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Abstract: La2NiO4+δ particles with a plate-like morphology were prepared from a NaOH melt by
molten-flux synthesis. For this purpose, the intermediates from a sol–gel process were used as
reactants. Using powder X-ray diffraction, the sol–gel intermediates were identified as a mixture
of tetragonal La2O2CO3 and cubic NiO. The existence of NiO was also confirmed by transmission
electron microscopy in combination with electron-energy loss spectroscopy. The ultrafine mixed
sol–gel intermediates were then mixed with NaOH powder and additional water in a nickel crucible
and heated to 673 K for 8 h. The chemical reactions in the air during the molten-flux synthesis and the
influence of the salt on the formation of La2NiO4+δ were examined by thermogravimetric analysis.
The powder X-ray diffraction indicated a K2NiF4-type tetragonal structure with the I4/mmm space
group for the reaction product. The scanning electron microscopy showed plate-like La2NiO4+δ

crystals with a length and thickness of approximately 9 µm and 2 µm, respectively, while the energy-
dispersive X-ray spectroscopy revealed a homogeneous distribution of lanthanum and nickel in the
product powder. The influence of the processing parameters on the product generation, as well as on
the size and morphology of the La2NiO4+δ particles, was systematically studied.

Keywords: crystal growth; crystal morphology; La2NiO4+δ; molten-flux synthesis; NaOH melt;
sol–gel process

1. Introduction

Due to its high chemical and thermal stability in a CO2-containing atmosphere under
working conditions, the mixed ionic–electronic conductor (MIEC) oxide La2NiO4+δ (LNO)
has attracted considerable attention in the research area of oxygen-transporting membranes
(OTMs) [1]. OTMs based on MIECs find applications in the production of oxygen-enriched
air, the partial oxidation of methane to syngas or ethane to ethylene and as cathode material
in solid-oxide fuel cells (SOFCs) or in lithium–air batteries [2–7]. LNO exhibits a K2NiF4
structure and is the first member (n = 1) of the Ruddlesden–Popper (RP) phase series,
which can be generally described by the formula Lan+1NinO3n+1 (n = 1, 2, 3, ∞). The crystal
structure of LNO is anisotropic and consists of alternating cubic perovskite LaNiO3 layers
and LaO rock-salt layers along its c-axis [8–10]. The rock-salt layers are able to include
oxygen ions in interstitial positions, which are involved in the oxygen-transport mechanism
in LNO [9]. The migration of oxygen ions through LNO is highly anisotropic and occurs
mainly in the a,b plane of the structure [11,12]. The amount of the oxygen interstitials can
be described by the oxygen excess δ. Depending on the δ (0 ≤ δ ≤ 0.25) and temperature,
LNO can exhibit versatile orthorhombic and tetragonal structures [13–16].

LNO is typically prepared by the sol–gel process (SGP) implicating reactions between
nanocrystalline intermediates, which require high temperatures of at least 1223 K to obtain
pure powder product with crystal sizes up to a few micrometers [1,17–20]. However, the
crystal morphology of the resulting LNO particles cannot be controlled by the SGP [17–20].
As an alternative method, molten-flux synthesis (MFS) enables the production of anisotropic
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metal-oxide materials, such as LNO, with high purity. The chemical conversion during
MFS takes place in a liquid medium, resulting in the faster mobility of the ionic species
compared to the SGP. This leads to the high homogeneity of the reaction mixture, and the
synthesis can be completed in shorter times. Furthermore, the MFS permits the formation
of large crystals, mostly in the micrometer range, and well-defined morphologies according
to the crystal structure. Depending on the flux used, and thus, its melting point, MFS
usually requires a lower reaction temperature than the SGP [21–26].

For the investigations in this study, NaOH was chosen as the flux due to its low
melting point of 596 K [27]. It has previously been reported that the use of the stronger
oxidant KOH compared with NaOH causes the production of the perovskite-like oxide
LaNiO3. The presence of peroxides and superoxides in the KOH melt stabilizes the +3
oxidation state of Ni, facilitating the exclusive formation of LaNiO3 [28]. Analogous to
the autoprotolysis of water, and according to the Lux–Flood theory [29], the acid–base
equilibrium present in the NaOH melt can be described as follows:

2 OH− (oxobase) 
 H2O (oxoacid) + O2− (1)

The MFS starts with the dissolution of the reactants in the wet acidic melt. The
heating of the reaction mixture causes a slow loss of water, making the melt more basic
and promoting product formation by shifting the acid–base equilibrium. The basicity of
the melt is expressed analogously to the pH value as a function of the oxygen ions in the
following way:

pO2− = −log [O2−] (2)

where pO2− is the potential of the oxygen ions, and [O2−] corresponds to the concentration
of the oxygen ions. The possible chemical reactions in the melt are determined by the
magnitude of the pO2− [30–32]. Analogous to the introduction of the absolute pH scale [33],
Equation (2) can be related to the absolute chemical potential of the oxygen ions (µO2− , abs),
according to Equation (3):

pO2−
abs= −µO2− , abs/RT ln 10 (3)

Here, R is the gas constant, and T is the temperature. This definition allows us to
compare the basicity of the oxygen ions in different chemical environments. So far, many
materials, such as La2−xMxCuO4 (M = Na, K), LnBa2Cu3O7−δ (Ln = Nd, Sm, Eu, Gd) and
LnCu2O4 (Ln = La, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er), have been successfully synthesized via
MFS using a NaOH–KOH eutectic [34–36]. The use of pure NaOH as a flux in MFS has
only been reported in a few cases. For example, LnFeO3 (Ln = La, Pr, Nd) and Na0.2CoO2
were obtained from a NaOH melt [37,38]. In earlier work, plate-like LNO crystals were
synthesized by MFS using NaOH as the flux. Nevertheless, in addition to LNO, the sec-
ondary phase La(OH)3 was also identified, which can represent an obstacle for possible
future applications due to its size of at least 10 µm [39,40]. LNO plates, obtained via solid-
state route-mediated MFS, have already been used in our research group to fabricate the
ceramic composite from Ca3Co4-xO9+δ and a small amount of LNO (max. 5 wt%), which
showed enhanced thermoelectric properties compared to pure Ca3Co4−xO9+δ [41]. Due to
the anisotropic crystal structure and oxygen-transport properties, LNO particles with a
plate-like shape can possibly be used as template particles for the production of microstruc-
tured LNO ceramic membranes with increased oxygen-transport rates using a templated
grain-growth process [40,42]. Thermogravimetric analysis (TGA) investigations on the
oxygen uptake/release of nanostructured LNO materials have previously demonstrated
that LNO with a rod-like geometry, prepared via the reversible microemulsion method,
led to a 75% increase in the oxygen-transport rates compared with LNO to a polyhedral
shape [43].

In this work, the synthesis of plate-like LNO particles by the molten-flux method
with NaOH as the flux is reported. An ultrafine mixture of intermediates consisting of
La2O2CO3 and NiO from the SGP was used as the precursor. By the appropriate choice
of the reaction parameters, high-purity micron-sized LNO was produced. A number of
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different analytical methods were utilized to characterize the sol–gel intermediates and
LNO product powder.

2. Materials and Methods

The reactants for the MFS of LNO were synthesized by the SGP using La(NO3)3·6 H2O
(Alfa Aesar, Kandel, Germany, 99.9%) and Ni(NO3)2·6 H2O (Alfa Aesar, Kandel, Germany,
99.9%) as metal precursors, ethylenediaminetetraacetic acid (EDTA) (Alfa Aesar, Kandel,
Germany, 99.4%) and citric acid (Alfa Aesar, Kandel, Germany, 99.5%). Stoichiometric
amounts of the metal precursors were dissolved in distilled water at 353 K. EDTA and
citric acid were added under stirring until the molar ratio of La3+:Ni2+:EDTA:citric acid
was 2:1.15:3.15:6.3. After adjusting the pH value between 7 and 9 by adding NH3·H2O
(Carl Roth, Karlsruhe, Germany, ≥25%), a blue-colored sol was formed. The solution was
then heated at 423 K for a few hours under constant stirring until a blue gel was obtained.
Next, the gel was transferred to an evaporating dish and heated in a heating mantel for
several hours at 573 K. After complete water evaporation, a xerogel powder was obtained,
which was thoroughly ground and then calcined in air in a furnace at 773 K for 2 h using a
heating and cooling rate of 2 K/min. The finely mixed sol–gel intermediates gained in this
way were ground and used as starting material for the MFS in the next step.

For a typical MFS, distilled water was first added to NaOH beads (Alfa Aesar, Kandel,
Germany, 99.9%) in a nickel crucible. Then, the sol–gel intermediates (La/Ni molar ratio
= 2:1.15) were added to the NaOH, resulting in a sol–gel-intermediates/NaOH/H2O-
weight ratio of 1:5:0.9. The crucible was transferred in a muffle furnace and heated at 673 K
for 8 h, with a heating rate of 10 K/min and a cooling rate of 2 K/min. After the furnace
was cooled to room temperature, the dark-colored crude product was washed several times
with distilled water, treated in an ultrasonic bath for a few minutes and filtrated to remove
residual NaOH, smaller particles and other impurities. Finally, the product powder was
washed with acetone and dried at 373 K.

The crystal structure and phase identification of the reaction products were determined
by powder X-ray diffraction (XRD) (Bruker D8 Advance, Bruker AXS GmbH, Karlsruhe,
Germany), which was operated at 40 kV and 40 mA using monochromatic Cu-Kα radiation.
XRD data were collected in a step-scan mode in the 2θ range of 10–50◦, with a step size
of 0.01◦, and count times of 1 s per step. Powder diffraction files (PDFs) from the ICDD
database were used to identify the following chemical compounds from the recorded XRD
patterns: La2NiO4.18 (PDF 01-089-3589; tetragonal; a = 3.866 Å; c = 12.678 Å); LaNiO3
(PDF 00-033-0710; cubic; a = 3.861 Å); La(OH)3 (PDF 01-079-5398; hexagonal; a = 6.529
Å; c = 3.852 Å); La2O3 (PDF 01-074-2430; hexagonal; a = 3.937 Å; c = 6.130 Å); La2O2CO3
(PDF 00-023-0320; tetragonal; a = 4.063 Å; c = 13.500 Å); NiO (PDF 01-071-4750; cubic;
a = 4.200 Å).

Morphological investigations of the synthesized chemical compounds were performed
with a field-emission scanning electron microscope (FE-SEM) (JEOL JSM-6700F, Tokyo,
Japan) using a secondary electron detector at 2 kV. The size of the LNO crystals was
determined from the recorded SEM micrographs using the image analysis program ImageJ,
version 1.53e (Wayne Rasband, U.S. National Institutes of Health, Bethesda, Maryland,
USA) [44]. For this purpose, 100 particles were evaluated. The chemical compositions of
the sol–gel intermediates and LNO powder were investigated by an energy-dispersive
X-ray spectrometer (EDXS) (Oxford Instruments INCA-300, Abingdon, Oxfordshire, UK),
with an ultrathin window at 15 kV, located on the SEM. For a more precise determination
of the amounts of La and Ni in the reaction products, the oxygen content was omitted, as
this chemical element is difficult to quantify exactly by EDXS due to its limited sensitivity.

A field-emission transmission electron microscope (FE-TEM) (JEOL JEM-2100F-UHR,
Tokyo, Japan, Cs = 0.5 mm and Cc = 1.2 mm) in bright-field and high-resolution mode
(HRTEM) at 200 kV was used to further characterize the sol–gel intermediates. The micro-
scope was equipped with a Gatan GIF 2001 energy filter and a 1 k charge-coupled-device
(CCD) camera to acquire the selected area electron diffraction (SAED) patterns and electron-
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energy-loss (EEL) spectra. For the TEM measurements, the powder was placed on a
carbon-coated copper TEM grid.

Chemical reactions in the air and the role of the flux during the MFS were studied
by TGA and differential thermal gravimetric analysis (DTGA) using a TGA/DSC 3+ from
Mettler-Toledo GmbH, Giessen, Germany. For this, the mixtures were transferred into
alumina crucibles. The measurements were taken in the temperature range of 298–1073 K,
with a heating rate of 10 K/min and a cooling rate of 2 K/min.

3. Results and Discussion
3.1. Synthesis of Precursors via Sol–Gel Process

The reactants for the MFS were obtained via the SGP from lanthanum and nickel
nitrate using EDTA as the complexing agent and citric acid as the gelation agent. The
schematic representation of the SGP is shown in Figure 1. After adding ammonia water
to the reaction mixture, a blue sol was formed, which turned into a gel after a few hours
through the dehydration and evaporation of ammonia [45,46]. In the next step, the blue-
colored gel was heated to 573 K. As a result of the liquid loss, a xerogel powder was
produced [47,48]. The powder still contained residues of incompletely burned carbon and
nitrogen-based components that could have an impact on the MFS, and they were therefore
removed by a calcination step [39]. The calcination of the xerogel powder at 773 K resulted
in a crystalline product, hereinafter called sol–gel intermediates.
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Figure 1. Schematic illustration of the preparation of the sol–gel intermediates by the sol–gel process
(SGP), which serve as starting material for the molten-flux synthesis (MFS) of La2NiO4+δ (LNO).

A calcination temperature of 773 K was chosen because, in previous works, the
formation of the first crystalline intermediates, La2O2CO3 and NiO, instead of LNO, was
observed between 673 K and 773 K [39]. Temperatures between 773 K and 1173 K led to
the generation of LNO, accompanied by La2O2CO3 in different phases, La2O3 and NiO.
From a temperature of 1223 K or higher, only pure LNO was obtained [17]. The appearance
of the intermediate product La2O2CO3 can be explained by the reaction between La2O3
and atmospheric CO2. Furthermore, the production of this oxycarbonate was favored by
the presence of carbonaceous compounds in the reaction mixture, which released CO2
when burned. La2O3 is formed as the result of the decomposition of the lanthanum
precursor. The chemical reactions during the combustion of the La(NO3)3·6 H2O and the
formation of lanthanum oxycarbonate can be described by Equations (4)–(7), involving the
decomposition of lanthanum oxynitrate species [49]:

La(NO3)3·6 H2O (s)→ LaONO3 (s) + N2O5 (g) + 6 H2O (g) (4)

3 LaONO3 (s)→ La3O4NO3 (s) + N2O5 (g) (5)

2 La3O4NO3 (s)→ 3 La2O3 (s) + N2O5 (g) (6)

La2O3 (s)+ CO2 (g)→ La2O2CO3 (s) (7)
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It is important to mention that N2O5 can decompose into other gaseous products, such
as NO, NO2, NO3 or O2, depending on the temperature [50]. The stability of La2O2CO3 has
been studied elsewhere using an Ellingham diagram, and it was found that this crystalline
intermediate compound is not thermodynamically stable above 753 K in ambient air when
p(CO2) = 30 Pa [17]. The presence of lanthanum oxycarbonate in the sol–gel product
between 773 K and 1023 K could be attributed to the reaction kinetics, which is supported
by the fact that no oxycarbonate was found in the powder gained between 873 K and
1073 K after 20 h [17]. The detection of NiO in the sol–gel intermediates has, so far, proven
difficult [17,39]. No sharp NiO reflections could be found by XRD, which means that the
NiO particles are too small or still amorphous [39]. Bright-field scanning transmission
electron microscopy (STEM) together with EDXS revealed that the product from a SGP at
1023 K and 2 h is an intermixed ultrafine powder composed of individual lanthanum- and
nickel-based nanoscale grains with a size below 100 nm [17]. It is therefore possible that
NiO particles are nanoparticles, which, depending on their size, lead to a strong broadening
of the reflections in the XRD pattern so that they can no longer be distinguished from the
background. The mechanism of NiO formation has not yet been elucidated. Possibly, NiO
is the product of the decomposition of NiCO3. According to the Ellingham diagram, NiCO3
disintegrates into NiO and CO2 at a temperature below 773 K, and so this carbonate is no
longer found in sol–gel intermediates [17].

For the synthesis of the sol–gel intermediates, a La/Ni molar ratio of 2:1.15 was
employed, which, as is discussed later, was conducive to the formation of pure LNO
during the MFS. The SEM micrographs in Figure 2 show a porous sponge-like structure
generated by the release of gases, such as CO2 and NOx, from the organic and nitrogen-
based compounds after the calcination step [51]. The size of the grains is not inferior to
100 nm.
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porous sponge-structure produced by the release of organic residues and nitrogen oxides.

Next, the chemical composition of the sol–gel intermediates was analyzed via EDXS.
In Figure 3a, the area selected for the EDXS study is presented. The EDXS spectrum in
Figure 3b displays the presence of La and Ni in the product powder. As can be observed
in Figure A1, the EDXS elemental maps reveal highly homogeneous distributions of both
metals, and they further confirm that the La/Ni ratio is close to 2:1.15 (see Table 1), which
is in good agreement with the stoichiometry of La2O2CO3 and NiO.
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Table 1. Metal composition of sol–gel intermediates based on EDXS results.

Element Atomic Percent (%) Stoichiometric Ratio 1

La 66.29 ± 0.28 2.26 ± 0.01
Ni 33.71 ± 0.67 1.15 ± 0.02

1 Normalized by the atomic percent of Ni.

The EDXS results demonstrated that the SGP produced a mixed ultrafine powder of
La2O2CO3 and NiO, which is an excellent precursor for MFS. This high level of mixing
is considered to be a common feature and a great advantage of the SGP [17]. In another
research work, a mixture of La2O3 and nanoscale NiO prepared by SSR was utilized for
the MFS of LNO [39]. It turned out that the NiO was not homogeneously distributed in
the oxide mixture, but it formed agglomerates with sizes of a few micrometers. These
inhomogeneities led to the increased formation of the byproducts La(OH)3 and LaNiO3
during the MFS [39].

XRD measurements of the sol–gel intermediates were also recorded. The XRD pattern
displayed in Figure 4 affirms that tetragonal La2O2CO3 and cubic NiO were formed in the
powder at 773 K. Compared with previous works, the NiO reflections are visible, which can
be partly explained by the higher nickel content in the starting material (La/Ni molar ratio
= 1:1.15) [39]. Nevertheless, the NiO reflections are not as pronounced as the lanthanum
oxycarbonate reflections, which indicates a NiO particle size in the nanometer range.

For a detailed analysis of the sol–gel intermediates, the powder was examined using
bright-field TEM (see Figure 5a). The HRTEM micrographs presented in Figure 5b,c of
the selected areas in Figure 5a exhibit the existence of tetragonal La2O2CO3. The lattice
fringes arise from the (002) plane of this oxycarbonate with a distance of 0.62 nm, which
agrees with the value of PDF 00-023-0320. NiO and La2O2CO3 were also detected by
SAED. As seen in Figure 5d, the SAED pattern manifests polycrystalline Debye–Scherer
rings, which belong to the (002), (101) and (110) planes of tetragonal La2O2CO3, and to
the (111), (200) and (220) planes of cubic NiO (PDF 01-071-475). To gain more information
about the composition of the sol–gel intermediates, an EEL spectrum in the low-loss region
(see Figure 5e) of a sample area shown in Figure 5a was recorded, demonstrating the
plasmon region for NiO, ionization edges of Ni-M2,3 at 68 eV, and La-N4,5 in the range of
99–140 eV [52,53]. By comparison with the EEL spectra from other publications and the
EELS atlas from Gatan, the NiO could be successfully identified [52–55].
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Figure 5. Transmission electron microscopy (TEM) characterization of sol–gel intermediates: (a) TEM
bright-field micrograph exhibiting the selected region of the product powder for high-resolution
TEM (HRTEM) and electron-energy-loss (EEL) spectrum; (b,c) HRTEM micrographs of the marked
domains in (a) showing the lattice planes of tetragonal La2O2CO3; (d) SAED polycrystalline ring
pattern (obtained from a circular plane with a diameter of 1.2 µm) revealing the presence of tetragonal
La2O2CO3 and cubic NiO in the intermediates. The Laue indices of La2O2CO3 (PDF 00-023-0320)
and NiO (PDF 01-071-4750) are labeled light blue and orange, respectively; (e) EEL spectrum in the
low-loss region demonstrating the presence of two distinct phases based on La and Ni in the sol–gel
powder. The insets in (e) show the ionization edges of La and Ni, enlarged for better visibility.

3.2. Molten-Flux Synthesis of Plate-like La2NiO4+δ Particles

For the MFS, the finely mixed sol–gel intermediates were combined with solid NaOH
and additional distilled water in a nickel crucible and heated at 673 K for 8 h (see Figure 6a).
The entire process can be separated into four steps, as schemed in Figure 6b–d. In the
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first step, the sol–gel intermediates dissolve in the wet acid NaOH melt, and in the second
step, the diffusion of the free ions (La3+, Ni2+ and CO3

2−) through the molten flux occurs,
resulting in a homogenous reaction mixture. In the next step, the nucleation of the reaction
products takes place, accompanied by crystal growth from the nuclei based on Ostwald
ripening in the last step [23,25].
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The chemical reactions during MFS are given by the following equations [39]:

La2O2CO3 (s) + 2H2O (l) 
 2 La3+ (aq) + 4 OH− (aq) + CO3
2− (aq) (8)

NiO (s) + H2O (l) 
 Ni2+ (aq) + 2 OH− (aq) (9)

2 La3+ (aq) + Ni2+ (aq) + 6 OH− (aq) + CO3
2− (aq) 
 La2NiO4 (s) + 3 H2O (g) + CO2 (g) (10)

By adding water, the NaOH melt becomes more acidic. At 596 K, the salt begins to
melt, and the sol–gel intermediates dissolve in the resulting wet acidic melt according
to Equations (8) and (9). Due to the constant evaporation of water and the release of
CO2 during the MFS at 673 K, the equilibrium reaction is shifted to the product side (see
Equation (10)) so that the target product, LNO, is formed.

The chemical transformations during the MFS in the ambient air and the influence of
the flux on the product formation were studied by TGA. For this, the TGA and DTGA curves
of the sol–gel intermediates were recorded in the presence or absence of NaOH. Figure 7a
displays the thermal decomposition of the sol–gel powder. A weight loss of approximately
30% between 300 K and 650 K was observed after the evaporation of water and the liberation
of residual CO2 and NOx from the SGP. Above 700 K, La2O2CO3 chemically decomposes,
releasing CO2, which leads to a mass loss of about 10%. Finally, LNO is generated from
about 900 K [17]. The addition of NaOH to the crystalline intermediates changes the
course of the chemical reaction, as can be seen in Figure 7b. First, the loss of water and
CO2 takes place in accordance with Equation (10), which is accompanied by a minimal
mass decrease. At 596 K, the melting of NaOH occurs, followed by the product formation
starting at around 673 K. This means that MFS allows for the generation of LNO at a lower
temperature compared to the SGP.

In MFS, the choice of the reaction parameters is essential because they not only
influence the particle growth and/or morphology, but also control the product formation.
Figure 8 summarizes the investigated influence factors on the MFS. While the reaction
conditions highlighted in orange regulate the crystal size and/or shape, the parameters
accentuated in blue are decisive the product generation. The arrows show that increasing
some parameters has a decisive impact on the particle size or product formation. In contrast,
the experimental parameters marked in gray play no role in the product generation or
particle size or shape, but their correct selection contributes to the better control of the MFS
and results in a higher product yield.
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Table 2. Reaction parameters from the previous scientific publication. Data from [39].

Reaction Parameter Description/Value

La/Ni molar ratio in the SGI * 2:1
SGI */NaOH-weight ratio 1:10
NaOH/H2O-weight ratio 1:0.1

Form of NaOH Pellets
Crucible material Al2O3

Reaction temperature 673 K
Reaction time 8 h
Heating rate 10 K/min
Cooling rate -

* SGI: sol–gel intermediates.

The effects of the various reaction parameters on the MFS are explained in more detail
below. Only one parameter varied during the investigations, and all the others remained
constant. The reaction conditions were adopted from past research work and are listed in
Table 2 [39]. The goal of our experiments was to increase the yield of LNO crystals with a
well-defined plate morphology while reducing the number of byproducts.

Form of NaOH: The use of beads instead of pellets, as in the previous work, has been
found to be effective for the following reasons: (i) the beads are of a higher purity (Alfa
Aesar, Kandel, Germany, 99.99%) than the NaOH pellets (Carl Roth, Karlsruhe, Germany,≥
99%); (ii) the beads are smaller (Ø ≤ 1 mm) than the pellets (Ø ≤ 10 mm), and are therefore
more easily and completely dissolved; (iii) the spherical beads do not react as violently
as the other shapes during the MFS, such that the crude product does not spill out of the
crucible. The solid form of the flux does not affect the product formation, size or shape, but
it allows for a better chemical conversion of the educts and maximizes the product yield.

Heating and cooling rates: For other materials obtained via MFS, it was found that
the heating and cooling rates do not affect the product formation, but they can control the
particle growth [22,56]. Analogous to these investigations, the effects of the heating and
cooling processes on the MFS of LNO were studied. Our experiments revealed that the
choice of the heating and cooling rates does not influence the product formation or the
size and shape of the LNO crystals. Hence, we continued to work with a heating rate of
10 K/min and a cooling rate of 2 K/min, as in [39]. Due to the fast heating rate, the educts
and NaOH are brought to the desired reaction temperature in less than one hour, which
allows the MFS to be completed in a shorter time.
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Water amount: Adding water to solid NaOH creates a wet acidic hydroxide melt
(see Equation (1)), which ensures the complete dissolution of the educts. During the MFS,
water vapor is expelled from the system, favoring the product formation by shifting the
equilibrium position to the right side (see Equation (10)). Compared to the synthesis without
additional water, the MFS in the presence of water leads to the production of larger plate-
like LNO particles. Without water, LNO crystals with the dimensions of 3.0 µm × 0.5 µm
(length × thickness) were found, as shown in Figure A2a. At a NaOH/water-mass ratio of
1:0.1, particles of 6.0 µm × 0.7 µm, as in Figure A2b, were obtained. Doubling the water
content (NaOH/water-weight ratio = 1:0.2) resulted in a further increase in the length to
9.0 µm, and in the thickness to 0.8 µm (see Figure A2c). The formation of larger crystals can
be explained by the different nucleation sites and nuclei numbers. The addition of water
allows the reactants to dissolve completely when the NaOH melts. At a certain pH value,
homogeneous nucleation occurs, resulting in the formation of few nuclei for crystal growth,
which favors the formation of larger particles.

Reaction time: The SEM micrographs in Figure A3 display the reaction products of
the MFS obtained after: (a) 6 h; (b) 8 h; (c) 10 h; (d) 12 h; (e) 18 h at 673 K. After 6 h,
many well-defined LNO plates of 5.0 µm × 0.6 µm could already be observed. Increasing
the dwell time to 8 h, 10 h or 12 h was conducive to further but moderate growth, and
individual crystals with dimensions of 6.0 µm × 0.7 µm (8 h), 6.40 µm × 0.72 µm (10 h) and
6.80 µm × 0.74 µm (12 h) were won. Choosing a holding time of 18 h led to the formation
of very large plate-like structures, some of which were composed of smaller particles. The
average length and thickness of the crystals were 13.0 µm and 1.8 µm, respectively. Single
plates were found less frequently, suggesting the involvement of the Ostwald ripening
process during crystal growth [23,25]. Moreover, longer reaction times increase the flux-loss
rate, inducing a higher degree of supersaturation, which benefits particle growth [57].

Crucible material: Crucibles composed of Al2O3, Ni and Zr were used for the investi-
gations. While the metal crucibles were resistant to molten alkali salts, the alumina melting
pot was severely attacked by the NaOH after several syntheses and had to be replaced
by another. The XRD patterns presented in Figure A4 demonstrate that utilizing a metal
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instead of an Al2O3 crucible has no effect on the product formation. LNO forms the main
phase, and La(OH)3 and NiO were found as the secondary phases in all the crucibles. The
precipitation of La(OH)3 can be explained by the reaction of the La3+ ions with the excess
OH− ions, which occurs due to the differences in the solubilities of the reactants. The
presence of Na+ ions from the flux also favors the La(OH)3 formation because Na+ can
replace La3+, and thereby more lanthanum ions are available to fabricate La(OH)3 [39]. The
observation of NiO is due to traces of unreacted nickel oxide from the sol–gel interme-
diates. Only when using the Ni melting pot was the higher-RP-phase LaNiO3 found in
the XRD pattern (see Figure A4b), the formation of which could have been caused by the
involvement of the crucible in the MFS. However, its contribution should be minor, as Ni
as a crucible material remains stable up to 1773 K under the influence of molten NaOH, but
can already partially react with it to generate NiO, Na2O and H2 from 973 K [58–60]. The
SEM micrographs in Figures A3b and A5 show that the plate-shaped LNO particles were
obtained, regardless of the crucible chosen. The particles obtained in the Al2O3 and Ni
melting pots were similar in size: 6.0 µm × 0.7 µm and 5.5 µm × 0.5 µm, respectively. In
contrast, the synthesized plates in the Zr crucible were slightly larger (7.00 µm × 0.72 µm).

Reaction temperature: In general, the reaction temperature to form the desired prod-
uct should be above the melting point of the flux utilized [22,61]. Therefore, molten-flux
syntheses were performed at 673 K, 773 K and 873 K. The XRD patterns of the reaction
products can be seen in Figure A6. Only at 673 K was LNO identified as the main product,
accompanied by a small amount of La(OH)3. Increasing the temperature to 773 K or 873 K
led to an increase in the intensity of the La(OH)3 reflections. In addition, new byproducts
appeared, the reflections of which were assigned to LaNiO3, La2O3 and NiO. The presence
of the oxide La2O3 can be understood as a result of the thermal decomposition of LNO.
NiO may originate from the sol–gel intermediates, or as another decomposition product of
LNO. Due to the presence of NiO, more Ni was available so that the LaNiO3 production
was favored. On the one hand, the SEM micrographs of the product powders, synthesized
at 773 K and 873 K (see Figure A7), display LNO plates of up to 30 µm × to 2 µm. On
the other hand, La(OH)3 particles of up to 70 µm were found, which could be recognized
by their layered hexagonal structure. Temperatures higher than 673 K resulted in larger
LNO plates. However, the secondary-phase formation increased unexpectedly. The SEM
images revealed that La(OH)3 can form even larger structures than LNO, which could pose
an issue for potential applications. The optimal formation temperature of LNO by MFS is
therefore 673 K.

Sol–gel-intermediates/NaOH-weight ratio: The amount of flux is critical to the suc-
cess of the MFS. The salt acts as a solvent and can control the size of the product parti-
cles [62,63]. There must be sufficient flux to fill the interstices of the reactant particles
and adequately cover the reactant surface. A small quantity of salt cannot ensure the
formation of a liquid phase during MFS. Conversely, a high salt mass is not advantageous
because it can lead to the separation of the reactant particles by sedimentation. More-
over, excess melted salt may form lumps that are not as easy to dissolve [64]. To examine
the influence of NaOH on the MFS of LNO, four syntheses were performed using the
reactants/NaOH-weight ratio: (i) 1:2.5; (ii) 1:5; (iii) 1:7.5; (iv) 1:10. The La(OH)3 formation
should be minimized by a small content of NaOH because there are fewer OH− ions in
the melt that can react with the La3+ ions. The XRD patterns in Figure A8 confirm the
presence of LNO, independent of the NaOH amount. It can also be observed that La(OH)3
was obtained in all four cases. However, up to a sol–gel-intermediates/NaOH-weight ratio
of 1:5, the amount of La(OH)3 was moderate. At a ratio of 1:2.5, the reflections from the
LNO were not as sharp, indicating too-small product particles. With higher masses of
NaOH, the presence of La(OH)3 becomes clearer, as the 100 main reflection appears and
the intensities of all the other reflections are more pronounced. As can be seen in the SEM
images in Figures A3b and A9, LNO particles with the desired morphology were won in
all the syntheses. Only at a ratio of 1:2.5 were the LNO plates thin with a rough texture. It
is possible that the NaOH amount was not high enough, and thus only a small amount of



Crystals 2022, 12, 1346 12 of 24

liquid medium was available for the precursor dissolution and crystal growth. The melt
was consumed faster during the MFS due to the constant loss of flux and water, resulting
in the formation of smaller product particles with a less well-defined shape. Regardless
of the NaOH content, La(OH)3 was found on all the SEM micrographs. Consequently, a
sol–gel-intermediate/NaOH-weight ratio of 1:5 was selected for later investigations.

La/Ni molar ratio in sol–gel intermediates: To test the influence of the La/Ni molar
ratio in the sol–gel intermediates on the MFS of LNO, reaction mixtures with La/Ni ratios of
2:1; 1.95:1 and 2:1.15 were used. A smaller La amount in the precursor can be advantageous
because fewer La3+ ions are available to react with the OH− ions from the flux to form
La(OH)3. The lack of La3+ ions can be compensated by the Na+ ions. The doping of the La
site by Na in LNO due to the similar radii of La3+ (116 pm) and Na+ (121 pm) has already
been observed, which can be described by the chemical formula La2−xNaxNiO4+δ (x = 0.05
or 0.10) [65,66]. By using a higher amount of Ni in the precursor, there are also fewer La3+

ions for the formation of La(OH)3, but this may have the disadvantage of increasing the
formation of the Ni-rich phases, such as LaNiO3 or NiO. As explained in the section on the
role of the crucible, a La/Ni molar ratio of 2:1 in the precursor gave LNO as the main phase.
However, La(OH)3 was identified as a minor phase. As can be seen from the XRD pattern
in Figure A10a, a lower amount of La in the sol–gel intermediates reduced the formation
of La(OH)3 partially, but not completely. An increase in the Ni amount in the precursor
also led to less La(OH)3 in the product powder (see Figure A10b). On the contrary, LaNiO3
perovskite was found, the formation of which can be attributed to the increased amount of
Ni used in the precursor. No changes in the morphologies of the resulting LNO plates (see
SEM images in Figures A3b and A11) were detected by varying the La/Ni ratio. In short, a
lower La amount or higher Ni content in the sol–gel intermediates favors the formation of
the main product. Compared with a La/Ni molar ratio of 2:1, the production of La(OH)3
was reduced, which was evident from the weaker reflections in the XRD pattern.

By the proper choice of the La/Ni molar ratio in the precursor, the precursor/NaOH-
weight ratio, and crucible material, the formation of undesirable phases, such as La(OH)3
and LaNiO3, can be specifically decreased so that the main-phase LNO is gained in a high
yield. Our experiments have shown that a La/Ni molar ratio in the sol–gel intermediates
of 2:1.15, a sol–gel-intermediates/NaOH-mass ratio of 1:5 and the use of a nickel crucible
are conducive to the generation of high-purity LNO. In addition, excess water was added
to the reaction mixture in order to produce larger crystals. Replacing a Ni crucible with a
Zr crucible or an Al2O3 crucible resulted in an increasing amount of La(OH)3 in the order
Ni < Zr < Al2O3, but it also led to a slight decrease in the LaNiO3 formation in the order Ni
> Zr > Al2O3, as supported by the XRD. No differences were found in the morphologies
of the LNO particles. La(OH)3 and LaNiO3 were recognized due to their hexagonal and
cubic shapes, respectively (see Figure 9). All the reaction parameters optimized by our
investigations are described in Table 3.

XRD measurements, presented in Figure 10, were performed to determine the reaction
products of the MFS. For a better understanding, the XRD patterns of the powders prepared
under the reaction conditions of the previous publication (see Figure 10a and Table 2) and
present work (see Figure 10b and Table 3) are compared. In both cases, LNO was identified
as the main phase, which is present in the body-centered tetragonal crystal structure of the
K2NiF4 type (space group: I4/mmm). This structure is to be expected at temperatures above
423 K (here, 773 K) in air [14,67]. As shown in Figure 10a, using the reaction parameters
from Table 2 led to the appearance of hexagonal La(OH)3 (space group: P63/m) and cubic
LaNiO3 (space group: Pm3m) as impurities. Traces of cubic NiO (space group: Fm3m)
were also found. By optimizing the reaction conditions, it was possible, in this work, to
completely suppress the formation of La(OH)3, as no further reflections of this product
were observed in the XRD patterns in Figure 10b. However, reflections of LaNiO3 and NiO
were still detected, which can be explained by the high content of Ni used in the sol–gel
intermediates and the possible participation of the Ni crucible in the reaction.
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Figure 9. The choice of reaction conditions is crucial for product formation. The picture shows the
different crucible materials utilized (Al2O3, Zr and Ni), which, together with a La/Ni molar ratio
in the sol–gel intermediates of 1:1.15 and a sol–gel-intermediates/NaOH-weight ratio of 1:5, led to
the formation of LNO as the main phase, as well as La(OH)3 and LaNiO3 as secondary phases, in
different amounts. The morphologies of the different products can be clearly seen from the SEM
micrographs: LNO forms plate-like particles, La(OH)3 is characterized by its hexagonal structure and
LaNiO3 has a cubic shape.

Table 3. Optimized reaction conditions for the MFS of LNO.

Reaction Parameter Description/Value

La/Ni molar ratio in SGI * 2:1.15
SGI */NaOH-weight ratio 1:5
NaOH/H2O-weight ratio 1:0.2

Form of NaOH Beads
Crucible material Ni

Reaction temperature 673 K
Reaction time 8 h
Heating rate 10 K/min
Cooling rate 2 K/min

* SGI: sol–gel intermediates.

The SEM micrographs of the reaction powder, synthesized by MFS under the reaction
conditions of Table 2, are displayed in Figure 11. The LNO crystals possess a plate-like
morphology, with a size of up to 30 µm. The byproduct La(OH)3 was also visible on the
SEM images as large crystals with a length of up to 40 µm due to its layered hexagonal
structure. The La(OH)3 formation should be avoided, as these particles can later interfere,
for example, in the fabrication of LNO membranes by reason of their large size.

As can be perceived from the SEM images presented in Figure 12, the application
of the reaction conditions of this research in the MFS also resulted in the acquisition of
LNO particles, which exhibit a well-defined plate-like shape. The crystals have an average
length and thickness of approximately 9 µm and 2 µm, respectively, and thus an aspect
ratio close to 5. Because neither La(OH)3 nor LaNiO3 crystals were found on the SEM
micrographs, it can be assumed that the molten-flux method using NaOH induces the
formation of high-purity LNO.
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Figure 10. Powder XRD patterns of chemical products, obtained by SGP-based MFS: (a) under
reaction conditions of Table 2, and (b) from this work (see Table 3 for full details on the reaction
parameters). Reflections of the main-product body-centered tetragonal LNO (PDF 01-089-3589) and
the minor phases hexagonal La(OH)3 (PDF 01-079-5398), cubic LaNiO3 (PDF 00-033-0710) and cubic
NiO (PDF 01-071-4750) are indexed. The XRD data are normalized to the 103 reflection of LNO.

Crystals 2022, 12, 1346 14 of 24 
 

 

 
Figure 10. Powder XRD patterns of chemical products, obtained by SGP-based MFS: (a) under reac-
tion conditions of Table 2, and (b) from this work (see Table 3 for full details on the reaction param-
eters). Reflections of the main-product body-centered tetragonal LNO (PDF 01-089-3589) and the 
minor phases hexagonal La(OH)3 (PDF 01-079-5398), cubic LaNiO3 (PDF 00-033-0710) and cubic NiO 
(PDF 01-071-4750) are indexed. The XRD data are normalized to the 103 reflection of LNO. 

The SEM micrographs of the reaction powder, synthesized by MFS under the reac-
tion conditions of Table 2, are displayed in Figure 11. The LNO crystals possess a plate-
like morphology, with a size of up to 30 µm. The byproduct La(OH)3 was also visible on 
the SEM images as large crystals with a length of up to 40 µm due to its layered hexagonal 
structure. The La(OH)3 formation should be avoided, as these particles can later interfere, 
for example, in the fabrication of LNO membranes by reason of their large size. 

 
Figure 11. SEM micrographs of reaction products, obtained via SGP-based MFS under reaction con-
ditions of Table 2: (a,e) main-product LNO with a plate-like morphology and a length up to 30 µm; 
(b) overview of the chemical compounds formed; (c,d) byproduct La(OH)3 characterized by a hex-
agonal layered structure, with a size up to 40 µm. 

As can be perceived from the SEM images presented in Figure 12, the application of 
the reaction conditions of this research in the MFS also resulted in the acquisition of LNO 
particles, which exhibit a well-defined plate-like shape. The crystals have an average 

Figure 11. SEM micrographs of reaction products, obtained via SGP-based MFS under reaction
conditions of Table 2: (a,e) main-product LNO with a plate-like morphology and a length up to
30 µm; (b) overview of the chemical compounds formed; (c,d) byproduct La(OH)3 characterized by a
hexagonal layered structure, with a size up to 40 µm.
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crographs, it can be assumed that the molten-flux method using NaOH induces the for-
mation of high-purity LNO. 

 
Figure 12. (a–e) SEM micrographs of plate-like LNO, gained via SGS-MFS under reaction conditions 
used in this work. See Table 3 for more information on the experiment parameters. The crystals are 
about 10 µm long and 2 µm thick. Therefore, the aspect ratio is approximately 5. To determine the 
length and thickness, 100 particles were analyzed with ImageJ [44]. Figure A12 demonstrates the 
histograms of the length, thickness and aspect-ratio distribution of the LNO particles. 

The chemical composition of one LNO crystal was determined by EDXS. The results 
of this study are reported in Figure 13 and Table 4. As the basis for the EDXS analysis, the 
SEM micrograph in Figure 13a was utilized. The EDXS spectrum in Figure 13b affirms the 
presence of La, Ni and O in the reaction product. As can be seen in Figure 13c–e, the EDXS 
elemental maps demonstrate that the LNO plate is homogeneously composed of La, Ni 
and O. Moreover, the La/Ni ratio was calculated to be close to 2:1, which coincides with 
the stoichiometry of LNO (see Table 4). 

 
Figure 13. EDXS analysis of one LNO crystal, formed via SGS-based MFS using reaction conditions 
of Table 3: (a) SEM micrograph of plate-like LNO as the basis for EDXS investigations; (b) EDXS 
spectrum reveals the presence of La, Ni and O in the crystal; (c–e) EDXS elemental maps of La 

Figure 12. (a–e) SEM micrographs of plate-like LNO, gained via SGS-MFS under reaction conditions
used in this work. See Table 3 for more information on the experiment parameters. The crystals are
about 10 µm long and 2 µm thick. Therefore, the aspect ratio is approximately 5. To determine the
length and thickness, 100 particles were analyzed with ImageJ [44]. Figure A12 demonstrates the
histograms of the length, thickness and aspect-ratio distribution of the LNO particles.

The chemical composition of one LNO crystal was determined by EDXS. The results
of this study are reported in Figure 13 and Table 4. As the basis for the EDXS analysis, the
SEM micrograph in Figure 13a was utilized. The EDXS spectrum in Figure 13b affirms the
presence of La, Ni and O in the reaction product. As can be seen in Figure 13c–e, the EDXS
elemental maps demonstrate that the LNO plate is homogeneously composed of La, Ni
and O. Moreover, the La/Ni ratio was calculated to be close to 2:1, which coincides with
the stoichiometry of LNO (see Table 4).
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Figure 13. EDXS analysis of one LNO crystal, formed via SGS-based MFS using reaction conditions
of Table 3: (a) SEM micrograph of plate-like LNO as the basis for EDXS investigations; (b) EDXS
spectrum reveals the presence of La, Ni and O in the crystal; (c–e) EDXS elemental maps of La
(yellow), Ni (cyan) and O (green) exhibiting homogenous distributions of these elements in the
product powder.
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Table 4. Metal composition of LNO based on EDXS results.

Element Atomic Percent (%) Stoichiometric Ratio 1

La 66.89 ± 0.41 2.02 ± 0.01
Ni 33.11 ± 0.97 1.00 ± 0.03

1 Normalized by atomic percent of Ni.

4. Conclusions

Plate-like LNO was successfully prepared from MFS using NaOH powder as the flux.
The intermediates from a sol–gel process, which were identified as an ultrafine mixture
of La2O2CO3 and NiO, served as the starting material. Compared with the classical SGP,
MFS allows for LNO formation at a lower temperature (starting at 673 K). The influence of
different reaction parameters on the synthesis of LNO was investigated. It was found that
a La/Ni molar ratio in the sol–gel intermediates of 2:1.15, a sol–gel-intermediates/NaOH-
weight ratio of 1:5, the use of a nickel crucible as the reaction vessel and the addition
of excess water are conducive to the production of LNO with well-defined plate-like
morphology and the highest purity. The length and thickness of the particles averaged 9
µm and 2 µm, respectively, corresponding to an aspect ratio of approximately 5. Even larger
crystals can be generated by increasing the reaction time. By choosing these conditions,
the undesired La(OH)3 formation was suppressed. Nevertheless, traces of LaNiO3 and
NiO were still observed, which can be explicated by the increased nickel content in the
precursor and the involvement of the wall and bottom of the Ni crucible. Due to their
plate-like morphology, LNO crystals can be used in promising future applications.
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Figure A3. SEM micrographs exhibiting reaction products of MFS at 673 K after (a) 6 h; (b) 8 h;
(c) 10 h; (d) 12 h; (e) 18 h. (a) After a synthesis time of 6h, LNO crystals with a length of 5.0 µm and
thickness of 0.6 µm were formed. By incrementing the reaction time to (b) 8 h, (c) 10 h or (d) 12 h,
slight increases in the particle size were recorded (6.0 µm × 0.7 µm for 8 h; 6.40 µm × 0.72 µm for
10 h; 6.8 µm × 0.74 µm for 12 h). (e) The reaction time of 18 h resulted in longer LNO crystals that
were 13.0 µm long and 1.8 µm thick.
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Figure A4. XRD patterns exhibiting results of SGS-based MFS in (a) Zr, (b) Ni and (c) Al2O3 crucibles.
Irrespective of the reaction container, tetragonal LNO (PDF 01-089-3589) was obtained as the main
phase, accompanied by the minor-phases hexagonal La(OH)3 (PDF 01-079-5398) and cubic NiO (PDF
01-071-4750). Using a Ni melting pot, the formation of cubic LaNiO3 perovskite (PDF 00-033-0710)
was also observed. The XRD data are normalized to the 103 reflection of LNO.
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Figure A5. SEM micrographs showing plate-like crystals obtained in (a) Zr and (b) Ni crucibles by
MFS. For comparison, see SEM micrograph in A3b of LNO plates, produced in an Al2O3 melting pot.
The particle dimensions are 6.0 µm × 0.7 µm (Al2O3 crucible), 5.5 µm × 0.5 µm (Ni crucible) and
7.00 µm × 0.72 µm (Zr crucible).
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