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Abstract: We show how combinatorial star products can be used to obtain strict de-
formation quantizations of polynomial Poisson structures on R

d , generalizing known
results for constant and linear Poisson structures to polynomial Poisson structures of ar-
bitrary degree. We give several examples of nonlinear Poisson structures and construct
explicit formal star products whose deformation parameter can be evaluated to any real
value of �, giving strict quantizations on the space of analytic functions on R

d with
infinite radius of convergence. We also address further questions such as continuity of
the classical limit � → 0, compatibility with ∗-involutions, and the existence of positive
linear functionals. The latter can be used to realize the strict quantizations as ∗-algebras
of operators on a pre-Hilbert space which we demonstrate in a concrete example.
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1. Introduction

The convergence of formal star products is arguably one of the most important out-
standing issues in the deformation quantization programme initiated by Bayen–Flato–
Frønsdal–Lichnerowicz–Sternheimer [3]. Deformation quantization aims to reverse-
engineer a quantum mechanical observable algebra from the classical observable al-
gebra obtained in the limit � → 0. For this process, one starts with a formal star product
f � g = f g +

∑
n≥1 tn Bn( f, g), the purported perturbative expansion around � = 0 of

the algebras obtained from a quantum observable algebra by letting � → 0, and views it
as a formal deformation of the commutative algebra of classical observables. The formal
deformation parameter t stands in for the (reduced) Planck constant � and the existence
of formal star products was shown for arbitrary Poisson manifolds by M. Kontsevich
[21]. As � is not a formal parameter but a dimensional constant, the physical interpreta-
tion of deformation quantization depends on the existence of a “strict” quantization [38],
which within the deformation quantization programme should be obtained by evaluat-
ing the formal deformation parameter t to the physical value of �. For this evaluation to
make sense, the formal star product should be given by convergent series, but studying
convergence questions for star products is already a nontrivial undertaking for constant
or linear Poisson structures on R

d [4,13,37]. Notably, the convergence of star products
fails for any nontrivial Poisson structure when considering the space C∞(Rd) of all
smooth complex-valued functions on R

d .
A general strategy for addressing the problem of convergence in deformation quan-

tization was formulated by S. Beiser and S. Waldmann in [4]. Given a Poisson manifold
X , one considers a suitable subspace of the space of smooth functions on X for which the
star product is well defined for complex values of �. For example, when X = R

d carries
a polynomial Poisson structure, one may consider the subspace P(Rd) ⊂ C∞(Rd) of
polynomial functions and work with a formal star product which converges on P(Rd),
giving rise to an associative product �� : P(Rd)×P(Rd) → P(Rd). One then completes
P(Rd) with respect to a suitable (locally convex) topology for which �� is continuous.
If done right, the completion will contain many more physically interesting functions,
such as exponential functions, say. For constant and linear Poisson structures, one can
work with the Moyal–Weyl and Gutt star products, respectively. In this case, conver-
gence on polynomials is immediate, since for all f, g ∈ P(Rd) their formal star product
f � g is a polynomial in the formal parameter which can be evaluated to any value of �.
The continuity of star products, and the properties of the algebra obtained by comple-
tion, was studied successfully for constant and linear Poisson structures [13,37], also
in infinite-dimensional, field-theoretic [33] and “global” settings, such as on coadjoint
orbits of Lie groups [23,30,31] or on cotangent bundles of Lie groups [19] (see [38] for
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a survey). Yet, although constant and linear Poisson structures are important classes of
Poisson structures, one cannot expect them to cover all physically relevant phase spaces.

In this article, we develop an approach to deal with the issue of convergence and
continuity for star products quantizing nonlinear polynomial Poisson structures on R

d .
For nonlinear Poisson structures one cannot use theMoyal–Weyl and Gutt star products,
so one needs a formal star product that can be shown to converge on polynomials.
AlthoughKontsevich’s universal quantization formula [21, §2] can bemadevery explicit,
it is only a finite sum on polynomials for constant or linear Poisson structures [10,21].
For nonlinear Poisson structures, the asymptotics of the multiple zeta values appearing
as weights of certain graphs in the formula (see [1]) make the convergence properties
of the Kontsevich star product on polynomials difficult to determine and Kontsevich’s
conjecture on the convergence of the Kontsevich star product [22, Conj. 1] is still widely
open (cf. [1, §1.1]).

We work with the combinatorial star products introduced in [2] via natural higher
structures on the Koszul complex, which can be used to produce explicit formulae
for quantizations of polynomial Poisson structures (see Sects. 2.2 and 2.3) for which
convergence on polynomials can be shown directly (see Sect. 2.4). These formulae can
then be used in continuity estimates and the star product can be extended from the space
of polynomial functions to larger function spaces (see Sect. 3). To this end we work
with a range of locally convex topologies on P(Rd) which are adapted to the various
Poisson structures at hand, notably the MacGyver topology (Definition 3.11) and the
TR-topology (Definition 3.4).

For quantizations of polynomial Poisson structures satisfying a certain finiteness
condition on the associated combinatorial star product, we prove the following general
result.

Theorem 1.1. (Theorem 3.14) Let � be a combinatorial star product quantizing a poly-
nomial Poisson structure η on R

d and assume:

(a) For any 1 ≤ i, j ≤ d we have

xi � x j =
∑

K∈N
d
0

qi, j,K x
K (1.2)

where qi, j,K ∈ C�t� are power series expansions of holomorphic functions defined
on an open neighbourhood � of 0 ∈ C, only finitely of which are non-zero.

(b) There is a constant α (independent of K and L) such that at most α(|K |+ |L|)2 many
reductions are needed to compute xK � x L .

(c) There is a constant β (independent of K and L) such that xK � x L is a sum of
monomials of order not greater than β(|K | + |L|).

Then evaluating t 	→ � for any� ∈ �, the resulting product �� is continuouswith respect
to the MacGyver topology on P(Rd) and extends uniquely to a continuous product on
the completion P̂MG(Rd) whose Taylor expansion around � = 0 recovers the formal
combinatorial star product �.

Moreover, (P̂MG(Rd), ��) is a strict deformation quantization of (Rd , η).

Theorem 1.1 provides strict deformation quantizations for a large class of polynomial
Poisson structures—in particular for all examples given in this article. However, the
completion P̂MG(Rd) is not as large as one might hope (cf. Remark 3.18). In concrete
examples much stronger results can be obtained, as summarized in a slightly simplified
form in the following theorem.
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Theorem 1.3. Let η be any of the following nonlinear Poisson structures:

(a) the log-canonical Poisson structure on R
d given by {x j , xi }η = xi x j for 1 ≤ i <

j ≤ d
(b) the exact Poisson structure on R

3 associated to the function −xyz − 1
N+1 x

N+1 for
any fixed N ∈ N0

(c) the Poisson structure on R
3 given by the bivector field η = (yz + xN ) ∂

∂z ∧ ∂
∂y for any

fixed N ∈ N0
(d) the Poisson structure on R

2 given by {y, x}η = 1
2 (x

2 + y2)
(e) the Poisson structure on R

2 given by {y, x}η = xy + c for any constant c ∈ R.

Then there exists a formal quantization � of η which has the following convergence and
continuity properties:

(i) � converges on the algebra P(Rd) of polynomial functions on R
d when evaluating

the formal deformation parameter t to any � ∈ C.
(ii) Evaluating t 	→ � ∈ [0,∞), the resulting strict star product �� is continuous with

respect to the T0-topology on P(Rd).
(iii) �� extends continuously to the completion of P(Rd), which coincides with the space

A(Rd) of analytic functions with infinite radius of convergence.

Moreover, (A(Rd), ��) is a strict deformation quantization of (Rd , η).

The algebras (A(Rd), ��) obtained in Theorem 1.3 contain many well-behaved func-
tions, such as exponential functions, and enjoy many nice properties. For example, for
the log-canonical Poisson structure the algebras are locally multiplicatively convex. In
this regard they are in fact better behaved than the algebras obtained by similar methods
for the Moyal–Weyl or Gutt star products quantizing constant or linear Poisson struc-
tures. A particularly surprising case is the last Poisson structure in Theorem 1.3 which
can be quantized to the quantum Weyl algebra C〈x, y〉/(yx − eiλ�xy − i�) for λ > 0.
This algebra can be completed to a much larger strict quantization than the standard
Weyl algebra which corresponds to the case λ = 0 (see Example 3.35).

We also study further properties relevant to the physical interpretation of the con-
vergence and continuity results, namely the compatibility with ∗-involutions (Sect. 2.3)
and the existence of positive linear functionals (Sect. 3.4) which allow one to represent
strict quantizations as algebras of operators on a (pre)Hilbert space.

2. Star Products

In this section we briefly recall the relevant background for star products in Sect. 2.1
and review the notion of combinatorial star products in Sect. 2.2. In Sect. 2.3 we study
the compatibility of combinatorial star products with ∗-involutions and in Sect. 2.4 we
prove convergence results for combinatorial star products used for continuity estimates
in Sect. 3.

2.1. Physical background and basic notions.

Observables. Recall that a Poisson manifold (X, η) is given by a smooth manifold X
and a smooth bivector field η on X whose associated Poisson bracket {−,−}η satisfies
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the Jacobi identity.1 The algebra of smooth functions on a Poisson manifold (X, η) can
be viewed as a Poisson algebra of classical observables, where X is the phase space
of a classical mechanical system and the Poisson bracket {−,−}η encodes the time
evolution via Hamilton’s equations of motion. Deformation quantization after Bayen–
Flato–Frønsdal–Lichnerowicz–Sternheimer [3] aims to produce an associative algebra of
quantum observables from such a Poisson algebra of classical observables by deforming
the usual pointwise commutative product of smooth functions to an associative star
product �. The time evolution of quantum observables is governed by Heisenberg’s
equation of motion

d

dτ
A(τ ) = 1

i�
[H, A(τ )]

where A(τ ) is a time-dependent quantum observable and H is the Hamiltonian operator.
In the setting of deformation quantization, [−,−] should be interpreted as the commuta-
tor of the formal star product [A, B] = A � B− B � A and the (reduced) Planck constant
� should be replaced by the formal deformation parameter which we usually denote by
t . Actual quantum mechanical observables are typically represented as operators on a
(pre)Hilbert space. (See [36] for more details.)

Involutions. In the classical setting, the observable algebra consists of complex-valued
smooth functions and the physical observables are the real-valued functions, i.e. the
complex-valued functions invariant under complex conjugation, whereas in the quantum
mechanical setting, the physical observables are the self-adjoint operators. Complex
conjugation and taking adjoints are consolidated in the notion of a ∗-involution. Recall
that a ∗-algebra A is an algebra over C with a C-antilinear involution ∗ : A→ A which
satisfies (ab)∗ = b∗a∗ for all a, b ∈ A. An ideal I ⊂ A is called a ∗-ideal if I ∗ = I .
Examples of ∗-algebras are the algebra of complex-valued polynomial functions P(Rd)

with complex conjugation as ∗-involution or the algebra of adjointable operators on a
(pre)Hilbert space.

We will follow the approach of deformation quantization and we thus work with
complex-valued functions. Throughout the article we use the following notation.

Notation 2.1. Consider the following function spaces:

C∞(X) = C∞(X, R)⊗ C smooth complex-valued functions on a real manifold X

A(Rd) analytic complex-valued functions onR
d with infinite radius of convergence

P(Rd) � C[x1, . . . , xd ] complex-valued polynomial functions onR
d

O(M) holomorphic functions on a complex manifoldM.

Note that P(Rd) ⊂ A(Rd) ⊂ C∞(Rd) andO(Cd) � A(Rd) by restriction. All of these
are infinite-dimensional C-vector spaces which admit a commutative algebra structure
given by the usual pointwise multiplication of functions and a ∗-involution given by
pointwise complex conjugation, or in case of O(Cd) the ∗-involution induced by the
complex conjugation on A(Rd). But by themselves we often refer to them as “function
spaces” to emphasize that we consider them also with other non-commutative multi-
plications obtained as quantizations of various Poisson structures. (In Sect. 3 we also
obtain other function spaces as completions of P(Rd) with respect to various locally
convex topologies.)

1 For two smooth functions f, g ∈ C∞(X), the Poisson bracket is given by { f, g}η = 〈η, d f ∧ dg〉, where
〈−,−〉 is the pairing between bivector fields and 2-forms and d is the exterior derivative.
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Star products. Webriefly recall the notion of a formal star product and refer to [8,21,36]
for more background.

Definition 2.2. Let (X, η) be a Poisson manifold. A formal star product (or formal
deformation quantization) for (X, η) is a C�t�-bilinear multiplication

� : C∞(X)�t�× C∞(X)�t� → C∞(X)�t�

given by

f � g = f g +
∑

n≥1
tn Bn( f, g)

where Bn areC�t�-bilinear extensions ofC-bilinear maps C∞(X)×C∞(X) → C∞(X),
satisfying the following properties:

(i) � is associative
(ii) B1( f, g)− B1(g, f ) = i{ f, g}η
(iii) 1 � f = f = f � 1.

Further, � is a differential star product if the bilinear maps Bn are extensions of bidiffer-
ential operators.

In other words, a formal star product is a formal one-parameter associative defor-
mation (in the sense of Gerstenhaber [15]) of the commutative product on the algebra
C∞(X) of classical observables, where the base of deformation is the complete local
Noetherian algebra C�t� with maximal ideal (t). The formal deformation parameter t
stands in for the (reduced) Planck constant � and t should be evaluated to this constant
where possible. However, in the generality of Definition 2.2 this is not possible unless
the Poisson structure vanishes identically (see e.g. [36, §6.1.1]) and a large part of this
article is devoted to developing a framework for making sense of the evaluation t 	→ �,
by working with combinatorial star products.

Fréchet algebras. Recall that a Fréchet space is a Hausdorff locally convex topological
vector space which is complete and whose topology can be induced by a countable
family of seminorms [14]. A Fréchet algebra is an associative algebra (A, �), where A
is a Fréchet space and the multiplication � : A × A → A is jointly continuous, i.e. if
fn → f and gn → g in the Fréchet topology on A, then fn � gn → f � g.

Fréchet spaces are a natural generalization of the notion of Banach spaces, whose
topology is induced by a single norm. Normed algebras such as Banach algebras cannot
contain elements x, p satisfying the “canonical commutation relations” [x, p] = i�,
which express Heisenberg’s uncertainty principle and are at the heart of quantum me-
chanics. Fréchet algebras provide a natural generalization which do not impose this
restriction.

All the strict deformation quantizations we obtain in this article are Fréchet algebras,
obtained from completing the space P(Rd) of polynomial functions, endowed with a
non-commutative associative multiplication ��, with respect to certain locally convex
topologies.
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Strict deformation quantization. Just as there aremany approaches to quantization, there
are many approaches to strict quantization [6,7,24,27,28,34,37] (see also [18, §2] for
an overview). For the purposes of this article we shall work with the following notion.

Definition 2.3. Let η be a Poisson structure on R
d . By a strict deformation quantization

of (Rd , η)we shall mean a family {A�}�∈[0,ε) of Fréchet algebras A� = (A, ��) defined
on a common underlying Fréchet space A satisfying

(i) P(Rd) ⊂ A0 ⊂ C∞(Rd) as commutative algebras (in particular �0 is the usual
commutative product of functions)

(ii) the subspace A ⊂ C∞(Rd) is closed under the Poisson bracket
(iii) for fixed f, g ∈ A, the maps � 	→ f �� g are continuous
(iv) for fixed f, g ∈ A, we have that 1

i� ( f �� g − g �� f ) → { f, g}η as � → 0.

This definition should be viewed as a working definition geared towards strict quan-
tizations of polynomial Poisson structures on R

d , rather than a general notion of strict
(deformation) quantization covering the various notions that appear in the literature. Let
us therefore briefly motivate this definition and put it into context. Firstly, the physical
value of � is a positive constant and the quantization should be “well-behaved” in the
limit � → 0, the so-called classical limit. We thus take a strict deformation quantization
to be given by a family indexed by [0, ε) and require continuity of � 	→ f �� g with
respect to the Fréchet topology of A. In other contexts one may relax this assumption
and work with a family of algebras indexed by a set of real numbers which is only
assumed to have 0 as an accumulation point (see e.g. [7]). It turns out that our examples
often satisfy an even stronger condition: � may be evaluated to any complex value in the
closed upper half-plane {� ∈ C | Im(�) ≥ 0} and for fixed f, g ∈ A, their star product
f �� g even depends holomorphically on � in the open upper half-plane with continuity
not only on [0, ε) but on the whole real line (see Sect. 2.4).

To ensure that the algebras contain a reasonably large number of functions, we require
that A0 contain the algebra P(Rd) of polynomial functions, although here one might
also choose to replace P(Rd) by any other preferred class of functions. (Note that on a
general Poisson manifold, there is no reasonable notion of “polynomial functions”, so
in general one indeed has to work with other function classes.)

Remark 2.4. (Strict quantizations in the C∗-algebraic setting) Although Definition 2.3
closely parallels other common definitions of strict quantizations, in the C∗-algebraic
setting essentially all of the conditions in the definition are altered slightly (see e.g. [28,
Def. 9.2]). Instead of a family of general Fréchet algebras, one considers a (continuous)
“field of C∗-algebras” {B�}�∈[0,ε) [11]. The individual algebras B� typically arise as
completions of a fixed vector space A with respect to different C∗-norms, so that the
completed algebras B� usually do not all have the same underlying vector space. Ac-
cordingly, the continuity properties in (iii) and (iv) are then only imposed for elements in
this fixed vector subspace. Lastly, this fixed vector subspace is never the algebra of poly-
nomial functions, as the individual algebras B� contain elements associated to bounded
and continuous (but not necessarily smooth) functions, and polynomial functions are
not bounded.

2.2. Combinatorial star products. Convergence and continuity results used in the con-
struction of strict deformation quantizations usually arise from concrete formulae for
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formal star products. In order to obtain explicit formulae, we work with the combina-
torial star products introduced in [2]. We now give a brief review of these star products
and in Sect. 2.3 also consider variants which are compatible with ∗-involutions.

The construction of combinatorial star products can be described as follows. Let

A = C〈x1, . . . , xd〉/(x j xi − xi x j )1≤i< j≤d � C[x1, . . . , xd ] � P(Rd)

whereC〈x1, . . . , xd〉 is the free algebra generatedby x1, . . . , xd and (x j xi−xi x j )1≤i< j≤d
denotes the two-sided ideal generated by the commutativity relations. Choose the ba-
sis {xK }K∈N

d
0
, where we use the multi-index notation xK = xK1

1 xK2
2 . . . xKd

d for K =
(K1, . . . , Kd) ∈ N

d
0 and |K | = K1 + · · · + Kd .

Definition 2.5. ([2,Def. 7.18])Associated to any element ϕ̃ ∈ Hom(C{x j xi }1≤i< j≤d , A)

⊗̂(t) viewed as a formal series ϕ̃ = ϕ̃1t + ϕ̃2t2 + · · · of C-linear maps, we define a com-
binatorial star product as the C�t�-bilinear operation

� : A�t�× A�t� → A�t�

where xK � x L is the result of recursively reordering the monomial xK xL (viewed as an
element in C〈x1, . . . , xd〉), starting from the right, by replacing each occurrence of x j xi
for i < j by xi x j + ϕ̃(x j xi )2, where the terms appearing in each ϕ̃n(x j xi ) for n ≥ 1 are

expressed in the form x J1
1 x J2

2 . . . x Jd
d .

Remark 2.6. This recursive reordering can be formalized and generalized to arbitrary
finitely generated algebras using the notion of a so-called reduction system, used by
G.M. Bergman to prove the Diamond Lemma [5]. In this context, the operation of
replacing x j xi by xi x j + ϕ̃(x j xi ) is called a reduction. Indeed, the deformation theory
of any finitely generated algebra is equivalent to the deformation theory of any suitable
reduction system [2].

For general ϕ̃, the operation�given inDefinition2.5 neednot be associative.However,
ϕ̃ = ϕ̃1t + ϕ̃2t2 + · · · can be viewed as a formal power series of degree 2 elements in the
Koszul cochain complex K• = Hom(K•, A), where

Km = C{xim . . . xi2xi1}1≤i1<···<im≤d � C
(dm) .

Since K• has trivial differential and computes the Hochschild cohomology of A, its
suspension K•+1 admits a natural L∞ algebra structure (K•+1, 〈−,−〉, 〈−,−,−〉, . . . )
by viewing it as a minimal model (see e.g. [21, §4.5.1] or [26, §4]) for the Hochschild
cochain complex (Hom(A⊗•+1, A), d, [−,−]) endowed with its DG Lie algebra struc-
ture given by the Hochschild differential and the Gerstenhaber bracket. An explicit L∞
quasi-isomorphism (K•+1, 〈−,−〉, 〈−,−,−〉, . . . ) → (Hom(A⊗•+1, A), d, [−,−]) was
constructed in [2] in a more general context via homotopy transfer. The resulting L∞
algebra structure on K•+1 and the associativity of � are related as follows.

Theorem 2.7. [2] Let A = C[x1, . . . , xd ] and ϕ̃ ∈ K2 ⊗̂ (t). Then the following are
equivalent:

(i) ϕ̃ is a Maurer–Cartan element of K•+1 ⊗̂ (t).

2 This recursive reordering is well-defined at all orders of t since ϕ̃(x j xi ) is a formal power series starting
in first order in t .
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(ii) � is associative.
(iii) (xk � x j ) � xi = xk � (x j � xi ) for all 1 ≤ i < j < k ≤ d.
(iv) Ã = C〈x1, . . . , xd〉�t�/(x j xi − xi x j − ϕ̃(x j xi ))1≤i< j≤d is a formal deformation of

A.

Note that if the equivalent conditions in the previous theorem are satisfied, then the
C�t�-linear map

ρ : C[x1, . . . , xd ]�t� Ã

x K xK
(2.8)

is a vector space isomorphism and ρ intertwines the combinatorial star product with the
product · of the quotient Ã, meaning that

f � g = ρ−1(ρ( f ) · ρ(g)) . (2.9)

Indeed, performing reductions x j xi 	→ xi x j + ϕ̃(x j xi ) corresponds precisely to ex-
pressing the product of the quotient algebra Ã = C〈x1, . . . , xd〉�t�/(x j xi − xi x j −
ϕ̃(x j xi ))1≤i< j≤d in the basis {xK }K∈N

d
0
. In particular, it follows that the order of reduc-

tions does not matter.
Given any ϕ̃ = ϕ̃1t + ϕ̃2t2 + · · · ∈ K2 ⊗̂ (t) satisfying the equivalent conditions of

Theorem 2.7, its first-order term ϕ̃1 ∈ K2 defines a Poisson structure η by

{x j , xi }η = 1

i
ϕ̃1(x j xi )

for any 1 ≤ i < j ≤ d, where the Jacobi identity follows from the associativity of � in
order t2. (The factor of 1/i is a matter of convention and could be omitted, but it naturally
appears when η is to be a real Poisson structure which is quantized by the combinatorial
star product � in the sense of Definition 2.2.)

Since K•+1 is L∞-quasi-isomorphic to Hom(A⊗•+1, A), any star product quantizing
a polynomial Poisson structure η is equivalent to a combinatorial star product for some
ϕ̃ ∈ K2 ⊗̂ (t). Indeed, one may construct such a combinatorial star product by defining
ϕ̃ by

ϕ̃(x j xi ) = i{x j , xi }ηt + O(t2) (2.10)

where the higher-order terms in t are chosen such that � satisfies the associativity con-
dition on linear monomials as in Theorem 2.7 (iii). The choice of higher-order terms is
far from unique—for certain Poisson structures the higher-order terms may be chosen
to be zero, but as we shall see, the choice also affects the convergence and continuity
properties of the resulting star product. In Sect. 2.4 we will illustrate in several examples
how to use the combinatorial star product in practice to obtain explicit formulae for star
products and study their convergence properties.

A first simple example of the condition in Theorem 2.7 (iii) is the following.

Example 2.11. (Quantization of the log-canonical Poisson structure) Let η be the log-
canonical Poisson structure3 on R

d , which is determined by {x j , xi }η = xi x j for any
1 ≤ i < j ≤ d. Then for any formal power series q = 1+ it +O(t2) ∈ C�t� we may set

x j � xi =
{
x j xi if i ≥ j
qxi x j if i < j .

3 The name “log-canonical” derives from the observation that ln x1, . . . , ln xd are “canonical” coordinates
in the sense that {ln x j , ln xi } = 1.
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(In the notation of Definition 2.5, � is the combinatorial star product associated to the
element ϕ̃ given by ϕ̃(x j xi ) = (q − 1)xi x j .) Then � satisfies the condition of Theorem
2.7 (iii) as

xk � (x j � xi ) = q3xi x j xk = (xk � x j ) � xi

for any 1 ≤ i < j < k ≤ d, where q3 appears since exactly three reductions are needed
to bring xkx j xi into standard form (xk needs to move past both x j and xi , and x j past
xi ), each reduction contributing a factor of q.

By Theorem 2.7 it follows that � is associative for all polynomials in P(Rd) and thus
quantizes η. (Indeed, � can be defined on C∞(Rd)�t� as in Definition 2.2, see Remark
2.15 below.) An explicit formula for the star product of arbitrary monomials is

xK � x L = q
∑

1≤i< j≤d K j Li x K+L (2.12)

for all multi-indices K , L ∈ N
d
0 , since a straightforward combinatorial argument shows

that
∑

1≤i< j≤d K j Li many reductions are needed to bring xK xL into standard form.

The combinatorial star product was defined via a recursive reordering reminiscent of
the so-called standard ordering of differential operators. Indeed, consider R

2d viewed as
the cotangent bundle of R

d with its canonical symplectic structure, the first d coordinate
functions corresponding to position and the last d tomomentum variables. This symplec-
tic structure defines a constant Poisson structure and setting ϕ̃(x j xi ) = δi+d, j t , the asso-
ciated combinatorial star product is associative and coincides with the standard-ordered
Weyl product �std, ordering position operators to the left and momentum operators to
the right.

The standard-ordered Weyl product is a differential star product (cf. Definition 2.2)
which can be given by bidifferential operators associated to graphs. By a careful analysis
of the reductions, one can show that any combinatorial star product can be given by a
graphical formula.

Theorem 2.13. [2] Let � be a combinatorial star product satisfying the equivalent con-
ditions of Theorem 2.7. Then � can be given by the graphical formula

f � g =
∑

n≥0

∑

�∈Gn,2

C�( f, g) (2.14)

where Gn,2 is a set of admissible graphs for the combinatorial star product and C� ,
associated to an admissible graph � ∈ Gn,2, is a formal power series of bidifferential
operators starting in order tn.

Remark 2.15. The graphical formula in Theorem 2.13 (see [2, §10] for more details)
shows that the combinatorial star product is a differential star product in the sense
of Definition 2.2, since (2.14) can be used to extend it to the algebra of all smooth
functions C∞(Rd). By a standard argument such an extension by bidifferential operators
is necessarily unique if it exists: a bidifferential operator is continuous with respect to
the standard locally convex topology of C∞(Rd) (locally uniform convergence of all
derivatives), and P(Rd) is dense in C∞(Rd) with respect to this topology.

The graphical formula for the combinatorial star product is very similar to Kont-
sevich’s universal quantization formula [21, §2]. In fact, the admissible graphs for the
combinatorial star product are precisely the Kontsevich graphs without oriented cycles,
together with a linear order of the incoming edges at each vertex [2, Prop. 10.16]. How-
ever, the formula holds without any weights and thus makes the convergence properties
more accessible.
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Remark 2.16. The Koszul complex K•+1 is isomorphic to the (shifted) complex of
polyvector fields (with polynomial coefficients) which admits a natural graded Lie al-
gebra structure given by the Schouten–Nijenhuis bracket [−,−]SN, and Maurer–Cartan
elements of (K•+1, [−,−]SN) ⊗̂ (t) are precisely formal Poisson structures. The bi-
nary bracket 〈−,−〉 of the L∞ algebra structure on K•+1 coincides with the Schouten–
Nijenhuis bracket [2].However,whenviewedas aminimalmodel of (Hom(A⊗•+1, A), d,

[−,−]), the Koszul complex K•+1 carries nontrivial n-ary brackets for all n ≥ 2.
One way of understanding the problem of quantizing a polynomial Poisson structure

is to start with a Poisson structure placed in order 1 in t , thus defining aMaurer–Cartan el-
ement of (K•+1, [−,−]SN)⊗̂ (t), and if necessary add suitable higher-order terms to also
make it a Maurer–Cartan element of the L∞ algebra (K•+1, 〈−,−〉, 〈−,−,−〉, . . . )⊗̂(t).
In case higher-order terms are necessary (or useful for continuity estimates), the associa-
tivity of � on linear monomials as in Theorem 2.7 (iii) gives a convenient combinatorial
criterion to establish associativity of the combinatorial star product for all smooth func-
tions.

2.3. Combinatorial star products and ∗-involutions. In Sect. 2.1 we briefly recalled
the notion of a ∗-involution which allows one to identify physical observables. Like the
standard-orderedWeyl product, the combinatorial star product � defined inDefinition 2.5
is in general not compatible with the natural ∗-involution given by complex conjugation
of functions. The reason is that the linear extension of P(Rd) � xK 	→ xK1

1 · . . . ·
xKd
d ∈ C〈x1, . . . , xd〉 is not compatible with the ∗-involutions of P(Rd) respectively

C〈x1, . . . , xd〉 obtained by extending (xi )∗ = xi in such a way that (ab)∗ = b∗a∗ holds.
Indeed,

(
xK1
1 · . . . · xKd

d

)∗ = xKd
d · . . . · xK1

1 ∈ C〈x1, . . . , xd〉 does not agree with the
image of

(
xK

)∗ = xK ∈ P(Rd).
We now present two strategies for remedying this.

2.3.1. Combinatorial star products of Wick type Our first strategy is to redefine the ∗-
involution by setting (xi )∗ = xd+1−i . Of course, the xi will not be real any more (unless
d is odd and i = 1

2 (d + 1)) and should not be thought of as coordinate functions on R
d ,

which is why we will call them wi from now on. The combinatorial star product of wK

and wL is then defined just as in Sect. 2.1 by recursively reordering wKwL , starting
from the right, replacing each occurrence of w jwi for i < j by wiw j + ϕ̃(w jwi ). Let

J
d := {z ∈ C

d | zi = zd+1−i for all i = 1, . . . , d} � R
d (2.17)

and wi : J
d → C, wi (z) = zi . Then we have indeed (wi )

∗ = wd+1−i , where ∗ is now
the standard complex conjugation.

If d is even, we can identify C
d/2 with J

d via

(z1, . . . , zd/2) 	→ (z1, . . . , zd/2, zd/2, . . . , z1)

in which case w1, . . . , wd/2 become antiholomorphic coordinates and wd/2+1, . . . , wd

holomorphic coordinates. If d is odd, we can identify C
(d−1)/2 ⊕ R with J

d via

(z1, . . . , z(d−1)/2, y) 	→ (z1, . . . , z(d−1)/2, y, z(d−1)/2, . . . , z1)

so thatw1, . . . , w(d−1)/2 becomeantiholomorphic coordinates,w(d−1)/2+2, . . . , wd holo-
morphic coordinates, and w(d−1)/2+1 is an additional real coordinate. With this identi-
fication, the combinatorial star product orders antiholomorphic coordinates (“creation
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operators”) to the left and holomorphic coordinates (“annihilation operators”) to the
right, and we have thus obtained a combinatorial version of so-called star products of
Wick type [20], [36, §5.2.3] (also called normal-ordered star products).

We denote by P(Jd) the unital commutative algebra generated by the functions
w1, . . . , wd on J

d .

Proposition 2.18. Let ϕ̃ ∈ K2 ⊗̂ (t) be given by ϕ̃(w jwi ) = i{w j , wi }ηt + O(t2) and
assume that ϕ̃ satisfies the equivalent conditions of Theorem 2.7. If ϕ̃ additionally sat-
isfies

ϕ̃(w jwi )
∗ = ϕ̃(wd−i+1wd− j+1) (2.19)

then η is a real Poisson structure on J
d and (P(Jd)�t�, �) with complex conjugation as

∗-involution is a ∗-algebra quantizing η.

Proof. The assignment (wi )
∗ = wd+1−i naturally extends to ∗-involutions on P(Jd)

and C〈w1, . . . , wd〉, and further to ∗-involutions on P(Jd)�t� and C〈w1, . . . , wd〉�t�
by requiring that t∗ = t . The linear extension of P(Jd) � wK 	→ w

K1
1 · . . . · wKd

d ∈
C〈w1, . . . , wd〉 is compatible with these ∗-involutions:

(
w

K1
1 · . . . ·wKd

d

)∗ = w
Kd
1 · . . . ·

w
K1
d ∈ C〈w1, . . . , wd〉 is the image of (wK )∗ = w

Kd
1 · . . . · wK1

d ∈ P(Jd). It follows
that if the ideal generated by w jwi − wiw j − ϕ̃(w jwi ) for 1 ≤ i < j ≤ d is a ∗-ideal,
then complex conjugation is a ∗-involution for (P(Jd)�t�, �). This is certainly the case
if

(w jwi − wiw j − ϕ̃(w jwi ))
∗ = wd−i+1wd− j+1 − wd− j+1wd−i+1 − ϕ̃(wd−i+1wd− j+1)

which is satisfied if the condition (2.19) on ϕ̃ holds. In first order in t , condition (2.19)
reads

(i{w j , wi }η)∗ = i{wd−i+1, wd− j+1}η = i{w∗
i , w

∗
j }η

which is precisely the condition that η is a real Poisson structure. ��
Example 2.20. Consider the Poisson structure on J

d defined by {w j , wi }η = iwiw j if
i < j , which is precisely the log-canonical Poisson structure of Example 2.11 with x’s
replaced by w’s and an additional factor of i, introduced to make the Poisson structure
real. One has

{x j , xi }η =

⎧
⎪⎨

⎪⎩

x j xd+1−i if i < d + 1− j
1
2 (x

2
i + x2j ) if i = d + 1− j

xd+1− j xi if i > d + 1− j

for any 1 ≤ i < j ≤ d, where x j := Re(w j ) := 1
2 (w j + w∗

j ) for 1 ≤ j ≤ �d/2� and
x j := Im(w j ) := 1

2i (w j −w∗
j ) for �d/2�+1 ≤ j ≤ d are real coordinates. Now assume

that � is a combinatorial star product satisfying

w j � wi =
{

w jwi if i ≥ j
qwiw j if i < j

where q = 1− t +O(t2) ∈ C�t�. (Since the Poisson structure contains an extra factor of
i, the condition B1( f, g) − B1(g, f ) = i{ f, g} is satisfied for this choice of q.) By the
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same reasoning as in Example 2.11, � satisfies the condition of Theorem 2.7 (iii), and
an explicit formula for � is

wK � wL = q
∑

1≤i< j≤d K j Li wK+L . (2.21)

If q ∈ R�t�, then the assumptions of Proposition 2.18 are satisfied and complex conju-
gation yields a ∗-involution on (P(Jd)�t�, �). This can also be checked explicitly using
(2.21).

2.3.2. Symmetrized combinatorial star products Our second strategy for obtaining star
products which are compatible with a ∗-involution is to symmetrize the combinatorial
star product �, similar to the way the standard-orderedWeyl product can be symmetrized
to the Moyal–Weyl product. (Symmetrized combinatorial star products were also con-
sidered by the first-named author in joint work with Zhengfang Wang.) We shall denote
symmetrized star products by a six-pointed star ∗ instead of the five-pointed �.

Recall the definition of ρ from (2.8). We have seen in Sect. 2.2 that the combinatorial
star product can be given by the formula f � g = ρ−1(ρ( f ) ·ρ(g)) when the equivalent
conditions of Theorem 2.7 are satisfied. If this is the case, then not only ρ, but also the
C�t�-linear map

σ : C[x1, . . . , xd ]�t� C〈x1, . . . , xd〉�t�/(x j xi − xi x j − ϕ̃(x j xi ))1≤i< j≤d
xi1 . . . xik

1

k!
∑

s∈Sk

xis(1) . . . xis(k)
(2.22)

for 1 ≤ i1 ≤ · · · ≤ ik ≤ d is an isomorphism which can be viewed as a symmetrized
versionofρ. This symmetrized isomorphismcanbeused to give the followingdefinition.

Definition 2.23. Let ϕ̃ ∈ K2 ⊗̂ (t) satisfy the equivalent conditions of Theorem 2.7. De-
fine the symmetrized combinatorial star product ∗: P(Rd)�t�×P(Rd)�t� → P(Rd)�t�
by

f ∗ g = σ−1(σ ( f ) · σ(g)) .

We now considerC〈x1, . . . , xd〉�t�with the ∗-involution obtained by extending x∗i =
xi and t∗ = t . Since any symmetric element

∑
s∈Sk

xis(1) · · · xis(k) ∈ C〈x1, . . . , xd〉�t�
is fixed by the involution, it follows that σ is compatible with the ∗-involution if the ideal
on the right-hand side of (2.22) is a ∗-ideal. This proves:
Proposition 2.24. Let ϕ̃ ∈ K2 ⊗̂(t) satisfy the equivalent conditions of Theorem 2.7 and
assume that the ideal generated by x j xi − xi x j − ϕ̃(x j xi ) for 1 ≤ i < j ≤ d is a ∗-ideal
of C〈x1, . . . , xd〉�t�. Then (P(Rd)�t�, ∗) with complex conjugation as ∗-involution is a
∗-algebra.

The following proposition shows that the symmetrized combinatorial star product can
be viewed as a generalization of the Moyal–Weyl and Gutt star products to nonlinear
Poisson structures.

Proposition 2.25. Let η be a polynomial Poisson structure with only constant and linear
terms and let ϕ̃ ∈ K2 ⊗̂ (t) be given by ϕ̃(x j xi ) = i{x j , xi }ηt . Then the equivalent
conditions of Theorem 2.7 are satisfied. Moreover, if η is constant, then the symmetrized
combinatorial star product ∗ coincides with the Moyal–Weyl star product ∗W and if η

is linear, then ∗ coincides with the Gutt star product ∗G.
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Proof. The first assertion was proved in [2, §10]. The second assertion follows straight-
forwardly from the definition of the Moyal–Weyl and Gutt star products. ��
Example 2.26. Let R

d be endowed with the log-canonical Poisson structure (see Exam-
ple 2.11). Then ϕ̃(x j xi ) = (q − 1)xi x j for 1 ≤ i < j ≤ d satisfies the equivalent
conditions of Theorem 2.7 for any q = 1 + it + O(t2) ∈ C�t�, and the associated sym-
metrized combinatorial star product ∗ quantizes the log-canonical Poisson structure.
Note that we have (x j xi − qxi x j )∗ = xi x j − q∗x j xi = −q∗(x j xi − (q∗)−1xi x j ). This
element is in the ∗-ideal generated by x j xi − qxi x j if qq∗ = 1, in which case ∗ is
compatible with the ∗-involution by Proposition 2.24.

The formulae for the “standard-ordered” combinatorial star product � and the sym-
metrized combinatorial star product ∗ differ as follows:

xi � x j =

⎧
⎪⎪⎨

⎪⎪⎩

xi x j if i < j

x2i if i = j

qx j xi if i > j

xi ∗ x j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
1+q xi x j if i < j

x2i if i = j

2q
1+q x j xi if i > j.

(In the formula for ∗, the fractions 1
1+q and q

1+q should be expanded as formal power
series in t .) A general formula will be given in Proposition 2.39.

2.4. Convergence of combinatorial star products. For constant and linear Poisson struc-
tures onR

d , theMoyal–Weyl andGutt star products converge on the space of polynomial
functions, since the formal star product of two polynomial functions is a polynomial in
the formal parameter and not a formal power series. We now prove convergence of
combinatorial star products for a range of nonlinear polynomial Poisson structures.

2.4.1. Log-canonical Poisson structure We shall start with a detailed discussion of con-
vergence for the quantization of the log-canonical Poisson structure which also applies
to the convergence results in subsequent sections.

In Example 2.11we gave an explicit formula for the formal combinatorial star product
� : P(Rd)�t�× P(Rd)�t� → P(Rd)�t� quantizing the log-canonical Poisson structure
on R

d :

xK � x L = q
∑

1≤i< j≤d K j Li x K+L (2.27)

where q = 1 + it + O(t2) could be any formal power series in t .
Let q̃ be a holomorphic function in � defined on an open set � ⊂ C containing 0,

with power series expansion around � = 0 of the form q = 1+it +O(t2). For any � ∈ �,
we may consider the strict product

xK �� x L = q̃(�)
∑

1≤i< j≤d K j Li x K+L (2.28)

which defines an associative bilinear map �� : P(Rd) × P(Rd) → P(Rd). The strict
star product f �� g of two polynomials f, g is thus no longer a formal power series in
t , but simply a polynomial in x1, . . . , xd .

Since q̃ is holomorphic at 0, q has positive radius of convergence r . Therefore, for
all � ∈ Dr = {z ∈ C | |z| < r}, (2.28) can be viewed as the evaluation of (2.27)
for t 	→ �. By the uniqueness of analytic continuation, one can recover (2.28) for all
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� ∈ �. Generally, for any two polynomials f, g, the coefficient functions of the formal
star product f � g lie in a finite-dimensional subspace of P(Rd). Since f � g converges
on Dr , analytic continuation implies that f � g can be evaluated to f �� g for any
f, g ∈ P(Rd) and any � ∈ �. Moreover, since evaluation at � ∈ Dr intertwines � and
�� and since the formal star product is associative, ( f �� g) �� h and f �� (g �� h) must
coincide on Dr and therefore on all of � for any fixed f, g, h ∈ P(Rd). This gives an
abstract argument showing the associativity of �� which also applies to the examples in
subsequent sections.

Some natural choices for q̃ would be q̃(�) = 1 + i�, ei�, or 1
1−i� whose power

series expansions are all of the form q = 1 + it + O(t2). The formal star product �,
and in particular the Poisson structure it quantizes, can be recovered from the family
of strict star products ��: For fixed f, g ∈ P(Rd), the map � 	→ f �� g defines a
holomorphic function � → P(Rd) whose power series expansion around � = 0 is the
formal combinatorial star product f � g. (Note that for fixed polynomials f, g, their star
product f �� g lies in a finite-dimensional subspace of P(Rd), so here the notion of
holomorphy is the standard one.) We shall no longer distinguish a holomorphic function
q̃ and its power series expansion q around � = 0.

In Sect. 3 we show how to extend the strict star products �� to larger function spaces
which are obtained as completions with respect to some locally convex topology, where
the details will depend on whether |q(�)| ≤ 1 or not. Note that this final condition is
for example satisfied for q(�) = ei� whenever � lies in the closed upper half-plane, in
particular for all real values of �.

Remark 2.29. The above discussion on convergence applies mutatis mutandis to the
combinatorial star products of Wick type, in particular to the quantization of the Poisson
structure {w j , wi } = iwiw j where 1 ≤ i < j ≤ d on R

d introduced in Example 2.20
whose formula in the wi coordinates is very similar to the formula for the log-canonical
Poisson structure in the xi coordinates, even though it quantizes a different real Poisson
structure. Note, however, that q must now be of the form q = 1− t + O(t2). Choosing
q(�) = e−� we have that |q(�)| ≤ 1 whenever � lies in the closed right half-plane, in
particular for all non-negative real values of �. Like the formal star product �, the star
product �� obtained by evaluating t 	→ � is compatible with the ∗-involution if q(�) is
real.

2.4.2. Other polynomial Poisson structures We now consider other examples of poly-
nomial Poisson structures which can be of arbitrary polynomial degree and find quanti-
zations using the criterion

(xk � x j ) � xi = xk � (x j � xi ) (2.30)

for 1 ≤ i < j < k ≤ d given in Theorem 2.7, where � is the combinatorial star product
associated to some element ϕ̃ ∈ K2 ⊗̂ (t).

Solving (2.30) for the log-canonical Poisson structure was particularly straightfor-
ward (see Example 2.11). One might expect that for more general polynomial Poisson
structures quantizations are very difficult to construct by hand. However, it turns out that
simply choosing

ϕ̃(x j xi ) = i{x j , xi }ηt (2.31)

is “often” already enough to satisfy (2.30). (The reader may check that this is true for
about half of the classes of quadratic Poisson structures on R

3 in the classification by
J.-P. Dufour and A. Haraki [12].) An example of such a computation is the following.
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Example 2.32. Let N ∈ N0 be fixed and consider the Poisson structure

η = (yz + xN )
∂

∂z
∧ ∂

∂y

onR
3. For N = 2, this is the Poisson structure given by D.Manchon,M.Masmoudi, and

A. Roux [25] as an example of a quadratic Poisson structure that cannot be quantized
via Drinfel’d twists.

Let ϕ̃ be given as in (2.31), i.e. ϕ̃(yx) = ϕ̃(zx) = 0 and ϕ̃(zy) = i{z, y}ηt =
(yz + xN )it . The associated combinatorial star product � satisfies (2.30) since

z � (y � x) = z � (xy) = ρ−1(x · z · y) = xyz(1 + it) + xN+1it

(z � y) � x = (
yz(1 + it) + xN it

)
� x = xyz(1 + it) + xN+1it

and thus � quantizes η.

The next example is a slight modification of Example 2.32 which illustrates that
even when the combinatorial star products associated to the naive choice (2.31) does not
satisfy (2.30), it is often easy enough to find suitable higher correction terms.

Example 2.33. Let N ∈ N0 be fixed and consider the exact Poisson structure on R
3

associated to the polynomial function −xyz − 1
N+1 x

N+1, i.e.

η = xy
∂

∂y
∧ ∂

∂x
− xz

∂

∂z
∧ ∂

∂x
+ (yz + xN )

∂

∂z
∧ ∂

∂y
.

Let p, q, r, s ∈ C�t� be formal power series of the form p = 1 + it + O(t2), q =
1 + it + O(t2), r = 1 + it + O(t2), and s = 1− it + O(t2) and let ϕ̃ be determined by

ϕ̃(yx) = (r − 1)xy

ϕ̃(zx) = (s − 1)xz

ϕ̃(zy) = (q − 1)yz + (p − 1)xN

which is essentially (2.31) with general yet-to-be-determined higher-order terms. Com-
puting the associated combinatorial star product one finds

z � (y � x) = z � (r xy) = ρ−1(rsx · z · y) = qrsxyz + (p − 1)rsx N+1

(z � y) � x = (qyz + (p − 1)xN ) � x = qrsxyz + (p − 1)xN+1

and comparing the right-hand sides we see that it suffices to set s = r−1 to satisfy (2.30)
in which case � quantizes η.

The following proposition gives explicit formulae and convergence results for the star
products in Examples 2.32 and 2.33. For a word w = (w1, . . . , wk) ∈ {0, 1}k in 0’s and
1’s we write |w| := ∑k

i=1 wi andw1...i = (w1, . . . , wi ) ∈ {0, 1}i , where i ∈ {1, . . . , k}.
We use the convention that {0, 1}0 contains one element, the empty word ∅with |∅| = 0.
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Proposition 2.34. (i) For N ∈ N0 and formal power series p = 1 + itp1 + O(t2),
q = 1+ itq1 +O(t2), and r = 1+ itr1 +O(t2) ∈ C�t�, the combinatorial star product
� determined by

ϕ̃(yx) = (r − 1)xy

ϕ̃(zx) = (r−1 − 1)xz

ϕ̃(zy) = (q − 1)yz + (p − 1)xN

is a formal deformation quantization of the Poisson structure with Poisson bivector

η = r1xy
∂

∂y
∧ ∂

∂x
− r1xz

∂

∂z
∧ ∂

∂x
+ (q1yz + p1x

N )
∂

∂z
∧ ∂

∂y
. (2.35)

(ii) For any i, j, k, �,m, n ∈ N0, one has

xi y j zk � x�ymzn =
∑

w∈{0,1}k
|w|≤m

r ( j−k)�+ j N |w|λm(w)xi+�+N |w|y j+m−|w|zk+n−|w|

(2.36)

where λm(∅) = 1 and λm(w) := ∏k
i=1 r−N |w1...i−1|λ̃m(w1...i−1, wi ) for any w ∈

{0, 1}k , k ∈ N with

λ̃m(w, s) =
{
qm−|w| if s = 0

(p − 1)
∑m−|w|−1

j=0 (qr N ) j if s = 1 .
(2.37)

(iii) Let� ⊂ C be an open connected neighbourhood of 0 and p, q and r be power series
expansions of holomorphic functions on �, without zeros in the case of r . Then �

can be evaluated to an associative product �� : P(R3) × P(R3) → P(R3) for any
� ∈ �.

(iv) For any fixed f, g ∈ P(R3), the map � → P(R3), � 	→ f �� g takes values
in a finite-dimensional subspace V ⊂ P(R3) and depends holomorphically on �.
Moreover, 1

i� ( f �� g − g �� f ) → { f, g}η as � → 0 (with respect to the usual
topology on the finite-dimensional space V ).

Proof. The same computation as in Example 2.33 shows that ϕ̃ satisfies condition (iii)
in Theorem 2.7 and it is straightforward to verify that the corresponding star product
quantizes the Poisson structure (2.35), thus showing part (i). Part (ii) can be shown by a
computation in the algebra Ã = C〈x, y, z〉�t�/(yx−xy− ϕ̃(yx), zx−xz− ϕ̃(zx), zy−
yz − ϕ̃(zy)), where we shall omit the product sign · for brevity. By induction over m,
one can easily show that

zym = qm ymz + (p − 1)
m−1∑

j=0

(
qr N

) j
x N ym−1

holds for all m ∈ N0. Next, we prove that

zk ym =
∑

w∈{0,1}k ,|w|≤m
λm(w)xN |w|ym−|w|zk−|w|
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holds for all k,m ∈ N0 by induction over k: If k = 0, this is clearly true, and if this
holds for some k ∈ N0, then

zk+1ym =
∑

w∈{0,1}k
|w|≤m

λm(w)zx N |w|ym−|w|zk−|w|

=
∑

w∈{0,1}k
|w|≤m

λm(w)r−N |w|qm−|w|xN |w|ym−|w|zk+1−|w|

+
∑

w∈{0,1}k
|w|≤m−1

λm(w)r−N |w|(p − 1)
m−|w|−1∑

j=0
(qr N ) j x N (|w|+1)ym−1−|w|zk−|w|

=
∑

w∈{0,1}k+1
|w|≤m

λm(w)xN |w|ym−|w|zk+1−|w| .

Using this, we finally obtain

xi y j zk x�ymzn = r ( j−k)�xi+�y j zk ymzn

=
∑

w∈{0,1}k
|w|≤m

r ( j−k)�λm(w)xi+�y j x N |w|ym−|w|zk−|w|zn

=
∑

w∈{0,1}k
|w|≤m

r ( j−k)�+ j N |w|λm(w)xi+�+N |w|y j+m−|w|zk+n−|w| .

To show (iii), note that holomorphic functions on � are uniquely determined by their
power series expansion around 0, hence � can indeed be evaluated at any � ∈ � and is
associative (by analytic continuation as in Sect. 2.4.1). Part (iv) follows easily from the
formula obtained in part (ii). ��

Formula (2.37) simplifies if one chooses p, q, and r such that p − 1 is a multiple of
qr N − 1. If q1 = p1 = 1 and r1 = 0, then the star product in the previous proposition
quantizes the Poisson structure from Example 2.32, if q1 = p1 = r1 = 1 then it
quantizes the Poisson structure from Example 2.33.

In Sect. 3.3.3 we obtain continuity estimates for the star products introduced in
Proposition 2.34.

2.4.3. Symmetrized combinatorial star products In order to give an explicit formula
for the symmetrized combinatorial star product quantizing the log-canonical Poisson
structure (see Example 2.26), recall the definition of the q-multinomial coefficients

(|K |
K

)

q
= [|K |]q !
[K1]q ! . . . [Kd ]q ! (2.38)

where K ∈ N
d
0 is a multi-index, and [−]q ! are the q-factorials defined by [0]q ! = 1 and

[k]q ! = [k]q [k − 1]q . . . [1]q with [k]q = 1 + q + · · · + qk−1
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for any k ∈ N. The q-multinomial coefficients compute a weighted sum of all possible
ways to form words with certain letters. More precisely,

(|K |
K

)
q =

∑
w q inv(w) where the

sum is over allwordswwith K1 many 1’s, K2 many 2’s, and so on, and inv(w) denotes the
minimum number of inversions (exchanging two consecutive letters) needed to change
the word 1K1 . . . dKd to w [35, Prop. 1.3.17]. In particular,

(|K |
K

)
q is a polynomial in q

with non-negative integer coefficients and constant term 1.

Proposition 2.39. Let R
d be endowed with the log-canonical Poisson structure and

assume that q = 1 + it + O(t2). The symmetrized combinatorial star product from
Example 2.26 is given by the formula

xK ∗ x L =
(|K+L|
K+L

)

(|K |
K

)(|L|
L

)

(|K |
K

)
q

(|L|
L

)
q

(|K+L|
K+L

)
q

q
∑

1≤i< j≤d K j Li x K+L . (2.40)

Proof. We obtain
(|K |
K

)
qρ(xK ) = (|K |

K

)
σ(xK ) from the combinatorial interpretation of

the q-multinomial coefficients. Consequently,

xK ∗ x L = σ−1(σ (xK )σ (x L))

=
(|K |
K

)
q

(|L|
L

)
q

(|K |
K

)(|L|
L

) σ−1(ρ(xK )ρ(x L))

=
(|K |
K

)
q

(|L|
L

)
q

(|K |
K

)(|L|
L

) q
∑

1≤i< j≤d K j Li σ−1(ρ(xK+L))

=
(|K |
K

)
q

(|L|
L

)
q

(|K+L|
K+L

)

(|K |
K

)(|L|
L

)(|K+L|
K+L

)
q

q
∑

1≤i< j≤d K j Li x K+L .

��
Assume that q is the formal power series expansion of a holomorphic function q ∈

O(�). The q-multinomial coefficients are polynomials in q which can only vanish at
roots of unity (but not at 1). It follows that the coefficients in (2.40) are meromorphic
functions on �, with poles only at P := {� ∈ � | q(�) �= 1 and q(�)n = 1 for some
n ∈ N}. Thus we can evaluate ∗ to a product ∗� : P(Rd)×P(Rd) → P(Rd) whenever
� ∈ � \ P . Note that this is different from the situation in the previous sections, where
the star products could be evaluated for all � ∈ �.

Remark 2.41. The proof of Proposition 2.39 shows that the map T : P(Rd) → P(Rd),
obtained by extending xK 	→ (|K |

K

)
q
(|K |
K

)−1xK linearly, is an equivalence transformation
between the standard and symmetrized combinatorial star products, in the sense that
f ∗g = T−1(T f �Tg).Wewill see in Sect. 3 that although the standard and symmetrized
combinatorial star products are equivalent star products quantizing the same Poisson
structure, they have different continuity properties for |q(�)| > 1, as the equivalence
transformation T fails to be continuous for the relevant topologies on P(Rd).
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3. Continuity

In this section we extend the combinatorial star products introduced in Sect. 2 to bigger
function spaces, using the observation that a continuous bilinear map of locally convex
topological vector spaces extends to the completion (seeLemma3.1).Using convergence
results of combinatorial star products (cf. Sect. 2.4) we may evaluate the combinatorial
star product � to �� for some complex value of � and then proceed to find locally convex
topologies on P(Rd) with respect to which �� is continuous. Then �� will extend to
the completion, so that the objective is to find topologies for which the completion is as
large as possible.

This approach has been used by S. Waldmann and collaborators in several examples
for Poisson structures which are of constant or linear type and in Sect. 3.1 we review
the definition of the so-called TR-topology used for this purpose. This topology depends
on a parameter R ≥ 0 and the Moyal–Weyl and Gutt star products, which quantize
constant and linear Poisson structures respectively, are continuous with respect to the
TR-topology only for certain ranges of R.

The subsequent sections Sects. 3.2–3.4 contain the main results of this article: we
find locally convex topologies for which the combinatorial star products quantizing
nonlinear Poisson structures are continuous. In Sect. 3.4 we also show the existence of
continuous positive linear functionals for the combinatorial star products of Wick type
from Example 2.20, which allows us to represent the strict deformation quantizations
faithfully on a pre-Hilbert space by means of the GNS-construction (Theorem 3.55).

It might be surprising that for nonlinear Poisson structures there are often combina-
torial star products with better continuity properties than the Moyal–Weyl or Gutt star
products, meaning that they extend to larger function spaces. We show the following:

(i) Strict star products �� : P(Rd) × P(Rd) → P(Rd) for which the product of two
homogeneous polynomials of degrees d1 and d2 is a sum of homogeneous polyno-
mials of degrees≥ d1 + d2 can be extended to formal power series in the coordinates
(Proposition 3.8). Such products can often be obtained by quantizing polynomial
Poisson structures with vanishing constant and linear components.

(ii) There are combinatorial star products, for example those quantizing homogeneous
quadratic Poisson structures, which are either continuous with respect to the TR-
topology for all R ≥ 0 or for no R. In the latter case, we need to find finer topologies
with respect towhich the combinatorial star product is continuous. One such topology
that works in great generality is introduced in Sect. 3.2. It has, however, a relatively
small completion.

(iii) While the star products in all examples discussed in Sect. 2 can be extended to the
completion in (ii) one can typically extend them to much larger algebras when the
parameters in the construction, like the formal power series q, are suitably chosen.
We introduce the corresponding locally convex topologies in Sect. 3.3 and discuss
the examples of Sect. 2 in detail.

Throughout we use the following standard result.

Lemma 3.1. Let U, V,W be locally convex topological vector spaces. A bilinear map
μ : U × V → W is continuous if and only if for every continuous seminorm ‖−‖α on
W there are continuous seminorms ‖−‖β on U and ‖−‖γ on V such that

‖μ(u, v)‖α ≤ ‖u‖β‖v‖γ .

Ifμ is continuous, thenμ extends to a unique continuous bilinear map μ̂ : Û× V̂ → Ŵ ,
where Û , V̂ , and Ŵ denote the completions of U, V , and W, respectively.
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We typically apply this lemma with U = V = W = P(Rd) and μ = ��, where ��

is obtained from some combinatorial star product by evaluating t 	→ � as in Sect. 2.4.
We usually abuse notation and write μ = �� instead of μ̂ = �̂� also for the extended
map.

Convention 3.2. Throughout this section,� ⊂ C shall denote an open connected neigh-
bourhood of 0 ∈ C andO(�) the algebra of holomorphic functions on�.Weoften tacitly
pass from a holomorphic function q ∈ O(�) depending on a complex variable � ∈ �

to its power series expansion around � = 0 (which determines q uniquely) with formal
variable t .

For a star product �� : V ×V → V quantizing a Poisson structure η, where � ranges
over �, and fixed f, g ∈ V we define maps μ f,g,� f,g : � → V by

μ f,g(�) := f �� g and � f,g(�) :=
{

1
i� ( f �� g − g �� f ) if � �= 0
{ f, g}η if � = 0 .

(3.3)

Typically V is some completion of P(Rd).

Our definition of strict deformation quantization (Definition 2.3) requires these maps
to be continuous. However, we often show that μ f,g and � f,g are holomorphic, where
a map f : � → V into a Fréchet space V is called holomorphic4 if φ ◦ f : � → C is
holomorphic for all continuous linear functionals φ ∈ V ∗.

3.1. Continuity of the Moyal–Weyl and Gutt star products. In [13,33,37] continuity
estimates for the Moyal–Weyl and Gutt star products were obtained (see also [38] for a
review). In these articles, the relevant topology is the so-called TR-topology, because it
depends on a real parameter R and is obtained by viewing P(V ) � S(V ∗) ⊂ TR(V ∗)
as a subspace, where TR(V ∗) is a certain locally convex topology on the tensor algebra
T(V ∗) = ⊕

n≥0(V ∗)⊗n on the dual of a vector space V . We work with the case when
V � R

d is finite-dimensional, in which case the TR-topology restricts to the usual
Euclidean topology on the tensor powers (V ∗)⊗n ⊂ T(V ∗), and the parameter R allows
one to fine-tune the topology on P(Rd) according to the Poisson structure at hand.

Definition 3.4. ([37,Def. 3.5]) Let R ∈ [0,∞).WewritePTR (Rd) for the locally convex
vector space obtained by endowing P(Rd) with the TR-topology, defined by the family
of norms {‖−‖TRC | C ∈ (0,∞)}, where

‖−‖TRC : P(Rd) → [0,∞) ,

∥
∥
∥

∑

L∈N
d
0

fL x
L
∥
∥
∥
TR

C
:=

∑

L∈N
d
0

| fL |C |L| · (|L|!)R (3.5)

and we write P̂TR (Rd) for its completion.

Note that the TR-topology is coarser than the TR′ -topology whenever R ≤ R′. For
the completions we thus have P̂TR′ (R

d) ⊂ P̂TR (Rd).
The following two theorems summarize the continuity results for the strict standard-

ordered Weyl product �std
�
, the strict Moyal–Weyl star product ∗W

�
, and the strict Gutt

star product ∗G
�
, obtained from respectively �std (introduced before Theorem 2.13), ∗W,

and ∗G (see Proposition 2.25) by evaluating t 	→ � ∈ C.

4 The definition of holomorphy through linear functionals is sometimes referred to as “weak holomorphy”.
For Fréchet spaces, it coincides with the notion of “strong holomorphy” defined through the existence of the
limit of the usual difference quotient.
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Theorem 3.6. [37] Let R ≥ 1
2 and � ∈ C. Then the standard-ordered Weyl and the

Moyal–Weyl products �std
�

, ∗W
�
: PTR (Rd) × PTR (Rd) → PTR (Rd) are continuous and

therefore extend uniquely to continuous products �std
�

, ∗W
�
: P̂TR (Rd) × P̂TR (Rd) →

P̂TR (Rd). Moreover, for all f, g ∈ P̂TR (Rd), the maps μ f,g,� f,g : C → P̂TR (Rd),
defined as in (3.3), are holomorphic.

Note that in [33,37] generalizations to the infinite-dimensional setting are also proved,
but the above version of the theorem is sufficient for our purposes and least technical
to state. The following theorem gives an analogous result for linear Poisson structures,
which can also be generalized to infinite dimensions if one imposes a certain technical
condition on the Lie algebra.

Theorem 3.7. [13] Let g be a finite-dimensional Lie algebra, R ≥ 1, and � ∈ C.
Then the Gutt star product ∗G

�
: PTR (g∗) × PTR (g∗) → PTR (g∗) is continuous and

therefore extends to a continuous product ∗G
�
: P̂TR (g∗) × P̂TR (g∗) → P̂TR (g∗). The

maps μ f,g,� f,g : C → P̂TR (g∗) defined in (3.3) are holomorphic for all f, g ∈
P̂TR (g∗).

In Theorems 3.6 and 3.7 the resulting algebras are not locallymultiplicatively convex.
In the next sections, we will see that certain homogeneous quadratic Poisson structures
can be quantized by locally multiplicatively convex algebras.

3.2. General continuity results for combinatorial star products. In this section we
present two general continuity results for combinatorial star products. Our first gen-
eral result (Proposition 3.8) shows that if the combinatorial star product of any homo-
geneous polynomials of degrees d1 and d2 is a sum of homogeneous polynomials of
degrees ≥ d1 + d2, then the product can be extended to all formal power series in the
coordinates xi . Examples are quantizations of homogeneous quadratic Poisson struc-
tures. Our second general result (Theorem 3.14) shows that combinatorial star products
satisfying some bound on the number of reductions are continuous with respect to the
MacGyver topology (Definition 3.11).

3.2.1. A coarse topology:Theadic topology Denote the ideal ofP(Rd) � C[x1, . . . , xd ]
that is generated by x1, . . . , xd bym. Recall that them-adic topology ofP(Rd) is the one
induced by the metric dm( f, g) = 2−o( f−g) where o( f − g) denotes the largest integer
N ∈ N0 such that f − g ∈ mN , where by convention o(0) = ∞ and dm( f, f ) = 0.
Note that P(Rd) endowed with the m-adic topology is not a topological vector space
since the scalar multiplication is not continuous. However, its completion as a metric
space is still well-defined and coincides with the space C�x1, . . . , xd� of formal power
series, which contains P(Rd) as a dense subset.

Proposition 3.8. Assume that �� : P(Rd)×P(Rd) → P(Rd) only increases the degree
in the sense that the star product of a homogeneous polynomial of degree d1 and a
homogeneous polynomial of degree d2 is the sumof homogeneous polynomials of degrees
≥ d1 +d2. Then �� is uniformly continuous with respect to dm and extends to a uniformly
continuous product �� : C�x1, . . . , xd� × C�x1, . . . , xd� → C�x1, . . . , xd� on formal
power series.
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Proof. For f, g ∈ P(Rd) we have o( f �� g) ≥ o( f ) + o(g) since �� only increases the
degree, and therefore

dm( f �� f ′, g �� g′) = 2−o( f ��( f ′−g′)−(g− f )��g′)

≤ max{2−o( f ��( f ′−g′)), 2−o((g− f )��g′)}
≤ max{2−o( f )2−o( f ′−g′), 2−o(g− f )2−o(g′)}
≤ max{dm( f ′, g′), dm( f, g)}
≤ d×m(( f, f ′), (g, g′))

where d×m(( f, f ′), (g, g′)) = dm( f, g) + dm( f ′, g′) is the product metric on
C�x1, . . . , xd�× C�x1, . . . , xd�. This shows that �� is uniformly continuous, and such
maps extend uniquely to uniformly continuous maps on the completion. ��

Note that the point evaluations P(Rd) → C, f 	→ f (y) for y ∈ R
d \ {0} are not

continuous with respect to them-adic topology, and as a consequence the elements of the
completion C�x1, . . . , xd� cannot be identified with functions. All topologies on P(Rd)

considered in the rest of this article will be locally convex, and allow one to identify the
elements of the completions with functions.

3.2.2. A fine topology: The MacGyver topology A general result for extending �� to a
space of functions is given in Theorem 3.14 below.We first start with a technical lemma,
which will be used to show that the dependence of �� on � is even better than what is
required in our definition of strict deformation quantization (cf. Definition 2.3).

Lemma 3.9. Let �� : V × V → V be a bilinear map on a Fréchet space V , depending
on a parameter � ranging over �. If �� is locally uniformly continuous in �, in the sense
that for every �0 ∈ � and every continuous seminorm ‖−‖α on V there exists an open
neighbourhood U ⊂ � of �0 and a continuous seminorm ‖−‖β on V with

‖ f �� g‖α ≤ ‖ f ‖β‖g‖β

for all � ∈ U and f, g ∈ V , then the set {( f, g) ∈ V × V | � � � 	→ f �� g ∈
V is holomorphic} is closed.
Proof. Let φ ∈ V ∗ be a continuous linear functional. Then there is a continuous semi-
norm ‖−‖α on V such that |φ( f )| ≤ ‖ f ‖α holds for all f ∈ V . For any �0 ∈ � we
find an open neighbourhood U ⊂ � of �0 and a continuous seminorm ‖−‖β on V such
that ‖ f �� g‖α ≤ ‖ f ‖β‖g‖β holds for all f, g ∈ V and � ∈ U . Consequently, for any
converging sequences fn → f and gn → g in V ,

|φ( f �� g)− φ( fn �� gn)| ≤ ‖ f �� g − fn �� gn‖α

≤ ‖ f ‖β‖g − gn‖β + ‖gn‖β‖ f − fn‖β

holds for all � ∈ U . So if � 	→ fn �� gn is holomorphic for all n ∈ N, then this shows that
� 	→ φ( f �� g) is a uniform limit of holomorphic maps onU , hence holomorphic onU ,
and in particular in �0. Since �0 ∈ � was arbitrary, � 	→ φ( f �� g) is holomorphic on
�. Thus � 	→ f �� g is holomorphic on �, and it follows that the set of ( f, g) ∈ V ×V ,
for which � 	→ f �� g is holomorphic, is closed. ��
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Remark 3.10. Using that (locally) uniform limits of continuous functions are again con-
tinuous, we see that, under the assumptions of Lemma 3.9, the set of ( f, g) ∈ V × V
for which � → V , � 	→ f �� g is continuous is also closed. This even holds when the
domain � is an arbitrary subset of C.

Definition 3.11. Let the MacGyver topology on P(Rd) be the locally convex topology
given by the family of norms {‖−‖MG

C | C ∈ (0,∞)} defined by

‖−‖MG
C : P(Rd) → [0,∞) ,

∥
∥
∥

∑

L∈N
d
0

fL x
L
∥
∥
∥
MG

C
:=

∑

L∈N
d
0

| fL |C |L|2 . (3.12)

We write PMG(Rd) for the resulting locally convex vector space and P̂MG(Rd) for its
completion.

The MacGyver topology can be viewed a handyperson’s first choice for producing
strict quantizations with particularly nice dependence on � for a large class of Poisson
structures. However, it is finer than the TR-topology for any R ≥ 0, whence the comple-
tion with respect to this topology is strictly smaller than the completion with respect to
any of the TR-topologies. A function f is in the completion P̂MG(Rd) if and only if it is
analytic and its Taylor coefficients decay fast enough that the sum on the right of (3.12)
converges for any C ∈ (0,∞). Any such function extends to a holomorphic function on
C
d .
Recall fromTheorem2.13 the graphical formula for combinatorial star products given

by f � g = ∑
n≥0

∑
�∈Gn,2

C�( f, g) where f, g ∈ P(Rd) and where C� : P(Rd) ×
P(Rd) → P(Rd)�t� is a formal series of bidifferential operators, starting with tn if
� ∈ Gn,2. Rearranging the sums in powers of t , we can also write

f � g =
∑

n≥0
tn Bn( f, g) (3.13)

where each Bn : P(Rd) × P(Rd) → P(Rd) is now a bidifferential operator. It is easy
to prove that multiplication and differentiation, and consequently all bidifferential oper-
ators, are continuous with respect to the MacGyver topology. Hence Bn extends to the
completion and Bn( f, g) makes sense for all f, g ∈ P̂MG(Rd).

We show that the combinatorial star product is continuous onPMG(Rd) under a mild
finiteness condition:

Theorem 3.14. Let � be a combinatorial star product quantizing a Poisson structure η

and assume the following:

(a) For any 1 ≤ i, j ≤ d we have

xi � x j =
∑

K∈N
d
0

qi, j,K x
K (3.15)

with coefficients qi, j,K ∈ O(�)5 and only finitely many coefficients are non-zero.

5 These coefficients are identified with formal power series, as per Convention 3.2.
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(b) There is a constant α (independent of K and L) such that at most α(|K |+ |L|)2 many
reductions6 are needed to compute xK � x L .

(c) There is a constant β (independent of K and L) such that xK � x L is a sum of
monomials of order not greater than β(|K | + |L|).

Then we have the following.

(i) For any � ∈ �, the product �� : PMG(Rd)×PMG(Rd) → PMG(Rd), obtained from
� by evaluating t 	→ �, is continuous and extends uniquely to a continuous product

�� : P̂MG(Rd)× P̂MG(Rd) → P̂MG(Rd) .

(ii) For any fixed f, g ∈ P̂MG(Rd), the maps μ f,g,� f,g : � → P̂MG(Rd), defined in
(3.3), are holomorphic.

(iii) If Dr ⊂ � is a disc around 0 contained in �, then

μ f,g(�) = f �� g =
∑

n≥0
�
n Bn( f, g) (3.16)

holds for all � ∈ Dr , where the power series on the right-hand side takes values in
the Fréchet space P̂MG(Rd) and converges absolutely and uniformly on all compact
subsets of Dr .

Proof. Let U := Dr (�0) ⊂ � be an open disc around some point �0 ∈ �, such that
the closed disc Dr (�0) is still contained in �. Let Q = N supi, j,K ,�∈U {|qi, j,K (�)|},
where N is the number of non-zero coefficients qi, j,K in (3.15). We can assume that
α, β, Q ≥ 1, otherwise just replace the respective constants by 1 and the same estimates
remain true. The star product xK � x L can be computed by performing reductions, each
of which might increase the number of terms by a factor of N and the coefficients by a
factor of Q/N . Therefore for any C ≥ 1 and any � ∈ U ,

‖xK �� x L‖MG
C ≤ Qα(|K |+|L|)2C (β(|K |+|L|))2 ≤ (

QαCβ2)(|K |+|L|)2 ≤ (
QαCβ2)2|K |2+2|L|2

.

For f = ∑
K∈N

d
0
fK xK and g = ∑

L∈N
d
0
gLxL with only finitely many non-zero coef-

ficients fK respectively gL , we obtain that

‖ f �� g‖MG
C ≤

∑

K ,L∈N
d
0

| fK ||gL |
(
QαCβ2)2|K |2+2|L|2 = ‖ f ‖MG

(QαCβ2 )2
‖g‖MG

(QαCβ2 )2

holds for all C ≥ 1 and � ∈ U , showing that �� is continuous and extends uniquely to
the completion by Lemma 3.1.

Moreover, for fixed f, g ∈ P(Rd) all values of the map μ f,g : � → P(Rd) are con-
tained in a finite-dimensional subspace of P(Rd) and all its “components” are holomor-
phic on�, soμ f,g is holomorphic for fixed f, g ∈ P(Rd)with absolutely and uniformly
convergent power series expansion as in (3.16). Since the estimates above are uniform
in � ∈ U , it follows from Lemma 3.9 that μ f,g is holomorphic for all f, g ∈ P̂MG(Rd).
As a consequence of Cauchy’s integral formula (see e.g. [29, Thm. 3.31]) the power
series expansion of μ f,g around 0, where f, g ∈ P̂MG(Rd), is absolutely and uniformly

6 For a linear combination of words inC〈x1, . . . , xd 〉, a reductionmeans to perform the right-most possible

replacement of x j xi by xi x j +ϕ̃(x j xi ) if j > i in each word, leaving words of the form x
J1
1 · · · x Jdd unchanged

(cf. Definition 2.5).
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convergent on all compact subsets of any disc Dr ⊂ � around 0, and its n-th coefficient
is

1

n!
∂n

∂�n
f �� g

∣
∣
∣
�=0 =

1

2π i

∫

∂Dr ′

f �z g

zn+1
dz

where 0 < r ′ < r . Hence the coefficients depend continuously on ( f, g) ∈ P̂MG(Rd)×
P̂MG(Rd) and must therefore coincide with Bn( f, g). Finally, the holomorphy of � f,g
follows from that of μ f,g and the fact that B1( f, g)− B1(g, f ) = i{ f, g}η. ��
Remark 3.17. The assumptions of Theorem 3.14 are fulfilled in all the examples of non-
symmetrized combinatorial star products given in Sect. 2, more precisely for the star
products from Examples 2.11, 2.32, and 2.33. Replacing all x’s withw’s in the definition
of the MacGyver topology and Theorem 3.14, the result also holds for the combinatorial
star products of Wick type from Example 2.20. Note that combinatorial star products
with different finiteness conditions, i.e. a different bound such as α(|K | + |L|)3 for
the number of reductions or a different bound for the order of xK � x L , are typically
continuous with respect to an adjusted MacGyver topology, where the exponent of C in
(3.12) is changed.

Remark 3.18. The completion P̂MG(Rd) is not as large as one might hope, as it does
not contain any non-constant bounded functions R

d → C. Indeed, if f ∈ P̂MG(Rd) is
bounded, its extension to a holomorphic function onC

d (which we continue to denote by
f ) satisfies | f (z1, z2, . . . , zd)| ≤ Ce|z1|1/2 for fixed z2, . . . , zd ∈ C and some constant
C > 0 depending on z2, . . . , zd , due to the imposed fast decay of the Taylor coefficients.
By the Phragmén–Lindelöf Theorem (see e.g. [9, Ch. VI, Cor. 4.2]) this implies that
z1 	→ f (z1, z2, . . . , zd) is bounded, hence constant, for all z2, . . . , zd ∈ C. So f is
independent of z1, and we can repeat the argument with the other variables.

3.3. Stronger continuity results in examples. In Sect. 3.2 we saw two topologies which
could be used to extend combinatorial star products from the space of polynomial func-
tions to larger spaces. Due to the generality of these results, the completion is in some
sense either too large, as the elements can no longer be viewed as smooth functions on
R
d , or too small, as it contains too few interesting functions (cf. Remark 3.18).
In concrete examples, in particular in all of the examples considered thus far, we

shall obtain far better continuity estimates for certain choices of the parameters entering
the combinatorial star product. These estimates are described in detail in Sect. 3.3.2,
Sect. 3.3.3, and Sect. 3.3.4, after introducing the relevant locally convex topologies in
Sect. 3.3.1. These topologies ensure that the space of polynomial functions is completed
to large spaces of functions, so they combine the advantages of the coarse and fine
topologies of Sects. 3.2.1 and 3.2.2.

3.3.1. Analytic functions We begin by introducing certain spaces of analytic functions
with Taylor series expansion converging on certain products of intervals Ir . For two
d-tuples r, r ′ ∈ (0,∞]d , we define r < r ′ and r ≤ r ′ componentwise, e.g. r < r ′ holds
whenever ri < r ′i for all 1 ≤ i ≤ d.

Let r = (r1, . . . , rd) ∈ (0,∞]d . It is well-known that any holomorphic function f
on the polydisc

Dr := {z ∈ C
d | |zi | < ri for all 1 ≤ i ≤ d}
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has a Taylor series
∑

L∈N
d
0
fL zL which converges absolutely and uniformly to f on all

compact subsets of Dr . Hence the right-hand side of

‖ f ‖ρ =
∑

L∈N
d
0

| fL |ρL

converges for any d-tuple ρ ∈ (0,∞)d with ρ < r and ‖ f ‖ρ is well-defined for all
holomorphic functions f on Dr . We always consider the space O(Dr ) of holomorphic
functions on Dr with the family of norms {‖−‖ρ | ρ ∈ (0,∞)d , ρ < r}.
Lemma 3.19. Let r ∈ (0,∞]d . Then the above topology of O(Dr ) is precisely the
topology of uniform convergence on compact subsets of Dr .

Proof. This result is well-known and a proof is only repeated for the convenience of the
reader. We need to show that the families of seminorms {‖−‖ρ | ρ ∈ (0,∞)d , ρ < r}
and {supz∈K |−(z)| | K ⊂ Dr , K compact} on O(Dr ) are equivalent. Let K ⊂ Dr be
any compact subset. Then there exists ρ ∈ (0,∞)d , ρ < r such that K ⊂ Dρ and we
obtain that

sup
z∈K

| f (z)| ≤ sup
z∈K

∑

L∈N
d
0

| fL ||z1|L1 . . . |zd |Ld ≤
∑

L∈N
d
0

| fL |ρL = ‖ f ‖ρ

holds for all f = ∑
L∈N

d
0
fL zL ∈ O(Dr ). Conversely, let ρ ∈ (0,∞)d , ρ < r and

choose ρ′ ∈ (0,∞)d , ρ < ρ′ < r . Then we know from Cauchy’s integral formula that

| fL | = 1

L! |∂L f (0)| = 1

(2π)d

∣
∣
∣
∣

∫

∂Dρ′

f (z)

zL+(1,...,1)
dz

∣
∣
∣
∣ ≤ max

z∈∂Dρ′

| f (z)|
(ρ′)L

where ∂Dρ′ = {z ∈ C
d | |zi | = ρ′i for all 1 ≤ i ≤ d}. Consequently,

‖ f ‖ρ =
∑

L∈N
d
0

| fL |ρL ≤ max
z∈∂Dρ′

| f (z)|
∑

L∈N
d
0

( ρ

ρ′
)L = max

z∈∂Dρ′
| f (z)| 1

1− ρ1
ρ′1
· · · 1

1− ρd
ρ′d

.

Since ∂Dρ′ is compact, this shows that the families of seminorms are indeed equivalent.
��

It follows from standard results in complex analysis thatO(Dr ) is a Fréchet space and
that the holomorphic polynomials, restricted to Dr , form a dense subspace. Moreover,
the inclusion ι : Ir → Dr of

Ir := Dr ∩ R
d = {x ∈ R

d | |xi | < ri for all 1 ≤ i ≤ d} (3.20)

into Dr induces an injective map ι∗ : O(Dr ) → C∞(Ir ), f 	→ f ◦ ι, since any holo-
morphic function is already uniquely determined by its restriction to the reals. Denote
the image of ι∗ by A(Ir ), and endow it with the locally convex topology that makes
ι∗ : O(Dr ) → A(Ir ) a homeomorphism.
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Corollary 3.21. Let r ∈ (0,∞]d . ThenA(Ir ) is a Fréchet space. Moreover, the polyno-
mials on R

d restricted to Ir form a dense subspace, and the topology ofA(Ir ) is induced
by the family of norms {‖−‖ρ | ρ ∈ (0,∞)d , ρ < r} defined by

‖−‖ρ : A(Ir ) → [0,∞) , ‖ f ‖ρ :=
∑

L∈N
d
0

| fL |ρL (3.22)

where
∑

L∈N
d
0
fL x L is the power series expansion of f around 0.

Definition 3.23. Let r ∈ (0,∞]d . We write Pr (R
d) for the locally convex vector space

obtained by endowing P(Rd) with the family of norms {‖−‖ρ | ρ ∈ (0,∞)d , ρ < r}
and setP∞(Rd) := P(∞,...,∞)(R

d). As usual, P̂r (R
d)denotes the completion ofPr (R

d).

Remark 3.24. (Comparison of locally convex topologies) The topologies of PT0(R
d)

andP∞(Rd) coincide, but generally the topology ofPTR (Rd) is finer than that ofPr (R
d)

and has a smaller completion. More precisely, for (0, . . . , 0) < r ≤ r ′ ≤ (∞, . . . ,∞)

and 0 ≤ R ≤ R′ < ∞, the various completions of P(Rd) are related as follows

P̂MG(Rd) ⊂ P̂TR′ (R
d) ⊂ P̂TR (Rd) ⊂ P̂T0(R

d)

= P̂∞(Rd) ⊂ P̂r ′(R
d) ⊂ P̂r (R

d) ⊂ C�x1, . . . , xd�.

Corollary 3.25. Let r ∈ (0,∞]d . A star product � : Pr (R
d) × Pr (R

d) → Pr (R
d) is

continuous if and only if for any ρ ∈ (0,∞)d , ρ < r there exists a ρ′ ∈ (0,∞)d , ρ′ < r
and a constant Cρ ∈ R such that

‖ f � g‖ρ ≤ Cρ‖ f ‖ρ′ ‖g‖ρ′

holds for all f, g ∈ P(Rd). If this is the case, then � extends to a unique continuous
bilinear map A(Ir )×A(Ir ) → A(Ir ), which we typically denote by the same symbol.

Proof. Follows directly from Lemma 3.1 and Corollary 3.21. ��
For some combinatorial star products we can show a stronger statement, namely

that it suffices to take ρ′ = ρ and Cρ = 1 in the previous corollary. In this case, the
resulting algebra (A(Ir ), �) is locally multiplicatively convex, meaning that its topology
is induced by the seminorms ‖−‖ρ satisfying ‖ f � g‖ρ ≤ ‖ f ‖ρ‖g‖ρ .

Remark 3.26. For continuity estimates of combinatorial star products of Wick type, we
replace the real generators xi by wi . To this end, we let Jr = Dr ∩ J

d (where J
d was

defined in (2.17)). Note that the inclusion κ : Jr → C
d still induces an injective map

κ∗ : O(Dr ) → C∞(Jr ). Denote the image of κ∗ byA(Jr ), and endow it with the locally
convex topology that makes κ∗ : O(Dr ) → A(Jr ) a homeomorphism. This topology is
induced by the family of norms {‖−‖ρ | ρ ∈ (0,∞)d , ρ < r} defined by

‖−‖ρ : A(Jr ) → [0,∞) , ‖ f ‖ρ :=
∑

L∈N
d
0

| fL |ρL (3.27)

where f = ∑
L∈N

d
0
fLwL is the power series expansion of f around 0. Note that

κ∗ ◦ (ι∗)−1 : A(Ir ) → A(Jr ) is a homeomorphism, mapping xi to wi . We write Pr (J
d)

for the locally convex vector space obtained by endowing P(Jd) with the family of
norms {‖−‖ρ | ρ ∈ (0,∞)d , ρ < r}.
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3.3.2. Log-canonical Poisson structure We saw in Example 2.11 that there are many
different formal star products � that quantize the log-canonical Poisson structure, de-
pending on a choice of formal power series q = 1 + it + O(t2) ∈ C�t�. If this power
series is the formal Taylor expansion of a holomorphic function q ∈ O(�) around 0,
then � can be evaluated to a strict associative product �� for any � ∈ �, as discussed
in Sect. 2.4.1. Theorem 3.14 can be used to topologize all these products. However,
if |q(�)| ≤ 1 then there are much coarser topologies with respect to which �� is still
continuous, allowing us to extend �� to much larger function spaces.

Theorem 3.28. Let q ∈ O(�) be a holomorphic function whose Taylor expansion
around 0 is of the form 1 + it + O(t2), and let � be the associated combinatorial star
product quantizing the log-canonical Poisson structure η on R

d as in Example 2.11. For
any r ∈ (0,∞]d and any � ∈ � with |q(�)| ≤ 1 we have:

(i) The product �� : Pr (R
d)×Pr (R

d) → Pr (R
d), obtained from � by evaluating t 	→ �,

is continuous, so that �� extends uniquely to a continuous product

�� : A(Ir )×A(Ir ) → A(Ir ) .

(ii) The resulting algebra (A(Ir ), ��) is locally multiplicatively convex.
(iii) For any fixed f, g ∈ A(Ir ), the maps μ f,g,� f,g : �≤1 → A(Ir ), defined as in

formula (3.3), are continuous on �≤1 = {� ∈ � | |q(�)| ≤ 1} and holomorphic in
the interior (�≤1)◦ = {� ∈ � | |q(�)| < 1}.

Proof. Let f = ∑
K∈N

d
0
fK xK and g = ∑

L∈N
d
0
gLxL with only finitely many non-zero

coefficients fK respectively gL . Evaluating the formal deformation parameter t to � (cf.
Sect. 2.4.1), we obtain that

‖ f �� g‖ρ ≤
∑

K ,L∈N
d
0

| fK ||gL |
∥
∥xK �� x L

∥
∥

ρ

=
∑

K ,L∈N
d
0

| fK ||gL |
∥
∥
∥q(�)

∑
1≤i< j≤d K j Li x K+L

∥
∥
∥

ρ

≤
∑

K ,L∈N
d
0

| fK ||gL |ρK+L

= ‖ f ‖ρ‖g‖ρ (3.29)

holds for all ρ ∈ (0,∞)d , ρ < r . This shows that the statement of Corollary 3.25 holds
with ρ′ = ρ and Cρ = 1, implying the continuity of �� in (i), but also that the resulting
algebra is locally multiplicatively convex, proving (ii), since all seminorms ‖−‖ρ are
submultiplicative.

From the explicit formula (2.28) for ��, it is clear that μ f,g and � f,g are continuous
on �≤1 and holomorphic in (�≤1)◦ whenever f, g ∈ P(Rd). Since the estimate (3.29)
is uniform in �, the claimed continuity and holomorphy of μ f,g for f, g ∈ A(Ir ) follow
from Lemma 3.9 and Remark 3.10. Similarly, the claimed continuity and holomorphy
of � f,g for f, g ∈ A(Ir ) follows at all points except 0.

Since q has Taylor expansion 1 + it + O(t2) around 0, the map � 	→ 1
i� (q(�) − 1)

(extended by 1 for � = 0) is again holomorphic on �, in particular bounded on a small
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neighbourhood U of 0 by a constant C ≥ 1, say. For any � ∈ U ∩�≤1, we obtain

∣
∣
∣
∣
1

�
(q(�)N − 1)

∣
∣
∣
∣ =

∣
∣
∣
∣
1

�
(q(�)− 1)

N−1∑

j=0
q(�) j

∣
∣
∣
∣ ≤ CN .

Consequently, if � ∈ U ∩�≤1 \ {0} then

‖�xK ,x L (�)‖ρ =
∥
∥
∥
∥
1

�
(q(�)

∑
1≤i< j≤d K j Li − q(�)

∑
1≤i< j≤d L j Ki )xK+L

∥
∥
∥
∥

ρ

≤

≤
∥
∥
∥
∥
1

�
(q(�)

|∑1≤i< j≤d K j Li−L j Ki | − 1)xK+L
∥
∥
∥
∥

ρ

≤

≤ C

∥
∥
∥
∥

∑

1≤i< j≤d
(K j Li − L j Ki )x

K+L
∥
∥
∥
∥

ρ

= C
∥
∥{xK , x L}η

∥
∥

ρ
.

Sincedifferentiation and therefore also thePoissonbracket {−,−}η : Pr (R
d)×Pr (R

d) →
Pr (R

d) is continuous, there exist C ′ > 0 and 0 < ρ′ < r such that

‖� f,g(�)‖ρ ≤
∑

K ,L∈N
d
0

| fK ||gL |‖�xK ,x L (�)‖ρ ≤ C
∑

K ,L∈N
d
0

| fK ||gL |
∥
∥{xK , x L }η

∥
∥

ρ
≤

≤ C ′
∑

K ,L∈N
d
0

| fK ||gL |‖xK ‖ρ′ ‖x L‖ρ′ = C ′‖ f ‖ρ′ ‖g‖ρ′ .

Since this estimate is uniform on U ∩ �≤1 and since we also have ‖� f,g(0)‖ρ =
‖{ f, g}η‖ρ ≤ C ′‖ f ‖ρ′ ‖g‖ρ′ , the continuity of� f,g in � = 0 follows fromRemark 3.10.
��

Note that for q(�) = ei�, the condition |q(�)| ≤ 1 is satisfied whenever � lies in the
closed upper half-plane, so in particular for � ∈ R. However, when q(�) = 1+ i�, then 0
is the only real number satisfying |q(�)| ≤ 1, and we do not obtain a strict quantization
in the sense of Definition 2.3 from the previous theorem. This shows that the naive choice
of q is not always the best for continuity estimates. If q(�) = (1− i�)−1, then R \ {0}
is even contained in (�≤1)◦, so that the dependence of f �� g on � is even analytic on
R \ {0}.
Remark 3.30. Considering � as in Theorem 3.28 one can show via more refined argu-
ments that all derivatives of μ f,g extend continuously from (�≤1)◦ to �≤1, in partic-
ular to � = 0. The coefficients Bn in the Taylor expansion

∑∞
n=0 tn Bn( f, g) of μ f,g

around � = 0 coincide with the bidifferential operators (3.13) defining �. However,
contrary to Theorem 3.14 (iii), the radius of convergence of this Taylor series for general
f, g ∈ A(Ir ) is 0.

Remark 3.31. The previous proof shows that �� is continuous with respect to any norm
‖−‖ρ with ρ ∈ (0,∞)d . Hence it also extends to a continuous product on the Banach
space obtained by completingP(Rd)with respect to ‖−‖ρ . However, since the topology
is determined by a single norm, one sees immediately that the Poisson bracket associated
to the log-canonical Poisson structure is not continuous on these spaces.
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3.3.3. Other polynomial Poisson structures In this subsection, we show how to extend
the star products from Examples 2.32 and 2.33 to spaces of analytic functions. These
results are easy consequences of the following theorem:

Theorem 3.32. Let N ∈ N0, assume that p, q, r ∈ O(�) are holomorphic functions
with p(0) = q(0) = r(0) = 1 and q �= r−N , and let � be the associated combinatorial
star product introduced in Proposition 2.34 (i), quantizing the Poisson structure (2.35)
on R

3. Write

�′ :=
{
� ∈ �

∣
∣
∣ |q(�)| ≤ 1, |r(�)| = 1, p−1

qr N−1 has at worst a removable singularity at �
}

.

(i) For any � ∈ �′, the product �� : P∞(R3) × P∞(R3) → P∞(R3) obtained by
evaluating � for t 	→ � as in Proposition 2.34 (iii) is continuous, so that �� extends
uniquely to a continuous product �� : A(R3)×A(R3) → A(R3).

(ii) For any fixed f, g ∈ A(R3), the maps μ f,g,� f,g : �′ → A(R3), defined as in
formula (3.3), are continuous on �′ and holomorphic on its interior (�′)◦.

Proof. Fix a compact set K ⊂ �′. We claim that there exists a constant C ≥ 1 such that
|λ̃m(w, s)| ≤ C holds for all � ∈ K , m ∈ N0, s ∈ {0, 1} and words w with letters 0 and
1. (Here, λ̃m(w, s) is defined as in (2.37), but with p, q, and r evaluated for t 	→ �.)
Indeed, the fraction on the right-hand side of

|λ̃m(w, 1)| =
∣
∣
∣
∣(p(�)− 1)

m−|w|−1∑

j=0
(q(�)r(�)N ) j

∣
∣
∣
∣ =

∣
∣
∣
∣

p(�)− 1

q(�)r(�)N − 1

∣
∣
∣
∣
∣
∣(q(�)r(�)N )m−|w| − 1

∣
∣

is by assumption holomorphic on an open set containing �′, and therefore bounded on
K , and the remaining factor is bounded by 2 on �′. Since |λ̃m(w, 0)| ≤ 1 on �′, the
claim follows. Consequently, |λm(w)| ≤ Ck holds for all k,m ∈ N0, w ∈ {0, 1}k , and
� ∈ K . For any ρ = (�, . . . , �) ∈ (0,∞)d with � ≥ 1 we estimate

‖xi y j zk �� x�ymzn‖ρ ≤
∑

w∈{0,1}k
|r(�)|( j−k)�+ j N |w||λm(w)|∥∥xi+�+N |w|y j+m−|w|zk+n−|w|

∥
∥

ρ

≤
∑

w∈{0,1}k
Ck�i+ j+k+�+m+n+(N−2)|w|

≤ 2kCk�i+ j+k+�+m+n+Nk

≤ (2C�N+1)i+ j+k+�+m+n

= ‖xi y j zk‖ρ′ ‖x�ymzn‖ρ′

where ρ′ = (2C�N+1, . . . , 2C�N+1). We used that �(N−2)|w| ≤ �N |w| ≤ �Nk if w ∈
{0, 1}k , and that the set {0, 1}k has 2k elements. Hence we also have

∥
∥
∥
∥

∞∑

i, j,k=0
ci, j,k x

i y j zk ��

∞∑

�,m,n=0
d�,m,nx

�ymzn
∥
∥
∥
∥

ρ

≤
∞∑

i, j,k,�,m,n=0
|ci, j,k ||d�,m,n|‖xi y j zk‖ρ′ ‖x�ymzn‖ρ′

=
∥
∥
∥
∥

∞∑

i, j,k=0
ci, j,k x

i y j zk
∥
∥
∥
∥

ρ′

∥
∥
∥
∥

∞∑

�,m,n=0
d�,m,nx

�ymzn
∥
∥
∥
∥

ρ′
.
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Note that any point in �′ has a compact neighbourhood and that the above estimates
are uniform for � in an arbitrary compact subset K ⊂ �, so that the continuity of
μ f,g in �′ and of � f,g in �′ \ {0}, as well as the holomorphy of μ f,g in (�′)◦ and of
� f,g in (�′)◦ \ {0}, follow from Proposition 2.34 (iv), Lemma 3.9, and Remark 3.10.
Continuity respectively holomorphy of � f,g at � = 0 (if this point is contained in
�′ respectively (�′)◦) follow similarly from uniform estimates of � f,g on a small
neighbourhood of 0. These estimates can be obtained as above, after noting that the
summand for w = (0, . . . , 0) cancels out in (2.36), and that | 1

�
λ̃m(w, 1)| ≤ mC̃ for

some constant C̃ independent of � ∈ K , m ∈ N0, and the word w. ��
Note that the set �′ in the previous theorem depends crucially on p, q, and r . It has

empty interior (so that the statement about holomorphy is vacuous) unless r = 1.

Example 3.33. Choosing p(�) = q(�) = ei� and r(�) = 1 in Theorem 3.32, the family
A� = (A(R3), ��) defines a strict quantization (in the sense of Definition 2.3) of the
Poisson structure introduced in Example 2.32, where � may assume any value in �′
which coincides with the closed upper half-plane. Choosing q(�) = 1

1−i� instead, we
even have that �′ contains R \ {0} in its interior.
Example 3.34. Choosing p(�) = (N + ei(N+1)�)/(N + 1) and q(�) = r(�) = ei� in
Theorem 3.32, the family A� = (A(R3), ��) defines a strict quantization of the Poisson
structure introduced in Example 2.33. In this case, the strict quantization is defined
for � ∈ R. Note that other seemingly natural choices like setting q(�) = 1 + i� and
p(�) = r(�) = ei� or setting q(�) = r(�) = p(�) = 1 + i� lead to �′ ∩ R = {0} and
hence do not define strict quantizations in the sense of Definition 2.3.

Another striking special case of Theorem 3.32 is the following.

Example 3.35. (Quantum Weyl algebra) Choosing p(�) = 1 + i�, q(�) = eiλ� for any
fixed λ ∈ (0,∞), and r(�) = 1 let us apply Theorem 3.32 for N = 0 and consider
the subspace C[y, z] ⊂ C[x, y, z] = P(R3) which is closed under the Poisson bracket
η = (λyz + 1) ∂

∂z ∧ ∂
∂y obtained by restricting η (2.35) to R

2.
We obtain a combinatorial star product � onR

2 associated to the above choices which
is determined by ϕ̃(zy) = yz(eiλt − 1) + it , and hence

(P(R2)�t�, �) � C〈y, z〉�t�/(zy − eiλt yz − it)

which becomes precisely the so-called quantum Weyl algebra when evaluating t 	→ �.
Recalling that P∞(R2) = PT0(R

2) (Remark 3.24), Theorem 3.32 therefore shows that
the resulting strict star product is continuous with respect to the T0-topology giving a
strict quantization A� = (A(R2), ��).

In particular, this implies continuity with respect to the TR-topology for all R ≥ 0
since η is a (non-homogeneous) quadratic Poisson structure. Yet, the standard-ordered
Weyl product �std

�
obtained for λ = 0 is only continuous with respect to the TR-topology

for R ≥ 1
2 (cf. Theorem 3.6). It is quite surprising that in the quantum Weyl algebra,

the extra factor of eiλ�—which for fixed � can be chosen arbitrarily close to 1—appears
to give a much larger strict deformation quantization than the standard Weyl algebra. In
fact, this observation can even be generalized to (quantum) Weyl algebras in arbitrary
even dimensions.

Remark 3.36. A similar phenomenon to Example 3.35 can also be observed when per-
turbing the log-canonical Poisson structure by lower orders, i.e. by constant and linear
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terms. Naively, one might expect that the convergence and continuity properties of a
formal quantization of this perturbed Poisson structure should not be better than those
of a constant or linear Poisson structure, since it contains constant and linear terms.
However, it turns out that any such Poisson structure still admits a strict quantization in
the sense of Definition 2.3 with underlying Fréchet space A(Rd) = P̂T0(R

d), contrary
to the continuity results for constant or linear Poisson structures (Theorems 3.6 and 3.7).

To see this, one may consider the Poisson structure η determined by

{xd , x1}η = x1xd + c and {x j , xi }η = xi x j

for 1 ≤ i < j ≤ d with (i, j) �= (1, d) which can be viewed as a d-dimensional gen-
eralization of the log-canonical Poisson structure and the Poisson structure of Example
3.35. This Poisson structure can be quantized by a combinatorial star product �, and
convergence and continuity results on the upper half-plane can be obtained in a similar
way.

Next, let T : P(Rd) → P(Rd) be the algebra homomorphism (with respect to the
classical commutative product) determined by T (xi ) = xi + ci , in other words T is the
pull-back with respect to the translation of R

d by (c1, . . . , cd). It is easy to show that
f �′ g := T (T−1 f �T−1g) is again a combinatorial star product, namely the one defined
by ϕ̃′(x j xi ) = T (ϕ̃(x j xi )), and �′ quantizes the Poisson structureη′with Poisson bracket
determined by

{xd , x1}η′ = x1xd + cd x1 + c1xd + c1cd + c and

{x j , xi }η′ = xi x j + c j xi + ci x j + ci c j

for 1 ≤ i < j ≤ d with (i, j) �= (1, d). Since both T and T−1 are continuous with
respect to the T0-topology, evaluating and completing works in just the same way as for
� and we obtain a strict quantization �′

�
: A(Rd) × A(Rd) → A(Rd) of η′, which is

defined for all � in the closed upper half-plane.
Finally, checking which restrictions the Jacobi identity imposes on the coefficients

of a Poisson structure with Poisson bracket {x j , xi } = xi x j + lower-order terms for
1 ≤ i < j ≤ d reveals that any such Poisson structure is already of the form above
for certain c, c1, . . . , cd ∈ R

d if d �= 3. If d = 3, then {xd , x1} may contain an extra
summand c′x2 with c′ ∈ R. However, a strict quantization in this one remaining case
can be constructed by similar methods.

3.3.4. Continuity of symmetrized combinatorial star products We now derive continu-
ity estimates for the symmetrized combinatorial star products introduced in Sect. 2.3.2.
Note that the symmetrizedMoyal–Weyl product satisfies the samecontinuity estimates as
other non-symmetrized star products for constant Poisson structures because the equiva-
lence transformation between those products is continuous, see [37, Prop. 5.9]. However,
the continuity properties of the standard-ordered and the symmetrized combinatorial star
products for the log-canonical Poisson structure are different.

As usual, assume that q ∈ O(�) and � ∈ �. If q(�) is not a root of unity (i.e.

q(�)n �= 1 for all n ∈ N), then [k]q(�) = 1−q(�)k

1−q(�)
and the q-multinomial coefficient can

be rewritten as
(|K |

K

)

q(�)

= (1− q(�)|K |)(1− q(�)|K |−1) . . . (1− q(�))

(1− q(�)K1 )(1− q(�)K1−1) . . . (1− q(�)) . . . (1− q(�)Kd )(1− q(�)Kd−1) . . . (1− q(�))
.

(3.37)
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If q(�) �= 0, we obtain the identity
(|K |

K

)

q(�)

= (−1)|K |q(�)|K |+(|K |−1)+···+1(1− q(�)−|K |)(1− q(�)−|K |+1) . . . (1− q(�)−1)
∏d

j=1(−1)K j q(�)K j+···+1(1− q(�)−K j ) . . . (1− q(�)−1)

= q(�)
1
2 (|K |2−K 2

1−···−K 2
d )

(|K |
K

)

q(�)−1
. (3.38)

Lemma 3.39. Let d ∈ N be fixed. If |q(�)| < 1, then there are constants cq(�),Cq(�) > 0
such that

cq(�) ≤
∣
∣
∣
∣

(|K |
K

)

q(�)

∣
∣
∣
∣ ≤ Cq(�)

holds for all K ∈ N
d
0 . If |q(�)| > 1, then

cq(�)−1 |q(�)| 12 (|K |2−K 2
1−···−K 2

d ) ≤
∣
∣
∣
∣

(|K |
K

)

q(�)

∣
∣
∣
∣ ≤ Cq(�)−1 |q(�)| 12 (|K |2−K 2

1−···−K 2
d )

holds for all K ∈ N
d
0 .

Proof. Since the q-Pochhammer symbol (a; q(�))∞ = ∏∞
k=0(1−aq(�)k) is convergent

for |q(�)| < 1, it follows from (3.37) that

(1; |q(�)|)∞
(−1; |q(�)|)d∞

≤
∣
∣
∣
∣

(|K |
K

)

q(�)

∣
∣
∣
∣ ≤

(−1; |q(�)|)∞
(1; |q(�)|)d∞

.

The case |q(�)| > 1 can be reduced to |q(�)| < 1 by using (3.38). ��
We can now estimate the coefficients of the symmetrized combinatorial star product for
the log-canonical Poisson structure on R

d . Introduce the abbreviation

��(K , L) :=
(|K |
K

)
q(�)

(|L|
L

)
q(�)

(|K+L|
K+L

)
q(�)

q(�)
∑

1≤i< j≤d K j Li (3.40)

so that xK ∗� x L = ��(K , L)
(|K+L|
K+L )

(|K |K )(|L|L )
xK+L .

Lemma 3.41. With the notation above assume that |q(�)| �= 1. Then there is a constant
C� (depending on �) such that |��(K , L)| ≤ C� holds for all multi-indices K , L ∈ N

d
0 .

Proof. If |q(�)| < 1 the estimate follows immediately from Lemma 3.39. If |q(�)| > 1,
then the same lemma implies that

|��(K , L)| ≤ C�|q(�)| 12 (|K |2−∑d
i=1 K 2

i +|L|2−
∑d

i=1 L2
i −|K+L|2+∑d

i=1(K+L)2i )|q(�)|
∑

1≤i< j≤d K j Li

= C�|q(�)|−
∑

1≤ j<i≤d K j Li

≤ C�

where C� = C2
q(�)−1/cq(�)−1 holds for all K , L ∈ N

d
0 . ��
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Theorem 3.42. Let q ∈ O(�) be a holomorphic function whose Taylor expansion
around 0 is of the form 1 + it + O(t2), and let ∗ be the symmetrized combinatorial
star product for the log-canonical Poisson structure on R

d , introduced in Example 2.26.
Write ��=1 := {� ∈ � | |q(�)| �= 1}.
(i) For any � ∈ ��=1 ∪ {0}, the product ∗� : P∞(Rd)×P∞(Rd) → P∞(Rd), obtained

from∗ by evaluating t 	→ �, is continuous, so that∗� extends uniquely to a continuous
product

∗� : A(Rd)×A(Rd) → A(Rd) .

(ii) For any fixed f, g ∈ A(Rd), the maps μ f,g,� f,g : ��=1 → A(Rd) are holomorphic.

Proof. Using that
(|K |
K

) ≤ d |K | holds for all K ∈ N
d
0 , we obtain that

‖xK ∗� x L‖ρ =
∣
∣
∣
∣��(K , L)

(|K+L|
K+L

)

(|K |
K

)(|L|
L

)

∣
∣
∣
∣‖xK+L‖ρ ≤ C�d

|K |+|L|‖xK ‖ρ‖x L‖ρ

≤ C�‖xK ‖dρ‖x L‖dρ (3.43)

holds for all ρ ∈ (0,∞)d . The rest of the proof is similar to the proofs given in the
previous section. ��
Remark 3.44. Note that the classical limit � → 0 would require continuity of μ f,g and
� f,g at � = 0, yet 0 �∈ ��=1. In fact, these functions are in general not continuous on
��=1 ∪ {0}, as the poles of ∗� accumulate at 0, so that if f, g ∈ A(Rd) then f ∗� g may
in general be unbounded on (��=1 ∪ {0})∩U for any open neighbourhood U ⊂ C of 0.
This can be avoided if one restricts to subsets that “stay far enough away from the poles”.
For example, if q(�) = 1 + i�, then one can show that μ f,g and � f,g are continuous on
R ⊂ ��=1 ∪ {0}, and we obtain a strict quantization in the sense of Definition 2.3.

3.4. Positive linear functionals for combinatorial star products of Wick type. Lastly we
consider the combinatorial star products of Wick type of Example 2.20. Recall from
Theorem 3.14 that this star product is continuous on PMG(Jd) (see Definition 3.11). We
prove below that the star product is also continuous on Pr (J

d) (cf. Remark 3.26) which
carries a coarser topology and has a larger completion. We then construct an explicit
family of positive linear functionals on P(Jd), which extend continuously to P̂MG(Jd).
This family is point-separating and can therefore be used to faithfully represent the ∗-
algebras P(Jd) and P̂MG(Jd) with product �� and complex conjugation as ∗-involution
on a pre-Hilbert space through theGNS-construction. Asmost of the positive functionals
we construct do not extend continuously to P̂r (J

d), it remains unclear whether this larger
algebra admits a faithful representation on some pre-Hilbert space.

The following continuity result for the combinatorial star products of Wick type of
Example 2.20 is proven in the same way as Theorem 3.28, we only have to replace the
generators xi by wi . (Recall that Jr and Pr (J

d) were defined in Remark 3.26.)

Theorem 3.45. Let q ∈ O(�) be a holomorphic function whose Taylor expansion
around 0 is of the form 1 − t + O(t2), and let � be the associated combinatorial star
product of Wick type introduced in Example 2.20. For any r ∈ (0,∞] and any � ∈ �

such that |q(�)| ≤ 1 we have the following:
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(i) The product �� : Pr (J
d)×Pr (J

d) → Pr (J
d), obtained from � by evaluating t 	→ �,

is continuous, so that �� extends uniquely to a continuous product

�� : A(Jr )×A(Jr ) → A(Jr ) .

(ii) The resulting algebra (A(Jr ), ��) is locally multiplicatively convex.
(iii) For any f, g ∈ A(Jr ), the maps μ f,g,� f,g : �≤1 → A(Jr ), defined as in formula

(3.3), are continuous on �≤1 = {� ∈ � | |q(�)| ≤ 1} and holomorphic in the
interior (�≤1)◦ = {� ∈ � | |q(�)| < 1}.
Convenient choices for q are now q(�) = e−�, in which case the quantization is

defined if Re(�) ≥ 0, or q(�) = 1 − �, in which case the quantization is defined for �

in the closed disc with radius 1 around 1. In both cases, we obtain a strict deformation
quantization A� = (A(Dr ), ��). Note that for both choices all coefficients in the Taylor
expansion of q around � = 0 are real, so that q(�) ∈ R whenever � ∈ R. The strict star
products �� are therefore compatiblewith the ∗-involution given by complex conjugation
(see Remark 2.29) for � ∈ [0,∞) and � ∈ [0, 2], respectively.

In the rest of this section, we study the existence of positive linear functionals aiming
at finding “enough” positive linear functionals to apply the GNS-construction. To this
end we choose q and � such that q(�) ∈ (0,∞), as there turn out to be too few positive
linear functionals when q(�) ≤ 0. Note that the product �� depends only on q(�), but
not the actual value of � itself. Since we are only interested in single values of q(�), we
therefore assume without loss of generality for the rest of this section that

q(�) = e−� (3.46)

since this function already attains all values in (0,∞). Denote the ∗-algebra for this
choice of q by P�(Jd) = (P(Jd), ��). The completions A�(Jr ) and P̂�

MG(Jd) (with
product and involution extendedbycontinuity) are also ∗-algebras andwehaveP�(Jd) ⊂
P̂�

MG(Jd) ⊂ A�(Jr ).

3.4.1. Positivity and continuity of deformed evaluation functionals Recall that a linear
functionalω : A→ C, a 	→ 〈ω, a〉 on a ∗-algebra A is said to be positive if 〈ω, a∗a〉 ≥ 0
holds for all a ∈ A.

For z ∈ J
d , let δz : P(Jd) → C denote the evaluation functional at z, i.e. 〈δz, f 〉 :=

δz( f ) = f (z) for f ∈ P(Jd). It is immediate that δz is a positive linear functional for
the commutative polynomial algebra P0(Jd) for all z ∈ J

d , but this is no longer true for
P�(Jd) with � > 0 (and therefore also not true for its completions).

Proposition 3.47. Let � > 0. If d is even, then δz : P�(Jd) → C with z ∈ J
d is a

positive linear functional if and only if z = 0. If d is odd, then δz is positive if and only
if z j = 0 for all j �= 1

2 (d + 1).

Proof. Assume that z ∈ J
d and that z j �= 0 for some 1 ≤ j ≤ � 12d�. Then zd+1− j = z j

and
〈
δz,

(
1− w j

z j

)∗
��

(
1− w j

z j

)〉
=

〈
δz, 1− w j

z j
− wd+1− j

zd+1− j
+ e−�

w jwd+1− j

z j zd+1− j

〉

= 1− 1− 1 + e−�

= e−� − 1 < 0
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showing that δz is not positive. When d is even, the above condition is satisfied for all
z ∈ J

d \ {0}, showing that δz is not positive for such points. When d is odd, this shows
that δz is not positive whenever z j �= 0 for some j �= 1

2 (d + 1) and it remains to prove
that δz is positive for z ∈ J

d with z j = 0 for all j �= 1
2 (d+1). For an arbitrary polynomial

f = ∑
K∈N

d
0
fKwK we have

f ∗ �� f =
( ∑

K∈N
d
0

fKwK
)∗

��

∑

L∈N
d
0

fLwL =
∑

K ,L∈N
d
0

f K fLwK∨ �� wL

=
∑

K ,L∈N
d
0

f K fLe
−�

∑
1≤i< j≤d K∨j Li wK∨+L

(3.48)

where K∨ = (Kd , . . . , K1) and thus

〈δz, f ∗ �� f 〉 =
∑

K ,L∈N
d
0

f K fLe
−�

∑
1≤i< j≤d K∨j Ki zK

∨+L =
∑

k,�∈N0

f kE f�E z
k+�
(d+1)/2 =

=
( ∑

k∈N0

fkE z
k
(d+1)/2

)∗( ∑

�∈N0

f�E z
�
(d+1)/2

)
≥ 0 .

Here, E ∈ N
d
0 stands for themulti-index that is 1 in component (d+1)/2 and 0 otherwise.

��
On the other hand, for � < 0 the situation is different: for d = 2, the evaluation

functionals δz remain positive for all z ∈ J
d , and for general d they can be deformed to

positive functionals δ�
z : P(Jd) → C, defined by extending

〈δ�

z , wK 〉 = zK e−
1
2�

∑
1≤i, j≤d mi j Ki K j (3.49)

linearly, where mi j := min{i − 1, j − 1, d − i, d − j}. (Note that δ�
z = δz if d = 2.)

Indeed, we have the following proposition.

Proposition 3.50. Let � ≤ 0. Then the linear functionals δ�
z : P�(Jd) → C are positive

for all z ∈ J
d .

Proof. Let f = ∑
K∈N

d
0
fKwK ∈ P(Jd). Using (3.48), we compute

〈δ�

z , f ∗ �� f 〉 =
∑

K ,L∈N
d
0

f K fL z
K∨+Le−�

∑
1≤i< j≤d K∨j Li− 1

2�
∑

1≤i, j≤d mi j (K∨+L)i (K∨+L) j

=
∑

K ,L∈N
d
0

vK MKLvL
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wherevL = fL zLe
− 1

2�
∑

1≤i, j≤d mi j Li L j andMKL = e−�
∑

1≤i< j≤d K∨j Li−�
∑

1≤i, j≤d mi j K∨j Li .
We can rewrite the second sum in the exponent of MKL as

∑

1≤i, j≤d
mi j K

∨
j Li =

∑

2≤i, j≤d−1
K∨

j Li +
∑

2≤i, j≤d−2
K∨

j Li + · · ·

=
∑

2≤ j≤i≤d−1
K∨

j Li +
∑

2≤i< j≤d−1
K∨

j Li

+
∑

3≤ j≤i≤d−2
K∨

j Li +
∑

3≤i< j≤d−2
K∨

j Li + · · ·

whence
∑

1≤i< j≤d
K∨j Li +

∑

1≤i, j≤d
mi j K

∨
j Li =

∑

1≤i≤d−1

∑

2≤ j≤d
K∨j Li +

∑

2≤i≤d−2

∑

3≤ j≤d−1
K∨j Li + · · ·

=
∑

1≤i≤d−1

∑

1≤ j≤d−1
K j Li +

∑

2≤i≤d−2

∑

2≤ j≤d−2
K j Li + · · ·

and therefore

MKL = e−�
∑

1≤ j≤d−1 K j
∑

1≤i≤d−1 Li e−�
∑

2≤ j≤d−2 K j
∑

2≤i≤d−2 Li · · · .

Note that for every n ∈ N0 the matrix (V n
i j )0≤i, j≤n := e−i j� is a Vandermonde matrix

with determinant det V n = ∏
0≤i< j≤n(e− j� − e−i�) ≥ 0 since � ≤ 0. Consequently

(every principal minor of) the infinite matrix (Vi j )i, j∈N0 := e−i j� is positive semidefi-
nite. Now M is an entrywise product of infinite matrices, each of which is obtained from
V by duplicating certain rows and columns. Since (all principal minors of) these factors
are positive semidefinite, (every principal minor of) the entrywise product M is positive
semidefinite. But this means that 〈δ�

z , f �� f 〉 = ∑
K ,L∈N

d
0
vK MKLvL ≥ 0, so δ�

z is a
positive linear functional. ��

The deformed evaluation functionals δ�
z for � < 0 also give rise to positive linear

functionals for � > 0 by identifying P�(Jd) with P−�(Jd).

Proposition 3.51. Let � > 0. For every z ∈ J
d , the linear functional δ�

z : P�(Jd) → C

determined by

〈δ�

z , wK 〉 = zK e�
∑

1≤i< j≤d Ki K j+
1
2�

∑
1≤i, j≤d mi j Ki K j (3.52)

is positive.

Proof. We claim that the linear map �� : P�(Jd) → P−�(Jd) determined by

��(wK ) = e�
∑

1≤i< j≤d Ki K j wK∨

is a ∗-isomorphism. It is clear that �� is an isomorphism of vector spaces. Moreover, it
intertwines the products �� and �−� since

��(wK ) �−� ��(wL) = e�
∑

1≤i< j≤d (Ki K j+Li L j )wK∨ �−� wL∨

= e�
∑

1≤i< j≤d (Ki K j+Li L j+K∨j L∨i )
wK∨+L∨

= e�
∑

1≤i< j≤d ((K+L)i (K+L) j−K j Li )wK∨+L∨

= ��(e−�
∑

1≤i< j≤d K j Li wK+L)

= ��(wK �� wL)
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and it is straightforward to check that �� also intertwines the ∗-involutions. Therefore,
the pull-back δ�

z = δ−�

z ◦�� of the positive linear functional δ−�

z : P−�(Jd) → C (see
Proposition 3.50) is positive. ��

Proposition 3.51 thus yields a family of positive linear functionals on P�(Jd). The
next proposition shows continuity results for these positive linear functionals.

Proposition 3.53. Assume that � > 0 and d ≥ 2. Then δ�
z is continuous on PMG(Jd)

for all z ∈ J
d and is continuous on Pr (J

d) if and only if z = 0.

Proof. To see that δ�
z is continuous on PMG(Jd), let c = max{1, |z1|, . . . , |zd |}. Then

we estimate

|〈δ�

z , wK 〉| = |zK | e�
∑

1≤i< j<d Ki K j+
1
2�

∑
1≤i, j≤d mi j Ki K j ≤ (c ed�)|K |2 = ‖wK ‖MG

ced� .

For an arbitrary polynomial f = ∑
K∈N

d
0
fKwK we find |〈δ�

z , f 〉| ≤ ∑
K∈N

d
0
| fK |

‖wK ‖MG
ced�

= ‖ f ‖MG
ced�

.

Clearly δ�

0 is continuous on Pr (J
d). Assume that δ�

z were continuous on Pr (J
d)

for some z ∈ J
d \ {0}. Then there would be C > 1 and 0 < ρ < r such that

|〈δ�
z , f 〉| ≤ C‖ f ‖ρ holds for all f ∈ P(Jd). Choose 1 ≤ i ≤ d with zi �= 0 and

take k ∈ N, k ≥ 2 large enough such that ek�/2 ≥ Cρiρd+1−i |zi |−2. Then we have
|〈δq

�
, wk

i w
k
i 〉| ≥ zki z

k
i e

k2�/2 ≥ Ckρk
i ρ

k
d+1−i = Ck‖wk

i w
k
i ‖ρ , contradicting the estimate

above and showing that δ�
z is not continuous on Pr (J

d) if z �= 0. ��

3.4.2. Representation on a pre-Hilbert space In the standard formulation of quantum
mechanics, the quantum observables are adjointable operators on a (pre)Hilbert space.
For a given ∗-algebra A, the existence of “enough” positive linear functionals gives
rise to a faithful representation of A as such a ∗-algebra of adjointable operators via
the GNS-construction (see for example [32, §4.4]). More precisely, to apply the GNS-
construction, one needs a point-separating family of positive linear functionals. We may
use the family {δ�

z }z∈Jd of deformed evaluation functionals which by Proposition 3.53
extend to P̂MG(Jd) and are still positive. It remains to show that the family {δ�

z }z∈Jd is
point-separating on P̂MG(Jd).

Lemma 3.54. Let � ∈ R. Then the family of linear functionals {δ�
z }z∈Jd separates the

points of P̂MG(Jd), i.e. for any f ∈ P̂MG(Jd), there exists z ∈ J
d such that 〈δ�

z , f 〉 �= 0.

Proof. Let � ≥ 0, f = ∑
K∈N

d
0
fKwK ∈ P̂MG(Jd) and assume that 〈δ�

z , f 〉 = 0 holds

for all z ∈ J
d . Since δ�

z is continuous on P̂MG(Jd),

0 = 〈δ�

z , f 〉 =
∑

K∈N
d
0

fK z
K e�

∑
1≤i< j<d Ki K j+

1
2�

∑
1≤i, j≤d mi j Ki K j

where the power series on the right-hand side converges for all z ∈ J
d . Hence all

coefficients fK with K ∈ N
d
0 must vanish. The argument for � < 0 is analogous in

which case one may use the formula (3.49) to compute 〈δ�
z , f 〉. ��

The existence of a point-separating family of positive linear functionals on P̂MG(Jd)

allows us to deduce the following result.
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Theorem 3.55. Let P̂�

MG(Jd) be the strict deformation quantization given in Theorem
3.45 with q(�) = e−�. For any fixed � ∈ R there exists a pre-Hilbert space D and an
injective ∗-homomorphism

P̂�

MG(Jd) → L∗(D)

where L∗(D) denotes the ∗-algebra of adjointable operators on D.

Proof. The linear functionals δ�
z separate the points of P̂�

MG(Jd) by Lemma 3.54, and
are all positive by Propositions 3.50 and 3.51. A faithful representation of P̂�

MG(Jd) on
a pre-Hilbert space D can now be obtained via the GNS-construction [32, §4.4]. ��
Remark 3.56. It would be interesting to determine whether the larger algebras A�(Jr )

for � > 0 can also be represented faithfully on a pre-Hilbert space. Since δ�
z extends

continuously toA(Jr ) only if � = 0, it currently remains unclear whetherA�(Jr ) admits
a point-separating family of positive linear functionals.

3.5. Further directions. We close with some remarks on possible directions for extend-
ing our results.

Other Poisson structures In all of our examples, aswell as in Theorem3.14,we looked at
quantizations of polynomial Poisson structures for which only finitely many reductions
are needed for all fixed polynomials f, g. This condition is satisfied for many well-
known classes of polynomial Poisson structures, including constant and linear Poisson
structures, as well as several higher-order Poisson structures, notably the log-canonical
Poisson structures. However, one can also construct examples which do not satisfy this
finiteness condition.

We expect that at least for general quadratic Poisson structures onR
d , the coefficients

which appear in the combinatorial star product xK � x L of two general monomials
are rational functions in the parameters qk�j i , where x j � xi = ∑

1≤k≤�≤d qk�j i xk x� for

1 ≤ i < j ≤ d. In other words, the formula for xK � x L may pick up extra poles,
similarly to what we saw for the symmetrized combinatorial star product (see Sect.
3.3.4). Nevertheless, we expect similar convergence and continuity results to hold for
all � in some dense subset of the domain of definition of the qk�j i ’s. We thus expect our
results to generalize to much larger classes of combinatorial star products. Recall that
any polynomial Poisson structure can be quantized via combinatorial star products.

On the other hand, we also saw in Sect. 3.3 that the strongest results could be achieved
for concrete examples. In order to construct strict quantizations which are defined on
large function spaces it thus seems prudent to work directly with particular (classes of)
Poisson structures of interest, as it may be difficult to obtain strong results for general
polynomial Poisson structures.

For example, one might look to construct strict deformation quantizations of certain
classes of log symplectic structures. The Poisson structures associated to the local normal
form of log symplectic structures contain only linear and constant terms [17, Thm. 37]
and can thus readily be quantized by the combinatorial star product (see Proposition
2.25). For degree reasons, the star product converges on polynomials and we expect the
continuity estimates in this case to be similar to those of purely constant or purely linear
Poisson structures (see Sect. 3.1). However, there are also log symplectic structures on
R
d which degenerate along a hypersurface of higher degree, for example along a smooth
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real elliptic (i.e. cubic) curve in R
2 [16, Ex. 1.13]. In case the hypersurface is defined by

polynomial equations, we expect the combinatorial approach described in Sect. 2.2 to
yield formal quantizations. However, higher-degree Poisson structures may not satisfy
the finiteness condition on the number of reductions (cf. the hypotheses of Theorem
3.14), so some further work will be needed to obtain convergence and continuity results
for these examples.

Representation-theoretic aspects of strict deformation quantizations In Theorem 3.55
we obtained a faithful representation of a strict deformation quantization ofWick type on
a pre-Hilbert space through the GNS-construction which allows one to use also operator-
theoretic tools in its study. It would be interesting to see whether this result can also be
generalized to larger ∗-algebras (cf. Remark 3.56), other combinatorial star products of
Wick type, or whether a similar result can be shown for the symmetrized combinatorial
star products introduced in Sect. 2.3.2.

ComparisonwithC∗-algebraic approach to strict quantization The constructionof strict
deformation quantizations can be viewed as a further step towards a concrete compari-
son between deformation quantization and other approaches to strict quantizations such
as C∗-algebraic quantizations obtained for example via quantum groups, as initiated
by M.A. Rieffel [28, §12]. In general such a comparison is difficult, because algebraic
constructions of quantizations usually contain only unbounded functions, whereas C∗-
algebraic quantizations contain only bounded elements. However, the strict deformation
quantization (A(C), ��) constructed in Sect. 3.4 contains on the one hand the “alge-
braic” quantum plane C〈x, y〉/(yx − q(�)xy) as a subalgebra, and on the other hand
bounded functions such as e−x2 , say, which should also be contained in C∗-algebraic
strict quantizations. This could facilitate and simplify concrete comparisons between
these two approaches to strict quantizations.
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