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Abstract: Introduction: In this work, we use simulated data
to quantify the different failure mechanisms of a previously
presented low-cost jump height measurement system, based
on widely available consumer smartphone technology. Meth-
ods: In order to assess the importance of the different precon-
ditions of the jump height measurement algorithm, we gen-
erate a synthetic dataset of 2000 random jump parabolas for
2000 randomly generated persons without real-world artifacts.
We then selectively add different perturbations to the parabo-
las and reconstruct the jump height using the evaluated algo-
rithm. The degree to which the manipulations influence the
reconstructed jump height gives us insights into how critical
each precondition is for the method’s accuracy. Results: For a
subject-to-camera distance of 2.5 meters, we found the most
important influences to be tracking inaccuracies and distance
changes (non-vertical jumps). These are also the most difficult
factors to control. Camera angle and lens distortion are easier
to handle in practice and have a very low impact on the recon-
structed jump height. The intraclass correlation value ICC(3,1)
between true jump height and the reconstruction from dis-
torted data ranges between 0.999 for mild and 0.988 for more
severe distortions. Conclusion: Our results support the design
of future studies and tools for accurate and affordable jump
height measurement, which can be used in individual fitness,
sports medicine, and rehabilitation applications.

Keywords: vertical jump height, sports, camera calibration,
gravity, parabola, simulation

1 Introduction and Related Work

The assessment of vertical jump height is an important tool
to gauge ballistic lower body strength in sports sciences and
sports medicine. Vertical jump height, as defined by Bobbert
and van Ingen [1], is the maximum vertical movement of the
body’s center of mass. However, determining the exact cen-
ter of mass is not straightforward because it depends on the
movement of all body parts, including flexible tissue [2].
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Fig. 1: Illustration of the jump height measurement system and

preconditions: The jump must be straight up. The camera must

be still (e.g. on a tripod) and aligned vertically. A typical modern

smartphone camera meets the frame rate and resolution require-

ments and contains an accelerometer which helps with alignment.

Because of this difficulty, most practical jump height mea-
surement methods determine the height indirectly from a dif-
ferent measured quantity, such as: Motion capturing, force
plates, floor contact detectors, frame counting in high-speed
videos, or trajectory analysis in high-speed video.

In this work, we take a closer look at the jump height mea-
surement method proposed by Webering et al. [3], which an-
alyzes the vertical trajectory of the subject in a slow-motion
video taken, for example, with a modern smartphone. The al-
gorithm uses the curvature of the free-fall parabola to perform
a partial camera calibration, calculating only the pixel-per-
meter ratio at the specific object-space plane where the subject
is jumping. This work aims to examine the different failure
mechanisms of the algorithm using synthetic data in order to
quantify the limits of its accuracy under real-world conditions.

All results in this paper and code used to generate those
results are available under DOI:10.25835/s067v1ho .

2 Problem Statement

The algorithm proposed by Webering et al. [3] is based on the
assumption that the mapping from the Zworld axis—and thus
the motion of the person jumping in the real world—to the
Ysensor axis—meaning, the motion of the person jumping in
the video—is linear. The existence of this linear mapping is
tied to four main assumptions, as illustrated in Fig. 1:
1. That the camera is aligned upright, parallel to gravity,
2. that the person jumps straight up,
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Fig. 2: Visualization how the minimum and maximum lens

distortion values used in this study affect a house shape in a

1920x1080 px image. All axes are in pixel coordinates. The maxi-

mum deflection in the corners is 94.7 px.

3. that there is no lens distortion,
4. and that the center of mass can be tracked accurately.

Assumption 3 can be easily solved with a checkerboard cali-
bration for the camera in question. Additionally, Webering et
al. [3] mention that smartphones apparently ship with lens cor-
rection built-in, at least the models used in the study. However,
the other assumptions are less clear:

Assumption 1 is addressed in [3] by manually positioning
the smartphone so that one axis of the built-in accelerometer
points directly in the direction of gravity. This approach only
works if the axes of the built-in accelerometer are parallel to
image sensor plane and if the operator can align the smart-
phone accurately on a suitably stable mount.

Assumption 2 requires that the subject is skilled enough
to jump perfectly straight up, which may not always be true,
especially if they focus on jumping as high as possible, as per
test instructions.

Finally, assumption 4 is probably the most difficult one to
satisfy because the center of mass (CoM) is just a mathemati-
cal construct that depends on the mass distribution in the sub-
ject’s body. In [3], a fiducial marker is applied to the subject’s
back near the CoM, and in [4], the CoM location is estimated
using OpenPose [5].

Violating any of these preconditions will certainly result
in inaccurate jump height results. However, the isolated impact
of every individual assumption is unknown. Thus, the aim of
this work is to analyze the failure modes of the assumptions 1
through 4 numerically, using synthetic data, in order to judge

the accuracy requirements for equipment, operator, and sub-
ject, as well as the effect of tracking inaccuracies.

3 Modeling and Evaluation

In order to model each assumption from section 2 individually,
we generated a synthetic dataset of N perfect free-fall trajec-
tories without any real-world artifacts. N = 2000 yielded ac-
ceptably low result variation with a simulation time below 1
hour. The random synthetic jump heights are drawn from the
squat jump height distributions in [6], and the standing height
of the CoM is based on the body height distribution taken from
[7]. These perfect parabolas are projected into a 2-dimensional
image coordinate system using the python package Camera-
Transform [8] without rounding to integer pixels.

The camera model was constructed to imitate the smart-
phone camera in front of the subject used in [3], with a reso-
lution of 1920x1080 px at 240 FPS and a vertical field of view
of 63° in portrait orientation. The default distance between
camera and subject was 2.5 m with a camera height of 1 m,
because this fits the whole subject into the image during the
jump, and because [3] used a similar setup. After this step,
the jump height can be reconstructed using the algorithm by
Webering et al. [3] with perfect accuracy.

We can then selectively add perturbations to the data, in-
tentionally violating the assumptions mentioned above, and
measure the impact on the reconstructed jump heights. The
perturbations parameters are:
– Noise amplitude A. In some tests (see Section 4), noise

was added to the pixel coordinates after camera mapping.
Three different types of noise were evaluated: White uni-
form noise, white Gaussian noise with A = 1.96σ (such
that 95 % of samples lie within A), and fractal noise where
the amplitude of the lowest octave is equal to A.
Since the impact of the fractal noise on the accuracy was
greater than the other two types of noise, it was also used
in the distance evaluation.

– Initial camera-to-subject distance d. This determines
the scale of the parabola in the image. Since scale alone
causes no degradation in the jump height estimation, we
added fractal noise to simulate tracking errors. As an addi-
tional case, the tracked points were rounded to whole pix-
els, which is equivalent to a shaped noise with A = 0.5 px.

– Camera pitch angle α. A negative angle means that the
camera is looking down; a positive angle represents look-
ing up. The pitch angle adds perspective distortion to the
shape of the parabola in the image coordinate system.

– Relative subject movement Δd. The change in distance
d during the jump. A negative value means jumping to-
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Fig. 3: Results for jump height estimation for the parameters A and d (see Section 3). Solid lines are the result values. Shaded areas

between the dashed lines are the 95 % limits of agreement (LOA), which contain 95 % of the data points. This is equal to 1.96 times the

standard deviation of the height estimation errors for the specific parameter value on the x-axis.

ward the camera, and a positive value means jumping
away. Both change the perspective distortion over time.

– Brown–Conrady radial lens distortion δ. The three pa-
rameters of the radial distortion model are set to K1 =

K2 = K3 = δ. In this work, δ is given in percent, so a
value of δ = 10% means 0.1. Fig. 2 visualizes the highest
and lowest values for distortion used. The maximum dis-
placement is 94.7 px in the image corners at δ = ±10%.

4 Results and Discussion

Our evaluation shows that the jump height estimation error is
linear with d if noise is present. This increase with d is ex-
pected because the noise amplitude becomes larger relative to
the parabola amplitude in the image as the subject recedes
from the camera. At the chosen default camera distance of
2.5 m, with a fractal noise amplitude of 2 px, the 95 % LOA
of the height estimation error is ±0.43 cm, as seen in Fig. 3.

A similar conclusion can be drawn for the accuracy of the
tracking algorithm—modeled as noise amplitude A—which
also shows a linear relationship to the estimation error. For
the chosen default camera distance of 2.5 m, the 95 % LOA
of the jump height error increases by ±0.22 cm for every 1 px
increase in A for fractal noise.

The results for Δd, α, and δ in Fig. 4 include no added
noise to show just the effect of the respective parameter. We
observe a systematic error in jump height estimation for these
parameters, in contrast to the noise analysis in Fig. 3 where the
mean error was always 0.

In the case of the non-vertical jump with Δd 
= 0, we
see an increase in the estimated jump height when the subject
jumps away from the camera and a decrease in the opposite

direction. This effect of Δd is most likely responsible for the
within-subject clustering observed in [3]. The random varia-
tion, as represented by the 95 % LOA, increases together with
the systematic error. For the default camera distance of 2.5 m,
the error is 0.51 cm for every 10 cm increase in Δd, and the
95 % LOA increases by 0.25 cm. Placing the camera closer to
the subject at d = 1m increases these values significantly to
1.26± 0.61 cm per 10 cm of Δd.

For the camera pitch angle α, we observe a similar rela-
tionship: Increasing α decreases the systematic jump height
estimation error. For the default camera distance of 2.5 m, the
systematic error with 95 % LOA is −0.31 ± 0.20 cm for ev-
ery 10° increase in α. With a closer camera at d = 1m, the
perspective distortion leads to an increased error of these val-
ues significantly to −0.76 ± 0.49 cm per 10° increase in α in
this approximately linear region. Since it is easily possible to
achieve alignment accuracy better than 10° with the naked eye,
we stipulate that the influence of α can be neglected when an
accelerometer or similar tool is used for alignment.

Lens distortion has only a minimal impact at d = 2.5m

with an error of 0.01 ± 0.03 cm per 10 % increase of δ in the
examined value range and a slightly more significant error of
0.07± 0.23 cm per 10 percent of δ at d = 1m.

When combining all distortions, the ICC(3,1) value for
true jump height vs. the height reconstructed from distorted
data ranges between 0.999 for the optimistic case A = Δd =

α = δ = 3 (units: px/cm/degrees/%) and 0.988 for pessimistic
distortions A = Δd = α = δ = 10.

4.1 Conclusion

From the presented results, we can conclude that not all pre-
conditions of the algorithm are equally significant. Camera
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Fig. 4: Results for jump height estimation for the parameters Δd, α, δ and a worst-case combination where all parameters were set to

the same numeric value. Solid lines are the result values. Dashed lines and shaded areas are the 95 % LOA (see explanation in Fig. 3).

pitch has a minimal impact for small angles, so sub-degree ac-
curacy is not necessary for accurate jump height results. Lens
distortion can be similarly disregarded for devices that provide
images with low lens distortion like smartphones.

The most important factors when measuring jump heights
using the method from [3] are the verticality of the jump re-
sulting in a low Δd, as well as an accurate method for tracking
the CoM in the video.

The findings described in this work can help in developing
accurate and low-cost jump height measurement tools for fit-
ness and rehabilitation purposes, using readily available smart-
phone technology.
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