be carried out for
a large number of different sets of modal parameters extracted from continuous
measurement data. As the monitored structure does not significantly change its
structural dynamics over time, the algorithm samples along similar trajectories
in the design space in each of the optimisation runs. The grid-based approach
means that the points along these trajectories are exactly the same in each
run, so that the results can be reused for subsequent runs. Hence, almost no
new evaluations of the finite element model are necessary after processing a
large number of data sets, which drastically reduces the numerical effort. A
similar approach was already investigated for efficient α-level optimisation by
Hübler and the author [51]. With regards to the validation scenario with an
unsymmetrical damage, further research into dealing with the modal subspace
of closely spaced modes in model updating is needed.

While taking into account changing environmental and operating condi-
tions is relatively easy for the model updating method due to the underlying
physically-based material model, this is more challenging for the filter-based
method. A straightforward way to resolve this issue is to employ a piecewise
linear interpolation of multiple filter identifications in the reference state [6, 132].
Due to the structure of finite impulse response filters, interpolation of the filter
outputs is equivalent to interpolation of the filter coefficients themselves, which
makes this approach also appealing from a numerical performance standpoint.
To this end, further experiments focusing on distributed dynamic excitation due
to wind interaction as well as other environmental conditions are going to be
carried out. Investigations on the sensitivity to changing locations and types of
excitation sources are also planned.
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nanoröhren und Elastomerwerkstoffen (Habilitati-
onsschrift)

2005

4 C. Hühne Robuster Entwurf beulgefährdeter, unversteifter
Kreiszylinderschalen aus Faserverbundwerkstoff
(Dissertationsschrift)

2006

5 L. Nasdala/
K.-U. Schröder
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