
Efficient generation of geodesic random fields in finite elements with application to
shell buckling

Sander van den Broeka, Eelco Jansenb, Raimund Rolfesa

aLeibniz University Hannover, Germany
bRotterdam University of Applied Sciences, the Netherlands

Abstract

Structures contain inherent deviations from idealized geometry and material properties. Quantifying the effects of such ran-
dom variations is of interest when determining the reliability and robustness of a structure. Generating fields that follow com-
plex shapes is not trivial. Generating random fields on simple shapes such as a cylinder can be done using series-expansion
methods or analytically computed distances as input for a decomposition approach. Generating geodesic random fields on
a mesh representing complex geometric shapes using these approaches is very complex or not possible. This paper presents
a generalized approach to generating geodesic random fields representing variations in a finite element setting. Geodesic
distances represent the shortest path between points within a volume or surface. Computing geodesic distances of struc-
tural points is achieved by solving the heat equation using normalized heat gradients originating from every node within the
structure. Any element (bar, beam, shell, or solid) can be used as long as it can solve potential flow problems in the finite
element program. Variations of the approach are discussed to generate fields with defined similarities or fields that show
asymmetric behavior. A numerical example of a gyroid structure demonstrates the effect of using geodesic distances in field
generation compared to Euclidean distances. An anisotropic cylinder with varying Young’s modulus and thickness is taken
from literature to verify the implementation. Variations of the approach are analyzed using a composite cylinder in which
fiber angles are varied. Although the focus of this paper is thin-walled structures, the approach works for all types of finite
element structures and elements.
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1. Introduction

How a structure performs under loads depends on many
parameters such as geometry, material properties, and the
direction and magnitude of applied loads. These param-
eters are often considered constant and known, but in re-
ality, they vary and introduce an element of uncertainty in
structural analysis. As structures become more efficient and
lightweight, the behavior of these uncertainties and their ef-
fect becomes more important.

Stochastic analysis of finite element problems has been
around for many years [1, 2, 3, 4]. It is possible to model the
effects of spatially varying material properties or thickness
variations in thin-walled structures using these approaches.
Applying imperfections is done by assigning a randomly
generated value to the local coordinates within a structure.
This field of values in space is often referred to as a random
field or, less commonly, stochastic field.

Random field values at different points inside the spa-
tial domain are correlated; if the correlations are positively-
valued, points close to each other tend to have similar field
values. Correlation between points on a field is generally a
function of the distance between points, decreasing as the
distance increases. The correlation of points in space can be
defined using a correlation function, which goes from 1 to

0 as a function of distance and possibly other parameters.
When the covariance between the pair (x, y) only depends
on the difference (x− y), the field is considered weakly ho-
mogeneous. Similarly, the correlation between points might
have a directional dependency. When the relationship be-
tween distance and correlation is the same irrespective of
direction, the covariance is only a function of the magnitude
||x− y||. Such a field is isotropic. Conversely, if there is a di-
rectional dependency, the field is anisotropic.

What these correlations look like in actual structures is
a topic of ongoing research. Recent work has been done
to find these patterns experimentally using coupon testing
[5, 6, 7]. Investigating the spatial correlation of random vari-
ations in material properties in such a manner has many
challenges. Not only do many samples have to be tested
to gain relevant results, but these results might also only be
valid for a specific production process and geometry. Using
a different batch of material or having different environmen-
tal conditions can affect these variations.

Therefore, a promising method to gain statistical infor-
mation on structures is to use non-destructive investiga-
tion (NDI). Applying such methods to composite structures
makes it possible to gain information on the void content,
fiber alignment, fiber volume fraction, and other parame-
ters using ultrasonic and infrared thermography [8, 9, 10].



The information gained using these methods could poten-
tially be used to map the correlation function of a structure
more accurately.

Many approaches exist to generate and apply random
fields [11, 12, 13, 14]. A distinction can be made between
methods that define the values of fields as a continuous
function and those that discretize the field and evaluate val-
ues at specific locations.

Continuous methods represent the field through a sum of
functions. Such a sum can be composed of a series of or-
thogonal functions, often done through a Karhunen-Loéve
(KL) expansion [4]. KL expansions require solving the Fred-
holm integral, which is only possible analytically for a lim-
ited set of correlation functions and geometries [15, 2]. Other
geometries and correlation functions require a numerical
solution to solve the eigenvalues and eigenfunctions of the
Fredholm integral [16]. Alternatively, fields can be repre-
sented using a Fourier series [17] in which the Fourier co-
efficients and phase shifts match a desired spectral density.

Discrete approaches define values at discrete points
within the domain, such as integration points, nodes, or el-
ement centers. This can be done through decomposition
of the covariance matrix [18], discretized fast Fourier series
[19], and local average subdivision [20], among others. These
discretized values can then be interpolated among the field
using shape functions [21], optimal linear estimation (OLE)
[22], or spatial averaging [23].

Through the use of a correlation function and statistical
properties, the stochastic response of a structure to random
variations can be quantified. This can be used to design un-
der uncertainty [24, 25], simulating the effects or random ge-
ometric imperfections on the ultimate load [26, 27], geomet-
ric imperfections affecting stability [28, 29, 30, 31, 32, 33, 34,
35, 36], effects fiber angle misalignments have on stability
[37, 38]. Some authors have also analyzed the effects of ma-
terial property variations [39] or combined material and ge-
ometry variations [40, 41, 42, 43]. Teixeira and Soares [44]
investigated using random fields to study the effects of cor-
rosion on the ultimate strength of plates. Recent work by the
authors has analyzed the effects local thickness deviations
can have on the fatigue life of a 3D printed component [45].
Analysis of soil mechanics is also done, where random vari-
ations in soil properties are represented using random fields
[46, 47, 48, 49, 50]. Recent work by Zhang et al. [51] used an
information-theoretic model to ensure non-Gaussianity of
the random field. They used this to perturb the mesh while
ensuring that faces do not intersect each other.

Fields generated in most of the previously mentioned
analyses are generated and applied on thin-walled struc-
tures such as a flat panel or a cylindrical shell. For those
structures, computing distances between points using co-
ordinate transformations is straightforward. Though this
works well for specific structures, this is not possible or triv-
ial for most structures. Generating fields on domains with
a concave surface, such as thin-walled structures contain-
ing curvature or a volume with a concave surface, neces-
sitates a different approach. Using the Euclidean distance

in computing the correlation will result in significant devia-
tions from the intended correlation matrix unless the corre-
lation length is short compared to the curvature of the struc-
ture.

A better approach is to use geodesic distance, which is the
distance on the surface or within the volume of the structure.
Computing shortest distances between points is a classic
problem in computational geometry and has many differ-
ent approaches [52]. Using geodesic random fields in struc-
tural problems was recently discussed by Scarth et al. [53],
where use was made of a mesh flattening "MMP" approach
[54]. Within this approach, the shortest geodesic path be-
tween two points is found using a continuous Dijkstra-type
approach. Within the Dijkstra algorithm [55], the shortest
path between two points is found by slowly expanding out
from the origin point. This approach can give accurate re-
sults for the geodesic length but at a high computational
cost. The order of operations is O (n 2), which can cause this
approach to become unfeasible for larger structures.

Recent work by Feng et al. [56], Liang et al. [57] tried a
different approach using a machine-learning powered iso-
metric feature mapping algorithm to reduce the dimension
of the geodesic problem after flattening the geodesic prob-
lem to a problem in 2D Euclidean space. The geodesic dis-
tance can then be recovered using traditional methods like
the classic Dijkstra algorithm. Limitations in this approach
do exist. The approach does not work for all shapes and can-
not easily be used for non-homogeneous and anisotropic
random fields. The approach in the current form is also not
suitable for recovering geodesic distances in non-shell ele-
ments.

Previously discussed approaches to computing the
geodesic distances have limitations in suitable geometry.
Methods are generally incompatible with higher-order
or non-surface elements and not capable of computing
anisotropic and non-stationary random fields. Scaling of
operations also limits many approaches from being used
effectively in generating random fields. The work presented
in this paper discusses a computationally efficient way of
computing distances in finite elements and using those to
generate random fields. Based on the method presented
by Crane [58] it is capable of computing geodesic distances
using shell , beam and volume elements. Instead of using
mesh flattening, the approach uses principles of heat con-
duction first to find the path of the shortest distance using
the heat gradient and then solve the Poisson equation to
recover the geodesic distance. Solving the Poisson equation
can be done by pre-factoring the sparse equations, requiring
minimal computational time to solve the distances between
all points in a field. Geodesic distances computed through
the geodesic heat method in finite elements are used to
compute the autocorrelation matrix of a field encompassing
the domain of the finite element model. Decomposing the
autocorrelation matrix makes it possible to generate ran-
dom fields with a designated correlation through a simple
matrix-vector multiplication. Unlike many methods found
in literature, this approach works for any complex geometry
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and element type and does not make assumptions about
the geometry of a structure.

Novel variations of the approach can allow for more ac-
curate models for a class of engineering problems. Using
the geodesic heat approach makes anisotropy in random
fields possible through anisotropic heat conductivity. An-
other variation discussed is an approach to creating similar
fields, which can be used in layered structures or coupled
parameters.

2. Methodology

Random fields in this study are randomly generated pat-
terns, but values are still correlated with each other. The
correlation between the field values at two different points
depends on the distance between the points for stationary
fields. Generating random fields requires the desired au-
tocorrelation to be given as an input. Functions used to
determine the autocorrelation between points usually vary
only with the distance between points. Not all functions
can be used, as the autocorrelation matrix has to be positive
definite. Correlation functions must satisfy Bochner’s theo-
rem, which states that functions must be symmetric, non-
negative definite, and bounded in variation [14, sec. 3.6.3].
For correlation functions that only depend purely on dis-
tance, Bochner’s theorem is equivalent to having a non-
negative integrable spectral density (the integrability en-
sures a bounded variation).

When considering correlation functions on geodesic sur-
faces, it is essential to note that correlation functions that
satisfy Bochner’s theorem using Euclidean distances may
not satisfy the theorem when using geodesic distances [59,
60, 61]. In general, the admissibility of a covariance func-
tion must be checked before being used on geometry or type
of distance. Not doing so could potentially lead to non-
positive-definite matrices [62, post. 2.10]. Issues were not
encountered in the examples discussed in this paper but
could arise in other shapes or with other types of correlation
functions.

Two functions often found in literature (e.g. [4, 63, 64]) are
the exponential type

ρ = e
−L
Lc , (1)

and the square exponential function

ρ = e
−L2

L2
c , (2)

where ρ is the defined correlation between two points, L
is the distance between points, and Lc is the correlation
length. The correlation functions decrease from 1 to 0 as dis-
tance increases. The speed of which depends on the func-
tion used and the correlation length. The correlation func-
tion of eq. (1) decreases slower than that of eq. (2). The way
that the correlation evolves with distance can be related to
a spectral density function using the Wiener-Khinchin the-
orem [65, 11].

2.1. Calculation of geodesic lengths

Geodesic distances are calculated using an implementa-
tion of Keenan Crane’s heat method [58]. Crane’s approach
is an extension of the work done by Varadhan [66], which
sought to find an elegant solution to the heat equation. Dis-
tances from a point a to other points are calculated by calcu-
lating a normalized heat gradient from heat applied at point
a , followed by solving the Laplacian to find the distance be-
tween points. Numerically this approach is fast and can be
pre-factored for large systems.

Initially developed in a computational geometry frame-
work, this paper reformulates the approach by Crane et al.
into a finite element environment. Using potential flow tools
commonly found in finite element solvers to solve thermal
problems, the approach to computing geodesic distances is
straightforward to implement in many other finite element
solvers.

The examples used in this paper utilize an implementa-
tion that has been developed using the library of potential
flow elements already built into DIANA [67], a commercial
finite element solver.

The product of the calculation is to generate a length ar-
ray L ∈n×n , with n the number of points in the array, in this
case, nodes of the structure. The length array should be sym-
metric as distances are not direction-dependent. Meaning
that La ,b = Lb ,a , the diagonal is filled with zeros. Resulting
in an array in the form of

L=




La ,a = 0 La ,b · · · La ,n

Lb ,a 0 · · · Lb ,n
...

...
Ln ,a Ln ,b · · · 0.


 (3)

As described in [67, sec. 81.4] and [68, ch. 12] a heat con-
duction problem can be formulated using finite elements as

Kφi + Cφ̇i = qi , (4)

where K is the conductivity matrix, C is the capacity ma-
trix and qi is a combination of external heat flux, heat gener-
ation and boundary convection vectors. The vector quantity
φ is the potential term and equals the temperature within a
thermal problem.

Computing the distance at every point i of a mesh requires
the right-hand side to be updated n times. Every calculation
uses a different external heat flux qi , where heat is added to
the structure at a single node using unit values for heat con-
ductivity, heat capacity, and external heat flux. Combining
all of these into one expression results in

KΦ+ CΦ̇= Q , (5)

where the matrix Q can be thought of as an identity matrix
I n , and Φ contains the potential terms associated with all i
points.

In order to calculate the distances, the heat conduction
problem has to be solved, meaning that a hypothetical heat
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source is added to the structure. This is done using explicit
Euler forward time integration. Hypothetically the results
should become exact when the time step t → 0. In prac-
tice, however, small time steps lead to numerical instability.
The optimum time step, therefore, has to be given as input.
The optimum value for the time step depends on the mesh.
Crane et al. [58] recommend t = δ2, where δ is the mean
edge length of the mesh analyzed. When SI units are used in
the analysis t is in seconds and δ in meters.

Through numerical integration eq. (4) can be rewritten
into the form of

K ∗φ∗ = Q ∗, (6)

where K ∗,φ∗ and Q ∗ are the effective matrix, nodal potential
and fluxes [67, eqn. 81.18].

The solution φ∗ provides a thermal flux of the structure
originating from the node specified in Q ∗. Normalizing this
gradient is carried out by removing the magnitude of the flux

X a =−
φa

|φa |
, (7)

which is unique for every node a . By integrating this nor-
malized flux over the elements using the gradient of the ele-
ment shape function N 1

da =


X aN (ξ,η)dξdη, (8)

a vector da containing incremental distances between nodes
is generated.

Using the vector d it is now possible to easily calculate the
distance vector for all the points from node a as

sa = (K
∗)−1da . (9)

Note that the same inverted matrix used to solve eq. (6) is
used to solve this equation. As mentioned by Crane the so-
lution for eq. (9) is only unique up to an additive constant.
By adding the minimum value of the calculated length vec-
tor the distances can be calculated.

The performance of the approach scales very well with the
size of the model. Pre-factoring of the left-hand side of the
equation scales sub quadratically, and even close to linearly
[69]. Solving distances to other points scales linearly with the
number of points of the model. Recent work on geodesic
distances computed on shell elements by Scarth et al. [53]
used a method first proposed by Mitchell et al. [54]. The ex-
act method does not allow pre-computation and scales with
O (n 2 log n ), where n is the number of nodes in the model.

A performance comparison done between these ap-
proaches by Crane et al. [69] showed that for a 1.6M triangle
Ramses model, the computation of distances from one point
is approximately four times faster using the heat method,
even with pre-factoring included. Different distances from
another point of the model can be solved almost 200 times

1Using a 2D shell element as an example.

faster than the exact algorithm, with a mean error of only
0.24%. As generating an autocorrelation matrix requires
the distances from all points to each other, the additional
speedup of the implementation becomes essential for larger
models.

This approach works on solid, shell, truss and beam ele-
ments as long as they are capable of solving potential flow
problems.

2.2. Generation of random fields

Discretized random fields consist of points representing
randomly generated variables in space. Values within the
field have a predefined correlation to each other.

Correlation between two random variables X and Y is de-
fined mathematically as [70, ch. 10]

ρ(X , Y ) =
Cov(X , Y )

Var(X )Var(Y )
=

E [(X −E [X ])(Y −E [Y ])]
Var(X )Var(Y )

,

(10)
where E is the expectation operator. If we define that X and
Y have a mean value of zero, and a unit variance, the equa-
tion can be simplified to

ρ(X , Y ) = E(X Y ). (11)

If X and Y are uncorrelated to each other; E(X Y ) =ρ = 0. If
they are correlated ρ ∈ [−1, 0)∪ (0, 1].

Gathering all points of a random field into a vector z the
correlation between points in an uncorrelated random field
is ρ(X i , Yj ) = E(X i Yj ) = δi , j , meaning that the correlation
matrix R = I . When values are correlated to each other, the
off-diagonal entries of the array become populated with val-
ues between 0-1.

To generate correlated random fields using uncorrelated
random Gaussian vectors, a a lower triangular matrix T is
introduced to map uncorrelated values into correlated val-
ues as

z= T x, (12)

with z being a correlated Gaussian random vector with zero
mean and unit variance. Vector x is an uncorrelated Gaus-
sian random vector with zero mean and unit variance. Sub-
stituting eq. (12) into the simplified definition of correlation
of eq. (11) the correlation matrix can be rewritten as

ρ(z1, z2) = R = E(z1z2
T )

= E(T x1x2
T T T )

= T E(x1x2
T )T T

= T I T T

= T T T (13)

Meaning that the correlation matrix can be written as

ρ(z1, z2) = R = T T T , (14)

where R can be given as an input, giving the correlation be-
tween points as an input, using, for instance, eqs. (1) and (2),
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which define an input correlation as a function of the dis-
tance between points. Distances from the length array com-
puted in the previous section can be used to compute values
in the correlation matrix. Doing this will lead to an array in
the form of

R =




1 ρ1,2 . . . ρ1,n

ρ2,1 1 . . . ρ2,n
...

...
ρn ,1 ρn ,2 . . . 1


= T T T . (15)

There are different ways to factorize the correlation ma-
trix R into an upper and lower triangular matrix. The two
most common approaches are using Cholesky decomposi-
tion and using eigenmode decomposition. For larger sys-
tems, eigenmode decomposition has fewer numerical is-
sues and can also be done using a limited number of modes
without significant loss of accuracy [71]. Another advan-
tage is, although theoretically, a symmetric positive definite
matrix only has positive eigenvalues. Numerical issues can
cause these eigenvalues to become very small negative val-
ues. This can also be corrected by manually setting these
eigenvalues to zero [72].

Eigenvalue decomposition can be done by calculating the
eigenvalues and eigenvectors of the correlation matrix as

R = QΛQ , (16)

where Q is an array containing the eigenvectors of the ar-
ray, and Λ is a diagonal array with the squared eigenvalues.
Taking the square root of the diagonal array, Λ̂ = diag(


λ)

eq. (16) can be rewritten as

R = Q Λ̂Λ̂Q = T T T → T = Q Λ̂. (17)

For a large number of random fields, this decomposition
only has to be done once. To calculate more fields, this de-
composed matrix simply has to be multiplied by an uncor-
related zero mean unit variance Gaussian random vector us-
ing eq. (12). An overview of the entire procedure to generate
geodesic random fields is shown in algorithm 1.

Fields generated in this manner have unit variance and
zero-mean. Scaling of the field is done when it is applied
to a structural parameter in the finite element model. Alter-
natively, fields can be generated with a specified variance by
factorizing the covariance matrix (C = σ2 R) the same way
the correlation matrix R was factorized in eq. (13).

Examples in section 4 utilize shell elements. Using shell
elements is useful in demonstrating the effects of geodesic
distances. The approach described in section 2 is not lim-
ited to shell elements. Figure 1 shows a distance calculation
and random field generated on a 3D tetrahedral model of a
compressor blisk.

2.2.1. Applying fields on a structure
The implementation used within this paper utilizes an

identical mesh for the random field and the structure. Us-
ing the element’s shape function, scalar quantities, such as

Algorithm 1: Heat method for finite element random
fields

input : Mesh, t
output: n samples of z

1 Compute K ∗ using t ; /* Distance calculation
*/

2 Solve the Poisson equation for φ∗ (eq. (6));
3 Normalize flux to obtain X a (eq. (7)) ;
4 Compute incremental distances da (eq. (8)) ;
5 for Every point a in mesh do
6 Compute distances sa from point a (eq. (9)) ;
7 Subtract minimum distance sa = sa - min(sa ) ;

8 Assemble all distances sa into a distance array L ;
9 Force symmetry of L, L= 0.5(L+ L⊺) ;

10 Compute R using L (e.g. eqs. (1) and (2)) ; /* RF
generation */

11 Decompose R into triangular form T (eq. (14)) ;
12 for i = 1:n do
13 zi = T xi (eq. (12))

Young’s modulus, thickness, or material orientation (angle),
can easily be mapped from nodes to integration points. The
value of these quantities is computed as

ai = aµ+ zi aσ, (18)

in which ai is a scalar quantity used in the model (such as
thickness or Young’s modulus), aµ the mean value of a , zi

the value of the random field, aσ the standard deviation of
a , all evaluated at point i .

Geometric imperfections are not a scalar quantity, as they
require a direction for the imperfection to act in. Assuming
the structure is modeled using shell elements, geometric im-
perfections can be defined as a translation of nodes normal
to its surface. Finding the normal direction of a shell is done
by first finding the tangential components of the element co-
ordinate system (ξ,η) in the global coordinate system. Par-
tial derivatives of shape function have the property of trans-
forming coordinates into vectors oriented in the derivative
direction. The direction normal to the surface is found by
computing the cross product of the shape function deriva-
tives in the in-plane direction. With this in mind, the unit
normal vector of point i on element j is

ni =
X j

∂ N (ξ,η)
∂ ξ × X j

∂ N (ξ,η)
∂ ηX j

∂ N (ξ,η)
∂ ξ × X j

∂ N (ξ,η)
∂ η


, (19)

where ξ,η are the element coordinates as shown in fig. 2, X j

are node coordinates of element j . As an example, to calcu-
late the normal of node 1 of a quadratic shell element shown
in fig. 2 the values η= ξ=−1 are used. X j being an array of
the coordinates of all the nodes of the element. Nodes which
are part of multiple elements take the average normal calcu-
lated using all elements.
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Origin node

(a) Distance calculation (b) Example of random field

Figure 1: Example of geodesic distance calculation and random field generation on a tetrahedral mesh model of a compressor blisk, model courtesy of
authors of [73]
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Figure 2: Element numbering and coordinates of a quadratic shell element

This approach for geometric imperfection only works on
structures that consist of one surface. Applying geomet-
ric imperfections generated by random fields on structures
consisting of multiple surfaces (such as an I-beam) is more
involved but can be done by decomposing the deformation
into local and global components [74, 75].

2.3. Extensions of random field generation approach

What has been presented up to now can be used to gener-
ate isotropic homogeneous random fields that are uncorre-
lated with each other. However, certain structural problems
could benefit from extensions to this approach, allowing for
better modeling of certain variations. Therefore, within this
section two extensions are introduced which can make it
possible to generate more realistic imperfections in, for in-
stance, layered orthotropic structures such as composites.

2.3.1. Generation of correlated random fields

In some analyses, the imperfections correlate with each
other. In those cases, it is of interest to generate random
fields which have a pre-determined inter-correlation. An
example can be the different lamina in a composite struc-
ture. In these structures, imperfections can have different

sources. Errors due to initial fiber placement would be in-
dependent of each other in every layer, but errors due to
curing would affect the structure more uniformly. One way
to model these coupled imperfection patterns is to generate
fields that are correlated with each other.

How to generate correlated random fields is very simi-
lar to the approach used to generate random fields in sec-
tion 2.2. A correlation matrix defines the relationship be-
tween random fields. A series of n intercorrelated fields re-
quires an n ×n symmetric correlation matrix. The correla-
tion between fields can be constant or can be neighbor de-
pendent. It may be that neighboring layers in a composite
structure are more correlated to each other than layers on
the outer surface. The similarity between random fields is
defined through a symmetric correlation matrix describing
the similarity of fields generated in a grouping using

R =




1 ρ1,2 . . . ρ1,n

ρ2,1 1 . . . ρ2,n
...

...
ρn ,1 ρn ,2 . . . 1


= T T T (20)

where n is the number of correlated random vectors. De-
composing this in the form shown in eq. (14) it is possible to
create correlated random vectors as

Y = T X , (21)

where Y is an array with correlated random vectors as its
columns, X a matrix with uncorrelated random vectors as
its columns and T the decomposed matrix of eq. (15). Using
these correlated random vectors, correlated random fields
can be generated using eq. (12).

Section 4.3 discusses an example in which the correlation
of fiber misalignments through different layers of a compos-
ite shell are analyzed. Intercorrelated, through-thickness
varying and independent fields are compared for their rel-
ative influence on structural buckling.
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(a) kx = 1, ky = 1 (b) kx = 1, ky = 2 (c) kx = 1, ky = 5 (d) kx = 1, ky = 10 (e) kx = 1, ky = 20 (f) kx = 1, ky = 50

(g) kx = 1, ky = 1 (h) kx = 1, ky = 2 (i) kx = 1, ky = 5 (j) kx = 1, ky = 10 (k) kx = 1, ky = 20 (l) kx = 1, ky = 50

Figure 3: Pseudo-distances from the top right corner (a-f), and fields generated on a 10x10 m flat plate using a correlation length of 1 m and correlation
function eq. (23) (g-l). Thermal conductivity is constant in the horizontal (x) direction and varies in the vertical (y) direction.

2.3.2. Tailoring of thermal conductivity to generate asym-
metric random fields

The approach originally presented by Crane [58] utilizes
a thermal capacity C = 1 J

K and thermal conductivity k =
1 W

m·K . When solving the heat equation, this converges to
the geodesic length between points. Using anisotropic heat
conductivity enables the generation of a metric in which
points on the structure are connected through a scaled
pseudo-distance. This concept was first studied by [76]. In-
troducing an anisotropic pseudo-distance to determine the
correlation between points on a structure makes it possible
to generate fields that show different correlation behavior in
different axes, such as limiting variation in a particular di-
rection while showing more in the other direction.

One approach often used in literature (e.g. [46, 53, 77]) is
to define a correlation length per axis. For instance convert-
ing eqs. (1) and (2) to

ρ = e
−
 L2

x
L2

c ,x
+

L2
y

L2
c ,y , (22)

and the square exponential function

ρ = e
−


L2
x

L2
c ,x
+

L2
y

L2
c ,y



, (23)

in which L x and L y are the x and y components of the
distance between points, and Lc ,x and Lc ,y the correlation
length in those directions.

Decomposing a distance to (local) coordinates is not a
trivial task, except for simple geometries such as cylindrical
shells and flat plates. Using the approach presented in this
paper, it is possible to directly represent this asymmetric be-
havior by influencing the heat flow in the geodesic distance
calculation.

The heat conductivity used in the geodesic distance cal-
culation of section 2.1 is inversely proportional to the dis-
tance calculated. Assuming homogeneous orthotropic ther-

mal properties, the correlation functions in eqs. (22) and (23)
can be reproduced by implementing this orthotropy into the
correlation lengths Lc ,x and Lc ,y as

Lc ,x = a Lc , (24)

Lc ,y = b Lc . (25)

where a and b are scaling parameters of the the thermal
conductivity in the element’s x and y directions

kx = a k , (26)

ky = b k . (27)

This effectively replaces the geodesic distance with a
weighed pseudo distance, in which the effective correlation
length is the product of the thermal conductivity and the
axis-independent correlation length. Examples of distance
and random fields generated using anisotropic thermal con-
ductivity are shown in fig. 3. Increasing anisotropy is applied
to the thermal properties resulting in increasing anisotropy
in the random fields.

Orientation of the material can be defined in the global
coordinate system or a local coordinate system. Local mate-
rial orientation can be defined through a parametric equa-
tion or as a manual input to the nodes or centroid of ele-
ments. Material anisotropy in the heat conductivity used
to compute pseudo-distances makes generating anisotropic
random fields on complex geometry possible.

This approach can also generate non-homogeneous fields
by varying the thermal conductivity at areas with different
correlation behavior (e.g., seams and edges). Increasing the
thermal conductivity in these areas can cause the variations
to have a shorter correlation length than their surroundings.
Decreasing thermal conductivity can cause the local varia-
tion to become more constant. The use of locally varying
thermal conductivity is not further explored within this pa-
per.
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3. Analysis of accuracy and time step of geodesic distance
calculation

Numerical algorithms should converge to an exact solu-
tion with increased refinement. In order to verify that the
implementation described in section 2 complies with this
paradigm, a number of analyses were performed. These
analyses compared the computed geodesic distance and
compared it to one obtained analytically. These studies were
performed on a flat plate, cube, and cylindrical shell. For the
sake of brevity, only the cylindrical shell is discussed in more
detail.

3.1. Optimal time step and error of geodesic distance calcu-
lation

As mentioned by Crane [58] it is not trivial to find an opti-
mal time step for geodesic length calculation. The ideal time
step depends on the size, shape, and average edge length of
the elements within a mesh. The geodesic calculation be-
comes more accurate with a finer mesh, while the ideal time
step decreases with an increasing mesh size.

The error in distance calculation between the length ar-
rays in the form of eq. (3) obtained analytically (L A) and nu-
merically (L N ) is calculated as

ε=
L N − L A

L A + I
. (28)

Array ε contains all the relative errors between points in the
model. Within the results shown here, the RMS value of the
array entries is taken as a comparative measure. The RMS is
defined as

RMS Error=

ε2
1,1+ε

2
2,1+ . . .+ε2

n ,1+ . . .+ε2
n ,n

n
(29)

where n is the number of nodes of the mesh.

3.1.1. Numerical example of distance calculation
Cylindrical shells are often found in many structures in

engineering and are therefore of particular interest. Differ-
ent discretizations are analyzed to find the optimal time step
depending on the geometry. Discretizing a shell into m cir-
cumferential elements and n axial elements, nodes are lo-
cated every α = 360

m degrees on the circumference. Due to
the discretization, the circumference of a meshed cylindri-
cal shell is less than an analytical cylinder. Using the equa-
tion for a chord of a circle segment [78, sec. 3.8] c = 2R sin α2 .
The perimeter of the geometry represented by the discrete
mesh is therefore d = 2mR sin 360

m2 (in degrees). Results gen-
erated using the heat method are compared to the analytical
solution

La ,b =


2mi R sin

360

2m

2
+


j L

n

2
, (30)

in which i is the number of elements between nodes a and b
in the circumferential direction. j is the number of elements

between nodes a and b in the axial direction. A discretiza-
tion of one of the analyzed cylinders can be found in fig. 4a,
with an example of a distance calculation shown in fig. 4b.

3.1.2. Numerical results and trends
Figure 5 shows how the RMS error in distance calculation

changes with differing time steps when analyzing a cylinder
with radius R = 1 and length L = 2. The analyses show that
the RMS error decreases with a decreasing time step up to
a certain point. At this point, it rapidly increases or does
not converge. Minimization of the time step does not oc-
cur when the time goes to zero. Analyses done by Crane
et al. [69, App. A] show that as the time step goes towards
the limit of zero, the computed distances become a combi-
natorial distance, e.g., the distance product computed con-
verges to L = x + y instead of L =


x 2+ y 2. Increasing the

time-step smooths out the fluxes computed, smoothening
the distances computed and reducing accuracy. The exact
curves vary with the aspect ratio/model size, as shown in
fig. 6. These are generated using a fixed radius of 1 m with
a varying length between 1-3 m. Accuracy in the distance
calculation improves with mesh size, as shown in fig. 6a.

Time steps in which the RMS error is minimized were
computed using Brent’s method [79]. The ideal time step for
cylindrical shells was close (R 2 = 0.947) to

t =δ1.7, (31)

where δ is the mesh’s mean edge length. This relationship
is a similar result to that recommended by Crane (t = δ2).
Better fits were found with long polynomial expressions, but
none of these expressions were accurate for different ge-
ometries. The recommendation of Crane is therefore a good
starting point for meshes in general.

3.1.3. Anisotropic heat conduction
Utilizing pseudo-distances to create anisotropic fields

was discussed in section 2.3.2. This section analyzes the
pseudo-distances relationship to (scaled) distance. This is
done by varying the conductivity ratios2 kz

kx ,y
of a cylindrical

shell. Ratios ranging from 0.1 to 10 were computed and com-
pared to the analytical result found by modifying eq. (30) to

La ,b =


2mi R kx ,y sin

360

2m

2
+


j L

nkz

2
, (32)

with kz being the axial thermal conductivity and kx ,y the
thermal conductivity in the circumferential direction. Fig-
ure 7 shows the minimized RMS error for different con-
ductivity ratios. These minimized errors were obtained us-
ing Brent’s method. Results show that with an increasing
anisotropy, the direct relationship with distance becomes
unclear. Though not necessarily an issue for generating in-
homogeneous random fields, this should nevertheless be
considered when the correlation function is defined.

2z being the axial direction.
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Figure 4: Example of cylindrical shell mesh R = 1, L = 1.5, δ= 0.2
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Figure 5: RMS error in distance calculation of a cylindrical shell using dif-
ferent mean element size δ and time steps

4. Numerical examples

A series of numerical analyses verify the implementation
in Diana and demonstrate its use on structures, including
how the extensions of section 2.3 can be used. Numeri-
cal analyses focus on cylindrical shells as these are easy to
model, and using geodesic length can considerably influ-
ence results. In addition to this, cylindrical shells benefit
from having many examples analyzed in detail in published
literature.

Verification of the random field implementation is done
by analyzing Young’s modulus and thickness variations of
an isotropic cylinder. Following this analysis, a cylindrical
shell’s geometric imperfections are analyzed and compared
to those published in literature. A final numerical study is
performed to analyze variations in the fiber angle of a com-
posite cylindrical shell’s buckling load.

The last part of the section demonstrates some other
structures in which fields were generated, showing its use in
more complex structures.

4.1. Gyroid structure

Gyroid structures are a form of a minimal surface first de-
scribed by Schoen [80]. Minimal surfaces are surfaces for
which the mean curvature equals zero. Gyroids can be de-
scribed mathematically as a surface defined by

sin x cos y + sin y cos z + sin z cos x = 0. (33)

Recent work showed that gyroid shapes are very strong
porous structures that efficiently use space [81], and can be
fabricated using additive manufacturing techniques. The
effective strength of the structure is directly related to the
wall thickness, and the size of the periodic gyroids [82, 83,
84]. Additive manufacturing techniques can cause local
variations in thickness. Within the current analysis, fic-
tional variations in thickness are introduced, where the x-
displacement at the loaded edge y = 0 is measured. Com-
paring the stochastic response of the structure with the ran-
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(a) Lowest RMS error found in the distance computation of cylin-
drical shell

(b) Time step in which the lowest RMS distance error is achieved, s

Figure 6: RMS geodesic distance error minimization achieved and the time
steps in which it is achieved over a variety of element sizes and geometric
ratios
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Figure 7: RMS error of best time step found of various conductivity ratios
within a cylindrical shell of R=1, L=2

Figure 8: Gyroid geometry, boundary conditions, and load. Dimensions in
mm

dom field-generated imperfections using geodesic and Eu-
clidean distances gives an impression of the relative influ-
ence both measures have.

4.1.1. Numerical analysis

A series of gyroids with 100 mm sides are assembled in a
2x3 configuration as shown in fig. 8. The model is discretized
into 8558 analytically integrated triangular shell elements.
Mesh convergence is done to check if the end displacement
converges with the chosen refinement. A shear load of 10
N/mm is applied to the edges where y=0. Displacements of
nodes located at y = 0 are tied together, making them equal
on one edge of the gyroids. Clamped boundary conditions
are applied to the edge where y = 300 mm. Numerical mod-
eling of the structure is done using bilinear triangular shell
elements. Thickness varies through a Gaussian distributed
random field. Table 1 lists the parameters of the random
field and the material properties used in the analyses. Thick-
ness variations in the shell are applied as scalar variations
on the shell element using eq. (18). One thousand samples
are generated for both types of distance calculations. A 100
mm correlation length is used as it is of a similar order of
magnitude as the structure. Very small or large correlation
lengths will not show as much of a distinctive difference. In
theory, a Gaussian distribution can result in a locally nega-
tive thickness that would not be physically possible. How-
ever, the chance of this happening with a standard devia-
tion of 0.1t is negligible. Computing the probability using
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Property Value

E 210 GPa
ν 0.3
Thickness Gaussian random field:

µ= 0.5 mm
σ= 0.05 mm (CoV 10%)
Lc = 100 mm

Table 1: Deterministic and statistical properties of gyroid structure

µ, mm σ, mm CoV

Geodesic 1.626 0.134 8.24%
Euclidean 1.617 0.158 9.78%
Relative difference -0.5% 18.1% 18.7%

Table 2: Statistical properties of analyses of the x-direction displacement of
the loaded edge of the gyroid using different distance metrics in the random
field generation

the cumulative distribution function leads to a probability
of 1

1.3124·1023 and is not considered an issue in this analysis.
For more significant standard deviations, a lognormal distri-
bution would be more appropriate. The second-order esti-
mate generated is directly affected by the distribution of the
random-field variables. Switching distributions, therefore,
results in different results in general. This study analyzes
only the effects of geodesic vs. Euclidean distances, which
is possible to do qualitatively using a Gaussian distribution.

4.1.2. Results
Geodesic distances computed differ significantly from

Euclidean distances between points. Figure 9 illustrates this
through a difference that reaches up to 25% for this exam-
ple. Generating fields with this differing length and correla-
tion matrix also leads to a different looking field. Figure 10
shows examples of fields generated using both distance met-
rics in the correlation function. Fields generated using a
geodesic distance show more variation within the structure
than fields using Euclidean distance.

Figure 11 shows the probability density function (pdf)
of the displacement of both statistical analyses. Statistical
properties of these distributions are shown in table 2.

Comparing the two analyses, it is clear that a significant
deviation of the statistical properties can be present when
the distance used for random field generation does not re-
flect the actual geodesic distance. This deviation depends
on the actual structure (curvature and size), and the correla-
tion function used to generate the fields.

4.2. Isotropic cylindrical shell with scalar variations

The second example analyzed deals with variations in
thickness and Young’s modulus in a cylinder. These results
verify the implementation by comparing them with pub-
lished results. Arbocz and Abramovich [85] published a se-
ries of geometric imperfection measurements of isotropic

Property Value

E Gaussian random field:
µ= 104.41 GPa
σ= 10.441 GPa (CoV 10%)
Lc = 50−500 mm

ν 0.3
Thickness Gaussian random field:

µ= 0.11597 mm
σ= 0.011597 mm (CoV 10%)
Lc = 50−500 mm

Table 3: Material and thickness properties of the isotropic cylinder. Note:
Young’s modulus and thickness variations are not applied simultaneously.
When one is applied as a random field, the mean value of the other is used
as a deterministic value.

cylindrical shells referred to as the A-shells. The average
property of shells A-7 to A-14 is often used in related im-
perfection analysis research. Imperfections that are ana-
lyzed are not just in nominal shape, but also local changes
in thickness, Young’s modulus, or a combination of these
[86, 87, 88, 89]. Only the independent local variations of
thickness and Young’s modulus are analyzed independently
within the current work.

4.2.1. Numerical analysis
The analyzed cylinder has a length of L = 202.3 mm, ra-

dius of r = 101.6 mm. Two series of analyses are performed
in which either Young’s modulus or the thickness is varied.
When one is varied, the other is fixed to the mean value listed
in table 3.

Using linear, curved shell elements, the cylinder is dis-
cretized into 213 circumferential elements and 67 axial, to-
taling 14 271 elements. Using the coordinate system of
fig. 12, the edge at z = 0 is constrained in all translations and
rotation in the z-axis. At the edge z = L , translations in x
and y directions are constrained, as well as rotations in the z-
axis. Translations in the z-axis tied together on the top edge
z = L , with distributed load is applied of -1.56649 N/m in the
z-direction, giving a total of 1 N in compression. Results are
normalized by the analytically obtained buckling load of the
perfect cylinder calculated as

λanalytical =
2πE t 2


3 (1− v 2)

= 5339 N. (34)

Variations are applied using the exponential correlation
function of eq. (1), as well as the squared exponential func-
tion of eq. (2). A series of correlation lengths are used to gen-
erate Gaussian random fields ranging between 50-500 mm,
the same range used by the study done by Papadopoulos
and Papadrakakis [88] on this structure. Analyzing results
over various correlation lengths makes it possible to identify
the influence correlation lengths of imperfections have on
the structure. Correlation lengths selected range from Lc

R ≈
0.5 to more large scale imperfections of Lc

R ≈ 5. The stan-
dard deviation of the variations is 10% of the nominal value
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Figure 9: Distances computed from a corner of gyroid
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Figure 10: Random fields generated using two different distance metrics and Lc = 100 mm
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Figure 12: Cylinder geometry definition

of both the thickness and Young’s modulus series of analy-
ses. Although Gaussian fields can potentially result in non-
physical values of Young’s modulus and thickness, this is not
an issue for this particular example [89, sec. 7.1]. However,
analyses with larger variations should switch to a lognor-
mal distribution or other distribution that guarantees pos-
itive values. Results in this analysis are directly compared
with published results generated using a Gaussian distribu-
tion, making direct comparison possible. In the general case
when experiments are reproduced, for instance, the distri-
bution of the input variable has to be carefully reproduced
to generate an estimate of the variance.

A series of 250 analyses were performed for every correla-
tion length analyzed, the same amount as the referred paper.
The convergence of statistical properties was checked quali-
tatively after the analysis and found to show reasonable con-
vergence. The applied load is slowly increased during the
geometrically non-linear analysis using a Newton-based ap-
proach until the tangential stiffness matrix contains a neg-
ative eigenvalue, meaning the bifurcation buckling load is
reached.

4.2.2. Results

Results found in fig. 13 show the statistical properties of
analyses that apply local Young’s modulus or thickness vari-
ations. Fields generated in the referred literature [88] use
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(a) Statistical properties of structures affected by local Young’s modulus vari-
ations
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Figure 13: Statistical properties of the critical load factor of analyses run
with random fields of varying correlation lengths affecting the local Young’s
modulus or thickness
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a squared exponential correlation function. Overall, fields
generated using the squared exponential correlation func-
tion show a higher mean value for the critical load, while the
coefficient of variation (σµ )is only slightly lower.

Verifying results generated with the current approach and
those published by Papadopoulos and Papadrakakis [88],
there is an apparent discrepancy in the mean value of the
stochastic results. Lower correlation lengths result in a
higher value for the buckling than those generated using
the geodesic approach. Papadopoulos et al. were aware of
the deviation between their modelâĂŹs results and results
that are obtained using a considerably finer mesh. How-
ever, they asserted that such a deviation would be consis-
tent in their stochastic results and not affect the stochastic
response. This deviation was emphasized within the paper’s
geometric imperfections analysis, in which a 15% increase
in mean buckling load was found compared to results from
Schenk and Schuëller [86].

Checking this hypothesis was done by slowly refining the
mesh for one particular configuration and analyzing the
convergence of the stochastic results. Figure 14 shows the
stochastic convergence of stochastic parameters of struc-
tures with imperfections applied with a square exponential
correlation function and a 0.1 m correlation length. Com-
paring the mean buckling values of figs. 13 and 14, the mean
normalized buckling load of the referred literature seems to
be overestimated, corresponding to values obtained with a
mesh in the order of 5000-8000 elements.

Comparing the coefficient of variation between the results
shows a closer fit, particularly with Young’s modulus vari-
ations. Stochastic results of the thickness varying analyses
show a more significant deviation, however, not just in the
variance but also in the mean value. The larger discrepancy
is due to the additional refinement needed to properly eval-
uate the more significant change in local stiffness attributed
to local thickness changes. Unlike the linear relationship
with Young’s modulus variations, thickness changes have a
cubic relationship to bending stiffness. Such more distinc-
tive gradients in bending stiffness require a more refined
mesh to evaluate accurately, indicating that the assumption
made in [88] is only valid when the stiffness gradients are
not very large. Recent work from Feng et al. [56] reproduces
the thickness variation example and shows a similar discrep-
ancy compared to the original publication, with results be-
ing closer to those in the current work.

4.3. Waters’ shell

Effects of fiber angle variations and geometric imperfec-
tions are demonstrated using a composite cylindrical shell.
Dimensions and properties used are identical to the shell
initially analyzed by Waters [90] and consequently used by
other researchers, e.g. [91, 92, 93].

The cylinder is 355.6 mm tall with a 203.18603 mm ra-
dius, consisting of 8 layers with a total nominal thickness of
1.01539 mm with a [±45, 0, 90]s layup. Material properties of
the lamina can be found in table 4.
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Figure 14: Convergence of statistical properties of the cylindrical shell with
different mesh sizes under the influence of imperfections in thickness or
Young’s modulus. Fields applied are generated using a square exponential
correlation function and correlation length of 0.1 m
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Property Value

E1 127.629 GPa
E2 11.3074 GPa
G12 6.00257 GPa
ν12 0.300235
Fiber misalignment of θi Gaussian random fields:

i ∈ [1 . . . 8] µ= 0◦

σ= 2◦

Lc = 50−500 mm
Thickness 1.01539 mm

Table 4: Material properties of Water’s composite shell [90] and stochastic
parameters used for fiber misalignments

Top and bottom edges at z = 0 and z = L in fig. 12 are
constrained in the radial direction, leaving the axial direc-
tion free. One node on the bottom edge is constrained in
the z direction to remove the rigid body mode. The cylin-
der is discretized into a mesh of 6 536 analytically integrated
triangular elements. Mesh is converged to reproduce buck-
ling results published in [93, tab. 3.13]. Results obtained
are normalized using the linear bucking load found for the
perfect cylinder (without variations applied), which equals
λl i n = 135.7 N/mm.

This example aims to analyze the structure’s geometri-
cally non-linear behavior. Accurately representing the com-
plex geometric behavior requires sufficient fidelity in the
displacement field. Analyzing the criticality of geometric
imperfections demands a displacement field to be accurate
enough to represent a given imperfection pattern. The dis-
cretization has a mean element size of 12.7 mm. The amount
of elements needed to represent a local variation depends on
the correlation function, correlation length, and structure. A
minimum of five elements over the correlation length is used
within this analysis, meaning a minimum of 50 mm is used.
50 mm equals around 14% of the axial length and 4% of the
circumference of the cylinder. Fields are generated using a
Gaussian distribution, which closely matches imperfections
found in real structures [77].

4.3.1. Analysis of critical loads with fiber-misalignments ap-
plied

Stochastic variations on the fiber layup are applied using
Gaussian random fields with a standard deviation of θσ =
2◦. These imperfections are applied through fields gener-
ated over a range of correlation lengths, using the squared
exponential correlation function (eq. (2)). The effects of
anisotropic heat coefficients in calculating pseudo-distance
calculations and inter-field correlation are discussed in sec-
tion 2.3. Anisotropy in the distance measurements of the
fields is achieved by applying kz = 50 in the distance calcu-
lation. The z-axis is defined in fig. 12 as the axial direction of
the cylinder. The inter-field correlationΣ used in the analy-
ses are:

Equicorrelation, (cρ) All fields in a run have an equal cor-

relation to one another,

Σ =




1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
...

...
...

...
...

ρ ρ ρ . . . 1


 , (35)

where ρ ∈

0.3 0.5 0.9

, making all fields equally

similar to each other. Such a series of fields suitable for
modeling, for example, fiber imperfections which are
influenced by curing in an equal manner between lay-
ers (for instance, in very thin structures).

Identity ( I) All fields are completely independent from
each other, Σ = I8. Generating a set of fields using an
identity correlation matrix implies that fields are com-
pletely independent. This is equivalent to generating
the fields separately without taking others into account.

Material gradient (mat) Fields in a structure are less corre-
lated the more distance they have between them,

Σ =




1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30
0.90 1.00 0.90 0.80 0.70 0.60 0.50 0.40
0.80 0.90 1.00 0.90 0.80 0.70 0.60 0.50
0.70 0.80 0.90 1.00 0.90 0.80 0.70 0.60
0.60 0.70 0.80 0.90 1.00 0.90 0.80 0.70
0.50 0.60 0.70 0.80 0.90 1.00 0.90 0.80
0.40 0.50 0.60 0.70 0.80 0.90 1.00 0.90
0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00




,

(36)
meaning that the field of layer 1 is correlated by layer
2 with 0.9 for instance, but only 0.3 with layer 8. Using
such a correlation structure could potentially take cur-
ing imperfections of fiber misalignments into account
for thicker structures or structures with larger curva-
tures where curing effects vary through thickness.

Five hundred samples are computed for each of these runs.
The critical load is defined as the limit point load in which
a tangential stiffness matrix becomes singular. A Newton-
Raphson solver is used to compute the critical load using au-
tomatic load-step resizing. The number of samples required
was determined in a convergence study. This study involved
performing 1000 analyses for a few different configurations
and analyzing when the mean and standard deviation values
stabilize.

4.3.2. Results of stability analyses with fiber-misalignments
applied

A total of 45 000 analyses were performed in 90 different
configurations, as shown in figs. 15 and 16. Isotropic re-
sults, in which kx = ky = kz = 1 have the correlation of
points on a field directly coupled to the geodesic distance
are shown in figs. 15a and 15b, with two example structures
shown in figs. 18 and 19. Anisotropic results which use a
pseudo-distance to generate correlation values are shown
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in figs. 16a and 16b, with two example structures shown in
figs. 20 and 21.

Results show that both the critical load and coefficient
of variation vary significantly depending on the correlation
length used. Mean critical load values go up as the correla-
tion length increases. Physically these represent smoother
and less local fiber angle variations.

The coefficient of variation of the results also varies signif-
icantly with the correlation length used. Values initially in-
crease with the correlation length up to 75 mm for isotropic
and 37.5 for anisotropic fields, after which the value drops
to almost half of its peak value at 150-200 mm (isotropic) or
100-350 (anisotropic). It then goes up with increasing corre-
lation length.

Comparing the isotropic and anisotropic fields, it is clear
that a change in the critical correlation (pseudo-)length af-
fects the results. Anisotropic fields generated have less vari-
ation in the axial direction. These more consistent varia-
tions can cause larger deviations from the axisymmetric de-
formation of an ideal cylinder, causing slightly lower buck-
ling loads and more variation than the isotropic analyses.

Inter-field correlation has a significant effect on both the
mean value and the coefficient of variation in the analyses
performed. Overall the critical value decreases as fields be-
come more independent while at the same time increas-
ing the variance. An essential factor is that the quasi-
isotropic layup of the structure can show more anisotropic
behavior when fields vary independently. Behavior such as
compression-twist coupling can have a more significant ef-
fect in such cases.

Variation in the results computed is limited, with a coef-
ficient of variation below 2%. It is important to note that
the results do illustrate that inter-correlation and correla-
tion length both have a significant effect on the variance
obtained. The amplitude of the resulting analyses can in-
crease significantly when the amplitude of variations is in-
creased, or if the structure being analyzed has unstable non-
linear paths for instance.

4.3.3. Analysis of critical loads with geometric imperfections
applied

Geometric imperfections are also applied to the Waters
shell using the procedure described in section 2.2.1. Ge-
ometric imperfections are applied with a standard devia-
tion equal to σ = 0.1t ≈ 0.1 mm from the nominal coordi-
nate. This value is within the maximum range measured for
a cylinder by NASA [94]. It should be noted that this value
would likely differ in real structures depending on the length
scale of variations, e.g., the correlation length. The same
value is used for all analyses for the sake of consistency.

The analyses are solved the same way the fiber deviation
analyses are, using a Newton-Raphson approach with auto-
matic step resizing to find the structure’s limit-point load.

4.3.4. Results of stability analyses with geometric imperfec-
tions applied

Figure 17 shows the statistical properties of geometrically
imperfect analyses. The mean value’s overall trends are sim-
ilar to those of the fiber deviation, with a general increase
in the correlation length. Variance, however, shows differ-
ent behavior to that of fiber angle variations. There is a gen-
eral decrease in the variance as the correlation length in-
creases. Trends in the variance values are similar between
the isotropic and anisotropic analyses, with values in the
isotropic analyses being approximately 60-70% higher.

Imperfections representing the out-of-plane displace-
ment use the same standard deviation for every correla-
tion length. Therefore, shorter correlation lengths contain a
higher degree of local curvature as the size of imperfections
decreases, but the amplitudes remain the same.

Variance decreases with an increase in correlation length.
As imperfections become more smoothed out and less local-
ized, they are less likely to have an aggressive influence.

5. Discussion and conclusions

Adaption in finite elements of the heat method has dra-
matically simplified and accelerated the computation of
geodesic random fields in structural mechanics. A random
field is used to represent deviations from an ideal geometry
or material property. A cylindrical shell is used to demon-
strate the geodesic distance calculation. As the number
of elements increases and the time step t decreases, the
geodesic calculations converge to the exact analytical solu-
tion.

Substituting isotropic heat conductivity for anisotropic
coefficients makes it possible to generate "pseudo-
distances" scaled with the material orientation. These
pseudo-distances lead to anisotropic fields, which can
have an anisotropic correlation. Anisotropic fields can
potentially better represent defects in specific structures
introduced during manufacturing processes.

Compared to previous work done on geodesic random
fields in structural analysis, the approach presented has the
following benefits:

Speed Computationally, the approach to geodesic distance
calculation is very efficient and scales almost linearly
with the number of points evaluated. Compared to the
exact "MMP" approach [54] used by Scarth et al. [53],
the time to compute distances can easily be several or-
ders of magnitude faster.

Anisotropy Anisotropy The MMP method only generates
isotropic random fields, as the distances can not be
scaled to generate a directional dependency. Chang-
ing the heat conductivity could also change the corre-
lation length locally by scaling the computed "pseudo-
distance", leading to non-stationary fields.
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(a) Mean value of normalized critical buckling load of configura-
tion with isotropic (geodesic) random fields with random fields of
different correlation lengths
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(b) Coefficient of variation of critical buckling load of configura-
tion with isotropic (geodesic) random fields of different correlation
lengths

Figure 15: Waters shell critical load λc r i t under fiber orientation variations
of different correlation lengths, and different inter-layer correlation. Con-
figurations mentioned in the legend are discussed in section 4.3.1. Correla-
tions with a field use the geodesic distance generated using isotropic ther-
mal conductivity in the geodesic distance calculation.
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(a) Mean value of normalized critical buckling load of configuration
with anisotropic random fields of different correlation lengths

50 75 100 150 200 350 500
Correlation length, mm

0.6

0.8

1.0

1.2

1.4

1.6

1.8

C
o

V,
%

c09
c05
c03
eye
mat

(b) Coefficient of variation of critical buckling load of configuration
with anisotropic random fields of different correlation lengths

Figure 16: Waters shell critical load λc r i t under fiber orientation variations
of different correlation lengths, and different inter-layer correlation. Con-
figurations mentioned in the legend are discussed in section 4.3.1. Corre-
lations with a field use the geodesic distance generated using anisotropic
thermal conductivity in the geodesic distance calculation, creating pseudo-
distances which are used in the correlation function.
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(b) Coefficient of variation

Figure 17: Waters shell critical load λc r i t with geometric imperfections of
different correlation lengths. Distances used in the correlation length use
either isotropic (leading to geodesic distances) or anisotropic (leading to
pseudo-distances) thermal conductivity.

Element order The MMP method described in [54] can be
used to compute geodesic distances on polyhedral sur-
faces. As a first step, the polyhedral has to be triangu-
lated. Triangulation adds a step to the distance calcula-
tion (assuming the model does not use linear triangular
shell elements) and limits the type and effective order of
elements used. Elements that use higher-order shape
functions have to be linearized locally, losing curvature
information and accuracy.

Element type The approach presented is not limited to a
specific element type. The numerical examples use
shell elements, but the approach is also fully functional
for bar, beam and solid elements. The more extensive
element library makes it possible to accurately model
structures or materials requiring different elements.

A few examples are used to demonstrate the approach
in structural mechanics. The first example illustrates that
it is vital to use geodesic distances when a structure has
curvature. The spread of imperfections can cause signifi-
cant discrepancies in results when substituted by correla-
tions obtained with Euclidean distance. The gyroid example
showed a discrepancy of 20% for end displacement under
shear loading.

Replicating an example from literature in which Young’s
modulus and thickness vary in a cylindrical shell shows a po-
tential source of error in computation. Structures suscepti-
ble to very local imperfections (e.g., structures with buckling
modes with a short wavelength) need to be discretized and
modeled in a sufficiently refined model to represent the me-
chanical behavior accurately. Therefore, mesh convergence
studies should focus on the shortest correlation length of
fields applied to a structure.

A final example analyzes the effect of local fiber misalign-
ment. Both isotropic and anisotropic heat conductivity is
used in the random field generation. Additionally, different
types of correlation between layers of the composite are ana-
lyzed. These parameters both significantly influence the sta-
tistical response of a structure to imperfections.

Overall the approach presents a significant computa-
tional improvement in generating geodesic random fields.
It uses existing capabilities found in finite element solvers
to solve potential flow problems in the computation of
geodesic distances, simplifying implementation. The gen-
erality of the formulation makes it possible to apply the ap-
proach to a variety of element types without any inherent
limitations.
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Figure 18: Degrees fiber deviation of fields generated with Lc = 50 mm, isotropic distance, and equal correlation to each other of ρ = 0.5 (ρ0.5) per eq. (35)
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Figure 19: Degrees fiber deviation of fields generated with Lc = 50 mm, isotropic distance, and a field correlation that reduces with increasing distance
between fields (mat) per eq. (36)
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Figure 20: Degrees fiber deviation of fields generated with Lc = 50 mm, anisotropic (kx = 1, ky = 50) distance, and equal correlation to each other of ρ = 0.5
(ρ0.5) per eq. (35)
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Figure 21: Degrees fiber deviation of fields generated with Lc = 50 mm, anisotropic (kx = 1, ky = 50) distance, and a field correlation that reduces with
increasing distance between fields (mat) per eq. (36)
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