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Abstract: Weprovide a rigorous lattice approximation of conformal field theories given
in terms of lattice fermions in 1+1-dimensions, focussing on free fermion models and
Wess–Zumino–Witten models. To this end, we utilize a recently introduced operator-
algebraic framework for Wilson–Kadanoff renormalization. In this setting, we prove
the convergence of the approximation of the Virasoro generators by the Koo–Saleur
formula. From this, we deduce the convergence of lattice approximations of conformal
correlation functions to their continuum limit. In addition, we show how these results
lead to explicit error estimates pertaining to the quantum simulation of conformal field
theories.
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1. Introduction

A rigorous mathematical formulation of quantum field theory (QFT) is one the central
challenges for the newmillennium[82].Avariety of approaches to build a rigorous theory
of QFT have been employed throughout the past decades and have lead to deep results
and insights—from constructive QFT [37,38,86] to algebraic QFT [3,47,64], vertex
operator algebras (VOAs) [6,31,32,89], and beyond [45,46,81]. However, a completely
satisfactory mathematical theory of QFT is still yet to be obtained. For this reason a
proof of the rigorous existence of (and mass gap for) Yang-Mills theory was selected as
one of the Clay maths prize problems.

Several key difficulties to obtaining a rigorous formulation of QFT are already epit-
omized by 1 + 1-dimensional gapless quantum field theories, in particular, conformal
field theories (CFTs) where a variety of constructions and classifications results has been
obtained [4,12,13,16,21,26,33,58,91].

A natural strategy to prove the existence of such a theory is to somehow realize
it as the limit of a sequence of discretized approximations (see [11,52–54,59,71] for
recent attempts in a Hamiltonian setting), or lattice models, on finite spatial lattices
�N = εN {−LN ,−LN + 1, . . . , LN − 2, LN − 1} ⊂ εNZ, where L = εNrN is the
length of the system. Associated to each lattice site x ∈ �N is a quantum degree of
freedom, typically modeled by a Hilbert spaceHx , so that one assigns the total Hilbert
spaceHN ⊂⊗x∈�N

Hx to the system1. One requires, further, a Hamiltonian H (N )
0 for

each discretization

H (N )
0 = L

π
εN

∑

x∈�N

h(N )
x ,

which is a sum of self-adjoint operators h(N )
x on HN with finite support centered on x .

A key additional ingredient that must be specified is a C∗-algebra AN (considered as
a subalgebra of the bounded operators B(HN ) on HN ) of basic observables or fields,
corresponding to discretizations of their potential continuum counterparts. Given this
data the task is to assign mathematical meaning to the scaling limit of {AN ,HN , H (N )

0 }.
A multitude of challenges must be overcome to realize this limit, in particular: (a)

specifying themathematical data to compare the discretizationswith differing lattice size

1 In the cases considered in this paper the total Hilbert space is provided by fermionic Fock space Fa(hN )

based on a one-particle space hN for a particle with spin hopping on �N , which can be realised as subspace
of a direct sum of tensor products of smaller Hilbert spaces.
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(and hence the topology for the limit); (b) identifying the correct lattice Hamiltonians
for a target QFT; (c) proving the convergence of the sequence; and (d) proving that the
requisite symmetry groups of the QFT are realized via projective unitary representations
on the limit space. The recovery of expected continuum symmetries, i.e., requirement
(d), typically poses severe difficulties (see [17,23,51,83] for major advances in two-
dimensional critical lattice models in the Euclidean framework).

The recently introduced operator-algebraic renormalization (OAR) [11,69,85] sup-
plies a novel approach to defining, and proving the existence of, the above limit in
Hamiltonian approach, thus overcoming the four challenges outlined in the previous
paragraph. To do this one introduces the following additional structures:

• Refining quantum channels, which are unital completely positive (ucp)maps,αN
N+1 :

AN → AN+1, connecting the observable algebras between the different scales. These
induce dual coarse-graining trace-preserving completely positive (tpcp) maps EN+1

N
between the state spaces, or density matrices respectively preduals, B(HN+1)∗ →
B(HN )∗, in the ultraweakly continuous case. Here, B(HN )∗ denotes the predual on
B(HN ), i.e. the trace-class operators on HN .

• a sequence of initial (bare) states ω
(N )
0 on the algebras AN , possibly given by

a density matrix ρ
(N )
0 ∈ B(HN )∗, which are renormalized according to ω

(N )
M =

ω
(N+M)
0 ◦ αN

N+M .

The scaling limit is then obtained via the Gelf’and-Naimark-Segal (GNS) construc-
tion2 {H∞, π∞,�∞} applied to the inductive limit A∞ = lim−→N

AN and scaling-limit

state ω
(N )∞ = limM→∞ ω

(N )
M (the existence of the latter usually requires the imposi-

tion of additional renormalization conditions on the sequence ω
(N )
0 ). The convergence

of Hamiltonians H (N )
0 → H is considered in terms convergent operator sequences

limM→∞ lim supN→∞ ‖H (N )
0 − αM

N (H (M)
0 )‖∗ in a suitable operator topology (or their

associated unitary respectively automorphism groups) [22]. It is important to note that
this convergence is a direct extension of the convergence that describes the inductive-
limit algebra A∞, i.e., each element O ∈ A∞ is the limit of a convergent sequence ON
in the sense that:

lim
M→∞ lim sup

N→∞
‖ON − αM

N (OM )‖C∗ = 0.

To obtain a (full) CFT via an OAR scaling limit one needs to realize the infinite-
dimensional conformal group of symmetries via projective unitary representations on
the limit space. This requires the additional identification of a discretized family of
generators corresponding to the Virasoro algebra with central charge c [21],

[Lk, Lk′ ] = L
π
(k − k′)Lk+k′ + δk+k′,0

c
12 (

L
π
k)(( L

π
k)2 − 1),

[Lk, Lk′ ] = L
π
(k − k′)Lk+k′ + δk+k′,0

c
12 (

L
π
k)(( L

π
k)2 − 1),

[Lk, Lk′ ] = 0.

Such a family is furnished by the Koo-Saleur (KS) approximants [60]

L(N )
k = 1

2

(
H (N )
k + πεN

2L sin( 12 εN k)

[
H (N )
k , H (N )

0

])
,

2 Informally, this means that the continuum Hilbert space and its inner product are reconstructed from the
correlation functions of the basic observables AN in the scaling limit ω∞.
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L
(N )

k = 1
2

(
H (N )

−k + πεN

2L sin( 12 εN k)

[
H (N )

−k , H (N )
0

])
,

where the lattice hamiltonian Fourier modes are given by

H (N )
k = L

π
εN

∑

x∈�N

eikxh(N )
x ,

with k ∈ 
N in the dual lattice. The inductive family of ucp maps αN
N+1 must be

carefully chosen to ensure the existence of (meaningful) scaling limits (interestingly the
inductive-limit algebra is somewhat insensitive to the specific realization of each map
[5]).We focus on two classes (and their combination): a real-space renormalisation group
based on wavelets and their scaling functions [20] which explicitly maintains locality
of the algebra and a momentum-space renormalisation group based on a sharp cutoff in
momentum space. With this preliminary data in hand we turn now to a summary of the
main results.

1.1. Main results. Let us give a brief overview of the results presented in this paper.
The main results are presented in abridged form as Theorems A to C accompanied by
references to the appropriate statements in the main text. The basis of our results is
a scaling limit construction for free lattice fermions using OAR. This entails that our
approximation results for CFTs, i.e. the convergence of the KS approximants and other
current-type fields, are currently restricted to free-fermion CFTs, products thereof and
certain CFTs embeddable into those (see below). Although, we phrase all results in
terms of complex fermion algebras, fully analogous statements also hold for suitably
defined self-dual fermion algebras (Majorana fermions), as explained in the main sec-
tions. Specifically, we consider scaling limits ω∞ of the ground state ω

(N )
0 of a quadratic

lattice Dirac Hamiltonian:

H (N )
0 = ε−1

N

∑

x∈�N

(
a(1)†
x+εN a

(2)
x − a(1)†

x a(2)
x + h.c. + λN

(
a(1)†
x a(1)

x − a(2)†
x a(2)

x

))
,

in the massless case λN = 0. Here, ax , a
†
x are the usual annihilation and creation oper-

ators generating a complex fermion algebra AN associated with the lattice �N .
The first main result of the paper concerns the convergence of the KS approximants

to the continuum Virasoro generators in projective unitary positive-energy representa-
tions with central charge c = 1

2 , 1 associated with free-fermion scaling limits ω∞. The
convergence holds on the natural domain of finite-energy vectors in Fock space (with
respect to the chiral conformal Hamiltonian L±,0 arising from H (N )

0 ) [15]. Here and in
the following, ± denotes the chiral and anti-chiral components defined in Sect. 2.4. In
the main text, this result is stated as Theorem 4.11, where all details can be found.

Theorem A (Convergence of the Koo–Saleur approximants for π∞). Letω∞ be a mass-
less scaling limit of the free-fermion ground state ω

(N )
0 and π∞ its GNS representation.

The chiral Koo–Saleur approximants, L(N )
k,±, converge strongly to the continuum Vira-

soro generators, Lk,±, on the dense, common coreDfin ⊂ H∞ spanned by finite-energy
vectors of the chiral conformal Hamiltonian L±,0:

lim
N→∞ ‖(:π∞(αN∞(L(N )

±,k)) : −L±,k)φ‖ = 0,

for all φ ∈ Dfin.
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The proof of this theorem is a consequence of the basic Lemma 4.10 and exploits
the momentum-cutoff renormalization group given in Definition 3.9 in combination
with known results concerning the implementability of Bogoliubov transformations in
quasi-free representations of fermion algebras (see Sect. 2.1.1).

A version of this result for the Fock representation with c = 0 (not of positive
energy) is given in Theorem 4.6 and another one for smeared Virasoro generators in
Theorem 4.16. Moreover, a similar result can be obtained for the lattice approximation
of Wess–Zumino–Witten (WZW) currents (see Sect. 5 and Theorem 5.1).

The second major result of our paper concerns correlation functions of fermion op-
erators under the action of conformal transformations generated by Virasoro generators.
Informally it states that the finite-scale dynamical correlation function approximate the
continuum dynamical correlation functions for arbitrary collections of operators in the
(chiral) fermion algebra (especially including trace-class generators of quasi-free deriva-
tions as in [94]). This results is referred to as Theorem 6.1 together with Corollary 6.2
in the main text.

Theorem B (Convergence of fermion correlation functions). Let s ∈ Cα(R) be a suffi-
ciently regular, compactly supported orthonormal Daubechies scaling function, and π∞
be the scaling limit representation of the fermion algebra A∞ associated with the free-
fermion scaling limit ω∞. Then, for any convergent sequences {AN }N∈N0 , {BN }N∈N0

with limits A, B ∈ A∞ and uniformly in t ∈ R on compact intervals, we have:

lim
N→∞(�

(N )
0 , π(N )(AN )σ

(N )
t (π(N )(BN ))�

(N )
0 ) = (�∞, π∞(A)σt (π∞(B))�∞) ,

where �
(N )
0 , π(N ) are the GNS-vector and -representation of ω

(N )
0 . σ

(N )
t and σt are

1-parameter (semi-)groups of Bogoliubov transformations generated by a (smeared)
Koo–Saleur approximant or a (non-)abelian current and their continuum analogues
respectively.

The proof of this theorem is implied the existence of the scaling limit of ground
states due to Lemma 3.11 and Lemmata 4.5, 4.10 & 4.15 because of the semi-group
convergence theorem [55, Theorem 2.16, p. 504], cf. also [24, Theorem 1.8, p. 141].

The final major result pertains to the correlation functions of the Virasoro algebra
in free-fermion CFTs yielding a result comparable to that presented in [96]. Similar
to Theorem B, we find that the correlation functions of smeared Virasoro generators
respectively their exponentials, which generate local Virasoro nets [12,33] (here with
central charge c = 1

2 , 1), are obtained as limits of ground state correlation functions of
the Koo–Saleur approximants. This results is referred to as Theorem 6.3 in the main
text.

Theorem C (Convergence of Virasoro correlation functions). Let s ∈ Cα(R) be a suffi-
ciently regular, compactly supported orthonormal Daubechies scaling function, and π∞
be the scaling limit representation of the fermion algebra A∞ associated with the free-
fermion scaling limit ω∞. Then, for any n ∈ N and convergent sequences of smearing

functions XN ,p
N→∞→ X p, N ∈ N0 and p = 1, ..., n with sufficient regularity, we have:

lim
N→∞(�∞,

n∏

p=1

:(π∞ ◦ αN∞)(L(N )
± (XN ,p)) : �∞) = (�∞,

n∏

p=1

L±(X p)�∞) ,
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and similarly,

lim
N→∞(�∞,

n∏

p=1

ei :(π∞◦αN∞)(L(N )
± (XN ,p)):�∞) = (�∞,

n∏

p=1

ei L±(X p)�∞) ,

Moreover, the finite-scale correlation functions of the scaling limit state ω∞ can be
approximated in terms of the renormalized finite-scale states:

(�∞,

n∏

p=1

:π∞(αN∞(L(N )
± (XN ,p))) : �∞)

= ω(N )∞ (

n∏

p=1

(L(N )
± (XN ,p) − ω(N )∞ (L(N )

± (XN ,p))))

= lim
M→∞ ω

(N )
M (

n∏

p=1

(L(N )
± (XN ,p) − ω(N )∞ (L(N )

± (XN ,p))))

= lim
M→∞ ω

(N+M)
0 (

n∏

p=1

(αN
N+M (L(N )

± (XN ,p)) − ω
(N+M)
0 (αN

N+M (L(N )
± (XN ,p))))) ,

and similarly,

(�∞,

n∏

p=1

ei :π∞(αN∞(L(N )
± (XN ,p))):�∞) = ω(N )∞ (

n∏

p=1

ei L
(N )
± (XN ,p)−iω(N )∞ (L(N )

± (XN ,p)))

= lim
M→∞ ω

(N )
M (

n∏

p=1

ei L
(N )
± (XN ,p)−iω(N )

M (L(N )
± (XN ,p)))

= lim
M→∞ ω

(N+M)
0 (

n∏

p=1

eiα
N
N+M (L(N )

± (XN ,p))−iω(N+M)
0 (αN

N+M (L(N )
± (XN ,p)))) ,

whereω
(N )∞ = ω∞◦αN∞, and L(N )

± (XN ) = 1
2LN

∑
k∈
N

X̂N |k L(N )
±,k (similarly for L±(X)).

The proof of this theorem is a consequence of the convergence of the scaling limit
procedure for the ground states stated in Lemma 3.11 in combination with the extension
of Theorem A to smeared Koo–Saleur approximants and Virasoro generators given in
Theorem 4.16. It equally well applies to WZW currents instead because of Theorem 5.1
and its generalization.

In view of the seminal work of Koo and Saleur [60], it should be noted that the
convergence of the KS approximants for free-fermion CFTs was anticipated therein.
Specifically, exact agreement with the Virasoro generators in expectation values with
respect to lattice ground states in a formal scaling limit construction was found for
central charges c = 0, 1

2 ,−2. Thus, our results yield a rigorous justification of the
computations in [60] for the cases c = 0, 1

2 . Moreover, our construction of scaling
limits ω∞ using OAR provides a detailed mathematical framework for the scaling limit
considered by Koo and Saleur, allowing for the approximation of Virasoro generators
in an operator sense (strong operator topology) instead of expectation values (weak
operator topology). This is achieved by explicitly constructing a Hilbert space of states
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via the GNS representation of ω∞ corresponding to scaling limits of the low-lying
excited states relative to the lattice ground state ω

(N )
0 . Interestingly, the exact formal as

well as rigorous results for the approximation of the Virasoro generators by the Koo–
Saleur formula essentially rely on the definition of the correct scaling limit representation
by subtracting vacuum/ground-state expectation values, which corresponds to normal
ordering as the Virasoro generators and KS approximants are quadratic expression in
free fermions. Therefore, it appears reasonable to assume that the failure of the exact
computations in [60] for general central charge c ≤ 1, is due, at least in part, to the
insufficiency of this procedure in the general case. To allow for a more direct comparison
between [60], we translate our formulation in terms of fermions into the language of
Temperley-Lieb algebras [44,88] in Sect. 4.2.1.

We point out that in addition to the treatment of currents of WZW models, our re-
sults also cover the scaling limit of the transverse-field Ising model, which is intimately
related to the two-dimensional classical Ising model [65,79], in the following sense: (1)
the lattice ground states converge to their appropriate limit on the subalgebra of even ob-
servables (by the Jordan-Wigner isomorphism [26]), (2) the Koo–Saleur approximants
converge to the correct Virasoro generators in the representation associated with the
scaling limit (as also observed in [96]). The convergence with respect to the full observ-
able algebra including odd observables [7,63] and their conformal covariance requires
additional work going beyond the scope of the present paper and will be treated in a
separate publication adapting results from [78].

Although, in this paper, we restricted our treatment to scaling limits of fermion
systems and their quasi-free representations, or systems based thereon such as WZW
models, not least to show the validity of our approach to recover conformal symmetry
in the scaling limit via OAR in the clearest possible manner, the general method is not
restricted to this setting. But, to handle, for example, arbitrary rational CFTs, it will be
necessary to address latticemodels involving anyonic chains [28,96]. To employOAR to
such models, we need an appropriate family of refining maps. Such a potential family of
such maps is induced by the Jones–Wenzl projection [56,92]. However, this it is beyond
the scope of this paper and will be presented elsewhere.

Furthermore, our current treatment of WZWmodels only allows for a central charge
in the range r ≤ c ≤ D, where D is the number of copies of fermions and r is the rank
of Lie algebra of the model. To allow for a central charge c < 1, a natural next step is to
check the compatibility with the coset construction [39,40]

In addition, it would be interesting to understand whether the analysis presented
here extends to the setting of so-called “symplectic fermions” [34,57,77] with c = −2
corresponding to one of the case where exact formal results were obtained by Koo and
Saleur [60]. Such an extension appears to be feasible because the algebraic structure of
the continuum chiral algebra generated by the symplectic two-component fermion can
be discretized by multi-scale decomposition using the adjoint conditional expectations
αM
N , M > N , associated with the refining quantum channels (cp. Sect. 1.2). But, it needs

to be clarified whether such a discretization of the continuum model can be recovered
via the renormalization group flow in OAR from a suitable Hamiltonian lattice model,
e.g. the XX spin chain formulation of dense polymers [77]. This said, we leave a detailed
analysis of this case for future work.

1.2. Comparison with other approaches. The strategy outlined above is by no means
the only one may adopt to realize QFTs rigorously. Indeed, tremendous effort and major
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successes have been obtained by focussing on other approaches where the Hilbert space
of the quantum field theory is realized directly in the continuum or by probabilistic Eu-
clideanmethods (see [86] for an overview), andmost recently in the context of stochastic
quantization (see, e.g., [46,49]). Our approach can be viewed as closely related to the
quantum mechanical constructions of Glimm-Jaffe and others [35–37] in contrast with
Euclidean approaches. Moreover, considerable dividends are paid by the discretization
approach because, if realized correctly, one obtains a sequence of quantum lattice sys-
tems which are directly amenable to quantum simulation on quantum computers (we
comment on this aspect in Remark 4.20, see also [72]). This was emphasized by Zini
andWang, who made the first concerted effort to realize CFTs via limits of Hamiltonian
lattice models. Below we summarize their approach to scaling limits in the context of
OAR.

Zini and Wang [96] define a low-energy scaling limit with the following data:

• A nested sequence of (energy-bounded) subspaces HE
N ⊂ HE ′

N , associated with
energy scales E ′ ≥ E ≥ 0,

• connecting unitiaries φE
N : HE

N → HE
N+1 for sufficiently large N , i.e. a stabilizing

dimension dimHE
N = dE for all N >> 0,

• and the extension property: φE
N = φE ′

|HE
N
for E ′ ≥ E .

The scaling limit results from an inductive limitHE∞ = lim−→N
HE

N along the connecting
unitaries, and, by the extension property, gives a coherent system of energy-bounded
Hilbert spaces HE∞ ⊂ HE ′

∞ ⊂ H∞ for E ≤ E ′. The convergence of Hamiltonians

is understood in terms of convergent operator sequences limN→∞ limN ′→∞ ‖H (N ′)
0|E −

φE
N→N ′ H

(N )
0|E (φE

N→N ′)∗‖∗, for some suitable semi-norm ‖ .‖∗, which should determine
H|E (e.g. by the second Trotter-Kato approximation theorem [73]). Here, |E indicates the
restriction of theHamiltonians to energies below E , andφE

N→N ′ results from the iteration
of the connecting unitaries between scales N ≤ N ′. Again, because of coherence in E ,
this defines H acting on H∞.

Zini and Wang also define the notion of strong scaling limit, which describes the
case, when φE

N→N ′ results from the restriction of an isometry φN : HN → HN+1 to the
energy-bounded subspace.

For QN ( . , . ) = 〈 . , ON . 〉HN , the sesquilinear form associated with ON ∈ AN ,
convergence is defined as convergence,

lim
N→∞ lim

N ′→
QN ′(φE

N→N ′(.), φE
N→N ′(.)) = QE ,

onHE∞ (similar to the convergence of the Hamiltonians).
Zini and Wang observe [96, p. 898] that compatible embeddings τN : AN → AN+1,

φN ◦ ON = τN (ON ) ◦ φN ,

in the special case of a strong scaling limit, yield an (operator-)algebraic scaling limit of
the observable algebras A∞ = lim−→N

AN along these embeddings. They also conjecture
that higher-level anyonic chains have this property.

We now explain how these scaling limits are recovered via OAR: Assuming that we
have constructed the inductive limit algebraA∞, together with a scaling limit stateω

(N )∞ ,
we can perform the GNS construction at each scale N resulting in a sequence of triples
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ω
(N)
0 ω

(N)
1 ω

(N)
2

. . . ω
(N)
∞ AN

φN
0 φN

1 φN
2

ω
(N+1)
0 ω

(N+1)
1

. . . ω
(N+1)
∞ AN+1

φN+1
0 φN+1

1

EN+1
N EN+1

N αN
N+1

ω
(N+2)
0

. . . ω
(N+2)
∞ AN+2

φN+2
0

EN+2
N+1 αN+1

N+2

. .
. ...

...

Fig. 1. Enriched version of Wilson’s triangle of renormalization [93]: Coarse-graining quantum channels
(E’s) between quantum states, refining quantum channels between observables/fields (α’s), and low-energy
unitaries (φ’s) between renormalized representations (if existent)

{H(N )∞ , π
(N )∞ ,�

(N )∞ } together with isometries V N
N+1 : H(N )∞ → H(N+1)∞ induced by αN

N+1

such that V N
N+1�

(N )∞ = �
(N+1)∞ and:

V N
N+1 ◦ π(N )∞ (ON ) = π(N+1)∞ (αN

N+1(ON )) ◦ V N
N+1.

Thus, we find that the compatibility condition of Zini and Wang is precisely recovered
by the inductive-limit structure of the scaling-limit Hilbert space H∞ in the operator-
algebraic formulation. Moreover, if the GNS representations {H(N )

M , π
(N )
M ,�

(N )
M } of the

finitely renormalized states ω
(N )
M are unitarily equivalent, e.g. assuming a Stone-von

Neumann-type result at finite scales, that is, if there are (connecting) unitaries,

φN
M : H(N )

M → H(N )
M+1,

we can recover the structure of a low-energy scaling limit (the extension property follows
again from the GNS construction because ω

(N )
M+1 = ω

(N+1)
M ◦ αN

N+1), such that N plays
the role of the energy scale E . The overall structure is illustrated in Fig. 1.

(Such structures are also achieved in the operator-algebraic renormalization of a
scalar lattice field [69].)

It is worth pointing out that such a structure is not immediately available for the
operator-algebraic renormalization of (free) massless chiral lattice fermions in 1+1-
dimensions considered here, where the finitely renormalized states ω

(N )
M are not pure

(due to the entanglement of the chiral halves) in contrast with their scaling limit (given
by the Hardy projection).

An important difference of our approach with the construction by Zini and Wang
is that our renormalized Hilbert spaces H(N )

M and the connecting unitaries φN
M are not

necessarily associatedwith energybounds, and indeed canbe farmore general, e.g., in the
wavelet approach formulated in [85] and in Sect. 3.1 the parameter N is associated with
a spatial resolution, while energy bounds are similar to the momentum-cutoff approach,
see [69] and Section 3.2. This flexibility enables us to overcome a major challenge
facing the construction of Zini andWang’s strong scaling limit, namely that the addition
of irrelevant terms to the lattice discretizations, resulting in lattice-scale artifacts, makes
it difficult if not impossible to find connecting unitaries.

In summary, the core differences between the scaling limit construction of Zini and
Wang, and the OAR, may be summarized as follows:
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• In the framework of Zini and Wang, the Hilbert space H∞ of the scaling limit, in
other words the sector of the observables, is fixed from the outset by the specifica-
tion of the connecting unitaries (φ’s) and the energy-bounded subspaces, or by the
connecting isometries in the strong scaling limit. Then, the renormalization of the
Hamiltonian and other observables amounts to determining all compatible operators
(or sesquilinear forms), i.e.Q∞, onH∞. Because the sector is fixed by the provision
of the connecting unitaries, quantum states are in essence not renormalized.

• In the framework of operator-algebraic renormalization, we fix a minimal set of
observables over all scales, i.e. A∞, the consistency of which is described by the
refining quantum channels (α’s). In turn, the renormalization of states is used to find
(all) sensible, compatible states onA∞ by starting from initial choices on each scale.

In this respect, we observe that the two notions of convergence of Hamiltonians (and
observables) relative to the scaling limitH∞ can be compared using the GNS isometries,
because

V N
N+1 ◦ π(N )∞ (ON )(V N

N+1)
∗ = π(N+1)∞ (αN

N+1(ON ))pim V N
N+1

where pim V N
N+1

is projection onto the image of V N
N+1.

A second key contribution to the mathematical literature on approximations of CFTs
is found in papers building tensor-network approximations via matrix product states
[61,62] in the context of VOAs or wavelets and their scaling functions in a Hamiltonian
lattice setup [27,48,94]. Specifically, in the latter group of papers a central role is also
played by an inductive system of quantum channels αN

M , M > N , or more precisely
their adjoint conditional expectations [25],

αM
N : AM −→ AN , M > N ,

These are used to define coarse-grained fermion fields as well as finite-scale approxi-
mants of (trace-class) second-quantized one-particle operators. In that respect, it should
be noted that themain theorem of [94] concerning the approximation of correlation func-
tions of the continuum free fermion field only applies to the insertion of basic fermions
in the sense of our Theorem B, see [94, Theorem 4.4, p. 31]). Thus, more general oper-
ators such as Virasoro generators L±,k or WZW currents are explicitly excluded. Such
restriction do not apply in the OAR approach we adopt here. Another important differ-
ence in comparison with the operator-algebraic approach is the need for a continuum
model to define the approximants using the conditional expectations α∞

N , which is not
intrinsically required by our method. It should also be noted that the approximation of
correlation functions achieved in [48,94] is deduced from an error bound of the form,

|〈O1 . . . On〉(N ) − 〈O1...On〉cont|�O(2cN ) +O(ε log ε),

requiring an ε-dependent choice of scaling functions to define the lattice correlation
function 〈O1 . . . On〉(N ), N = N (ε), and achieve a desired degree of accuracy prohibit-
ing a rigorous proof of convergence in the scaling limit. Although it should be said, that
N is expected to decay exponentially with ε, which would entail the aforesaid conver-
gence, according to [94] and the references therein. Such an adaptation of the chosen
scaling functions to the accuracy goal of the approximation is not required by OAR.

Finally, let us comment on further results in the literature.
In [43] (see also [42]), there is very interesting work on the KS approximants in

the setting of the XXZ spin chain in terms of Temperley-Lieb algebras as in [60]. The
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authors consider a certain “weak-scaling” procedure, which we would paraphrase as
weak operator convergence of KS approximants and products thereof. Interestingly, the
weak convergence is restricted to a certain class of scaling states lattice states, which
we believe roughly correspond to the states identified by the GNS representation of the
scaling limit {A∞, ω∞} inOAR.Moreover, [43] provides awealth of conjectures, backed
by extensive numerics, concerning the limits appearing in the “weak-scaling” procedure,
and, thus, it would be worthwhile to investigate whether our methods allow for a proof at
least further progress, potentially exploiting the connection with the formulation based
on Temperley-Lieb algebras for general c �= 0 (see Section 4.2.1). In particular, it
would be interesting whether our methods allow to lift the “weak-scaling” procedure to
a “strong” version (in the sense of operator topologies).

As mentioned above, there is an ongoing concerted and very successful effort in the
Euclidean setting using classical probabilistic methods and, specifically, the concept of
discrete holomorphicity (see [18,19,51]) and references therein. In [51] it is shown how
to explicitly relate discrete holomorphic structures with the continuumVirasoro algebra,
thereby establishing a correspondence between correlation functions of lattice local
fields and their counterparts in the continuum. As this is analogous to various degrees
to what is achieved in the work presented here and the other Hamiltonian frameworks
discussed above, it would be interesting to explore potential connections. Concretely,
such an analysis could start from the ideas presented [29] and by exploiting the natural
connection between Euclidean and Hamiltonian formulation of critical systems via the
transfer matrix formalism.

1.3. Outline of the article. In this paper we develop the theory of OAR and apply it to
the discrete approximation of conformal symmetries in continuum CFTs. This yields an
explicit family of lattice systems and bounds which may be directly exploited to carry
out the quantum simulation of CFTs on quantum computers (see our companion paper
[72]).

The structure of the paper is as follows: In Sect. 2, we provide a detailed overview
of known results on complex and self-dual fermion algebras required for the proofs of
our results. Moreover, we introduce the necessary setup for fermions on lattices required
for our scaling limit construction. In Sect. 3, we introduce the scaling maps required for
OAR: (1) the wavelet renormalization group, (2) the momentum-cutoff renormalization
group. In addition, we discuss the compatibility of the wavelet renormalization group
with the quasi-local structure of the fermion algebra in the scaling limit, give a basic
decay estimate for wavelet approximations, and prove the convergence of the scaling
limit of the ground states of the lattice Dirac Hamiltonian. In Sect. 4, we discuss Koo–
Saleur approximants and their formal scaling limit yielding the Virasoro generators,
before we prove their convergence in the scaling limit as alluded to in Theorem A.
In Sect. 5, we explain the modifications necessary to apply the convergence results to
cover WZW currents. Finally, in Sect. 6, we apply the convergence results for the KS
approximants to deduce the convergence of (dynamical) correlation functions of various
kinds as exemplified by Theorems B & C.

2. Lattice Fermions in 1+1-Dimensions

2.1. The algebra of canonical anti-commutation relations. Let us recall some basic
structures and results concerning the canonical anti-commutation relations (CAR). For
further details we refer to the general references [9,26].
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The complex CAR algebra ACAR(h) of a complex Hilbert space h, the one-particle
space, is the universal unital C∗-algebra generated by anti-linear map,

a : h −→ ACAR(h), (1)

referred to as annihilation operators and subject to,

{a(ξ), a†(η)} = 〈ξ, η〉h, {a(ξ), a(η)} = 0 = {a†(ξ), a†(η)}, ξ, η ∈ h, (2)

where a†(η) = a(η)∗ denotes the adjoint creation operator. Each a(ξ) is automatically
bounded: ‖a(ξ)‖ = ‖ξ‖h. We will also refer to the maps a, a† as a complex fermion.

We also recall that there is a ∗-isomorphism ACAR(h) ∼= ⊗dim h
n=1 M2(C) which we come

back to in Sect. 2.7.
The irreducible standardFock representation ofACAR(h) on the anti-symmetric Fock

space Fa(h) = ⊕∞
n=0 ∧n h, with vacuum vector �0, is given by:

a†(ξ)η1 ∧ · · · ∧ ηn = ξ ∧ η1 ∧ · · · ∧ ηn, η1 ∧ · · · ∧ ηn ∈ ∧nh, (3)

where η1 ∧ · · · ∧ ηn = (n!) 1
2 S−(η1 ⊗ · · · ⊗ ηn) with the projection, S− : h⊗n → ∧nh,

on the anti-symmetric subspace. Subsequently, we call P≤n the projection onto the
subspace ⊕n

m=0 ∧m h, and Pn = P≤n − P≤n−1. On Fa(h), we denote by (−1)F the
parity operator, i.e. the unitary operator implementing the grading of ACAR(h) defined
by: α−1(a(ξ)) = a(−ξ) = −a(ξ), ξ ∈ h. We remark that (−1)F /∈ ACAR(H) unless
dim h < ∞.

To treat Majorana fermions, we need in addition to ACAR the notion a self-dual
CAR algebra ASDC(h,C) for some (charge) conjugation C : h → h. The C∗-algebra
ASDC(H,C) is generated by an anti-linear map,

� : h −→ ASDC(h,C), (4)

which we refer to as the Majorana fermion or operator, subject to,

{�(ξ),�(η)} = 〈ξ,Cη〉h, �(ξ)∗ = �(Cξ), ξ, η ∈ h. (5)

We note that complex andMajorana fermions can be related by a projection, P : h → h,
such that CP = (1 − P)C (called a basis projection):

ASDC(h,C) ∼= ACAR(Ph), a(ξ) = �(ξ), a†(ξ) = �(Cξ), ξ ∈ Ph. (6)

For the description of ground states of quadratic Hamiltonians, we need the notion of
a quasi-free states ω on ACAR(h) respectively ASDC(h,C) (gauge invariant in the first
case). In both cases, the state ω is completely determined by its two-point function, i.e.
ω(a(ξ)a†(η)) respectively ω(�(ξ)�(η)∗).

In the first case, the two-point function defines a positive operator, 0 ≤ S ≤ 1, such
that:

ωS(a(ξ)a†(η))

= 〈ξ, (1 − S)η〉h, ξ, η ∈ h,

ωS(a(ξ1) . . . a(ξn)a
†(ηn+1) . . . a†(ηn+m)) = δn,m det((〈ξi , (1 − S)η j 〉h)ni, j=1). (7)

Clearly, the vacuum vector �0 corresponds to S = 0. Moreover, ωS is a pure state if and
only if S is a projection.
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In the second case, the two-point function also defines a positive operator, 0 ≤ S ≤ 1,
with the additional property CS = (1 − S)C , such that:

ωS(�(ξ)�(η)∗) = 〈ξ, (1 − S)η〉h, ξ, η ∈ h,

ωS(�(ξ1) . . . �(ξn)) = pf((〈ξi , (1 − S)Cξ j 〉h)ni, j=1), (8)

where pf denotes the Pfaffian, which we define to vanish for n odd. As before, the state
ωS is pure if and only if S is a (basis) projection.

In both cases, the Gelfand-Naimark-Segal (GNS) representation of pure states, S2 =
S, can be realized on anti-symmetric Fock space by:

πS(a(ξ)) = a((1 − S)ξ) + a†(J Sξ), ξ ∈ h, (9)

for some conjugation J : h → h with J S = SJ , respectively,

πS(�(ξ)) = a((1 − S)ξ) + a†(CSξ), ξ ∈ h. (10)

Clearly, the notation is consistent with π0 being the Fock representation (3). In the
non-pure situation, an analogous realization on the doubled Fock space, Fa(h

⊕2) =
Fa(h)

⊗2, via the Z2-twisted tensor product, ACAR(h)⊗Z22 = ACAR(h⊕2) respectively
ASDC(h,C)⊗Z2 2 = ASDC(h⊕2,C ⊕ (−C)), is possible because,

PS =
(

S S
1
2 (1 − S)

1
2

S
1
2 (1 − S)

1
2 1 − S

)

, (11)

is a (basis) projection [2,66].

2.1.1. Implementation of Bogoliubov transformations Central to our analysis of the
recovery of conformal symmetry via lattice approximations is the question of imple-
mentability of Bogoliubov or quasi-free transformations of the complex and Majorana
fermion algebras, ACAR(h) respectively ASDC(h,C), in quasi-free representations (9)
& (10). To this end, we briefly recall some well-known formulas and results and refer
to [2,14,26,30,66,76] for further details.

In its basic form a Bogoliubov transformation αT is densely defined morphism of
the CAR associated with an invertible, bounded operator, T ∈ B(h), on the one-particle
space:

αT (a†(ξ)) = a†(T ξ), αT (a(ξ)) = a(T−1 ∗ξ). (12)

Similarly a bounded operator G ∈ B(h) yields a densely defined derivation δG by:

δG(a†(ξ)) = a†(Gξ), δG(a(ξ)) = −a(G∗ξ). (13)

In the Fock representation (3), Bogoliubov transformations and their derivations can be
implemented as (unbounded) operators on the dense subspace D(h) = alg⊕∞

n=0 ∧nh
of vectors with finite particle number by multiplicative, F0, and additive, dF0, second
quantization:

αT (a†(ξ)) = AdF0(G)(a
†(ξ)), δG(a†(ξ)) = addF0(G)(a

†(ξ)), (14)

where

F0(T )η1 ∧ · · · ∧ ηn = Tη1 ∧ · · · ∧ Tηn, F0(T )�0 = �0,
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dF0(G)η1 ∧ · · · ∧ ηn =
n∑

m=1

η1 ∧ · · · ∧ Gηm ∧ · · · ∧ ηn, dF0(G)�0 = 0. (15)

F0 and dF0 are related by F0 = exp dF0 via the identification T = exp(G), and we
have the obvious bound:

‖dF0(G)P≤n‖ ≤ n‖G‖. (16)

Moreover, we can expand F0 and dF0 in terms of annihilation and creation operators
because:

dF0(G) =
∑

i∈I
a†(Gξi )a(ξi ) = a†Aa, (17)

for some orthonormal basis {ξi }i∈I of h, which satisfies:

[dF0(G1), dF0(G2)] = dF0([G1,G2]). (18)

We note that the parity operator is given by F0(−1) = (−1)F .
In the self-dual setting,ASDC(h,C), the same ideas apply with further constraints on

the admissible one-particle operators. Specifically, with respect to the conjugation C ,
we require:

CT−1 ∗C = T, CG∗C = −G. (19)

If we write G = i H instead, we will also have CH∗C = −H . We denote the analogues
of F0 and dF0 by Q0 respectively dQ0 in this case:

dQ0(G) =
∑

i∈I
1
2�(Gξi )

∗�(ξi ) = 1
2�

∗A�. (20)

Starting from the basic case, it is possible to extend the notion of Bogoliubov transfor-
mations and their derivations as well as multiplicative and additive second quantization
to larger classes of operators on h, based on the bound:

‖dF0(G)a†(η1) . . . a†(ηn)�0‖ ≤
n∑

m=1

‖η1‖ . . . ‖Gηm‖ . . . ‖ηn‖. (21)

Important examples, that we will make use of, comprise contractions ‖T ‖ ≤ 1 as well as
unbounded (essentially) self-adjoint operators (H,D(H)), such that G = i H , or even
closed unbounded operators in the case of the generators of the Virasoro algebra.

As pointed out above, we are particularly interested in the implementability of Bo-
goliubov transformations in the context of quasi-free representations πS . In this context,
a key formula is the additive normal-ordered second quantization relative to a pure-state
representation πS , S2 = S, in analogy with (17):

dFS(G) =
∑

i∈I
: πS(a

†(Gξi )a(ξi )) :

=
∑

i∈I

(
a†(S+Gξi )a(S+ξi )) − a†(J S−ξi )a(J S−Gξi ))



Conformal Field Theory 233

+ a†(S+Gξi )a
†(J S−ξi )) + a(J S−Gξi ))a(S+ξi ))

)

= a†G++a − a†Gt−−a + a†G+−a† + aG−+a, (22)

with Gt = JG∗ J , and similarly,

dQS(G) =
∑

i∈I
: πS(

1
2�(Gξi )

∗�(ξi )) :

= 1
2

(
a†G++a − a†GT−−a + a†G+−a† + aG−+a

)

= a†G++a + 1
2

(
a†G+−a† + aG−+a

)
, (23)

with GT = CG∗C . Here, S− = S, S+ = 1 − S, and we use block-matrix notation,

G = S+GS+ + S+GS− + S−GS+ + S−GS− =
(
G++ G+−
G−+ G−−

)

, (24)

as well as the standard symbol : · : for normal ordering with respect to the Fock vacuum
�0

3. These formulas show that dFS(G) and dQS(G) can be defined as operators on Fock
space if the off-diagonal parts G+− and G−+ are in the Hilbert-Schmidt class because:

‖a†G+−a†P≤n‖ ≤ (n + 2)‖G+−‖2, ‖aG+−aP≤n‖ ≤ n‖G+−‖2. (25)

Notably, the formulas (22) & (23) can be written as:

dFS(G) = πS(dF0(G)) − Trh(G−−) = πS(dF0(G)) − ωS(dF0(G)),

dQS(G) = πS(dQ0(G)) − 1
2 Trh(G−−) = πS(dQ0(G)) − ωS(dQ0(G)), (26)

whenG−− is in the trace class. It is a consequence of these formulas that the commutator
identity (18) acquires an additional central term, called the Schwinger cocycle [66]:

cS(G1,G2) = Trh([G1,G2]−−) = Trh((G1)−+(G2)+− − (G2)−+(G1)+−), (27)

such that

[dFS(G1), dFS(G2)] = dFS([G1,G2]) + cS(G1,G2),

[dQS(G1), dQS(G2)] = dQS([G1,G2]) + 1
2cS(G1,G2). (28)

It precisely the Schwinger cocycle cS that leads to the central charge in the commutation
relations of the Virasoro generators. For operators G1, G2 with off-diagonal parts in the
Hilbert-Schmidt class the Schwinger cocycle satisfies the obvious bound:

|cS(G1,G2)| ≤ (‖(G1)−+‖2‖(G2)+−‖2 + ‖(G2)−+‖2‖(G1)+−‖2
)
. (29)

3 i.e. creation operators to left and annihilation operators to the right with the appropriate signs due to the
CAR.
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2.2. Lattice fermions at different scales. We describe spatial fermions4 with s compo-
nents at a (dyadic) resolution εN = 2−N ε0, N ∈ N0, for some basic length scale ε0 in a
d-dimensional hypercubic volume,Td

L = (S1L)×d = R
d/2LZ

d , of size volTd
L = (2L)d ,

L > 0, by the one-particle space,

hN ,± = �2(�N )± ⊗ C
s, 〈ξ, η〉N =

∑

x∈�N

〈ξx , ηx 〉Cs , (30)

associated with the lattice,

�N = εN {−LN , . . . , LN − 1}d ⊂ T
d
L , εN LN = L . (31)

The subscript ± refers to the unitary action of the translations τ
(N )
± : �N � hN ,± given

by:

τ
(N )
±|x (ξ)y = (±1)

[
y−x
2L

]

ξy−x , ξ ∈ hN ,±, (32)

where we allow for the occurrence of a non-trivial phase which we also refer to as
boundary condition5, because it encodeswhether ξ ∈ hN ,± can be considered as periodic
(+) or anti-periodic (−) on�N . These two types of boundary conditions are also referred
to as Ramond sector (+) and Neveu-Schwarz sector (−) [21,26].

We denote the corresponding algebras of lattice fermions, complex and Majorana,
by:

AN ,± = ACAR(hN ,±), BN ,± = ASDC(hN ,±,C), (33)

where C : hN ,± → hN ,± is the charge conjugation that we only specify explicitly in the
next subsection. We use the notation,

a( j)
x = a(δ

(N )
x, j ), �x = �(δ

(N )
x, j ), (34)

for the special set of generators of AN ,± and BN ,± associated with the standard basis
of hN ,±:

δ
(N )
x, j = δ(N )

x ⊗ (0, . . . , 1︸︷︷︸
j th component

, . . . , 0) x ∈ �N , j = 1, ..., s. (35)

The lattice Fourier transform,

ξ̂ ( j)(k) =
∑

x∈�N

e−ikxξ ( j)(x) = 〈ek, j , ξ 〉N , ξ = (ξ (1), . . . , ξ (s)) ∈ �2(�N )± ⊗ C
s,

(36)

provides a unitary identification hN ,± ∼= �2(
N ,±, (2LN )−d) ⊗ C
s where


N ,+ = π
L {−LN , ..., 0, ..., LN − 1}d , 
N ,− = π

L {−LN + 1
2 , ..., 0, ..., LN − 1

2 }d ,
(37)

4 Or time-zero fermions as opposed to spacetime fermions.
5 We restrict attention boundary conditions associated with phases ±1, i.e. unitary representations of the

double cover ofT
d
L , because we are interested in translation-invariant quadratic Hamiltonians in the following,

but more general phases given by other coverings of T
d
L are conceivable.
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is the dual momentum-space lattice �N , and

ek, j = eik( . ) ⊗ (0, . . . , 1︸︷︷︸
j th component

, . . . , 0), k ∈ 
N ,±, j = 1, . . . , s, (38)

is the plane-wave basis of hN ,±.
We extend the Fourier transform and its inverse to AN ,± and BN ,± by linearity:

â( j)
k = a(ek, j ) =

∑

x∈�N

e−ikxφ
( j)
x , a( j)

x = â(e−x, j ) = 1
2LN

∑

k∈
N

eikx â( j)
k ,

�̂
( j)
k = �(ek, j ) =

∑

x∈�N

e−ikx�
( j)
x , �

( j)
x = �̂(e−x, j ) = 1

2LN

∑

k∈
N

eikx �̂( j)
k , (39)

for x ∈ �N , k ∈ 
N , j = 1, . . . , s. Here, we also introduced the dual plane-wave basis
{ex, j | x ∈ �N , j = 1, . . . , s} by analogy with (38). Thus, the lattice Fourier transform
provides us with ∗-isomorphims,

AN .± ∼= ACAR(�2(
N ,±, (2LN )−d) ⊗ C
s),

BN ,± ∼= ASDC(�2(
N ,±, (2LN )−d) ⊗ C
s,C), (40)

which can be expressed by: â(ξ̂ ) = a(ξ) respectively �̂(ξ̂ ) = �(ξ) for ξ ∈ hN ,±.
In view of the construction of the scaling limit in Sect. 3, we also allow for N = ∞,

where we put:

h∞,± = L2(Td
L)± ⊗ C

s ∼= �2(
∞,±, (2L)−d) ⊗ C
s, 
∞,+ = π

L Z
d ,


∞,− = π
L (Z + 1

2 )
d , (41)

with the continuum Fourier transform,

ξ̂
( j)
k = FL [ξ ( j)]k =

∫

T
d
L

dx e−ikxξ
( j)
x = 〈ek, j , f 〉L2(Td

L ), k ∈ 
∞,±, (42)

for periodic and anti-periodic functions in L2(Td
L)±. As above, we have:

A∞,± = ACAR(h∞,±), B∞,± = ASDC(h∞,±,C). (43)

2.3. The free lattice Dirac Hamiltonian in 1+1-dimensions. Since our principal interest
lies with models that exhibit local conformal symmetries in the scaling limit, we restrict
from this point on to one spatial dimension (d = 1) and two-component fermions
(s = 1). Specifically, we undertake a detailed analysis of a discretized version of the
free Dirac Hamiltonian on the lattice�N as variousmodels of conformal field theory can
be realized in terms of free fermions in the continuum [21,26,91,95]. In the staggered
lattice approximation6 [87] the massive Dirac-Hamiltonian as an element of AN ,± is
given by:

H (N )
0 = ε−1

N

∑

x∈�N

(
a(1)†
x+εN a

(2)
x − a(1)†

x a(2)
x + h.c. + λN

(
a(1)†
x a(1)

x − a(2)†
x a(2)

x

))
. (44)

6 We use the forward and backward difference to approximate the derivative of the two components respec-
tively. This avoids the notorious fermion doubling in lattice approximations of continuum fermion models.
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Here, λN ≥ 0 is a dimensionless “lattice mass” parameter, and “h.c.” denotes the her-
mitean conjugate of the preceding terms. Invoking the lattice Fourier transform, the
Hamiltonian (44) can be written in 2 × 2-matrix notation as a second quantized opera-
tor:

H (N )
0 = 1

2L

∑

k∈
N ,±

(
â(1)
k

â(2)
k

)∗ (
λN e−ikεN − 1

eikεN − 1 −λN

)

︸ ︷︷ ︸

=nλN (k)·σ=h(N )
0 (k)

(
â(1)
k

â(2)
k

)

= ε−1
N dF0(h

(N )
0 ), (45)

where nλN (k) = (cos(εNk) − 1)ex + sin(εNk)ey + λNez ∈ R
3, and σ is the vector of

Pauli matrices:

σx =
(
0 1
1 0

)

, σy =
(
0 −i
i 0

)

, σz =
(
1 0
0 −1

)

. (46)

The spectral decomposition of the one-particle Hamiltonian h(N )
0 (k),

h(N )
0 (k) = ωλN (k)

(
P(+)

λN
(k) − P(−)

λN
(k)
)
, (47)

is given in terms of the spectral projections7,

P(±)
λN

(k) = 1
2ωλN (k)

(
ωλN (k)12 ±h(N )

0 (k)
)

(48)

with the lattice dispersion relation:

ωλN (k) =
(
λ2N + 4 sin( 12εNk)

2
) 1

2
. (49)

At k = 0, we have h(N )
0 (0) = λNσz , and we diagonalize h(N )

0 (k) for all k ∈ 
N ,± by:

γλN (k) =
(

1
2ωλN (k)

)1
2

⎛

⎝
(ωλN (k) + λN )

1
2 isign(k)(ωλN (k) − λN )

1
2 e− i

2 εN k

i
2 sin( 12 εN k)

(ωλN (k)+λN )
1
2
e

i
2 εN k sign(k)

2 sin( 12 εN k)

(ωλN (k)−λN )
1
2

⎞

⎠

= cosh(ϑk)
− 1

2

(
cosh( 12ϑk) i sinh( 12ϑk)e− i

2 εN k

i sinh( 12ϑk)e
i
2 εN k cosh( 12ϑk)

)

, (50)

i.e. γλN (k)∗h(N )
0 (k)γλN (k) = ωλN (k)σz . In the second line, we introduced lattice ra-

pidities, 2 sin( 12εNk) = λN sinh(ϑk), to exemplify the unitarity of γλN (k) for λN �= 0.
Thus, the Bogoliubov transformation,

(ĉ(1)
k , ĉ(2)

k )t = γλN (k)∗(â(1)
k , â(2)

k )t , (51)

diagonalizes the Hamiltonian H (N )
0 :

H (N )
0 = 1

2L

∑

k∈
N ,±
ωλN (k)(ĉ(1)†

k ĉ(1)
k − ĉ(2)†

k ĉ(2)
k ). (52)

7 Apart from k = 0 and λN = 0 where h(N )
0 (0) = 0 which is consistent with P(±)

0 (0) = 1
2 12.
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The many-body ground state of H (N )
0 , i.e. the lattice vacuum �

(N )
0,± at scale N , corre-

sponds to the half-filled Fock vacuum (Fermi sea):

ĉ(1)
k �

(N )
0,± = 0, ĉ(2)†

k �
(N )
0,± = 0, ∀k ∈ 
N ,±. (53)

The unitary that implements theBogoliubov transform (51) and relates the lattice vacuum
�

(N )
0,± to the Fock vacuum of AN ,± is given by:

UλN =
∏

k∈
N ,±
exp
(

1
2LN

(
νk â

(2)
k â(1)†

k + μk â
(1)
k â(2)†

k

))

= exp
(

1
2LN

∑

k∈
N ,±
νk â

(2)
k â(1)†

k + μk â
(1)
k â(2)†

k

)
(54)

where

(νkμk)
1
2 = cosh−1

(
cosh( 12ϑk )

cosh(ϑk )
1
2

)
,
(

νk
μk

) 1
2 = −ie− i

2 εN k . (55)

It is evident from the expression for UλN that the lattice vacuum is of even parity:

(−1)F�
(N )
0,± = �

(N )
0,±. Alternatively, we can invoke another Bogoliubov transformation,

commonly used in quantum field theory,

c̃(1)
k = ĉ(1)

k , c̃(2)
k = ĉ(2)†

k , ∀k ∈ 
N ,±, (56)

to obtain a description of the Fermi sea as a standard Fock vacuum:

c̃(1)
k �

(N )
0,± = 0, c̃(2)

k �
(N )
0,± = 0, ∀k ∈ 
N ,±. (57)

The Bogoliubov transformation (56) exemplifies the need for an additive energy renor-
malization of the Hamiltonian H (N )

0 in the scaling limit N → ∞:

H (N )
0 = 1

2L

∑

k∈
N ,±
ωλN (k)(c̃(1)†

k c̃(1)
k + c̃(2)†

k c̃(2)
k ) − ε−1

N

∑

k∈
N ,±
ωλN (k). (58)

The lattice vacuum �
(N )
0,± determines a quasi-free state on the fermion algebra AN ,±:

ω
(N )
0,±(a(ξ)a†(η)) = (�

(N )
0,±, â(ξ̂ )â†(η̂)�

(N )
0,±)

= 1
2LN

∑

k∈
N ,±
〈ξ̂k,P(+)

λN
(k)η̂k〉C2 = 〈ξ,(1 − S(N )

0 )η〉N , (59)

where the one-particle operator is specified in momentum-space by S(N )
0 (k) = P(−)

λN
(k).

From this expression it is easy to obtain the massless lattice vacuum in the limit
λN → 0+, although the Ramond sector acquires a degeneracy in the zero mode (k = 0)
because h(N )

0 (0) = 0:

P(+)
λN=0(k) = 1

2 (12 + sign(k)(− sin( 12εNk)σx + cos( 12εNk)σy))

= 1
2

(
1 −isign(k)e− i

2 kεN

isign(k)e
i
2 kεN 1

)

, (60)
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with the convention sign(0) = 0. This way, P(+)
λN=0(0) = 1

212 reflects a uniform prob-

ability distribution of the quasi-free state ω
(N )
0,+ at k = 0 compatible with the chiral

decomposition of hN ,± (see Section 2.4). But, the state is not pure because P(+)
λN=0 is not

a projection8.

2.4. Chiral decomposition. The chiral parts of the lattice fermion algebras result from
applying the chiral projectors p± = 1

2 (12 ± σy)
9 to the one-particle space hN ,±:

hN ,± = �2(�N )± ⊗ C
2 = �2(�N )± ⊗ p+C

2 ⊕ �2(�N )± ⊗ p−C
2 = h

(+)
N ,± ⊕ h

(−)
N ,±.

(61)

Using the eigenvectors e± = 2− 1
2 (e1 ± ie2) of p±, we can introduce the complex chiral

fermions, A(±)
N ,± = ACAR(h

(±)
N ,±), by

ψ±(ξ) = a(ξe±) = 2− 1
2 (a(1)(ξ) ∓ ia(2)(ξ)) = 〈e±, (a(1)(ξ), a(2)(ξ))t 〉. (62)

At this point, we also fix the charge conjugation C (for all N ≤ ∞) as:

Cξ = σzξ, ξ ∈ hN ,±, (63)

which acts as complex conjugation with respect to the chiral decomposition:

Cξ = ξ+e+ + ξ−e−, (64)

for ξ± = 〈e±, ξ 〉 and, thus, a(Cξ) = ψ+(ξ+) + ψ−(ξ−). This should be contrasted with
the standard conjugation, ξ �→ ξ , on hN that satisfies a(ξ) = ψ+(ξ−) + ψ−(ξ+).

In contrast with infinite-volume continuum theory, the massless ground-state projec-
tor P(+)

λN=0 does not factorize w.r.t. the chiral parts, in other words the massless lattice
vacuum is entangled relative to the chiral parts:

p±P(+)
λN=0(k)p± = 1

2 (1 ± sign(k) cos( 12εNk))p±,

p±P(+)
λN=0(k)p∓ = ± i

2 sign(k) sin(
1
2εNk)

1
2 (σz ± iσx )
︸ ︷︷ ︸

=n±

. (65)

In terms of these, the Hamiltonian (45) takes the form:

H (N )
0 = 1

2L

∑

k∈
N ,±

(
ψ̂+|k
ψ̂−|k

)†(
sin(εNk) −i(cos(εNk) − 1) + λN

i(cos(εNk) − 1) + λN − sin(εNk)

)(
ψ̂+|k
ψ̂−|k

)

,

(66)

which, in the massless case (λN = 0), is compatible (19) with the charge conjugation
C which allows for the identification of the self-dual components, i.e. the Majorana
fermionsB(±)

N ,± = ASDC(h
(±)
N ,±,C), of the complex massless chiral fields (see Sect. 2.6).

8 Another possibility is to enforce purity by putting sign(0) = 1 to have P(+)
λN=0(0) = 1

2 (12 + σy) which
is also compatible with the chiral decomposition.

9 In our parametrization of the Dirac Hamiltonian γ5 = σy .
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Because of the entanglement of the massless lattice vacuum ω
(N )
0,± relative to the

chiral decomposition, its restriction to chiral components defines non-pure quasi-free
states (p±P(+)

λN=0(k)p± is positive but not a projection):

ω
(N )
0,±(ψ±(ξ)ψ

†
±(η)) = 1

2LN

∑

k∈
N ,±

1
2 (1 ± sign(k) cos( 12εNk))ξ̂ (k)ζ̂ (k), (67)

for ξ, η ∈ h
(±)
N ,± ∼= �2(
N ,±, (2LN )−1).

2.5. The Majorana mass term. As stated above, the Hamiltonian (44) is a discretized
version of the massive Dirac Hamiltonian using the algebra AN ,±, which is only com-
patible with the Majorana fermions BN ,± for vanishing lattice mass λN = 0. To allow
for a massive Hamiltonian in terms of the Majorana fermions BN ,±, the mass term
(proportional to λN ) needs to be compatible with self-duality (19). This is achieved by
replacing the Dirac mass term in (44) with:

H (N )
mass =ε−1

N λN

∑

x∈�N

(
a(2)†
x a(1)

x + a(1)†
x a(2)

x

)
= ε−1

N λN

∑

x∈�N

(−i)
(
ψ

†
+|xψ−|x − ψ

†
−|xψ+|x

)

= 1
2L

∑

k∈
N ,±

(
ψ̂+|k
ψ̂−|k

)†(
0−iλN

iλN 0

)(
ψ̂+|k
ψ̂−|k

)

, (68)

which results in the modified spectral projections,

P(±)
λN

(k) = 1
2ωλN (k) (ωλN (k)12 ± nλN (k) · σ), (69)

with nλN (k) = (cos(εNk) − 1)ex + sin(εNk)ey + λNex , and the modified dispersion
relation,

ωλN (k) =
(
λ2N + 4(1 − λN ) sin( 12εNk)

2
) 1

2
. (70)

The modified spectral projections satisfy CP(+)
λN

= P(−)
λN

C , consistent with (8), and,

thus, (59) defines a quasi-free state, also denoted ω
(N )
0,± by a slight abuse of notation, on

BN ,±.

2.6. The self-dual components of the lattice Majorana Hamiltonian. The Hamiltonian
with the Majorana mass term,

H (N )
0 = ε−1

N

∑

x∈�N

(
a(1)†
x+εN a

(2)
x − a(1)†

x a(2)
x + h.c. + λN

(
a(2)†
x a(1)

x + a(1)†
x a(2)

x

))

= 1
2L

∑

k∈
N ,±

(
ψ̂+|k
ψ̂−|k

)†(
sin(εNk) −i((cos(εNk) − 1) + λN )

i((cos(εNk) − 1) + λN ) − sin(εNk)

)

︸ ︷︷ ︸

=h(N )
sd (k)

(
ψ̂+|k
ψ̂−|k

)

= ε−1
N dF0(h

(N )
sd ), (71)
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is compatible with the charge conjugation (63). Moreover, the projections on positive
and negative momenta (with an appropriate modification in the Ramond sector),

(P±ξ̂ )k =
{

θ(±k)ξ̂k k �= 0,− π
εN

�(e∓ i
4π ξ̂k)e± i

4π k = 0,− π
εN

, ξ ∈ h
(±)
N ,±, (72)

are basis projections for C (see (5) and below):

(CP±ξ̂ )(k) = ((1 − P±)C ξ̂ )(k). (73)

Therefore, it is possible to formulate H (N )
0 in terms of four Majorana fermions, �±, :

h
(±)
N ,± → B

(±)
N ,± and �̃± : h(±)

N ,± → B
(±)
N ,±:

�±(ξ) = ψ±(P+ξ) + ψ
†
±(CP−ξ), �̃±(ξ) = ψ±(P−ξ) + ψ

†
±(CP+ξ), (74)

for ξ ∈ h
(±)
N ,±, which correspond to the restrictions of the complex chiral fermions ψ± to

positive and negative momenta. Then H (N )
0 is given by self-dual second quantization:

H (N )
0 = ε−1

N

(
dQ0(h

(N )
sd ) + d Q̃0(h

(N )
sd )

)
, [dQ0(h

(N )
sd ), d Q̃0(h

(N )
sd )] = 0, (75)

In view of the diagonalization (52) of H (N )
0 , it is worth noting that theMajorana fermions

(74) can be interpreted as the self-dual components of c(1), c(2) in the (formal) scaling
limit N → ∞ of the massless case λN = 0:

�̂σ |k =
{

θ(+k)ĉ(1)
k + θ(−k)ĉ(1)†

−k σ = +

θ(+k)ĉ(2)
k + θ(−k)ĉ(2)†

−k σ = − ,
ˆ̃
�σ |k =

{
θ(−k)ĉ(2)

k + θ(+k)ĉ(2)†
−k σ = +

θ(−k)ĉ(1)
k + θ(+k)ĉ(1)†

−k σ = − ,

(76)

for k ∈ 
∞,±. Furthermore, it is evident from (75) that H (N )
0 should decouple into four

massless Majorana fermions in this limit.

2.7. Equivalence with the transverse XY model. In view of our companion article [72]
that discusses our results in relation to the quantum simulation of CFTs, we provide some
details on how to map the fermion algebra AN ,± together with the Dirac Hamiltonian
H (N )
0 to a Pauli algebra, PN+1,± = ⊗x∈�N+1M2(C), in which each local matrix factor

resembles a (logical) qubit, using a Jordan-Wigner isomorphism. Under this mapping
the Dirac Hamiltonian becomes that of an XY model with a transverse field.

To begin with, we identify the algebra AN ,± of two-component fermion with a one-
component fermion algebra, ASDC(�2(�N+1)±), on the doubled lattice �N+1:

bx = a(1)
x , bx+εN+1 = a(2)†

x , x ∈ �N , (77)

which exploits the symmetry of H (N )
0 given by: (a(1)

x , a(2)
x ) �→ (a(2)†

x , a(1)†
x+εN ) for all

x ∈ �N . In terms of b, b†, the Hamiltonian (44) is mapped to:

H (N )
0 = ε−1

N

∑

x∈�N+1

(
bxbx+εN+1 − b†xb

†
x+εN+1 + λN (b†xbx − 1

212)
)
, (78)



Conformal Field Theory 241

with periodic or anti-periodic boundary conditions in accordance with (a(1), a(2)). The
translation invariance of H (N )

0 on �N+1 subsumes the translation invariance on �N and
special field-exchange symmetry from above. In the momentum space representation,
the relation (77) between the single-component fermion a and two-component fermion
(a(1), a(2)) is given by:

â(1)
k = 1

2 (b̂k + b̂k+ π
εN+1

), â(2)
k = 1

2e
iεN+1k(b̂†−k − b̂†−k+ π

εN+1

), (79)

where the two-component fermion can be considered to be periodically extended from

N ,± to 
N+1,±.

A follow-up Jordan-Wigner isomorphism,

bx =
( ∏

y∈�N+1−L≤y<x

σ (1)
y

)
1
2 (σ

(3)
x + iσ (2)

x ), x ∈ �N+1, (80)

yields a soluble transverse XY model (cp. [65]):

H (N )
0 = 1

2ε
−1
N

∑

x∈�N+1

(
σ (3)
x σ

(3)
x+εN+1 − σ (2)

x σ
(2)
x+εN+1 + λNσ (1)

x

)

− 1
2ε

−1
N (±1±(−1)F )(σ

(3)
−Lσ

(3)
L−εN+1

− σ
(2)
−Lσ

(2)
L−εN+1

), (81)

where (±) indicates the fermion boundary conditions while (±) labels the complement-
ing spin boundary conditions, such that boundary term in the second line vanishes on
the lattice vacuum �

(N )
0,±.

We can rephrase the diagonalization of H (N )
0 as given in (52) in terms of the Fourier

transform of the one-component fermion b, b†:

H (N )
0 = 1

4L

∑

k∈
N+1,−,>0

(
b̂k
b̂†−k

)† (
λN −i2 sin(εN+1k)

i2 sin(εN+1k) −λN

)(
b̂k
b̂†−k

)

. (82)

The diagonalizing Bogoliubov transformation is completely analogous to (50) for k > 0:

γλN (k) =
(

1
2ωλN (k)

)− 1
2

⎛

⎝
(ωλN (k) + λN )

1
2 isign(k)(ωλN (k) − λN )

1
2

i 2 sin(εN+1k)

(ωλN (k)+λN )
1
2

sign(k) 2 sin(εN+1k)

(ωλN (k)−λN )
1
2

⎞

⎠ , (83)

which defines the diagonalizing fermion, (ĉk, ĉ
†
−k)

t = γλN (k)†(b̂k, b̂
†
−k)

t , leading to:

H (N )
0 = 1

4L

∑

k∈
N+1,±
ωλN (k)ĉ†k ĉk − 1

4ε
−1
N+1

∑

k∈
N+1,±
ωλN (k). (84)

If we normalize the fermion, c̃k = (2LN+1)
− 1

2 ĉk , and subject it to another inverse
Jordan-Wigner transform similar to (80), we can write

H (N )
0 = 1

2ε
−1
N

∑

k∈
N+1,±
ωλN (k)σ̃ (1)

k . (85)

Therefore, it is possible to express the lattice vacuum as a qubit product state: �
(N )
0,± =

⊗k∈
N+1,±|←〉, which allows for the initialization of a quantum simulation of (81) in its
many-body ground state following [90].
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3. Scaling Limits of Lattice Fermions

We now explain how to implement the scaling limit, N → ∞, rigorously by operator-
algebraic renormalization [10,85] which in turn allows us to give precise statements
about the convergence of lattice quantities, e.g. correlation functions with respect to the
lattice vacuum ω

(N )
0,± or finite-scale Bogoliubov transformations and their implementers.

Following the recipe in [69], we define the scaling limit of lattice fermions, complex
and Majorana, by a renormalization group procedure in terms of an inductive system of
unital, injective ∗-morphisms,

αN
N+1 : AN ,± −→ AN+1,±, αN+1

N+2 ◦ αN
N+1 = αN

N+2, N ∈ N0, (86)

and similarly for BN ,±. In the following we state the formulas for AN ,± only, but they
equally apply toBN ,±.

In present setting, we define the renormalization group {αN
N+1}N∈N0 as Bogoliubov

transformations associated with an inductive system of isometries between one-particle
spaces,

RN
N+1 : hN ,± −→ hN+1,±, RN+1

N+2 ◦ RN
N+1 = RN

N+2 N ∈ N0, (87)

with the additional requirement, RN
N+1C = CRN

N+1, in the self-dual case.
Because of the general properties of CAR algebras [9,26], we obtain the inductive-

limit objects:

A∞,± = ACAR(h∞,±) = lim−→
N

AN ,±, h∞,± = lim−→
N

hN ,±. (88)

At the level of states, ω(N ) ∈ A∗
N ,±, the renormalization group flow is defined by:

ω
(N )
M = ω(N+M) ◦ αN

N+M , N , M ∈ N0. (89)

A scaling limit of a family of lattice states {ω(N )}N∈N0 is defined as:

ω(N )∞ = lim
M→∞ ω

(N )
M , N ∈ N0, (90)

which is automatically projectively consistent,ωN+1∞ ◦αN
N+1 = ωN∞, by continuity [10,69]

if it exists as a weak∗-limit and, thus, defines a state ω
(∞)∞ on A∞,±. In this sense,

the inductive-limit objects (88) serve as carrier spaces of the scaling limit of a family
{ω(N )}N∈N0 .

The observation that the inductive-limit objects (88) can be characterized as the sets
of α- respectively R-convergent sequences [22],

lim
M→∞ lim sup

N→∞
‖ON − αM

N (OM )‖ = 0, lim
M→∞ lim sup

N→∞
‖ξN − RM

N (ξM )‖N = 0, (91)

for ON ∈ AN ,± respectively ξN ∈ hN ,±, motivates the following definition of the
scaling limit of sequences of composite operators with limits possibly not in A∞,±10.

10 In [22] the concept of convergent sequences is discussed for generalized inductive systems of Banach
spaces in the context of mean-field limits.
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Definition 3.1 (Convergent sequences of operators). Let {pN }N∈N0 be a sequence of
semi-norms, pN : AN ,± → R≥0. A sequence of operators {ON }N∈N0 with ON ∈ AN ,±
is called α-convergent with respect to the family {pN }N∈N0 if:

lim
M→∞ lim sup

N→∞
pN (ON − αM

N (OM )) = 0.

Similarly, let {qN }N∈N0 be a sequence of semi-norms, qN : B(hN ,±) → R≥0, we call a
sequence of operators {oN }N∈N0 , with oN ∈ B(hN ,±), R-convergent with respect to the
family {qN }N∈N0 if:

lim
M→∞ lim sup

N→∞
qN (oN − RM

N oM RM
N

∗) = 0.

Of course, R-convergence for one-particle operators is related to α-convergence by
the observation:

αN
M (dF0(oN )) = dF0(R

N
MoN RN

M
∗). (92)

In Sect. 4, we invoke families of semi-norms that are induced by semi-norms p∞ and
q∞ on B(Fa(h∞,±)) respectively B(h∞,±):

pN = p∞ ◦ αN∞, qN = q∞ ◦ (RN∞(·)RN∞∗). (93)

Specific examples are strong operator semi-norms (for M ∈ N0),

p∞(O) = ‖Oa†(RM∞(ξ1))...a
†(RM∞(ξn))�0‖, ξ j ∈ hM,±, j = 1, ..., n,

q∞(o) = ‖oRM∞(ξ)‖∞, ξ ∈ hM,±, (94)

for operators O on Fa(h∞,±) or operators o on the one-particle space hN ,±. This way,
we can study the convergence of sequences of operators at finite scales such as the lattice
Dirac Hamiltonian H (N )

0 and its one-particle version h(N )
0 , which should have limits that

are unbounded operators in the scaling limit.

3.1. Wavelet renormalization group. In the following, we make use of a specific re-
alization of the renormalization group using the theory of wavelets by adapting the
constructions in [69] to the fermionic setting.

To this end, we consider a compactly supported orthonormal scaling function, s ∈
L2(R), ‖s‖L1 = 1, associated with a wavelet basis of L2(R) that satisfies the scaling
equation [20,67]:

s(x) =
∑

n∈Z
hn2

1
2 s(2x − n), x ∈ R, (95)

where the coefficients {hn}n∈Z are called a low-pass filter11. Since our finite-scale
fermion algebras, AN ,± and BN ,±, describe quantum systems in the finite volume S1L ,
we denote by,

s(εN )(x) =
∑

m∈Z
ε
− 1

2
N s(ε−1

N (x + 2Lm)), (96)

11 The compact support of s enforces a that the low-pass filter has only finitelymany non-vanishing elements.
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the rescaled and 2L-periodized scaling function, which yield a wavelet basis of L2(S1L)

and satisfy in analogy with (95):

s(εN )(x) =
∑

n∈ε−1
N+1�N+1

hns
(εN+1)(x − εN+1n), x ∈ S1L . (97)

The wavelet renormalization group is now defined as follows:

Definition 3.2 (Wavelet renormalization group). Given a compactly supported orthonor-
mal scaling function s ∈ L2(R) with low-pass filter {hn}n∈Z, let,

RN
N+1(ξ

( j)) =
∑

x∈�N

ξ
( j)
x

∑

n∈ε−1
N+1�N+1

hnδ
(N+1)
x+εN+1n, (98)

and

RN∞(ξ ( j)) =
∑

x∈�N

ξ
( j)
x s(εN )(· − x)
︸ ︷︷ ︸

:=s
(εN )
x

= s(εN ) ∗�N ξ ( j), (99)

for ξ = (ξ (1), ξ (2)) ∈ hN ,±, where we use the notation ∗�N to denote the convolution
with respect to the lattice �N . The wavelet renormalization group is densely defnined
by:

αN
N+1(a(ξ)) = a(RN

N+1(ξ)), αN∞(a(ξ)) = a(RN∞(ξ)), ξ ∈ hN ,±. (100)

We summarize some important properties of the maps RN
N+1 that follow immediately

from the properties of a (compactly supported) scaling function and its associatedwavelet
basis, cf. [20,67,69]:

Proposition 3.3. The one-particle map of the wavelet renormalization group has the
following properties: RN

N+1 : hN ,± → hN+1,± is

1. well-defined,
2. C-compatible,
3. isometric, i.e. RN

N+1
∗ ◦ RN

N+1 = 1hN ,
4. asymptotically compatible, i.e. RN+1∞ ◦ RN

N+1 = RN∞.

Moreover, we have h∞,± ∼= L2(S1L)± ⊗ C
2, and RN∞∗ ◦ RN∞ = 1hN .

For our purposes it is convenient to explicitly derive the form of the wavelet renormal-
ization groups in the momentum-space representation via the Fourier transform, cf. (36)
& (42):

RN
N+1(ξ̂ )k = 2

1
2m0(εN+1k)(ξ̂per)k, RN∞(ξ̂ )k = ε

1
2
N ŝ(εNk)(ξ̂per)k . (101)

where m0(εN+1k) = 2− 1
2
∑

n∈Z hne−ikεN+1n (considered as periodic on 
N+1,±), and
ξ̂per denotes the periodic extension of ξ̂ from 
N ,± to 
N+1,± respectively 
∞,±. The
asymptotic compatibility and various convergence results, as we show in Sect. 4, turn
out to be a consequence of (applying the Fourier transform to (95)):

ŝ(εN .) = m0(εN+1 .)ŝ(εN+1 .) = lim
M→∞

M∏

n=1

m0(εN+n .), (102)
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where the infinite product converges absolutely and uniformly on compact sets [20].
But, the convergence also holds in arbitrary Sobolev-type subspaces of L2(S1L) provided
the scaling function is regular enough, s ∈ Cα(R), α > 0, e.g. those of the Daubechies
family, see Lemma 3.7 below.

Aswe are not only interested in the scaling limit of the fermions,AN ,± andBN ,±, but
also that of implementers of Bogoliubov transformations and their generators, such as
dFS(G) and dQS(Q) given in (22) & (23), we introduce a modified version of the maps
RN
N+1 adapted to the fact that the generators are quadratic in the fermions (i.e. currents).

To this end, consider the spaces,

l(�N , C
D) = {X : �N → C

D} ∼= l(
N ,+, C
D), (103)

ofCD-valued differential loops (periodic boundary conditions) togetherwith the obvious
extension of the (lattice) Fourier transform.

Definition 3.4 (Wavelet renormalization for differential loops). Given a compactly sup-
ported orthonormal scaling function s ∈ L2(R) as in Definition 3.2. The wavelet renor-
malization group for C

D-valued loops is defined by:

SNN+1(X̂
( j))k = 2m0(εN+1k)(X̂

( j)
per)k, SN∞(X̂ ( j))k = εN ŝ(εNk)(X̂

( j)
per)k, (104)

for X ∈ l(�N , C
D).

In viewof Proposition 3.3,we note that thewavelet renormalization group for currents
also satisfies asymptotic compatibility:

SN+1∞ ◦ SNN+1 = SN∞, (105)

but we refrain from formulating an associated (topological) inductive limit and simply
note that im SN∞ ⊂ lα(S1L , C

D) is a finite-dimensional subspace of differentialCD-valued
Cα-loops associated with the span of s(εN ) and its �N -translates.

Clearly, the difference between RN∞ and SN∞ is the geometrical scaling factor ε
1
2
N

respectively εN which reflects the fact that fermions are half densities while generators
are densities.

3.1.1. Quasi-local structure By analogy with case of lattice scalar fields, the wavelet
renormalizationgroup is compatiblewith the real-space anti-local structure of the fermions
on the lattice and in the continuum. The simple reason for this compatibility is the finite
length of the low-pass filter {hn}n∈Z, which entails that according to (98) and (100) the
fermion and Majorana algebras of a single lattice site at a given scale, AN ,±(x) and
BN ,±(x), x ∈ �N , generated by ax , a

†
x respectively �x , are mapped into localized

algebras at the successive scale, AN+1,±(Ix ) and BN+1,±(Ix ), generated by ay, a
†
y re-

spectively �y for y ∈ Ix ∩�N+1, where Ix ⊂ S1L is an interval determined by the length
of the low-pass filter.

This observation allows for the following definition.

Definition 3.5. Let I ⊂ S1L be an open interval, and denote by �N ∩ I denote the subset
of those x of intersection as subsets of S1L such that x + supp(s(εN )) does not intersect
the boundary ∂ I . Then, we define the local one-particle Hilbert spaces as:

hN ,±(I ) = �2(�N ∩ I )± ⊗ C
2 ⊂ hN ,±,
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where the inclusion results from extension by zero. The twisted-local fermion and Ma-
jorana algebras are, thus, defined as:

AN ,±(I ) = ACAR(hN ,±(I )), BN ,±(I ) = BCAR(hN ,±(I ),C),

which are considered to be subalgebras of AN ,± and BN ,±.
As an immediate consequence of this definition we have the following properties:

Proposition 3.6. The local one-particle Hilbert spaces and twisted-local fermion and
Majorana algebras form inductive systems with respect to the wavelet renormalization
group. Specifically, we have:

h∞,±(I ) = lim−→
N

hN ,±(I ), A∞,±(I ) = lim−→
N

AN ,±(I ), B∞,±(I ) = lim−→
N

BN ,±(I ).

Moreover, we recover the (twisted) quasi-local structure of A∞,± and B∞,±:

A∞,±(I ) ⊂ A∞,±(I ′), B∞,±(I ) ⊂ B∞,±(I ′), I ⊂ I ′,
[A∞,±(I ),A∞,±(I ′)] = {0}, [B∞,±(I ),B∞,±(I ′)] = {0}, I ∩ I ′ = ∅,

A∞,± =
⋃

I⊂S1L

A∞,±(I ), B∞,± =
⋃

I⊂S1L

B∞,±(I ),

where [, ] in the second line is the Z2-graded or twisted commutator with respect to the
grading given by the parity operator (−1)F [8].

3.1.2. A decay estimate We provide decay estimate on the finite products ,
∏M

n=1
m0(εN+nk), that directly implies (102) in Sobolev-type norms for compactly supported
Daubechies scaling functions by dominated convergence. The proof adapts a multi-scale
decomposition strategy in [20] used to obtain regularity estimates for such scaling func-
tions to finite products. A similar albeit less general statement can be found in a recent
article by one of the authors [69].

Lemma 3.7. Let φ = Kφ be a compactly supported Daubechies scaling function with
K ≥ 2, i.e.:

Km0(l) =
(
1+e−il

2

)K
KL(l). (106)

where KL is a certain trigonometric polynomial. Then, for j ∈ N, and j−1M ∈ N:
∣
∣
∣
∣
∣
χ[−2Mπ,2Mπ)(l)

M∏

n=1

Km0(2
−nl)

∣
∣
∣
∣
∣

= χ[−2Mπ,2Mπ)(l)max{eC,π−K j }
(

| sin( 12 l)||l|
)K

(1 + |l|)K j , (107)

where K j = j−1 log2(q j ), q j = supl∈R
∏ j−1

n=0 KL(2−nl), and |KL(l)| ≤ 1 + C |l|.
Proof. Clearly, KL(0) = 1and, thus, |KL(l)| ≤ 1+C |l|. Put, KL j (l) =∏ j−1

n=0 KL(2−nl)

such that
∏ j−1M−1

m=0 KL j (2−(mj+1)l) = ∏M
n=1 KL(2−nl) and q j = supl∈R |KL j (l)|.

Now:
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1. Assume |l| ≤ 1:

j−1M−1∏

m=0

|KL j (2
−mj+1l)| ≤ eC(1−2−m )|l| ≤ eC .

2. Assume 2 j (M ′−1) < |l| ≤ 2 jM ′
for some M ′ ≤ j−1M :

j−1M−1∏

m=0

|KL j (2
−(mj+1)l)| =

M ′−1∏

m=0

|KL j (2
−(mj+1)l)|

j−1M−1∏

n=M ′
|KL j (2

−(nj+1)l)|

=
M ′−1∏

m=0

|KL j (2
−(mj+1)l)|

j−1M−M ′−1∏

n=0

|KL j (2
−(nj+1) 2− jM ′

l︸ ︷︷ ︸
| · |≤1

)|

≤ eCqM ′
j = eC2 jM ′K j ≤ eC (1 + |l|)K j .

3. Assume 2M < |l| ≤ 2Mπ :

j−1M−1∏

m=0

|KL j (2
−(mj+1)l)| ≤ q j−1M

j = 2MK j ≤ π−K j (1 + |l|)K j .

Thus, we have
∏M

n=1 |KL(2−nl)| =∏ j−1M−1
m=0 |KL j (2−(mj+1)l)| ≤ max{eC , π−K j }(1+

|l|)K j for |l| ≤ 2Mπ . In combination with the formula
∏M

n=1

∣
∣
∣ 1−e−i2−nl

2

∣
∣
∣ = ∏M

n=1 |
cos( 122

−nl)| =
∣
∣
∣

2 sin( 12 l)
2M+1 sin(2−(M+1)l )

∣
∣
∣ the result follows. ��

It is known that K2 ≤ (K − 1)(2 − 3
4 log2(3) [20] implying:

−K +K2 ≤ −(1 + (K − 1) ( 34 log2(3) − 1)
︸ ︷︷ ︸

∼0.1887

)
K→∞−→ −∞. (108)

Thus, the decay in (107) can be made arbitrarily fast in a polynomial sense by increasing
K , and we note that K j2 ≤ K j1 + C j1

j2
for j1 < j2

For convenience, we state the following regularity estimate for the scaling function
from [20, Lemma 7.1.2]:

Lemma 3.8. Let φ = Kφ be a compactly supported Daubechies scaling function with
K ≥ 2, then it satisfies the following decay estimate:

|ŝ(l)| ≤ C ′(1 + |l|)−K+K (109)

for K = inf j∈NK j . which implies s ∈ Cα(R) if K < K − (1 + α).
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3.2. Momentum-cutoff renormalization group. A second renormalization group that we
make heavy use of in Sect. 4 implements a sharp cutoff in momentum space [69]:

Definition 3.9 (Momentum-cutoff renormalization group). Let χ
N ,± be the character-
istic function of 
N ,± ⊂ 
N+1,± ⊂ 
∞,±, and let:

RN
N+1(ξ̂ )k = 2

1
2 χ
N (k)(ξ̂per)k, RN∞(ξ̂ )k = ε

1
2
Nχ
N (k)(ξ̂per)k, (110)

for ξ = (ξ (1), ξ (2)) ∈ hN ,±. The momentum-cutoff renormalization group is densely
defined by:

αN
N+1(â(ξ̂ )) = â(RN

N+1(ξ̂ )), αN∞(â(ξ̂ )) = â(RN∞(ξ̂ )). (111)

The momentum-cutoff renormalization group enjoys the same properties as the
wavelet renormalization group, cp. Proposition 3.3.

Proposition 3.10. The one-particle map of the momentum-cutoff renormalization group
has the following properties: RN

N+1 : hN ,± → hN+1,± is

1. well-defined,
2. C-compatible,
3. isometric, i.e. RN

N+1
∗ ◦ RN

N+1 = 1hN ,
4. asymptotically compatible, i.e. RN+1∞ ◦ RN

N+1 = RN∞.

Moreover, the inductive-limit Hilbert space agrees with that of the wavelet renormaliza-
tion group, h∞,± ∼= L2(S1L)± ⊗ C

2, and RN∞∗ ◦ RN∞ = 1hN .

Let us also state the real-space formof the asymptotic one-particlemapsof themomentum-
cutoff renormalization group:

RN∞(ξ) = 1
2L ε

1
2
N

∑

x∈�N

ξx e
i π
2L ( .−x) sin(πε−1

N ( .−x))
sin( π

2L ( .−x) , (112)

for ξ ∈ hN ,±. This makes it evident that images, αN∞(a(ξ)), of lattice-localized localized
operators, a(ξ), ξ ∈ hN ,±(I ), are not strictly localized in I ⊂ S1L , in contrast with the
wavelet scaling maps.

3.3. The scaling limit of lattice vacua. We are now in a position to determine the scaling
limit of the family of lattice vacua {ω(N )

0,±}N∈N0 according to (89). Using either thewavelet
or the momentum-cutoff renormalization group, we find:

ω
(N )
M,±(a(ξ)a†(η)) = 〈RN

M (ξ), (1 − S(N+M)
0 )RN

M (η)〉N+M

= 1
2LN+M

∑

k∈
N+M,±
〈RN

M (ξ̂ )k, P
(+)
λN+M

(k)RN
M (η̂)k〉C2 , (113)

such that the scaling-limit states ω
(N )
∞,±, N ∈ N0, is well-defined if we impose the

renormalization condition,

lim
N→∞ ε−1

N λN = m, (114)
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for some m ≥ 0 (the physical mass of the continuum fermion):

ω
(N )
∞,±(a(ξ)a†(η)) = 1

2L

∑

k∈
∞,±
〈RN∞(ξ̂ )k, P

(+)
m RN∞(η̂)k〉C2 , (115)

where Pm(k) = (2ωm(k))−1(ωm(k)12 + nm(k) · σ) with ωm(k) = (m2 + k2)
1
2 and

nm(k) = key + mez . If we use the Majorana mass term (68) instead of the Dirac mass

term, P(+)
m instead takes the form:

P(+)
m (k) = (2ωm(k))−1(ωm(k)12 + nm(k) · σ), (116)

with nm(k) = key + mex , which satisfies: CP(+)
m = (1 − P(+)

m )C for all m ≥ 0. In this
case, the scaling limit is also well-defined as a state on B∞,±:

ω
(N )
∞,±(�(ξ)�(η)∗) = 1

2L

∑

k∈
∞,±
〈RN∞(ξ̂ )k, P

(+)
m RN∞(η̂)k〉C2 . (117)

The one-particle operator P(+)
0 of the massless scaling-limit state is directly related

to the chiral projections p±, cp. (61):

P(+)
0 (k) = 1

2 (12 + sign(k)σy) = psign(k), (118)

which results in the following expression of the scaling limit on the chiral algebra A(±)
N ,±

(and again similar for B(±)
N ,±),

ω
(N )
∞,±(ψ±(ξ)ψ

†
±(η)) = 1

2L

∑

k∈
∞,±

1
2 (1 ± sign(k))RN∞(ξ)k R

N∞(η)k,

ω
(N )
∞,±(ψ±(ξ)ψ

†
∓(η)) = 0, (119)

such that the chiral parts decouple. As expected, we observe that the the scaling limit of
the massless lattice splits into independent components relative to the chiral decompo-
sition (61), and (119) is related to the projection, cf. (72),

P+ : L2(S1L) −→ H2(S1L), (120)

onto Hardy space and its complement P− = 1 − P+. Inverting the Fourier transform
in (119), we obtain a real-space expression that is seen to approximate the standard
infinite-volume two-point function in the limit L → ∞ [1]:

ω
(N )
∞,±(ψ±(ξ)ψ

†
±(ζ )) = ∓

∫

S1L

dx
∫

S1L

dx ′ (2L)−1 ξ∗�N s(εN )(x)ζ∗�N s(εN )(x ′)
ei

π
L (x−x ′±i0+)−1

→ ± i
2π

∫

R

dx
∫

R

dx ′ ξ ∗�N s(εN )(x)ζ ∗�N s(εN )(x ′)
x − x ′ ± i0+

. (121)

Now that we have established sensible candidates, (115) & (117), for the scaling
limits of the families of lattice vacua, we establish the convergence to these limits for
the wavelet renormalization group using the results of Sect. 3.1.2.
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Lemma 3.11. Let {ω(N )}N∈N0 be a family of quasi-free lattice states, each defined by an
operator 0 ≤ S(N ) ≤ 1 on hN ,± (CS(N ) = (1 − S(N ))C in the self-dual case). Assume
that for all N ∈ N0 the kernel of S(N ) is diagonal in momentum space and converges
point-wise to the kernel of an operator 0 ≤ S ≤ 1 (CS = (1 − S)C),

lim
N→∞ S(N )(k)i j = S(k)i j , k ∈ 
N ,±, i, j = 1, 2, (122)

where 〈ek,i , S(N )el, j 〉N = 2LN δk,l S(N )(k)i j and 〈ek,i , Sel, j 〉∞ = 2Lδk,l S(k)i j . Then,

the renormalization group flow (89) of ω(N ) converges to ω
(N )
S = ωS ◦ αN∞:

lim
M→∞ ‖ω(N )

M − ω
(N )
S ‖ = 0. (123)

Proof. It is sufficient to prove the statement for the two-point functions because the states
are quasi-free and the algebrasAN ,± andBN ,± are generated (in norm) the by algebraic
span of annihilation and creation operators respectively the Majorana operators. We
state the proof only for the complex fermionsAN ,± as it is completely analogous for the
Majorana fermionsBN ,±. By the Cauchy-Schwarz inequality and the properties of the
renormalization group we have:

|(ω(N )
M − ω

(N )
S )(a(ξ)a†(η))

= 〈RN∞(ξ), (RN+M∞ S(N+M)RN
N+M − SRN∞)(η)〉∞

≤ ‖ξ‖N‖(RN+M∞ S(N+M)RN
N+M − SRN∞)(η)‖∞

≤ ‖ξ‖N 1
2LN

∑

l∈
N ,±

∑

j=1,2

|η̂( j)
l |‖(RN+M∞ S(N+M)RN

N+M − SRN∞)(el, j )‖∞

≤ ‖ξ‖N‖η‖N
(

1
2LN

∑

l∈
N ,±

∑

j=1,2

‖(RN+M∞ S(N+M)RN
N+M − SRN∞)(el, j )‖2∞

)1
2
.

Next, we evaluate the last factor in the last line explicitly:

1
2LN

∑

l∈
N ,±

∑

j=1,2

‖(RN+M∞ S(N+M)RN
N+M − SRN∞)(el, j )‖2∞

= 1
2LN

∑

l∈
N ,±

∑

j=1,2

1
2L

∑

k∈
∞,±

∑

i=1,2

|〈ek,i , (RN+M∞ S(N+M)RN
N+M − SRN∞)(el, j )〉∞|2

=
∑

l∈
N ,±

∑

k∈
∞,±

∑

i, j=1,2

|ŝ(εNk)|2|(S(N+M)
per )(k)i j − S(k)i j |2δ0, π

L (k−l) mod 2LN ,

where the last line follows from the scaling equation in momentum space (102), the
inner products,

〈ek,i , RN
M (el, j )〉M = δi j2

M−N
2

( M−N∏

m=1

m0(εN+mk)
) ∑

x∈�N

e−i(k−l)x

= 2LN δi j2
M−N
2

( M−N∏

m=1

m0(εN+mk)
)
δ0, L

π
(k−l) mod 2LN

,
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〈ek,i , RN∞(el, j )〉∞ = δi jε
1
2
N ŝ(εNk)

∑

x∈�N

e−i(k−l)x

= 2LN δi jε
1
2
N ŝ(εNk)δ0, L

π
(k−l) mod 2LN

, (124)

for all k ∈ 
∞,± and l ∈ 
N ,±, and the periodic extension of S(N+M)(k)i j to k ∈ 
∞,±.
As a consequence of the decay estimate on ŝ in Lemma 3.8, Lebesgue’s dominated

convergence theorem, and the fact that the states are quasi-free (7), we know that ω(N )

converges to ω
(N )
S in the weak∗ sense. Since the algebra AN ,± is finite dimensional, we

know that this is equivalent to strong convergence, hence the result follows. ��
Corollary 3.12. Assuming the renormalization condition (114), the renormalization
group flow of the family of lattice vacua ω

(N )
0,± converges to ω

(N )
∞,± (in norm) at any

scale N.

Proof. The renormalization condition implies the point-wise convergence of the kernel
S(N )
0 (k) = 1−P(+)

λN
(k) → 1−P(+)

m for N → ∞. ��
Remark 3.13. The statement of Lemma 3.11 is remains valid if we replace the wavelet
renormalization group by the momentum-cutoff renormalization group. To see, this we
observe that:

|〈ek,i , (RN+M∞ S(N+M)RN
N+M − SRN∞)(el, j )〉∞|2 = 2LN ε

1
2
N δk,l |(S(N+M))(l)i j − S(l)i j |2,

for all k ∈ 
∞,± and l ∈ 
N ,± because:

〈ek,i , RN
M (el, j )〉M = 2LN δi j2

1
2 (M−N )δk,l , (125)

〈ek,i , RN∞(el, j )〉∞ = 2LN δi jε
1
2
N δk,l .

4. Approximation of Conformal Symmetries

It follows from (119) that the chiral subalgebras of the fermion and Majorana algebras,
A

(±)
∞,± and B

(±)
∞,±, together with the scaling limit ω± = ω

(∞)
∞,± are conformal field

theories with central charge c = 1 respectively c = 1
2 [21,26]. But, we would like to

understand how the Diff+(S1L)-covariance arises in its differential form, i.e. the Virasoro

algebra, in the scaling limit from the lattice data,AN ,±,BN ,±, andω
(N )
0,±. To this end, we

combine the method of operator-algebraic renormalization and its specific realizations
introduced in Sect. 3 with the well-known results on Bogoliubov transformations and
their implementability collected in Sect. 2.1.1 to analyze the approximation of conformal
symmetries by the so-called Koo–Saleur formula [60], see also [68,96].

4.1. The Koo–Saleur approximants. To motivate the Koo–Saleur formula for the lattice
analogues of the Virasoro generators, we first introduce some terminology, following
[68]. The discussion stays rather formal and assumes that we are given a conformal field
theory defined on the circle S1L with Hamiltonian,

H =
∫

S1L

dx h(x), (126)
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acting on some Hilbert space H, where h is the Hamiltonian density (a local quantum
field onH). The Hamiltonian density is itself given by the chiral and anti-chiral energy-
momentum tensors, T and T , via

h(x) = 1
2π

(
T (x) + T (x)

)
. (127)

The Fourier modes of the energy-momentum tensors,

Lk = 2L
(2π)2

∫

S1L

dx eikx T (x) + c
24δk,0, Lk = 2L

(2π)2

∫

S1L

dx e−ikx T (x) + c
24δk,0, (128)

for k ∈ 
∞,+, form a representation of the Virasoro algebra with central charge c [21],

[Lk, Lk′ ] = L
π
(k − k′)Lk+k′ + δk+k′,0

c
12 (

L
π
k)(( L

π
k)2 − 1),

[Lk, Lk′ ] = L
π
(k − k′)Lk+k′ + δk+k′,0

c
12 (

L
π
k)(( L

π
k)2 − 1),

[Lk, Lk′ ] = 0, (129)

on H. Thus, the Fourier modes Hk of the Hamiltonian density h correspond to linear
combinations of the Virasoro generators:

Hk = L
π

∫

S1L

dx eikxh(x) = Lk + L−k − c
12δk,0, (130)

with H0 = L
π
H . In addition to the Virasoro generators, it is useful to consider their

smeared versions,

L(X) = 1
2L

∑

k∈
∞,+

X̂k Lk, L(X) = 1
2L

∑

k∈
∞,+

X̂k Lk, (131)

for a sufficiently regular differential loop X ∈ lα(S1L , C) (cf. Definition 3.4 and below,
see, for example, [15,41] precise definitions of smeared Virasoro generators).

Now, the Koo–Saleur proposal is to introduce, by analogy, the lattice Fourier modes
of a lattice Hamiltonian, for example, H (N )

0 :

H (N )
k = L

π
εN

∑

x∈�N

eikxh(N )
x , (132)

where h(N ) : �N → AN ,± or BN ,± is a suitable lattice Hamiltonian density. Here, we
slightly abuse our notation for the sake of simplicity and denote H (N )

k=0 = L
π
H (N )
0 by

H (N )
0 as well. This leads to the following lattice analogues of Lk and Lk :

Definition 4.1 (Koo–Saleur approximants). The Koo–Saleur (KS) approximants of a
lattice Hamiltonian H (N ) with density h(N ) : �N → AN ,± or BN ,± are given by12:

L(N )
k = 1

2

(
H (N )
k + πεN

2L sin( 12 εN k)

[
H (N )
k , H (N )

0

])
,

12 The prefactor ∼ k−1 used in [68] has no intrinsic meaning on the lattice at finite scale and is replaced
by π

2LN
| sin( 12 εN k)|−1 ∼ π

L k
−1 for small εN which also avoids Fermion doublers at the boundary of the

Brillouin zone.
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L
(N )

k = 1
2

(
H (N )

−k + πεN

2L sin( 12 εN k)

[
H (N )

−k , H (N )
0

])
, (133)

for k ∈ 
N
+ . Given a differential loop X ∈ l(�N , C), we define the smeared KS approx-

imants by:

L(N )(X) = 1
2LN

∑

k∈
N ,+

X̂k L
(N )
k , L

(N )
(X) = 1

2LN

∑

k∈
N ,+

X̂k L
(N )

k . (134)

An alternative formula for the Koo–Saleur approximants is obtained by replacing
2 sin( 12εNk) with the dispersion relation ωλN=0(k) of the free massless lattice Dirac

Hamiltonian H (N )
0 because π

2LN
| sin( 12εNk)|−1 = π

LN
ωλN=0(k)−1:

(1 + sign(k))L(N )
k + (1 − sign(k))L

(N )

−k = H (N )
k + π

LNωλN=0(k)

[
H (N )
k , H (N )

0

]
,

(1 + sign(k))L(N )
−k + (1 − sign(k))L

(N )

k = H (N )
−k − π

LNωλN=0(k)

[
H (N )

−k , H (N )
0

]
, (135)

In the followingwe show that the (smeared)KS approximants, L(N )(X) and L
(N )

(X), as-
sociated with the free massless lattice Dirac Hamiltonian (44) converge to the (smeared)
Virasoro generators, L(SN∞(X)) and L(SN∞(X)) in a sense we make precise below.

As a direct consequence, we find that the (unitary13) exponentials,

U (N )(X) = exp(i L(N )(X)), U
(N )

(X) = exp(i L(N )(X)), (136)

as well as the (automorphic) dynamics,

σ
(N )
t X = AdU (N )(t X), σ

(N )
t X = Ad

U
(N )

(t X)
, (137)

for X ∈ l(�N , R), converge to implementers of localized diffeomorphisms in Diff+(S1L)

and their automorphic action on A∞,± respectively B∞,±.
It is important to note that we have two degrees of freedom in the correspondence

between lattice and continuum models: it may be necessary to shift the ground-state
energy and scale the energy axis in order to match the two in the scaling limit. That is,
we should allow for hamiltonian the following adjustment of the lattice Hamiltonian

H (N ) �→ aN H (N ) + bN1, (138)

where aN , bN ∈ R are model-dependent constants.

4.2. The case of massless free lattice fermions. We determine the KS approximants for
the complex fermion algebra AN ,± of the free massless (λN = 0) Dirac Hamiltonian
(44) according to Definition 4.1 using the following lattice Hamiltonian density14:

h(N )
x = ε−2

N
1
2

(
a(1)†
x+εN a

(2)
x − a(1)†

x a(2)
x + a(2)†

x−εN
a(1)
x − a(2)†

x a(1)
x + h.c.

)
∈ AN ,±, x ∈ �N

(139)

13 Note that L(N )
k

∗ = L(N )
−k and L

(N )
k

∗ = L
(N )
−k .

14 Note that the expression for h(N )
x is chosen to be symmetric with respect to the basic lattice translation

x �→ x + εN . A different choice, for example, directly using the summand in (44) corresponds to partial
integration in the scaling limit and, thus, a modification by a total divergence.
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Although we evaluate (133) only for λN = 0, we note that (71)) shows that the lattice
approximation effectively generates a contribution that behaves like Majorana mass at
finite scales. Similar to (45) and the Fourier modes of the lattice Hamiltonian density
are given by additive second quantization:

H (N )
k = L

π
ε−1
N dF0(h

(N )
k ) = 1

2π

∑

l∈
N ,±

∑

i, j=1,2

â(i)†
l+k h

(N )
k (l)i j â

( j)
l ,

h(N )
k (l) =

⎛

⎝ 0 e−iεN (l+ k2 ) cos( 12εNk) − 1

eiεN (l+ k2 ) cos( 12εNk) − 1 0

⎞

⎠ . (140)

Now, because of (18), the KS approximants are also given by additive second quantiza-
tion:

L(N )
k = 1

2
L
π
ε−1
N dF0

(
h(N )
k + (2 sin( 12εNk))

−1
[
h(N )
k , h(N )

0

])
,

L
(N )

k = 1
2
L
π
ε−1
N dF0

(
h(N )

−k + (2 sin( 12εNk))
−1
[
h(N )

−k , h
(N )
0

])
, (141)

Explicitly, we find for the KS approximants of the complex fermion algebra AN ,±:

L(N )
k = L

π
dF0(�

(N )
k ) = εN

2π

∑

l∈
N ,±

∑

i, j=1,2

â(i)†
l+k �

(N )
k (l)i j â

( j)
l ,

�
(N )
k (l) = 1

2ε
−1
N

⎛

⎝− sin(εN (l + k
2 )) e−iεN (l+ k2 ) cos( 12εNk) − 1

eiεN (l+ k2 ) cos( 12εNk) − 1 − sin(εN (l + k
2 ))

⎞

⎠ ,

L
(N )

k = L
π
dF0(�

(N )

k ) = εN
2π

∑

l∈
N ,±

∑

i, j=1,2

â(i)†
l−k �

(N )

k (l)i j â
( j)
l ,

�
(N )

k (l) = 1
2ε

−1
N

⎛

⎝ sin(εN (l − k
2 )) e−iεN (l− k

2 ) cos( 12εNk) − 1

eiεN (l− k
2 ) cos( 12εNk) − 1 sin(εN (l − k

2 ))

⎞

⎠ . (142)

We find the explicit expressions for the KS approximants in terms of the chiral decom-
position (61) by applying the chiral projectors p± to the one-particle operators �

(N )
k ,

�
(N )

k :

�
(N )
k (l) = ε−1

N

( − sin( 14εNk)
2 sin(εN (l + k

2 )) −i(sin( 12εNl)
2 + sin( 12εN (l + k))2)

i(sin( 12εN l)
2 + sin( 12εN (l + k))2) − cos( 14εNk)

2 sin(εN (l + k
2 ))

)

,

(143)

�
(N )

k (l) = ε−1
N

(
cos( 14εNk)

2 sin(εN (l − k
2 )) i(sin( 12εNl)

2 + sin( 12εN (l − k))2)
−i(sin( 12εNl)

2 + sin( 12εN (l − k))2) sin( 14εNk)
2 sin(εN (l − k

2 ))

)

.

(144)

From the latter expressions we can read of the KS approximants of the chiral and anti-

chiral subalgebras (62), i.e. p−�
(N )
k (l)p− = �

(N )
−,k respectively p+�

(N )

k (l)p+ = �
(N )
+,k :

L(N )
−,k = L

π
dF0(�

(N )
−,k) = −1

2π

∑

l∈
N ,±
cos( 14εNk)

2 sin(εN (l + k
2 ))ψ̂

†
−|l+kψ̂−|l ,
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L(N )
+,k = L

π
dF0(�

(N )
+,k ) = 1

2π

∑

l∈
N ,±
cos( 14εNk)

2 sin(εN (l − k
2 ))ψ̂

†
+|l−kψ̂+|l . (145)

A direct computation verifies the validity of the lattice analogue of the Virasoro algebra

(129) at c = 0 for L(N )
k and L

(N )

k at first order in εN , with the following explicit
expressions for the chiral and anti-chiral subalgebras:

[
L(N )

−,k, L
(N )

−,k′
]

= LN
π
2 sin( 12εN (k − k′))

cos( 14εNk)
2 cos( 14εNk

′)2

cos( 14εN (k + k′))2
(
L(N )

−,k+k′ + R(N )

−,k+k′
)

[
L(N )
+,k , L(N )

+,k′
]

= LN
π
2 sin( 12εN (k − k′))

cos( 14εNk)
2 cos( 14εNk

′)2

cos( 14εN (k + k′))2
(
L(N )

+,k+k′ + R(N )

+,k+k′
)

,

(146)

where the remainders R(N )

k+k′,−, R
(N )

k+k′,+ are in O(ε2N ) and given by:

R(N )

−,k+k′ = −1
π
cos( 14εN (k + k′))2

∑

l∈
N ,±
sin(εN (l+ k+k′

2 ) sin( 12εN (l+ k+k′
2 )ψ̂

†
−|l+k+k′ψ̂−|l ,

R(N )

+,k+k′ = 1
π
cos( 14εN (k + k′))2

∑

l∈
N ,±
sin(εN (l− k+k′

2 )) sin( 12εN (l− k+k′
2 ))ψ̂

†
+|l−(k+k′)ψ̂+|l ,

(147)

A similar computation starting from (75) yields the KS approximants for the two
copies of the Majorana algebra BN ,± making up AN ,±, which we also denote by L(N )

k

and L
(N )

k by a slight abuse of notation:

L(N )
k = L

π
dQ0(�

(N )
k ) = 1

2π

∑

l∈
N ,±

∑

σ,σ ′=±
1
2 �̂σ |−(l+k)�

(N )
k (l)σσ ′ �̂σ ′ |l ,

�
(N )
k (l) = ε−1

N
2

⎛

⎝
sin(εN (l + k))(1 − cos(εN (l + k

2 ))) − sin(εN (l + k
2 ))(1 − cos(εN (l + k

2 )) cos(εN k
2 ))

. . .

−i(sin( 12 εN l)2 + sin( 12 εN (l + k))2)(1 − cos(εN (l + k
2 )))

i(sin( 12 εN l)2 + sin( 12 εN (l + k))2)(1 + cos(εN (l + k
2 )))

. . .

− sin(εN (l + k))(1 + cos(εN (l + k
2 ))) − sin(εN (l + k

2 ))(1 − cos(εN (l + k
2 )) cos(εN k

2 ))

⎞

⎠ ,

(148)

L
(N )

k = L
π
dQ0(�

(N )

k ) = 1
2π

∑

l∈
N ,±

∑

σ,σ ′=±
1
2 �̂σ |−(l−k)�

(N )

k (l)σσ ′ �̂σ ′ |l ,

�
(N )

k (l) = ε−1
N
2

⎛

⎝
sin(εN (l − k))(1 + cos(εN (l − k

2 ))) + sin(εN (l − k
2 ))(1 − cos(εN (l − k

2 )) cos(εN k
2 ))

. . .

−i(sin( 12 εN l)2 + sin( 12 εN (l − k))2)(1 + cos(εN (l − k
2 )))

i(sin( 12 εN l)2 + sin( 12 εN (l − k))2)(1 − cos(εN (l − k
2 )))

. . .

− sin(εN (l − k))(1 − cos(εN (l − k
2 ))) + sin(εN (l − k

2 ))(1 − cos(εN (l − k
2 )) cos(εN k

2 ))

⎞

⎠ ,

(149)

with identical expressions for �̃±. The analogues of the restrictions (145) of L(N )
k and

L
(N )

k to the chiral and anti-chiral subalgebras are (in agreement with (145)):

L(N )
−,k = L

π
dQ0(�

(N )
−,k)
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= −1
4π

∑

l∈
N ,±

(
sin(εN (l + k)) cos( 12εN (l + k

2 ))
2

+ 1
2 sin(εN (l + k

2 ))(1 − cos(εN (l + k
2 )) cos(εN

k
2 ))
)
�̂−|−(l+k)�̂−|l

= −1
4π

∑

l∈
N ,±
cos( 14εNk)

2 sin(εN (l + k
2 ))�̂−|−(l+k)�̂−|l ,

L(N )
+,k = L

π
dQ0(�

(N )
+,k )

= 1
4π

∑

l∈
N ,±

(
sin(εN (l − k)) cos( 12εN (l − k

2 ))
2

+ 1
2 sin(εN (l − k

2 ))(1 − cos(εN (l − k
2 )) cos(εN

k
2 ))
)
�̂+|−(l−k)�̂+|l

= 1
4π

∑

l∈
N ,±
cos( 14εNk)

2 sin(εN (l − k
2 ))�̂+|−(l−k)�̂+|l , (150)

where we used the identity,
∑

l∈
N ,±

1
2 ( f±(l, k) + f±(−(l ± k), k))�̂±|−(l∓k)�̂±|l = LN δk,0

∑

l∈
N ,±
f±(l, 0), (151)

which is a consequence of the self-dual CAR, to arrive at each of the last lines.

4.2.1. Relation with Temperley–Lieb algebras In the original work of Koo–Saleur [60]
an essential step consists in relating the Hamiltonian lattice density h(N )

x to generators
ex of a Temperley-Lieb algebra TLδ with loop parameter δ. Let us briefly explain how
such a relation with Temperley-Lieb algebras [44,88] arises in our setting, specifically
in the case c = 1

2 which is intimately connected with the transverse-field Ising model
[79]. Invoking the self-dual formulation involving the Majorana mass term in Sect. 2.6,
we can rewrite the Hamilton (71) in terms of a pair of anti-commuting complex fermions
c(1), c(2) in momentum space,

ĉ(1)
k = θ(k)ψ̂+|k + θ(−k)ψ̂†

−|−k, ĉ(2)
k = θ(k)ψ̂+|−k + θ(−k)ψ̂†

−|k (152)

which yields:

H (N )
0 = 1

2L

∑

k∈
−,>0

(
ĉ(1)
k

ĉ(1) †
−k

)†(
sin(εNk) −i((cos(εNk) − 1) + λN )

i((cos(εNk) − 1) + λN ) − sin(εNk)

)(
ĉ(1)
k

ĉ(1) †
−k

)

+ 1
2L

∑

k∈
−,>0

(
ĉ(2)
k

ĉ(2) †
−k

)†( − sin(εNk) −i((cos(εNk) − 1) + λN )

i((cos(εNk) − 1) + λN ) sin(εNk)

)(
ĉ(2)
k

ĉ(2) †
−k

)

.

(153)

Here, we restricted ourselves to anti-periodic boundary conditions (-) for simplicity.
Next, we apply additional Bogoliubov transformations,

(
ẑ(1)k
ẑ(1) †−k

)

= e−i π
4 σx

(
ĉ(1)
k

ĉ(1) †
−k

)

,

(
ẑ(2)k
ẑ(2) †−k

)

= iσze
i π
4 σx

(
ĉ(2)
k

ĉ(2) †
−k

)

(154)
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to arrive at two copies of the Hamiltonian of transverse-field Ising model with mixed-
sector boundary conditions [80]:

H (N )
0 = 1

2L

∑

k∈
−,>0

(
ẑ(1)k
ẑ(1) †−k

)†

h(N )
TIM(k)

(
ẑ(1)k
ẑ(1) †−k

)

+ 1
2L

∑

k∈
−,>0

(
ẑ(2)k
ẑ(2) †−k

)†

h(N )
TIM(k)

(
ẑ(2)k
ẑ(2) †−k

)

,

(155)

where h(N )
TIM(k) = − sin(εNk)σy + ((cos(εNk)−1)+λN )σz . Now, we are in a position to

explicitly spell out the relation with two commuting‘ copies of the Temperley-Lieb alge-
bra TLδ=√

2 (on 2N+2 strands). This is achieved by introducing the Majorana fermions
on the refined lattice �N+1,

ψ
( j)
x = z( j)x + z( j) †x , ψ

( j)
x+εN+1 = (−i)(z( j)x − z( j) †x ), j = 1, 2, x ∈ �N , (156)

and defining the Temperley-Lieb generators:

e( j)
x = 2− 1

2 (1 + iψ( j)
x+εN+1ψ

( j)
x ), j = 1, 2, x ∈ �N+1. (157)

This leads to:

H (N )
0 = i

4ε
−1
N+1

2∑

j=1

∑

x∈�N

(
(1 − λN )ψ

( j)
x+εN+1ψ

( j)
x + ψ

( j)
x+εN ψ

( j)
x+εN+1

)

= 1
2
√
2
ε−1
N+1

2∑

j=1

∑

x∈�N

(
(1 − λN )e( j)

x + e( j)
x+εN+1

)− (2 − λN )2N ε−1
N+1 (158)

Therefore, the KS approximants at criticality (λN = 0) can be equivalently computed
using the Temperley-Lieb generators e( j)

x (see [84] for further explanations concerning
this perspective in the setting of OAR).

4.2.2. The formal scaling limit Before we turn to the analysis of the convergence of the
KS approximants in the scaling limit in the sense of Definition 3.1, we study their formal
limit in terms of the asymptotic renormalization group elements αN∞. This allows us to
determine candidates for limit operators which should correspond to representatives of
the Virasoro algebra (129).

Complex fermionsAN ,±. Let us consider the complex fermion case first. As L(N )
k , L

(N )

k
have convenient expression in momentum space, we first observe that:

αN∞(â( j)
k ) =

∑

x∈�N

eikxαN∞(a( j)
x ) =

∑

x∈�N

eikxa( j)(s(εN )
x ). (159)

Thus, because αN∞ is ∗-morphism, we find:

αN∞
(
L(N )
k

)
= εN

2π

∑

l∈
N ,±

∑

i, j=1,2

αN∞(â(i)†
l+k )�

(N )
k (l)i jα

N∞(â( j)
l )

= 1
2π ε2N

∑

x,y∈�N

∑

i, j=1,2

a(i)†(ε
− 1

2
N s(εN )

x )
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⎛

⎝
∑

l∈
N ,±
ei(l+k)x�(N )

k (l)i j e
−ily

⎞

⎠a( j)(ε
− 1

2
N s(εN )

y ),

αN∞
(
L

(N )

k

)
= εN

2π

∑

l∈
N ,±

∑

i, j=1,2

αN∞(â(i)†
l−k )�

(N )

k (l)i jα
N∞(â( j)

l )

= 1
2π ε2N

∑

x,y∈�N

∑

i, j=1,2

a(i)†(ε
− 1

2
N s(εN )

x )

⎛

⎝
∑

l∈
N ,±
ei(l−k)x�

(N )

k (l)i j e
−ily

⎞

⎠a( j)(ε
− 1

2
N s(εN )

y ). (160)

Now,wecan formally take the scaling limit N → ∞using ε2N
∑

x,y∈�N
→ ∫

S1L×S1L
dxdy

and ε
− 1

2
N s(εN )

x → δx (in the sense of distributions), as well as,

�
(N )
k (l) → �k(l) := −(l + k

2 )p−, �
(N )

k (l) → �k(l) := (l − k
2 )p+. (161)

The latter can equally be expressed as a formal convergence of operators on the one-
particle space h∞,±:

�̃
(N )
k := RN∞�

(N )
k RN ∗∞ → �k, �̃

(N )

k := RN∞�
(N )

k RN ∗∞ → �k . (162)

Therefore, the formal scaling limit of the KS approximants is:

Lk = L
π
dF0(�k), Lk = L

π
dF0(�k)

= 1
2π

∑

l∈
∞,±

∑

i, j=1,2

â(i)†
l+k �k(l)i j â

( j)
l = 1

2π

∑

l∈
∞,±

∑

i, j=1,2

â(i)†
l−k �k(l)i j â

( j)
l

= −1
2π

∑

l∈
∞,±
(l + k

2 )ψ̂
†
−|l+kψ̂−|l = 1

2π

∑

l∈
∞,±
(l − k

2 )ψ̂
†
+|l−kψ̂+|l

= L
π
dF0(�−,k) = L−,k, = L

π
dF0(�+,k) = L+,k, (163)

where we invoked the chiral decomposition (62) in the last line. We give a precise
definition of �±,k as an unbounded operator on one-particle h∞,±) in the next subsection.
The definition of its (normal-ordered) second quantization as unbounded operator on
Fock spaceFa(h∞,±) is consequence of the results provided in Sect. 2.1.1, see especially
[14]. Similarly, a formal computation of the commutators in the scaling limit, again
exploiting that αN∞ is a ∗-morphism, yields:

[Lk, Lk′ ] = L
π
(k − k′)Lk+k′ ,

[
Lk, Lk′

] = L
π
(k − k′)Lk+k′ ,

[
Lk, Lk′

] = 0. (164)

Thus, we formally recover a representation of the Virasoro algebra (129) (with central
charge c = 0) in the scaling limit of complex lattice fermions. The vanishing of the
central charge is expected because the computation pertains to A∞,± itself respectively
to the Fock representation of A∞,± with vacuum �0, i.e. the Schwinger cocycle (27)
vanishes: cS=0 = 0.

It is also possible to recover representations of the Virasoro algebra with non-
vanishing central charge (c �= 0) in the formal scaling limit by passing to the GNS
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representations of A∞,± given by the scaling limits ω
(∞)
∞,± = ω± of the lattice vacua

(115) & (119). But, at this point, we are forced to distinguish between (−)- and (+)-
boundary conditions as the scaling limit ω− is a pure state while ω+ is not because of
the degeneracies at zero momentum.

Let us first discuss the Neveu-Schwarz sector ((−)-boundary condition). According
to (118), the scaling limit ω− is a pure quasi-free state on A∞,− determined by the
Hardy projection P+ and its complement P− = 1− P+ given in (72) via S = P− ⊕ P+.
Moreover, by (119) ω− is compatible with the factorization, A∞,− ∼= A

(+)
∞,− ⊗Z2 A

(−)
∞,−,

in to chiral components. By (9) the GNS representation π− of the restrictions of ω− =
ω

(+)
− ⊗ ω

(−)
− can be realized on Fock space, Fa(h∞,−) ∼= Fa(h

(+)
∞,−) ⊗ Fa(h

(−)
∞,−), as:

π−(ψ±(ξ)) = ψ±(P±ξ) + ψ
†
±(J P∓ξ), ξ ∈ h

(±)
∞,− (165)

where we choose the conjugation J ξ̂ = ξ̂ which satisfies J P± = P± J .
By analogy with (160), we compute the formal limit of L

π
dF−(�̃

(N )
±,k) =:π−(αN∞( L

π
d

F0(�
(N )
±,k))): resulting in:

L
π
dF−(�̃

(N )
±,k) → L

π
dF−(�±,k) =: L±,k,

[L±,k, L±,k′ ] = L
π
(k − k′)L±,k+k′ +

( L
π

)2
cP∓(�±,k, �±,k′)

= L
π
(k − k′)L±,k+k′ + δk+k′,0

1
12 (

L
π
k)(( L

π
k)2 − 1), (166)

where we used the fact that �±,k has off-diagonal parts in the Hilbert-Schmidt class.
This shows that we formally obtain a representation of the Virasoro algebra with central
charge c = 1 as expected, and the GNS vector of ω− has conformal weight h = 0,
i.e. L±,0�0 = 0.

In the Ramond sector ((+)-boundary condition), we purify ω+ by doubling according
to (11). The doubled projections, taking the role of P± in the Neveu-Schwarz sector,
are explicitly given by,

PS± = 1
2L

∑

k∈
∞,+\{0}

(
θ(±k) 0

0 θ(∓k)

)

ek ⊗ 〈ek, ·〉∞ + 1
2L

( 1
2 ± 1

2± 1
2

1
2

)

e0 ⊗ 〈e0, ·〉∞,

(167)

on h
(±)
∞,+ ⊕ h

(±)
∞,+. The GNS representation π+ of ω+ = ω

(+)
+ ⊗ ω

(−)
+ is then realized on

Fa(h∞,+ ⊕ h∞,+) ∼= Fa(h
(+)
∞,+)

⊗2 ⊗ Fa(h
(−)
∞,+)

⊗2 by:

π+(ψ±(ξ)) = ψ±(PS±(ξ ⊕ 0)) + ψ
†
±((J ⊕ J )PS∓(ξ ⊕ 0)), ξ ∈ h

(±)
∞,+, (168)

where ψ± on the right hand side is the obvious two-component extension.
Computing the formal limit as in (166) of the KS approximants with respect to π+

leads to:

L
π
dF+(�̃

(N )
±,k) → L

π
dF+(�±,k) =: L±,k,

[L±,k, L±,k′ ] = L
π
(k − k′)L±,k+k′ +

( L
π

)2
cPS∓ (�±,k, �±,k′)

= L
π
(k − k′)L±,k+k′ + δk+k′,0

1
12 (

L
π
k)(( L

π
k)2 + 2). (169)
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We recover the Virasoro algebra (129) with c = 1 by redefining the limit at zero mo-
mentum,

L±,0 := L
π
dF+(�±,k) + 1

8 , (170)

which shows that theGNSvector ofω+ has conformalweight h = 1
8 , i.e. L±,0�0⊗�0 =

1
8�0 ⊗ �0.

Majorana fermionsBN ,±. The computation of the formal limit of theKS approximants
in the Majorana case is structurally identical, hinging only on the formal convergence
(162) of the one-particle operators (148) & (149):

�
(N )
k (l) → �k(l) := −(l + k

2 )
1
2 (1−σz), �

(N )

k (l) → �k(l) := (l − k
2 )

1
2 (1+σz).

(171)

Therefore, we only state the final results pertaining toB∞,± itself,

Lk = L
π
dQ0(�k), Lk = L

π
dQ0(�k)

= −1
4π

∑

l∈
∞,±
(l + k

2 )�̂−|−(l+k)�̂−|l = 1
4π

∑

l∈
∞,±
(l − k

2 )�̂+|−(l−k)�̂+|l

= L
π
dQ0(�−,k) = L−,k, = L

π
dQ0(�+,k) = L+,k, (172)

and the scaling limits of the lattice vacua ω−,

L±,k = L
π
dQ−(�±,k), (173)

and ω+,

L±,k = L
π
dQ+(�±,k) + 1

16δk,0, (174)

both of which have c = 1
2 and conformal weight h = 0 respectively h = 1

16 . The
normal-ordered quantizations dQ+ and dQ− are defined with respect to the self-dual
analogues of (165):

π−(�±(ξ)) = ψ±(P±ξ) + ψ
†
±(CP∓ξ), ξ ∈ h

(±)
∞,−, (175)

π+(�±(ξ)) = ψ±(PS±(ξ ⊕ 0)) + ψ
†
±((C ⊕ (−C))PS∓(ξ ⊕ 0)), ξ ∈ h

(±)
∞,+. (176)

4.2.3. Convergence of the KS approximants In the computation of the formal scaling
limit in Sect. 4.2.2, we have seen that establishing convergence of one-particle operators
(162) in a rigorous way is central to deduce the convergence of the KS approximant to
the Virasoro generators in the scaling limit. Now, we make this idea precise and argue

that such a result shows that {L(N )
k }N∈N0 and {L(N )

k }N∈N0 are convergent sequences in
the sense of Definition 3.1 with limits given by Lk and Lk . We focus on the convergence
of the chiral and anti-chiral components, {L(N )

±,k}N∈N0 , to L±,k as the convergence of the
other components follows along the same line albeit the limits are the zero operators.
Moreover,we show that the result extends to smearedKSapproximant (134) andVirasoro
generators (131).
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We explicitly provide the statements for the complex fermion algebra A∞,± ∼=
A

(+)
∞,± ⊗Z2 A

(−)
∞,±. The statements in Majorana case B∞,± ∼= B

(+)
∞,± ⊗Z2 B

(−)
∞,± are

completely analogous.

Virasoro generators. As a preparation for the convergence statement, we need to prop-
erly define the one-particle operator �±,k of the chiral and anti-chiral Virasoro generators
as unbounded operators on h

(±)
∞,± ∼= L2(S1L)±.

Definition 4.2 (One-particle Virasoro generators). The operators �±,k associated with
A

(±)
∞,± and B

(±)
∞,± are given on the standard dense invariant domain Dstd ⊂ L2(S1L)±

spanned by the plane waves {em}m∈
∞,± by the expressions:

�±,k = ±1
2π

∑

l∈
∞,±
(l ∓ k

2 )el∓k ⊗ el , (177)

where el is short hand for 〈el , ·〉∞ for all l ∈ 
∞,±. Since we are particularly interested
in associated unitary groups and,

�∗±,k = �±,−k, (178)

holds on Dstd, we define the real and imaginary parts of �±,k ,

r±,k = 1
2 (�±,k + �±,−k), ι±,k = 1

2i (�±,k − �±,−k), (179)

on Dstd as well.

We note that (178) implies that �±,k is closable. In view of this definition, we use the
following notation for the one-particle KS approximants (145),

�
(N )
±,k = ±1

2π

∑

l∈
N ,±
cos( 14εNk)

2 sin(εN (l ∓ k
2 ))el∓k ⊗ el , (180)

and for the real and imaginary parts,

r (N )
±,k = 1

2 (�
(N )
±,k + �

(N )
±,−k), ι

(N )
±,k = 1

2i (�
(N )
±,k − �

(N )
±,−k). (181)

as these evidently satisfy:

�
(N )
±,k

∗ = �
(N )
±,−k . (182)

The following bounds for all j ∈ N0 are straightforward:

‖� j
±,kem‖2∞ ≤ 2L( L

π
)2 j

⎧
⎨

⎩

|m|2 j k = 0

|k|2 j
(


(|mk |+ 1
2 + j)


(|mk |+ 1
2 )

)2

k �= 0
,

‖r j
±,kem‖2∞ ≤ 2L( L

2π )2 j

⎧
⎨

⎩

|2m|2 j k = 0
(2 j
j

)|k|2 j
(


(|mk |+ 1
2 + j)


(|mk |+ 1
2 )

)2

k �= 0
, (183)
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with an analogous bound for ‖ι j±,kem‖2∞. Here, 
(x + 1) = x
(x) denotes the Gamma
function. These bounds imply that each plane wave em is an analytic vector for �±,k ,
r±,k and ι±,k because the series,

∞∑

j=0

t j
j ! ‖� j

±,kem‖∞ < ∞,

∞∑

j=0

t j
j ! ‖r j

±,kem‖∞ < ∞,

∞∑

j=0

t j
j ! ‖ι j±,kem‖∞ < ∞,

are convergent for some t > 0. By Nelson’s analytic vector theorem [70,74] we have:

Corollary 4.3. The plane waves {em}m∈
∞,± ⊂ Dstd are a total set of analytic vectors
for �±,k , r±,k and ι±,k . Moreover, r±,k and ι±,k are essentially self-adjoint on Dstd.

Because of these observations, we do not distinguish between the �±,k , r±,k , ι±,k and
their closures in what follows.

Remark 4.4 (Majorana one-particle Virasoro generators). In the Majorana case the one-
particle Virasoro generators need to satisfy the implementability condition (19) which is
met by the one-particle KS approximants (180) and the one-particle Virasoro generators
(177):

C�
(N )
±,k

∗C = −�
(N )
±,k, C�∗±,kC = −�±,k . (184)

We are now in a position to establish the convergence of the one-particle KS ap-
proximants to the one-particle Virasoro generators in the sense of Definition 3.1 using
the asymptotic maps RN∞ : �2(
N ,±, (2LN )−1) ∼= h

(±)
N ,± → h

(±)
∞,± ∼= L2(S1L)±, ei-

ther from the wavelet or the momentum-cutoff renormalization group. In particular, we
show the convergence of (162) in the strong operator topology on a dense, common core
D ⊂ h

(±)
∞,±, i.e.:

lim
N→∞ ‖(�̃(N )

±,k − �±,k)ξ‖∞ = 0, (185)

for all ξ ∈ D. A similar state holds for the real and imaginary parts (179) & (181).
For the momentum-cutoff renormalization group, we use D = Dstd because:

RN∞(ek) = ε
− 1

2
N ek, k ∈ 
N ,± , (186)

where ek ∈ h
(±)
N ,± on the left but ek ∈ h

(±)
∞,± on the right, i.e.

⋃
N∈N0

RN∞(h
(±)
N ,±) = Dstd.

For the wavelet renormalization group, we use D = DW defined as:

DW =
⋃

N∈N0

RN∞(h
(±)
N ,±), (187)

which agrees with the span of the wavelet basis associated with the scaling function
s(ε0) ∈ L2(S1L)+ by construction [20]. That DW is dense common core for the one-
particle Virasoro generators and their real and imaginary parts is due to the following
argument:

We observe that the graph norms of �±,k , r±,k and ι±,k are bounded by the norm of
the first-order Sobolev space h1(
∞,±):

‖ξ‖2�±,k
= ‖ξ‖2∞ + ‖�±,kξ‖2∞ ≤ max{1 + ( Lk2π )2, ( L

π
)2}‖ξ‖2h1(
∞,±)

,
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and similarly for ‖ξ‖r±,k and ‖ξ‖ι±,k . But, it is known that Dstd and DW (provided the
scaling function s is sufficiently regular) are dense in h1(
∞,±) [50]. It follows that the
graph-norm closures ofDstd andDW agree, and we conclude thatDW is a core for �±,k ,
r±,k and ι±,k [73].
Wavelet renormalization. In this paragraph RN

M and RN∞ as well as αN
M and αN∞ denote

the wavelet renormalization group of Definition 3.2.
We formulate the essential convergence statement (185) as a lemma:

Lemma 4.5 (Convergence of the one-particle KS approximants). Let ξ ∈ DW and s ∈
Cα(R) a sufficiently regular, compactly supported orthonormal scaling function. Then:

lim
N→∞ ‖(�̃(N )

±,k − �±,k)ξ‖∞ = 0,

where �̃
(N )
±,k := RN∞�

(N )
±,k R

N ∗∞ , and similarly:

lim
N→∞ ‖(r̃ (N )

±,k − r±,k)ξ‖∞ = 0, lim
N→∞ ‖(ι̃(N )

±,k − ι±,k)ξ‖∞ = 0.

Proof. We only spell out the proof for �̃
(N )
±,k and �±,k . We first observe that:

�̃
(N )
±,k(R

M∞(ξ)) = �̃
(N )
±,k(R

N∞(RM
N (ξ))) = RN∞(�

(N )
±,k(R

M
N (ξ))),

for N > M and ξ ∈ hM because (RN∞)∗RN∞ = 1hN . Now, the Cauchy-Schwarz inequal-
ity implies:

‖RN∞(�
(N )
±,k(R

M
N (ξ))) − �±,k(R

M∞(ξ))‖2∞
≤ ‖ξ‖2hM

1
2L

∑

m∈
∞,±

1
2LM

∑

l∈
M,±
| 〈em, RN∞(�

(N )
±,k(R

M
N (el)))〉∞

︸ ︷︷ ︸

:= f (N )
k,± (M,m,l)

− 〈em, �±,k(R
M∞(el))〉∞

︸ ︷︷ ︸
:= fk,±(M,m,l)

|2.

Next,we derive explicit expression for f (N )
k,± (M,m, l) and fk,±(M,m, l) to use the domi-

nated convergence theoremwith respect to �2(
∞,±, (2L)−1) to deduce the convergence
of the limit N → ∞:

f (N )
k,± (M,m, l)

= ±1
2π

∑

n∈
N ,±
cos( 14εNk)

2 sin(εN (n ∓ k
2 ))〈em, RN∞(en∓k)〉∞〈en, RM

N (el)〉N ,

fk,±(M,m, l) = ±1
2π

∑

n∈
∞,±
(n ∓ k

2 ) 〈em, en∓k〉∞︸ ︷︷ ︸
=2Lδm,n∓k

〈en, RM∞(el)〉∞.

Explicitly evaluating the inner product as in (124), this leads to:

f (N )
k,±(M,m, l) = ±1

4π ε
1
2
M cos( 14 εN k)

2 ŝ(εNm)
∑

n∈
N ,±
2LN sin(εN (n ∓ k

2 ))δ
0, Lπ (m−(n∓k)) mod2LN
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× 2LM δ
0, Lπ (n−l) mod2LM

N−M∏

j=1

m0(εM+ j n)

= ±1
4π ε

1
2
M cos( 14 εN k)

2 ŝ(εNm)
∑

n∈
∞,±
2LN sin(εN (n ∓ k

2 ))δ
0, Lπ (m−(n∓k)) mod2LN

× 2LM δ
0, Lπ (n−l) mod2LM

χ
N (n)

N−M∏

j=1

m0(εM+ j n)

= ±L
2π 2LMε

1
2
M cos( 14 εN k)

2 ŝ(εNm)
∑

n∈Z

sin(εN (m± k
2 ))

εN
δ
0, Lπ (m±k+ 2π

εN
n−l) mod2LM

×χ
N(m±k + 2π
εN

n)

N−M∏

j=1

m0(εM+ j (m±k + 2π
εN

n)),

fk,±(M,m, l) = ±L
2π 2LMε

1
2
M ŝ(εM (m±k))(m± k

2 )δ
0, Lπ (m±k−l) mod2LM

,

where χ
N is the indicator function of the sublattice 
N ,± ⊂ 
∞,±, and we evaluated
the sum over n ∈ 
∞,± using δ0, L

π
(m−(n∓k))mod2LN

form the second to third line. Finally,

we use the periodicity, m0(εM+ j (m + 2π
εN

n)) = m0(εM+ jm) for all m ∈ 
∞,±, n ∈ Z

and j = 1, . . . , N − M , and:

δ0, L
π

(m±k+ 2π
εN

n−l) mod2LM
= δ0, L

π
(m±k−l)+2N−M LMn mod2LM

= δ0, L
π

(m±k−l) mod2LM
.

Thus, we arrive at:

f (N )
k,±(M,m, l) = ±L

2π 2LMε
1
2
M cos( 14εNk)

2ŝ(εNm)
∑

n∈Z

sin(εN (m± k
2 ))

εN
δ0, L

π
(m±k−l) mod2LM

× χ
N(m±k + 2π
εN

n)

N−M∏

j=1

m0(εM+ j (m±k))

= ±L
2π 2LMε

1
2
M cos( 14εNk)

2ŝ(εNm)
sin(εN (m± k

2 ))

εN
δ0, L

π
(m±k−l) mod2LM

× ŝ(εM (m±k))
ŝ(εN (m±k)) , S

because
∑

n∈Z χ
N (m± k + 2π
εN

n) = 1 for any fixedm± k ∈ 
∞,±. We also used (102).
Next, we write:

f (N )
k,± (M,m, l) = ±L

2π 2LMε
1
2
M f (N )

±k (M,m)δ0, L
π

(m±k−l) mod2LM
,

fk,±(M,m, l) = ±L
2π 2LMε

1
2
M f±k(M,m)δ0, L

π
(m±k−l) mod2LM

.

where we defined:

f (N )
k (M,m) := ŝ(εM (m + k)) cos( 14εNk)

2 sin(εN (m+ k
2 ))

εN

ŝ(εNm)
ŝ(εN (m+k)) ,

fk(M,m) := ŝ(εM (m + k))(m + k
2 ).
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This allows us to conclude that we have pointwise convergence (in m ∈ 
∞,±):

lim
N→∞ f (N )

k (M,m) = fk(M,m),

for arbitrary M < N and k ∈ π
L Z, and, thus, also pointwise (in m ∈ 
∞):

lim
N→∞ f (N )

k,± (M,m, l) = fk,±(M,m, l),

for arbitrary l ∈ 
M,±. It remains to show that limN→∞ f (N )
k,± (M, ., l) = fk,±(M, ., l)

in �2(
∞,±, (2L)−1), which follows from the dominated convergence theorem if we
provide a gk(M, .) ∈ �2(
∞,±, (2L)−1) such that:

| f (N )
k (M,m)| ≤ gk(M,m).

The existence of such a gk(N , .) is implied by,

| f (N )
k (M,m)| ≤ |(m + k

2 )ŝ(εM (m + k))|
∣
∣
∣

ŝ(εNm)
ŝ(εN (m+k))

∣
∣
∣ ≤ Ck |(m + k

2 )ŝ(εM (m + k))|,

for some Ck > 0, because of the uniform continuity of ŝ, and the decay estimate (109)
for sufficiently regular s ∈ Cα(R). ŝ is uniformly continuous since lim|k|→∞ |ŝ(k)| = 0
and ŝ(k) =∏∞

j=1m0(2− j k) is locally uniformly convergent. ��
The lemma implies the convergence of the KS approximants in the standard Fock

space representation (c = 0).

Theorem 4.6 (Covergence of the KS approximants). Let s ∈ Cα(R) be a sufficiently
regular, compactly supported orthonormal Daubechies scaling function. The KS ap-
proximants, L(N )

±,k , converge strongly to the continuum Virasoro generators, L±,k , on the

dense, common core F
alg
a (DW ) ⊂ Fa(h

(±)
∞,±) spanned by anti-symmetric Fock vectors

with finitely many one-particle excitations in DW (finite DW -particle number), i.e.:

lim
N→∞ ‖(αN∞(L(N )

±,k) − L±,k)a
†(ξ1) . . . a†(ξn)�0‖ = 0, (188)

for all n ∈ N0 and ξ1, . . . , ξn ∈ DW .

Proof. We have by the definition of second quantization:

dF0(o)a
†(ξ1) . . . a†(ξn)�0 =

n∑

k=1

a†(ξ1) . . . a†(oξk) . . . a†(ξn)�0,

for any one-particle operator o on Do ⊂ h
(±)
∞,± such that ξ1, ..., ξn ∈ Do. Thus, because

of (21), we know that (188) is implied by (185). ��
The lemma also implies the convergence of the unitary Bogoliubov transformations

associated with the KS approximants to those of the Virasoro generators (a more general
statement for smeared KS approximant and Virasoro generators is stated below). Let
us note that a quasi-free representation πS admits an implementation of the Virasoro
generators L±,k by normal-ordered second quantization (22) provided the one-particle
operators �±,k satisfy the off-diagonal Hilbert-Schmidt bounds (25), for example, the
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representations π± of the scaling limit states (165) & (168). Thus, for admissible quasi-
free representations, we have:

σ̃
(N )
t = Ad

e
itdFS (r̃(N )

±,k )
(πS(a

†(ξ))) = πS(a
†(eitr̃

(N )
±,k ξ)),

σt = AdeitdFS (r±,k ) (πS(a
†(ξ))) = πS(a

†(eitr±,k ξ)), (189)

where the unitary eitdFS(r±,k ) is well-defined by essential self-adjointness of dFS(r±,k)

(see below Theorem 4.11), and similarly for ι̃(N )
±,k and ι±,k by Corollary 4.3. By construc-

tion the relation with the KS approximants is:

dFS(�̃
(N )
k,±) = : πS(α

N∞(dF0(�
(N )
k,±))) : = : πS(α

N∞(L(N )
k,±)) : . (190)

The analogous statements hold in theMajorana setting, for example, for the scaling limit
representations (175) & (176).

Corollary 4.7 (Convergence of KS Bogoliubov transformations). Let s ∈ Cα(R) be a
sufficiently regular, compactly supported orthonormal Daubechies scaling function. In
any admissible quasi-free representation πS, we have:

lim
N→∞ ‖σ̃ (N )

t (πS(A)) − σt (πS(A))‖ = 0, ∀A ∈ A
(±)
∞,±,

and uniformly on compact intervals in t ∈ R.

Proof. It is sufficient to prove the statement for a = a†(ξ) with ξ ∈ h
(±)
∞,±, because the

multinomials A = a†(ξ1) . . . a†(ξn)a(ξn+1) . . . a(ξn+m) form a norm total set in A
(±)
∞,±

and we have:

‖σ̃ (N )
t (AB) − σt (AB)‖ ≤ ‖σ̃ (N )

t (A) − σt (A)‖‖B‖ + ‖A‖‖σ̃ (N )
t (B) − σt (B)‖,

for all A, B ∈ πS(A
(±)
∞,±). Now, let o = r±,k, ι±,k and õ(N ) = r (N )

±,k , ι̃
(N )
±,k . Then, because

of (189), we have:

‖σ̃ (N )
t (πS(a

†(ξ))) − σt (πS(a
†(ξ)))‖ = ‖πS(a

†(eitõ
(N )

ξ )) − πS(a
†(eitoξ))‖

≤ ‖(eitõ(N ) − eito)ξ‖∞.

Now, limN→∞ ‖(eitõ(N ) − eito)ξ‖∞ = 0 uniformly on compact intervals in t ∈ R

because limN→∞ ‖(õ(N ) − o)ξ‖∞ = 0 for all ξ ∈ DW by Lemma 4.5 which entails
strong resolvent convergence [73]. ��
Remark 4.8. For multinomials A = a†(ξ1) . . . a†(ξn)a(ξn+1) . . . a(ξn+m) we have the
estimate:

‖σ̃ (N )
t (πS(A)) − σt (πS(A))‖ ≤

(
n+m∏

l=1

‖ξl‖∞

)
n+m∑

k=1

‖(eitõ(N ) − eito)ξk‖∞
‖ξk‖∞

. (191)
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Corollary 4.9 (Convergence of KSBogoliubov derivations).With the same assumptions
and notation as in Corollary 4.7, we have the convergence of the quasi-free derivations,

d
dt |t=0σ̃

(N )
t (πS(a(ξ))) = i[:dFS(õ

(N )) :, a(ξ)] = a(i õ(N )ξ ),

d
dt |t=0σt (πS(a(ξ))) = i[:dFS(o) :, a(ξ)] = a(ioξ),

for A ∈ A
(±)
∞,± in the algebraic span of a†(ξ), a(ξ) with ξ ∈ DW . Moreover, we have:

‖[:dFS(õ
(N )) :, A] − [:dFS(o) :, A]‖ ≤

(
n+m∏

l=1

‖ξl‖∞

)
n+m∑

k=1

‖(õ(N ) − o)ξk‖∞
‖ξk‖∞

(192)

for A = a†(ξ1) . . . a†(ξn)a(ξn+1) . . . a(ξn+m).

Momentum-cutoff renormalization.The convergence results for thewavelet renormal-
ization group lead to the convergence of the KS approximants to the Virasoro generators
in the standard Fock representation (c = 0). Clearly, we would like to achieve a similar
statement for non-vanishing central charge (c �= 0). Specifically, we would like to de-
duce the convergence of the KS approximants in the representations π± of the scaling
limit states (165) & (168) as well as (175) & (176). Such a result is achieved by using
the momentum-cutoff renormalization group of Definition 3.9. Although, we initially
lose the compatibility with the quasi-local structure (see Proposition 3.6) in this way, we
explain in the next paragraph of this subsection how to remedy this issue by combining
the wavelet renormalization group with the momentum-cutoff renormalization group for
smeared KS approximants and Virasoro generators.

Denotingby RN
M and RN∞ aswell asαN

M andαN∞ themomentum-cutoff renormalization

group throughout this paragraph, the one-particle operators �̃
(N )
k,± are now given by:

�̃
(N )
k,± = ±1

2π

∑

l∈
N ,±
cos( 14εNk)

2 sin(εN (l∓ k
2 ))

εN
χ
N (l∓k)el∓k ⊗ el . (193)

To prove the analogue of Theorem 4.6 for π± (with c = 1, 1
2 ), we need to compare

the matrix elements of �̃
(N )
±,k with those of �±,k :

(�̃
(N )
±,k)mn =± L

π
2Lδm,n∓k cos( 14εNk)

2 sin(εN (n∓ k
2 ))

εN
χ
N (n∓k)χ
N (n),

(�±,k)mn = ± L
π
2Lδm,n∓k(n∓ k

2 ). (194)

If we have an approximating sequence {o(N )}N∈N0 of o on the one-particle space h
(±)
∞,±,

the convergence of their normal-ordered second quantizations can be analyzed using the
following estimate because of (16) & (25):

‖dFS(õ
(N ) − o)a†(RM∞(η1))...a

†(RM∞(ηn))�0‖

≤
( n∑

k=1

{‖(õ(N )−o)++RM∞(ηk )‖∞+‖(õ(N )−o)t−−RM∞(ηk )‖∞
‖ηk‖M

}

+(n + 2)‖(õ(N ) − o)+−‖2 + n‖(õ(N ) − o)−+‖2
) n∏

l=1

‖ηl‖M . (195)
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For õ(N ) = �̃
(N )
±,k and o = �±,k , we find:

‖((�̃(N )
k,± − �k,±)±±)(t)RM∞(η)‖2∞

≤ ‖η‖2hM
( Lπ )2

∑

n∈
∞,±
χ
M (n)θ(±(n∓k))θ(±n)

∣
∣
∣cos( 14 εN k)

2 sin(εN (n∓ k
2 ))

εN
χ
N (n∓k)−(n∓ k

2 )

∣
∣
∣
2
,

‖(�̃(N )
k,± − �k,±)±∓‖22

≤ ( Lπ )2
∑

n∈
∞,±
θ(±(n∓k))θ(∓n)

∣
∣
∣ cos( 14 εN k)

2 sin(εN (n∓ k
2 ))

εN
χ
N (n∓k)χ
N (n)−(n∓ k

2 )

∣
∣
∣
2
. (196)

The sums in these estimates are finite (for fixed M) which entails convergence for
N → ∞. It is evident from (196), that we have the analogue of Lemma 4.5:

Lemma 4.10. Let ξ ∈ Dstd. Then:

lim
N→∞ ‖(�̃(N )

±,k − �±,k)ξ‖∞ = 0, lim
N→∞ ‖(�̃(N )

±,k − �±,k)±±ξ‖∞ = 0,

lim
N→∞ ‖(�̃(N )

±,k − �±,k)±∓‖2 = 0,

where �̃
(N )
±,k := RN∞�

(N )
±,k R

N ∗∞ , and similarly:

lim
N→∞ ‖(r̃ (N )

±,k − r±,k)ξ‖∞ = 0, lim
N→∞ ‖(r̃ (N )

±,k − r±,k)±∓ξ‖∞ = 0,

lim
N→∞ ‖(r̃ (N )

±,k − r±,k)±∓‖∞ = 0,

lim
N→∞ ‖(ι̃(N )

±,k − ι±,k)ξ‖∞ = 0, lim
N→∞ ‖(ι̃(N )

±,k − ι±,k)±±ξ‖∞ = 0,

lim
N→∞ ‖(ι̃(N )

±,k − ι±,k)±∓‖∞ = 0.

Because of Remark 4.4, similar estimates as (195) and (196) also hold for dQS in
Majorana setting. Applying the lemma, we have:

Theorem 4.11 (Covergence of the KS approximants for π±). The KS approximants,
L(N )

±,k , converge strongly to the continuum Virasoro generators, L±,k , on the dense, com-

mon core Falg
a (Dstd) ⊂ Fa(h

(±)
∞,±) spanned by anti-symmetric Fock vectors with finitely

many one-particle excitations in Dstd (finite Dstd-particle number):

lim
N→∞ ‖(:π±(αN∞(L(N )

±,k)) : −L±,k)a
†(ξ1) . . . a†(ξn)�0‖ = 0, (197)

for all n ∈ N0 and ξ1, . . . , ξn ∈ Dstd.

By Corollary 4.3 and (195), Falg
a (Dstd) contains a total set of analytic vectors for

L±,k , and by Nelson’s analytic vector theorem [70] the real and imaginary parts of L±,k

are essentially self-adjoint on F
alg
a (Dstd). This implies strong resolvent convergence of

the KS approximants and, therefore [73]:
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Corollary 4.12 (Convergence of KS unitaries). Consider the unitaries,

U (N )
t = eitdF±(õ(N )), Ut = eitdF±(o),

for o(N ) = r̃ (N )
±,k , ι̃

(N )
±,k and o = r±,k, ι±,k . Then,

lim
N→∞ ‖(U (N )

t −Ut )φ‖ = 0,

for all φ ∈ Fa(h
(±)
∞,±) uniformly on compact intervals in t ∈ R.

As in the previous section, Lemma 4.10 implies the following convergence statement
for the Bogoliubov transformations (189):

Corollary 4.13 (Convergence of KS Bogoliubov transformations for π±). In the quasi-
free representations π±, we have:

lim
N→∞ ‖σ̃ (N )

t (π±(A)) − σt (π±(A))‖ = 0, ∀A ∈ A
(±)
∞,±,

and uniformly on compact intervals in t ∈ R.

Remark 4.14 (Moebius group in the Neveu-Schwarz sector). We note that the Hilbert-
Schmidt norms in (196) vanish in the Neveu-Schwarz sector ((−)-boundary condition)
for k = 0,±π

L , i.e. ‖(�̃(N )
k,± − �k,±)±∓‖22 = 0 for the approximation of the Virasoro

generators corresponding to theMoebius group. Therefore, a simple extension of Lemma
4.5 is sufficient to prove Theorem 4.11 in this case using the wavelet renormalization
group.

Smeared KS approximants.We combine the wavelet and momentum-cutoff renormal-
ization groups to analyze the convergence of the smeared KS approximants (134) to the
smeared Virasoro generators (131). In this way, it is possible to exploit the convergence
of the KS approximants in the non-trivial quasi-free representations π± while, at the
same time, preserving localization in real space in the sense of Proposition 3.6.

Throughout this paragraph we denote by RN
M and RN∞ as well as αN

M and αN∞ the
momentum-cutoff renormalization group, while SNM and SN∞ denote the wavelet renor-
malization group for differential loops (see Definition 3.4).

Lemma 4.15 (Convergence of smeared one-particle KS approximants). Let s ∈ Cα(R)

be a sufficiently regular, compactly supported orthonormal Daubechies scaling function.
For M ∈ N0 and X ∈ l(�M , C), we consider,

�̃
(N )
± (SMN (X)) = 1

2LN

∑

k∈
N ,+

SMN (X̂)k �̃
(N )
±,k, �±(SM∞(X)) = 1

2L

∑

k∈
∞,+

SM∞(X̂)k�±,k,

for any N ≥ M.Then,

lim
N→∞ ‖(�̃(N )

± (SMN (X)) − �±(SM∞(X)))±±ξ‖∞ = 0,

lim
N→∞ ‖(�̃(N )

± (SMN (X)) − �±(SM∞(X)))ξ‖∞ = 0,

for ξ ∈ Dstd, and,

lim
N→∞ ‖(�̃(N )

± (SMN (X)) − �±(SM∞(X)))±∓‖2 = 0.
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Proof. For sufficiently regular s, we know that,

�±(SM∞(X)) = 1
2LM

∑

k∈
∞,+

ŝ(εMk)X̂per |k�±,k,

is well-defined on Dstd because of (108). Now, we use,

�̃
(N )
± (SMN (X)) − �±(SM∞(X))

= �̃
(N )
± (SMN (X) − χ
N S

M∞(X)) + �̃
(N )
± (χ
N S

M∞(X)) − �±(SM∞(X)),

to write:

‖(�̃(N )
± (SMN (X)) − �±(SM∞(X)))±±ξ‖∞ ≤ ‖�̃(N )

± (SMN (X) − χ
N S
M∞(X))±±ξ‖∞

+ ‖(�̃(N )
± (χ
N S

M∞(X)) − �±(SM∞(X)))±±ξ‖∞,

‖(�̃(N )
± (SMN (X)) − �±(SM∞(X)))ξ‖∞ ≤ ‖�̃(N )

± (SMN (X) − χ
N S
M∞(X))ξ‖∞

+ ‖(�̃(N )
± (χ
N S

M∞(X)) − �±(SM∞(X)))ξ‖∞,

‖(�̃(N )
± (SMN (X)) − �±(SM∞(X)))±∓‖2 ≤ ‖�̃(N )

± (SMN (X) − χ
N S
M∞(X))±∓‖2

+ ‖(�̃(N )
± (χ
N S

M∞(X)) − �±(SM∞(X)))±∓‖2
Now, let ξ = RK∞(η) for η ∈ hK . By the Cauchy-Schwarz inequality we have:

‖�̃(N )
± (SMN (X) − χ
N S

M∞(X))±±RK∞(η)‖2∞
≤ ‖η‖2K 1

2LK

∑

l∈
K ,±
‖ 1
2L

∑

k∈
N ,+

εM

×
( N−M∏

j=1

m0(εM+ j k) − ŝ(εMk)

)

X̂ per |k(�̃(N )
±,k)±±RK∞(el)‖2∞

≤ ‖η‖2K 1
2LK

∑

l∈
K ,±

(
1
2L

∑

k∈
N ,+

(
1 + |εMk|)2δ

∣
∣
∣εM

(N−M∏

j=1

m0(εM+ j k) − ŝ(εMk)

)

X̂ per |k
∣
∣
∣
2
)

×
(

1
2L

∑

k∈
N ,+

(
1 + |εMk|)−2δ‖(�̃(N )

±,k)±±RK∞(el)‖2∞
)

,

and,

‖(�̃(N )
± (χ
N S

M∞(X)) − �±(SM∞(X)))±±RK∞(η)‖2∞
≤ ‖η‖2K 1

2LK

∑

l∈
K ,±
‖ 1
2L

∑

k∈
∞,+

εMŝ(εMk)X̂per |k(χ
N (k)(�̃(N )
±,k) − (�±,k))±±RK∞(el)‖2∞

≤ ‖η‖2K 1
2LK

∑

l∈
K ,±

(
1
2L

∑

k∈
∞,+

(
1 + |εMk|)2δ

∣
∣
∣εMŝ(εMk)X̂per |k

∣
∣
∣
2
)

×
(

1
2L

∑

k∈
∞,+

(
1 + |εMk|)−2δ‖(χ
N (k)(�̃(N )

±,k) − (�±,k))±±RK∞(el)‖2∞
)

.
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For sufficiently large δ > 0 and α > 0, this implies the first convergence statement
because of (196), Lemma 3.7, and the polynomial boundedness of ‖�̃(N )

±,k R
K∞(el)‖∞ and

‖�±,k RK∞(el)‖∞ in k ∈ 
∞,± due to (183).
The case without the restriction to the diagonal parts ( · )±± of the block-diagonal

decomposition (24) is analogous. Similarly, we find:

‖�̃(N )
± (SMN (X) − χ
N S

M∞(X))±∓‖22

≤
(
1
2L

∑

k∈
N ,+

(
1 + |εMk|)2δεM

∣
∣
∣

N−M∏

j=1

m0(εM+ j k) − ŝ(εMk)
∣
∣
∣
2|X̂per |k |2

)

×
(

1
2L

∑

k∈
N ,±

(
1 + |εMk|)−2δ‖(�̃(N )

±,k)±∓‖22
)

,

and,

‖(�̃(N )
± (χ
N S

M∞(X)) − �±(SM∞(X)))±∓‖22
≤
(

1
2L

∑

k∈
∞,+

(
1 + |εMk|)2δ

∣
∣
∣εMŝ(εMk)X̂per |k

∣
∣
∣
2
)

×
(

1
2L

∑

k∈
∞,+

(
1 + |εMk|)−2δ‖(χ
N(k)�̃

(N )
±,k − �±,k)±∓‖22

)

.

Again for sufficiently large δ > 0 and α > 0, the convergence of the second statement
follows using (196), the observation that‖(�̃(N )

±,k)±∓‖2 and‖(�±,k)±∓‖2 are polynomially
bounded in k ∈ 
∞,±:

‖(�̃(N )
±,k)±∓‖22 = ( L

π
)2
∑

n∈
N ,±
θ(±n−k)θ(∓n) cos( 14εNk)

4
(
sin(εN (n∓ k

2 ))

εN

)2
χ
N (n∓k),

‖(�±,k)±∓‖22 = ( L
π
)2
∑

n∈
∞,±
θ(±n − k)θ(∓n)(n∓ k

2 )
2.

��
As before, we use the preceding lemma to deduce the following result on the conver-

gence of the KS approximants (cf. (195)).

Theorem 4.16. (Convergence of smeared KS approximants for π±) Let s ∈ Cα(R) be a
sufficiently regular, compactly supported orthonormal Daubechies scaling function, and
let X ∈ l(�M , C) for some M ∈ N0. Then, the smearedKSapproximants, L

(N )
± (SMN (X)),

converge strongly to the continuum Virasoro generators, L±(SM∞(X)), on the dense

domain F
alg
a (Dstd) ⊂ Fa(h

(±)
∞,±) spanned by anti-symmetric Fock vectors with finitely

many one-particle excitations in Dstd (finite Dstd-particle number):

lim
N→∞ ‖(:π±(αN∞(L(N )

± (SMN (X)))) : −L±(SM∞(X)))a†(ξ1) . . . a†(ξn)�0‖ = 0, (198)

for all n ∈ N0 and ξ1, . . . , ξn ∈ Dstd.
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By the results in [15],Falg
a (Dstd) is a domain of essential self-adjointness of L±(X) for

real smearing functions X ∈ l
3
2 (S1, R) (the representations π± have positive energy and

c > 0, see also [41]). Thus, the preceding theorem implies strong resolvent convergence
of the smeared KS approximants and, therefore [73]:

Corollary 4.17 (Convergence of smeared KS unitaries). For X ∈ l(�M , R), consider
the unitaries,

U (N )
t (SMN (X)) = eit :π±(αN∞(L(N )

± (SMN (X)))):, Ut (X) = eit L±(SM∞(X)),

Then,

lim
N→∞ ‖(U (N )

t (X) −Ut (X))φ‖ = 0,

for all φ ∈ Fa(h
(±)
∞,±) uniformly on compact intervals in t ∈ R.

Remark 4.18. We can lift the restriction to sequences {SMN (X)}N∈N0 with X ∈ l(�M , C)

(called basic sequences in [22]) by:

�̃
(N )
± (XN ) − �±(X) = �̃

(N )
± (XN − SMN (XM )) + �̃

(N )
± (SMN (XM ))

− �±(SM∞(X)) + �±(SM∞(X) − X),

for XN ∈ l(�N , C) and X ∈ lα(S1L , C) (α > 0). Then, assumingwe have a S-convergent

sequence of smearing functions XN
N→∞→ X in the sense of Definition 3.1 for a suitable

sequence of Sobolev-type semi-norm {pN ,δ}N∈N0 ,

lim
M→∞ lim sup

N→∞
pN ,δ(XN − SMN (XM )) = 0,

we conclude the convergence of the KS approximants as in (198). In principle this
allows us to reconstruct the smeared Virasoro generators for smooth smearing functions
X ∈ l∞(S1L , C).

In analogy with the Corollaries 4.7 & 4.13, Lemma 4.15 implies the convergence of
the Bogoliubov transformation with smeared generators, see (137):

Corollary 4.19. (Convergence of smeared KS Bogoliubov transformations) Let s ∈
Cα(R) be a sufficiently regular, compactly supported orthonormal Daubechies scaling
function. In the quasi-free representations π±, we have:

lim
N→∞ ‖σ̃ (N )

t SMN (X)
(π±(A)) − σt SM∞(X)(π±(A))‖ = 0, ∀A ∈ A

(±)
∞,±,

uniformly on compact intervals in t ∈ R, for any M ∈ N0 and X ∈ l(�M , R).

Error estimates. In this paragraph, we discuss some basic estimates of the approxi-
mation errors occurring in the proofs of Theorems 4.6 & 4.11. Explicit control of the
approximation errors is particularly interesting in view of the potential simulation of
conformal field theories on quantum computers using a lattice discretization.

Let us beginwith a discussion of the approximation error in Lemma 4.5. The structure
of the proof, and specifically considering,

∑

m∈
∞,±
| f (N )

k (M,m) − fk(M,m)|2
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=
∑

m∈
∞,±

∣
∣ŝ(εM (m + k))(m + k

2 )
∣
∣2
∣
∣
∣
∣cos(

1
4εNk)

2 sin(εN (m+ k
2 ))

εN (m+ k
2 )

ŝ(εNm)
ŝ(εN (m+k)) − 1

∣
∣
∣
∣

2

,

(199)

suggests a simple strategy to obtain a specific error bound by estimating against the
decay of ŝ:

∑

m∈
∞,±

∣
∣ŝ(εM (m + k))(m + k

2 )
∣
∣2
∣
∣
∣
∣cos(

1
4εNk)

2 sin(εN (m+ k
2 ))

εN (m+ k
2 )

ŝ(εNm)
ŝ(εN (m+k)) − 1

∣
∣
∣
∣

2

≤
(

2π2

L sup
m∈
∞,±

(1 + L
π
|m + k

2 |)−2δ
∣
∣
∣
∣cos(

1
4εNk)

2 sin(εN (m+ k
2 ))

εN (m+ k
2 )

ŝ(εNm)
ŝ(εN (m+k)) − 1

∣
∣
∣
∣

2
)

‖ŝ(εM (. + k
2 ))‖2h1+δ , (200)

for some δ > 0 and ‖ŝ(εM (.+ k
2 ))‖2h1+δ = 1

2L

∑
m∈
∞,±(1+ L

π
|m|)2(1+δ)|ŝ(εM (m+ k

2 ))|2.
The regularizing factor (1 + L

π
|m + k

2 |)−2δ has the effect that,

Error2(δ, L , k, N ) := 2π2

L sup
m∈
∞,±

error2(δ, L , k, N ,m)
N→∞−→ 0

error2(δ, L , k, N ,m) := (1 + L
π
|m + k

2 |)−2δ
∣
∣
∣
∣cos(

1
4εNk)

2 sin(εN (m+ k
2 ))

εN (m+ k
2 )

ŝ(εNm)
ŝ(εN (m+k)) − 1

∣
∣
∣
∣

2

,

(201)

with a rate determined by δ = δ(L , k). To obtain a precise numerical bound we also
need to estimate ‖ŝ(εM ( . + k

2 ))‖2h1+δ , which will decrease with increasing regularity of
s.

According to the proof of Theorem 4.6, we can estimate the Fock-space norm in
(188) using (199):

‖(αN∞(L(N )
k,±) − Lk,±)a†(ξ1)...a

†(ξn)�0‖

≤ nL
π
Error(δ, L , k, N )‖ŝ(εM (.+ k

2 ))‖h1+δ

n∏

p=1

‖ηp‖M , (202)

where ξp = RM∞(ηp) for p = 1, . . . , n and M < N 15.
The supremum in (201) can be estimated for δ ∈ [0, 2] as follows:

Error2(δ, L , k, N )

= 2π2

L ( π
LN

)2δ sup
m∈
∞

( π
LN

+ εN |m + k
2 |)−2δ

∣
∣
∣
∣cos(

1
4εNk)

2 sin(εN (m+ k
2 ))

εN (m+ k
2 )

ŝ(εNm)
ŝ(εN (m+k)) − 1

∣
∣
∣
∣

2

≤ 2π2

L ( π
LN

)2δ sup
x∈R

( π
LN

+ |x + εN
k
2 |)−2δ

∣
∣
∣
∣cos(

1
4εNk)

2 sin(x+εN
k
2 )

x+εN
k
2

ŝ(x)
ŝ(x+εN k)

− 1

∣
∣
∣
∣

2

.

(203)

15 Note that the states a†(ξ1) . . . a†(ξn)�0 have the norm ‖a†(ξ1) . . . a†(ξn)�0‖ = ∏n
p=1 ‖ξp‖∞, for

ξ1, . . . , ξn orthogonal.
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Thus, we find for k = 0:

Error2(δ, L , 0, N ) ≤ 2π2

L ( π
LN

)2δ sup
x∈R

( π
LN

+ |x |)−2δ
∣
∣
∣
sin(x)
x − 1

∣
∣
∣
2

≤ 2π2

L ( π
LN

)2δ sup
x∈R

|x |−2δ
∣
∣
∣
sin(x)
x − 1

∣
∣
∣
2
, (204)

and supx∈R |x |−2δ
∣
∣
∣
sin(x)
x − 1

∣
∣
∣
2
is a finite constant of order unity for δ ∈ [0, 2] since

| sin(x)x − 1|2 ≈ x4
36 +O(x6). As long as N is sufficiently large, we expect essentially the

same behavior for k �= 0 because of the uniform continuity of ŝ in (203). This suggests:

Error2(δ, L , k, N ) � Cδ,L ,k 2
−2δN , (205)

with an explicitly computable proportionality factor Cδ,L ,k .

Remark 4.20. (CFT simulation) Concerning the simulation of the a free-fermion CFT
on a quantum computer, the scale parameter N reflects the number of qubits used in
the simulation because it determines the size of the real-space lattice �N which forms
the basis for the Hilbert space on which the KS approximant L(N )

±,k acts. The second

scale parameter M reflects the resolution at which the Fock states a†(ξ1) . . . a†(ξn)�0
are resolved. It should, therefore, be strictly less than N reflecting at least a doubling of
the sampling frequency in accordance with the Nyquist-Shannon theorem. At the same
time, if we fix the length scale L of the spatial circle S1L on which the CFT is supposed
to live, we are forced to choose M in accordance with the regularity parameter K ≥ 2
of the Daubechies scaling function s = K s since supp(K s) = [0, 2K − 1]. This suggest
a lower bound on M in terms of K according to εM (2K − 1) ∼ L to ensure that s(εM )

is well-localized in S1L .
The choice, ξp = RM∞(ηp), p = 1, . . . , n, for the one-particle states means that

an arbitrary n-particle state a†(ξ1) . . . a†(ξn)�0 is approximated by projecting its one-
particle amplitudes onto the subspace generated by the wavelet basis determined by the
scaling function s up to a resolution scale εM = 2−Mε0, i.e.:

ηp = RM∞∗ξp =
∑

x∈�M

〈s(εM )(. − x), ξp〉s(εM )(. − x)

=
∑

x∈�0

〈s(. − x), ξp〉s(. − x) +
M∑

j=0

∑

x∈� j

〈ψ(ε j )(. − x), ξp〉ψ(ε j )(. − x),

where ψ is the wavelet associated with s.
The inner products of the states π±(a†(ξ1))...π±(a†(ξn))�0 are accessible according

to Lemma 3.11 in terms of the lattice correlation functions of ω
(N )
0,±:

〈π±(a†(RM∞(η)))�0, π±(a†(RM∞(η′)))�0〉 = lim
N→∞〈a†N (RM

N (η))ω
(N )
0,±, a†N (RM

N (η′))ω(N )
0,±〉,

where we explicitly indicated that the creation operators a†N are to be realized by the
quantum simulation at scale N .

Let us continue with a few remarks on the estimation of errors occurring in Lemma
4.10 using the momentum-cutoff renormalization group.
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Remark 4.21. (Error of time-evolution) The error bound on the one-particle generators
directly translates to an error bound on the unitary implementer of time evolution (k = 0)
by the fundamental theorem of calculus since [�̃(N )

±,0, exp(i t�±,0)] = 0 implies:

‖(eit �̃(N )
±,0 − eit�±,0)RM∞(ηp)‖∞ ≤ t‖(�̃(N )

±,0 − �±,0)R
M∞(ηp)‖∞. (206)

Thus, we can explicitly estimate the error for the analogue of (191) as well as the
approximation of time-dependent correlation functions as in Theorem 6.1 below. For
the same reason, we can estimate the approximation of correlation functions involving
Ut = exp(i t L±,0) by those involvingU

(N )
t = exp(i tdF−(�̃

(N )
±,0)), cf. Corollary 4.12. By

a similar reasoning that leads to (205), we have for δ ∈ [0, 2]:

‖((�̃(N )
±,0 − �±,0)

(t)
±±RM∞(ηp)‖2∞ ≤ ε2δN (sup

x∈R
| sinc(x)−1|2

|x |2δ )

︸ ︷︷ ︸
= 1

36 forδ=2

‖η‖2M ( L
π
)2
∑

n∈
M,±
θ(±n)|n|2(1+δ),

(207)

which shows that the asymptotic approximation error for the time-evolution behaves as
∼ 2−2N for fixed M (δ = 2).

Remark 4.22. (Error estimates for k �= 0) For k �= 0, the error bound on the generators
can be used to obtain an error bound (asymptotic in the time t) for the associated unitary
groups acting on analytic vectors {em}m∈N0 which are in the image of RM∞. To this end,
we observe that:

‖(eitõ(N ) − eito)ξ‖∞ ≤ t ‖(õ(N ) − o)ξ‖∞ +
∞∑

j=2

t j
j ! ‖((õ(N )) j − o j )ξ‖∞,

which is convergent for some t > 0 whenever ξ is analytic for õ(N ), o. Thus, we can,
for example, consider õ(N ) = r̃ (N )

±,k and o = r±,k and exploit (183) to deduce for k �= 0:

‖((r̃ (N )
±,k )

j − r j
±,k)em‖∞ ≤ 4L( L

2π ) j
(
2 j

j

) 1
2 |k| j 
(|mk |+ 1

2 + j)


(|mk |+ 1
2 )

.

This immediately implies (for sufficiently small t > 0 if k �= 0):

‖(eitr̃ (N )
±,k − eitr±,k )em‖∞ ≤ t‖(r̃ (N )

±,k − r±,k)em‖∞ + 4L
( L
π
(|m| + 1

2 |k|)t)2
1 − L

π
(|m| + 1

2 |k|)t
, (208)

because
(2 j
j

) 1
2 |k| j 
(|mk |+ 1

2 + j)


(|mk |+ 1
2 )

≤ (2(|m| + 1
2 |k|)) j j !. An analogous bound holds for the

approximation of the unitary group associated with ι±,k .
Thus, we find that for small t > 0 (independent of N ) the approximation error (in the

limit N → ∞) for the unitary groups can be explicitly estimated in terms of the error
given for the generators.

Being less explicit about the one-particle vectors used in (196) (or (191) in general),
we can always get the following bound for the approximation error, valid for all t > 0,
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when restricting to a spectral subspace h≤M
∞,± = P[M,−M]h(±)

∞,± of o for somefinite cut-off
M < ∞,

‖(eitõ(N ) − eito)ξ‖∞ ≤ t ‖(õ(N ) − o)ξ‖∞
+ (1 + a)(eMt − (1 + Mt))‖ξ‖∞ + b(et − (1 + t))‖ξ‖∞,

with ξ ∈ h≤M
∞,±, and assuming the powers of the approximants (õ(N )) j are constructed

as uniformly o j -bounded operators, i.e. ‖(õ(N )) jξ‖∞ ≤ a‖o jξ‖∞ + b‖ξ‖∞.

4.2.4. Koo–Saleur approximants of the equivalent XY model For completeness and in
view of our companion article [72], we also provide the expressions for the KS approx-
imants in terms of the single-component fermion b using (79):

L(N )
k = 1

8π

∑

l,l ′∈
N+1,±

(
b̂l ′
b̂†−l ′

)†

e− i
4 εN kδk,l ′−l mod 2π

εN
�
(N )
k (l ′, l)

(
b̂l
b̂†−l

)

,

�
(N )
k (l ′, l) = 1

2

(
−e

i
4 εN k sin(εN (l + k

2 )) −i(e
i
4 εN k sin(εN l

2 ) + e− i
4 εN k sin(εN l+k

2 ))

i(e
i
4 εN k sin(εN l ′−k

2 ) + e− i
4 εN k sin(εN l ′

2 )) −e− i
4 εN k sin(εN l+l ′

2 )

)

,

L
(N )

k = 1
8π

∑

l,l ′∈
N+1,±

(
b̂l ′
b̂†−l ′

)†

e
i
4 εN kδ−k,l ′−l mod 2π

εN
�
(N )

k (l ′, l)
(
b̂l
b̂†−l

)

,

�
(N )

k (l ′, l) = 1
2

(
e− i

4 εN k sin(εN (l − k
2 )) −i(e− i

4 εN k sin(εN l
2 ) + e

i
4 εN k sin(εN l−k

2 ))

i(e− i
4 εN k sin(εN l ′+k

2 ) + e
i
4 εN k sin(εN l ′

2 )) e
i
4 εN k sin(εN l+l ′

2 )

)

.

(209)

Alternatively, we may derive the KS approximants directly in terms of the single-
component fermion on the doubled lattice �N+1, which results in:

L(N )
k = 1

4π

∑

l,l ′∈
N+1

(
b̂l ′
b̂†−l ′

)†

�
(N )
k (l ′, l)

(
b̂l
b̂†−l

)

,

�
(N )
k (l ′, l) = δk,l ′−l

(
− sin(εN+1(l + l ′)) e−iεN+1(l+

k
2 ) cos( 12εN+1k)

eiεN+1(l ′− k
2 ) cos( 12εN+1k) − sin(εN+1(l + l ′))

)

,

L
(N )

k = 1
4π

∑

l,l ′∈
N+1

(
b̂l ′
b̂†−l ′

)†

�
(N )

k (l ′, l)
(
b̂l
b̂†−l

)

,

�
(N )

k (l ′, l) = δ−k,l ′−l

(
sin(εN+1(l + l ′)) e−iεN+1(l− k

2 ) cos( 12εN+1k)

eiεN+1(l ′+ k
2 ) cos( 12εN+1k) sin(εN+1(l + l ′))

)

. (210)

But, it should be noted that these alternative expressions are not directly comparable to
those in (209) because they arise through the Fourier transform on �N+1, not �N , and,
therefore, refer to the (symmetrized) Hamiltonian density

h̃(N )
x = 1

2ε
−2
N+1(bxbx+εN+1 − b†xb

†
x+εN+1 + bx−εN+1bx − b†x−εN+1

b†x ),
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of the single-component fermion which is related to the Hamiltonian density of the
two-component fermion by the half-shift x �→ x + εN+1:

h(N )
x = h̃(N )

x + h̃(N )
x+εN+1 , x ∈ �N . (211)

5. Approximation of Wess–Zumino–Witten Currents

We use the same approach that shows the convergence of the KS approximants to the
Virasoro generators in the scaling limit to approximate the currents of some Wess–
Zumino–Witten models. Similar to the Virasoro generators and the KS approximants the
currents of theseWZWmodels can be obtained as normal-ordered second quantizations
of certain one-particle operators [21,26,91], i.e. normal-ordered fermion bilinears.
The U (1)-current. For simplicity, we describe the adaptation of the procedure for the
(chiral) U (1)-current,

J−(x) =: π−(ψ
†
+|x )π−|x (ψ±) :, x ∈ S1L , (212)

in the Neveu-Schwarz sector of A(+)
∞,− first. J−(x) is a local bosonic field on Fa(h

(+)
∞,−)

with the following commutation relations [75]:

[J−(x), J−(y)] = i
2π δ′

0(x − y) , (213)

which reflect the presence of a non-trivial central charge c = 1. At finite scales, the
direct analogue of J−(x) is given by the lattice current:

J (N )(x) = ψ
†
+|xψ+|x , x ∈ �N , (214)

as an element of A(+)
N ,−. As for the Virasoro generators, J− can be approximated by

J (N ) in the scaling limit representation π− on Fa(h
(+)
∞,−) using the asymptotic maps

αN∞ : A(+)
N ,− → A

(+)
∞,− as in the Theorem 4.6 using the wavelet renormalization group,

: π−(αN∞(J (N )(x))) : = :π−(ψ
†
+(s(εN )

x ))π−(ψ+(s
(εN )
x )) : , (215)

and similar for the momentum-cutoff renormalization group as in Theorems 4.11 and
4.16.

We infer from (215) that the approximants for the wavelet renormalization group are
localized operators in the even subalgebra ofA(+)

∞,− with a localization region determined

by the support of the scaling function s(εN )
x .

In momentum space, we have the following picture:

Ĵ−,k = :dF−( jk) : = 1
2L

∑

l∈
∞,−
:π−(ψ̂

†
+|l+k)π−(ψ̂+|l) :,

Ĵ (N )
k = dF0( j

(N )
k ) = 1

2LN

∑

l∈
N ,−
ψ̂

†
+|l+kψ̂+|l , (216)
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such that : π−(αN∞(J (N )
k )) : = : dFC ( j̃ (N )

k ) : with j̃ (N )
k = RN∞ j (N )

k (RN∞)∗. The one-

particle operators j (N )
k , jk are the (unitary) momentum-space translations on h

(+)
N ,− re-

spectively h
(+)
∞,−:

( j (N )
k ξ̂ )m = ξ̂m−k, ( jk ξ̂ )m = ξ̂m−k, (217)

for ξ ∈ h
(+)
N ,− or h(+)

∞,−, satisfying the implementability condition (19) and with matrix
elements:

( j (N )
k )mn = 2LN δ

(N )
m,n+k, ( jk)mn = 2Lδm,n+k . (218)

Since the off-diagonal parts of jk satisfy the Hilbert-Schmidt condition,

‖( jk)±∓‖22 =
∑

n∈
∞,−
θ(±n)θ(∓(n − k)) < ∞, (219)

and,

j (N )
k

∗ = j (N )
−k , j∗k = jk, (220)

the expression for Ĵ−,k in (216) results in a densely defined, closable operator on
Fa(h

(+)
∞,−) [14,26]. As before, we define the smeared U (1)- and lattice current,

J (N )(X) = 1
2LN

∑

k∈
N ,+

X̂k J
(N )
k )), J−(X) = 1

2L

∑

k∈
∞,+

X̂k Ĵ−,k, (221)

and their one-particle analogues,

j (N )(X) = 1
2LN

∑

k∈
N ,+

X̂k j
(N )
k , j (X) = 1

2L

∑

k∈
∞,+

X̂k jk, (222)

for with sufficiently regular X ∈ lα(S1L , C) respectively X ∈ l(�N , C) :. For real
X = X , i.e. i X ∈ u(1), the Lie algebra of U (1), J−(X) and J (N )(X) are self-adjoint
and induce automorphic Bogoliubov transformations of A(+)

∞,− respectively A
(+)
N ,−:

Ad
eit J (N )(X) (a

†(ξ)) = a†(eit j
(N )(X)ξ ), Adeit J−(X) (π−(a†(ξ))) = π−(a†(eit j (X)ξ )),

(223)

for ξ ∈ h
(+)
N ,− or h(+)

∞,−, and t ∈ R.
Comparing the matrix elements (218) with those of the one-particle operators of the

Virasoro generators and the KS approximants (194), we deduce that all convergence
results of Sect. 4.2.3 equally apply to the approximation of theU (1)-current by (214) in
the scaling limit. Notably, some of the proof of the results for theU (1)-current simplify
slightly because the one-particle operators jk , k ∈ 
∞,+, are bounded. As an illustration
we state the analogue of Theorem 4.16:
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Theorem 5.1 (Convergence of smeared lattice currents for π−). Let s ∈ Cα(R) be a suf-
ficiently regular, compactly supported orthonormal Daubechies scaling function, and let
X ∈ l(�M , C) for some M ∈ N0. Then, the smeared lattice currents, J (N )(SMN (X)),

converge strongly to the U (1)-current, J−(SM∞(X)), on the dense domain F
alg
a (Dstd) ⊂

Fa(h
(±)
∞,±) spanned by anti-symmetric Fock vectors with finitely many one-particle exci-

tations in Dstd (finite Dstd-particle number):

lim
N→∞ ‖(:π−(αN∞(J (N )(SMN (X)))) : −J−(SM∞(X)))a†(ξ1) . . . a†(ξn)�0‖ = 0, (224)

for all n ∈ N0 and ξ1, . . . , ξn ∈ Dstd.

Proof. The proof is identical to that Theorem 4.16 using the analogue of Lemma 4.15
with the additional simplification that we have uniform bounds:

‖ j̃ (N )
k RK∞(el)‖∞ = 1, ‖ jk RK∞(el)‖∞ = 1.

��
WZW-currents. We illustrate the adaptation of the procedure for the U (1)-current to
non-abelian currents by the example of the level-1 (chiral) û(D)1-currents. Here, u(D)

denotes the Lie algebra ofU (D), the unitary group in D dimensions. The û(D)1-currents
are given by:

Jμ
− (x) =

D∑

i, j=1

tμi j :π−(ψ
(i)†
+|x )π−(ψ

( j)
+|x ) : = 1

2L

∑

k∈
∞,−
e−ikx Ĵμ

−,k , (225)

where the matrices {tμ}D2−1
μ=1 are a basis of the Lie algebra u(D), and we use D-

component (chiral) complex fermionsA(+)
∞,−(D) = ACAR(h

(+)
∞,− ⊗C

D). The finite-scale
analogues of the non-abelian currents and the associated approximants are given by:

J (N ),μ(x) =
D∑

i, j=1

tμi jψ
(i)†
+|x ψ

( j)
+|x = 1

2LN

∑

k∈
N ,−
e−ikx Ĵ (N ),μ

k , Ĵ (N ),μ
k = dF0( j

(N ),μ
k ),

(226)

with the one-particle operators that also satisfy the implementability condition (19):

( j (N ),μ
k ξ̂ )i,m =

D∑

j=1

tμi j ξ̂ j,m−k, ( jμk ξ̂ )i,m =
D∑

j=1

tμi j ξ̂ j,m−k, (227)

for h(+)
N ,− ⊗ C

D respectively ξ ∈ h
(+)
∞,− ⊗ C

D . The finite-scale one-particle operators are

mapped to the scaling limit by j̃ (N ),μ
k = RN∞( j (N ),μ

k )(RN∞)∗. where asymptotic maps
are used componentwise.

It is natural to use the Hilbert-Schmidt norm ‖.‖2,D on the basis elements tμ as it is
directly related to the Killing form on u(D), and by the Cauchy-Schwarz inequality we
have:

‖ j (N ),μ
k η̂‖2

h
(+)
N ,−⊗CD

≤ ‖tμ‖22,D
D∑

i=1

‖( j (N )
k η̂)i‖2hN

= ‖tμ‖22,D‖η‖2
h

(+)
N ,−⊗CD

,
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‖ jμk ξ̂‖2
h

(+)
∞,−⊗CD

≤ ‖tμ‖22,D
D∑

i=1

‖( jk ξ̂ )i‖2h∞ = ‖tμ‖22,D‖ξ‖2
h

(+)
∞,−⊗CD

. (228)

The convergence results for the non-abelian lattice currents as, for example, in Theorem
5.1 follow directly from the estimate:

‖( j̃ (N ),μ
k − jμk )RK∞(η)‖2

h
(+)
∞,−⊗CD

≤ ‖tμ‖22,D
D∑

i=1

‖( j̃ (N )
k − jk)R

K∞(ηi )‖2∞, (229)

as this reduce the problem to setting of the U (1)-current.
A similar reasoning applies to any non-abelian ĝk-current of the form (225) associated

with a (simply-laced) Lie algebra g and representation λ determining the level k = k(λ),
possibly by using the Majorana algebras B(+)

N ,− and B
(+)
∞,− instead.

6. Approximation of Correlation Functions

The convergence results of the previous sections for the approximation of Virasoro
generator, their unitaries and the associated Bogoliubov transformations allow for the
approximation of (chiral) correlation functions of the resulting fermionic continuum
field theories in the scaling limit. Explicit error bounds can be obtained along the lines
outlined in the last paragraph of Section 4.2.3.
Fermion correlation function.Using either the wavelet or the momentum-cutoff renor-
malization group, we obtain the following approximation theorem concerning the dy-
namical (chiral) correlation functions of fermions. We state the theorem for complex
fermions A(±)

∞,±, but an analogous statement holds for the Majorana fermions B(±)
∞,± as

is clear from the structure of the proofs in Sect. 4.2.3.

Theorem 6.1. (Convergence of fermion correlation functions)Given the quasi-free rep-
resentations π± of the fermion algebra A

(±)
∞,± arising from the scaling limit states ω±.

Then, for any M ∈ N0, A, B ∈ A
(±)
M,± and uniformly in t ∈ R on compact intervals, we

have:

lim
N→∞(ω

(N )
0,±, π

(N )
± (αM

N (A))σ
(N )
t (π

(N )
± (αM

N (B)))ω
(N )
0,±)

= (�0, π±(αM∞(A))σt (π±(αM∞(B)))�0) ,

whereω
(N )
0,±,π

(N )
± are theGNS-vector and -representation ofω(N )

0,±, and�0 ∈ Fa(h
(±)
∞,±) is

the standard Fock vacuum. σ (N )
t and σt are 1-parameter (semi-)groups of (automorphic)

Bogoliubov transformations generated by a finite-scale KS approximant (145) or a (non-
)abelian current (214) & (226) and their scaling limits respectively.

Proof. Let us first introduce the short hands:

C (N )
t (A, B) = (ω

(N )
0,±, π

(N )
± (A)σ

(N )
t (π

(N )
± (B))ω

(N )
0,±),

Ct (A, B) = (�0, π±(A)σt (π±(B))�0) ,

for either A, B ∈ A
(±)
N ,± or A, B ∈ A

(±)
∞,±, as well as,

C̃ (N )
t (A, B) = (�0, π±(A)σ̃

(N )
t (π±(B))�0) ,
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with the approximation σ̃
(N )
t of σt given by σ̃

(N )
t = Adπ±(αN∞(UN (t))) because σ

(N )
t =

AdUN (t) is inner by construction, i.e. UN (t) ∈ A
(±)
N ,±. Thus, the statement can be

rephrased as:

lim
N→∞C (N )

t (αM
N (A), αM

N (B)) = Ct (α
M∞(A), αM∞(B)).

We observe that:

C (N )
t (αM

N (A), αM
N (B)) = (ω

(N )
0,±, π

(N )
± (αM

N (A)AdUN (t)(α
M
N (B)))ω

(N )
0,±)

= ω
(N )
0,±(αM

N (A)AdUN (t)(α
M
N (B))),

C̃ (N )
t (αM∞(A), αM∞(B)) = (�0, (π± ◦ αN∞)(αM

N (A)AdUN (t)(α
M
N (B)))�0)

= ω±(αN∞(αM
N (A)AdUN (t)(α

M
N (B)))) , (230)

Thus, we can estimate:

|C (N )
t (αM

N (A), αM
N (B)) − Ct (α

M∞(A), αM∞(B))|
≤ |C (N )

t (αM
N (A), αM

N (B)) − C̃ (N )
t (αM∞(A), αM∞(B))|

+ |C̃ (N )
t (αM∞(A), αM∞(B)) − Ct (α

M∞(A), αM∞(B))|
≤ |(�0, π±(αM∞(A))(σ̃

(N )
t − σt )(π±(αM∞(B)))�0)|

+ |(ω(N )
± − ω

(N )
0,±)(αM

N (A)AdUN (t)(α
M
N (B)))|

≤ ‖A‖‖(σ̃ (N )
t − σt )(π±(αM∞(B)))‖

+ |(ω(N )
± − ω

(N )
0,±)(αM

N (A)AdUN (t)(α
M
N (B)))|

Thus, the result follows from Corollary 4.7 (or 4.13 & 4.19) provided:

lim
N→∞ |(ω(N )

± − ω
(N )
0,±)(αM

N (A)AdUN (t)(α
M
N (B))))| = 0 .

But, this is itself a consequence of Corollary 4.7 and the fact that ω± is the scaling
limit of ω

(N )
0,±. To see this, we observe that Corollary 4.7 implies for πS = π0 (the

standard Fock-space representation) that ON = αM
N (A)AdUN (t)(α

M
N (B)) converges to

an element O ∈ A
(±)
∞,± for any M ∈ N0 : A, B ∈ AM and t ∈ R (uniformly on compact

intervals):

lim
K→∞ lim

N→∞‖ON − αK
N (OK )‖ = lim

K→∞ lim
N→∞‖αN∞(ON ) − αN∞(αK

N (OK ))‖
≤ lim

K→∞ lim
N→∞‖αN∞(ON ) − O‖ + lim

K→∞ lim
N→∞‖αN∞(ON )

− αN∞(αK
N(OK ))‖

= lim
N→∞ ‖αN∞(ON ) − O‖ + lim

K→∞ ‖O − αK∞(OK )‖
= 0,

with O defined by π0(α
M∞(A))σt (π0(α

M∞(B))), and π0(α
N∞(ON )) = π0(α

M∞(A))σ̃
(N )
t

(π0(α
M∞(B))). Finally, the scaling limit construction of ω± gives (see Lemma 3.11):

lim
N→∞ ω

(N )
0,±(αK

N (OK )) = ω±(αK∞(OK )), ∀K ∈ N0,
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which defines ω± on the dense subalgebra
⋃

K∈N0
αK∞(A

(±)
K ,±). The extension to O ∈

A
(±)
∞,± can be determined via the approximating sequence αK∞(OK ):

ω±(O∞) = lim
K→∞ ω±(αK∞(OK )) = lim

K→∞ lim
N→∞ ω

(N )
0,±(αK

N (OK ))

= lim
K→∞ lim

N→∞ ω
(N )
0,±(ON ) + lim

K→∞ lim
N→∞ ω

(N )
0,±(ON − αK

N (OK ))

= lim
N→∞ ω

(N )
0,±(ON ) .

which proves the result. To achieve uniform convergence in t on compact intervals, we
need the following estimate:

|(ω(N )
± − ω

(N )
0,±)(ON )| ≤ |ω(N )

± (ON − αK
N (OK ))| + |(ω(N )

± − ω
(N )
0,±)(αK

N (OK ))|
+ |ω(N )

0,±(αK
N (OK ) − ON )|

≤ 2‖ON − αK
N (OK )‖ + |(ω(K )

± − ω
(K )
N−K ,±)(OK )|

≤ 2(‖αN∞(ON ) − O‖ + ‖O − αK∞(OK )‖)
+ ‖ω(K )

± − ω
(K )
N−K ,±‖‖OK ‖.

Since, by Corollary 4.7, ‖αN∞(ON ) − O‖ and ‖O − αK∞(OK )‖ can be made uniformly
small for t in a compact interval, we only need to show that this is possible for ‖ω(K )

± −
ω

(K )
N−K ,±‖‖OK ‖ as well. But, this follows from the fact that ω(K )

N−K ,± approximates ω
(K )
±

in the sense of Lemma 3.11, and provided ‖UK (t)‖ ≤ C (K )
I is uniformly bounded in t

on compact intervals I ⊂ R (obviously true in the unitary case) because:

‖OK ‖ ≤ ‖UK (t)‖2‖A‖‖B‖.
��

Corollary 6.2. The statement of Theorem 6.1 remains valid, if A, B ∈ A
(±)
M,± (for some

M ∈ N0) are replaced by convergent sequences {AN }N∈N0 , {BN }N∈N0 in the sense of
(91). Then

lim
N→∞(ω

(N )
0,±, π

(N )
± (AN )σ

(N )
t (π

(N )
± ((BN )))ω

(N )
0,±) = (�0, π±(A)σt (π±(B))�0) ,

where limN→∞ αN∞(AN ) = A and limN→∞ αN∞(BN ) = B.

Proof. This follows using,

(ω
(N )
0,±, π

(N )
± (AN )ω

(N )
0,±) − (�0, π±(A)�0)

= (ω
(N )
0,±, π

(N )
± (AN )ω

(N )
0,±) − (�0, π±(αN∞(AN ))�0)

+ (�0, π±(αN∞(AN ))�0) − (�0, π±(A)�0)

= (ω
(N )
0,± − ω

(N )
± )(AN ) + ω±(αN∞(AN ) − A),

repeatedly applying the triangle inequality, and the observation that,

lim
N→∞ ‖αN∞(ANσ

(N )
t (BN )) − Aσt (B)‖ = 0,

by applying Corollary 4.7 to the standard Fock-space representation π0. ��
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Virasoro correlation functions Since the (smeared) KS approximants converge to
the (smeared) Virasoro generators in the scaling limit representations π± using the
momentum-cutoff renormalization group (possibly in combination with the wavelet
renormalization group for the smearing functions) by Theorems 4.11 and 4.16, we obtain
an analogue of Theorem 6.1 for correlation functions involving the Virasoro generators
or their associated unitaries, cp. [96]. A subtle difference arises from the fact that the
KS approximants are only strongly operator-convergent on the Fock-space vectors with
finite particle number in momentum space, Falg

a (Dstd), and not operator-convergent in
the sense of Corollary 6.2. Again, we state the theorem for complex fermionsA(±)

∞,±, but
an analogous statement holds for the Majorana fermions B(±)

∞,±.

Theorem 6.3 (Convergence of Virasoro correlation functions). Let s ∈ Cα(R) be a suf-
ficiently regular, compactly supported orthonormal Daubechies scaling function. Given
the quasi-free representations π± of the fermion algebra A(±)

∞,± arising from the scaling
limit states ω±. Then, for any n ∈ N and S-convergent sequences of smearing functions

XN ,p
N→∞→ X p, N ∈ N0 and p = 1, ..., n with sufficient regularity as in Remark 4.18,

for example, XN ,p = S
Mp
N (X p) for X p ∈ l(�Mp , R), we have:

lim
N→∞(�0,

n∏

p=1

:(π± ◦ αN∞)(L(N )
± (XN ,p)) : �0) = (�0,

n∏

p=1

L±(X p)�0) ,

and similarly,

lim
N→∞(�0,

n∏

p=1

ei :(π±◦αN∞)(L(N )
± (XN ,p)):�0) = (�0,

n∏

p=1

ei L±(X p)�0) ,

where �0 is the standard Fock vacuum of Fa(h
(±)
∞,±). Moreover, the finite-scale cor-

relation functions of the scaling limit state ω± can be approximated in terms of the
renormalized finite-scale states:

(�0,

n∏

p=1

:(π± ◦ αN∞)(L(N )
± (XN ,p)) : �0)

= ω
(N )
± (

n∏

p=1

(L(N )
± (XN ,p) − ω

(N )
± (L(N )

± (XN ,p))))

= lim
M→∞ ω

(N )
M,±(

n∏

p=1

(L(N )
± (XN ,p) − ω

(N )
± (L(N )

M,±(XN ,p))))

= lim
M→∞ ω

(N+M)
0,± (

n∏

p=1

(αN
N+M (L(N )

± (XN ,p)) − ω
(N+M)
0,± (αN

N+M (L(N )
± (XN ,p))))) ,

and similarly,

(�0,

n∏

p=1

ei :(π±◦αN∞)(L(N )
± (XN ,p)):�0) = ω

(N )
± (

n∏

p=1

ei L
(N )
± (XN ,p)−iω(N )

± (L(N )
± (XN ,p)))
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= lim
M→∞ ω

(N )
M,±(

n∏

p=1

ei L
(N )
± (XN ,p)−iω(N )

M,±(L(N )
± (XN ,p)))

= lim
M→∞ ω

(N+M)
0,± (

n∏

p=1

eiα
N
N+M (L(N )

± (XN ,p))−iω(N+M)
0,± (αN

N+M (L(N )
± (XN ,p)))) ,

where ω
(N )
± = ω± ◦ αN∞.

Proof. The statements follow from a direct application of Theorem 4.16 and Corollary
4.17, the identity,

:(πS ◦ αN∞)(L(N )
± (XN ,p)) : = (πS ◦ αN∞)(L(N )

± (XN ,p)) − ω
(N )
S (L(N )

± (XN ,p)),

and the convergence, according to Lemma 3.11, of the renormalized statesω
(N )
M,± at finite

scales to the scaling limit ω(N )
± :

|(�0,
( n∏

p=1

:π±(αN∞(L(N )
± (XN ,p))) : −

n∏

p=1

L±(X p))
)
�0)|

≤
n∑

q=1

|(�0,
( n∏

p=q+1

:π±(αN∞(L(N )
± (XN ,p))) :

)(
:π±(αN∞(L(N )

± (XN ,q))) :−L±(Xq)
)

(q−1∏

p=1

L±(X p)
)
�0)|

≤
n∑

q=1

∥
∥
∥

n∏

p=q+1

:π±(αN∞(L(N )
± (XN ,p))) :�0

∥
∥
∥
∥
∥
∥
(
:π±(αN∞(L(N )

± (XN ,q))) :−L±(Xq)
)

( q−1∏

p=1

L±(X p)
)
�0

∥
∥
∥, (231)

and similarly,

|(�0,
( n∏

p=1

ei :π±(αN∞(L(N )
± (XN ,p))): −

n∏

p=1

ei L±(X p)
)
�0)|

≤
n∑

q=1

|(�0,
( n∏

p=q+1

ei :π±(αN∞(L(N )
± (XN ,p))):

)(
ei :π±(αN∞(L(N )

± (XN ,q ))):− ei L±(Xq )
)

( q−1∏

p=1

ei L±(X p)
)
�0)|

≤
n∑

q=1

∥
∥
∥

n∏

p=q+1

ei :π±(αN∞(L(N )
± (XN ,p))):�0

∥
∥
∥
∥
∥
∥
(
ei :π±(αN∞(L(N )

± (XN ,q ))): − ei L±(Xq )
)

( q−1∏

p=1

ei L±(X p)
)
�0

∥
∥
∥
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≤
n∑

q=1

∥
∥
∥
(
ei :π±(αN∞(L(N )

± (XN ,q ))): − ei L±(Xq )
)( q−1∏

p=1

ei L±(X p)
)
�0

∥
∥
∥, (232)

In the case of correlation functions of Virasoro generators, we need two additional ob-
servation: First, ‖∏n

p=1 :(π±(αN∞(L(N )
± (XN ,p))): �0‖ can be bounded uniformly in N

in terms of ‖∏n
p=1 L±(X p)�0‖ for sufficiently regular X p as powers of the approxi-

mants : (π± ◦ αN∞)(L(N )
± (XN ,p)) : are uniformly bounded (in N ) by L±(X p). Second,∏n

p=1 L±(X p))�0 is given by a convergent sum (depending on the regularity of X p) of
Fock-space vectors with finite particle number in momentum space. ��
Remark 6.4 (Mixed correlation functions). Theorem6.1&6.3 can be combined to obtain
convergent expressions for mixed correlation functions, i.e. those containing insertions
of operators in A(±)

∞,± respectivelyB(±)
∞,±, Virasoro generators, WZW currents and their

associated unitaries.
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