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“It is a capital mistake to theorize before one has data. Insensibly one begins to twist
facts to suit theories, instead of theories to suit facts”

— Arthur Conan Doyle (Sherlock Holmes)
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Abstract

Link prediction (LP) aims to tackle the challenge of predicting new facts by
reasoning over a knowledge graph (KG). Di↵erent machine learning architectures
have been proposed to solve the task of LP, several of them competing for bet-
ter performance on a few de-facto benchmarks. The problem of this thesis is the
characterization of LP datasets regarding their structural bias properties and their
e↵ects on attained performance results. We provide a domain-agnostic framework
that assesses the network topology, test leakage bias and sample selection bias in
LP datasets. The framework includes SPARQL queries that can be reused in the
explorative data analysis of KGs for uncovering unusual patterns. We finally apply
our framework to characterize 7 common benchmarks used for assessing the task
of LP. In conducted experiments, we use a trained TransE model to show how the
two bias types a↵ect prediction results. Our analysis shows problematic patterns in
most of the benchmark datasets. Especially critical are the findings regarding the
state-of-the-art benchmarks FB15k-237, WN18RR and YAGO3-10.

Keywords: Link Prediction, Benchmarks, Knowledge Graphs, Sample Selection Bias,
Test Leakage
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Zusammenfassung

Die Herausforderung in Link-Vorhersagen (LV) liegt darin, neue Fakten aus einem
existierendenWissensgraphen abzuleiten. Verschiedene Architekturen im Bereich des
maschinellen Lernens wurden vorgeschlagen, um die Aufgabe von LV zu lösen. Viele
der Herangehensweisen konkurrieren dabei bezüglich ihrer Leistungsfähigkeit auf
wenigen De-facto-Benchmarks. Das Ziel dieser Arbeit besteht darin, LV-Datensätze
zu charakterisieren bezüglich ihrer strukturellen Verzerrungseigenschaften, und deren
Folgen auf erreichte Leistungswerte. Wir stellen ein domänen-agnostisches Frame-
work zur Verfügung, das die Netzwerktopologie, Informationslecks und Stichprobe-
nauswahlverzerrungen in LV Datensätzen bewertet. Das Framework umfasst SPARQL-
Abfragen, die in der explorativen Datenanalyse von Wissensgraphen zur Aufdeckung
ungewöhnlicher Muster wiederverwendet werden können. Schlussendlich nutzen wir
unser Framework, um 7 häufig verwendete Benchmarks, die die Aufgabe von LV
bewerten, zu charakterisieren. In durchgeführten Experimenten verwenden wir ein
trainiertes TransE-Modell, um zu zeigen, wie die beiden Verzerrungsarten die Vorher-
sageergebnisse beeinflussen können. Unsere Analysen zeigen problematische Muster
in den meisten der Benchmark-Datensätze. Die Ergebnisse bezüglich der aktuellsten
Benchmarks FB15k-237, WN18RR und YAGO3-10 sind dabei besonders besorgnis-
erregend.

Stichwörter: Link-Vorhersagen, Benchmarks, Wissensgraphen, Stichprobenverzer-
rung, Informationslecks
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Chapter 1

Introduction

In the field of data management and analytics, knowledge graphs (KGs) have emerged
as a powerful asset for representing structured and semantically rich data, such as
biomedical data [48], business intelligence [18] or general facts [62][3][9]. Due to their
context-aware representations, KGs can improve explainability and transparency in
machine learning (ML) systems by providing human-readable interpretations of ML
models [44], which has been of particular research interest in recent years [59]. Promi-
nent openly available KGs include DBpedia [3], Wikidata [62], Freebase [9], Word-
net [35] and YAGO [54]. Likewise, companies have been adopting KGs in domains
like search, question-answering, or recommendation systems with notable KGs being
Google KG [53] or Microsoft Satori [43]. Although KGs can contain billions of facts,
they tend to su↵er from incompleteness, a problem for which di↵erent refinement
methods have been proposed [39]. A popular way to address this problem is through
the task of link prediction (LP) by inferring new facts from given knowledge. In
the past years, many architectures have been proposed to perform the task of LP
[11][66][32][68][61], each competing for better performance on the same few de-facto
benchmarks datasets like FB15k [11], FB15k-237 [60], WN18 [11], WN18RR [10]
and YAGO3-10 [33]. Di↵erent studies, however, have been questioning the e↵ec-
tiveness of these benchmarks [1][46], thus casting doubt on obtained performance
results. The variety of biases, i.e., unwanted factors that influence prediction results,
is immense, starting from irregularities in the training data and ending in the way
performance metrics are calculated. In this work, we focus on the assessment of
biases in benchmark datasets used for LP tasks over KGs, and how they influence
prediction results.
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Chapter 1. Introduction

1.1 Motivating Example

Figure 1.1: Motivating example. The relation language in the Wikidata5M benchmark
dataset has the overrepresented entity English in the benchmark’s KG (A). This imbal-
ance propagates into the learned model in the embeddings (B) as well as the benchmark
questions on which performance is assessed (C). The consequence is a good performance
result on a benchmark that does not discourage overfitting behavior.

We motivate our work by illustrating how a structural imbalance found in the
Wikidata5M dataset can lead to overfitting behavior and artificially inflate perfor-
mance results (see Figure 1.1). A structural imbalance, here, refers to an unequal dis-
tribution of samples among entities or relations in a dataset. We, therefore, present
a case of Sample Selection Bias.

First, the imbalance can be observed in the relation language (P407), which is
used in Wikidata to describe the language of names or creative works, such as books,
shows or songs [67]. The language relation often refers to the entity English. In fact,
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1.2. Contributions

68.9% of all existing names or creative works in Wikidata5M are in English (amongst
potential other languages). Figure 1.1 A shows the overrepresented entity English in
the KG, constituted by the benchmark dataset, amongst less frequently mentioned
languages like German or French. The imbalance is then propagated into the training
graph (see Figure 1.1 B). This can cause a situation in the embeddings where English
is becoming the go-to prediction at the cost of neglecting other plausible options like
German or French. Since the validation and test set also stem from the same biased
KG, the benchmark questions used for evaluating the performance of the tested
model also tend to have English as a correct answer (see Figure 1.1 C). This results
in inflated performances in the evaluation process, where the benchmark is actually
encouraging potential overfitting behavior. Even a simple model that adheres to such
overrepresentation by only predicting English would reach good performance results
in this particular instance.

1.2 Contributions

This thesis tries to shed light on current benchmark practices for the task of LP by
deconstructing the factors that influence reported performance results. The main
contributions can be summarized as follows:

• A domain-agnostic framework to characterize LP datasets.

• Reusable SPARQL queries that uncover imbalances in KGs.

• A thorough analysis of the influence of bias patterns on prediction results re-
vealing insights on current benchmark practices.

1.3 Structure of the Book

The thesis is structured as follows. Chapter 2 explains preliminary background
concepts regarding KGs and LP that will be taken up again in later chapters. Chapter
3 addresses related work and provides more context for this study. Chapter 4 deals
with the approach of our study and introduces a framework for characterizing LP
datasets. Chapter 5 presents the framework implementation and lists implementation
details for conducted experiments. Chapter 6 evaluates the analysis of seven di↵erent
benchmarks. Finally, concluding remarks are made in Chapter 7 with an outlook for
future work.
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Chapter 2

Background

This chapter introduces the main topics needed to understand the development of
this thesis.

2.1 Knowledge Graphs and RDF

The idea behind the Semantic Web or Web 3.0, as first described by the inventor
of the internet Berners-Lee, is to make the available data on the internet machine-
readable [7]. Since then, many e↵orts have been made to represent knowledge in
standardized ways to enable intercommunication between domains by both humans
and machines [40]. A knowledge graph (KG) can be seen as a data graph that is
used to gather and communicate knowledge about the real world [22]. For our use
case, we define a KG as a labeled directed graph with K = (E ,R,G): E is a set
of node entities; R are the labels that describe a relation connecting two or more
entities; G ✓ E ⇥ R ⇥ E is a set of facts. Each fact can be represented as a triple
hs, p, oi consisting of a subject s, a predicate p and an object o. For instance, we can
represent former chess world champion Magnus Carlsen’s nationality with the triple
hMagnusCarlsen, hasNationality,Norwegiani. A typical framework to describe
such statements inside a KG is the Resource Description Framework (RDF). RDF
is a standardized data model recommended by W3C that consists of resources that
can either be classes, instances, or properties. They are uniquely referenced by an
URI or represented by a literal [29]. Incorporating web-based protocols like XML,
HTTP, and JSON, RDF facilitates the representation of factual knowledge through
triples consisting of a subject, object property (relation), and object [29].

4



2.2. RML and SPARQL

2.2 RML and SPARQL

To produce a KG, the RDF mapping language RML [14] can be used to transform
data sources from structured formats like CSV and JSON into a list of RDF triples.
The generated RDF triples combined, then, constitute an RDF-conform knowledge
graph. The mapping rules dictate how the source data is mapped to RDF data and
is specified by one or more triples maps. Each triples map consists of a Logical Source
(input data), a Subject Map linking the subject of generated triples to a column or
section in the source data, and zero or more Predicate-Object Maps, a function that
creates the predicate-object pairs for each record of a logical source [14]. Once triples
are mapped and an RDF graph is correctly set up, the SPARQL [41] query language
can be used for analyzing the graph and for extracting meaningful information.

2.3 The Link Prediction Task

In network theory, link prediction (LP) has traditionally been defined as the task
of predicting edges between nodes in a graph [36]. Examples of such edges include
friendships of users in a social network [31] or drug-target interactions in a pharma-
cological network [38]. Applied over knowledge graphs, LP addresses the challenge
of incompleteness in a KG by inferring new facts from initial existing knowledge [47].
Other use cases of LP include question-answering [28] or recommendation systems
[30]. In general, an LP model is trained with the aim of providing a plausibility score
� for a given fact. The plausibility score can be seen as a measure for displaying the
truthiness of a triple. In the case of tail predictions, the model tries to complete the
partially observed triple hh, r, ?i by returning the corresponding tail entity t which
maximizes � for the incomplete triple:

t = argmax
e2E

�(h, r, e)

For training models that are capable of predicting � for unseen facts, most state-
of-the-art LP methods first convert all entities and relations into low-dimensional
vectors as an intermediate step [47], making it easier to apply optimization tech-
niques that require mathematical operations like matrix factorization or other vector
arithmetic. The learned vector representations of entities and relations are also
known as embeddings. Idealistically, learned embeddings preserve the structure of
information between entities connected through relations [11], enabling simple ac-
cess to information. For instance, the capital of France could be retrieved using the
following operation: vector(”France”)�vector(”isCapitalOf”) ⇡ vector(”Paris”).

5



Chapter 2. Background

In recent years, however, a novel paradigm of LP called inductive learning has
been under development [17]. It does not rely on learned entity representations, but
instead, reasons over a training subgraph to learn meaningful structures. Learned
features are then used to perform inference on a new inference graph with unseen
entities [17], as opposed to the classical way of LP, transductive learning, where
entities during inference must have been visible during training time for learning
their representations (see Figure 2.1).

Figure 2.1: Inductive vs Transductive Learning. Visualization from [17]. In trans-
ductive LP, the training graph contains all entities which will be used for link predictions in
the inference phase (test/validation predictions). In inductive LP, however, a new induc-
tive inference graph containing new unseen entities is created. The LP model now needs to
reason over the inference graph to make meaningful link predictions between entities that
were not previously visible in the training data.

2.3.1 Transductive Learning

Transductive learning methods use di↵erent techniques to learn the right vector rep-
resentations for entities and relations. However, they can be classified into three main
families of approaches [47], all of which optimize embeddings with their own defined
plausibility function � to determine what good representations are: (1) Tensor de-
composition, (2) Geometric approaches and (3) Neural network-based approaches.

6



2.3. The Link Prediction Task

Tensor Decomposition

A tensor can be seen as a multi-dimensional array of order n [24], that, in the
context of machine learning, usually holds observed data like a user feedback matrix
for movies in recommender systems [56]. The idea behind tensor decomposition,
analogously to the technique of matrix factorization defined for the 2D space, is to
approximate embeddings for the tensor’s components such that the matrix product
of all components results in the original tensor [50], where the embeddings can be
consequently used to predict unseen compositions of the components. Link prediction
approaches that use tensor decomposition define the tensor as a 3D adjacency ”cube”
containing entries Aijk, where i, j 2 {1, 2, ..., n} denote the indices of entities in
E = {e1, e2, ..., en} and k 2 {1, 2, ...,m} the index of a relation in R = {r1, r2, ..., rm},
with Aijk = 1 for observed facts. Due to the incompleteness of the KG, all non-
existing fact triples can be either seen as both true or false (Open world assumption)
or false (Closed world assumption), and it depends on the implementation which
underlying assumption model to use for handling unobserved facts. The general goal
is to optimize the embeddings in the component matrices E for entities and R for
relations such that when combined with matrix multiplication they approximate A.
For example, the popular LP framework RESCAL [64] in this family tries to optimize
the embeddings as follows:

A ⇡ ERET (1)

The transposed entity matrix ET is used to describe tail objects, as head and tail
entities have the same embeddings. Other models like SimpIE [27] take a di↵erent
approach and incorporate two separate embeddings for every entity depending on
its usage as a head or tail entity. Given head and tail embeddings h, r 2 Rd and a
relation embedding r 2 Rd⇥d, models in this family of approaches that use a bilinear
scoring function can be described with the plausibility formula [47]:

�(h, r, t) = h⇥ r ⇥ t (2)

where ⇥ symbolizes a matrix multiplication. Other models in this approach family
include TuckER [4], DistMult [68] and ComplEx [61].

Geometric Approaches

Models in this category consider relations as geometric transformations on entities
in the embedding space [47]. In an ideal scenario, a relation r is optimized such
that it can be used to transform any of its head entity vectors h to the corre-
sponding tail entity vectors t and vice versa for any true fact hh, r, ti. For the

7



Chapter 2. Background

cases where the transformation on h does not result in the exact vector for t, a
distance function � is able to quantify the resulting deviation and is used to deter-
mine the plausibility � of a prediction. A popular geometric model that interprets
relations as simple translations in the latent space is TransE [11], which aims to
approximate the embeddings so that h + r ⇡ t, or e.g. using the previous ex-
ample: vector(”Berlin”) + vector(”isCapitalOf”) ⇡ vector(”Germany”). Since
experiments in the past suggest that TransE does not handle well one-to-many and
many-to-many relationships [66], newer versions of the translational model have been
developed. TransH [66], for instance, enables di↵erent entity representations in a hy-
perplane depending on the relational context. TransR [32] uses a similar idea and
captures di↵erent aspects of a relation by distinguishing between entity space and
relation spaces. Apart from linear transformations, some models like TorusE [15] or
RotatE [55] integrate rotational-like transformations to optimize embeddings. All in
all, the scoring function for approaches in this family can be generalized as [47]:

�(h, r, t) = �(⌧(h, r), t) (3)

where ⌧ is the transformation applied on the head h using relation r. For TransE, a
negative distance scoring function is used:

�(h, r, t) = �kh+ r � tk. (4)

Neural Network-based Approaches

LPmethods in this family of approaches are not confined to the transductive paradigm,
as some architectures only use entity embeddings to complement learned patterns
[57]. In neural network-based LP approaches the model learns parameters like
weights and biases a↵ecting the neuron connections between layers and the model’s
capability to learn meaningful patterns from the input data [47]. Calculating the
plausibility function for a triple is more complex and costly compared to translation-
based or tensor-based LP methods. ConvE [13], for example, first concatenates head
entity and relation embeddings making up the input layer for 2D convolutional lay-
ers on which filters are applied. The result of that layer is a feature map that is
reshaped and transformed. In the end, the output is matched it with the tail entity
embeddings to generate a plausibility score for a given triple [13].

2.3.2 Inductive Learning

As the name suggests, LP architectures using the inductive paradigm need to be able
to generalize rules and complex structural patterns of relations for making predictions

8



2.4. LP Datasets

about unseen entities - either explicitly or implicitly. In the explicit case, logical rules
(horn clauses) are mined from the KG using a probabilistic approach. An example
of such a rule would be:

parent(A,B) ^ child(B,C) =) grandparent(A,C) (5)

To extract such horn clauses from KGs a rule-mining tool like AMIE [16] can be
used. Implicit approaches can encode these logical rules as well [57] but are usually
additionally supported by other features. For instance, the LP framework GraIL [57]
uses a graph neural network-based approach by learning local paths between nodes
to make deductions about the semantical structure of a relation.

2.4 LP Datasets

An LP dataset is usually a set of triples G that is split into subsets for the various
steps in the LP pipeline. Every triple in the dataset is either assigned to a train-
ing set Gtrain, a validation set Gvalid or a test set Gtest. Triples in Gtrain are used
to train a model by learning from structures and patterns found in the sampled
KG. Hyperparameters, e.g. the embedding dimension, are optimized using facts in
Gvalid. The validation facts are evaluated to determine the best-performing hyper-
parameter configuration. Finally, facts in Gtest are used to estimate the prediction
performance of the final learned model on unseen data. In general, there are two
di↵erent approaches to setting up the split between training, validation, and test
data: The transductive setup and the inductive setup. In the more common trans-
ductive setup, all entities that occur in the validation and test subset have already
been seen in the training data. In the inductive setup, instead of using the same
graph for training and inference, a separate inference graph is created with either
unseen entities (fully-inductive) or both seen and unseen entities (semi-inductive).

2.5 LP Evaluation Metrics

The most common method to evaluate an LP model is the entity ranking protocol,
which ranks the answers to specific questions derived from test triples [65]. For every
test triple hh, r, ti 2 Gtest, the model to be evaluated is faced with two questions.
First, what head answers fulfill the incomplete triple h?, r, ti. Second, what are
possible tail answers for the triples of the form hh, r, ?i. Based on the plausibility
scores � that the model generates for each possible answer, rankings are calculated
for both the missing head and tail entity. The idea behind this approach is that

9



Chapter 2. Background

good-performing models should be able to distinguish correct answers from wrong
ones in these question scenarios. Sometimes a question has multiple correct answers
and it depends on the setting at hand whether to consider them when calculating
the corresponding ranking (filtered setting) or not (raw setting). In the raw setting,
a valid head or tail answer that is not the one included in the test fact at hand is
considered a mistake and therefore competes with the expected answer in the ranking
computation. For example, if a person speaks the three languages English, German,
and Spanish and the test triple sees Spanish as the correct answer, it might end up
in the third rank simply because English and German had higher plausibility scores.
Let hh, r, ti be a test fact, the raw ranking rt for the expected tail prediction t is
computed as [47]:

rt = |{e 2 E \ {t} : �(h, r, e) > �(h, r, t)}|+ 1 (6)

In the filtered setting, a valid head or tail answer outside of the test fact is not
considered a mistake and is skipped during ranking computation. Let hh, r, ti be a
test fact, the filtered ranking rt for the expected tail prediction t is computed as [47]:

rt = |{e 2 E \ {t} : �(h, r, e) > �(h, r, t) ^ hh, r, ei /2 G}|+ 1 (7)

The ranks rh for head predictions can be computed analogously. It can also be
noted that di↵erent tie policies exist to handle the edge case when two entities have
the same plausibility score and a rank needs to be resolved [47]. Once the rank-
ings Q have been computed on the basis of test triples, the following global metrics
are obtained to give an estimate of the overall performance across all test predictions.

Mean Rank (MR). It is the average rank and can obtain values in the range
of 1 to |E|:

MR =
1

|Q|
X

q2Q

q (8)

The lower it is, the better the model results are. Since it is very prone to outliers,
researchers are resorting to the Mean Reciprocal Rank instead [47].

Mean Reciprocal Rank (MRR). It is the average inverse rank and can obtain
values in the range of 0 to 1:

MRR =
1

|Q|
X

q2Q

1

q
(9)
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2.5. LP Evaluation Metrics

The higher it is, the better the model result is.

Hits@K or H@K. It is the portion of test predictions that have an equal or smaller
ranking than a defined threshold K:

H@K =
|{q 2 Q : q  K}|

|Q| (10)

Commonly used values for K are 1, 3, 5, and 10. The higher the H@K metric is, the
better the model result is.
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Chapter 3

Related Work

The methodology by which LP models attain specific levels of performance still re-
mains ambiguous to a certain extent, but previous work tried to shed some light on
current LP benchmarking practices e.g. by questioning the use of common evalu-
ation metrics [65] or analyzing the benchmark datasets for irregular patterns that
may artificially a↵ect performance results [45]. Studies that report problems in LP
benchmark datasets, however, often only focus on a few irregularities in isolation [60]
[1] and do not approach the investigation of LP benchmarks in a holistic manner,
often either neglecting the data’s network overall topology or important structural
properties that could explain prediction results.

Toutanova and Chen [60] are the first to report test leakage issues caused by
near-duplicate and inverse relations in the datasets FB15k and WN18, and are able
to outrank embedding-based LP models with a simple observed feature model based
on only direct links between entities. As a consequence, they constructed the more
challenging dataset FB15k-237 (original name: FB15kSelected).

Dettmers follows up on this behavior when introducing the LP model ConvE [13]
by creating the more di�cult dataset WN18RR after observing increased perfor-
mance results for FB15k and WN18 on a simple rule-based model, which capitalizes
on inverse relations. He also tries to make the case that LP models learning embed-
dings with more than one feature layer like ConvE have an advantage over ”shallow”
models like DistMult. The hypothesis is supported by explaining the di↵erence in
model performance with the arbitrary occurrence of high in-degree entities. The
average PageRank of a dataset’s network is used as an additional explanatory fac-
tor. Making conclusions based on global evaluation measures like H@K or MRR is,
although common practice, to be seen as critical, as prediction results depend on
countless factors and even small modifications made in datasets can break existing
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graph structures [47] leading to unexpected behavior.
Another large contributing factor to performance outcome are hyperparameters.

In their study, Kadlec et al. prove that DistMult can reach state-of-the-art per-
formance on FB15k and WN18 simply by properly tuning hyperparameters [25],
therefore additionally casting doubts on reported metrics. It also raises the question
of whether new LP architectures are necessary or if a more extensive fine-tuning of
existing models is su�cient. We are not aware of any study that reproduces such
behavior on more challenging datasets like FB15k-237 and WN18RR.

Rossi and Matinata [46] question the e↵ectiveness of formulated benchmark datasets
to evaluate an LP model’s capability to learn relations. They find out that the
existing skew in the distribution of entities towards high-degree entities can lead
to overfitting behavior, thus artificially boosting performance results, which is not
highlighted by current global metrics in use for LP tasks [46].

Akrami et al. [1] study four types of data redundancy in LP benchmarks and
identify Cartesian Product Relations as a redundancy pattern that occurs in both
FB15k and FB15k-237 as well as near-duplicate relations in YAGO3-10. They use
AMIE in their experiments and observe that a simple rule-based model can com-
pete with other LP models, even on the more challenging datasets FB15k-237 and
WN18RR. In their bias study, Rossi et al. define three types of sample selection
bias, that is unrealistic patterns in the dataset, and notice that skipping these bias-
a↵ected triples from the test set leads to a drop in overall performance. Although
not explicitly mentioned, the defined types of patterns can be attributed to already
covered imbalances in previous work like entities with high relation-specific in-degree
[13], Cartesian Product Relations [1] or near-duplicate relations [60].

Pujara et al. [42] provide a new perspective on LP results with their assessment
of KG properties like sparsity and diversity. They conclude that KG embedding
methods perform worse on sparse and unreliable data, especially on KGs extracted
from text.

In their benchmark critique, Wang et al. [65] examine how the commonly used
entity ranking protocol is rather suited for the task of question answering and fails
to properly evaluate a model’s performance to perform knowledge base completion
tasks, i.e. discovering new facts with provided knowledge and avoiding adding non-
sensical triples. The bias lies in the fact that the entity ranking protocol only consid-
ers ”positive” facts, which are known to be true, therefore not evaluating a model’s
performance to penalize nonsensical triples or previously unknown facts. To mitigate
such a biased evaluation procedure, they introduce a new pair ranking protocol, aim-
ing to evaluate the task of knowledge base completion by ranking a test triple against
all possible combinations of entity pairs, regardless of the test triple’s relation.

13



Chapter 4

Approach

Over time several benchmark datasets for LP tasks have emerged, but only a portion
of them coupled with a few standard LP evaluation metrics like H@K and MRR are
considered de facto benchmarking standards in assessing the task of link prediction.
However, it is still unclear what aspects of LP the benchmarks are actually testing for,
making it hard to help explain why models achieve certain performances on these
benchmarks. Previous studies have reported the problem of test leakage [60] and
other unrealistic patterns [46] within LP benchmark datasets. By adhering to such
observable irregularities (e.g. redundant information through duplicate relations)
tested LP models are enabled to achieve artificially high performances [47] [13]. This
leads to the question of how severe the problem of biased predictions is across di↵erent
benchmark datasets. To investigate this question our approach is to define a new
analytical framework with which we can characterize any LP dataset.

4.1 Problem Statement

Given an LP dataset G, its splits Gtrain, Gvalid, Gtest, and its KG representation K we
tackle the problem of characterizing bias aspects of G regarding link prediction tasks
over K. We are interested in finding out the structural attributes of LP datasets that
have the potential to influence prediction results.

4.2 Proposed Framework

We propose a new analytical framework for characterizing bias in LP datasets. It is
domain-agnostic and can be used to improve the explainability of prediction results
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4.2. Proposed Framework

that are produced by the datasets.

Figure 4.1 depicts the architecture of our proposed approach. Assessing LP
datasets for bias is a two-fold process consisting of a Descriptive Analysis and Pre-
diction Analysis.

Figure 4.1: Approach. Our approach to characterizing LP datasets using our analytical
framework consists of two steps (A) and (B). In the descriptive analysis (A), the pipeline
first receives the KG which is implied by our LP dataset as an input. Then a general
network analysis is performed regarding the measures of connectivity and information
density. In the final step of the descriptive analysis, we analyze the KG for bias patterns
regarding test leakage and sample selection. In the prediction analysis (B), we assess
the influence of previously identified biases. First, correct predictions in the test set are
identified. The correct predictions are then bucketed into di↵erent bias type categories to
see how the distribution changes compared to our preliminary input analysis.
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Chapter 4. Approach

4.3 Descriptive Analysis

Figure 4.1A shows the components that are required to describe G on an input level.
First, we perform a general network analysis. This provides us with an estimation
of how well link predictions over K perform. A previous study has shown that KG
embedding methods may not perform well on sparse graphs with low information
density for either relations or entities [42]. Similarly, a training graph that is not
well connected may make link prediction tasks more challenging. LP is even made
impossible if we consider the extreme case of a completely unconnected graph without
any edge information between entities. Since connectivity and information density
contribute to the potential of KG embedding approaches to learning meaningful
relations, we will compare these two properties for K.

Once the overall network topology is established, we look into local network
patterns and try to identify triples that are prone to defined bias types. In our
work, we consider the two bias types Test Leakage Bias and Sample Selection Bias.
For every bias type, di↵erent metrics with varying thresholds can be defined to
determine if a triple is prone to a particular bias pattern. For example, to determine
if a triple might be leaked in the test set due to a near-duplicate relation, the bias
metric of near-duplicate relations is introduced for the bias type test leakage. Finally,
each metric is transformed into a query to retrieve information on how a↵ected G
is concerning di↵erent defined bias patterns. It is important to recognize that our
proposed framework does not operate within the limitations of the biases we have
specified. This implies that the following measures proposed by the framework are
flexible and capable of being augmented or extended beyond their current boundaries.

4.3.1 General Network Analysis

In this section, we explore commonly used measures and techniques used in network
analysis that can act as indicators for the density and connectivity of the network
graphs formed by triples in the datasets.

Connectivity

A graph is said to be connected if there is a path of edges between any pair of nodes
in the graph, else we call the graph disconnected. In literature, the connectivity of
a graph refers to the minimum number of nodes or edges that if removed disconnect
the graph [58]. The following concepts can provide estimates of how well-connected
a graph is.
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4.3. Descriptive Analysis

Connected components. The connectedness of a graph is a necessary condition
for connectivity. If a graph G = (V,E) is not connected, we can partition its node set
V into partitions V1, V2, ..., Vn such that the nodes in each partition form a subgraph
in which no node of Vi is connected to another node in Vj with i 6= j [58]. These
subgraphs are also known as connected components. In our analysis for connectivity,
we consider every edge between nodes as undirected to determine which subset of
nodes are completely disconnected and do not qualify as useful information for LP
models. In other words, we consider weakly connected components in a directed
graph for determining the property of connectedness. It is also worth noting that
in a single connected component every node u is reachable to every other node v,
meaning a path of edges exists between u and v.

Community structure. In graph theory, communities describe subsets of nodes
that are more densely connected to each other than to nodes of another subset [19].
For extracting the community structure of a graph, we use the Louvain Community
Detection Algorithm, which optimizes detected communities for modularity. Mod-
ularity is a scalar value between -1 and 1 that measures the density of connections
within a community compared to the connections it shares with other communities
[8]. In contrast to components, communities can share connections with other subsets
of nodes, meaning that a connected component can consist of more than one com-
munity. As a consequence, a graph tends to have more communities than connected
components, allowing for a more fine-grained perspective on the information-dense
subgraphs that provide the playground for learning useful patterns for link predic-
tion.

PageRank. The PageRank Algorithm was originally designed by Page et. al to
rank web pages based on their importance in the internet’s link structure [37]. The
simplified PageRank PR for a given page u can be recursively expressed as:

PR(u) =
X

v2Bu

PR(v)

L(v)
, (11)

where the PageRank value for u is dependent on the PageRank value of every page
v that it receives links from divided by the number of outgoing links L(v) from page
v. The idea is to give pages with more incoming links and better link quality higher
PageRank values. Although PageRank was used in the context of search engines,
its broader application in network analysis can shed light on the connectivity of a
graph. For example, networks can show di↵erences in the number of important nodes
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Chapter 4. Approach

compared to insignificant ones with fewer links. In the task of LP, the PageRank
values of two nodes can also be used intentionally or unintentionally as a heuristic
to determine if a link exists between them or not, as more important nodes are more
likely to connect with other nodes.

Density vs Sparsity

As opposed to a dense graph where large portions of nodes share edges with many
other nodes, a graph is considered sparse if the number of edges it contains is low
compared to the maximum number of edges (considering an unweighted graph where
every node shares at most one edge with another node). We define the degree of a
node as well as the frequency and diversity of edges to determine the information
density for nodes and relations respectively. The metrics can indicate a lack of
information, a structural bias potentially a↵ecting the LP models that learn from
such graphs.

Node Degree. The degree of a node refers to the number of edges it has and can
be split up into in-degree (number of incoming links) and out-degree (number of
outgoing links), depending on if an entity is seen in the tail of a triple or the head.
A sparse graph will usually have a lot of low-degree nodes while more dense graphs
will have a lot of high-degree nodes. Analyzing the degree distribution of the graph
can provide insights into what entities might be overrepresented as they carry more
information than others. We will use the average and median degrees of entities as
one measure for node information density.

Relation Frequency and Diversity. Di↵erent relationship types are mentioned
more or less frequently in triples. To make sense of what relationship types get the
most mentions in the triples of a dataset, we consider a relation’s frequency RF as
the number of mentions in fact triples for a given relation. Likewise, we consider the
diversity of relationship types RD for a given entity, that is, the number of distinct
relationships where the entity either occurs in the head or the tail of a triple.

4.3.2 Test Leakage Bias

In the field of ML, leakage arises when the model at hand uses information in the
training process that would not have been anticipated during prediction time, which
often leads to overfitting behavior and an overestimation of the model’s capability
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4.3. Descriptive Analysis

[26]. Test leakage, in particular, occurs when information in the training set unex-
pectedly leaks into the test set, causing biased evaluations of a model’s performance.
The following connectivity patterns commonly found in KGs enable such test leakage
bias due to their nature of propagating redundant information.

Near-duplicate Relations

Two relations are considered duplicates of one another if they connect the same pairs
of head and tail entities. We consider a relation r to be a near-duplicate of another
relation s based on their similarity calculated by the Jaccard index J of the two
relations if:

J(r, s) =
|R \ S|
|R [ S| =

|R \ S|
|R|+ |S|� |R \ S| > 0.5, (12)

where R = {hh, r, ti : hh, r, ti 2 Gtrain}, S = {hh, s, ti : hh, s, ti 2 Gtrain} and r 6= s.

Note that J(r, s) = J(s, r).

Near-inverse Relations

Likewise, a relation r can be an inverse of another relation s if r sees the same entity
pairs as s but with reversed head and tail placement, e.g. the relation isParentOf
is an inverse of isChildOf. We consider r a near-inverse of a relation s analogously
based on its inverse Jaccard index J 0 if:

J 0(r, s) =
|R \ S 0|
|R [ S 0| =

|R \ S 0|
|R|+ |R0|� |R \ S 0| > 0.5, (13)

where R = {hh, r, ti : hh, r, ti 2 Gtrain}, S 0 = {ht, s, hi : hh, s, ti 2 Gtrain} and r 6= s.

Near-symmetric Relations

A symmetric relation is a relation r between two entities where if entity a is related
to entity b by r, then entity b is also connected to entity a by the same relation r. For
example, in a KG representing people and their family relationships, the isSiblingOf
relation is a symmetric relation. If Andrew is a sibling of Tristan, then Tristan is
also a sibling of Andrew. Formally, we consider r a near-symmetric relation if:

|{hh, r, ti : hh, r, ti 2 Gtrain ^ ht, r, hi 2 Gtrain}|
|{hh, r, ti : hh, r, ti 2 Gtrain}|

> 0.75. (14)
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4.3.3 Sample Selection Bias

Sample selection bias [21] occurs when the training data is imbalanced in the sense
that its distribution of information cannot be assumed for future predictions. In case
of erroneous assumptions due to a skew in the distribution of entities, relations or
specific combinations between them, LP models may be prone to overfitting behavior
[46] and, similar to test leakage behavior, cause an overestimation of its performance
when trained on a benchmark dataset.

High-degree Entities

High-degree entities are entities that have a relatively high number of mentions in ei-
ther the head or the tail of triples compared to other entities. It is naturally expected
that not all entities have the same degree. However, the existence of high-degree enti-
ties can become problematic in the evaluation step. If a model optimizes plausibility
scores towards a few high-degree entities and those entities are also overrepresented
in the test set, then it becomes easy for the LP model to reach good performance
scores, as high-degree entities become go-to answers to test questions and low-degree
entities are neglected.

Relation-specific Imbalances

Rossi et. al define three types of Sample Selection Bias in their bias study of LP
datasets [45], which we label and present in the following. Given a tail prediction
hh, r, ti, the di↵erent bias metrics, aim to highlight relation-specific overrepresenta-
tion in various forms, that may influence �(hh, r, ti). Although the presented biases
are explained from the perspective of a tail prediction, they can be defined for head
predictions analogously [45].

Overrepresented answers of a relation (Type 1 Bias). Tail predictions that
are prone to Type 1 Bias feature a relation r where t is an overrepresented entity in
the tail. For instance, if a dataset has disproportionally more instances of the form
h·, hasGender,malei than h·, hasGender, femalei, the tail male would be considered
overrepresented for the relation hasGender. In network theory terms, we are looking
at nodes with a disproportionate high relation-specific in-degree (or out-degree for
head predictions). The authors define a threshold for overrepresented answers of
0.75, which we adjust slightly to ⌧1 = 0.5 for our experiments. Formally, a triple
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hh, r, ti in the training set Gtrain is considered prone to Type 1 Bias if:

9 tover :
|{he, r, toveri : he, r, toveri 2 Gtrain}|
|{heh, r, eti : heh, r, eti 2 Gtrain}|

> ⌧1 = 0.5 (15)

Default answers in multi-relationships (Type 2 Bias). Tail predictions that
are prone to Type 2 Bias feature a multi-relation r that tends to have the default
answer t in the tail. A common example, given by Rossi et al., that can induce
such bias is the one-to-many relationship speaksLanguage [45]. If di↵erent persons
p speak English among other languages, the tail entity English is considered a
default answer for the incomplete triple hp, speaksLanguage, ?i, which can lead to
the assumption that every newly seen person in the validation dataset speaks English
too. The di↵erence to Type 1 Bias lies in the subtlety that r can have several tail
entities besides t that do not a↵ect the decision process of classifying a tail prediction
as Type 2 bias-prone or not. The authors define a threshold for r having default tails
across di↵erent head entities of ⌧1 = 0.5, which will be reused for our experiments.
Formally, a triple hh, r, ti in the training set Gtrain containing entities E is considered
prone to Type 2 Bias if:

9 tdef :
|{e : e 2 E , he, r, tdefi 2 Gtrain}|

|{eh : eh, et 2 E , heh, r, eti 2 Gtrain}|
> ⌧2 = 0.5 (16)

Problem of false duplicates (Type 3 Bias). In the previous case, we have
shown how duplicate and near-duplicate relations can contribute to test leakage
if the relations are indeed duplicates of one another and thus contain redundant
information that can be used to successfully infer test triples. We now look at near-
duplicates from the perspective of potential false duplicate relations, meaning that
similarity may be mistakenly assumed by the LP model. Tail predictions that are
prone to Type 3 Bias feature a relation r that resembles a similar relation s in the
sense that s connects the same entities as r. For example, if the training dataset
Gtrain features persons that live in Germany and were also born there, the LP system
might assume that the relation bornIn and livesIn are identical, and might not
consider people living in Germany that were born outside of Germany. The authors
define a threshold for r sharing the same head and tail entities as s of ⌧3 = 0.5.
Formally, a triple hh, r, ti in the training set Gtrain is considered prone to Type 3 Bias
by the authors if:

9 s 6= r :
|{heh, s, eti : heh, r, eti 2 Gtrain}|
|{heh, r, eti : heh, r, eti 2 Gtrain}|

> ⌧3 = 0.5 (17)
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4.4 Prediction Analysis

Figure 4.1B shows the steps necessary to deconstruct if the bias in the input KG has
been propagated into the trained KG embeddings of a model. First, correct predic-
tions in Gtest are identified. This could be achieved using by filtering test predictions
for H@K settings or any other evaluation metric. Finally, the correct predictions are
bucketed into the di↵erent bias pattern types or none - if the corresponding triple is
not prone to any bias according to our defined metrics. A potential change in the
distribution of bias types from the input to the output data can then be used as an
indicator for the proneness of a model to certain bias types.
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Chapter 5

Implementation

This chapter lists implementation details for our conducted experiments. The aim
of the experiments is to follow along our framework defined in Chapter 4 and char-
acterize LP benchmark datasets.

5.1 Framework Implementation

The underlying data architecture of our experiments for characterizing LP bench-
marks is demonstrated in Figure 5.1. Following our framework for characterizing
LP datasets, the implementation is split into two parts: Descriptive Analysis and
Prediction Analysis. We first need to convert the original benchmark dataset files
given as text files into a standardized CSV format. For the network analysis part in
the descriptive analysis, visualizations are produced using the network exploration
software Gephi [6], and network metrics are calculated with the Python package
NetworkX [20]. To analyze how the benchmark datasets are a↵ected by previously
defined bias patterns, an RDF graph is created as an intermediate step to enable the
use of the querying language SPARQL for our analysis. At first, RDF triples are gen-
erated using the RML interpreter SDM-RDFizer [23], taking our CSV dataset files
and specified mapping files as input, and producing the resulting RDF graphs in form
of N-Triples files. After uploading the RDF graphs to a semantic graph database like
GraphDB, we can execute SPARQL queries against the KGs to retrieve bias-a↵ected
triples, relations and/or entities. Subsequently, the python library AmpliGraph [12]
is utilized to learn the embeddings for the integrated datasets FB15k, FB15k-237,
WN18 and WN18RR, and to observe what bias patterns could have caused test
triples to get predicted correctly. This final step constitutes the prediction analysis
according to our approach.
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Figure 5.1: Framework Implementation. The illustration shows how the data in
the original benchmark datasets is transformed (1) to produce network visualizations and
network metrics, (2) to analyze the dataset for defined bias patterns using SPARQL queries
and (3) to quantify the occurrence of bias patterns in correct predictions.

5.2 Network Analysis Procedure

To produce the visual representations of the graph networks derived from the bench-
mark datasets, a number of configuration steps were performed on Gephi. Firstly,
the OpenOrd layout algorithm [34] was chosen due to its ability to e�ciently handle
large-scale networks and to distinguish clusters of entities in the datasets. Addition-
ally, entity nodes were colored according to the communities they belong to, allowing
for easier identification and analysis of patterns within the network. Finally, the size
of nodes was adjusted based on their degree, thereby highlighting the nodes with the
most connections and emphasizing their importance within the network.

To obtain further insights into the properties of the graph networks, network
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metrics were calculated using the in-built functions of NetworkX. To characterize
the overall connectivity of a network, the number of communities and connected
components as well as their average and median size is determined respectively. In
addition to that, the PageRank and degree of every entity node are calculated using
a directed version of the network graph.

5.3 Creating the RDF Graph

Once the benchmark datasets are given as CSV files with columns for each head en-
tity, relation and object entity, creating the RDF graph is a straightforward process.
Listing 5.1 shows the RML mapping file needed that transforms the triples in the
CSV files to RDF triples in an N-Triples file. The triples map is named ”DatasetMap-
ping” and consists of the logical source (dataset as CSV), a subject map, taking the
head column and mapping it to an entity URI, and a predicate object map, which is
responsible for transforming the relation and tail entities to their URIs respectively.
The mapping file is interpreted with version 4.0 of the SDM-RDFizer, as it is op-
timized to work for large-scale data and provides many configuration options, e.g.
the option to remove duplicate triples. The produced N-Triples files are uploaded to
an instance of GraphDB with version 9.8.1. All benchmark datasets are considered
in each of their training, test and validation split as well as all of them combined,
resulting in 7 ⇤ 4 = 28 total graphs.

Listing 5.1: RML Mapping file
@pref ix rml : <http :// semweb .mmlab . be/ns/rml#> .
@pre f ix r r : <http ://www.w3 . org /ns/ r2rml#> .
@pre f ix q l : <http :// semweb .mmlab . be/ns/ q l#> .

<DatasetMapping>
a r r : TriplesMap ;

rml : l o g i c a l S ou r c e [
rml : source ”<FILE PATH TO DATA FILE>”;
rml : r e f e r enceFormula t i on q l :CSV

] ;

r r : subjectMap [
r r : template ”http :// b i a s . org / en t i t y /{head }” ;

] ;

r r : predicateObjectMap [
r r : predicateMap [

r r : template ”http :// b i a s . org /vocab/{ r e l a t i o n }” ;
] ;
r r : objectMap [
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r r : template ”http :// b i a s . org / en t i t y /{ t a i l }” ;
]

] .

5.4 SPARQL Analysis

In this section, we present questions addressing general statistics, network character-
istics and structural bias patterns of a benchmark dataset and their corresponding
answers as SPARQL queries.

How many triples are there across di↵erent splits?

SELECT ? t r ip l eCountTota l ? t r ip l eCountTra in ing ? t r ip l eCountVa l ida t i on ? t r ip l eCountTest
WHERE {

GRAPH <http ://www. ontotext . com/ e x p l i c i t> {
SELECT (COUNT(∗ ) AS ? t r ip l eCountTota l ) WHERE { ? s ?p ?o}

}
GRAPH <http :// b i a s . org / t ra in ing−graph> {

SELECT (COUNT(∗ ) AS ? t r ip l eCountTra in ing ) WHERE { ? s ?p ?o}
}
GRAPH <http :// b i a s . org / va l i da t i on−graph> {

SELECT (COUNT(∗ ) AS ? t r ip l eCountVa l ida t i on ) WHERE { ? s ?p ?o}
}
GRAPH <http :// b i a s . org / te s t−graph> {

SELECT (COUNT(∗ ) AS ? tr ip l eCountTest ) WHERE { ? s ?p ?o}
}

}

How many entities are there across di↵erent splits?

SELECT ? e n t i t i e sT o t a l ? e n t i t i e sT r a i n ? e n t i t i e sV a l i d a t i o n ? e n t i t i e sT e s t WHERE {
GRAPH <http ://www. ontotext . com/ e x p l i c i t> {

SELECT (COUNT(DISTINCT ? en t i t y ) AS ? e n t i t i e sT o t a l ) WHERE {
{ ? en t i t y ?p1 ?o1 . }
UNION
{ ? s2 ?p2 ? en t i t y . }

}
}
GRAPH <http :// b i a s . org / t ra in ing−graph> {

SELECT (COUNT(DISTINCT ? en t i t y ) AS ? e n t i t i e sT r a i n ) WHERE {
{ ? en t i t y ?p1 ?o1 . }
UNION
{ ? s2 ?p2 ? en t i t y . }

}
}
GRAPH <http :// b i a s . org / te s t−graph> {

SELECT (COUNT(DISTINCT ? en t i t y ) AS ? e n t i t i e sT e s t ) WHERE {
{ ? en t i t y ?p1 ?o1 . }
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UNION
{ ? s2 ?p2 ? en t i t y . }

}
}
GRAPH <http :// b i a s . org / va l i da t i on−graph> {

SELECT (COUNT(DISTINCT ? en t i t y ) AS ? e n t i t i e sV a l i d a t i o n ) WHERE {
{ ? en t i t y ?p1 ?o1 . }
UNION
{ ? s2 ?p2 ? en t i t y . }

}
}

}

How many relations are there across di↵erent splits?

SELECT ? r e l a t i o n sTo t a l ? r e l a t i o n sT r a i n ? r e l a t i o n sVa l i d a t i o n ? r e l a t i o n sTe s t WHERE {
GRAPH <http ://www. ontotext . com/ e x p l i c i t> {

SELECT (COUNT(DISTINCT ?p) AS ? r e l a t i o n sTo t a l ) WHERE { ? s ?p ?o . }
}
GRAPH <http :// b i a s . org / t ra in ing−graph> {

SELECT (COUNT(DISTINCT ?p) AS ? r e l a t i o n sT ra i n ) WHERE { ? s ?p ?o . }
}
GRAPH <http :// b i a s . org / te s t−graph> {

SELECT (COUNT(DISTINCT ?p) AS ? r e l a t i o n sVa l i d a t i o n ) WHERE { ? s ?p ?o . }
}
GRAPH <http :// b i a s . org / va l i da t i on−graph> {

SELECT (COUNT(DISTINCT ?p) AS ? r e l a t i o n sTe s t ) WHERE { ? s ?p ?o . }
}

}

How many relations are there across di↵erent splits?

SELECT ? r e l a t i o n sTo t a l ? r e l a t i o n sT r a i n ? r e l a t i o n sVa l i d a t i o n ? r e l a t i o n sTe s t WHERE {
GRAPH <http ://www. ontotext . com/ e x p l i c i t> {

SELECT (COUNT(DISTINCT ?p) AS ? r e l a t i o n sTo t a l ) WHERE { ? s ?p ?o . }
}
GRAPH <http :// b i a s . org / t ra in ing−graph> {

SELECT (COUNT(DISTINCT ?p) AS ? r e l a t i o n sT ra i n ) WHERE { ? s ?p ?o . }
}
GRAPH <http :// b i a s . org / te s t−graph> {

SELECT (COUNT(DISTINCT ?p) AS ? r e l a t i o n sVa l i d a t i o n ) WHERE { ? s ?p ?o . }
}
GRAPH <http :// b i a s . org / va l i da t i on−graph> {

SELECT (COUNT(DISTINCT ?p) AS ? r e l a t i o n sTe s t ) WHERE { ? s ?p ?o . }
}

}

What is the in-degree of every tail entity?
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SELECT ? en t i t y (COUNT(∗ ) AS ? inDegree ) WHERE {
GRAPH <http ://www. ontotext . com/ e x p l i c i t> { { ? s1 ?p1 ? en t i t y . } }

}
GROUP BY ? en t i t y
ORDER BY DESC (? inDegree )

What is the out-degree of every head entity?

SELECT ? en t i t y (COUNT(∗ ) AS ? outDegree ) WHERE {
GRAPH <http ://www. ontotext . com/ e x p l i c i t> { { ? en t i t y ?p1 ?o1 . } }

}
GROUP BY ? en t i t y
ORDER BY DESC (? outDegree )

What is the combined degree of every entity? (in + out-degree)

SELECT ? en t i t y (COUNT(∗ ) AS ? degree ) WHERE {
GRAPH <http ://www. ontotext . com/ e x p l i c i t> {

{ ? en t i t y ?p1 ?o1 . }
UNION
{

? s2 ?p2 ? en t i t y .
FILTER(? s2 != ? en t i t y )

}
}

}
GROUP BY ? en t i t y
ORDER BY DESC (? degree )

How many di↵erent relation types does each entity have? (Relation di-
versity)

SELECT ? en t i t y (COUNT(∗ ) AS ? r e l a t i o nD i v e r s i t y ) WHERE {
GRAPH <http ://www. ontotext . com/ e x p l i c i t> {

{ SELECT d i s t i n c t ? en t i t y ?p1 WHERE {? en t i t y ?p1 ?o1 .} }
UNION
{

{ SELECT d i s t i n c t ? en t i t y ?p1 WHERE {? s2 ?p1 ? en t i t y .} }
FILTER(? s2 != ? en t i t y )

}
}

}
GROUP BY ? en t i t y
ORDER BY DESC (? r e l a t i o nD i v e r s i t y )
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How many facts (edges) exist for every relation? (Relation frequency)

SELECT ? r e l a t i o n (COUNT(∗ ) AS ? re la t i onFrequency ) WHERE {
GRAPH <http ://www. ontotext . com/ e x p l i c i t> {

? s ? r e l a t i o n ?o
}

}
GROUP BY ? r e l a t i o n
ORDER BY DESC (? re l a t i onFrequency )

—

What are near-duplicate relations r, their duplicate counterpart relation
s and their Jaccard index?

PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT ? r (? s AS ? s im i l a rRe l a t i o n ) ? tr ipleCountR ? tr ip leCountS
( (COUNT(∗ ) ) / ( xsd : f l o a t (? tr ipleCountR + ? tr ip l eCountS − COUNT( ∗ ) ) ) AS ? jaccardIndex )
WHERE {

GRAPH <http :// b i a s . org / t ra in ing−graph> {
{

SELECT ? r (COUNT(∗ ) AS ? tr ipleCountR ) WHERE { ?head ? r ? t a i l . }
GROUP BY ? r

}
{

SELECT ? s (COUNT(∗ ) AS ? tr ip l eCountS ) WHERE { ?head ? s ? t a i l . }
GROUP BY ? s

}
{

SELECT ?h ? r ? s ? t WHERE {
?h ? r ? t ;

? s ? t .
FILTER(? s != ? r )

}
}

}
}
GROUP BY ? r ? s ? tr ipleCountR ? tr ip l eCountS
HAVING((COUNT(∗ ) ) / ( xsd : f l o a t (? tr ip leCountR + ? tr ip l eCountS − COUNT( ∗ ) ) ) > 0 . 5 )
ORDER BY DESC(? jaccardIndex )

What are near-inverse relations r, their inverse counterpart relation s and
their inverse Jaccard index?

PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT ? r (? s AS ? inv e r s eRe l a t i on ) ? tr ipleCountR ? tr ip l eCountS
( (COUNT(∗ ) ) / ( xsd : f l o a t (? tr ipleCountR + ? tr ip l eCountS − COUNT( ∗ ) ) ) AS ? inver s eJaccard Index )
WHERE {

GRAPH <http :// b i a s . org / t ra in ing−graph> {
{
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SELECT ? r (COUNT(∗ ) AS ? tr ipleCountR ) WHERE { ?head ? r ? t a i l . }
GROUP BY ? r

}
{

SELECT ? s (COUNT(∗ ) AS ? tr ip l eCountS ) WHERE { ?head ? s ? t a i l . }
GROUP BY ? s

}
{

SELECT ?h ? r ? s ? t WHERE {
?h ? r ? t .
? t ? s ?h .
FILTER(? s != ? r )

}
}

}
}
GROUP BY ? r ? s ? tr ipleCountR ? tr ip l eCountS
HAVING((COUNT(∗ ) ) / ( xsd : f l o a t (? tr ip leCountR + ? tr ip l eCountS − COUNT( ∗ ) ) ) > 0 . 5 )
ORDER BY DESC(? inve r seJaccard Index )

What are near-symmetric relations and their symmetry score?

PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT ? r e l a t i o n ? t r ip l eCount
( (COUNT(∗ ) ) / ( xsd : f l o a t (? t r ip l eCount ) ) AS ? symmetryScore )
WHERE {

GRAPH <http :// b i a s . org / t ra in ing−graph> {
{

SELECT ? r e l a t i o n (COUNT(∗ ) AS ? t r ip l eCount ) WHERE { ?head ? r e l a t i o n ? t a i l . }
GROUP BY ? r e l a t i o n

}
?h ? r e l a t i o n ? t .
? t ? r e l a t i o n ?h .

}
}
GROUP BY ? r e l a t i o n ? t r ip l eCount
HAVING ((COUNT(∗ ) ) / ( xsd : f l o a t (? t r ip l eCount ) ) > 0 . 75 )
ORDER BY DESC(? symmetryScore )

What are overrepresented tail answers of a relation? (> 50% of all tail
mentions for a relation)

PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT ? r e l a t i o n ? ove r r ep r e s en t edTa i l (COUNT(∗ ) AS ? f i l t e r edTr i p l eCoun t ) ? t r ip l eCount
( xsd : f l o a t ( (COUNT(∗ ) ) / ( xsd : f l o a t (? t r ip l eCount ) ) ) AS ? r ep r e s en t a t i on )
WHERE {

GRAPH <http :// b i a s . org / t ra in ing−graph> {
{

SELECT ? r e l a t i o n (COUNT(∗ ) AS ? t r ip l eCount ) WHERE { ? s ? r e l a t i o n ?o . }
GROUP BY ? r e l a t i o n

}
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?head ? r e l a t i o n ? ove r r ep r e s en t edTa i l .
}

}
GROUP BY ? r e l a t i o n ? ove r r ep r e s en t edTa i l ? t r ip l eCount
HAVING ( ( (COUNT(∗ ) ) / ( xsd : f l o a t (? t r ip l eCount ) ) ) > ”0.5”ˆˆ xsd : decimal )
ORDER BY DESC (? f i l t e r e dTr i p l eCoun t )

What are overrepresented head answers of a relation? (> 50% of all head
mentions for a relation)

PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT ? overrepresentedHead ? r e l a t i o n
(COUNT(∗ ) AS ? f i l t e r edTr i p l eCoun t ) ? t r ip l eCount
( xsd : f l o a t ( (COUNT(∗ ) ) / ( xsd : f l o a t (? t r ip l eCount ) ) ) AS ? r ep r e s en t a t i on )
WHERE {

GRAPH <http :// b i a s . org / t ra in ing−graph> {
{

SELECT ? r e l a t i o n (COUNT(∗ ) AS ? t r ip l eCount ) WHERE { ? s ? r e l a t i o n ?o . }
GROUP BY ? r e l a t i o n

}
? overrepresentedHead ? r e l a t i o n ? t a i l .

}
}
GROUP BY ? r e l a t i o n ? overrepresentedHead ? t r ip l eCount
HAVING ( ( (COUNT(∗ ) ) / ( xsd : f l o a t (? t r ip l eCount ) ) ) > ”0.5”ˆˆ xsd : decimal )
ORDER BY DESC (? f i l t e r e dTr i p l eCoun t )

What are default tail answers of a relation?

PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT ? r e l a t i o n ? opt ion ? headEnt i t i e s
(COUNT(DISTINCT ?h) AS ? headEnt i t iesForOpt ion )
( (COUNT(DISTINCT ?h ) ) / ( xsd : f l o a t (? headEnt i t i e s ) ) AS ? opt ionRepresented )
WHERE {

GRAPH <http :// b i a s . org / t ra in ing−graph> {
{

SELECT ? r e l a t i o n (COUNT(DISTINCT ?head ) AS ? headEnt i t i e s )
WHERE { ?head ? r e l a t i o n ? t a i l . }
GROUP BY ? r e l a t i o n

}
?h ? r e l a t i o n ? opt ion .

}
}
GROUP BY ? r e l a t i o n ? opt ion ? headEnt i t i e s
HAVING ( ( (COUNT(DISTINCT ?h ) ) / ( xsd : f l o a t (? headEnt i t i e s ) ) ) > ”0.5”ˆˆ xsd : decimal )

What are default head answers of a relation?
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PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT ? r e l a t i o n ? opt ion ? t a i l E n t i t i e s
(COUNT(DISTINCT ? t ) AS ? t a i lEn t i t i e sFo rOpt i on )
( (COUNT(DISTINCT ? t ) ) / ( xsd : f l o a t (? t a i l E n t i t i e s ) ) AS ? opt ionRepresented )
WHERE {

GRAPH <http :// b i a s . org / t ra in ing−graph> {
{

SELECT ? r e l a t i o n (COUNT(DISTINCT ? t a i l ) AS ? t a i l E n t i t i e s )
WHERE { ?head ? r e l a t i o n ? t a i l . }
GROUP BY ? r e l a t i o n

}
? opt ion ? r e l a t i o n ? t .

}
}
GROUP BY ? r e l a t i o n ? opt ion ? t a i l E n t i t i e s
HAVING ( ( (COUNT(DISTINCT ? t ) ) / ( xsd : f l o a t (? t a i l E n t i t i e s ) ) ) > ”0.5”ˆˆ xsd : decimal )

5.5 Learning the Embeddings

In this section, we describe the experimental set-up used to learn the TransE embed-
dings for calculating the rankings needed to explain prediction results. The datasets
FB15k, FB15k-237, WN18 and WN18RR were trained using AmpliGraph version
2.0.0 on a Python 3.9 Google Compute Engine backend running on Ubuntu 20.04.5
LTS with an NVIDIA A100-SXM4-40GB. The sensitivity of benchmark dataset per-
formance to tuned hyperparameters is a critical consideration in machine learning
models learning LP [25], making the identification of optimal hyperparameters on
the validation set a di�cult endeavor. Hyperparameters require careful selection,
as the configuration space is vast, encompassing numerous parameters like the di-
mension, learning rate, number of epochs, loss function, batch size and many more.
Given the impracticality of determining the optimal parameters through grid search,
we reuse the hyperparameters reported in the AmpliGraph documentation page [52]
summarized in Table 5.1. The ranking evaluation is performed using the filtered
setting (see Section 2.5).
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Dataset

FB15k FB15k-237 WN18 WN18RR

Dimensions 150 400 150 350

Epochs 4000 4000 4000 4000

ETA* 10 30 10 30

Loss Function multiclass nll multiclass nll multiclass nll multiclass nll

Optimizer ADAM ADAM ADAM ADAM

Learning Rate 5e� 5 0.0001 5e� 5 0.0001

Regularizer LP LP LP LP

�, p 0.0001, 3 0.0001, 2 0.0001, 3 0.0001, 2

Norm 1 1 1 1

Batch count 100 64 100 150

Table 5.1: Hyperparameter settings. (*) = Number of negatives to use during training
per triple. � and p are parameters for the regularizer [52].
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Evaluation

In this chapter, we evaluate our approach by applying our framework and assessing
7 benchmark datasets for LP tasks. The research questions addressed by this thesis
are: RQ1) What does the topological structure of the benchmark datasets look like?
RQ2) How can unwanted biases in the benchmarks a↵ect performance results?

6.1 Benchmark Datasets for LP Tasks

The following benchmark datasets are used to assess the performance of an LP
model. They are curated from common real-world KGs, such as DBPedia [3], Wiki-
data [62], Freebase [9], Wordnet [35] and YAGO [54]. For each dataset, di↵erent
sampling techniques were used, e.g. to prevent test leakage or in general to prevent
the phenomenon of predicting redundant facts. Since most benchmark datasets do
not feature an inductive version yet, we only include transductive dataset setups in
conducted experiments.

FB15k is a dataset created by [11] in 2013. It features facts from the Freebase
knowledge base with entities that occur both in Freebase and in the Wikilink dataset
[51], but also have at least 100 mentions in Freebase [11]. Further, all explicit inverse
relations, annotated by an exclamation mark in Freebase, have been removed. To
produce training, validation, and test set a random split has been performed [11].
FB15k contains in total 592,213 triples, 14,591 entities and 1,345 relations [11].

FB15k-237 is a benchmark dataset created by [60] at Microsoft Research in 2015
which was derived from the original FB15k dataset [11] after observing test leakage
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Triples

Entities Relations Total Training Validation Test

FB15k 14,951 1,345 592,213 483,142 50,000 59,071

FB15k-237 14,541 237 310,116 272,115 17,535 20,466

WN18 40,943 18 151,442 141,442 5,000 5,000

WN18RR 40,943 11 93,003 86,835 3,034 3,134

Wikidata5M 4,594,485 822 20,624,575 20,614,279 5,163 5,133

YAGO3-10 123,182 37 1,089,040 1,079,040 5,000 5,000

DBpedia50k 30,449 365 43,490 32,203 397 10,890

Table 6.1: General overview of datasets

caused by inverse triples and near-duplicates [60] making it easy to achieve state-of-
the-art performance on a simple model based on observed features [11]. First, the
FB15k dataset was reduced to only feature the most frequent 401 relations. After
that, relations that represent near-duplicates or near-inverses of other relations were
removed by comparing how many head and tail entities match respectively. Addi-
tionally, all entity pairs that occur in the training set were removed from the test
and validation set [11]. The dataset contains a total of 14,505 entities, 237 relations
and 310,079 triples.

WN18 is a benchmark dataset referenced from the work of [10] and was first in-
troduced as a benchmark for LP tasks by the same authors of FB15k in the intro-
duction of the TransE model [11]. It was sampled from WordNet, a lexical database
of the English language where words are grouped into sets of concepts, so-called
”synsets” [35]. These concepts can then relate to other concepts. For instance, the
hypernym relation denotes instances of another concept, resulting in a triple like
hHawk, has hypernym,Raptori. The authors of WN18 [11] did not specify how the
dataset was constructed. The resulting dataset has 40,943 entities, 18 relations, and
151,442 triples.

WN18RR is a benchmark dataset created by [13] after observing that the predeces-
sor dataset WN18 also su↵ers from inverse relations and test leakage [13]. Dettmers
specifies seven predicates, e.g. the inverse relation hyponym or holonym member, to
be filtered from WN18. The curation of WN18RR can be comprehended in detail in

35



Chapter 6. Evaluation

a Python script in the author’s repository1. The resulting dataset has 40,943 entities,
11 relations, and 93,003 triples.

Wikidata5M was first introduced in 2021 by [63] and is a large-scale benchmark
dataset that was built on top of Wikidata [62]. It was curated by filtering out all
entities that do not have a Wikipedia article or if the article’s description in the first
section of a Wikipedia page has less than five words [63]. Further, the descriptions
extracted from the first section have been also aligned with the entities to enrich
the dataset [63]. The Wikidata5M dataset comes in both transductive and inductive
settings and contains 4,594,485 entities, 822 relations, and 20,614,279 total triples.

YAGO3-10 is a benchmark dataset derived from YAGO3, an updated version of
the YAGO KG [54] which is based on Wordnet and Wikidata. YAGO3 [33] was built
to enable multilingual support but also to extend its predecessor by adding new facts
through Wikipedia articles and infoboxes from other languages [54]. YAGO3-10 was
first presented in 2018 and constructed by only including entities in the dataset that
contain more than 10 relation types [13]. The resulting dataset contains 123,182
entities, 37 relations, and 1,179,040 triples.

DBpedia50k is a benchmark dataset created by [49] and published in 2017. It
was randomly sampled from DBPedia [49], a community project first introduced in
2007 aiming to extract structured information from Wikipedia articles, as they can
be found in Wikipedia’s infoboxes [3]. DBPedia50k contains 30,449 entities and 37
relations distributed over 32,388 triples in the training split, 399 in the validation
split, and 10,969 triples in the test split [49]. We further observed duplicate triples
across the di↵erent data splits explaining why the total unique triple count is di↵er-
ent from what the authors report.

6.2 Topological Analysis

The goal of the topological analysis is to characterize every benchmark dataset when
looking at their network topology holistically and - if possible - to work out key
di↵erences between them.

1
https://github.com/TimDettmers/ConvE
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Number of Component size Community size

Comp. Commun. Average Median Average Median

FB15k 9 19 1,661.2 2 786.9 104

FB15k-237 6 16 2,423.5 2.5 908.8 710

WN18 13 64 3,149.5 2 639.7 518

WN18RR 13 64 3,149.5 2 639.7 508

Wikidata5M 1,491 1,633 3,081.5 2 2,813.5 2

YAGO3-10 11 43 11,198.4 3 2,864.7 1881

DBpedia50k 2,032 2,098 14.98 2 14.51 2

Table 6.2: Components and communities statistics. The first two columns show
the number of components and communities. Columns 3-6 show their sizes.

6.2.1 Connectivity

Overall statistics concerning components and communities are reported in Table 6.2.
Figure 6.1 provides a deeper insight into the distribution of component sizes. Figure
6.2 contains network visualizations for every network.
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Figure 6.1: Component size distributions. Every plot shows all components in the
network and their respective size. In all datasets - except for DBpedia50k - the majority
of entities lie within a single main component.

38



6.2. Topological Analysis

First, it can be observed that all underlying networks - with the exception of
DBpedia50k - are high in terms of connectedness, in the sense that most entity nodes
are contained within one component (see Figure 6.1), where they are all reachable
from one another through a path of edges. Most components tend to feature only a
few nodes, isolated from the rest of the network, while the biggest component tends
to contain the majority of entities. This skew in the component size distributions
explains the large mismatch between average and median component size. This
behavior can also be observed in the network visualizations in Figure 6.2. Only
DBpedia50k shows a large number of isolated node entities, whereas other networks
seem more well-connected. In DBpedia50k the average component size is quite low
with only 14.98 entities per component on average. The high connectivity of FB15k,
FB15k-237 and YAGO3-10 is especially visible in Figure 6.2, as the purple-colored
edges are arranged very densely. This pattern can be traced back to the formation
of the datasets, as FB15k, FBk-237 and YAGO3-10 were filtered for entities with a
high frequency of mentions, and therefore show more connections between entities.
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(a) FB15k (b) FB15k-237

(c) WN18 (d) WN18RR

(e) YAGO3-10 (f) DBpedia50k

Figure 6.2: Network visualizations. The network visualization of every benchmark
dataset using the network analysis tool Gephi [6] using the OpenOrd layout [34]. The
entity nodes are colored and positioned based on the community they belong to. We can
see similar connectivity behavior between FB15k and FB15k-237 as well as between WN18
and WN18RR. DBpedia50k due to its many unconnected islands.
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Second, a look into the communities’ statistics reveals how well-connected the
components are. Wikidata5M and DBpedia50k are amongst the datasets with the
most well-connected components with 1.1 and 1.0 communities per component each
respectively. This is to be expected since most components in these datasets consist
of just two entities, which cannot be further divided into communities. It is interest-
ing to see that there is almost no tangible di↵erence in component and community
structure between WN18 and its filtered version WN18RR. In the creation of FB15k-
237, however, the number of components is reduced to six. This behavior, too, can
be explained by the sampling technique that was used to construct it. By filtering
the dataset for the most frequent 401 relations, some entities, especially those in
small-sized components, might get eliminated. All the other datasets have around
two to four communities per component, meaning that two to four clusters exist per
component that are relatively well-connected on the inside and loosely connected to
the other clusters.

6.2.2 Node and Relation Density

Average network metric

Degree Clustering Coe↵. PageRank RF RD

FB15k 62.5 0.200 0.067 440.3 786.9

FB15k-237 39.0 0.156 0.069 1,308.5 908.8

WN18 7.4 0.067 0.024 8,413.4 639.7

WN18RR 4.5 0.047 0.024 8,454.8 639.7

Wikidata5M 9.0 0.014 0.356e-3 25,090.7 2,813.5

YAGO3-10 13.0 0.073 0.008 29,433.5 2,864.7

DBpedia50k 2.6 0.049 0.033 119.2 14.51

Table 6.3: Network metrics. The columns display the average degree, clustering coef-
ficient, PageRank, RF and RD. The PageRank value is given in 10�3.

The network metrics provided in Table 6.3 give an estimation of the density (or
sparsity) of nodes and relations in the network graphs. Figure 6.3 shows the distribu-
tion of entity nodes by degree while Figure 6.3 shows the percentage of mentions that
each relation has. From the entity degree distribution plots, it can be inferred that
all benchmark datasets show a distortion towards a few high-degree entities and a
large number of low-degree entities. This dynamic is known as the power law, which
is not confined to the KGs at hand and is a pattern that can be found in many large
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networks [5]. FB15k shows the highest node density with an average degree of 62.5,
second is, FB15k-237 with 39.0 and third YAGO3-10 with 13.0. This matches again
the previously mentioned sampling technique, where these three datasets are known
to have a large number of entity mentions. WN18, WN18RR and Wikidata5M show
quite sparse nodes with an average degree of each 7.4, 4.5 and 9.0. The sparsity
in node information, however, is compensated by information-dense relations with
average RFs for these datasets ranging from 8k to 25k per relation. DBPedia50k
su↵ers from both node and relation sparsity. The highest relation density can be
found in YAGO3-10 with an average RF of 29,433.5. It is also worth noting that the
high relational information density in WN18, WN18RR and YAGO3-10 is caused by
only up to three relationship types that make up more than 70% of all triples in each
of the datasets.

6.2.3 Discussion of Topological Results

All entities in researched benchmark datasets of this thesis appear to be well-connected
(with the exception of DBpedia50k). This high connectivity can be deemed as a
critical requirement for successful link predictions. In addition to that, all datasets
- again apart from DBpedia50k - show either high relation density or high entity
density. We are able to explain the high node density for FB15k, FB15k-237 and
YAGO3-10 with the technique that was used to construct them. The indirect filter-
ing of low-information entities and relations can be seen as a biased approach in the
construction process and is a di↵erent form of sample selection bias. RQ1 is therefore
answered regarding the topological traits of connectivity and information density.
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Figure 6.3: Distributions of entity degrees. All datasets are distorted towards fewer
high-degree entities and a large number of low-degree entities.
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(a) FB15k (b) FB15k-237 (c) Wikidata5M

(d) WN18
(e) WN18RR

(f) YAGO3-10 (g) DBpedia50k

Figure 6.3: Distributions of relations and their frequency. We can identify dense
relations with many mentions in the WN18 datasets and YAGO3-10.
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6.3 Bias Analysis

In this section, we want to analyze how previously defined bias patterns concerning
test leakage and sample selection are existent in the training data that a↵ect triples
in Gtest,GvalidorG. In the final step, we aim to use that evidence to (partially) explain
prediction results.

6.3.1 Bias Patterns in Training Data

The results of the exploratory analysis are reported in Figure 6.4, showing what
percentage of triples in the di↵erent dataset splits can be attributed to a particular
bias type defined in Chapter 4. In line with reports in the literature, FB15k and
WN18 both su↵er from test leakage through near-inverse relations (83.9% of all test
triples in FB15k and 76.6% in WN18). All other datasets have a rather low number
of near-inverse or none at all. Another notable instance of test leakage can be seen
in YAGO3-10, where over 63.3% of test triples are prone to near-duplicate relations.
FB15k also contains near-duplicate relations but to a much lesser extent (15.0%).
We can clearly see how near-inverse and near-duplicate relations have been almost
completely removed from the test and validation set in FB15k to create FB15k-237,
albeit still existent in the training data. A similar discrepancy between training
and test/validation split can be seen for near-symmetric relations in FB15k-237.
Another interesting change of dynamics is happening in WN18 when it comes to near-
symmetric relations. In the original WN18 dataset, test triples are slightly prone to
near-duplicate relations at a rate of 22.3%. The filtering process, however, caused a
noticeable increase of near-duplicates in the filtered version WN18RR to now 37.0%.
Other than near-symmetric relations, WN18RR does not show any proneness to one
of the previously defined bias types. The variety of bias types is the biggest in FB15k
with default answers being the most prevalent of sample selection biases. In both
FB15k and FB15k-237 test triples prone to default tail answers are occurring at a
higher rate with 28.8% in FB15k and even 40.3% FB15k-237, the highest occurrence
in FB15k-237. The datasets DBpedia50k and Wikidata5M show also some variety
in bias patterns but have always less than 10% triples that are a↵ected by them
except for default tail answers in Dbpedia50k, which occur at a slightly higher rate
of 10.89%. Wikidata5M shows the lowest bias a↵ection of all datasets. All in all,
test leakage bias seems to be a more ubiquitous issue than sample selection bias in
these datasets.
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6.3.2 Explaining Prediction Results

Goal and Evaluation Approach With di↵erent bias metrics defined concern-
ing test leakage bias and sample selection bias, we aim to investigate their impact
on prediction results for the benchmark datasets FB15k, FB15k-237, WN18 and
WN18RR trained on the model TransE. The attempt is to deconstruct all correct
predictions in the test dataset to see what bias types - if any - can be attributed
to the successful prediction of a test fact. Moreover, we scrutinize correct predic-
tions in various tolerance settings depending on if the ranking of the prediction
would contribute to the evaluation metrics H@1, H@3, H@5, and H@10 respec-
tively. Since rankings and their derived metrics are calculated for head and tail
entities separately, attributions are accounted for in both settings. For example, let
hBeachHouse, isHyponymOf,Housei be the test triple that we want to match bias
types to, rh = 4 be the ranking for Beach House and rt = 1 the ranking for House in
this triple configuration. In this case, the test triple would qualify for all correct tail
predictions in H@K metrics but only for H@5 and H@10 in correct head predictions.
A correct tail (or head) prediction hh, r, ti in the test set can be attributed to one or
more of the following categories:

• Inverse bias-prone if r is near-inverse

• Duplicate bias-prone if r is near-duplicate

• Symmetry bias-prone if r is near-symmetric

• Overrepresented answer bias-prone if t (or h) is overrepresented for r

• Default answer bias-prone if t (or h) is a default answer for r

• Unknown bias if none of the above applies

Evaluation The experimental results for attributing bias patterns to correct H@K
predictions can be found in Figure 6.5 - Figure 6.8. All bias types occur in buckets
with a bias frequency scale from 0 to 1. If a correctly predicted test triple belongs to
non of the defined bias types it is listed in the category ”unknown”. Table 6.4 shows
the performances that the benchmarks reach when trained on TransE.

In FB15k and WN18, we can see how the severe issue of near-inverse relations is
even more prominent in the prediction results with an increase of 5 to 10 percentage
points. This indicates that the property of near-inverse relations are favoring the
prediction of correct test triples in all H@K settings. Taking all bias pattern types
into consideration, only ⇡ 5% of all correct predictions cannot be attributed to any
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H@1 H@3 H@5 H@10 MRR

FB15k 0.486 0.724 0.783 0.842 0.622

FB15k-237 0.107 0.293 0.366 0.465 0.232

WN18 0.440 0.875 0.923 0.950 0.661

WN18RR 0.038 0.366 0.470 0.551 0.224

Table 6.4: Performance results. Obtained performances in our experiments with
TransE using the metrics H@K and MRR.

bias pattern in FB15k. For WN18, the case is even more extreme, as less than ⇡ 1%
of correct predictions cannot be explained with our bias types. Almost all correctly
predicted test triples in WN18 are either near-inverse or near-symmetric relations.
The evidence here suggests that a model like TransE optimizes plausibility scores by
first capitalizing on test leakage bias patterns, potentially disregarding any deeper
pattern features that a dataset provides. In the case of FB15k and WN18, this
potential overfitting behavior is su�cient enough to reach good performance results.
This hypothesis is reinforced when looking at the prediction results of the more bias-
prone dataset FB15k-237. Here, the absence of test leakage bias makes ⇡ 65� 70%
of correct predictions unexplainable with the sole occurrence of bias. In FB15k-237
the frequency of overrepresented tail entities appears to be amplified at a factor ⇡ 2
with a rate of 29.7% appearing in correct H@3 predictions, but only 15.1% in the
test dataset. The dataset WN18RR, which is only prone to near-symmetric relations,
also sees a large amplification of that property in the correct test predictions, as they
account for ⇡ 70% of prediction results, even though near-symmetric relations only
appear at a rate of ⇡ 35% in the test split. It can be noted that the outlier in H@1
predictions for WN18RR cannot be deemed significant since they contain more than
3% of all test triples. However, it shows that the model learns some meaningful
information outside the bias patterns to correctly predict these triples.

6.3.3 Discussion of Bias Results

It seems that the place of information concentration (entities vs relations) plays a
smaller role than our defined bias patterns regarding test leakage and sample selection
bias. To be exact, we found that test leakage is the most critical factor in explaining
prediction results by LP models.

It is a known fact in the research community that both WN18 and FB15k suf-
fer from test leakage. Python packages for training LP models are even actively
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Figure 6.4: Bias in the input data. Every benchmark dataset is di↵erently a↵ected
by our bias types. The datasets Dbpedia50k and Wikidata5M are the most-prone to it.

48



6.3. Bias Analysis

Figure 6.5: Bucketing correct predictions by bias type for FB15k

Figure 6.6: Bucketing correct predictions by bias type for FB15k-237
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Figure 6.7: Bucketing correct predictions by bias type for WN18

Figure 6.8: Bucketing correct predictions by bias type for WN18RR
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discouraging their usage [12] [2]. However, it is interesting to see that even more
de-facto ”stable” datasets like WN18RR and YAGO3-10 are prone to test leakage,
an issue that has not been paid enough attention to in other studies. The majority of
correct predictions in our experiments for WN18RR are triples that contain a near-
symmetric relation. In YAGO3-10, more than 60% of all triples can be considered
prone to near-duplicate relations. Even FB15k-237 shows signs of sample selection
bias, albeit its e↵ects on prediction results are not as clear as with test leakage.
Wikidata5M and DBpedia50k appear to be most prone to such biases. We have
therefore addressed RQ2 by showing that the bias types defined in our framework
can explain major parts of correct test predictions.

6.4 Key Takeaways

We can summarize our findings with regard to analyzed LP benchmarks as follows:

1. All benchmarks feature a network with high connectivity - with the only ex-
ception being DBpedia50k.

2. The level of information density is usually high in either relations or entities.

3. Benchmarks with high relational information density are WN18, WN18RR,
YAGO3-10 and Wikidata5M. The entity nodes in FB15k and FB15k-237 have
a disproportionate high information density. DBpedia50k su↵ers from both
information-sparse nodes and information-sparse relations.

4. All benchmarks are distorted towards a few over-represented entities and a large
number of entities with only a few mentions - thereby following the power law.

5. FB15k and WN18 su↵er mainly from test leakage due to near-inverse relations.

6. YAGO3-10 su↵ers from test leakage in form of near-duplicate relations.

7. WN18RR has a notable number of triples prone to near-symmetric relations
and account for ⇠ 70% of correct predictions.

8. Our experimental results suggest that the model TransE picks up the pattern
of overrepresented tail answers in the benchmark FB15k-237. The dataset
also has a lot of relations with default tail answers, although its influence on
prediction results is not entirely clear.
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Chapter 7

Conclusions and Future Work

This chapter summarizes the content of the thesis, addresses the limitations of our
work and provides directions for future research in the area.

7.1 Conclusions

In this thesis, we characterized seven commonly used benchmarks for LP regarding
their structural biases. We assessed the benchmark datasets’ networks as a whole
and unraveled structural imbalances within entities and relations. In doing so, we
produced 15 SPARQL queries that can be reused in any exploratory analysis of KGs
for detecting biases and unusual patterns.

Further, we defined six bias types for test leakage and sample selection bias. In
combination with our conducted experiments using the model TransE, they were able
to highlight alarming issues in considered state-of-the-art datasets. In WN18RR, we
found a concerning number of near-symmetric relations, which explain most of the
correct predictions for TransE. YAGO3-10 features a lot of near-duplicate relations
and FB15k-237 su↵ers from a large number of default answer-prone triples.

It is important to acknowledge why certain performance results are reached to
increase the credibility of statements regarding the capability of a model. We, thus,
call for a more cautious usage of LP benchmarks in general and ask authors of new
models to include the di↵erent benchmark characteristics when reporting benchmark
performance. While this thesis establishes important groundwork for explaining why
LP models attain certain performances on benchmark datasets, we also encourage the
research community to investigate further factors that can improve the explainability
and transparency of LP models.
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7.2 Limitations and Future Work

Explaining performance results in an LP pipeline is a very di�cult task, as the
reasoning process of LP models tends to be quite complex and cannot be easily traced.
Our findings are limited in that regard because our experiments are mere indications
of the correlation between our defined bias metrics and prediction results. They
do not constitute definitive proof of cause for any reported predictions. However,
the amplification of bias in the correctly predicted triples makes a correlation more
likely. In addition to that, there exist correct predictions that we cannot explain
with any of our defined biases. This could either mean that the LP model actually
infers a portion of new facts without the influence of bias or that there are other
bias types that we have not considered in this study. It is also not clear if these
predictions can be made based on observed features like simple logical rules, or, more
complex patterns. Newer studies [57] [17] argue that transductive LP approaches are
shallow by nature, and therefore not able to learn deeper structures like inductive
graph network-based approaches would. While we have shown that TransE picks
up the bias patterns in the dataset, it would be interesting to see if the behavior is
similar for other LP models as well. Improving explainability when learned patterns
become more sophisticated then turns into an even bigger challenge. Further, our
work only assesses bias within the network structure of LP benchmark datasets.
Other bias factors, e.g. the method with which evaluation metrics are calculated,
are out of scope in this thesis. Another critical aspect to consider is that our defined
biases actually make up for the learning of useful patterns such as the inverse rule:
hX, parentOf, Y i => hY, isChildOf,Xi. While a good benchmark should not only
consist of such easily learnable patterns, neglecting such useful test statements is
also not ideal. It is more important that a benchmark establishes awareness of the
capability traits it is testing for.

For future work, we, therefore, encourage the reporting of more detailed char-
acteristics of benchmarks like their networks’ sparsity and bias a↵ection to make
acquired performance results more meaningful. We also recommend publishers of
new models to investigate their model’s performance in a critical manner and to try
to explain how performance results are reached. Creating awareness for the types of
test triples that get predicted more accurately than others, as we did in this study,
can provide deeper insights into the strengths and weaknesses of an LP model. It is
also our hope that our presented framework for characterizing bias in LP datasets
will continue to be refined and developed by future researchers, by adding new bias
types and metrics as explanatory factors for prediction results.
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[61] Théo Trouillon et al. “Complex Embeddings for Simple Link Prediction”. In: Proceedings
of The 33rd International Conference on Machine Learning. Ed. by Maria Florina Balcan
and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning Research. New York,
New York, USA: PMLR, 20–22 Jun 2016, pp. 2071–2080. url: https://proceedings.mlr.
press/v48/trouillon16.html.
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