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Abstract

The buckling behavior of structures is highly sensitive to imperfections from the geometry and material properties of
an ideal structure. In this paper, an approach is presented in which the effects of spatially varying fiber misalignments
in composite structures are assessed through random field analysis and are subsequently used to improve the structure
while simultaneously making it more robust to fiber misalignments. Random fields representing fiber misalignments
generate a distribution of limit-point buckling loads. The stochastic analysis results generate a pattern used to per-
turb the unidirectional fiber paths. Perturbations are applied over a range of allowable fiber deviations and scaling
factors, with different deterministic results. Random fields perturb the improved designs’ fiber paths to quantify their
sensitivity to deviations from the prescribed fiber path. The approach is applied to a composite panel exhibiting asym-
metric post-buckling behavior, i.e., having an unstable post-buckling branch and an (initially) stable branch. Results
show that perturbations in the fiber path can nudge a structure into a more stable post-buckling path by promoting a
post-buckling path using local changes in structural stiffness. The robustness of improved designs can also increase,
making structures less susceptible to local fiber misalignments.
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1. Introduction

It has long been the habit of designers to design struc-
tures using idealized homogeneous material properties
within a structure. Deviations of these assumptions are
taken into consideration by using a safety factor. Mate-
rial properties found in manufactured composite struc-
tures can vary spatially. Variations occur due to man-
ufacturing processes and allowable tolerances and can
affect the shape [1], thickness [2], void content [3], fiber
alignment [4], and other material properties [5, 6].

Quantifying the effects of such local variations have
on structures can be done using random fields [7, 8, 9,
10, 11, 12]. Random fields are continuous spatial fields
generated in one, two, or three dimensions. Fields con-
tain random values associated with coordinates on the
field; the coordinates’ values are correlated with each
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other using a predefined correlation function, allowing
for continuous variations of parameters.

Varying parameters can also improve performance or
generate different behavior. Buckling loads can be im-
proved by tailoring the thickness [13], applying seeded
geometric changes to geometry [14, 15, 16], or tailor-
ing the fiber path. Composite structures with engineered
fiber paths are also known as variable stiffness compos-
ites and enable more careful tailoring of stiffnesses and
tailor the buckling and out of plane behavior of struc-
tures [17, 18, 19, 20]. Variable stiffness structures also
allow for bistability, in which a stable equilibrium ex-
ists in multiple configurations utilizing a combination
of pre-stress and varying stiffnesses [21].

Several manufacturing techniques are suited to man-
ufacture variable stiffness composites. Automated fiber
placement (AFP) is one such technology in which tows
of fibers are placed following curved paths. Conven-
tional AFP machines use a compaction head that is per-
pendicular to the tangential placement direction. Shear
in tows, which results due to in-plane bending deforma-
tion, can not be compensated. As tow-width increases
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and bending radius decreases, fiber breakage or wrin-
kling can become more of an issue. A lack of shear
variability causes the width of the tow to vary with the
bending radius, leading to overlaps or gaps between
tows [22]. Gaps can be filled in using 3D printing tech-
nologies [23], where fiber-reinforced matrix material is
deposited on any gaps formed, though this is a tedious
and time-consuming process for mass production. Con-
tinuous tow shearing alleviates these issues by allow-
ing shear within tows and compensating for deforma-
tion during placement using a pinching device, making
much tighter turning radii possible [24, 25].

Tolerances in the placement and curing process cause
small changes in the fiber angle, resin richness, and
other material parameters. Local variations in stiffness
caused by these changes can adversely affect the deter-
ministic result. The argument could be made that any
optimum found should be resilient enough to be insensi-
tive to common variations [26]. Variable stiffness com-
posites make it possible to make structures less sensitive
to imperfections [27].

Structures with asymmetric post-buckling behavior
have a stable and an unstable branch, corresponding to
the two alternative directions of the relevant buckling
mode and initial geometric imperfection shape. Which
equilibrium path dominates depends on the imperfec-
tions found in the structure, making the structure very
sensitive to imperfections. Imperfections can consist of
deviations from a nominal geometry or, to a lesser ex-
tent, parameters affecting stiffness.

Tailoring a structure to incorporate small changes in
its original design can improve the buckling load by in-
creasing stiffness locally. This paper presents an ap-
proach to find patterns in which to apply local changes
to the fiber angle of composite structures. Local varia-
tions are applied to the structure using random fields,
affecting its buckling load. Analyzing the influence
of local variations on the buckling load of a struc-
ture can give a non-dimensional pattern of influence of
a structural parameter. Previous work of the authors
has improved the deterministic linear buckling load of
isotropic structures by tailoring the local thickness and
Young’s modulus [28]. Developments presented in this
paper include its application on a non-linear problem,
fiber angles of composite structures, and robustness
analyses.

Developments are demonstrated on a composite
curved panel by varying fiber angles using its nomi-
nal geometry. Deviations from a nominal fiber path can
be achieved using existing techniques used to fabricate
variable-stiffness composites. Fiber misalignments are
generated on the structure using geodesic random fields.

Running a Monte Carlo analysis quantifies the likeli-
hood of reaching a particular limit-point buckling load.
Patterns of the perturbed fiber paths are generated by an-
alyzing the effects of local fiber misalignments and find-
ing the local correlation between these variations and
the buckling load. Deterministic results are analyzed
from perturbed designs, after which the effects of intro-
ducing random fiber angle changes indicate the sensitiv-
ity of a perturbed fiber path to imperfections introduced
during manufacturing.

The remainder of this paper introduces the methods
used in section 2, starting with the structural model
in section 2.1. Random variations to the fiber angle
are generated using random fields. The generation and
mapping of random fields is discussed in section 2.2.
Analyzing stochastic results can lead to a pattern in
which fibers are perturbed. Applying this pattern to
the fiber paths leads to a deterministic improvement dis-
cussed in section 2.3. The robustness of improved de-
signs can be analyzed by applying random fiber mis-
alignments, this is discussed in section 2.4. An example
of a curved composite panel is described in section 3.1,
with baseline mechanical results without variations ap-
plied are shown in section 3.2. Section 3.3 adds pertur-
bations on top of the baseline structure, quantifying and
analyzing the effects fiber misalignments can have. De-
terministic improvements are discussed in section 3.4,
after which random variations are applied to analyze
the perturbed fiber paths’ sensitivity in section 3.5. The
overall conclusions are discussed in section 4.

2. Methods

2.1. Structural formulation

Results are generated by using a structural model
based on a Unified Formulation, making use of
Serendipity Lagrange shape functions [29]. Extensions
to the unified formulation enable the analysis of geo-
metric non-linearity and curved elements [30]. Non-
linearity is taken into account using an arc-length based
solver.

2.1.1. Basic formulation
The structural model is a non-linear three-

dimensional model. It utilizes a displacement
field using two different shape functions in the cross-
sectional plane (F(x, z)) and axial direction (N(y)).

Starting with a displacement field, u = [u, v,w]T, the
Green-Lagrange stress tensor E can be defined as

Ei j =
1
2


u,i ·g j + u, j ·gi + u,i ·u, j


, (1)

2



where commas denote derivatives and gi denotes a
unit vector on the i axis. Displacement field u is ap-
proximated within the Unified Formulation as

u(e) (x, y, z) = F(x, z)N(y)ui, with i = 1, . . . , n,
(2)

where n are the degrees of freedom of the model. For
quasi-static problems, the elastic equilibrium is

δWint = δWext (3)

where Wext and Wint are the external work and internal
energy. Noting that the internal energy of the structure
can be calculated as the sum of internal energy of all
the elements W int =


e W (e)

int the internal energy can be
expressed using the stress and strain tensors

δW (e)
int =



V(e)

δE · SdV (4)

in which S is the second Piola stress tensor. For non-
linear analyses, it is of interest to create tangential ma-
trices. Changes in internal energy are expressed as [31,
sec. 3.1.1]

δ(δW (e)

int) =


V(e)

δ (δE · S) dV, (5)

=



V(e)

δE · δS dV +


V(e)

δ(δE) · S dV, (6)

where V is the volume of an element. Rewriting these
in terms of non-linear contributions of the tangential and
geometric stiffness matrices results in [32]

δ(δW (e)

int) = δu
T
j K

(e)

(O)i jui + δuT
j K

(e)

(G)i jui. (7)

Rewriting the tangential stiffness matrix using eq. (7)
leads to

K(e)

(T)i j = K(e)

(O)i j + K(e)

(G)i j, (8)

where K(e)

(O)i j is the non-linear contribution and K(e)

(G)i j the
geometric stiffness matrix. Explicit forms of these ma-
trices can be found in [33, 34].

2.1.2. Formulation for curved elements
Returning to the displacement field approximation

of eq. (2), the model used in the presented research
uses Serendipity Lagrange shape functions in the cross-
section (F) and Lagrange shape functions in the axial
(N) direction. These shape functions are used to ap-
proximate the displacement field of the structure. The
cross-sectional shape function F has either 4, 8, 12, 17,
23, or 30 degrees of freedom, depending on the order

chosen. Hierarchical elements with four nodes are used
in the current implementation.

Unlike most finite element formulations, different
shape functions are used for the displacement field and
the geometry. Using this approach, it is possible to have
a higher fidelity representation of the geometry with-
out increasing the degrees of freedom of the structural
problem. This additional shape function N3D(α, β, ξ) is
defined within [−1, 1]3. Shape functions are defined in
brick (e.g., 8, 27, or 64 nodes) elements. The three
shape functions N3D, F(x, z), and N(y) come together
in a Jacobian matrix consisting of the shape derivatives
of the shape function. These can represent curvilinear
basis vectors [33].

2.2. Assigning random material variations
Variations analyzed in this paper are generated and

applied by combining several different techniques and
methods. These techniques have been previously ap-
plied and discussed in [28]. Geodesic distances define
the correlation between points on a random field. Com-
puting and mapping geodesic distances add complex-
ity to the generation of fields in curved structures. This
section will discuss the methods used to generate the
geodesic distance array, generate the field, and map it to
the structure.

2.2.1. Geodesics
Geodesic distance refers to the distance between

points as it would be on a (curved) surface. On the
other hand, Euclidean distance calculates the distance
between two coordinates in space as a straight line.
Finding the geodesic distance can be done with a va-
riety of approaches. The most straightforward approach
for this problem would be to find the shortest path be-
tween two points using the connectivity of a mesh. Uti-
lizing a forward front in all directions to iteratively find
the shortest distance is the most simplistic approach and
first discussed by Dijkstra [35]. Such an approach tends
to overestimate the distance, as it follows the edges of
elements, while the shortest distance usually crosses
over the face of an element (usually a polyhedron).

Finding the actual shortest distance over a mesh is a
classic field of research in computational geometry, with
many approaches being proposed and extended on over
the years [36]. The approach used within this paper is
based on the idea first published by Varadhan [37] and
recently extended by Crane et al. [38]. In this approach,
heat is introduced at a point on a mesh for a time t. Ap-
plying heat at a point generates a vector field of the heat
flux on the surface. Normalizing this vector field gen-
erates a vector field of the shortest distances from the
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origin point, after which the geodesic distance is calcu-
lated by solving the Poisson heat equation. Crane has
shown how this approach can be pre-factored, signifi-
cantly reducing the computational time when distances
between many points are required, as is the case for ran-
dom fields.

Geodesic distances used to generate the field are com-
puted on a surface within the 3D model. The surface
used spans the mid-plane of the structure. Using a sur-
face reduces the number of distances to points that have
to be computed, reducing the computational effort of
generating a distance array and the decomposition to
generate random fields.

2.2.2. Generating random fields
Random fields are stochastically generated distribu-

tions of a parameter in n dimensional space. Fields gen-
erated within this work are generated on a 2D plane
within 3D space. These random variables’ values are
not entirely unrelated to each other, and actual varia-
tions are usually related to their neighboring variations.
Defining how close points are to each other is why the
geodesic length of section 2.2.1 is used to relate points.
There are many different techniques to generate random
fields [39]. Many of these methods have assumptions in
space or correlation function. The method used within
this work is called Covariance Matrix Decomposition
(CMD) and has the advantage of its relative ease in im-
plementation and combining with geodesic length.

Correlation of two sets X and Y is defined mathemat-
ically as [40, ch. 10]

ρX,Y =
cov(X,Y)
σXσY

=
E[(X − µX)(Y − µY )]

σXσY
, (9)

where ρ is the correlation, cov the covariance operator,
µi the mean of set i, σi the standard deviation of set i,
and E the expectation operator, within random fields,
these sets represent points in a field and how they relate
to each other. The correlation varies between 1 and -1
and indicates the relationship between the two sets. It is
useful for generating random fields to define functions,
which define the correlation as a function of distance.
The fields generated in this paper use the correlation
function

ρk,l = e−

∆L
Lc

2
, (10)

in which Lc is called the correlation length, and ∆L
the (geodesic) distance between points k and l. This
correlation function is widely used in literature and
produces smooth continuous fields, well suited for in-
plane fiber-angle variations [41]. Correlation length de-
fines a length scale at which the correlation function

of eq. (10) deteriorates. Experimentally measured cor-
relation functions are not available in published liter-
ature and are highly dependant on the geometry and
manufacturing process used. Studies analyzing random-
field generated fiber imperfections on variable stiffness
composites generally utilize a correlation length defined
scale of curvature [42, 41] or a set distance, generally
shorter than the scale of the structure [43].

The CMD method uses discretized points in space
and assigns a random value to that value [44]. The field
must be discretized fine enough to represent the tran-
sition in variation amplitude. The necessary refinement
was studied by Li & Kiureghian [45] and found to be be-
tween Lc

4 and Lc
2 for the correlation function of eq. (10).

The CMD method decomposes the correlation ma-
trix. This decomposed matrix can be used to calculate
random fields through simple multiplication with a ran-
dom vector χ with unit variance, and zero mean. The
first step in generating fields is to build a correlation ma-
trix of all points hi of the field,

Ri j =
cov

hi, h j



σiσ j
→ (11)

R =




1 ρ (h1, h2) . . . ρ (h1, hn)
ρ (h2, h1) 1 . . . ρ (h2, hn)
...

. . .
...

ρ (hn, h1) ρ (hn, h2) . . . 1



.

(12)

where ρ(yi, y j) = ρ(y j, yi), noting that the correlation
here can be calculated using eq. (10).

Taking the definition of covariance

cov [X,Y] = E [XY] − E [X] E [Y] , (13)

and keeping in mind the field has a mean of zero, it is
possible to show that R can be decomposed into two
matrices,

R = cov[x, x] = E(x, xT ) − 0 · 0
= E(Lχ(Lχ)T ) = LE(χχT )LT = LILT = LLT .

(14)

From eqs. (10) and (11) the matrix R is symmetric and
positive definite, the eigenvalues should all be positive
and real. This decomposition is done by using eigende-
composition in the form of

R = QΛQ (15)
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in which Λ is a diagonal matrix with the eigenvalues of
R, and Q contains the eigenvectors of the matrix. Ma-
trix L can be extracted from this as

R = QΛ̂Λ̂Q = LLT → L = QΛ̂, (16)

in which Λ̂ = diag(
√
λ), λ being the eigenvalues of the

R matrix. Using the decomposed correlation matrix L,
it is possible to generate random fields using

f = Lχ. (17)

Decomposing is only necessary once, after which ran-
dom fields are generated with a minimal computational
cost.

2.2.3. Mapping random fields to structure
Fields are generated on a 2D (surface) within a 3D

structure, not having any variability through the thick-
ness of the structure, which is considered negligible for
thin-walled structures. 3D brick elements described in
section 2.1.2 are used to map the field into a 3D space.
Discretization of fields are not directly related and can
be refined independently depending on their optima.
Structures containing much curvature may benefit from
a finely discretized random field (as the geodesic dis-
tances would be more accurate) while not necessarily
needing a considerable refinement in structural elements
to converge to accurate results.

While initializing, the analysis nodes of the geomet-
ric mesh are projected on the random field mesh. Ran-
dom field element numbers and local coordinates are
stored, creating a mapping between the two meshes. As
this mapping is the same for all analyses, it only has to
be done once and can be reused during the stochastic
analysis. Values of the random field are evaluated us-
ing the shape function of the geometric mesh. Figure 1
shows how a point in the structure i has element coordi-
nates within the geometric mesh α, β, ξ.

During assembly of the stiffness matrix, the material
properties are assigned as

θpt = θµ + fptθσ (18)

in which θpt is the material orientation at point pt, θµ is
the mean value of θ, fpt is the value of the random field
at the point and θσ is the standard deviation of material
parameter θ.

2.3. Deterministic improvement
Deterministic improvement of the buckling load of

the baseline structure is achieved by analyzing the ef-
fects of random variations applied to the fiber angle.

β

i

ξα

Geometric mesh
Structural mesh

Random field mesh

Figure 1: Discretizations found in the structure, and the coordinates of
i as projected into the geometric mesh [28]. Coordinates are then used
to evaluate the value of a random field in the volume of the element.

The authors’ previous work has led to an increase of lin-
ear buckling loads by varying the thickness of Young’s
modulus in similar structures [28]. Similar to that ap-
proach, correlation patterns of fiber angle variations
of every layer show the local influence of fiber angle
changes. Improvement in the buckling load is achieved
by scaling this correlation pattern, perturbing the fiber
paths of the baseline design.

2.3.1. Generating correlation patterns
Independent random fields are generated for every

layer of a structure. These random fields represent small
angle variations of the fiber paths in each layer. Varia-
tions generated can be modeled to be similar to real fiber
path deviations but can also be fictitious.

Extending eq. (9), it is possible to generate the local
correlation pattern over n samples using

Hi, j =

n
k=1


flim,k − f̄lim

 
θi, j,k − θ̄i



n
k=1


flim,k − f̄lim

2n
k=1


θi, j,k − θ̄i

2 (19)

where Hi, j is the correlated value of the buckling load
flim, and fiber angle variation at point i at layer j. Pa-
rameter θi, j,k is the fiber angle variation at point i, layer
j, and sample k. Mean values of parameters are indi-
cated using .̄

The pattern generated infers the average influence a
local fiber angle variation has on the buckling load. Ap-
plying this field to perturb the fiber path can thereby lead
to an improvement in the buckling load of the struc-
ture. Patterns formed inherit the correlation of points
to the distance defined by the correlation function of
eq. (10). Correlation in the distance within random vari-
ations leads to a continuity in the correlation pattern and
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defines its length scale. Correlation patterns generated
using a large correlation length will vary over a rela-
tively large distance. Shorter correlation lengths will
lead to correlation patterns with more localized devia-
tions, and a higher potential improvement [28]. Which
correlation length to use while generating correlation
patterns may also be determined by manufacturing con-
siderations. As tighter fiber-placement curvatures are
possible, the correlation length can become shorter.

2.3.2. Applying correlation pattern onto structure
Values of the correlation pattern show a non-

dimensional relative influence of local variations. Ap-
plying these patterns to a structure first requires proper
scaling. Normalization is first applied to the fields so
that they fit in the range [-1,1]. Analyses within this pa-
per utilize a normalization in which the global minima
and maxima (over all fields) correspond to this range,
not the individual layers minima and maxima.

Using this normalized field Ĥ variations are com-
puted using a maximum variation parameter φ, and a
scaling parameter m. During matrix assembly, these pa-
rameters are used to evaluate material orientation using

θi, j = θ0,i, j + Ĥm
i, jφi, j, (20)

where θ0,i, j is the original material orientation.
Optimal values of m and φ depend on the structure in

question and the desired reliability if there are stochastic
variations present of the parameter in the structure.

2.4. Robustness analysis
The approach described in section 2.3 can determin-

istically improve the structural performance by adding
small variations in the material orientation (e.g., fiber
angle). During manufacturing, random variations of
material orientation can occur due to production pro-
cesses. Robustness defines the effect that such imper-
fections have on the structure. When a design becomes
more robust, the response becomes less sensitive to vari-
ations [46].

Improvements found using deterministic methods
may be more sensitive to these random variations.
These deterministic solutions are subjected to small lo-
cal variations in fiber angle to analyze the robustness of
the deterministic design with respect to fiber misalign-
ments. Ideally, these would reflect real-world manufac-
turing tolerances, but even fictional variations can give a
qualitative representation of the sensitivity of a structure
to spatial fiber misalignments.

The fiber-alignment sensitivity of improved struc-
tures can be evaluated by comparing the statistical dis-
tribution of the buckling load of the baseline structure

t = 0.002 m

L = 0.15 m

R = 0.1 m
90o

X
Z

Y

A

B

Figure 2: Curved panel geometry

Material properties
E1 142 GPa E2 = E3 10.3 GPa
G23 4.28 GPa G13 = G12 7.2 GPa
ν23 0.4 ν13 = ν12 0.27

Table 1: AS4 carbon fiber properties, taken from [47]

under random influences to that of the improved struc-
ture. Material orientation at every point i at layer j can
be evaluated as

θi, j = θ0,i, j
Original

+ Ĥm
i, jφi, j

Deterministic perturbation

+ fi, jθσ
Random variation

, (21)

where the deterministic perturbation Ĥ equals zero for
the baseline configuration.

3. Numerical example

To demonstrate the approach discussed in section 2,
the approach is applied to a composite curved panel sim-
ilar to the one analyzed in [10]. Analyses of the baseline
structure without any variations applied show the linear
and non-linear behavior of a structure without any varia-
tions applied. Following these baseline results, stochas-
tic variations are applied to the structure, providing in-
formation on the effects of variations on the buckling
load of the structure. Effects of these stochastic runs are
then processed to find a correlation pattern across the
structure. Perturbations of the fiber paths are made on
the structure to improve the buckling load. These deter-
ministic solutions are finally evaluated to quantify their
ability to withstand spatial fiber misalignments.

3.1. Structure and solver
Dimensions of the panel are shown in fig. 2.

Three layers of anisotropic material are applied in a
[90°,0°,90°] configuration, where 0° aligns with the y-
axis. Table 1 lists the material properties of the layers.

The discretization of the structure consists of 10x3
third-order Serendipity Lagrange elements in the cross-
section and ten elements in the axial direction. The
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x
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y

(a) Displacement shape of stable branch I of fig. 5

x

z
y

(b) Displacement shape of initially unstable branch II of fig. 5

Figure 3: Scaled deformation shapes of the curved panel at buckling
load

structure has a total of 17 670 degrees of freedom over
all these elements.

Boundary conditions and loads consist of distributed
loads applied on the edges of y = 0 and y = 0.15 totaling
1 N. Constraints limit out of plane displacement on the
loaded edges. Axial displacement is constrained using
two points on one of the loaded edges in the axial (y)
direction.

Variations of the material orientation/fiber angle are
applied of θσ = 2◦. Fiber deviations, studied by Yur-
gartis, showed a measured range of up to this value [4].
Fields generated in this study use a correlation length of
25 mm for both correlation pattern generation and ro-
bustness analyses.

Analyses done in the following sections all utilize a
non-linear solver. Buckling loads of the configurations
are determined by using an arc-length based solver.
Load is slowly increased until it deceases 5 sequential
steps, the (limit-point) buckling load is the highest load
found in the analysis.

3.2. Baseline analysis

Baseline results of the structure reach a buckling load
of 22.1 kN. Deformations are in the form shown in
fig. 3b. Curved panels have asymmetric bifurcation be-
havior with an initially stable, as well as unstable equi-
librium. Deformations indicate that the baseline solu-
tion follows the unstable branch of the asymmetric bi-
furcation.

0.8 1 1.2 1.4 1.6
0

2

4

6

8

10

Normalized limit load, λ

Pr
ob

ab
ili

ty
de

ns
ity

,-

Figure 4: Probability density plot of the buckling load of the baseline
structure subjected to 2° variations of fiber angles, normalized to the
baseline load

3.3. Stochastic analysis
Effects of fiber variations are analyzed by applying

independent random fields to the three layers’ fiber an-
gles. Samples with random fields are generated and run
5000 times, generating the probability density shown in
fig. 4.

Displacements in the z-direction show distinct
branching in responses. Figure 5 shows displace-
ment results of all the stochastic runs, highlighting four
representative responses showing the different load-
displacement paths. Branches I and II both have two
mirrored versions of each other, depending on which
side of the structure forms the buckle. Scaled ini-
tial post-buckling displacements corresponding to these
paths are shown in figure fig. 6.

Both of the equilibrium paths generate distinctly dif-
ferent responses. Lower load levels between 0.8-1.05
belong to the unstable branch II shown in fig. 3b, the
initially stable branch I of fig. 3a has a buckling load
thats approximately 50% higher.

Analyzing the two equilibrium paths, 62% of sam-
ples follow the unstable branch II, and 38% follow the
initially stable branch I. Due to these two branches dis-
tinctly different characteristics, both branches are ana-
lyzed separately.

The unstable branch II, with λ between 0.8-1.1 has a
mean value of 20.67 kN (0.935 λ) with a standard devi-
ation of 934 N (0.042 λ), corresponding to a coefficient
of variation of 4.52%. Branch II with initial stable be-
havior has a normalized buckling load around λ= 1.5,
equaling a mean value of 32.99 kN (1.494 λ), with a
standard deviation of 322 N (0.0147 λ) equalling a co-
efficient of variation of 0.975%.

3.4. Deterministic improvement
Improving the design is done by analyzing the runs

done in section 3.3, finding the correlation between lo-
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(a) Results of z-displacements at point A

(b) Results of z-displacements at point B

Figure 5: z-displacement results of stochastic runs at points A and
B shown in fig. 2, highlighting runs following different equilibrium
branches

cal variations and the buckling load found, as discussed
in section 2.3. Doing these calculations leads to the pat-
terns found in fig. 7. Such patterns indicate the rela-
tive influence fiber angle variations have on the buckling
load achieved. Patterns are continuous because varia-
tions are coupled to local distances through a correlation
function, as discussed in section 2.2.2 and [28].

Applying the correlation function to the structure,
changing the predefined fiber paths is done by scaling
the fields, as discussed in section 2.3.2. Changing the
scaling parameter m (eq. (20)) affects how the pattern
applies to the fiber paths. Figures 9 to 11 shows ex-
amples with a scaling parameter m of 0.1, 1, and 10.
Extreme scaling parameters used show how the pattern
changes as the scaling parameter changes. Lower val-
ues for scaling parameter m lead to very aggressive fiber
variations, with stronger curvatures in the path. Using
high values leads to very local changes of orientation
changes, retaining the original path in most of the struc-
ture. Scaling parameters close to 1 lead to a very smooth
continuous fiber path without any quick changes.

A series of deterministic analyses are performed us-
ing a range of 1-20° maximum fiber variation φ, with
a logarithmically spaced range of 21 different values
between 0.1 and 10 for the scaling parameter m. Fig-
ure 8 shows these deterministic analyses’ results, com-
paring the buckling load achieved with that of the base-
line analysis done in section 3.2. Results show that the
most significant deterministic improvement is achieved
using small local changes in the fiber path. Using a max-
imum variation of 1°, a scaling parameter of m = 10 led
to the largest increase in the buckling load by 51.1%.
Such a small deviation is enough to nudge the structure
into the stable branch II path shown in fig. 3a, which has
a higher buckling load. As the fiber path perturbation in-
creases in magnitude, the stiffness in the load-direction
decreases, which reduces the buckling load, even when
post-buckling branch II is triggered.

3.5. Robustness analysis
Stochastic results of section 3.3 shows that the equi-

librium path of the baseline structure can switch due to
localized fiber variations. Variation also exists within
these equilibrium branches, in which these variations
can positively or negatively influence the load achieved
before instability occurs.

Robustness, in the context of this paper, refers to the
influence such variations have on a structure. Quanti-
tatively, this entails reducing the spread of the buckling
load, ensuring that the stable equilibrium branch is fol-
lowed while simultaneously reducing the standard devi-
ation of the response.
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Figure 8: Percent increase in buckling load in deterministic results
achieved by applying correlation patterns using eq. (20)

Stochastic analyses were performed on a selection of
the configurations analyzed in section 3.3. Each config-
uration had 1000 samples computed, in which random
fiber angle variations were applied. Variations were
generated using the same parameters used in section 3.3,
with σ = 2◦ and a correlation length Lc = 25 mm.

Results indicate that the mean values shown in fig. 12
of specific configurations differ substantially from the
deterministic results of section 3.4. Comparing the
graph with that of the coefficient of variation in fig. 13,
it is clear that this is due to different equilibrium paths
being followed in specific configurations.

Figure 14 shows results of the structure with a max-
imum fiber variation of 2°, and a scaling factor of m =
10. 56% of the samples follow the stable path, with
44% following the unstable path followed in the base-
line configuration. Compared to the 38% of the baseline
structure, this is an improvement but still shows a sig-
nificant unpredictability.

Seeking an optimal series of parameters of imperfect
structures requires a reliability target under stochastic
inputs. If, for example, the buckling load for 99% of
the structures should exceed a target value, the statis-
tical properties of the lower 1% can be analyzed. For
the inputs given, the 1% values of the configurations
are shown in fig. 15. Values are generated using either
a fit Gaussian distribution (fig. 15a) or taking the low-
est 1% of samples computed (fig. 15b). Configurations
that consistently stay within one branch will show sim-
ilar results in both of these figures. Configurations that
follow both equilibrium paths will not fit Gaussian dis-
tributions. Comparing these figures shows which con-
figurations are sensitive to branch jumping with the set

variation and which are not.
Several configurations show similar performance.

The ideal setup might, therefore, be related to
manufacturing-related considerations. For example, the
configuration with a maximum fiber variation of 8° and
a scaling parameter of m = 6.31, with the fiber paths
shown in fig. 17 has the distribution shown in fig. 16.
Samples generated using those parameters follow the
stable equilibrium path, 99.7% of all runs. Increas-
ing the likelihood that the more stable branch II is fol-
lowed significantly decreases the variability in the post-
buckling response. Decreasing the variance while in-
creasing the expectant value of the response of a struc-
ture makes the structure more robust while also increas-
ing reliability [46].

4. Conclusion

Random fields make it possible to simulate the ef-
fects of local variations of fiber angles. The probability
of an achieved design load despite imperfect fiber paths
can be quantified. Structures with asymmetric post-
buckling behavior, in which stable and unstable equi-
libria exist, can also be simulated. Fiber paths can di-
rectly influence the equilibrium path taken by introduc-
ing anisotropic behavior through, e.g., bend-twist cou-
pling.

Processing on many samples with random local vari-
ations can map the local correlation to achieved load.
Utilizing such a pattern to perturb the uniform fiber
paths can improve the deterministic behavior of a struc-
ture by promoting a more stable post-buckling path.

Solutions offering the greatest deterministic improve-
ment are often very sensitive to fiber misalignments.
Structures such as those shown in the example might
have two distinct equilibrium paths. Small perturbations
can nudge an ideal structure towards the desired path but
still leave it susceptible to random variations.

Combining perturbed structures with random varia-
tions makes it possible to quantify the chance that the
desired equilibrium path is followed. Using statistical
analysis on such combined runs makes it is possible to
compute the minimum load achieved for a specific con-
figuration. Parameters used to scale the field are a trade-
off between mean improvement in the buckling load and
the robustness of the structure, defined by likelihood to
follow the more stable post-buckling path in the pres-
ence of fiber misalignments

Improvements found in the numerical example show
increases in the order of 50%. The magnitude of im-
provement varies a lot by the specific structure analyzed
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Figure 14: Probability density of samples with perturbed fiber paths
with a maximum variation of φ = 2° and scaling parameter m = 10

and which equilibrium paths exist. Improvements can
be higher than those of the example or lower. Improve-
ments will also exist for other structures without a more
stable post-buckling path nearby but will not be as sig-
nificant. Instead of nudging the post-buckling path, the
approach will redistribute the stiffnesses of a structure
to increase the buckling load. Robustness, quantified by
a reduction in variance, should be present in most struc-
tures.

Analyses presented in this work focus solely on fiber
angle variations. Imperfections are not limited to such
variations, and future work should take others, such as
geometric, into account. No limits are present in the ap-
proach itself, as similar approaches have already been
used for thickness and Young’s modulus tailoring [28].
Combining multiple sources of variations can poten-
tially further improve the insensitivity, and deterministic
improvements presented.
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