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A B S T R A C T

Soundscape according to the definition in ISO 12913-1 describes an
acoustic environment as perceived by humans in context. In order to
be able to assess a soundscape holistically, the components acoustic
environment, person and context should be described sufficiently to
enable triangulation.

Person-based soundscape assessment has been the subject of ex-
tensive research over the past decades to date, leading to a good
understanding of the main emotional dimensions. On the acoustic
side, e.g., in modeling emotional responses by acoustic features, pa-
rameters describing loudness are widely used, also from the point of
view of legal regulations. These parameters are often complemented
by established psychoacoustic measures. However, it is unknown to
what extent these parameters are suitable to adequately describe and
compare acoustic environments for hypotheses concerning humans.

The presented dissertation aims to contribute to this field by means
of an exploratory, empirical, and data-based approach. First, the
general requirements of the aim – the description of acoustic envi-
ronments – are defined and accompanied with concepts and findings
from current research areas. Subsequently a methodology is developed
that allows for the identification of underlying acoustic dimensions
on the basis of empirical observational data of real world acoustic
environments by means of multivariate statistical methods. It con-
tains considerations on the physical sound field, the human auditory
system, as well as appropriate signal processing techniques. The
methodology is then applied to an exemplary extensive dataset of
various Ambisonics soundscape recordings. The resulting expressions
of the acoustic dimensions are evaluated and discussed with respect
to plausibility and perceptual consistency. Finally, two application
examples are presented to further validate the methodology and to test
the applicability of acoustic dimensions in concrete research scenarios.

It was found that the presented methodology is suitable to identify
dimensions for the description of acoustic environments. Furthermore,
the dimensions found form a suitable basis for further soundscape
analyses.

Keywords: soundscape, acoustic dimensions, auditory perception,
acoustic signal processing, multivariate statistical methods
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Z U S A M M E N FA S S U N G

Soundscape (nach ISO 12913-1) beschreibt eine akustische Umge-
bung, wie sie von Menschen im Kontext wahrgenommen wird. Eine
ganzheitliche Beurteilung einer Soundscape wird demnach durch
Triangulation der Aspekte akustische Umgebung, Person und Kontext
hergestellt.

Die personenbezogene Bewertung von Soundscapes war und ist bis
heute Gegenstand umfangreicher Forschungsarbeiten, die zu einem
weitreichendem Verständnis der wichtigsten emotionalen Dimensio-
nen geführt haben. Auf der akustischen Seite sind Parameter weit
verbreitet, die die Lautstärke beschreiben. Ergänzt werden diese Pa-
rameter oft durch etablierte psychoakustische Größen. Unbekannt
ist jedoch, inwieweit diese (psycho-)akustischen Parameter tatsäch-
lich geeignet sind, Soundscapes zu beschreiben und zu vergleichen
hinsichtlich den Menschen betreffender Hypothesen.

Hierzu soll diese Dissertation einen Beitrag leisten. Der dabei ver-
folgte Ansatz ist explorativ, empirisch und datenbasiert. Zunächst
werden Anforderungen an das Ziel – die Beschreibung akustischer
Umgebungen – definiert und mit Konzepten aus aktuellen Forschungs-
gebieten ergänzt. Anschließend wird eine Methodik entwickelt, die es
erlaubt, fundamentale akustische Dimensionen zu identifizieren auf
der Basis empirischer Beobachtungsdaten realer akustischer Umge-
bungen und mit Hilfe multivariater statistischer Methoden. Sie enthält
Überlegungen zum physikalischen Schallfeld, zur menschlichen Hör-
wahrnehmung sowie zu geeigneten Signalverarbeitungstechniken. Die
Methodik wird anschließend auf einen beispielhaften Datensatz von
Ambisonics Soundscape-Aufnahmen angewandt. Die resultierenden
akustischen Dimensionen werden hinsichtlich ihrer Plausibilität und
wahrnehmungsbezogenen Konsistenz diskutiert. Schließlich werden
zwei Anwendungsbeispiele vorgestellt, um die Methodik weiter zu
validieren und um die Anwendbarkeit der akustischen Dimensionen
in konkreten Forschungsszenarien zu testen.

Hierbei kann festgestellt werden, dass die gefundenen Dimensio-
nen einen hohen Grad an Varianz akustischer Umgebungen erklären
können und gut interpretierbar sind. Sie bilden somit eine geeignete
Grundlage für die hier dargestellte Analyse von Soundscapes. Die
Methodik ist dabei variabel erweiterbar, sodass vielfältige Anwen-
dungen und Forschungsarbeiten bzgl. akustischer Umgebungen er-
möglicht werden.

Schlagwörter: Soundscape, akustische Dimensionen, Hörwahr-
nehmung, akustische Signalverarbeitung, multivariate statistische
Methoden
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1
I N T R O D U C T I O N

The present work deals with the question of how acoustic environ-
ments can be described comprehensively in order to make them com-
parable and distinguishable. For that, a methodology is developed
that allows for the identification of underlying acoustic dimensions of
general acoustic environments. The aim of the method is to provide
dimensions that are manageable in number and plausible to interpret,
and that explain a high degree of variance with respect to the obser-
vation of general acoustic environments. If these requirements are
met, the dimensions are capable to describe acoustic environments for
various applications.

1.1 motivation

The motivation to engage in the research to describe properties of
acoustic environments in the scope of this thesis came up in the course
of an interdisciplinary research project “WEA-Akzeptanz” [1]. The
project aimed for the investigation and modeling of wind turbine
noise (WTN) throughout the entire signal path from the source of
origin within the turbine, blades and tower to a common wind turbine
sound source model to sound propagation over large distances from
the emission to the immission location up to the final perception
of human individuals in their everyday surrounding. In examining
the far end of this chain, namely the transition from immission to
perception, three fundamental questions emerged that contributed to
motivate this work:

• What acoustic properties are necessary and appropriate as input
parameters to model human perception and response to WTN
scenarios?

• What acoustic properties are critical to reproduce when mea-
suring perceptual responses in laboratory experiments in which
subjects are exposed to WTN scenarios?

• How can the respective acoustic environments be classified
and categorized to make generally valid statements, knowing
that WTN scenarios are variable, depending on wind farm size
and layout, immission site distance, wind speed and direction,
weather, and atmospheric conditions, among other factors?

A potential answer to all of these question would be to have a set
of unambiguous parameters that are capable to describe an acoustic
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2 introduction

environment in order to make it accessible. Such a set would be able to
transfer invisible sound and its characteristics as perceived by humans
into a quantifiable and representable domain.

Legal regulations on noise immission, e.g. due to wind farms,
usually set thresholds to variants of the sound pressure level (SPL),
which are supplemented by consideration of the spectral and tempo-
ral composition and the presence of distinct tones and information
content, such as in the German regulation on noise immission, the
“TA-Lärm” [2]. Of course these regulations are simplified in order
to make them applicable and legally compliant but at the same time
they provide measurable acoustic properties with respect to human
auditory perception. A review of scientific sources revealed another
picture, in which a wide variety of acoustic parameters are used to
investigate specific research hypotheses on human perception. How-
ever, a common agreement on a set of interpretable and unambiguous
acoustic parameters was missing there as well.

These reasons motivated the author of this work to dig deeper into
the topic, to collect methods and findings and finally to develop a
methodology to identify underlying acoustic dimensions for a com-
prehensive description of acoustic environments.

1.2 areas of application

The motivation above already indicates potential fields of application
of an agreed set of acoustic dimensions. Four examples are elaborated
in the following. First, a set of fundamental acoustic dimensions can
be used to compare acoustic environments in general in an exploratory
way. This can be employed for example in academia or public admin-
istration to give aggregated information on the acoustic properties of
environments. In the above example the proposed methodology could
be used to compare acoustic properties of WTN scenarios with urban
scenarios in order to adopt legal regulations for specific use cases.
Second, when causal relationships are studied in relation to acoustic
environments, a set of comprehensive descriptors is very useful. This
can be the case either when an acoustic environment is the result of
individual sound-emitting processes, or – as in the example above –
when consequences follow from the acoustic environment, such as
human responses. This research direction is also tied to the disci-
pline of auditory scene analysis (ASA), initially developed by Albert
S. Bregman [3], which investigates the human perception of com-
plex acoustic scenes by means of principles of the Gestalt psychology,
namely segmentation, integration and segregation of acoustic events.
Third, computer algorithms that are designed to predict specific out-
comes using data mining, machine learning, or artificial intelligence
methods can benefit if their input variables are already self-contained,
methodologically justified, and characterizing. Examples for that are
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disciplines such as the detection and classification of sound events and
scenes (AED, AEC, ASC) or the computational analysis of auditory
scene (CASA). Fourth, research on soundscapes, that is “the acoustic
environment as perceived by humans, in context” [4], can benefit
from the presented methodology in such that an objective and general
description of the acoustic environment is available for more complex
human-centered investigations as indicated in the first two examples
above.

1.3 outline

The proposed methodology is presented within in the following five
chapters, including the discussion of fundamental assumptions and
requirements, the development of methods, and their subsequent vali-
dation. In Chapter 2 the framework of soundscape is introduced and
necessary conceptual and physical aspects relevant for the proposed
methodology are derived from that. In Chapter 3 the methods for
the identification of underlying acoustic dimensions are developed
and applied resulting in a set of acoustic descriptors that are used for
describing acoustic environments. Subsequently these dimensions are
applied to concrete application examples aiming for steps of validation.
This consists of a perceptual evaluation (Chapter 4), an investigation
on ecological validity of reproduced acoustic environments (Chap-
ter 5) and an exemplary investigation of specific classes of acoustic
environments to make statements if the identified dimensions can
be generalized (Chapter 6). Finally, in Chapter 7 the results will be
summarized and discussed.





2
S O U N D S C A P E

Soundscape as understood nowadays is a multidisciplinary construct
that describes an acoustic environment that is perceived by humans
under the influence of general and personal context. The term was first
mentioned in the work of Southworth in 1969 [5] for describing how
the sonic environment influences the overall human experience and
perception of cities. The term became more widespread in and after
the work of Schafer in 1977 [6]. In it, observations of real soundscapes
are described, beginning with sounds of the classical elements of earth,
water, air, and fire, through sounds of the animal world, to man-made
sounds and complex sounds in acoustic environments of modern
urban coexistence, including the disruptive changes brought about by
the industrial and electrical revolutions. The observations did not only
refer to the pure physical-acoustic processes but always also to the
person-related view and effect of the respective acoustic environment.
From this compilation Schafer developed a first conceptual framework
of nomenclature, classification and assessment of soundscapes. After
that, the concept of soundscape entered various disciplines, including
studies on acoustical ecology (soundscape studies), urban planning
and architecture, music, and noise pollution[7]. The understanding
of evaluating acoustic environments holistically in order to be able
to make statements about them prevailed. An attempt to provide a
framework to assess all relevant aspects of soundscapes can be found
in [8]. A quite comprehensive collection of aspects of soundscapes
can be found in [9], wherein contributions of many renowned experts
in this field are gathered. The collaborative research on soundscape
eventually led to standardization, namely on the definition and basic
conceptual framework and nomenclature in ISO 12913-1:2014 [4], the
data collecting and reporting requirements in ISO/TS 12913-2:2019
[10] and the data analysis in ISO/TS 12913-3:2020 [11]. A fourth part
on guidelines for the assessment of soundscape investigation results
is currently proposed. These standards together with the underlying
scientific work form the basis for the scope of this thesis. Therefore,
the assumptions and requirements that are taken into account in this
work are discussed in the following sections.

2.1 conceptual framework

Soundscape as defined in ISO 12913-1 provides a framework to de-
scribe and assess the acoustic, human-related and contextual aspects
of acoustic environments. The acoustic environment itself, that is the
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6 soundscape

physical properties of a sound field, is present in this framework as
sound sources positioned in the three-dimensional space that are sub-
ject to sound propagation effects as well as room acoustical influences
(reflection, absorption, scattering). The acoustic environment is then
perceived by humans by means of psychophysical, specifically psy-
choacoustic processes and effects. The mere perception of an acoustic
environment is then fed to cognitive processes of interpretation and
comparisons to inner references in the auditory system. From that
emotional reactions arise that lead to manifold outcomes such as active
or passive consequences. The entire chain from sound emission to
emotional reaction is subject to contextual influence. For example, the
same acoustic environment can be interpreted differently dependent
on the time of the day or the current personal mood. Or similarly,
the emitted sound from the same sound source can propagate dif-
ferently depending on the season. A depiction of this framework is
shown in Figure 2.1 as an adaptation of [4]. The multidisciplinarity

Sound Sources

Outcomes

Acoustic
Environment

Context

Interpretation of
Auditory Sensation

Auditory
Sensation

Reactions

Figure 2.1: Conceptual framework of soundscapes, adapted from ISO 12913-1
[4].

of soundscape is also reflected by the suggestions for description and
assessment in ISO/TS 12913-3[11]. In order to increase validity of
a specific soundscape description, triangulation between the entities
acoustic environment, person and context is proposed. That means,
that certainty within one of these entities can be used to validate
the influence of another. However, the standard does not (yet) offer
concrete measures and procedures to describe all of the entities that
can be applied and accepted generally but rather provides method-
ological guidelines on how to approach this necessity. This work aims
to contribute to the valid description of one of these entities, namely
the acoustic environment which is explained more in detail in the
following.

2.2 acoustic environment

As indicated before, an acoustic environment is composed by sound
sources that are located at a specific, moving, and/or diffuse location
and whose sound emission is altered by propagation effects as well
as room acoustic influences until a mixture of sound waves arrives at
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a specific receiver position. An unambiguous and physically correct
description of this acoustic environment could be performed by cap-
turing the three-dimensional sound field at the receiver position in
a specific period of time. The sound field can be represented math-
ematically as P(θ, φ, r, ω) where the position of the receiver location
is denoted in spherical coordinates for radius r, azimuth φ, and incli-
nation θ at a given frequency ω = 2π f . The physical representation
of the sound field can be written as a series of spatio-temporal coef-
ficients pnm(r, ω) of directional basis functions as established in the
spherical harmonic decomposition (SHD) [12, 13]

P(θ, φ, r, ω) =
∞

∑
n=0

n

∑
m=−n

pnm(r, ω)Ym
n (θ, φ) (2.1)

with Ym
n (θ, φ) =

√
2n + 1

4π

(n − m)!
(n + m)!

Pm
n (cos θ)eımφ, (2.2)

where Ym
n (θ, φ) represents the spherical harmonic basis functions and

Pm
n the associated Legendre polynomials. Another representation

deduced from that is the superposition of incoming plane waves with
coefficients p̃nm as it is done in plane wave decomposition (PWD) [12, 13]

P(θ, φ, r, ω) =
∞

∑
n=0

n

∑
m=−n

p̃nm

(ω

c

)
bn

(ω

c
r
)

Ym
n (θ, φ), (2.3)

where bn
(

ω
c

)
denotes an appropriate radial function at the speed of

sound c. Mathematical frameworks, numerical approximations as well
as recording techniques of both procedures are well established in the
field of sound field analysis and synthesis and/or virtual acoustics
as we will see and use later in Section 3.1. Strictly speaking, however,
this representation of sound pressure is only valid for the specific
receiver position at a given time. Furthermore, it is difficult to derive
interpretations from it that reflect a human-centered evaluation of a
soundscape and is therefore only conditionally suitable for a general
description.

A different approach to describe an acoustic environment is the
use of semantic descriptors. ISO/TS 12913-2 provides guidelines
on how the acoustic environment of a specific soundscape should
be documented both semantically (e.g. sound sources, composi-
tion, foreground/background sounds, tonalities; weather/wind condi-
tions, time of year/day; place of reception, location within the place,
dwellings) and by means of accompanying acoustic measurements
(esp. sound pressure level (SPL) and their statistical quartiles). This
approach offers a high interpretability for the subsequent analysis
of correlations between properties of the acoustic environment and
human (emotional) responses, but on the other hand lacks objectivity
and reliability, since the characteristic of such a semantic description
is influenced by the respective investigator.
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The approach that is followed in this work aims to merge the benefits
of both approaches. The signal-based SHD or PWD representation of
the sound field is further analyzed to derive abstract information that
can be semantically interpreted. For this purpose, it is investigated
which acoustic properties are actually present in different acoustic
environments and which (combination of) properties can be made
responsible for the discrimination of acoustic environments.

2.3 acoustic and non-acoustic context

Although this thesis is concerned with the identification of dimensions
to describe general acoustic environments, a brief discussion of context
is given here for completeness. Context in the scope of soundscape
describes influences that change physical, psychophysical, and psy-
chological aspects of a soundscape on an intra- and interindividual
level, i.e., context can vary between individuals, but also, for example,
between times of day.

Physical context refers to influences that alter acoustic aspects and
might be also assigned to the general characteristic of the acoustic
environment according to Figure 2.1. Examples are wind and weather
conditions that influence sound propagation, time of the year regard-
ing background noise and sound absorption due to vegetation and
maybe even constructional aspects like opened windows and aspects
concerning the composition of a soundscape, e.g. the presence/ab-
sence of masking or background sounds such as fountains in public
places [14].

Personal context on the other hand describes how the personality
and experience of an individual influence their auditory perception
and especially interpretation and qualitative evaluation. Examples are

visual cues e.g. if a/the dominant sound source is visible,

experience with and attitude towards individual sound sources
and respective causes as well as entire acoustic environments,
e.g. large crowds or specific engine noises,

personal well-being including chronic impairments and physi-
cal complaints as well as current mood, fitness, sleepiness etc.,

activity while exposure, e.g. sleep, rest, leisure time, working
hours,

place of exposure, e.g. within the own housing space, in the gar-
den/on the balcony, at work, at public places,

expectation towards the acoustic characteristic.

All these aspects can influence the evaluation of an acoustic environ-
ment, for example if certain noise exposure is acceptable or not. A
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(a) (b) (c)

Figure 2.2: Context-sensitive soundscape using the example of a wind turbine
noise scenario. Perception of an isolated sound source (a), sound
source embedded in usual (acoustic) environment (b), change of
personal context from visitor to resident (c).

visualization of context-sensitive soundscape using a wind energy
noise scenario can be taken from Figure 2.2. The sound emitted from
a certain source (here: wind turbine) may isolated be perceived as
annoying by an individual due to its modulated and tonal character
and therefore causes disapproval (Figure 2.2a). However, if this domi-
nant sound source is embedded into its usual (acoustic) environment
with other sound sources present like that from an overland road or
agricultural activities as well as masking noise due to wildlife and
vegetation, the overall impression may change to a more positive or
indifferent reaction. This effect can be enhanced if the scenario is set
up in such a way that the subject visits the soundscape only for a
foreseeable time and can leave it again at any time (Figure 2.2b). If the
context is changed a second time by designing the scenario in such a
way that exactly the same acoustic environment is perceived in one’s
own home, the reaction may again turn into a negative or rejecting
direction (Figure 2.2c). It can be seen from this example that the
influence of physical and personal context may lead to a very different
perception and rating of valence. This finding also underlines the
recognition that identification of underlying acoustic dimension, as
sought in this work, is not sufficient to model emotional responses to
a particular soundscape, but rather can be used to objectively assess
the acoustic component of that soundscape.

2.4 capture & reproduction

An important aspect of soundscapes in the context of this thesis, but
also general to soundscape research, is how to record and store a
representation of one. We have learned that a soundscape is a vivid
construct that changes over time and between perspectives. Thus,
for reasons of documentation, suitable methods to retain the relevant
aspects of a soundscape must be applied. This documenting character
is even surpassed in its requirements if the recorded soundscape is
to be reproduced and, as far as possible, create the same auditory
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impression as the real-world reference. This applies in particular if
reproducible laboratory studies on perceptual and emotional aspects
of soundscapes are to be carried out. Various modern audio recording,
processing and reproduction techniques that can be used for this task
are discussed in this chapter.

The technical specification ISO/TS 12913-2 [10] recommends the use
of binaural recordings for the use of laboratory-based listening experi-
ments, preservation and archiving. Since the human auditory system
is trained to deduce all relevant acoustic information from one’s left
and right ear signals, this seems to be a straightforward approach. The
technology involves calibrated recording with an acoustic artificial
head that resembles an average human head (and torso), outer ear and
ear canal, with microphones placed at the location of the eardrum. The
recorded signals can be reproduced with calibrated headphones and
resemble a comparable auditory experience with high aural accuracy.
The technology of binaural recording, rendering and reproduction has
been developed over decades [15, 16, 17, 18] and is subject to current
research of various aspects including modeling of binaural hearing
[19], measurement [20], modeling [21] and individualization [22] of
head-related transfer functions (HRTF), binaural reproduction with
differing room acoustic properties [23] and applications in virtual and
augmented reality scenarios [24]. However, binaural recordings suffer
from certain drawbacks: (1) The recording is directional static, that
means a head movement during reproduction with headphones leads
to an implausible moving/rotating soundscape which can only be
overcome with dynamic rendering of virtual acoustic environments.
(2) There is a potential mismatch between the shape of head and pinna
of the dummy head and the subject who listens to the reproduction
which leads to incorrect reproduction of the HRTF and thus coloration
and/or localization errors. (3) Reproduction of binaural recordings
must – with few exceptions – be reproduced with headphones which
alters at least the personal context of subjects between real-world
reference and reproduction.

These drawbacks can be reduced or even overcome when micro-
phone array recordings are conducted. These are usually based on the
description of the three-dimensional sound field by means of spherical
harmonic decomposition (SHD) and/or plane wave decomposition
(PWD) as previously elaborated in Eqs. (2.1) and (2.3). A technical ap-
proach to transfer the mathematical fundamentals into a manageable
signal representation is called Ambisonics. This technology has also
been developed over many decades [25, 26] up to now in order to op-
timize technological properties towards perceptual validity, including
microphone array engineering [27, 28], Ambisonics encoding schemes
[29], signal processing of spatial optimization and manipulation [30],
and rendering or decoding schemes that can be applied for both, head-
phones reproduction [31] and multichannel loudspeaker systems [32].
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Due to its versatility and commercial availability, Ambisonics provides
good possibilities for soundscape recordings for both documentation
and reproduction purposes. However, as stated in ISO/TS 12913-2,
there does not yet exist standardized procedures for calibrating the
recording and reproduction stages for a fully auditory correct signal
path, which is why this point is left up to the individual investigator.

Both technologies, binaural and Ambisonics recording and render-
ing are used in manifold soundscape studies. A review on record-
ing techniques, including stereo, binaural, first- and higher-order
Ambisonics (FOA, resp. HOA) can be found in [33]. It also pro-
vides an overview on reproduction techniques with loudspeakers and
headphones as well as methodological thoughts. The project “Urban
Soundscapes of the World” [34] uses a combined method of binaural
and FOA recording for investigations on the general technological
methodology [35]. Binaural recordings were exemplarily utilized for
psychoacoustic analysis in [36] or for the use in augmented reality ap-
plication within the project “I Hear NY4D” [37]. A hybrid capture
of Ambisonics, binaural and additional mono signals is proposed in
the project “Soundscape Indices (SSID)” [38] which also investigated
the difference between binaural and mono reproduction [39]. Am-
bisonics recording and reproduction was used for example in [40] in
order to retreive emotional dimensions that were developed on basis
of field studies, so called sound walks. There exist a mentionable
body of freely available Ambisonics and binaural recording databases
for arbitrary use for other research groups, such as the “Eigenscape”
database [41], the “Ambisonics Recordings of Typical Environments”
(ARTE) database [42], the bespoken “Urban Soundscapes of the World”
database [34] or the binaural “TAU Urban Acoustic Scenes 2020” [43].
A more detailed overview of available datasets is conducted in Sec-
tion 3.2. An important aspect of reproducing soundscape recordings
for the use of listening experiments is the question of ecological valid-
ity, i.e. if the reproduction yields acoustic and potentially non-acoustic
properties comparable to the real-world reference. Investigations on
this were carried out in [44, 45, 46] as well as by the author of this
thesis in [47]. Another investigation on the comparability of emo-
tional responses between stereo reproduction in an online listening
experiment and Ambisonics reproduction in an respective laboratory
experiment was carried out in [48]. General considerations about
audio reproduction in uncontrolled internet surveys are given in [49],
to which the author contributed. From the above references it can be
summarized that the use of both Ambisonics and binaural reproduc-
tion are viable methods for investigating human emotional responses
on soundscapes if the technological signal chain – from recording to
processing to reproduction – is treated with the necessary care in-
cluding calibration and equalization of headphones and loudspeaker
systems.
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2.5 perception & assessment

The assessment of perception and emotional response is the key factor
in soundscape research. The framework, concepts, and technological
background described above and in the respective ISO/TS 12913-
1/2/3 have their main purpose in gaining a better understanding of
how acoustic environments affect mood and well-being of individuals.
This is also reflected in the fact that there is an extensive body of re-
search literature on this subject which can not be covered in its entirety
at this point. However, some major developments, methodologies and
findings are to be discussed here.

An important field of research was (and is) the identification of
perceptual dimensions when human beings evaluate soundscapes, i.e.
what categories or descriptors would they use to describe an acoustic
environment. Research on that includes the method to provide a multi-
tude of semantic descriptors to subjects while exposed to soundscapes
whose rated results are subsequently aggregated to latent perceptual
dimensions as proposed in 1981 by Russell, Ward, and Pratt for gen-
eral environments in [50] and performed in the scope of soundscapes
in [51, 52, 53, 54, 55]. The findings from these and other contributions
led to the definition of a two-dimensional model of affective quality in
soundscape evaluation in ISO/TS 12913-3 [11], namely pleasantness
and eventfulness. These two dimensions on perpendicular axes span
a space where human evaluation of soundscapes can be located as
seen in Figure 2.3. The standard also provides a methodology and

eventful

uneventful

pleasantannoying

monotonous calm

chaotic vibrant

Figure 2.3: Affective qualities of soundscapes according to ISO 12913-3 [11]

questionnaire template to assess these dimensions which will be used
later in Section 4.4. A further discussion of how emotions are not only
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a result of soundscapes, but are themselves fed back into the chain of
perception, interpretation, and response is presented in [56].

The semantic descriptors and dimensions of responses is one part
of understanding the effects of soundscapes. The other part is the
respective acoustic and/or non-acoustic cause that leads to such judg-
ment. There have been various attempts to model affective qualities
with acoustic indicators, without any particular approach being able
to remove all ambiguities so far. It seems to be confirmed that – beside
the situational context of exposure – loudness plays an important role
which is also reflected in many legal regulations. Further psychoacous-
tic measures can be taken to refine prediction models as suggested
e.g. in [36]. A thorough overview of modeling attempts and methods
can be found in [57], whereas a review on potential acoustic and
psychoacoustic indicators can be found in [58].

Furthermore, in [59, 60] the author has proposed a methodology
for the capturing and reproduction of wind turbine noise scenarios in
laboratory experiments and contributed to perceptual assessment of
these scenarios in the same project scope [61, 62, 63, 64].





3
M E T H O D O L O G Y O F S O U N D S C A P E
F I N G E R P R I N T I N G

In this chapter the fundamental methodology of the presented work
is rolled out, developed and applied. It consists of the discussion of
appropriate acoustic indicators, databases of soundscape recordings,
the identification of the underlying acoustic dimensions by means of
multivariate statistical methods and consideration how to assess them.

Conceptual parts of the following chapter have already been pub-
lished in parts by the author in [65, 66].

3.1 signal-based indicators

In the scope of this work, the description of an acoustic environment
as part of a soundscape aims for distinction. That means that relevant
information are to be provided in such a way that shared and diverg-
ing properties of the respective acoustic environments become not
only visible but also interpretable from a human-centered perspective.
For its development, a wide variety of signal-based acoustic metrics,
hereafter referred to as indicators, form the basis for this description.
To motivate the classification and the selection of appropriate indi-
cators, a naïve semantic description of an acoustic environment will
serve as an example:

Example. I’m sitting in an office at home. I hear the ticking of a clock in the
room. The baby in the apartment above me is crying. Outside my window,
cars pass by frequently. From far away, I sometimes hear the siren of an
emergency vehicle.

This description is probably quite meaningful and it is not difficult
to put yourself in this acoustic situation. However, this description
contains several assumptions and background information that are
personally learned from previous similar experience but that are criti-
cal for the correct classification and interpretation of the descriptive
example. Thus, an analogue technical description of the above would
not be feasible without further information processing. A technically
understandable description of the same environment, on the other
hand, could be as follows:

Example. The position of the receiver is located in a fairly quiet indoor
room of small dimensions and low reverberation time. A localizable, steady,
quiet, and transient noise can be noticed in a very regular temporal succes-
sion. Another, elevated and band-limited sound with tonal and noise-like
components modulates in level and spectrum in an irregular temporal slope.

15
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Loud, low-frequency harmonic sounds with spatial movement and coherent
increase and decrease of level occur irregularly on average two times per
minute. Spatially diffuse, alternating tonal sounds in the musical interval of
a fourth with apparent Doppler effect can be noticed on average once every
20 minutes.

This second description contains signal parameters which may be
generated, calculated and analyzed by means of acoustical signal
processing but whose assessment and interpretation is not easily
human-readable anymore without having the original description at
hand. However, it paves the way for quantifiable and objective de-
scription and comparison. A detailed analysis of the used technical
terms reveal that information is provided that refer to the spectral
properties of sound sources (noise-like, band-limited, low-frequency
harmonic, tonal), as well as the loudness or level (quiet, increase of
level, loud), spatial orientation (localizable, elevated, spatially diffuse),
and temporal succession (very regular, irregular, two times per minute,
once every 20 minutes) and finally information on the general room
acoustical and environmental aspects (quiet, indoor, low reverbera-
tion). A description like this can be used as the basis for general
a-priori categories for acoustic environments, namely quality (in the
following referred to as Q), loudness (L), spaciousness (S) and time (T).
The category quality must not be confused with valence but represents
characteristics, that helps human beings to identify sound sources,
such as information on timbre and spectral composition as well as
short time temporal succession. Loudness includes information on the
total number, distance and level of simultaneous sound sources as
well as on the acoustic ambience while spaciousness represents general
location and envelopment of the sound sources. The category time
includes information on how often and how long a sound event occurs
and if individual properties are changing over time or stay constant.
In order to find appropriate signal-based acoustic indicators that are
capable to represent these categories, relevant research areas to pro-
vide potential metrics were identified such as soundscape studies [10,
58], music information retrieval (MIR)[67], acoustic event detection
(AED), acoustic event classification (AEC), acoustic scene classification
(ASC)[68], acoustic scene analysis (ASA), or bioacoustics [69]. All of
these disciplines provide metrics that were found to be suitable for the
respective field of research hypotheses. Research attempts to model
sound and noise quality and perception for example often rely on A-
and C-weighted sound pressure levels or conventional psychoacoustic
measures such as loudness, sharpness, roughness and fluctuation.
The computational detection and classification of acoustic events and
scenes often include parameters like short-time spectrograms or Mel-
frequency cepstral coefficients (MFCCs). In bioacoustics e.g. specific
characteristics of the time-frequency spectrogram are used to detect
sounds of wild life (e.g. bird singing) or human-generated sounds
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which is used to formulate metrics on the bioacoustic complexity or
richness.

As mentioned above, each discipline has developed its specific set
and use of acoustic indicators which often have a common founda-
tion but differing parametrization and interpretation. In the scope of
this thesis these works were considered and indicators were selected
that are widely established. The resulting selection for quality indica-
tors can be found in Tables 3.1, loudness indicators in Table3.2, and
spaciousness indicators in Table 3.3 respectively each listing the indi-
cator’s expected value range, signal basis, scientific or standardized
reference and computational implementation.

Table 3.1: Acoustic indicators for a-priori category quality with respective
information on value range, signal basis, reference and implemen-
tation.

Indicator Range Unit Signal Ref. Impl.

Roughness [0,1]
(lin)

Asper mean
binaural (FB)

[70, 71] [72]

Sharpness [0,20]
(lin)

Acum mean
binaural

[70] [72]

Fluctuation Strength [0,1]
(lin)

Vacil mean
binaural (FB)

[70] [72]

Periodic Modulation Fre-
quency

[0.1,100]
(lin)

Hz mean
binaural (FB)

Own cf. C

Periodic Modulation
Depth

[-10,10]
(lin)

None mean
binaural (FB)

Own cf. C

Stochastic Modulation
Depth

[-10,10]
(lin)

None mean
binaural (FB)

Own cf. C

Spectral Centroid [80,12000]
(log)

Hz mean
binaural

[73] [72]

Spectral Spread [0,1000]
(lin)

Hz mean
binaural

[73] [72]

Spectral Skewness [0,1]
(lin)

None mean
binaural

[73] [72]

Spectral Kurtosis [0,10000]
(lin)

None mean
binaural

[73] [72]

Spectral Entropy [0,1]
(lin)

None mean
binaural

[74] [72]

Spectral Flatness [0,1
(lin)

None mean
binaural

[75] [72]

Spectral Crest Factor [0.1,500]
(log)

None mean
binaural

[73] [72]

Spectral Flux [1e-12,1e-1]
(log)

None mean
binaural

[76] [72]

Continued on next page
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Table 3.1 – continued from previous page

Indicator Range Unit Signal Ref. Impl.

Spectral Slope [-1e-6,1e6]
(lin)

None mean
binaural

[67] [72]

Spectral Derease [-10,1]
(lin)

None mean
binaural

[73] [72]

Spectral Rolloff Point [0.1,8000]
(log)

Hz mean
binaural

[76] [72]

Octave Band Energy [-120,0]
(lin)

dB mean
binaural

[77] [72]

Mel Frequency Cepstral
Coefficient

[-100,100]
(lin)

None mean
binaural

[78] [72]

Timbral Booming [-20,20]
(lin)

None mean
binaural

[79] [80]

Table 3.2: Acoustic indicators for a-priori category loudness with respective
information on value range, signal basis, reference and implemen-
tation.

Indicator Range Unit Signal Ref. Impl.

Loudness (Zwicker) [0.01,100]
(log)

Sone pressure (FB) [71] [72]

Loudness (Moore-
Glasberg)

[0.01,100]
(log)

Sone pressure (FB) [81] [72]

Loudness units relative
to full scale (momentary)

[-80,0]
(lin)

LUFS pressure (FB) [82, 83] [72]

Loudness units relative
to full scale (short-term)

[-80,0]
(lin)

LUFS pressure (FB) [82, 83] [72]

Loudness units relative
to full scale (integrated)

[-80,0]
(lin)

LUFS pressure (FB) [82, 83] [72]

Loudness units relative
to full scale (integrated)

[-10,10]
(lin)

LU pressure (FB) [82, 83,
84]

[72]

True Peak [-10,10]
(lin)

LU pressure (FB) [83] [72]

LA [0,120]
(lin)

dB pressure (FB) [85] [72]

LA,eq [0,120]
(lin)

dB pressure (FB) [85] [72]

LA,peak [0,120]
(lin)

dB pressure (FB) [85] [72]

LA,max [0,120]
(lin)

dB pressure (FB) [85] [72]
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Table 3.3: Acoustic indicators for a-priori category spaciousness with re-
spective information on value range, signal basis, reference and
implementation.

Indicator Range Unit Signal Ref. Impl.

Horizontal direction of
arrival

[-180,180]
(lin)

degree ambisonic
(FB)

[86] [87]

Longitudinal direction of
arrival

[-90,90]
(lin)

degree ambisonic
(FB)

[86] [87]

Diffuseness [0,1]
(lin)

ambisonic
(FB)

[86] [87]

Interaural level differ-
ence

[-30,30]
(lin)

dB binaural (FB) [16] [19]

Interaural time difference [-1,1]
(lin)

ms binaural (FB) [16] [19]

Interaural cross correla-
tion

[0,1]
(lin)

binaural (FB) [16] [19]

Spherical Directivity In-
dex

[0,20]
(lin)

dB pressure (FB) [88],
Own

cf. C

Vertical Directivity Index [0,20]
(lin)

dB pressure (FB) [88],
Own

cf. C

Horizontal Directivity In-
dex

[0,20]
(lin)

dB pressure (FB) [88],
Own

cf. C

Spherical Pressure Ratio [-40,0]
(lin)

dB ambisonic
(FB)

Own cf. C

For this work, each indicator is calculated as time series for over-
lapping frames of 100 ms each and hop size of 50 ms to respect both
time-integrating behavior of the human auditory model [16] and time-
variance of acoustic scenes. It is recognized here that there may be
acoustic events and psychoacoustic effects that are difficult to detect
with this temporal resolution. At the same time, averaging through
large analysis windows contributes to the increased robustness of the
results against statistical and measurement noise. Furthermore, the
majority of indicators is calculated frequency-dependent. For that,
the broadband signals are filtered using ten octave filters with center
frequencies given in Table 3.4 and indicators are calculated for each
octave band individually. Again, this spectral resolution is not suf-
ficient to separate the filter bands of human hearing or the spectral
composition of individual sound sources. However, it offers the possi-
bility to detect a general and interpretable frequency dependence of
the acoustic indicators.

The indicators themselves are based on one of three signal represen-
tations of the same acoustic environment: The quality and loudness
indicators may be calculated either from a monophonic pressure rep-
resentation or from a binaural signal, while the spaciousness indica-
tors require a binaural and spherical harmonic (Ambisonics) signal
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Table 3.4: Frequency limits in Hz of analysis bands.

ID 0 1 2 3 4 5 6 7 8 9

fc 31 62 125 250 500 1000 2000 4000 8000 16000

representation of the three-dimensional soundfield. The latter two
representations incorporate spatial information of an acoustic envi-
ronment such as the location of sound sources or the envelopment of
sound. The signal representations used for calculating the individual
indicators can be taken from the column “Signal” in above tables
where an additional “(FB)” denote calculation in frequency bands. In
order to maintain consistency and to reduce data complexity, all three
representations stem from the same recording of a specific acoustic
environment. For that, microphone array recordings are necessary
that can be transformed into the spherical harmonic domain as it is
established in Ambisonics encoding and rendering [12]. The order of
the ambisonic recordings generally determine the spatial confidence.
However even first-order Ambisonics (FOA) recordings are suitable
for the analysis in this work. The binaural representation is derived by
convolution with appropriate head-related transfer functions (HRTF)
[89] as it is established in [30, 90]. The monophonic sound pressure
representation on the other hand is proportional to the 0th-order
Ambisonics component [86].

3.2 soundscape databases

The presented approach to identify underlying acoustic dimensions
of soundscapes is data-based, that means that the potential findings
are not theory-driven but stem from (real world) observations in the
form of soundscape microphone recordings. Of course, the results are
not developed without any prior knowledge and assumptions, as the
compilation of indicators has shown previously. Thus, the underlying
database for the statistical analysis was also chosen carefully to fulfill
certain requirements. First, the database determines the soundscape
population in statistical terms and underlying acoustic dimension
deduced from that are strictly only valid for samples of this population.
From these assumptions comes the requirement that the database itself
must cover as wide a range of acoustic environment classes as possible,
including indoor and outdoor scenarios, urban and rural, noisy and
quiet, etc. The presence of sound source classes according to ISO/TS
12913-2, namely sounds of technology, human and nature, should
also be ensured with similar frequency. Technical requirements are
Ambisonics recording of first or higher order with sufficient quality (at
least 44.1 kHz @ 16 Bit). In order to calculate correct level and loudness
indicators, certain information on calibration should be provided,
either in the form of microphone sensitivity, gain and A/D conversion
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or, preferably, as separate sound pressure level reference measurement
e.g. as LAeq either time-dependent or for an entire recording. There
exists a surprisingly large body of soundscape recordings, that fulfill
parts or all of the mentioned requirements. Table 3.5 shows a selection
of potential databases without claiming to be complete. The first three

Table 3.5: Potential soundscape databases.

Name Soundscape classes Domain Quant. Total Length

EigenScape [41] beach, busy street,
park, pedestrian zone,
quiet street, shopping
centre, train station,
woodland

HOA 64 640 min

ARTE [91] library, office, church,
living room, café, din-
ner party, street, train
station, food court

MOA 13 29 min

Soundfield by
Røde Ambisonic
Sound
Library [92]

indoor crowd, play-
ground, car, foyer, li-
brary, mall, market,
metro, street, steam
train, traffic, train sta-
tion

FOA 35 / 237 137 min

Urban
Soundscapes of
the World [34]

urban FOA 130 130 min

I Hear NY4D [93,
37]

urban FOA 6 N/A

Mhacoustics
demos [94]

music, wild life, in-
door, crowd,

HOA 8 N/A

TAU-NIGENS
Spatial Sound
Events 2020 [95]

various single sound
events

FOA
(synth.)

800 800 min

TAU Urban
Acoustic Scenes
2020 [43]

airport, indoor shop-
ping mall, metro sta-
tion, pedestrian street,
public square, street
with medium level of
traffic, urban park

binaural N/A 2400 min

TUT
Database [96]

bus, cafe, car, city, for-
est, store, home, lake-
side, library, station,
office, train, tram,
park

binaural 1170 585 min

databases, namely the Eigenscape, ARTE, and Soundfield Library are
utilized for the development of the acoustic dimensions. The reasons
for this is mainly a balanced selection of soundscape classes without
any class being overly represented (especially urban soundscapes).
The selection also ensures a wide range of Ambisonics order from first-
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order (Soundfield), to 4th-order (EigenScape) to 4th-/7th-mixed-order
(ARTE).

3.3 determining underlying dimensions

3.3.1 Concept of Factor Analysis

The idea pursued in this work is that the multitude of indicators con-
tain information describing the properties of an acoustic environment
that are relevant when a human being perceives and contextualises
the same environment. Just as humans can classify their environment
acoustically on the basis of their two ear signals, a procedure is now
to be developed here that provides an abstract construct for the de-
scription and identification of acoustic environments on the basis of
the indicators presented in the previous section. In other words, it is
assumed that the observed indicators above are realizations of certain
underlying acoustic dimensions that characterize an acoustic scene or
environment. These assumptions allow the application of exploratory
factor analysis (EFA; hereafter referred to as FA for convenience) [97]
as schematically depicted in Figure 3.1. Similar to the related prin-

l11 l12
l21

l22

l23
l...3

l...

Factor1 y1 Factor2 y2 . . .

ϵ1 ϵ2 ϵ3 ϵNi

Indicator1 x1 Indicator2 x2 Indicator3 x3 . . .

Figure 3.1: Concept of Factor Analysis with loadings lij and unique vari-
ances ϵi.

ciple component analysis (PCA), FA can be used here to aggregate
data variances (and thus information) by transforming the observed
indicator time series from an original space into an optimized space of
latent dimensions. The methodological differences between PCA and
FA concern the perspective: while PCA assumes that the observed
indicators constitute the ground truth, which in turn can be described
by principal components, FA implies that the (hidden) latent factors
constitute the ground truth and the observed indicators are more or
less arbitrary realizations of it. In mathematical terms FA can thus be
described in a generative way as

X = LY + ϵ , (3.1)

where X is the matrix of indicator observations of dimension [Ni ×
No] (Ni: number of indicators; No: number of observations), L a
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specific loading matrix of dimension [Nf × Ni] (Nf: number of factors)
and according latent factor scores Y of dimension [Nf × No] and ϵ a
diagonal matrix of unique variances.

The conceptual difference between FA and PCA becomes relevant
if the amount of explained variance is investigated. It is generally
assumed that in FA the variance of each indicator is made up by two
types, common and unique variance. It is further assumed that the
common part of the variance is also observable in other indicators
and thus originates from one factor. The unique variance ϵ refers
directly and exclusively to the indicator itself and consists of the
specific variance of the indicator plus an error term. The theoretical
background of PCA assumes that the unique variance equals zero and
the total variance of the indicator remains in the model. Thus, PCA
can be seen as special case of the general factor analysis. The factors in
FA on the other hand only express the common part of variance of the
observed indicators. That means in practice that each indicator may
inhibit portions of specific variance ϵs as well as measurement and
analysis noise ϵn which both are not included in the factors as denoted
in Figure 3.1 with ϵi = ϵsi + ϵni. Hence, we allow the indicators to
be imperfect realizations of the factors which relaxes the necessary
requirements of the indicators.

Except for the input matrix X , all terms on the right side of the
generative equation of FA in (3.1) are unknown, however, certain
assumptions are met. The factors are uncorrelated which leads to
Cov(Y ) = I where Cov denotes the covariance matrix and I the
identity matrix. Further Y and ϵ are independent from each other and
the mean or expectation of the factor scores is zero E(Y ) = 0. With
these assumptions it can be shown that

Cov(X) = Cov(LY + ϵ) (3.2)

= LCov(Y )LT + Cov(ϵ) (3.3)

= LLT + Cov(ϵ) . (3.4)

With ϵ = O in PCA, this equation can be solved by means of eigenvec-
tor decomposition of the covariance matrix of the observed indicators.
In general FA, it is solved by means of an iterative estimation that min-
imizes the unique variance ϵ using maximum likelihood as formulated
in [98, Ch. 21.2] and implemented in [99].

The loading matrix comprises the individual weights of each indica-
tor into each factor

L =


l11 l12 · · · l1Ni

l21
. . . . . .

...
...

. . . lji
...

lNf1 lNf2 · · · lNf Ni

 . (3.5)

The vertical squared sum over rows, i.e. among factors, yields the
communalities h2

i of the indicators. This metric represents the amount



24 methodology of soundscape fingerprinting

of the initial indicator’s variance that is explained by the identified
factors

h2
i =

Nf

∑
j=1

l2
ji . (3.6)

In PCA h2
i = 1 for all indicators if summed over all principle

components. The sum over columns, i.e. among indicators, yields the
sum of square loadings (in PCA: eigenvalues of covariance matrix) or
explained variance of a certain factor

s2
j =

Ni

∑
i=1

l2
ji . (3.7)

This measure indicates the weight of a particular j-th factor, which
is important when deciding which factors to retain. Dividing L by
the respective explained variances yields the relative Loading Lrel (in
PCA: eigenvectors of covariance) that includes the assignment of the
indicators to the respective factors and represents the direction of the
transformation

Lrel = L · diag{s}−1 . (3.8)

In order to apply FA to indicators of different scales and units,
preprocessing of the initial indicator vectors must be applied. For that,
an interval range of expected values was defined for each indicator and
scaling was applied accordingly to derive relative values within this
interval. Since FA is only capable of identifying linear relationships,
non-linear indicators must also be treated accordingly. Ratio-scaled
indicators with reference to frequency/Hz are converted to frequency
in octaves relative to 10Hz to regard the logarithmic behavior of
auditory pitch perception. Conversions and expectation intervals for
each indicator can be taken from Tables 3.1, 3.2, and 3.3. Finally, a
z-standardization was applied to each indicator, that means removal
of the mean and normalization to unit variance.

Pure FA produces mutually independent (uncorrelated) factors
where the first factor includes maximum variance. However, this
might result in a loading matrix that is difficult to interpret. In these
cases, a further rotation of the loading matrix L aims for a simple
structure with few high loadings and many low loadings. In this
work the orthogonal rotation method varimax was chosen to preserve
uncorrelated factors while increasing interpretability.

3.3.2 Identification of Underlying Acoustic Dimensions

The previously explained multivariate method of factor analysis is
subsequently applied to the soundscape recording databases de-
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scribed in Section 3.2. The raw indicator time series were scaled
to its predetermined value range and further normalized by means
of z-standardization. In order to reduce transient effects within the
calculation of the indicators, the first and last 5 seconds of each time
series were excluded from further processing. Finally, the input ma-
trix X consists of No = 903, 753 observations of Ni = 304 indicators.
Even though the choice of varimax-rotated factor analysis was made
thoroughly, initially all four potential methods, namely PCA and
FA each with and without rotation, were calculated to keep the ex-
ploratory characteristic of the overall investigation. Figure 3.2 shows
the progress of the cumulative explained variance for these four cases.
It shows the maximum amount of the explained common variance in
FA of 72.62 % which means that 27.38 % of all indicator’s variance is
unique (specific variance + error). The influence of the varimax rotation

0 50 100 150 200 250 300
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∑
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/
%

PCA PCA varimax FA FA varimax

Figure 3.2: Comparison of cumulative explained variance of the pure and
varimax-rotated PCA and FA.

(dashed lines) becomes visible and especially in PCA the difference
to the unrotated method is distinct. An important analysis step is
the choice of how many factors or principle components to retain
as being relevant. The goal is to maintain a manageable number of
factors that allow for meaningful interpretation and can be used to
describe a data set at the same time. One approach for this task is
to keep all factors with variance larger than the variance of a single
indicator. Since we normalized all indicators to unit variance, this
means all factors with sj ≥ 1 should be kept. This method is called
the Kaiser rule [100] and has some drawback since the number of
retained factors is high and the distribution of explained variance
is neglected. Another method is to visually analyze the scree plot,
which depicts the explained variance as line plot. The factor at which
a “knee” or an “elbow”, i.e. a significant change in slope, is observed
is selected as the limit value. Exemplary scree plots are shown at the
top of Figures 3.3 and 3.4. The knee is visible at the second factor
(factor 4) which would result in a single factor to retain and may
be insufficient to characterize the dataset at all. A third method is
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the parallel analysis [101] which takes the overall slope of explained
variances into account and is based on a Monte-Carlo simulations
of random data of the same size. It is assumed to be a more robust
method for deciding how many factors to retain and is utilized in
this work. Table 3.6 shows the result for the Kaiser criterion next to
parallel analysis for all four applied methods. We find that the eight

Table 3.6: Number Nf,r of relevant factors (FA) or principle components (PCA)
according to Kaiser criterion and parallel analysis.

Kaiser criterion Parallel analysis

Nf,r ∑
Nf,r
j=1 s2

j Nf,r Ni,r ∑
Nf,r
j=1 s2

j

PCA 55 245.20
(80.66 %)

7 108 163.62
(53.82 %)

PCA varimax 85 244.61
(80.46 %)

7 104 149.80
(49.28 %)

FA 21 192.77
(63.41 %)

7 189 158.52
(52.14 %)

FA varimax 28 196.62
(64.68 %)

8 114 156.22
(51.39 %)

most relevant factors in varimax-rotated FA explain 51.39 % of the total
variance. This is only a moderate result, however given the large
number of samples it is a good tradeoff between number of factors
and variance explained. The following analysis will then be based on
the eight most relevant factors of the varimax-rotated factor analysis.
This information will be omitted in the following. A direct effect of
the varimax rotation can be observed if the number of indicators Ni,r is
observed, that is necessary to describe >50 % of all relevant factors.
In the case of FA this number decreases from 189 to 114, while the
explained variance remains almost equal (52.14 % to 51.39 %). From
that follows that a smaller number of indicators is capable to explain
the same amount of variance and thus makes it easier to interpret
a factor. The interpretation of a factor depends largely on the com-
position of indicators that are loaded from it. A first analysis of the
composition can be found in Figure 3.3. At the top plot the explained
variance of the relevant factors is depicted. The bottom plot provides
an overview of the loading matrix between all 304 indicators and the
eight factors. For better visibility, the indicators are ordered in the
categories loudness, quality and spaciousness. Certain patterns and
regularities can be observed as well as the fact that there are factors
that include most indicator loading within a certain indicator category.
As a further analysis and processing step, a so called 50 % filter was
applied to the factor composition. That means that only those most
prominent indicators are kept whose cumulative variance makes up
at least half or 50 % of the respective factor’s variance. The result of
this filtered loading matrix is depicted in Figure 3.4 and stands in
comparison to Figure 3.3. Further, a more detailed analysis of the
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Figure 3.3: Scree test of explained variance (top) and schematic distribution
of indicator loadings for the first eight relevant rotated factors
(bottom).
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Figure 3.4: Scree test of explained variance and schematic distribution of
cleaned indicator loadings for the first eight relevant rotated
factors.
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factor composition is provided in Table 3.7.

Table 3.7: Indicator composition the first eight relevant rotated factors j with
respective explained variance s2

j and relative loadings lrel,ij in paren-
theses. Trailing numbers of the indicators denote the frequency
bands. Ni,j denotes how many of the total number of indicators
account for ≥51 % of the factor’s explained variance.

Factor j s2
j Ni,j Indicators

1 87.77
(28.9%)

48 loudnessZwicker(0.106), loudnessZwickerBands04(0.105),
loudnessZwickerBands05(0.105), loudnessZwicker-
Bands03(0.105), LA(0.104), LAeq(0.104), LAeqBands03(0.104),
LABands03(0.104), LAeqBands05(0.104), LABands05(0.104),
lufsMomBands03(0.104), LABands04(0.104), LAe-
qBands04(0.104), lufsPeakBands03(0.103), lufs-
MomBands05(0.103), lufsMomBands04(0.103),
lufsPeakBands04(0.103), lufsPeakBands05(0.103),
LAmaxBands03(0.103), oct06(0.103), LApeakBands03(0.103),
oct05(0.103), oct04(0.103), lufsShortBands03(0.103),
lufsShortBands04(0.103), lufsShortBands05(0.102),
lufsMom(0.102), LAmaxBands04(0.102), loudnessZwicker-
Bands06(0.102), LAmax(0.102), LAmaxBands05(0.102),
mfcc00(0.102), LApeakBands04(0.102), lufsShort(0.102),
LApeakBands02(0.101), lufsPeak(0.101), LAe-
qBands02(0.101), LABands02(0.101), LApeakBands05(0.101),
LAmaxBands02(0.101), LApeak(0.101), loudnessZwicker-
Bands02(0.100), oct07(0.100), LABands06(0.100), LAe-
qBands06(0.100), lufsPeakBands06(0.100), lufsMom-
Bands06(0.100), lufsMomBands02(0.098)

4 16.77
(5.5%)

11 sphDI07(-0.226), sphDI06(-0.225), sphDI05(-0.224),
sphDIEl07(-0.223), sphDI08(-0.218), sphDIEl05(-0.216),
sphDIEl08(-0.215), sphDIEl04(-0.209), sphDI04(-0.207),
sphDIEl06(-0.196), sphDIAz06(-0.195)

2 12.92
(4.3%)

15 spectralCentroid(0.242), spectralEntropy(0.238),
spectralRolloffPoint(0.236), spectralCrest(-0.210),
spectralSkewness(-0.183), oct01(-0.175), lufsPeakBands00(-

0.173), spectralSpread(0.173), lufsMomBands00(-0.170),
lufsShortBands00(-0.165), spectralFlatness(0.165),
oct02(-0.164), LABands00(-0.159), LAmaxBands00(-0.157),
LAeqBands00(-0.157)

15 11.23
(3.7%)

15 mfcc01(-0.231), sharp(0.213), lufsMomBands09(0.196),
lufsPeakBands09(0.189), LABands09(0.186), lufsShort-
Bands09(0.184), LAeqBands09(0.183), LAmaxBands09(0.183),
lufsMomBands08(0.179), LAmaxBands08(0.176),
LABands08(0.176), LAeqBands08(0.174), lufsPeak-
Bands08(0.171), lufsShortBands08(0.167), loud-
nessZwickerBands09(0.163)

5 8.67
(2.9%)

6 modDepthS09(0.305), modDepthP109(0.294), mod-
DepthS08(0.294), modDepthP209(0.290), mod-
DepthP309(0.289), modDepthP308(0.263)

Continued on next page
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Table 3.7 – continued from previous page

Factor j s2
j Ni,j Indicators

6 7.59
(2.5%)

8 modDepthS06(0.276), modDepthP106(0.274), mod-
DepthP105(0.262), modDepthS05(0.255), mod-
DepthP306(0.250), modDepthP206(0.248), mod-
DepthP305(0.228), modDepthP205(0.226)

11 5.96
(2.0%)

7 spectralSlope(-0.318), iacc01(0.306), iacc00(0.281), mod-
DepthP201(0.266), modDepthP200(0.256), mod-
DepthP101(0.254), modDepthS00(0.247)

8 5.29
(1.7%)

4 fluct09(0.388), fluct05(0.374), fluct08(0.369), fluct06(0.367)

It shows the composition of the first eight relevant factors and can
be read as following:

Example. Factor 2 inhibits a variance of s2
j = 18.64 which makes up 6.1%

of the total variance of the dataset. The listed 31 most prominent indicators
make up ≥ 50% of the factor’s variance, i.e. ≥ 9.32. The most important
indicator is spectralSkewness with a loading of l12 = lrel,ij ·

√
s2

j =

−0.174 ·
√

18.64 = −0.751.

The investigation of the composition of the factors emphasize the
relevance of the factor rotation. For completeness, the table of the
unrotated FA can be taken from the Appendix Table A.1. Trailing
numbers in most listed indicators refer to the frequency bands from
00 ( fc = 31 Hz) to 09 ( fc = 16 kHz) (see Table 3.4, p. 20). The indi-
cators that are listed and assigned to the respective factors do have
some common background. Either they stem from the same indicator
group calculated in different frequency bands (trailing numbers) or
are assigned to the same indicator category. Hence, the final analysis
step of FA itself is the interpretation of the factors and the attempt to
describe it semantically.

factor 1 This factor comprises 48 indicators that mainly measure
sound pressure levels (LA, LABands, LAeq, LAeqBands) or loudness
metrics (loudnessZwicker, loudnessZwickerBands, lufsBands).
Beside the broad band indicators, the most occuring frequency
bands are (in decreasing order) 04, 05, 03, 02, 06, corresponding
to center frequencies fc,04 = 500 Hz, fc,05 = 1 kHz, fc,03 = 250 Hz,
fc,02 = 125 Hz, fc,06 = 2 kHz and covering the (low) mid fre-
quency range. Since this is also the frequency range where most
sound energy is located in general soundscapes this spectral fo-
cus is comprehensible. The suggestion for a semantic descriptor
for this factor would be: Loudness.

factor 4 The 11 indicators that characterize this factor stem from
the group of spherical directivity indices (DI) of the incoming
soundfield. All three variations of it are present, covering either
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the full sphere (sphDI) (5×), the horizontal plane (sphDIAz) (1×)
or the vertical plane (sphDIEl) (5×). The (high) mid frequency
range from fc,04 = 500 Hz to fc,08 = 4 kHz is most represented
here. The DI provides information, whether the incoming sound
energy origins from one or more distinct directions or if it ar-
rives from all directions more or less equally. In the context of
soundscape this could be an indication on the number and spa-
tial extent of (dominant) sound sources. An example for a high
spherical DI would be a loud car passing by (distinct direction
at a time despite movement), low DI could be associated with a
forest soundscape with unlocateable vegetation noise and arbi-
trarily surrounding sound sources. Thus, a semantic suggestion
would be: Sound Source Envelopment.

factor 2 This factor incorporates 7 of 15 indicators that are sin-
gular metrics for the spectral composition of the soundscape,
namely spectral centroid, entropy, roll-off point, crest factor,
skewness and flatness. The other eight indicators comprise loud-
ness and SPL metrics for the low frequency range ( fc,00 = 31 Hz).
The composition of the loadings with alternating signs (e.g.
spectralCentroid: positive; LABands00: negative) corresponds
well such that it can be interpreted as general timbre, whether
the spectral composition can be described as low, mid or high
frequency. Suggestion: Timbre.

factor 15 An interpretation of this is not immediately obvious.
Similar to factor 1, level and loudness metrics dominate the
composition (13 out of 15 indicators). However, these metrics
are present for the two highest frequency bands with center
frequencies fc,08 = 8 kHz and fc,09 = 16 kHz. This agrees well
with the indicator with the second largest (absolute) loading,
namely sharpness, which characterizes the high-frequency spec-
tral components. Because of that, the semantic suggestion for
this factor is: High-Frequency Timbre.

factor 5 The indicators of this factor are variations of the modula-
tion depth. The suffixes are either Sxx, where xx is a placeholder
for the frequncy band and S refers to the stochastic part of am-
plitude modulation. The suffix family Pixx refer to the depth
of the ith periodic modulation frequency in the frequency band
xx. Thus we see that this factor is composed by the depth of the
periodic and stochastic modulations of the high frequency bands
with fc,08 = 8 kHz and fc,09 = 16 kHz. This results in the sugges-
tion for a semantic descriptor: High-Frequency Modulation

factor 6 Factor 6 is analogous to factor 5 characterized by modula-
tion depth indicators, however this time for the mid frequency
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range fc,05 = 1 kHz to fc,06 = 2 kHz. Semantic suggestion: Mid-
Frequency Modulation

factor 11 The indicators of factor 11 are composed of various in-
dicator groups. They have in common to represent the low
frequency range. The spectral slope describes, if the magni-
tude of the spectrum increases with higher frequencies (positive
slope) or decreases (negative slope). A negative loading for this
indicator agrees with positive loadings for other low frequency
indicators describing spectral energy. The inter-aural cross cor-
relation IACC on the other hand, a binaural indicator, denotes
the similarity between left and right ear signal regardless of the
temporal delay (inter-aural time difference, ITD). A large IACC
is reached, if the two ear signal have similar temporal struc-
ture at a similar magnitude. This is usually the case in simple
and uncluttered soundfields, e.g. with only one sound source
(if possible in front of the listener) and/or in conditions with
certain room acoustic properties (anechoic or simple and undis-
torted reflection patterns) [102]. The third group of indicators
are again formed by the modulation depth in the low frequency
range. The interpretation of this composition might be slightly
ambiguous. An attempt would be the presence of a distinct and
well defined low frequency sound source, hence, the semantic
suggestion for this factor is: Low-Frequency Sound Source

factor 8 The last of the identified relevant factors is made up by
four indicators of the group fluctuation strength. This indicator
models the perception of generally higher fluctuation frequencies
in the range betwenn [0.1, 100] Hz. Here in factor 8 this indica-
tor occurs for the frequency bands 5, 6, 8 and 9, covering the
high mid to high frequency range fc,05 = 1 kHz, fc,06 = 2 kHz,
fc,08 = 2 kHz, fc,09 = 16 kHz). Semantic suggestion: Mid-High-
Frequency Fluctuation.

To summarize this important section on the development and iden-
tification of the underlying acoustic dimensions Table 3.8 shows the
semantic descriptors that are used in the remainder of this work.

As mentioned above this methodology was previously applied,
analyzed, and published by the author in [66]. There, the dimensions
“Dynmaic Range” and “Loudness Progression” were identified instead
of the dimensions MF-Mod (F) and LF-Sources (G). The fact that
these dimensions do not appear anymore is their composition from
the indicator representing the LUFS range. This indicator was not
considered in this work because its calculation procedure is time-
integrating and leads to non-independent time observations, which
in turn violates the basic requirements for factor analysis. Thus, the
dimensions presented here already include the first steps of validation
and optimization.
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Table 3.8: Semantic descriptors for underlying acoustic dimensions.

Dim. Fac. Expl. Var. Descriptor Label

A 1 87.77 (28.9 %) “Loudness” Loud (A)
B 4 16.77 (5.5 %) “Sound Source Envelopment” Envel (B)
C 2 12.92 (4.3 %) “Timbre” Timbre (C)
D 15 11.23 (3.7 %) “High-Frequency Timbre” HF-Timbre (D)
E 5 8.67 (2.9 %) “High-Frequency Modulation” HF-Mod (E)
F 6 7.59 (2.5 %) “Mid-Frequency Modulation” MF-Mod (F)
G 11 5.96 (2.0 %) “Low-Frequency Sound

Sources”
LF-Sources (G)

H 8 5.29 (1.7 %) “Mid-High-Frequency Fluctua-
tion”

MHF-Fluct (H)

3.3.3 Alternative Methods

The method used to identify the underlying acoustic dimensions,
namely factor analysis (FA), was chosen for several reasons, including
statistical simplicity and robustness, widespread use of the method
in similar and neighboring disciplines and research questions, and
clear and straightforward path of interpretation. Needless to say, there
are other methods and approaches to target a similar outcome. Thus,
some examples of alternative methods are presented in the following
discussing basic principles as well as advantages and disadvantages.

Principle Component Analysis (PCA)

As already mentioned in the development of the acoustic dimensions,
PCA has a lot in common with FA. Strictly speaking, PCA is a special
case of FA with the assumption, that all indicator’s variance is kept
and all unique variance is zero ϵi = 0∀i. This implies all observations
of all indicators are assumed to be valid disregarding any erroneous
influences such as measurement and analysis noise. Thus, PCA is
mainly a dimension reduction method rather than a method to dis-
cover latent constructs. Due to the above assumptions the calculation
of PCA is even easier than for FA, though. It can be realized by eigen-
value decomposition or singular-value decomposition of the input
covariance matrix.

Independent Component Analysis (ICA)

The ICA (cf. [103]) is a method used for blind source separation like
the cocktail party problem. Considering N simultaneous microphone
recordings xi(t) in a room where M persons talk to each other sj(t).
The individual recordings are then mixtures of the spoken signals

xi(t) =ai0s0(t) + ai1s1(t) + . . . + aijsj(t) (3.9)

for i = 0 . . . N − 1, j = 0 . . . M − 1
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where aij denotes a real constant factor of the mixing matrix A resem-
bling the problem formulation in matrix notation as x = As. The
aim is now to discover the originally spoken signals s and, as a side
product the respective mixing matrix A which represents the sound
propagation and room reflections in the above example of the cock-
tail party problem. ICA provides solutions to this generative model
by means of an adaptive process. First, a pre-whitening is applied
to the observed variables x as y = V x, such that y is decorrelated
E{yy′} = I , e.g. by means of a PCA. Finally the basis signals ŝ

are iteratively estimated by a suitable rotation U that maximizes the
non-normality of the signal densities ŝ = Uy. This is because it can
be assumed that the sum of non-normal random variables approaches
normality with increasing number of observations as in the central
limit theorem [104]. For the maximization of the non-normality vari-
ous methods exist, e.g. by maximization of kurtosis or negentropy or
by a fix-point approach [105].
From that follows that the benefits of ICA is the identification of
hidden time series or signals. An analogue application to identify
acoustic dimension as independent components (IC) would then result
in a highly overdetermined model since Nind ≫ NIC which is likely
to introduce unknown artifacts. However, the method is used in this
work to compare the time series of the resulting factor scores of acous-
tic environments that are very similar and share the same temporal
context. An application of the ICA is used for the comparison of music
reproduction of the same audio content but with different loudspeaker
setups in Chapter 6.

Further Methods of Machine Learning

Computational methods that are subsumed under the term Machine
Learning (ML) incorporate statistical concepts as well as emulations
of neural networks in order to predict a desired output. In most
cases ML is used to conduct one of two tasks, namely classification or
regression. While in classification an observation of specific variables
is predicted to belong to one of several predefined and discrete classes,
regression predicts a quasi-continuous output value on the basis of
the observations of input variables. The respective prediction models
are developed in advance on basis of supervised and/or unsupervised
learning of a wide range of potential observations. The application of
the determination of the underlying acoustic dimension corresponds
to the search for suitable input variables for a ML model of any
kind. This preprocessing task is also called feature extraction in ML,
and various suitable methods are available. In this section a small
selection is briefly summarized, a detailed comparison of the presented
approaches and others is out of scope of this work.
The previously described methods of FA, PCA, and ICA are usually
considered as options of feature extraction. Further methods are
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e.g. kernel PCA, autoencoder, or t-distributed stochastic neighbor
embedding (t-SNE).

Kernel PCA aims to overcome the linearity constraints in PCA and
FA [106]. Since the latter two methods are only capable to aggregate
linear dependencies between input variables, certain pre-processing
steps must be conducted as described in Section 3.1 which in turn
might lead to information loss or corruption. Kernel PCA then intro-
duces an arbitrary mathematical kernel that is applied in between the
original data space and the target space. However, this kernel is fixed
for all input indicators and its application on linear dependencies may
be erroneous.

Autoencoders are realizations of neural networks with the aim to
compress data and reduce data dimensionality [107]. The input vari-
ables x are first encoded into a representation of lower dimension
h by means of any (also non-linear) activation function and subse-
quently decoded into a reconstruction of the input y = x̂ as output
with another activation function. The encoding and decoding schemes
are optimized by means of a cost function which compares input
and reconstruction for example by its mean squared error (MSE)
L(x, x̂) = ∥x̂− x∥. The intermediate representation h would be of
interest in the context of this work and could be an analogy to the
underlying acoustic dimensions. However, in the case of autoencoders
the number of dimensions of h must be predetermined and its repre-
sentation is not based on statistical or logical relationships but rather
on its ability to reconstruct the input with as low error as possible.
Thus, its use is mainly appropriate for mere irrelevance reduction
rather than for interpretable dimension aggregation. However, due to
its ability to incorporate non-linear activation functions it might be a
reasonable method for cross-validating the presented results of FA.

Finally, t-distributed stochastic extraction is a method originally
developed for visualization of high-dimensional data in a two- or three-
dimensional data plot [108]. This is done by calculating probabilities
that two high-dimensional data points are similar. The distribution of
these probabilities is then compared to the distribution of the original
data and is optimized in a way, that similar data points are located
close to each other on a map while dissimilar points are located far
from each other. Again, the interpretability of the aggregation is not
the main motivation here.

3.4 assessment

After developing underlying acoustic dimensions for describing acous-
tic environments in this chapter, application examples for the assess-
ment of specific research questions on soundscapes are discussed in
the three following chapters. For that, appropriate analysis procedures
must be defined. In general, the description of acoustic environments
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with the above developed methodology benefit if comparisons of two
or more environments are conducted. For doing that, two approaches
are discussed here, namely statistical analysis of significant differences
for gathering quantitative evidence and appropriate visualizations for
qualitative assessment.

3.4.1 Statistical Procedures

In the following chapters of validating applications statistical meth-
ods are applied in order to make statements on the similarity and
difference between various acoustic environments. Since the choice of
appropriate statistical methods is usually being made on basis of the
hypothesis type, data structure and data prerequisites, the methods
utilized in the following chapters are being discussed briefly at this
point.

First, the data structure is described. The data matrix on which
basis significant differences are being investigated has either of two
sizes and shapes,

structure 1 : [Ndim × Nae × Ncond × Nt]

structure 2 : [Ndim × Nae × Nt] ,

where Ndim denotes the number of dimensions, Nae the number of
acoustic environments, Ncond the number of conditions of each acous-
tic environment, and Nt the number of time samples per condition.
The data structures differ in whether the acoustic environments are
present in different conditions or not. In the first case, the hypothesis
is usually constructed around the question whether differences exist
between the conditions for all acoustic environments. The second
case implies hypotheses comparing the acoustic environments them-
selves. In the case of the investigation on acoustic ecologic validity for
example, we compare two conditions of each acoustic environment,
namely the original recording and its respective re-recording. With
the information above we can construct a data structure type 1. The
first decision to be made is whether parametric or non-parametric sta-
tistical methods can be applied. Parametric methods, such as ANOVA
or t-tests require at least three properties to be met: normality of each
group, equal variance in each group (homoscedasticity), and indepen-
dent samples within each group. A group in our case would be each
time vector. Due to the linear combinations of indicators within the di-
mensions, factor scores can be assumed to be of interval level. Further,
normality can be assessed either by visually observe the histogramm
of the values with overlay of a normal distribution, or by a specific
Q-Q-plot which compares the quantiles of the real data with those of
an ideal normal distribution, or by means of a quantitative test such
as the Shapiro-Wilk test [100]. Usually, with increasing data size of
independent random variables the distributions of regular processes
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approach normal distribution, which is known as central limit theorem
(CLT). However, these tests failed for the dimension scores of acoustic
environments. This is not surprising since each time sample of any
dimension is dependent on the previous. Acoustic events may occur
more or less randomly but inhibit certain deterministic properties. For
example a sound source that moves spatially back and forth between
point A and point B does not randomly appear at point C which is
not located anywhere on the trajectory between A and B. The same is
valid for the homogenity of variance in all groups. This property is
highly dependent of the characteristic of the acoustic environment and
thus can not be asserted at all. Thus, the prerequisites for parametric
tests can not be met. With Nt = 600 the central limit theorem (CLT)
might be reached though [100] where normality can be generally as-
sumed, however the CLT seems not to overcome type II errors (false
negative; actual differences are not being detected) [109]. After all,
non-parametric methods are utilized for the following analysis.

For the validation parts in the following chapters comparisons of
conditions of the same acoustic environment are conducted, thus deal-
ing with data structure type 1 including conditions. Each acoustic
dimension is then analyzed separately and isolated, thus, the data
structure reduces to [Nae × Ncond × Nt] for each dimension respec-
tively. The acoustic environments themselves are just random samples
covering as wide a range as possible so that the conditions can be
focused on. That is why the test design is not two-factorial (acous-
tic environment AND condition) but a complete block design and
since the observations of the conditions are not independent but are
collected for the same subject (here: acoustic environment) we as-
sume repeated measures (analogous example: a patient before and
after a drug treatment). The above described data structure and hy-
pothesis type leads to the utilization of Friedman test for testing the
null-hypothesis H0: “A difference between conditions could not be found
within the analyzed acoustic environments.” This test is based on—as
most non-parametric methods—the ranks of the observations rather
than on the their absolute or relative values. If the Friedman test
exhibits significant differences within the conditions (p-value< α with
α = 0.05) for a specific acoustic dimension, appropriate post hoc tests
are applied. A pairwise application of Conover tests [110] reveals
the differences between individual conditions (e.g. condition 1 vs.
condition 2, cond 1 vs. cond 3,. . . ) which again takes all acoustic envi-
ronments into account. Beside that, the Wilcoxon signed-rank test as
non-parametric alternative to the paired t-test may be used in multiple
condition comparisons to test on differences between each condition
for each acoustic environment. Summarized, the Friedman test is used
in this work to test whether there is a difference among conditions at
all, the Conover test shows, which condition pair specifically exhibit
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differences and the Wilcoxon test reveals the acoustic environments in
which the condition differences occur.

3.4.2 Visualization: The Soundscape Fingerprint

The basis of soundscape dimension comparisons are the factor scores
Y . Y is present as time series of the respective dimensions which
is why a first straightforward approach is to investigate similarities
of acoustic environments on the basis of line plots. A direct com-
parison of time series in the form x2(t) − x1(t) reveals usually not
much insight unless both acoustic environments show strong similari-
ties. One step of abstraction is to observe distributions of the factor
scores regardless of the temporal behaviour. This can be done, for
example, using boxplots showing the median and the 25 % and 75 %
quartiles, as well as the whiskers representing the outer ends of the
distribution. For symmetric distribution, such as normal distribution,
the representation can also be conducted with mean and respective
standard deviation. However, as we will find out later, the distribution
of factor scores in the scope of this work are not normally distributed
for systematic reasons which is why the use of boxplots is qualified.
A single boxplot then represents the distribution of a single acoustic
dimension for a specific soundscape recording. In order to compare
all eight relevant acoustic dimensions, another visualization method is
presented here, which resembles a fingerprint and thus serves as the
namesake of the presented methodology in this chapter. It consists
of a polar plot where each axis represents one of the acoustic dimen-
sions. Each short-time observation of the dimensions is plotted as faint
line between these axes. The color-coding represents the temporal
succession. This representation provides a summary overview of the
acoustic dimensions of a given soundscape recording, as well as the
ability to visually compare two or more soundscapes. An example
can be found in Figure 3.5.



38 methodology of soundscape fingerprinting

Loud

Envel

Timbre

HF-Timbre

HF-Mod

MF-Mod

LF-Sources

MHF-Fluct

0 10 20 30

t/s

[ October 28, 2022 at 14:32 – classicthesis v4.6 ]

(a) Library

Loud

Envel

Timbre

HF-Timbre

HF-Mod

MF-Mod

LF-Sources

MHF-Fluct

0 10 20 30

t/s

[ October 28, 2022 at 14:19 – classicthesis v4.6 ]

(b) Woodland
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(d) Train station

Figure 3.5: Four exemplary acoustic fingerprints of soundscape recordings.
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VA L I D AT I O N I : P E R C E P T UA L E VA L UAT I O N

The description of the acoustic properties of soundscapes as proposed
in this work relies on physical signal properties. At the same time,
all attempts to analyze real-world acoustic environments – not only
in soundscape studies, but also in regulatory or commercial settings
– target human auditory perception. This fact cannot be emphasized
more and therefore will be considered in different facets in the present
work. We have already seen that the choice of initial signal indicators
was made with perceptual properties in mind. Also the interpretation
of the identified acoustic dimension was made from an empirical
perspective incorporating human auditory experience. Thus it is
straightforward to evaluate the acoustic dimensions that are based
on statistical properties of physical signal parameters in terms of
perception. This is also an important – if not mandatory – step
towards validation of the approach. In order to contribute to this
attempt, listening experiments were conducted. The results presented
below were published in part in [111].

4.1 methodology

The perceptual studies were designed as laboratory experiments with
reproduced soundscape recordings.

Stimuli

Suitable excerpts of those soundscape databases that were employed
for the dimension development (cf. Table 3.5, p. 21) were produced
and processed for reproduction in an laboratory environment. The
soundscape stimuli have a length of 30 s each and are faded in and
out over 2 s. The selection was made with the following aims:

• Use stimuli of all three data sources with similar share to employ
different Ambisonics orders and technologies.

• Cover a wide range of acoustical environments: indoor – outdoor,
rural – urban – private, annoying – pleasant, loud – soft, . . . .

• Assure similar distributions of sound source classes according
to ISO 12913-2[10]: sounds of technology, nature, human beings.

• Provide at least one soundscape class that is represented within
each database (here: train station).

39



40 validation i : perceptual evaluation

In total 19 acoustic scenes were selected of which two were additionally
used as training stimuli. The excerpts and respective soundscape
classes can be taken from Table 4.1.

Table 4.1: Sample draw of soundscape excerpts used for perceptual studies.
Additional training stimuli are marked with a ∗.

ID Database Name label Excerpt

1 ARTE 01_Library A: Library 01:30-02:00
2 ∗ ARTE 02_Office A: Office 00:35-01:05
3 ARTE 04_Living_Room A: LivingRoom 00:58-01:28
4 ARTE 07_Cafe_1 A: Cafe 01:28-01:58
5 ARTE 09_Dinner_Party A: DinnerParty 01:36-02:06
6 ARTE 11_Train_Station A: TrainStation 00:18-00:48
7 ARTE 12_Food_Court_1 A: FoodCourt 00:36-01:06
8 Eigenscape Beach.7 E: Beach 05:38-06:08
9 Eigenscape Park.5 E: Park 05:28-05:58
10 Eigenscape PedestrianZone.3 E: Pedestrian A 08:00-08:30
11 Eigenscape PedestrianZone.5 E: Pedestrian B 06:48-07:18
12 Eigenscape ShoppingCentre.8 E: Shopping 05:24-05:54
13 ∗ Eigenscape TrainStation.6 E: TrainStation 03:24-03:54
14 Eigenscape Woodland.2 E: Woodland 03:16-03:46
15 Soundfield Kids Playground 1 S: Playground 00:47-01:17
16 Soundfield Rural Market Busker S: Busker 01:40-02:10
17 Soundfield Steamtrain Exterior S: Steamtrain 02:00-02:30
18 Soundfield St Kilda Road Traffic S: Traffic 02:56-03:26
19 Soundfield Southern Cross Station S: TrainStation 00:30-01:00

Technical Infrastructure

The three databases use different Ambisonics orders, namely 7th-
order MOA with 4th-order spherical and additionally 7th-order hor-
izontal Ambisonics for the ARTE database [91], 4th-order for the
Eigenscape database and 1st-order for the Soundfield database. The
necessary number of individual Ambisonics channels is calculated as
Nch = (NA,max + 1)2, where NA,max denotes the maximum Ambisonics
order. The Ambisonics signals were arranged in the digital audio
workstation (DAW) Reaper [112] which is able to support tracks with
the necessary 64 channels each. As decoder from the Ambisonics
domain to loudspeaker signals the widely used AllRADecoder from
the IEM Plug-in Suite [30] was used. The employed decoder strategy
AllRAD utilizes a Ambisonics-to-loudspeaker decoding for a large set
of position-optimized virtual loudspeaker setup which is in a second
step mapped to the real loudspeaker setup by means of appropriate
panning algorithms. This decoder strategy is known to be suitable
for unevenly spaced loudspeaker setups and therefore a robust solu-
tion in many laboratory setups. The reproduction room itself is an
acoustically-optimized media laboratory of approx. 30 m2, the Immer-
sive Media Lab [113] (see Figure 4.1). The laboratory provides in total
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Figure 4.1: The Immersive Media Lab (IML) that was utilized for perceptual
studies.

42 full range loudspeakers of type Neumann KH120 as well as four
subwoofers of type Neumann KH810 of which 30 speakers and two
subwoofers were employed for the reproduction. Each loudspeaker
is equalized individually in terms of gain, delay, and flat frequency
response in order to fulfill the requirements of ITU-R BS.1116-3 [114].
The equalization procedure for a listening area in which a subject is
located is described by the author in [115].

The stimulus audio files were already calibrated for the dimension
development part as described in Section 3.2. However, due to the
different Ambisonics order and the decoder strategy a calibration of
sound pressure level was employed according to the information pro-
vided within the recording databases. Since the Soundfield database
does not provide calibration or SPL information, the level was ad-
justed manually and subjectively in order to have plausible differences
compared to the other acoustic scenes. In order to analyze the acoustic
properties of the reproduced soundscapes as perceived by the subjects
in the study, the reproduction was re-recorded with an Eigenmike®

EM32. The difference between the original recordings and these re-
recordings as well as the influence of the reproduction setup in general
will be discussed in detail later in Section 5. For the re-recorded scenes
the indicators were calculated and the respective factor scores were
deduced. The resulting fingerprints of the soundscape stimuli are
collected in Figures B.4 to B.7 of Appendix B. The aggregated distri-
bution of the scores for each dimension and each stimulus scene can
be taken from Figure 4.2. A Kruskal-Wallis test on ranks proposes
significant differences among the samples within all acoustic dimen-
sions (H > 9500; p < 0.01). Subsequently, pairwise Dunn’s posthoc
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Figure 4.2: Distributions of factor scores of stimuli presented at the listening
experiment.

tests with Bonferroni adjustment were performed comparing all 19
samples with each other for each dimension. The result whether each
comparison pair differs significantly can be found in Figure 4.3. It
is noteworthy that the majority of these comparisons exhibit strong
significant differences with p < 0.01 (∗∗, red tiles). This result might
be influenced by the relatively large number of observations (30 s × 20
observations/s) and should at this point only describe the difference
from a statistical point of view.
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Figure 4.3: Statistical differences between re-recorded sample soundscapes.
Red: strong significance (p < 0.01), blue: moderate significance
(p < 0.05), gray: no significance (p > 0.05).

Experiment procedure

Participants for the listening experiment were acquired among staff
and students of the Institute of Communications Technology as well as
among individuals from outside the institute, with the aim to obtain
as balanced a demographic spectrum as possible. Demographic pa-
rameters were collected for all participants, namely place of residence
(rural, urban), gender, age and listening experiment experience. In
total 20 subjects participated the experiment. The demographic com-
position can be taken from Table 4.2. The noise sensitivity is assessed

Table 4.2: Statistics of demographic characteristics of all 20 listening experi-
ment participants.

Characteristic Statistic

Gender male: 12, female: 7, no answer: 1
Age range: [20-69], mean: 40.4, std: 16.7, median: 35, P25: 28,

P75: 59
Habitation countryside/village: 4, town: 8, city: 8
Hearing ability very good: 4, good: 14, mediocre: 2, bad: 0
Participation in
listening experiments

0 times: 8, 1-3: 3, 4-6: 6, >6: 3

Experience (deduced
from above)

inexperienced: 11, experienced: 9

Mood very good: 2, good: 13, mediocre: 4, bad: 1
Very tired yes: 4, no: 14, no answer: 2
Noise sensitivity range: [33-78] %, mean: 56%, std: 15%, median: 56%,

P25: 44%, P75: 71%
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by a set of nine 4-point items proposed by Zimmer and Ellermeier in
[116] which is the short version of a more detailed questionnaire on
personal noise sensitivity by the same authors [117]. It is calculated
as sum of the answers which results in a value range between 0 and
27 for the respective noise sensitivity. In the above table, the noise
sensitivity is scaled with 1/27 and represented as percentage of that
ratio.

Also, for testing the hypothesis of whether there are different re-
sponse patterns between individuals with and without listening expe-
rience, the participants were assigned to two categories. Individuals
who reported having participated in listening experiments either 0
or 1-3 times were assigned to the group “inexperienced”, whereas
persons reported 4-6 or >6 participations were assigned to the group
“experienced”.

The following procedure of the experiment was executed for each
participant:

1. Welcome Short welcome to the laboratory as well as comforting
and calming down participants if necessary.

2. Procedure information Information about the experiment proce-
dure was shared (duration, progress etc.), graphical user inter-
face for the questionnaire was presented.

3. Explanation of nomenclature The terms and rating parameters
were explained with similar wordings and examples throughout
the participants but without pre-defined text.

4. Training 1 The first training stimulus was played back and the
questionnaire was filled in jointly by the participant and the
examiner.

5. Training 2 The second training stimulus was played back and
the questionnaire was filled in by the participant alone under
supervision and support by the investigator.

6. Start of experiment Open questions were answered and after-
wards the participants were left alone in the laboratory.

7. Experiment Each stimulus is presented isolated without A/B
comparison or similar. The playback could be started unlimited
times and questions/items could be answered throughout the lis-
tening experience. Participants were encouraged to take breaks
and help themselves with snacks and beverages provided.

8. End of experiment After the last stimulus, participants were
dismissed from the laboratory room and informally interviewed
about the experience. This information was only collected as
technical and methodological lessons learned.
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9. Demographic questionnaire A pen-and-paper questionnaire
about demographic details and noise sensitivity was filled in by
the participants.

The study consists of three parts, each addressing a different aspect
of soundscape perception. The first part investigates what sound
sources or sound source classes are perceived by the participants as
elaborated in Section 4.2. The second part aims at finding semantic
acoustic descriptors for the identified acoustic dimensions. This part
is an important step for the validation of the presented methodology
and therefore occupies a prominent part (Section 4.3). The third part
described in Section 4.4 finally consists of emotional responses of
perceived affective quality. It represents the far end of the sound-
scape framework and serves as one of the main goals of providing
descriptive acoustic dimensions as causal background. All three parts
were assessed for one stimulus after the other by means of a graphical
user interface shown in the appendix Figure B.3 The first and third
experiment parts are taken directly from the suggestions of ISO/TS
12913-2. Since they do not directly contribute to the aim of validating
the identified acoustic dimensions, they are only reported in a descrip-
tive manner for completeness. The focus in the following will be on
the search for semantic counterparts of the acoustic dimensions.

4.2 study i : sound sources (acc . iso/ts 12913-2)

The ISO/TS 12913-2 suggests three methods for the assessment of
soundscapes from a human perspective. All of them are meant to be
conducted in-situ, especially during a soundwalk. The most appli-
cable method for laboratory studies with a reproducible experiment
design is method A (cf. section C.3.1 in [10]) which provides quantifi-
able assessment of perceived sound source types, perceived affective
quality, overall sound environment quality, and sound environment
appropriateness. The first aspect, namely the identification of present
sound source classes, is requested in this first part of the experiment.

The participants are asked to what extent they hear the following
sound source classes: sounds of technology, sounds of human beings,
and sound of nature (see questionnaire in appendix Figure B.3) on an
ordinal scale from “not at all” to “a little”, “moderately”, “a lot”, up
to “dominates completely”. The resulting distributions are depicted
in Figure 4.4 where the ordinal levels are represented by the numbers
1 to 5. It can be seen that the ends of the scale (level 1 and 5),
i.e. the absence or complete dominance of a sound source class,
are reported quite homogeneously among the 20 participants for
example for stimulus E: Beach or E: Woodland. However, this can
not be stated for stimuli that are more or less balanced mixtures
of sound sources such as E: Park or S: Busker. There, a broader
distribution of reported levels of sound source classes can be observed.
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Figure 4.4: Histogram of perceived presence of sound source classes accord-
ing to ISO/TS 12913-2: sounds of technology (orange), sounds
of human beings (blue), sounds of nature (green) from “not at
all” (1) to “a little” (2), “moderately” (3), “a lot” (4) to “dominates
completely” (5).

If this experiment part is seen as a plausibility check, these results are
satisfactory because the unambiguous stimuli were robustly rated by
participants in terms of the presence of sound source classes.

4.3 study ii : semantic description (acc . saqi)

An important test within the methodology of acoustic dimensions
identification is to find appropriate semantic descriptors that can be
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used by everyone to describe the acoustic properties of environments.
For that the subjects were asked to rate the selected acoustic scenes
by means of semantic differential items according to the Spatial Audio
Quality Inventory (SAQI). This collection of attributes was developed
by expert groups to form a common basis of descriptors for the
rating and evaluation of spatial acoustic environments [118, 119].
Although it was originally developed for the technical evaluation of
reproduced audio experiences with headphones (binaural synthesis) or
multichannel loudspeaker systems (wavefield synthesis, Ambisonics,
panning, . . . ), this inventory can also be used in parts for the evaluation
of real soundscapes and, of course, the reproduction of soundscapes in
laboratory environments. It consists of 48 descriptors within the eight
categories timbre, tonalness, geometry, room, time behavior, dynamics,
artifacts and general impression. The descriptors are provided as
semantic differential with two opposing attributes. For the listening
experiment in this paper, eight of the SAQI items were used as well
as two additional attributes that are either defined differently in the
SAQI manual (Envelopment) or additionally defined by the author
(Fluctuation). These items, listed in Table 4.3, were selected in order
to find potential perceptual counterparts for the semantic description
of the acoustic dimensions from Table 3.8, p. 32.

Table 4.3: Selected SAQI items used for the experimental study on semantic
descriptors. The ∗ denotes additional items introduced by the
author.

Quality
(Label)

Semantic
Differential

Circumscription

Loudness
(Loud)

quieter – louder Perceived loudness of a sound source. Dis-
appearance of a sound source can be stated
by a loudness equaling zero. Example of a
loudness contrast: whispering vs. screaming.

Dynamic
Range
(Dyn)

smaller – larger Amount of loudness differences between loud
and soft passages. In signals with a smaller
dynamic range loud and soft passages differ
less from the average loudness. Signals with a
larger dynamic range contain both very loud
and very soft passages.

Fluctuation∗

(Fluct)
less pronounced –
more pronounced

Short-term fluctuations in loudness, e.g. due
to speech, knocking, etc.

Tone color
(Timbre)

darker – brighter Timbral impression determined by the ratio
of high to low frequency components.

Sharpness
(Sharp)

less sharp –
sharper

Timbral impression which e.g., is indicative
for the force with which a sound source is ex-
cited. Example: Hard/soft beating of percus-
sion instruments, hard/soft plucking of string
instruments (class. guitar, harp). Emphasized
high frequencies may promote a ‘sharp’ sound
impression.

Continued on next page
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Table 4.3 – continued from previous page

Quality
(Label)

Semantic
Differential

Circumscription

Localizability
(Local)

more difficult –
easier

If localizability is low, spatial extent and lo-
cation of a sound source are difficult to esti-
mate, or appear diffuse, resp. If localizability
is high, a sound source is clearly delimited.
Low/high localizability is often associated
with high/low perceived extent of a sound
source. Examples: sound sources in a highly
diffuse sound field are poorly localizable.

Distance
(Dist)

closer – more
distant

Perceived distance of a sound source.

Envelopment∗

(Envelop)
less pronounced –
more pronounced

Impression whether the main activity of the
acoustic scene is assigned to distinct direc-
tion(s) or if the dominant sound source(s)
stem from all around the listener.

Naturalness
(Natural)

lower – higher Impression that a signal is in accordance
with the expectation/former experience of an
equivalent signal.

Presence
(Presence)

lower – higher Perception of “being-in-the-scene”, or “spatial
presence”. Impression of being inside a pre-
sented scene or to be spatially integrated into
the scene.

All semantic differentials of the items were provided as quasi-
continuous Likert scales in the range from -50 to 50 with a stepsize
of 1 implemented as slider. An exemplary page of the graphical user
interface for a training stimulus can be taken from the appendix, Fig-
ure B.3. For the processing of results the values were scaled by the
factor 1/50 to obtain a value interval of [−1, 1].

Beside the raw subjective responses an additional normalization
was applied to the ratings which scaled the ratings to the intraindi-
vidual absolute maximum rating of all stimuli for a specific item. The
following example reflects the effect of this scaling.

Example. A person rates the item “Dyn” in the range of [−0.3, 0.25] among
all stimuli and does not use the full capacity of the scale. A scaling factor
of a = 1

0.3 is hence applied for all ratings of the item “Dyn” of this specific
individual.

The motivation for scaling item responses is the issue of reference
when rating items. The SAQI methodology is based on comparisons
either between two conditions in an A/B setup or as a comparison
with a subject’s internal reference. If all subjects used the same internal
reference, no scaling would be required. However, if the reference
differs between subjects, the scaling described above helps to reduce
this effect. Since it is unknown, if intraindividual scaling to respective
inner reference is necessary, both datasets are kept for analysis and
are referred to as “unscaled” and “scaled” hereinafter.
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Figure 4.5 shows the distributions of the unscaled evaluation re-
sponses of the perceptional study on acoustic properties for all subjects
as well as discriminated between experienced and inexperienced lis-
teners. Since the distributions seem to be of great variance, the rating
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Figure 4.5: Distribution of perceptional item ratings.
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pattern of the subjects is analyzed in terms of interquartile range
(IQR) to grasp evidence of the consistency or dispersion of answering
patterns. The IQR represents the range of values in which the central
50 % of the responses lie. It was calculated for each stimulus and item
independently and subsequently averaged for each item. The results
for the mean IQR and respective standard deviation in parentheses
for each perceptional item is listed in Table 4.4 distinguished between
inexperienced, experienced and all subjects as well as between un-
scaled and scaled responses. Observing the IQRs of the unscaled

Table 4.4: Interquartile range (IQR) and respective standard deviation in
parentheses as indicator of consistency within the answering pat-
tern. Left: unscaled ratings, right: scaling to intraindividual mini-
mum and maximum.

unscaled scaled

all exp inexp all exp inexp

Dist 0.51
(0.16)

0.39
(0.18)

0.49
(0.14)

0.63
(0.19)

0.55
(0.24)

0.51
(0.18)

Dyn 0.56
(0.12)

0.46
(0.19)

0.49
(0.18)

0.71
(0.24)

0.56
(0.23)

0.61
(0.26)

Envelop 0.45
(0.16)

0.36
(0.18)

0.50
(0.16)

0.60
(0.23)

0.59
(0.26)

0.58
(0.22)

Fluct 0.53
(0.17)

0.45
(0.20)

0.49
(0.20)

0.73
(0.26)

0.56
(0.30)

0.70
(0.28)

Local 0.64
(0.14)

0.55
(0.21)

0.60
(0.17)

0.90
(0.24)

0.77
(0.33)

0.80
(0.25)

Loud 0.36
(0.09)

0.33
(0.11)

0.35
(0.11)

0.40
(0.10)

0.35
(0.13)

0.39
(0.15)

Natural 0.49
(0.15)

0.36
(0.20)

0.50
(0.21)

0.50
(0.23)

0.46
(0.32)

0.48
(0.27)

Presence 0.53
(0.12)

0.33
(0.13)

0.66
(0.19)

0.63
(0.21)

0.47
(0.22)

0.72
(0.31)

Sharp 0.50
(0.17)

0.50
(0.18)

0.41
(0.19)

0.71
(0.24)

0.69
(0.28)

0.60
(0.28)

Timbre 0.34
(0.09)

0.31
(0.12)

0.33
(0.10)

0.57
(0.18)

0.56
(0.25)

0.54
(0.17)

mean 0.49
(0.16)

0.40
(0.19)

0.48
(0.19)

0.64
(0.25)

0.56
(0.28)

0.59
(0.26)

ρT 0.834 0.820 0.851 0.840 0.846 0.848

ratings of all subjects reveals that certain perceptual items have ex-
plicitly lower IQRs than others. While the items “Timbre” (0.34) and
“Loud” (0.36) produce reasonably small IQR, the items “Local” (0.64)
and “Dyn” (0.56) inhibit the largest uncertainty. This behavior can
be found similarly for the inexperienced and experienced subgroups.
The mean IQR range of the experienced group is slightly smaller (0.40)
compared to the inexperienced group (0.48) and all subjects together
(0.49). However, these differences are within the respective standard
deviation (0.16). Beside the IQR, the Cronbach’s alpha, also known as
tau-equivalent reliability, ρT, was calculated. It represents the fit of the
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test regarding consistency and ranges (usually) between 0 and 1. A
value of > 0.8 represents an appropriate criterion for applied research
according to [120] which can be met for all subgroups.

The general behavior of the scaled items with lower and larger IQR
remains comparable to the unscaled ratings. At the same time the
mean IQR increases distinctly, whereas the reliability remains stable.
Since no systematic differences can be observed between unscaled and
scaled as well as between experienced, unexperienced and all subjects,
the upcoming modeling process incorporates both datasets, scaled
and unscaled, as well as all participants without discrimination of
experienced and inexperienced subjects.
In order to find interrelations between the identified signal-based
acoustic dimensions (cf. Figure 4.2) and the attributes based on sub-
jective perception (cf. Figure 4.5) appropriate statistical analyses were
conducted. Generally we are dealing with two distributions that are to
be connected: the distribution of short-time factor scores [19 stimuli ×
8 dimensions × 600 short-time observations] against the distribution
of perceptual evaluations among subjects [19 stimuli × 10 items ×
20 participants]. The shape and type of the data necessitates various
methodological assumptions and prerequisites. First, because of their
temporal characteristics, the distribution of factor scores cannot be con-
ventionally treated as independent samples, but rather is characteristic
of the entire stimulus as a time series. Second, the perceptual items
are rated for the entire acoustic scene of 30 seconds. Although sub-
jects were asked to rate the entire listening experience, it may be that
the duration immediately preceding the rating has a greater impact
than the periods a few tens of seconds before. Since the ratings were
allowed to be taken while listening, this effect might be randomized
among the subjects. Third, it is not known, whether subjects rated
the average of their perception of a specific item or the maximum
or something different. If a single dominant acoustic event deviates
perceptually from the rest of the stimulus, it can also significantly
influence subjects’ ratings despite its short-term nature. Keeping these
assumptions in mind a correlation process was conducted. It should
be reiterated at this point that this work does not attempt to develop
entire perceptual models, but rather to contribute to the validation of
the identified acoustic dimensions. Hence, correlations between the
acoustic factor scores and the item ratings were calculated. To reflect
the uncertainty in the previous third assumption, median and max-
imum of the acoustic factor scores were taken into account for each
stimulus and acoustic dimension. Similarly, the median of the subjec-
tive rating for each stimulus was utilized since normal distribution
and homoscedasticity could not be asserted for all perceptional items
within all stimuli. Spearman’s correlation of ranks was calculated to
reveal general relationships between perceptual items and acoustic
dimension rather than exact slopes:
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Figure 4.6: Spearman’s correlation coefficient matrices between acoustical di-
mensions and perceptional items. Left: median of acoustic factor
scores, right: maximum of acoustic factor scores. Top: unscaled
perceptional item responses, bottom: scaling to intraindividual
absolute maximum.

Example. A maximum Spearman’s correlation of 1 between the perceptual
item “Loud” and the acoustic dimension Loud (A) means that the stimulus
with the highest median or maximum factor score is also rated with the
highest rating of the respective item, the rank order of the stimuli regarding
the factor score of Loud (A) is the same as regarding the perceptual item of
“Loud”.

The resulting correlation factors between acoustic dimension and
perceptual item in the range of [−1, 1] are depicted in Figure 4.6. Both,
scaled and unscaled item ratings were utilized as well as both location
parameters, median and maximum of the acoustic dimensions. Since
it can be observed that the choice of scaling (scaled, unscaled) of the
perceptive attribute ratings and the location parameter (median or
maximum) of the acoustic dimension scores yield different correlations,
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Table 4.5: Maximum positive and negative Spearman’s correlation Rs for each
perceptual item regarding intraindividual scaling and percentile
consideration of acoustic dimension score. Moderate and strong
correlations |Rs| > 0.6 are in bold.

positive negative

Item Scaling Pctl. Dim. Rs Scaling Pctl. Dim. Rs

Dist scaled P05 C 0.50 unscaled P90 H -0.63
Dyn scaled P85 F 0.79 unscaled P100 C -0.31
Envelop unscaled P05 D 0.58 scaled P95 C -0.27
Fluct scaled P55 H 0.68 unscaled P60 G -0.22
Local scaled P50 H 0.27 unscaled P40 B -0.62
Loud scaled P50 A 0.95 scaled P90 C -0.57
Natural unscaled P100 C 0.69 unscaled P95 A -0.70
Presence unscaled P90 C 0.23 scaled P10 B -0.49
Sharp unscaled P100 D 0.51 scaled P00 G -0.08
Timbre unscaled P100 C 0.66 unscaled P100 G -0.65

a systematic analysis on these parameters was conducted. For that,
all percentiles from minimum (0 %) to maximum (100 %) in steps of
5 % are calculated for the acoustic dimension scores and for each
perceptive attribute the corresponding highest positive and negative
correlation are determined as shown in Table 4.5 where correlations
of |Rs| > 0.6 are set in bold. From this the following findings can be
deduced:

• The median of dimension Loudness (A) exhibit strong corre-
lation (0.95) with the perceptional item “Loud” which is an
expected result. At the same time distinct negative correlations
with the item “Natural” can be observed. Thus, loud soundscape
reproductions are rated as unnatural.

• The perceptual item “Local” has its largest negative correlation
(-0.62) with Sound Source Envelopment (B) leading to the rea-
sonable explanation that scenes with low acoustic envelopment
are rated with higher localizability and vice versa.

• The maximum of dimension Timbre (C) shows reasonable corre-
lation (0.66) with the item “Timbre” which also confirm expecta-
tions.

• The dimension High-Frequency Timbre (D) shows moderate
positive correlation with the items “Envelop” (0.58) and “Sharp”
(0.51) where latter approaches expectations.

• The dimension High-Frequency Modulation (E) shows only
low correlation values (cf. Figure 4.6) and thus shows no percep-
tual counterpart with distinct similarities in this selection.
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• The previous finding does not count for the the similar dimen-
sion Mid-Frequency Modulation (F) which shows good corre-
lation (0.79) with the item “Dynamic Range”.

• The dimension Low-Frequency Sound Sources (G) shows a
moderate negative correlation (-0.65) with the item “Timbre”
which also seems plausible also in conjunction with the second
finding above.

• The P55 of Mid-High-Frequency Fluctuation (H) correlates
moderately (0.68) with the item “Fluct” which is plausible but at
the same time this dimension shows almost the same amount
of negative correlation (-0.63) with the item “Dist” which is a
somewhat ambiguous result.

It can be stated that each acoustic dimension except for High-Frequency
Modulation (E) can be assigned to one or more perceptual items
with distinction. Even though a correlation is not necessarily a result
of causality, these findings are promising in such that the identified di-
mensions as result of statistical signal processing exhibit characteristics
that can be reproduced perceptually.

4.4 study iii : affective qualities (acc . iso/ts 12913-2)

The two dimensions of affective qualities according to ISO/TS 12913-2
between the poles unpleasant and pleasant and between uneventful
and eventful respectively span a space to which the main emotional
responses can be assigned as depicted in Figure 2.3. The standard
suggests an assessment procedure of the two dimensions pleasantness
and eventfulness by means of eight descriptors that denote both ends
of the main quality axes as well as the respective 45° axes. Each
descriptor, namely “pleasant”, “calm”, “uneventful”, “monotonous”,
“annoying”, “chaotic”, “eventful”, and “vibrant” shall be rated by
the participants on an ordinal 5 point Likert scale with the levels
“strongly agree”, “agree”, “neither agree nor disagree”, “disagree”,
and “strongly disagree”. This procedure was adopted in the third part
of the listening experiment. Subjects were asked to rate each descriptor
individually, with possible contradictions, such as agreeing with both
eventful and uneventful, allowed. For analysis the ISO/TS 12913-3
proposes to assign the equally spaced values from 5 to 1 to the Likert
levels and use the median as measure of central tendency. From that,
the assignment of an acoustic environment to the two-dimensional
space of affective qualities can be conducted with the following two
formulas for the pleasantness P

P = (p − a) + cos 45 · (ca − ch) + cos 45 · (v − m) (4.1)

and the eventfulness E

E = (e − u) + cos 45 · (ch − ca) + cos 45 · (v − m) , (4.2)
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where p, a, ca, ch, v, m, e, u denote the first letter of the eight de-
scriptors and their respective median value. The resulting affective
quality ratings are depicted in Figure 4.7 for each of the 19 presented
soundscape recording excerpts and the two training stimuli. The circle
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Figure 4.7: Median affective qualities of the 19 stimuli. The shaded circle
represents the maximum extent of the dimensions.

with radius r = 4 +
√

32 ≈ 9.66 denotes the maximum possible extent
of the respective axes. Since the relative locations of the individual
soundscape ratings are of interest rather than absolute values, the
axis ticks are omitted (however, the grid has a dimension of 2 × 2).
At this point it should be emphasized that this standard-compliant
procedure and visualization has its drawbacks since only the median
of the ordinal scaled distribution and no information on the dispersion
is given. Potential alternatives are discussed in [121].

It can be seen here that three out of four quadrants are occupied and
an aggregation of soundscapes exists in the area of moderately eventful
and slightly unpleasant. The interpretation of the assignment accord-
ing to the stimulus name is plausible in most cases. The three stimuli
E: TrainStation, S: Steamtrain, and S: Traffic with IDs 12, 16,
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and 17 respectively show the exact same values of (P|E) = (−2.7|1.7)
which indicates that their affective qualities are rated equally with
respect to their median. All three stimuli are dominated by engine
noises. At the same time, the comparison of the acoustic fingerprints
representing the time series of the underlying acoustic dimensions
in Figure 4.8 shows a very heterogeneous shape (the complete set of
fingerprints can be found in Figures B.4 to B.7 of Appendix B).
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(a) E: TrainStation
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(b) S: Steamtrain
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(c) S: Traffic

Figure 4.8: Acoustic fingerprints of three soundscape recordings that show
the same median affective qualities.

At this point, the temptation to establish a causal explanation of the
perceived affective quality by the acoustic dimensions is resisted. As
stated in Section 2.5, attempts to model affective quality using acoustic
parameters is an area of research that is attracting much attention.
However, most studies show that these efforts have not yet produced
satisfactory results due to the lack of physical and personal context. In
order to focus on the main aspect of this paper, attempts to establish
causal relationships remain as exploratory as presented at this point.
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VA L I D AT I O N I I : E C O L O G I C A L VA L I D I T Y I N
S O U N D S C A P E R E P R O D U C T I O N

The development, implementation and validation of fundamental
acoustic dimensions allow a range of potential applications. High
level applications such as the modeling of perceived sound quality
may gain validity because a relevant amount of information on the
acoustic properties is provided with this method. Another field of
challenging applications is the computer-based identification and
recognition of acoustic patterns and events, single sound sources
or entire acoustic environments. With a set of acoustic dimensions
that cover a significant amount of variance these methods may gain
robustness.

In this thesis, two application examples are presented in this and
the following chapter that take a step back and serve more as a proof
of concept of the proposed method. The examples focus on the com-
parability of similar acoustic environments and on the identification
of diverging acoustic properties. The first example in this chapter
investigates the question, if the reproduction of recorded soundscapes
by means of Ambisonics rendering in a suitable listening environment
is capable to reconstruct the underlying acoustic dimensions that were
recorded initially in a real-world acoustic environment.

5.1 methodology

The reproduction of acoustic content for assessing any kind of hu-
man response is a popular method in various kinds of acoustic and
auditory research. Low-level investigations regarding the physiologi-
cal auditory system as well as more abstract psychoacoustical effects
could not be executed without synthetic acoustic reproduction of
appropriate stimuli. But also higher-level research that incorporates
recordings of real-world sounds such that on sound quality or even
emotional response relies in many cases on laboratory studies with
reproduced stimuli. Advantages of laboratory studies compared to
field studies are in particular the reduced time effort required, the
reproducibility or the possibility to present very different acoustic
environments quickly one after the other. Thus, within soundscape
research, laboratory studies and field studies coexist with various
facets, each appropriate for specific hypotheses. Nevertheless, when
laboratory studies are conducted, special attention must be paid to
the validity of the experimental design. That means that the entire
experimental chain, including technical infrastructure, measurement

57
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methods and experiment design, produces results that are consistent
with a particular hypothesis. Artifacts introduced to the results by
any of the parts of the experiment chain must be known to a certain
extent to avoid false conclusions. In experiments where (parts of) real
scenarios are reproduced and their results are to be transferred to real
scenarios, ecological validity must be given. In the case of soundscape
research ecological validity can be divided into one part regarding
the acoustic environment and another part regarding the non-acoustic
context. The aim is that subjects rate a reproduced soundscape simi-
larly compared to an in-situ assessment. An investigation comparing
the subjective assessment can be found in [46]. Due to the focus of this
work, the validity of the acoustic environment is to be observed by
means of the identified acoustic dimensions which was briefly concep-
tualized in the previous work of the author [59, 115]. The investigation
is based on a comparison of two acoustic environments: an original
recording (in the following: rec) and a re-recording of the original
recording reproduced with an appropriate loudspeaker system (in the
following: re-rec). It has to be noted that the original recording does
not necessarily represent the pristine acoustic environment without
flaw, but is rather itself a (best possible) technical representation of
it. The scenarios under test is that of the perceptual study discussed
in Chapter 4. 19 excerpts, each of 30 s duration of Ambisonics sound-
scape recordings were selected, processed, and reproduced with a 30
channel loudspeaker system as described in Section 4.1. This reproduc-
tion was then recorded with an Eigenmike® for transformation into
the spherical harmonic domain (Ambisonics encoding). The acoustic
indicators were calculated as well as the factor scores Y by means of
the previously deduced loading matrix L (cf. Section 3.3.2).

5.2 results

The factor scores of the original recordings and the re-recordings of
the respective reproduction were then analyzed. To get an impression,
how the time series of the proposed acoustic dimensions actually
look like, Figure 5.1 shows an example of the factor scores of four
soundscape excerpts, namely A: Office, E: Beach, E: TrainStation,
and S: Traffic. It can be seen that the general slope of the factor
scores can be reproduced differently well. In order to quantify this
behaviour Spearman’s correlation coefficients of ranks were calculated
for each dimension and each stimulus which can be taken from Fig-
ure 5.2. This shows that for the dimensions Loud (A), Timbre (C),
and HF-Timbre (D) good correlations can be reached. The dimension
Envel (B) at least shows positive correlations throughout, while HF-
Mod (E), MF-Mod (F), LF-Sources (G), and MHF-Fluct (H) show
arbitrary correlation patterns. Thus, it can be stated that the general
slope of loudness and timbre can be reproduced. The obvious offset
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Figure 5.1: Time series of the factor scores of the relevant dimensions for four
exemplary acoustic environments comparing recording (blue)
and re-recording (orange).



60 validation ii : ecological validity in soundscape reproduction

−1
−0.5

0
0.5

1

R
S

Loud (A) Envel (B)

−1
−0.5

0
0.5

1

R
S

Timbre (C) HF-Timbre (D)

−1
−0.5

0
0.5

1

R
S

HF-Mod (E) MF-Mod (F)

1 5 10 15

−1
−0.5

0
0.5

1

scene ID

R
S

LF-Sources (G)

1 5 10 15

scene ID

MHF-Fluct (H)

<0.0001
0.001
0.01
0.1
1

p-
va

lu
e

<0.0001
0.001
0.01
0.1
1

p-
va

lu
e

<0.0001
0.001
0.01
0.1
1

p-
va

lu
e

<0.0001
0.001
0.01
0.1
1

p-
va

lu
e

[ October 25, 2022 at 19:00 – classicthesis v4.6 ]

Figure 5.2: Spearman’s correlation coefficients RS between recording and
re-recording for each acoustic dimension and corresponding p-
values.

from Figure 5.1 is not reflected in Spearman’s RS. However, the corre-
lation pattern of these dimensions indicate an offset that is more or
less constant and thus can be treated accordingly. With appropriate
manipulations of the audio preprocessing, the reproduction can now
be optimized regarding these dimensions. For example, the dimen-
sion Loud (A) shows lower values for the re-recording than for the
original, which can be targeted with an appropriate reproduction gain
factor. Also, the dimension Timbre (C) shows lower values for the re-
recordings which might be approached by suitable filtering. Beside the
validation step of the methodology, this result also delivers a suitable
working basis for the actual application, namely the assessment of the
acoustic ecological validity of soundscape reproduction. The question
would be if there are systematic differences between recording and
re-recording. For that, Figure 5.3 shows the distribution of the factor
scores for orginal and re-recorded soundscape representation for all
stimuli in detail. It can be seen that most dimensions exhibit a more
or less constant offset between the original and re-recorded represen-
tation. However, these differences seem mostly not to be significant
according to the results of a Friedman test for the null hypothesis H0:
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Figure 5.3: Comparison of the distributions of acoustic dimension scores for
original recordings and the respective soundfield reproduced in
the laboratory.
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Table 5.1: Friedman test of significant differences between recordings and re-
recordings among the acoustic dimensions with p values and result-
ing significance as well as the test statistic Kendall’s W. Conover
pcon values denote pairwise posthoc comparison test were applica-
ble.

Dimension W p sig pcon

Loud (A) 0.002770 0.818546 n/s N/A
Envel (B) 0.024931 0.491297 n/s N/A
Timbre (C) 0.024931 0.491297 n/s N/A
HF-Timbre (D) 0.135734 0.108294 n/s N/A
HF-Mod (E) 0.069252 0.251349 n/s N/A
MF-Mod (F) 0.224377 0.038947 * <0.000001
LF-Sources (G) 0.335180 0.011617 * <0.000001
MHF-Fluct (H) 0.002770 0.818546 n/s N/A

“There is no difference in scores of a specific dimension between recording and
re-recording.” as shown in Table 5.1. Only the dimensions MF-Mod (F)
and LF-Sources (G) show significant differences here with p < 0.05.
This was also confirmed with pairwise posthoc Conover tests. How-
ever, these statements must be taken with care, since Friedman test on
ranks might not discover differences that are not systematic as observ-
able e.g. for the dimension MHF-Fluct (H) in Figure 5.1, p. 59. By
observing the time series it can be said that the first four dimensions
Loud (A), Envel (B), Timbre (C), and HF-Timbre (D) show compre-
hensible evidence if and how a reproduced sound field represents a
original reference. The other dimensions HF-Mod (E), MF-Mod (F),
LF-Sources (G), and MHF-Fluct (H) in turn show ambiguous results.
The analysis in terms of statistical differences does not necessarily
lead to satisfying answers if a reproduction is suitable. It can thus be
stated that the identification of statistically relevant acoustic dimen-
sions always requires manual plausibility checks by the investigator,
of which this chapter was an example.
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VA L I D AT I O N I I I : M U S I C R E P R O D U C T I O N I N
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In this chapter another exemplary application of the proposed method-
ology of investigating underlying acoustic dimensions is presented
that in turn contributes to the validation of the approach. Again,
acoustic environments are compared that are expected to have sim-
ilarities and differences in dimensions between different conditions.
This validation step here addresses the question of whether the previ-
ously identified dimensions are applicable to all kinds of soundscape
recordings or if hypotheses on specific acoustic environments require
individual treatment to detect all peculiarities. Parts of the content of
this chapter were published by the author in [122] and [123].

This application example is situated in the field of audio engineering
and music perception and refers to the development of loudspeaker
reproduction systems. With the promise of enhanced spatial imag-
ing, listener envelopment and overall improved listening experience,
the number of loudspeakers of commercially available channel-based
audio systems and formats increased over the past decades. Starting
from stereo reproduction allowing localization of individual music
instruments between left and right to quadraphonic sound with four
loudspeakers to the commercially very successful 5.1 surround sound
with five loudspeakers and an additional subwoofer up to 7.1 sur-
round sound with seven loudspeakers plus subwoofer, the number
of loudspeakers increases analogously to the industry’s promises of
spatial imaging within the listening plane. With the incorporation
of additional elevated loudspeakers, marketing terms such as 3D au-
dio or immersive audio become more and more widespread. This
development comprises both audio rendering algorithms as well as
loudspeaker setups, such as 5.1.4 surround sound which adds four
elevated speakers to a standard 5.1 setup (cf. [124, Setup D]) or
22.2 surround sound. The additional height layer of loudspeakers is
promised to further increase listener envelopment and spatial plau-
sibility. There exists a mentionable body on research of perceptual
effects provoked by these technologies, e.g. in [125, 126, 127]. How-
ever, at the same time little information is available on what properties
of the reproduced sound field actually change with different repro-
duction technologies and if the perceptual effects can be explained
or modeled with acoustic terms. The methodology of underlying
acoustic dimensions is applied here aiming for detection of similarities
and differences within the reproduction of music in four exemplary
loudspeaker layouts, namely mono, stereo, 5.1 surround sound and
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5.1.4 surround sound. Each of these layouts adds spatial direction
to the speaker positioning, which is why this selection of formats
can serve as an example for other and/or more advanced speaker
configurations.

6.1 methodology

The stimulus set of this investigation comprises eight excerpts of mu-
sical pieces of varying genre, ensemble size and recording/production
technique. Each piece of music is available in four versions of differ-
ent channel-based loudspeaker reproduction formats: mono (center
loudspeaker), stereo (left + right lsp.), 2D (5.1 surround sound) and 3D
(5.1.4 surround sound). For the production of the stimuli, two audio
engineers with experience in multi-channel mixing were engaged to
produce three well-sounding mixes (stereo, 2D and 3D) from provided
multi-track recordings without any other restrictions. The respective
mono version was deduced from the stereo version by averaging left
and right channel. An overview of the stimuli can be found in Ta-
ble 6.1. The loudness of the stimuli within the four playback formats
was calibrated to minimize the median deviation of the short-term
LUFS (EBU R 128 [82]) time series from the stereo reference. Since
this LUFS calibration is conducted in the digital signal domain, the
procedure was validated by means of the acoustic loudness measures.
Monophonic sound pressure levels LAeq and loudness according to
ISO 532-1 [71] were measured with a Beyerdynamic MM1 microphone
at the center of the listening area. Binaural LAeq and loudness ac-
cording to ISO 532-2 [81] respectively was captured with a G.R.A.S
45BC-12 KEMAR. The comparison of loudness and level distributions
between the formats revealed minor differences in dependence of the
respective musical piece, however no systematic and unexpected dif-
ferences could be found. Another stage of validation of the calibration
was performed perceptually by an experienced audio engineer. In
order to use the calibrated stimulus set for future listening tests, the
overall loudness between the individual pieces of music was adjusted
subjectively by the same audio engineer, aiming for plausibility in the
reproduction of music with different ensemble sizes and genres.

The reproduction was conducted with the technical infrastructure
previously described in Section 4.1. This time nine loudspeakers
plus two subwoofers were used that were positioned in accordance
with ITU-R BS.2051-2, setup D [124]. The raw stimuli were then re-
recorded at the listening point by means of an Eigenmike® EM32 and
appropriate Ambisonics processing in the same way as described in
Section 5.1.
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Table 6.1: Overview of investigated musical pieces.

Label Piece Dur.
[s]

Genre and
orchestration

Production

Laudate Laudate
Dominum
(Josep Vila)

33.4 A-cappella
choir: 12
singers
(SATB)

3D microphone
setup + support
microphones

Mellow In a Mellow
Tone (Janna
Berger)

35.4 Jazz band: ds,
db, pf, fem.
voice

3D microphone
setup + support
microphones

Wunderschoen Im wunder-
schönen
Monat Mai
(Robert
Schumann)

38.6 Classic song:
male voice, pf

3D microphone
setup + support
microphones

School School’s Out
(live; Alice
Cooper)

57.5 Full live rock
band

single micro-
phones + 3D
ambience

Bilder Pictures of an
exhibition
(Mussorgsky)

37.3 Large
Orchestra

3D microphone
setup + support
microphones

Walkuere Ride of the
Valkyries
(Wagner)

62.5 Opera:
Orchestra,
fem. voices

manual upmix
from commercial
5.1 content

Hantel Die Hantel
(Zweitaktmo-
tor)

61.8 Electropop:
synthesizers,
male and fem.
voices

pure studio pro-
duction

Rokoko Rokoko
Variations
(Tchaikovsky)

68.1 Classic
chamber
music: cello,
woodwind
quintet

manual upmix
from commercial
5.1 content

Generic and specific acoustic dimensions

As introduced above, the methodology of this validation example tar-
gets the question, whether the generic acoustic dimensions developed
before are suitable to detect differences and similarities in a sample
population that stems from a very specific subarea of acoustic environ-
ments, namely the reproduction of music with different loudspeaker
systems. In order to do so, the statistical analysis on differences is
conducted on two datasets: the factor scores Y calculated with the
generic loading matrix developed in Section 3.3.2 and the factor scores
Y∗ that are deduced by means of a loading matrix L∗ that was devel-
oped on basis of the specific acoustic environments under test only.
This specific loading matrix was calculated with the same assumptions
of factor analysis as described in Section 3.3.2. Figure 6.1 shows the
schematic diagram of the specific loading matrix that can be compared
with the generic one in Figure 3.3 on page 27.
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Figure 6.1: Scree test of explained variance (top) and schematic distribution
of indicator loadings for the first eight relevant specific factors
(bottom).

The respective factor composition is listed in Table 6.2 which in turn
may be compared to the generic composition respectively in Table 3.7,
p. 28.

Table 6.2: Indicator composition of the first eight relevant rotated factors j of
the stimulus specific factor analysis.

Factor j s2
j Ni,j Indicators

1 69.74
(29.4%)

40 LAeq(0.116), LA(0.116), loudnessZwickerBands05(0.116),
LApeak(0.116), LAeqBands06(0.115), loud-
nessZwicker(0.115), LABands06(0.115), LAeqBands05(0.115),
LAmax(0.115), LApeakBands05(0.114), loudnessZwicker-
Bands06(0.114), lufsMomBands06(0.114), LABands05(0.114),
LAmaxBands06(0.113), lufsPeakBands05(0.113), lufs-
PeakBands06(0.113), LAeqBands07(0.113), LApeak-
Bands06(0.113), LABands07(0.113), LAmaxBands05(0.113),
lufsMomBands05(0.113), loudnessZwickerBands04(0.112),
oct07(0.112), mfcc00(0.112), lufsMomBands07(0.111),
oct06(0.111), LApeakBands04(0.111), LAmaxBands07(0.110),
oct08(0.110), LAeqBands04(0.110), lufsMom(0.110), LA-
Bands04(0.109), lufsPeakBands04(0.109), lufsPeak-
Bands07(0.108), lufsPeak(0.108), LAmaxBands04(0.107),
lufsMomBands04(0.107), loudnessZwickerBands07(0.107),
LApeakBands07(0.105), oct05(0.104)

Continued on next page
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Table 6.2 – continued from previous page

Factor j s2
j Ni,j Indicators

2 30.81
(13.0%)

26 spectralCentroid(-0.163), spectralDecrease(0.161), lufs-
MomBands00(0.150), lufsShortBands00(0.149), lufsMom-
Bands01(0.147), lufsPeakBands01(0.147), oct02(0.147),
lufsShortBands01(0.146), LAmaxBands00(0.146),
lufsPeakBands00(0.145), LABands00(0.143),
spectralRolloffPoint(-0.143), oct01(0.142), LAe-
qBands00(0.142), LAmaxBands01(0.142), LABands01(0.139),
LApeakBands00(0.139), LAeqBands01(0.137), LApeak-
Bands01(0.136), lufsShortBands02(0.135), oct00(0.130), lufs-
MomBands02(0.129), oct03(0.124), lufsPeakBands02(0.123),
booming0(0.122), loudnessZwickerBands01(0.118)

4 13.63
(5.8%)

9 sphDIAz08(-0.250), sphDIAz07(-0.248), diff08(0.246),
diff07(0.245), sphDIAz09(-0.243), sphDI08(-0.239), sphDI07(-

0.235), sphDI09(-0.234), sphDIAz06(-0.232)

5 6.93
(2.9%)

5 fluct06(0.330), fluct05(0.329), fluct04(0.326), fluct07(0.319),
fluct03(0.277)

7 5.76
(2.4%)

5 rough05(0.349), rough06(0.347), rough07(0.341),
rough04(0.335), rough08(0.319)

3 4.80
(2.0%)

21 mfcc01(-0.306), sharp(0.231), booming2(-0.172),
lufsShortBands09(0.153), lufsShortBands08(0.151),
lufsMomBands09(0.147), lufsPeakBands09(0.146),
oct04(-0.143), lufsPeakBands08(0.141), lufsMom-
Bands08(0.140), LABands08(0.131), LABands09(0.131),
lufsPeakBands03(-0.130), LABands03(-0.130), oct05(-0.128),
loudnessZwickerBands03(-0.127), booming0(-0.127),
LAeqBands03(-0.125), lufsMomBands03(-0.124), LApeak-
Bands08(0.120), LAmaxBands08(0.120)

8 4.15
(1.7%)

5 sphDIEl08(-0.344), sphDIEl09(-0.341), doaEl07(0.320),
doaEl08(0.319), sphDIEl07(-0.310)

10 3.52
(1.5%)

3 sphDI04(-0.449), sphDIEl04(-0.431), sphDIAz04(-0.351)

The interpretation with appropriate semantic descriptors of the
specific acoustic dimensions can be taken from Table 6.3 that is ac-
companied by the descriptors of the generic acoustic dimensions for
comparability. Both sets of acoustic dimensions show similarities,
such as that the dimension Loud (AA) is present dominantly with
almost equal amount of explained variance portion. It can also be
noted that the timbre is present in both sets with two dimensions,
LF-Timbre (BB) and HF-Timbre (FF) for the specific set and Timbre (C)
and HF-Timbre (D) for the generic set respectively. The fact that
the low-frequency timbre in the specific set explains 13 % of vari-
ance indicates that the reproduction of music obviously has more
variability in this dimension which may be explained by the use of
subwoofers and LFE channel to additionally enhance this frequency
range where suitable in an artistic approach. The envelopment of
sound is represented in the generic set of dimensions with a single
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Table 6.3: Semantic descriptors for generic and specific acoustic dimensions.

(a) specific

Dim. Fac. Expl. Var. Descriptor Label

AA 1 69.74 (29.4 %) “Loudness” Loud (AA)
BB 2 30.81 (13.0 %) “Low-Frequency Timbre” LF-Timbre (BB)
CC 4 13.63 (5.8 %) “High-Frequency Diffusivity” HF-Diff (CC)
DD 5 6.93 (2.9 %) “Temporal Fluctuation” Fluct (DD)
EE 7 5.76 (2.4 %) “Roughness” Rough (EE)
FF 3 4.80 (2.0 %) “High-Frequency Timbre” HF-Timbre (FF)
GG 8 4.15 (1.7 %) “Elevational Diffusivity” El-Diff (GG)
HH 10 3.52 (1.5 %) “Mid-Frequency Diffusivity” MF-Diff (HH)

(b) generic

Dim. Fac. Expl. Var. Descriptor Label

A 1 87.77 (28.9 %) “Loudness” Loud (A)
B 4 16.77 (5.5 %) “Sound Source Envelopment” Envel (B)
C 2 12.92 (4.3 %) “Timbre” Timbre (C)
D 15 11.23 (3.7 %) “High-Frequency Timbre” HF-Timbre (D)
E 5 8.67 (2.9 %) “High-Frequency Modulation” HF-Mod (E)
F 6 7.59 (2.5 %) “Mid-Frequency Modulation” MF-Mod (F)
G 11 5.96 (2.0 %) “Low-Frequency Sound

Sources”
LF-Sources (G)

H 8 5.29 (1.7 %) “Mid-High-Frequency Fluctua-
tion”

MHF-Fluct (H)

dimension Envel (B) whereas the specific set offers three distinguish-
able dimensions of diffusivity, namely HF-Diff (CC), El-Diff (GG),
and MF-Diff (HH), which also reflects the specific character of the
recordings with different spatially positioned loudspeaker setups. The
temporal characteristic of the recorded acoustic environments is also
present in both sets, namely as Fluct (DD) and Rough (EE) in the
specific set and as HF-Mod (E), MF-Mod (F), and MHF-Fluct (H) in
the generic set.

6.2 results

As mentioned above, the results will be taken to discuss the question
whether the comparison of such specific acoustic environments is
equally successful with help of the generic loading matrix, developed
in Section 3.3.2 or if a specifically deduced loading matrix leads to
results more useful for discrimination.

Generic Loading Matrix

Figure 6.2 shows the distribution of the factor scores for each stim-
uli, acoustic dimension, and loudspeaker setup. A first view shows,
that certain factors exhibit small differences between loudspeaker
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Figure 6.2: Distributions of stimulus factor scores of generic acoustic dimen-
sions. Significant differences between loudspeaker setups can be
found in Envel (B), HF-Mod (E), and MF-Mod (F).
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conditions but larger differences between stimuli, such as Loud (A),
Timbre (C), and HF-Timbre (D) . Other dimensions show distinct
differences between conditions, with distributions appearing to be
systematic (e.g. Envel (B) increases with increasing number of loud-
speakers) or random (e.g. HF-Mod (E) shows differences within the
piece Hantel). To quantify the differences, Friedman tests were per-
formed as described in Section 3.4.1 with the null hypothesis H0:
“There is no difference in scores of a specific factor between mono, stereo,
2D and 3D loudspeaker setups.”. The results of this test are shown in
Table 6.4.

Table 6.4: Friedman test of significant differences between loudspeaker se-
tups among the acoustic dimensions with p values and resulting
significance as well as the test statistic Kendall’s W.

Dimension W p sig

Loud (A) 0.262500 0.094873 n/s
Envel (B) 0.731250 0.000008 **
Timbre (C) 0.137500 0.363321 n/s
HF-Timbre (D) 0.093750 0.538734 n/s
HF-Mod (E) 0.518750 0.001908 **
MF-Mod (F) 0.500000 0.002724 **
LF-Sources (G) 0.081250 0.597847 n/s
MHF-Fluct (H) 0.293750 0.064542 n/s

It can be seen that the dimension Envel (B) shows significant dif-
ferences between loudspeaker setups which is comprehensible since
the number and spatial location of the loudspeaker change leading
to a different composition of the spatial sound field. A closer look at
the distribution of this dimension in Figure 6.2 shows the tendency
that as the number of speakers in a playback setup increases, the
scores of this respective dimension increase as well. The Friedman test
also shows significant differences between the loudspeaker setups for
the dimensions HF-Mod (E) and MF-Mod (F). However, a systematic
behavior cannot be asserted from the distribution but rather random
deviations can be observed.

Pairwise one-sided Wilcoxon signed-rank tests were performed to
determine whether the differences among those three dimensions
were systemic or due to specific characteristics. Thus, the comparisons
between all loudspeaker setups for each piece of music was conducted
one-sided, that is in the way “scores for setup A are greater than
for setup B”. Table 6.5 shows the resulting p∗-values with Bonferroni
correction p∗ = p · Ncomp = p · (6 · 8). It may be read exemplarily as

Example. According to Table 6.5a the scores within dimension Envel (B)
for the piece Bilder is significantly greater for the 3D loudspeaker setup than
for the 2D setup (∗∗, p < 0.001; first row, first column). At the same time,
the scores for the piece Wunderschoen are not greater for the stereo setup
compared to the mono setup (n/s, p = 1; last row, last column)
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Table 6.5: Pairwise one-sided posthoc Wilcoxon test of significant differences
between loudspeaker setups of generic acoustic dimensions. Bon-
ferroni adjusted p∗ values with resulting significance.

(a) Envel (B)

Piece 3D
>
2D

3D
>

Stereo

3D
>

Mono

2D
>

Stereo

2D
>

Mono

Stereo
>

Mono

Bilder **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

Hantel **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

Laudate **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

Mellow **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

Rokoko **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

School **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

Walkuere **
(<0.001)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

Wunderschoen **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(0.001)

n/s
(1.000)

n/s
(1.000)

(b) HF-Mod (E)

Bilder n/s
(1.000)

**
(<0.001)

n/s
(1.000)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

Hantel **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

Laudate n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

Mellow n/s
(1.000)

**
(<0.001)

n/s
(1.000)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

Rokoko **
(<0.001)

**
(<0.001)

n/s
(1.000)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

School n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

Walkuere n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

Wunderschoen **
(<0.001)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

(c) MF-Mod (F)

Bilder n/s
(1.000)

**
(<0.001)

n/s
(1.000)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

Hantel n/s
(1.000)

**
(<0.001)

n/s
(1.000)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

Laudate n/s
(1.000)

**
(<0.001)

n/s
(1.000)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

Mellow n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

**
(<0.001)

**
(0.002)

Rokoko n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

School n/s
(0.966)

**
(<0.001)

n/s
(1.000)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

Walkuere n/s
(1.000)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

Wunderschoen **
(<0.001)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)
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Most pairwise comparisons within the dimension Envel (B) show
larger factor scores for the condition with larger number of loud-
speakers. This is the case for all comparisons, except the comparison
between stereo and mono and except for the piece Walkuere. We can
thus assume that this characteristic is systematic. A different behavior
can be observed for the dimensions HF-Mod (E) and MF-Mod (F).
Here, the statistical difference from the Friedman test can not be opera-
tionalized since the pairwise comparisons in Tables 6.5b and 6.5c show
no systematic characteristics neither among the comparison conditions
nor among the pieces of music. The significant differences here are
thus based on other or random reasons.
We can conclude at this point that the generic acoustic dimensions are
suitable to detect the very specific differences in a sound field that
arise from the use of different loudspeaker setups with the dimension
Sound Source Envelopment (B). An increase of loudspeakers from
mono to stereo, to 2D, up to the 3D setup leads to an increase of the
scores of this particular dimensions. When assuming that an increase
of spatially distributed sound sources (loudspeakers) amplifies a sur-
rounding or diffuse sound field, this findign confirms the character of
Envel (B).

Specific Loading Matrix

After gaining satisfactory results with a generic set of acoustic dimen-
sions previously, the following investigation aims towards a more
detailed characterization of the specific acoustic environments of mu-
sic reproduction with different loudspeaker setups. For that, the
specific acoustic dimensions developed in Section 6.1 are analyzed
in a similar way as the generic dimensions before. Thus, Figure 6.3
shows the distribution of the factor scores. The exploration of the
distribution indicates that again certain dimensions show differences
between musical pieces and others show differences between loud-
speaker setups. In order to quantify latter, a Friedman test with the
same null hypothesis H0: “There is no difference in scores of a specific fac-
tor between mono, stereo, 2D and 3D loudspeaker setups.” was conducted.
The dimensions High-Frequency Diffusivity (CC), Elevational Dif-
fusivity (GG), and Mid-Frequency Diffusivity (HH) show p values
that dictate a rejection of H0 leading to significant differences between
the loudspeaker versions. The respective p-values and Kendall’s W
can be found in Table 6.6. Comparable to the results of the generic set
of acoustic dimensions here again the dimensions that describe the
spatial composition of the sound field are found to be different which
again satisfies reasonable expectations. However, here the spatial char-
acteristics are made up by three dimensions which emphasizes that
these characteristics make up a relevant portion of overall variance of
the sound field. To ensure that the significant differences are actually
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Figure 6.3: Distributions of stimulus factor scores of generic acoustic dimen-
sions. Significant differences between loudspeaker setups can be
found in HF-Diff (CC), El-Diff (GG), and MF-Diff (HH).
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Table 6.6: Friedman test of significant differences of specific acoustic dimen-
sions between loudspeaker setups.

Dimension W p sig

Loud (AA) 0.281250 0.075483 n/s
LF-Timbre (BB) 0.125000 0.408384 n/s
HF-Diff (CC) 0.925000 0.000000 **
Fluct (DD) 0.106250 0.483549 n/s
Rough (EE) 0.243750 0.118377 n/s
HF-Timbre (FF) 0.231250 0.136654 n/s
El-Diff (GG) 0.731250 0.000008 **
MF-Diff (HH) 0.525000 0.001689 **

due to the different loudspeaker setups paired one-sided Wilcoxon
signed-rank tests with the alternative hypothesis H1: “Within a specific
dimension the scores of loudspeaker setup A is greater than those of setup B.”
were conducted. Table 6.7 shows the Bonferroni-adjusted values p∗

for all pairwise comparisons.
It can be seen that from all three investigated dimensions a system-

atic characteristic can be deduced. The dimension HF-Diff (CC) shows
significant higher scores for the respective setup with more loudspeak-
ers for almost all comparisons. This meet the expectation that an
increase of sound sources (loudspeakers) leads to higher diffusivity in
the investigated sound field.

Non-significance can be observed for dimension El-Diff (GG) for
the comparison between stereo and mono as well as between 2D
and mono setup. This is a plausible outcome, since all speakers are
positioned at the same ear level and no differences of elevation are
expected. However, this would also apply for the comparison between
2D and stereo, which in turn shows significant differences for six
out of eight pieces of music. This behavior is not expected and an
explanation can not be delivered at this point. The comparisons of the
3D setup with all other setups without elevated loudspeakers again
meets the expectations of higher scores in this dimensions.

The MF-Diff (HH) again shows significantly higher scores for setups
with more loudspeakers in 29 out of 48 pairwise comparisons which
is an ambiguous outcome. The fact that the piece Walkuere exhibits
no difference between the setups for any comparison also indicates a
non-systematic but rather content-dependent cause for this dimension.

Summarized we can state that the application of a set of acoustic
dimensions that was developed specifically for a certain application
turned out to be beneficial in terms of more detailed discrimination.
Here, the dimension HF-Diff (CC) could robustly detect sound fields
composed of a larger number of sound sources (loudspeakers). This
was accompanied and refined by the dimension El-Diff (GG) that was
capable of detecting setups with elevated loudspeakers with minor
deductions.
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Table 6.7: Pairwise one-sided posthoc Wilcoxon test of significant differences
between loudspeaker setups of specific acoustic dimensions. Bon-
ferroni adjusted p∗ values with resulting significance.

(a) HF-Diff (CC)

Piece 3D
>
2D

3D
>

Stereo

3D
>

Mono

2D
>

Stereo

2D
>

Mono

Stereo
>

Mono

Bilder **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

Hantel **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

Laudate **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

Mellow **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

Rokoko **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

School **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

Walkuere **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

Wunderschoen **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

(b) El-Diff (GG)

Bilder **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

Hantel **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

Laudate **
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

Mellow **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

Rokoko **
(<0.001)

**
(<0.001)

n/s
(1.000)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

School **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

Walkuere **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

Wunderschoen **
(<0.001)

**
(<0.001)

n/s
(0.083)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

(c) MF-Diff (HH)

Bilder **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

Hantel **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

Laudate **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

Mellow **
(<0.001)

**
(<0.001)

n/s
(0.109)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

Rokoko **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

School **
(<0.001)

**
(<0.001)

**
(<0.001)

**
(<0.001)

n/s
(1.000)

n/s
(1.000)

Walkuere n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

n/s
(1.000)

Wunderschoen **
(<0.001)

**
(<0.001)

n/s
(1.000)

n/s
(0.305)

n/s
(1.000)

n/s
(1.000)
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6.3 time series considerations

The presented methodology is based on similarities and differences
of the distribution of factor scores. In principle, this would include
the assumption that each short-term observation is independent of
any other observation. This of course is not the case since time series
are investigated that are tied to a process with both stochastic and
deterministic features. Hence, in order to assure that the above made
statements are valid not only for the distributions but also for the
time series, a further analysis step was conducted. With the help of
independent component analysis (ICA) [128] as described in Section 3.3.3
it is possible to detect underlying signal bases. The method assumes
that observed signals are mixtures of superimposed basis signals. The
decomposition of the four signal observations (mono, stereo, 2D, 3D)
for each dimension and each piece of music into subcomponents is
ought to reveal similarities in the temporal characteristic. Figure 6.4
shows the mixing matrix of the ICA with four basis signal components
s0, s1, s2, s3 of the piece Laudate, i.e. the respective weights. It can be
seen that for the dimensions Loud (AA), LF-Timbre (BB), Rough (EE),
and HF-Timbre (FF) a single component is mixed with large weights to
the time series of the dimension scores of all loudspeaker setups. This
vertical structure means that all four conditions are based on similar
time series properties. The dimensions HF-Diff (CC), El-Diff (GG),
and MF-Diff (HH) have different characteristics. Here, we cannot
identify such structures, which means that the dimensions’ time series
of the four loudspeaker conditions do differ in a relevant way. These
both findings of similarities and differences confirm the assumptions
that not only the distributions but also the time series of the identified
dimension scores discriminate the four loudspeaker conditions within
the dimensions HF-Diff (CC), El-Diff (GG), and MF-Diff (HH).

Mono
Stereo

2D
3D

Loud (AA) LF-Timbre (BB) HF-Diff (CC) Fluct (DD)

s0 s1 s2 s3

Mono
Stereo

2D
3D

Rough (EE)

s0 s1 s2 s3

HF-Timbre (FF)

s0 s1 s2 s3

El-Diff (GG)

−1 −0.5 0 0.5 1

s0 s1 s2 s3

MF-Diff (HH)

Figure 6.4: ICA mixing matrix for the piece Laudate. Composition of funda-
mental signal shapes s0, s1, s2, and s3 to represent the slopes of
the factor scores time series of the respective loudspeaker setups.



7
D I S C U S S I O N

The previous chapters produced decisions, assumptions, results, and
consequences that will be summarized and discussed in the following
sections. Special focus will be given to the limitations, ambiguities
and open questions in order to point out future improvements of the
presented methodology.

7.1 summary

The presented work raised the question of what properties are actually
important for distinguishing and comparing acoustic environments
from a human perspective.

A satisfying answer to this question would help in various fields of
application, e.g. the modeling of the influence of acoustic properties
on the perceptual and emotional responses of individuals. Other more
technical applications could be general comparisons and classifica-
tions of classes of acoustic environments in algorithmic terms or the
regulatory assessment of noise immission as elaborated in Chapter 1.

The current state of soundscape research – as standardized in ISO
12913-1 [4] and subsequent technical specifications – seems to have
settled on emotional dimensions, namely pleasantness and eventful-
ness, with which reactions to soundscapes can be broadly represented.
To describe a soundscape holistically, a triangulation between the
entities acoustic environment, person and context is recommended,
as described in Chapter 2. For this reason, and because it can be
assumed that there are causal relationships between the entities, there
is a need for a comprehensive description of the acoustic properties of
soundscapes. The fundamental concepts for describing acoustic envi-
ronments as part of soundscapes was discussed in the same chapter,
including the physical assessment of spatio-temporal sound fields by
means of spherical harmonic decomposition, appropriate methods for
capturing, representation, and reproduction such as Ambisonics or
binaural rendering, the boundary conditions of the acoustic environ-
ment representations in terms of acoustic and non-acoustic context as
well as general requirements of a representation of the properties of
acoustic environments.

From that, the aim of the presented thesis was formulated, namely
the identification of underlying acoustic dimensions on the basis of
signal-based acoustic indicators that can be used to describe the key
properties of acoustic environments in a straightforward way. Chap-
ter 3 then elaborates the methodology to identify these dimensions.

77
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The principal approach is data-based and exploratory, that means that
the underlying acoustic dimensions are revealed by observation of a
broad range of soundscape recordings. For the observations, a collec-
tion of signal-based indicators within the categories quality, loudness,
spaciousness and time was selected that was put together on basis
of a broad literature review of soundscape studies and neighboring
fields such as music information retrieval, sound field analysis and
psychoacoustics. A methodological framework of indicators as input
and acoustic dimensions as output of factor analysis, a multivariate
statistical method, was developed and applied on a dataset containing
three different databases of Ambisonics soundscape recordings of
approx. 12.5 h in total. The result consists of eight relevant acous-
tic dimensions that explain 51.4 % of the total variance and whose
semantic descriptor is made up by their respective indicator com-
position, namely Loudness (A), Sound Source Envelopment (B),
Timbre (C), High-Frequency Timbre (D), High-Frequency Modula-
tion (E), Mid-Frequency Modulation (F), Low-Frequency Sound
Sources (G), and Mid-High-Frequency Fluctuation (H). Finally
suggestions were made on how to assess soundscapes by means of
these dimensions in terms of statistical analysis and appropriate visu-
alization.

The identified dimensions were then applied to three exemplary
cases that serve as steps of validation. Chapter 4 attempts to find
correlations between acoustic dimensions and perceptual attributes.
For that, a listening experiment was conducted and analyzed that
consists of three parts. In the first part general identification of sound
source classes was requested from the participants in order to assess
the ambiguity of perception of reproduced soundscapes. The second
part investigated the consent of perceptual attributes by means of
semantic differentials. The participant task was to evaluate a selection
of ten attribute pairs for each reproduced soundscape. The perceptual
results were then correlated with the eight acoustic dimensions to find
appropriate correspondents with plausible success. The third part
consisted of an outlook if the acoustic properties and the perceptual
evaluations can be taken to interpret emotional responses.

A further validation step is carried out using the example of the
investigation of ecological validity in Chapter 5. It was investigated
whether the reproduction of a soundscape evokes the same expres-
sion of the acoustic dimensions compared to the (original) recording.
The differences between recording and re-recording of the reproduc-
tion were analyzed and plausible similarities and differences were
found with the result that the acoustic dimensions provide relevant
information for maintaining ecological validity in terms of acoustic
properties.

Finally, in Chapter 6 an investigation was conducted where a single
acoustic property – the spatial composition – was varied on purpose,
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leaving all other dimensions potentially unchanged. This was done
by reproducing music of the same content with varying loudspeaker
configurations. It could be shown, that the change in the sound
field could be detected in a robust way with the dimension Sound
Source Envelopment (B). Further, an adaptation of the acoustic di-
mensions was applied in order to reflect the peculiar characteristics
of the acoustic environments produced by music reproduction with
different loudspeaker configurations. This contributed to the question
if the set of identified acoustic dimensions can be used to generally
describe any acoustic environment. The result showed that in certain
cases it is useful to adapt these dimensions in order to identify partic-
ular properties of a special subset of acoustic environments. In this
case the specific dimensions High-Frequency Diffusivity (CC)and
Elevational Diffusivity (GG)were able to differentiate the changes
in the sound field in a even more detailed way.

7.2 outlook

The presented work is a contribution to the research on soundscape
and general assessment of acoustic environments that provides novel
methods and opens new possibilities in this field. Although parts
of the methodology are motivated by neighboring disciplines, to the
best of the author’s knowledge, similar research has not yet been
applied to soundscapes. In this sense, the author does not take the
present work and its results as an incontrovertible given, but rather
as a new perspective for the study of acoustic environments. Thus, it
can be assumed that a constructive challenging of the methodology
and results improves the robustness of the approach. Refinements and
optimizations of the presented methodology are potentially useful
with regard to the following aspects:

• The selection of acoustic indicators may not cover all perceptual
relevant aspects of the assessment of acoustic environments.
Adding further indicators could increase the interpretability
and validity of the derived dimensions. This also counts for
the parametrization of indicators such as the time-frequency
resolution (window length and number of analysis bands).

• Even though the selection of soundscape recording databases
was conducted with care, it may be the case that not all sound-
scape classes are represented equally. As Chapter 6 has shown,
an adapted, dedicated set of acoustic dimensions may be applied
for a specific class of soundscape with more explaining power.
Thus, guidelines for adaptation of the acoustic dimensions for a
specific object of investigation could be developed.

• From the two previous aspects arises the desire to develop new
or adapted indicators that increase the variance explanation,
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reduce the error and noise susceptibility and at the same time
simplify the computational process. This is all the more true
since the a priori categories of quality, loudness, spaciousness,
and time could be confirmed as relevant and purposeful.

• The development of the underlying acoustic dimensions in
this work is based on factor analysis. A further step of cross-
validation of the method could be to perform the same task with
another (statistical) method as proposed in Section 3.3.3.

• The validation of the identified acoustic dimensions was con-
ducted at the example of three concrete applications in this work.
For this purpose, further validation steps are conceivable, in-
cluding a systematic variation of physical sound field properties
as proposed in chapter 6, detailed listening experiments to find
more precise perceptual correspondences to the acoustic dimen-
sions, and finally the application to concrete research hypotheses
with accompanying soundscape research methods.

• The temporal characteristics of the acoustic dimensions are rep-
resented in the presented methodology by means of modulation,
fluctuation as well as the time series considerations within the in-
dependent component analysis. This aspect could be elaborated
in more detail in the future to reflect the time-dependent human
auditory perception also from the perspective of Gestalt psychol-
ogy, thus closing the gap to auditory scene analysis (ASA).

With these proposed future works it can be expected that the method-
ology is capable to contribute in a relevant way to the description of
acoustic environments as part of soundscape as well as neighboring
disciplines.

7.3 conclusion

The present work contributes to a comprehensive description of acous-
tic environments. It can be utilized for soundscape research, i.e. for
the investigation on how and why humans perceive and react to their
acoustic environment in context. The description of soundscapes by
means of triangulation between the entities acoustic environment,
person and context gains with the presented results the aspect of a
statistical and perceptually relevant description of acoustic properties.
Beyond soundscape research the proposed methodology and results
can further be used for assessing general acoustic events and envi-
ronments by means of computer-aided methods of machine learning,
such as the detection and classification of acoustic events and scenes.
These data-based areas already use methods of dimension reduction
and variance aggregation and can benefit from a cross-validated a
priori set of acoustic dimensions that are (more or less) independent



7.3 conclusion 81

from the actual object of investigation.

The source code of the presented framework, including the cal-
culation of indicators, statistical identification and analysis of the
acoustic dimensions and visualization routines are available under
https://gitlab.com/janywhere. This dissertation is publicly available
under http://dx.doi.org/10.15488/13578.

Finally, the author hopes that this work contributes to a better
understanding of human perception of acoustic environments and
supports the aim to make the world a better sounding place.

https://gitlab.com/janywhere
http://dx.doi.org/10.15488/13578
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Table A.1: Indicator composition the first 8 relevant unrotated factors j with
respective explained variance s2

j and relative loadings lrel,ij in
parentheses. Trailing numbers of the indicators denote the fre-
quency bands. Ni,j denotes how many of the total number of
indicators account for ≥ 51 % of the factor’s explained variance.

Factor j s2
j Ni,j Indicators

1 92.44
(30.4%)

51 loudnessZwicker(-0.103), LA(-0.102), LAeq(-

0.102), loudnessZwickerBands05(-0.101),
loudnessZwickerBands04(-0.101), LAeqBands05(-0.101),
lufsMom(-0.100), LABands05(-0.100), lufsMomBands05(-

0.100), loudnessZwickerBands03(-0.100), LAmax(-0.100),
lufsPeakBands05(-0.100), loudnessZwickerBands06(-0.100),
LAeqBands03(-0.100), oct06(-0.100), LAeqBands04(-0.100),
LABands03(-0.100), LABands04(-0.100), lufsShort(-

0.100), mfcc00(-0.100), lufsPeakBands03(-0.100),
lufsMomBands03(-0.100), lufsMomBands04(-

0.100), lufsPeak(-0.099), lufsShortBands05(-0.099),
lufsPeakBands04(-0.099), LApeakBands03(-

0.099), LAmaxBands03(-0.099), oct05(-0.099), oct04(-

0.099), lufsShortBands03(-0.099), LApeak(-0.099),
LAmaxBands05(-0.099), lufsShortBands04(-0.099),
LABands06(-0.099), LAeqBands06(-0.099), oct07(-

0.099), LAmaxBands04(-0.099), LApeakBands04(-

0.098), lufsPeakBands06(-0.098), lufsMomBands06(-

0.098), LApeakBands05(-0.098), LApeakBands02(-

0.098), LAeqBands02(-0.098), LABands02(-0.097),
LAmaxBands02(-0.097), lufsShortBands06(-0.097),
loudnessZwickerBands02(-0.096), LAmaxBands06(-0.096),
loudnessZwickerBands07(-0.095), lufsPeakBands02(-0.095)

2 18.64
(6.1%)

31 spectralSkewness(-0.174), spectralCentroid(0.166),
spectralSpread(0.164), spectralRolloffPoint(0.159),
spectralKurtosis(-0.159), spectralFlatness(0.157),
sharp(0.154), spectralEntropy(0.144), lufsPeakBands00(-

0.126), lufsMomBands00(-0.124), oct01(-0.123),
lufsShortBands00(-0.122), oct00(-0.121), oct02(-0.119),
mfcc01(-0.117), lufsPeakBands01(-0.116), spectralCrest(-

0.116), LABands00(-0.116), lufsMomBands01(-0.115),
LAeqBands00(-0.115), LAmaxBands00(-0.114), lufs-
MomBands09(0.114), lufsShortBands01(-0.112),
LAmaxBands09(0.112), lufsPeakBands09(0.111),
LABands09(0.110), LAeqBands09(0.110), lufsShort-
Bands09(0.109), LApeakBands00(-0.107), LABands01(-0.103),
LAeqBands01(-0.102)

Continued on next page
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Table A.1 – continued from previous page

Factor j s2
j Ni,j Indicators

3 13.98
(4.6%)

25 sphDI07(0.178), sphDI09(0.174), sphDI08(0.173), sph-
DIAz07(0.171), sphDIAz08(0.159), mfcc01(-0.157),
sphDI05(0.154), sphDI06(0.153), sphDIEl07(0.151),
sphDIEl09(0.147), sphDIEl08(0.145), sphDIEl04(0.144),
sphDIAz06(0.143), sphDI04(0.142), sphDIEl05(0.138), diff07(-

0.133), sharp(0.128), sphDIAz09(0.128), sphDIAz05(0.126),
diff08(-0.124), diff06(-0.124), spectralEntropy(-0.118),
sphDIEl06(0.110), sphDIAz04(0.108), spectralCrest(0.107)

4 14.09
(4.6%)

21 sphDIEl05(-0.187), sphDI06(-0.186), sphDI05(-0.185),
sphDIEl07(-0.181), sphDIEl06(-0.179), sphDI04(-0.174),
sphDIEl04(-0.173), sphDIEl08(-0.173), sphDI07(-0.166),
sphDIAz05(-0.159), sphDI08(-0.158), sphDIAz06(-0.155),
sphDIAz04(-0.151), sphDIEl03(-0.151), sphDI03(-0.150),
sphDIAz03(-0.122), sphDIAz07(-0.122), diff05(0.120),
diff06(0.117), sphDIEl09(-0.115), sphDIAz08(-0.108)

5 8.26
(2.7%)

17 modDepthP109(0.197), modDepthS08(0.196), mod-
DepthS09(0.191), modDepthP108(0.185), mod-
DepthP209(0.184), modDepthP309(0.184), mod-
DepthS07(0.181), modDepthP308(0.175), mod-
DepthP208(0.174), modDepthP207(0.171), mod-
DepthP107(0.170), modDepthP307(0.169), mod-
DepthS06(0.163), modDepthS05(0.162), mod-
DepthP105(0.160), modDepthP206(0.155), mod-
DepthP306(0.153)

6 6.12
(2.0%)

27 mfcc02(-0.200), fluct08(-0.189), fluct09(-0.160), fluct07(-0.160),
fluct06(-0.152), modDepthS06(0.152), modDepthS05(0.143),
modDepthP106(0.141), modDepthP105(0.138), mod-
DepthP306(0.137), modDepthP206(0.136), mfcc04(-0.134),
fluct05(-0.132), modDepthP305(0.128), rough02(0.127),
modDepthP205(0.127), sphDI02(-0.126), rough03(0.123),
diff02(0.119), sphDIEl02(-0.119), fluct04(-0.116),
modDepthP208(-0.116), spectralSkewness(-0.112),
spectralKurtosis(-0.109), doaEl05(0.109), sphDI01(-0.108),
iacc05(0.108)

7 4.99
(1.6%)

17 modDepthS03(0.197), modDepthP203(0.195), mod-
DepthP303(0.194), modDepthP103(0.192), mod-
DepthS02(0.185), modDepthP302(0.181), mod-
DepthP202(0.180), modDepthS09(-0.180), iacc03(0.180), mod-
DepthP102(0.169), spectralSlope(-0.162), modDepthP309(-

0.158), iacc02(0.157), modDepthS08(-0.155), modDepthP209(-

0.155), modDepthP109(-0.154), modDepthP201(0.147)
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listening experiment

Significant differences in the distributions of the factor scores of the
stimuli for the listening experiment can be taken from Figures B.1 for
the original recordings and B.2 for the re-recorded stimuli.
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Figure B.1: Statistical differences between recorded sample soundscapes.
Red: strong significance (p < 0.01), blue: moderate significance
(p < 0.05), gray: no significance (p > 0.05).
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Figure B.2: Statistical differences between re-recorded sample soundscapes.
Red: strong significance (p < 0.01), blue: moderate significance
(p < 0.05), gray: no significance (p > 0.05).
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Figure B.3: Graphical user interface of exemplary stimulus of listening exper-
iment.
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Figure B.4: Fingerprints of soundscape excerpts A: Library, A: Office,
A: LivingRoom, A: Cafe, A: DinnerParty, and A: TrainSta-
tion.
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Figure B.5: Fingerprints of soundscape excerpts A: FoodCourt, E: Beach,
E: Park, E: Pedestrian A, E: Pedestrian B, and E: Shopping.
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Figure B.6: Fingerprints of soundscape excerpts E: TrainStation, E: Wood-
land, S: Playground, S: Busker, S: Steamtrain, and S: Traffic.
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Figure B.7: Fingerprints of soundscape excerpt S: TrainStation.
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indicator calculation

Periodic Modulation Frequency

The periodic amplitude modulation is calculated by means of a peak-
finding algorithm that is applied to the spectrum Xam that consists of
the Fourier transformation of the signal envelope (Hilbert transforma-
tion) as in

Xam = 20 · log10(F{H{x}}). (C.1)

The Fourier spectrum was logarithmically resampled with 96 taps per
octave in a frequency range between 0.05 Hz and 20 Hz and the peak-
finding algorithm was configured with minimum peak prominence
of 6 dB, minimum peak height of (max{Xam} − 24 dB) and minimum
peak distance of 1/3 octaves.

Periodic Modulation Depth

The modulation depth that is associated with the periodic modulation
frequency is calculated as described before of the periodic modulation
frequency and is scaled such that a depth of 1 corresponds to equal
modulation and signal amplitude.

Stochastic Modulation Depth

The stochastic modulation is calculated by substracting up to three
periodic modulation envelopes from the original time signal and the
modulation depth represents the signal amplitude of this differenced
signal.

Spherical Directivity Index

The calculation of the soundfield’s directivity index follows Equa-
tion C.2

DI = 10 · log10

 |pre f |2∫ 2π
φ=0

∫ π
θ=0 |p(φ, θ)|2 sin θdθdφ

 , (C.2)

where pre f = max(|p(φ, θ)|2). The directional sound pressure p(φ, θ)

is calculated as plane wave decomposition of the incoming sound with
1° angular resolution.

102



furmulae 103

Vertical Directivity Index

The calculation of the soundfield’s vertical directivity index follows
Equation C.3

DIv = 10 · log10

(
|pv,re f |2∫ π

θ=0 |pv(θ)|2 sin θdθ

)
, (C.3)

where pv,re f = max(|pv(θ)|2) and pv(θ) =
∫ 2π

φ=0 p(φ, θ)dφ. The direc-
tional sound pressure p(φ, θ) is calculated as plane wave decomposi-
tion of the incoming sound with 1° angular resolution.

Horizontal Directivity Index

The calculation of the soundfield’s horizontal directivity index follows
Equation C.4

DIv = 10 · log10

 |pv,re f |2∫ 2π
φ=0 |ph(φ)|2dφ

 , (C.4)

where ph,re f = max(|ph(φ)|2) and ph(φ) =
∫ π

θ=0 p(φ, θ) sin θdθ. The
directional sound pressure p(φ, θ) is calculated as plane wave decom-
position of the incoming sound with 1°angular resolution.

Spherical Pressure Ratio

The spherical pressure ratio describes the acoustic energy distribution
between the Ambisonics signals for order n = 0 and n > 0. It is
calculated as shown in Equation C.5

sp = 20 · log10

(
|x0|2

1
(N+1)2 ∑N

n=1 |xn|2

)
(C.5)

where N denotes the maximum order of the Ambisonics signal repre-
sentation.

Spherical Gradient Ratio

The spherical pressure ratio describes the acoustic energy distribution
between the Ambisonics signals for order n = 0 and n > 0. It is
calculated as shown in Equation C.6

sg = 20 · log10

( 1
(N+1)2−1 ∑N

n=1 |xn|2
1

(N+1)2 ∑N
n=0 |xn|2

)
(C.6)

where N denotes the maximum order of the Ambisonics signal repre-
sentation.
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Spherical Gradient/Pressure Ratio

The spherical pressure ratio describes the acoustic energy distribution
between the Ambisonics signals for order n = 0 and n > 0. It is
calculated as shown in Equation C.7

sgp = 20 · log10

( 1
(N+1)2−1 ∑N

n=1 |xn|2

|x0|2

)
(C.7)

where N denotes the maximum order of the Ambisonics signal repre-
sentation.
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