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Abstract: Conventional thermal spraying processes are almost exclusively carried out in an air at-
mosphere, resulting in the oxidation of the particle surfaces and interfaces within the coating and
between the substrate and coating. Furthermore, the initial process of surface activation convention-
ally takes place in an air atmosphere, preventing an oxide-free interfacial transition. Consequently,
the application of spraying materials with high oxygen affinity represents a major challenge. To
overcome these issues, the present study utilized silane-doped inert gases to create an environment
in which the oxygen concentration was equivalent to the residual oxygen content in an extreme
high vacuum. By transferring the corundum blasting and coating process (wire arc spraying) to
this environment, materials with a high oxygen affinity can be applied without oxidation occurring.
For industrial use, this is an interesting prospect, e.g., for repair coatings, as the homogeneity of the
composite is improved by a non-oxidized coating. Using the example of arc-sprayed copper coatings,
the microstructure and mechanical properties of the coatings were analysed. The results showed that
the oxide-free, wire arc sprayed copper coatings exhibited an improved wetting behaviour resulting
in a significant reduction of the coating porosity. Moreover, the improved wetting behaviour and
led to an increase in the bonding rate and apparent Young’s modulus. Contrary to expectations, the
residual stresses decrease although relaxation mechanisms should be inhibited, and possible reasons
for this are discussed in the paper.

Keywords: oxygen-free; wire arc spraying; residual stresses

1. Introduction

For the industrial use of thermally sprayed coatings, physical properties such as
hardness, bond strength, and electrical and thermal conductivity are crucial. Therefore,
the porosity, residual stresses, degree of oxidation, and bonding mechanisms are decisive
features in the quality of the final component. The wire arc spraying system typically uses
air as the atomisation gas. This leads to an oxidation of the particles in the substrate surfaces
as well as the interfaces within the coating, resulting in the typical coating morphologies.
The latter locations are characterised by heterogeneous coating microstructures, with
interlamellar oxide seams at the interfaces [1–3].

Oxide formation significantly interferes with the functional properties of thermally
sprayed coatings [4–6]. In particular, adhesion, cohesion, and the effective bonding surface
of a coating are impaired due to the wetting inhibition by the oxide films, resulting in
relatively low adhesive tensile strengths [7,8]. In addition, the high porosity of wire arc
sprayed coatings represents a function-impairing and service life-reducing factor in the
presence of corrosive media [9]. These challenges have been recognised in recent years, and
a number of technical solutions have been introduced. An example is cold gas spraying
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(CGS), where due to the low gas temperatures in combination with the prevailing high
kinetic energy of the particles, low-oxide and very dense coatings can be realized [10–12].
Despite the typical advantages of the CGS method, there are also some drawbacks. These
include the required material ductility which limits the choice of material [12], the loss of
ductility upon plastic deformation [13], and the induced high residual stresses [14]. CGS
also faces the technical challenge of having a limited availability of commercial powders
specifically designed for this process due to a lack of market penetration [15].

Another alternative is thermal spraying in a vacuum or an inert gas atmosphere.
However, due to the use of plasma and powder conveying gases, the pressure in the coating
chambers designed for this technology usually exceeds 50 mbar (rough vacuum) [16]. Even
ultra-high vacuum (UHV) is far from sufficient to truly prevent the oxidation of the particles
and formation of oxide seams. In addition, the equipment required for realizing a UHV
atmosphere is complex, which makes the process economically unattractive.

The shrouded arc spraying and shrouded plasma spraying methods offer additional
alternatives. In these processes, the spray jet is shielded from the surrounding air at-
mosphere by a coaxially enveloping protective gas jacket. This minimises but does not
completely prevent the swirling of air into the spray jet (and thus oxidation) [17,18]. The
processes discussed so far all offer process-specific advantages, but they cannot completely
suppress oxidation during the coating process [19]. Studies focusing on soldering have
shown that the silane doping of an inert gas process atmosphere can completely eliminate
the residual oxygen content even at ambient pressure [20]. The present study used this
approach and employed it to realize a thermal spray process in an oxygen-free environ-
ment. In this context, the term oxygen-free refers to an inert gas with a residual oxygen
content of 10−26 vol.%, which is low enough to avoid any oxide formation during the
spraying process.

2. Materials and Methods
2.1. Coating Environmental Conditions

To perform the coating process in an oxygen-controlled environment, a 0.26 m3 custom-
built coating chamber was used, with an integrated manipulation device and residual
oxygen content monitoring system, as shown in Figure 1.

This coating chamber not only allowed the coating process to be carried out in a
controlled environment, but also permitted the same environment for the corundum
blasting process for surface activation. By blasting in the controlled environment, an
oxide-free substrate-coating interface can be realized by suppressing the formation of a
wetting-inhibiting native oxide film on the substrate surface. To create a blasting and coating
environment with a residual oxygen concentration equivalent to the oxygen concentration
of an extreme high vacuum (XHV), the coating chamber, corundum tank and conveying
gas hoses were first flushed with commercial quality nitrogen. The residual oxygen content
in this blasting and coating environment was around 10−4 vol.−% at ambient pressure. In
the next step, the residual oxygen content was quantitatively converted into silicon dioxide
(SiO2) and hydrogen by adding monosilane (SiH4) with a stoichiometric ratio according to
the following conversion reaction:

SiH4 (g) + O2 (g) 
 SiO2 (s) + 2H2 (g) (1)

SiH4 (g) + 2H2O (g) 
 SiO2 (s) + 4H2 (g) (2)

As presented in [22], the formed silicon dioxide is amorphous, which is classified as
non-toxic. This allowed for the establishment of a blasting and coating environment with a
residual oxygen content of 10−26 vol.−% at the start of the process, corresponding to an
oxygen content of ≈10−23 Pa.
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Figure 1. Custom-built process chamber with an attached blasting and twin wire arc coating system [21].

2.2. Coating Method and Materials

Wire arc spraying was used as the coating process. It should be noted that the blasting
and coating parameters were kept identical in the different process environments. With
identical coating parameters, the differences in the coating properties can thus be attributed
to the residual oxygen content of the environment due to the similarity of the physical
properties of air and nitrogen. Table 1 summarizes the blasting and coating parameters and
the used materials.
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Table 1. Process parameters used for the blasting and wire arc spraying processes.

Blasting Parameters

Blasting gun
(Conventional blasting in air) Goldmann Spezial 1000

Blasting gun
(Blasting in controlled environment) Schneider SSP-SAV

Blasting material EKF 36
Blasting distance 90 mm

Blasting angle 90◦

Blasting overruns 6 at 1 m/s
Conveying gas Air SiH4 + N2 (≈10−23 Pa)

Conveying gas pressure 800 kPa
Environment gas Air SiH4 + N2 (≈10−23 Pa)

Wire Arc Spraying Parameters

Gun Miller BP400 (Modularc 400R)
Coating material Twin copper wire, Ø1.6 mm, GTV 50.12.
Atomisation gas Air SiH4 + N2 (≈10−23 Pa)

Atomisation gas rate 90 m3/h
Environment gas Air SiH4 + N2, (≈10−23 Pa)

Relative coating velocity 1 m/s
Current 100 A
Voltage 30 V

Resulting wire feed rate ≈130 g/min
Coating distance 100 mm

Substrate

Material Steel discs
Material number 1.0038

Chemical composition C Mn P S N Cu
0.17 1.4 0.035 0.035 0.012 0.55

2.3. Characterisation of the Coating Morphology

The coating morphology was analysed using a reflected light microscopy analysis.
Additionally, scanning electron microscopy (SEM) was performed on the coating surfaces
using a Helios Nanolab 600 (FEI Germany GmbH, Frankfurt, Germany) with a dual-beam
system operating under high vacuum conditions at a base pressure of 10−4 Pa. The porosity
was determined by a digital analysis using the software ImageJ [23].

2.4. Young’s Modulus and Residual Stress Evaluation

In order to investigate the effect of the different environmental conditions on residual
stresses, the hole-drilling strain-gage method was employed using the MTS3000-Restan
residual stress analyser (SINT TECHNOLOGY S.R.L., Calenzano, Italy). Test and evaluation
procedures were performed in accordance with the ASTM E837 standard using a 1.6 mm
drill bit [24]. The evaluation was carried out using the power series method; this method is
an approximation of the integral method [25]. The numerical coefficients used to calculate
the residual stress values were according to those in the study by Schajer [26].

Prior to the characterisation of the mechanical properties, the surface roughness of
the individual samples was observed using confocal laser microscopy (Keyence VK9700,
Keyence Deutschland GmbH, Neu-Isenburg, Germany) with a magnification of 50× and
step size of 0.1 µm. For this purpose, six areas were selected on each sample, and a projected
area of 100 µm2 was measured.

To determine the residual stresses of the coatings, the apparent Young’s modulus
is crucial. The mechanical properties of the coatings were characterised by means of
nanoindentations using a Hysitron Triboindenter Ti 900 nanoindenter (Bruker, Minneapolis,
MN, USA) with a possible force ranging from 2 µN to 10,000 µN. The characterisation was
carried out with respect to the hardness (according to DIN EN ISO 14577-1) and Young’s
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modulus (according to Oliver and Pharr) using a 2D transducer and diamond Berkovich
tip with a tip radius of 150 nm [27–29]. A force-controlled trapezoidal force-displacement
function was used, which had an applied force for 5 s, a holding period for 2 s, and a
release for 5 s, as according to [30,31]. Prior to the measurements, a calibration of the tip
was carried out on fused quartz in a force range between 8000 µN and 10 µN in descending
force, descending at 100 µN intervals with a drift rate of 0.031 nm/s. Afterwards, the tip
area function was created [32]. To minimise the influence of high roughness, the 5% rule
of thumb should be applied, where the surface roughness should not exceed 5% of the
depth at which the results are needed [33]. Due to an average surface roughness Ra of
above 8 µm, this rule could not be applied, and therefore the surface was initially scanned
in order to find a suitable position for the indentations using the atomic force microscopy
(AFM) mode of the Hysitron Triboindenter Ti 900 nanonindenter (according to DIN EN
ISO 25178); it was performed in the horizontal scan orientation with a scan rate of 0.2 Hz
and scan area of 200 µm2. Subsequently, the indents were placed at defined locations with
lower roughness values (Ra < 40 nm) at a minimum distance of 2 µm. The indentation
depth between 100 nm and 300 nm was achieved by setting the peak load levels to range
from 1200 µN to 800 µN. The loading rate over the peak load was 50 µN s−1. For each peak
load, 15 indentations were carried out at different locations on the specimen, with the force
and indentation depth continuously recorded at a rate of 500 measurements per second
during the process.

3. Results and Discussion
3.1. Coating Morphology

Figure 2 compares the reflected light microscopy images of the arc sprayed copper
coatings produced in different process atmospheres. Figure 2a depicts the conventional arc
sprayed copper coating produced in an air environment and using compressed air as the
atomising gas. The typical coating morphology of an arc sprayed coating, with pronounced
oxide fringes, is clearly visible. The porosity within the coating was determined to be
approx. 18% using a digital image analysis. Figure 2b depicts a cross-section of an oxide-
free copper coating produced in a silane-doped nitrogen environment using silane-doped
nitrogen as the atomising gas. The applied coating reveals a substantially reduced porosity
of approx. 5%. Moreover, no oxide seams are detectable. The homogenous coating
morphology indicates that a material bond has formed between the individual splats.
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Figure 2. Optical micrographs obtained on cross-sections that depict the microstructures of the wire
arc sprayed copper coatings applied in different environments: (a) conventional process in air; and
(b) process with silane-doped nitrogen.

Figure 3 shows SEM images and a table of the chemical composition of the copper
coatings blasted and coated in air vs. blasted and coated in silane-doped nitrogen. The
chemical composition data were gathered via the energy dispersive spectroscopy (EDS)
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technique with a 15 kV acceleration voltage. The spots used for the EDS analysis are
highlighted by red boxes.
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The table in Figure 3 reveals that the copper coating produced in the silane-doped
nitrogen environment shows an increased amount of copper by ≈17 at.−% and a decreased
carbon and oxygen content in comparison to the coating produced in air. No oxygen is
detected in the sample coated in the silane-doped nitrogen after the EDS measurement.
These results support the statements that oxide-free coatings can be produced in silane-
doped nitrogen atmospheres, as portrayed by Equation (1). The lower carbon content
can be explained by a reduced amount of organic contaminants usually found within
manufactured inert gases compared with oil-contaminated compressed air.

Figure 4 shows cross-sections from the substrate-coating interface to reveal the effect
obtained by transferring not only the coating process to the oxygen-free environment, but
also the corundum blasting process.

Figure 4b is a cross-section of the interface of a conventionally applied copper coating.
Figure 4b is a cross-section of the interface of an oxide-free copper coating. In both cases,
the substrate activation process was performed in an air atmosphere, using compressed
air as the blasting gas. A clearly visible gap is detectable along the entire interface of these
coatings. Figure 4c shows the interface of an oxide-free copper coating, where the surface
activation process was carried out inside the custom-built process chamber at an oxygen
content of 10−26 vol.−%. This coating has a significantly reduced interfacial gap, with full
wetting of the substrate surface.

The investigation of the interface clearly shows the influence of the residual oxygen content
in the environment during the surface activation process on the binding mechanisms of a
thermally sprayed coating. A native oxide layer is formed if the blasting process takes place
in air, which impairs the wetting behaviour of the impacting particles. Thus, due to the oxide
film at the interface, even when an oxide-free coating is applied, the bonding mechanisms
are still largely determined by the number of undercuts and mechanical interlocking of the
particles. In this context, reference is made to the work of Gourlaouen et al. [34], where wire
arc sprayed copper coatings were produced in air and in pure nitrogen. Despite that oxide-free
copper coatings were reported, the oxide-free copper coatings did not show any improvements
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with regard to their adhesive tensile strength. Both the conventional and the oxide-free copper
coatings achieved adhesive tensile strengths of 32.2 ± 4.7 MPa. Although not described in the
paper, it can be assumed that the surface activation process was carried out conventionally
in the presence of oxygen and that a wetting-inhibiting oxide layer was still present on the
substrate. Furthermore, commercially available nitrogen contains too much residual oxygen
to completely suppress oxidation processes during the coating process. Thus, the bonding
mechanisms of the oxide-free copper coatings were still defined by the mechanical interlocking
of the impacting particles, despite the creation of a copper coating with a reduced oxide content.
As presented in Figure 4c, the formation of a wetting-inhibiting native oxide layer on the
substrate surface can be suppressed by transferring the blasting process to an oxygen-free
environment. This provides the prerequisite for the complete wetting of the substrate surface,
resulting in a drastic increase in the adhesive tensile strengths, as shown in [21]. In that particular
work, adhesion tensile strength tests according to the DIN EN ISO 14916 standard revealed
strengths of 25.1 ± 0.4 MPa for copper coatings conventionally sprayed in air, with a strict
cohesive coating failure. Copper coatings produced in a silane-doped nitrogen atmosphere
(residual oxygen content: 10−26 vol.−%) but having the upstream surface activation process
carried out conventionally in air achieved adhesive tensile strengths of 35 ± 2.4 MPa, which
is in agreement with the results of Gourlaouen et al., with pure adhesive failure. For coatings
blasted and coated in an oxygen-free environment, an adhesive tensile strength of 63.9 ± 3.0
MPa was achieved. The fracture occurred in this case due to a failure of the adhesive used
(Ultrabond 100). Figure 5 shows one of the tested samples, indicating that the real maximum
adhesive tensile strengths of the coatings might be even higher.
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3.2. Particle Formation

The analysis of the coating morphologies showed that the processing under oxygen-
free conditions has a significant influence on the wetting behaviour. Thus, conditions can be
created that permit the splats to form a material bond with each other during the deposition
process. Blasting under oxygen-free conditions also improves the wetting behaviour on the
substrate surface to such an extent that the interfacial gaps are minimised and completely
closed in most places. Although the improved wetting behaviour has a reducing effect on
the resulting coating porosity, the coatings are not pore-free and by far do not reach the low
porosities of, e.g., cold gas sprayed copper coatings [35–37]. In this context, the key factor
is the altered particle formation.

In contrast to other coating processes such as atmospheric plasma spraying or cold
gas spraying, where the size of the impacting particles is predetermined by the powder
fractionation used, particle formation in the arc spraying method is a complex process.
According to [38–40], the breakup behaviour of a molten droplet in a free jet during arc
spraying can be described by the dimensionless Weber number:

We = (ρg × v2 × Dp)/σ (3)

where ρg is the atomising gas density in kg/m3, Dp is the droplet diameter in m, v is the
relative atomising gas velocity in m/s, and σ is the surface tension of the molten droplet in
kg/s2. This shows that the atomisation of a molten droplet in a gas jet also depends on the
surface tension σ of the particles, and thus on the occurrence of surface tension affecting the
oxide film. The analysis of particles atomised with silane-doped nitrogen showed that the
absence of oxygen led to a significant change in the atomisation behaviour. The primary
particles were atomised into much smaller particles than with the conventional arc spraying
in an air atmosphere. These small particles could be detected both in and on the surface of
the coating, as shown in Figure 6.
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Compared to the coatings produced in air, the oxide-free coatings have considerably
smaller particles on the coating surface (cf. Figure 6). However, considering the correspond-
ing smoother splat shapes, this has no significant influence on the resulting coating surface
roughness, as presented in Table 2.
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Table 2. Roughness values of the wire arc copper coating surfaces.

Coated in Air Coated in Silane-Doped Nitrogen

Projected Area 100 µm2 100 µm2

Rz 83.47 µm 70.54 µm
Rq 9.39 µm 11.70 µm
Ra 36.23 µm 33.50 µm
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molecular oxygen is removed before coating, there is practically no oxygen left to cause 
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Figure 7. SEM images and the chemical composition of the copper particles created by atomisation in
air and in silane-doped nitrogen. The chemical composition data were gathered via an EDS analysis
with a 15 kV acceleration voltage. The spots used for analysis are highlighted by red boxes.

As presented in the table of Figure 7, the relative atomic percentage of copper found
in the particles created in silane-doped nitrogen is 25.9% higher than in air. The oxygen
content significantly drops by 28 at.−%, from 31.1 at.−% down to 3.1 at.−%. The reaction
between silane and oxygen is most likely responsible for this observation. Because most
molecular oxygen is removed before coating, there is practically no oxygen left to cause the
oxidation of the copper particles. Moreover, as a small amount of silicon is present, some of
the remaining oxygen found can be attributed to SiO2, as shown in Figure 8.
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Figure 8. SEM image of SiO2 agglomerates on a copper particle atomised in silane-doped nitrogen.

The EDS analysis of the coatings and particles also reveals the origin of the SiO2.
Because the SiO2 is only detected on the coatings [21] and particles but not within the
coatings (cf. Figure 3), its formation is mostly due to the reaction between the residual
silane in the coating environment and the oxygen in the ambient atmosphere when opening
the coating chamber after the coating process.

3.3. Apparent Young’s Modulus

The mean values from the nanoindentation results of the coatings blasted and coated
in air showed an apparent Young’s modulus of 67.1 ± 5.8 GPa, while the coatings blasted
and coated in silane-doped nitrogen revealed a significant increase, almost doubling the
elastic modulus to 123.7 ± 21.2 GPa.

The apparent Young’s modulus of a coating depends on the particle temperature (higher
temperature means lower apparent Young’s modulus), bonding rate (higher bonding rate
means higher apparent Young’s modulus), and porosity (higher porosity and cavities mean
lower apparent Young’s modulus) [2,41]. Due to the design of the custom-built coating
chamber, the integration of a particle diagnostic system to analyse the particle temperature
was not possible. However, based on the work of Abkenar, which measured the particle
temperature during arc spraying in air and nitrogen during the flight phase, it can be assumed
that the temperature of the copper particles in silane-doped nitrogen is marginally lower than
in air [39]. With regard to the correlation of bonding rate and apparent Young‘s modulus,
the coating ratio on the conventional air blasted samples was determined in different coating
environments and coating times. To ensure statistical reliability, four 25 mm discs were coated
simultaneously for each coating test, and their mean values were determined. The following
Figure 9 presents the average sample weight increase versus coating time, which were the
data used to determine the average coating ratio.
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Figure 9. Average sample weight increase versus coating time in the application of wire arc sprayed
copper coatings in different coating environments.

Clear differences can already be observed due to the coating environment after a coat-
ing time of one second. The samples coated in air have an average weight increase of
51.5 ± 2.3 mg, while the samples coated in silane-doped nitrogen have an average weight
increase of 79.3 ± 3.1 mg. This corresponds to a 55% higher coating ratio in the oxide-free
coatings compared with the coatings formed in air. This is explained by the improved wetting
behaviour of the oxide-free copper particles on the substrate surface. With an increasing
coating duration, the average coating ratio of both coating systems improved due to the
change in the coating time-dependent temperature regime of the samples. Thus, after 20 s, the
samples coated in air show an average coating ratio of ≈73.6 mg/s, resulting in an average
weight increase of 1471 ± 60.3 mg. In contrast, the coatings applied in silane-doped nitrogen
have a resulting average coating ratio of ≈115.1 mg/s, which was determined by the average
weight increase of 2301 ± 44.1 mg. This corresponds to an average bonding rate increase of
56.5% compared with the conventional air coatings. Considering the resulting coating ratio
and the previously presented reduction in coating porosity (cf. Section 3.1), an increased
Young‘s modulus in the oxide-free coatings is plausible.

3.4. Residual Stresses

Residual stresses have a significant impact on the adhesion of thermally sprayed coat-
ings [42–44]. In order to evaluate their possible influences on the adhesive tensile strengths
and evaluate the failure mechanisms presented in [21], we determined the residual stresses
of both the conventional and oxide-free coatings. A simple but effective way to qualitatively
determine residual stresses in thermally sprayed coatings is to measure the curvature of the
released coating. An essential process step during the coating process is corundum blasting for
surface activation. This involves a roughening of the surface to ensure that there are sufficient
undercuts on the substrate surface for the mechanical interlocking of the coating. Applying a
thermally sprayed coating to a non-blasted surface will inevitably result in the residual leading
to delamination, and thus coating spallation [1,2,42]. The samples (Ø 20 mm, 1.0038) used for
the analysis of the residual stresses were ultrasonically cleaned after cutting and then coated
with the parameters shown in Table 1; this was performed for both the conventional air and
with silane-doped nitrogen samples. The corresponding results are presented in Figure 10.
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In the case of the oxide-containing coatings, the residual stresses had already led to
coating failure during the first coating cycle. The coatings reached a maximum thickness
of ≈100 µm. The measured curvature radius was ≈9 mm, which is an indicator of high
residual quenching stresses within the coatings. In contrast, the coatings produced in
silane-doped nitrogen did not fail even after four complete coating cycles and had a total
coating thickness of ≈750 µm. Thus, although the coatings were mechanically removed,
no significant curvature of the coating was detected. In addition to the improved bonding
between the individual splats and the coating on the substrate, this example would be a
further explanation for the substantially increased adhesive tensile strengths presented
in [21]. Furthermore, this also explains why the samples blasted and coated in silane-doped
nitrogen show pure adhesive failure without coating failure at the edges of the coating, as
sharp transitions are the weak point of any thermally sprayed coating [1,2]. Additionally, in
order to obtain quantitative information about the prevailing residual stresses, we examined
coatings of ≈400 µm thickness on 25 mm discs using the hole-drilling strain-gage method.
The results are summarised in Figure 11.

The hole-drilling strain-gage measurements showed significantly lower and less vary-
ing residual stresses for the coatings produced in silane-doped nitrogen than for those
produced in air. The copper coating that was conventionally produced in air features a
maximum tensile stress of 57 MPa. In contrast, the sample produced in the oxygen-free
environment but activated in air had a maximum tensile stress of 29 MPa. When comparing
the results of the measurements with respect to the blasting environment, the influence
of the improved wetting of the particles on the stress curve over the coating depth also
becomes apparent. The sample blasted and coated in silane-doped nitrogen possessed com-
pressive stresses of 17 MPa at the interface. Due to the enhanced bonding to the substrate,
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the peening effect on the substrate surface by the grit blasting clearly affects the residual
stress distribution within the coating.
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The results obtained demonstrate that the effects on the residual stresses in the coat-
ings become apparent upon moving to a truly oxygen-free environment. For instance,
Clyne and Gill described that there were no significant differences in the residual stresses
of conventional and vacuum sprayed coatings [2,43]. It has also been reported that a direct
correlation exists between the apparent Young’s modulus of the coating and the residual
stresses: the higher the apparent Young‘s modulus, the higher the residual stresses due
to inhibition of possible relaxation mechanisms [2,42,45–47]. Thus, solely based on the
Young’s modulus presented in Section 3.3., the oxide-free coatings should have higher
residual stresses than the oxide-containing coatings. However, the residual stress state in
the entire coating/substrate system is determined by the superposition of different types of
stress induced during the spraying process [2,45,48–50]. These are the superpositioning
of quenching, peening, and thermal mismatch stresses. However, the residual stresses are
largely attributed to the shrinkage of the impacting particles, which lead to tensile quench-
ing stresses within the coatings [51,52]. The actual quenching stress values depend on the
contact ratio of the splats and relaxation phenomena. As possible relaxation phenomena
microcrack formation, through thickness yielding, interfacial sliding, creeping and edge
relaxation are reported [2,53,54].

In fact, the splashing of fully melted particles upon impact drastically affect the coating
properties [2,55,56]. Thus, we investigated the dispersion behaviour of the particles. This
involved the investigation of the dispersion behaviour at two interfaces: the splat/substrate
surface and splat/previously deposited layer interface. Figure 12 shows the spreading
behaviour of copper particles on a non-blasted substrate surface in different environments.

While the splats formed in air have the typical pancake shape (Figure 12a), the oxide-
free splats have a doughnut shape (Figure 12b). According to the results obtained from the
literature, this effect can be attributed to the temperature gradient at the interface [57–60].
Wilden and Frank showed using a simulation that at the same substrate temperature,
particle size, and particle velocity, but at an increased particle temperature, the pancake-like
spreading behaviour can be expected to change to the doughnut-shaped spreading [58].
Similarly, Yang et al. were able to attribute the formation of the doughnut-shaped splats to
a preheating of the substrate [59]. Assuming that the particle temperatures in silane-doped
nitrogen are marginally lower than in air [61], the doughnut-like spreading behaviour
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upon spraying in silane-doped nitrogen is attributed to the absence of an oxide film on the
surface of the particles, which led to an enhanced heat transfer and dispersion behaviour.
By contrast, the increased surface tension of the oxide-containing particles reduces the
wetting and heat transfer behaviour, which in turn causes a transition to a pancake-shaped
splat form.
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doped nitrogen.

In this context, Tillmann et al. showed the influence of different splat forms on
the residual stresses at the interface. By varying the spray angle, the splat spreading
behaviour was significantly influenced. By decreasing the coating angle, the impacting
splats increasingly deviated from the typical pancake shape, resulting in significantly lower
tensile residual stresses at the interface [62]. In this case, a reduction of the quenching
stresses by higher peening stresses can be excluded, as the compressive stresses decrease by
reducing the coating angle [2]. Consequently, it is reasonable to assume that the deviation
from the typical pancake shape has a significant influence on the stress field within the
individual splats at the coating/substrate surface interface.

When considering the spreading behaviour of the splats on the coating surface, it
is obvious that the oxide-free splats now also exhibit the typical pancake-like spreading
behaviour, although they are flatter than the splats formed in air, cf. Figure 13. The lack of
a wetting-inhibiting oxide film also influences the wetting and spreading behaviour as well
as the heat transfer to the previously applied splat layer. This in turn results in a smaller
wetting angle and thus flatter splats. Furthermore, it reduces the number of interfacial gaps
and coating porosity which, according to the presented results in Section 3.3 and in various
studies, has a high impact on the apparent Young’s modulus [41,62].

As previously mentioned, the study showed that coatings with decreasing coating
porosity and an increased bonding ratio have a higher apparent Young‘s modulus, and
thus higher residual stresses as the relaxation is curtailed. In this context, the splats were
examined for relaxation traces, cf. Figure 14.
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As can be clearly seen in the Figure 14a, the copper splats formed in air feature relaxation
traces not only at the splat edges, but also to a lower extent in the centre of the splats, while
the oxide-free splats do not exhibit these traces, cf. Figure 14b. However, this contradicts
the determined residual stresses. Conversely, the effect of porosity and bonding rate on
thermal conductivity has also been reported: As the porosity decreases and bonding rate
increases, the thermal conductivity increases [2,63]. This influence on the temperature–time
regime appears to have greater effects on the dispersion and relaxation mechanisms of the
particles than expected. Some studies have shown that changes in the temperature–time
regime during relaxation have an important impact on the resulting residual stresses. Effects
such as those reported by post-weld or post-coating heat treatment cannot be excluded [64,65],
as well as the influence of altered cooling speeds on residual stresses [66]. The works by
Shrestha et al. and Yañez et al. demonstrate that a heat treatment of thermally sprayed
coatings promotes relaxation mechanisms and reduces residual stresses [67,68]. Preheating the
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substrate also significantly affects the resulting residual stresses. The works of Tillmann et al.
and Oukach et al. describe the influence of substrate preheating on the residual stresses; by
preheating the substrate surface, the temperature gradient in the composite system could be re-
duced, resulting in a lower temperature change over the coating time. Composite systems that
did not experience any temperature increase or decrease during the coating process showed
lower and more consistently distributed residual stresses over the coating thickness [62,69].
Thus, it can be assumed that the oxide-free transition presented in Figure 4c increases the
thermal conductivity, resulting in a more homogeneous temperature distribution during the
coating process within the composite system, affecting the residual stresses. Moreover, the
change in heat transfer not only affects the temperature distribution within the composite,
but also affects the cooling rate and speed. Another aspect that is largely not considered in
thermal spraying but could have a decisive impact on the residual stresses is the possible
influence of the tribological load on the underside of the splats, which could occur when
sliding across the oxide-covered interface gap during the spreading, shrinking, and relaxing
stages. The complete wetting of the oxide-free transitions at the interface do not allow for
relative movements at the interface. In contrast, the relative movements over the roughness
peaks caused by the oxide-containing interface transition could provide for residual stress
induction, similar to the residual stress induction in grinding processes [70].

4. Conclusions

In order to evaluate possible influences on the adhesive tensile strengths and failure
mechanisms of oxide-free wire arc sprayed copper coatings, the coating morphology,
Young’s modulus, and residual stresses of both conventional and oxide-free copper coatings
were compared and analysed. The main results can be summarised as follows:

• It is possible to generate an XHV-adequate coating atmosphere using silane-doped
nitrogen as the coating atmosphere and atomisation gas; thus, this method estab-
lishes the conditions needed for the formation of a material bond within thermally
sprayed coatings.

• An enhanced wetting behaviour on the substrate surface is possible by conducting
the surface activation process in a silane-doped inert gas environment. In this envi-
ronment, new process conditions and effects can be observed: the particle formation,
atomisation, and dispersion behaviour are significantly different, which have a deci-
sive effect on the resulting coating morphology and properties.

• Due to the suppression of a wetting-inhibiting oxide film forming on the copper particles,
the coatings produced in a silane-doped nitrogen atmosphere are free of oxide seams,
exhibiting a significantly reduced coating porosity that ranges from 18% to 5%.

• The transfer to an oxygen-free environment led to a 56% increase in the coating ratio,
resulting in an increase in the apparent Young’s modulus.

• Interestingly, although the apparent Young‘s modulus is significantly increased and
almost doubles the modulus of the coatings applied in air, meaning that the relaxation
mechanisms should be curtailed, the coatings produced in the XHV-adequate atmo-
sphere feature substantially lower residual stresses than the conventionally sprayed
coatings. The extent to which the absence of an oxide film in the atomised particles
and the altered particle size distribution influence the temperature–time regime, splat
formation, apparent Young’s modulus, and thus the residual stresses, is the subject of
current investigations.
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