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ABSTRACT

Artificial Intelligence (AI) is an interdisciplinary field combining different research areas
with the end goal to automate processes in the everyday life and industry. The fundamental
components of AI models are an “intelligent” model and a functional component defined
by the end-application. That is, an intelligent model can be a statistical model that can
recognize patterns in data instances to distinguish differences in between these instances.
For example, if the AI is applied in car manufacturing, based on an image of a part of a car,
the model can categorize if the car part is in the front, middle or rear compartment of the
car, as a human brain would do. For the same example application, the statistical model
informs a mechanical arm, the functional component, for the current car compartment and
the arm in turn assembles this compartment, of the car, based on predefined instructions,
likely as a human hand would follow human brain neural signals. A crucial step of AI
applications is the classification of input instances by the intelligent model.

The classification step in the intelligent model pipeline allows the subsequent steps to
act in similar fashion for instances belonging to the same category. We define as classifi-
cation the module of the intelligent model, which categorizes the input instances based on
predefined human-expert or data-driven produced patterns of the instances. Irrespectively
of the method to find patterns in data, classification is composed of four distinct steps: (i)
input representation, (ii) model building (iii) model prediction and (iv) model assessment.
Based on these classification steps, we argue that applying classification on distinct data
types holds different challenges.

In this thesis, I focus on challenges for three distinct classification scenarios: (i) Textual
Streams: how to advance the model building step, commonly used for static distribution
of data, to classify textual posts with transient data distribution? (ii) Protein Prediction:
which biologically meaningful information can be used in the input representation step to
overcome the limited training data challenge? (iii) Human Variant Pathogenicity Prediction:
how to develop a classification system for functional impact of human variants, by providing
standardized and well accepted evidence for the classification outcome and thus enabling
the model assessment step?

To answer these research questions, I present my contributions in classifying these dif-
ferent types of data: temporalMNB: I adapt the sequential prediction with expert advice
paradigm to optimally aggregate complementary distributions to enhance a Naive Bayes
model to adapt on drifting distribution of the characterisitcs of the textual posts. dom2vec:
our proposal to learn embedding vectors for the protein domains using self-supervision.
Based on the high performance achieved by the dom2vec embeddings in quantitative intrin-
sic assessment on the captured biological information, I provide example evidence for an
analogy between the local linguistic features in natural languages and the domain structure
and function information in domain architectures. Last, I describe GenOtoScope bioin-
formatics software tool to automate standardized evidence-based criteria for pathogenicity
impact of variants associated with hearing loss. Finally, to increase the practical use of our
last contribution, I develop easy-to-use software interfaces to be used, in research settings,
by clinical diagnostics personnel.

Key words classification, textual streams, concept drifts, feature drifts, ensemble learn-
ing, time series, protein domain architectures, word embeddings, quantitative quality as-
sessment, SCOPe secondary structure class, enzymatic commission class, human genomic
variants, hearing loss, ACMG/AMP classification, bioinformatics, clinical diagnostics



ZUSAMMENFASSUNG

Künstliche Intelligenz (KI) ist ein interdisziplinäres Gebiet, das verschiedene Forschungs-
bereiche mit dem Ziel verbindet, Prozesse im Alltag und in der Industrie zu automatisieren.
Die grundlegenden Komponenten von KI-Modellen sind ein “intelligentes” Modell und eine
durch die Endanwendung definierte funktionale Komponente. Das heißt, ein intelligentes
Modell kann ein statistisches Modell sein, das Muster in Dateninstanzen erkennen kann, um
Unterschiede zwischen diesen Instanzen zu unterscheiden. Wird die KI beispielsweise in der
Automobilherstellung eingesetzt, kann das Modell auf der Grundlage eines Bildes eines Au-
toteils kategorisieren, ob sich das Autoteil im vorderen, mittleren oder hinteren Bereich des
Autos befindet, wie es ein menschliches Gehirn tun würde. Bei der gleichen Beispielanwen-
dung informiert das statistische Modell einen mechanischen Arm, die funktionale Kompo-
nente, über den aktuellen Fahrzeugbereich, und der Arm wiederum baut diesen Bereich des
Fahrzeugs auf der Grundlage vordefinierter Anweisungen zusammen, so wie eine menschliche
Hand den neuronalen Signalen des menschlichen Gehirns folgen würde. Ein entscheidender
Schritt bei KI-Anwendungen ist die Klassifizierung von Eingabeinstanzen durch das intelli-
gente Modell.

Unabhängig von der Methode zum Auffinden von Mustern in Daten besteht die Klassi-
fizierung aus vier verschiedenen Schritten: (i) Eingabedarstellung, (ii) Modellbildung, (iii)
Modellvorhersage und (iv) Modellbewertung. Ausgehend von diesen Klassifizierungsschrit-
ten argumentiere ich, dass die Anwendung der Klassifizierung auf verschiedene Datentypen
unterschiedliche Herausforderungen mit sich bringt.

In dieser Arbeit konzentriere ich uns auf die Herausforderungen für drei verschiedene
Klassifizierungsszenarien: (i) Textdatenströme: Wie kann der Schritt der Modellerstellung,
der üblicherweise für eine statische Datenverteilung verwendet wird, weiterentwickelt wer-
den, um die Klassifizierung von Textbeiträgen mit einer instationären Datenverteilung zu
erlernen? (ii) Proteinvorhersage: Welche biologisch sinnvollen Informationen können im
Schritt der Eingabedarstellung verwendet werden, um die Herausforderung der begrenzten
Trainingsdaten zu überwinden? (iii) Vorhersage der Pathogenität menschlicher Varianten:
Wie kann ein Klassifizierungssystem für die funktionellen Auswirkungen menschlicher Vari-
anten entwickelt werden, indem standardisierte und anerkannte Beweise für das Klassi-
fizierungsergebnis bereitgestellt werden und somit der Schritt der Modellbewertung ermöglicht
wird?

Um diese Forschungsfragen zu beantworten, stelle ich meine Beiträge zur Klassifizierung
dieser verschiedenen Datentypen vor: temporalMNB: Verbesserung des Naive-Bayes-Modells
zur Klassifizierung driftender Textströme durch Ensemble-Lernen. dom2vec: Lernen von
Einbettungsvektoren für Proteindomänen durch Selbstüberwachung. Auf der Grundlage
der berichteten Ergebnisse liefere ich Beispiele für eine Analogie zwischen den lokalen lin-
guistischen Merkmalen in natürlichen Sprachen und den Domänenstruktur- und Funktion-
sinformationen in Domänenarchitekturen. Schließlich beschreibe ich ein bioinformatisches
Softwaretool, GenOtoScope, zur Automatisierung standardisierter evidenzbasierter Kriterien
für die Pathogenitätsauswirkungen von Varianten, die mit angeborener Schwerhörigkeit in
Verbindung stehen.

Schlagworte Klassifizierung, Textströme, Konzeptdrift, Featuresdrift, Ensemble-Lernen,
Zeitserien, Proteindomänenarchitekturen, Word Embeddings, quantitative Qualitätsbewer-
tung, SCOPe-Sekundärstrukturklasse, Enzymkommissionsklasse, humangenomische Vari-
anten, Hörverlust, ACMG/AMP-Klassifizierung, Bioinformatik, klinische Diagnostik
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FOREWORD

To compose this thesis, I have used, word by word, the published manuscripts
of the three most important research outputs of my doctorate work.

The research contributions, presented in this thesis, have been published
at various conferences and journals, as follows.

Chapter 3 presents our work, temporalMNB, on learning algorithms for
textual streams over concept drift events:

• Melidis, D. P., Spiliopoulou, M., & Ntoutsi, E. (2018, October). Learning
under feature drifts in textual streams. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management
(pp. 527-536) (Full paper - research track)

DOI: https://doi.org/10.1145/3269206.3271717. (Melidis et al., 2018b)

Chapter 4 presents our work, dom2vec, on learning and evaluating neural
representations for protein domains:

• Melidis, D. P., & Nejdl, W. (2021). Capturing Protein Domain Struc-
ture and Function Using Self-Supervision on Domain Architectures. Al-
gorithms, 14(1), 28 (Full journal paper)

DOI: https://doi.org/10.3390/a14010028. (Melidis and Nejdl, 2021)

I describe my method, GenOtoScope, to automate ACMG/AMP criteria
for pathogenicity classification of variants associated with congenital hearing
loss in Chapter 5:

• Christian Landgraf *, Damianos P. Melidis *, Gunnar Schmidt, Anja
Schöner-Heinisch, Sandra von Hardenberg, Bernd Auber, Wolfgang Ne-
jdl (2021, August). GenOtoScope: Automated annotation of variants
associated with hereditary hearing loss. European Symposium of Hu-
man Genetics (Poster presentation). (*) First-author equal contribution.
(Landgraf et al., 2021)

• Christian Landgraf *, Damianos P. Melidis *, Gunnar Schmidt, Anja
Schöner-Heinisch, Sandra von Hardenberg, Alisa Förster, Anke Lesinski-
Schiedat, Bernd Auber, Wolfgang Nejdl (2021, August). GenOtoScope:
Automated annotation of variants associated with hereditary hearing

https://doi.org/10.1145/3269206.3271717
https://doi.org/10.3390/a14010028


viii

loss. European Symposium of Human Genetics (Poster presentation).
(*) First-author equal contribution. (Landgraf et al., 2022a)

• Christian Landgraf *, Damianos P. Melidis *, Gunnar Schmidt, Anja
Schöner-Heinisch, Sandra von Hardenberg, Alisa Förster, Anna-Lena
Katzke, Anke Lesinski-Schiedat, Bernd Auber ‡, Wolfgang Nejdl ‡. GenO-
toScope: Towards automating ACMG classification of variants associ-
ated with congenital hearing loss. (*) First-author equal contribution.
(Landgraf et al., 2022b)

• Christian Landgraf *, Damianos P. Melidis *, Gunnar Schmidt, Anja
Schöner-Heinisch, Sandra von Hardenberg, Anke Lesinski-Schiedat, Bernd
Auber ‡, Wolfgang Nejdl ‡. GenOtoScope: Towards automating ACMG
classification of variants associated with congenital hearing loss. (*)
First-author equal contribution. (‡) Last-author equal contribution.
PLoS Computational Biology (Full journal paper) DOI: https://doi.org/
10.1371/journal.pcbi.1009785. (Melidis et al., 2022)

The published work (Melidis et al., 2022) that was used, word by word,
to create Chapter 5, is a shared first-authorship between Dr. med. Christian
Landgraf and myself (Damianos Melidis M.Sc.). That is, the contributions of
Dr. med. Landgraf were in the data curation, method investigation, project
administration, supervision of M.Sc. Melidis. Besides, Dr. med. Landgrad
contributed to the validation of variant classification based on manual investi-
gation and in reviewing and editing the manuscript. M.Sc. Melidis contributed
to the GenOtoScope publication in the formal analysis and investigation of the
methodology, in the software development and validation of the methodology.
Also M.Sc. Melidis supplied software solutions to visualize all results of the
variant classification and he committed to design all flow-chart workflows, and
in general images and tables, of the publication. Finally, M.Sc. Melidis wrote
the original draft of the manuscript, which then he reviewed and edited the
manuscript based on all co-authors and reviewers comments to create the very
final form of the manuscript.

The complete list of publications during my PhD follows:
Journal articles

• Melidis, D. P., & Nejdl, W. (2021). Capturing Protein Domain Struc-
ture and Function Using Self-Supervision on Domain Architectures. Al-
gorithms, 14(1), 28 (Full journal paper)

DOI: https://doi.org/10.3390/a14010028. (Melidis and Nejdl, 2021)

• Canakoglu, A., Pinoli, P., Bernasconi, A., Alfonsi, T., Melidis, D. P.,
& Ceri, S. (2021). ViruSurf: an integrated database to investigate viral

https://doi.org/10.1371/journal.pcbi.1009785
https://doi.org/10.1371/journal.pcbi.1009785
https://doi.org/10.3390/a14010028


ix

sequences. Nucleic acids research, 49(D1), D817-D824. (Full journal
paper)
DOI: https://doi.org/10.1093/nar/gkaa846. (Canakoglu et al., 2021)

Conference publications

• Melidis, D. P., Spiliopoulou, M., & Ntoutsi, E. (2018, October). Learning
under feature drifts in textual streams. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management
(pp. 527-536). (Full paper - research track)
DOI: https://doi.org/10.1145/3269206.3271717. (Melidis et al., 2018b)

• Melidis, D. P., Campero, A. V., Iosifidis, V., Ntoutsi, E., & Spiliopoulou,
M. (2018, June). Enriching lexicons with ephemeral words for sentiment
analysis in social streams. In Proceedings of the 8th international con-
ference on web intelligence, mining and semantics (pp. 1-8). (Full paper)
DOI: https://doi.org/10.1145/3227609.3227664. (Melidis et al., 2018a)

• Christian Landgraf *, Damianos P. Melidis *, Gunnar Schmidt, Anja
Schöner-Heinisch, Sandra von Hardenberg, Bernd Auber, Wolfgang Ne-
jdl (2021, August). GenOtoScope: Automated annotation of variants
associated with hereditary hearing loss. European Symposium of Hu-
man Genetics (Poster presentation). (*) First-author equal contribution.
(Landgraf et al., 2021)

• Christian Landgraf *, Damianos P. Melidis *, Gunnar Schmidt, Anja
Schöner-Heinisch, Sandra von Hardenberg, Alisa Förster, Anke Lesinski-
Schiedat, Bernd Auber, Wolfgang Nejdl (2021, August). GenOtoScope:
Automated annotation of variants associated with hereditary hearing
loss. European Symposium of Human Genetics (Poster presentation).
(*) First-author equal contribution. (Landgraf et al., 2022a)

• Christian Landgraf *, Damianos P. Melidis *, Gunnar Schmidt, Anja
Schöner-Heinisch, Sandra von Hardenberg, Alisa Förster, Anna-Lena
Katzke, Anke Lesinski-Schiedat, Bernd Auber ‡, Wolfgang Nejdl ‡. GenO-
toScope: Towards automating ACMG classification of variants associ-
ated with congenital hearing loss. (*) First-author equal contribution.
(Landgraf et al., 2022b)

Under submission

• Szymon P. Szafranski, Damianos P. Melidis, Lisan D. Püttmann, Wolf-
gang Nejdl and Meike Stiesch. Profiling of conserved protein domains
revealed phylogenetic and functional diversity of oral bacteriophages.
(Before submission stage)

https://doi.org/10.1093/nar/gkaa846
https://doi.org/10.1145/3269206.3271717
https://doi.org/10.1145/3227609.3227664
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1
Introduction

1.1 Motivation

Artificial intelligence (AI) is an interdisciplinary field that combines different re-
search areas from the natural and technological sciences, to automate processes in
everyday life and industry. The basic components of an AI model are two: (i) a
statistical model that learns what is the correct output for the given input based on
training examples, imitating a human being, (ii) based on the application, a func-
tional component which will act mechanically or electronically to produce a practical
result, depending on the output of the first component. In 21st century, example ap-
plications of AI are: the email spam detection, the self-driving cars, the self-regulated
pipeline steps in industry and the three-dimensional structure prediction of a protein.
The automated classification of input is a mandatory step of the first component for
these applications, as it enables the AI model to act in a similar fashion for all inputs
belonging to the same class.

Automated classification systems were first build using human-crafted knowledge
in the form of if-then clauses to categorize input instances based on their characteris-
tics. These rule-based approaches were first used in expert systems from 1970’s Leon-
des (2001). Through the following decades and due to the success of the expert sys-
tems researchers aim to classify data from scientific with no a-priori expert knowledge
(astrophysics, molecular biology, and medicine). In order to fulfill this need a new
research field was born named Machine Learning (ML).

In general, machine learning field seeks to develop methods to extract useful pat-
terns from input data, in an automatic fashion, using mathematical models Bishop
(2006). Two common paradigms in machine learning field is the supervised and unsu-
pervised learning. In the first, the model requires the input data to be labeled with a
discriminating characteristic, target class. Subsequently, the model aims to discover,
learn, patterns to relate the input characteristics to the target class with the end-goal,

1
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the mapping achieving the best prediction performance. For the latter paradigm, the
model does not demand an input labeled with a discriminating characteristic, next
the model learns hidden motives to separate the input data into distinct subgroups
with the minimum error.

Next, I summarize the common statistical models used for classification. Clas-
sification models can be distinguished in eager and lazy learners, by their order in
applying the model building and prediction. Given the input data, eager learners
build their prediction model before the arrival of a new data instance to be classified,
whereas, lazy learners create their model at the point of the arrival of the new data
instance. Based on Friedman (2017), classical example of eager learners are Bayesian
models such (Naive Bayes Hand and Yu (2001) or Bayes network classifiers Friedman
et al. (1997)), entropy-based models (decision trees Hunt et al. (1966); Praagman
(1985); Quinlan (1986)), support vector machines (SVM) Boser et al. (1992) and ar-
tificial neural networks (ANN) Rosenblatt (1957). Briefly, an ANN is a model which
combines the input characteristics to predict the output using threshold functions,
like a fully connected layer of synapses in the human brain. An example of lazy learn-
ers is the k-nearest neighbor (k-NN) classifier. Following the intuition that combining
more experts the prediction performance improves, ensemble learning deploys a set of
the previous single learners and acquires their prediction for a given input instance,
then it averages their predictions in the final classification outcome.

These classical examples of ML have learning limitations. That is, these classi-
cal models can learn the hidden relation between input and output if the underlying
relation is linear. In a nutshell, we say that there is a linear relation between input
and output, when there exists a linear combination of input instance characteristics
that equals the output. However, most systems in nature are non-linear. For exam-
ple, the prediction of the disease state of a patient based on his health records, as
a small change on the patient’s health record does not equal a proportional change
on her disease state. Machine learning overcomes this challenge by start to develop-
ing non-linear methods, for example, SVM with Gaussian kernel function or ANNs
with a limited complexity capacity. Such ANNs were developed successfully for the
classification of handwritten digits by LeCun et al. (1998). However, these networks
needed a large amount of computing power and labeled data set to outperform clas-
sic algorithms (such as SVMs). Since 2010, the computing power advances and the
availability of large labeled data sets enabled researchers to resume their research
and application of ANNs. Resulting to the birth of a new field, deep learning (DL).
In deep learning, the neural networks are ANN with multiple number of layers and
are organized with distinct architectures. These deep neural networks (DNN) have
the property to increase their ability to learn input-output relation as the input data
increase exponentially, in contrast to other non-linear methods. DNN have achieved
to outperform even the human curators for specific tasks such as: hand-written words
recognition Graves and Schmidhuber (2008) or image classification Krizhevsky et al.
(2012).
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We can separate the classification into four distinct components. The first compo-
nent, input representation, creates a dimensional representation of input data based
on their fixed number of characteristics, features. The second component, model
building, is the deployment of a statistical or rules-based model to learn from the
input data set, training set, which contains the features and the target class. Next,
the model will be able to predict the class of unseen instances, test set, in the model
prediction step. This component will output: the predicted class for the set of test
instances and any available information on the human-comprehensible reasons for the
respective predictions. The last part of the classification is the model assessment, at
which a domain expert, will validate the predictions, before the actual use in an AI
system.

Model assessment step is an optional step in classification process. However, it
is an important step, because it can enhance the trust of the end-users by providing
human-comprehensible information on the reasons of test prediction during the model
prediction step. This information would be significant if the classification model is
used in AI application where a human being, domain expert, will validate of the
predictions before the actual public use. For example, in email spam detection, the
input component will accept the features for each email, the title, the text corpus
and the target class, “spam” or “no spam” and represent them in multi-dimensional
space. Then, the applied model will use a selected algorithm to learn the association
between the email features and the target class. Finally, the spam expert personnel
may review the predictions for a test set of emails to ensure the correctness of the
used email features by the model and to validate its performance levels.

Another part of machine learning research, with equal importance to model design,
are the properties of the input data. Input data can be grouped by their change over
time in: stationary and transient. Data of the first category are sampled from a
stationary distribution, for example when a person enters images of the 0-9 digits as
input data into a computer. However, nowadays many of the input data are collections
of the same data type over time, known as “data streams”. For instance, social media
posts about environment or plant consumption measurements of a energy network
over time.

Based on the input data characteristics, the availability of labeled data
and the need for model assessment by experts, there occur many challenges
on applying the standard components of classification. First, designing the
model building component for data streams requires that: (i) it can predict at anytime
by using limited memory and computing resources (ii) it captures changes on relation
between input data and target label with performance guarantees (iii) it can forget
outdated data. For molecular biology applications of ML, researchers focus on the
feature engineering component because the training data are small in size. Therefore,
new methods for the feature engineering component are needed in order to represent
the input instances closer to already labeled instances. In the specific domain of
protein prediction, such new representations should be (i) assessible in a quantitative
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manner to allow the domain experts to choose the best representation for the problem
at hand (ii) increase the prediction performance and (iii) boost performance even with
limited number of labeled input data. Finally, in ML application in medical domain,
the absolute need for the model assessment component mandates for simple model
building component, such as a rules-based system, that applies expert-based rules.
Even if such systems may not be complex statistical models like deep learning models,
they can still be challenging. The two challenges are to: (i) create an automatic and
efficient implementation of these expert-based rules and (ii) develop an easy-to-use
and handful end-user classification application.

In Figure 1.1 we depict the steps for an example classification, the prediction of
relevant e-mails. Assuming the user is searching to acquire a means of transport (bike
or car) and the shown training and test instances, the classification system follows
four steps. In the first, the training instances are represented using vectors, a suitable
input form for the learning model. Next, the model is built based on statistics on the
training e-mails (doc1, doc2 and doc3). This allows the model to separate the relevant
from the irrelevant e-mails, illustrated as green and red sub-spaces respectively. In
the third step, the model is asked to predict the relevance or not of two testing e-
mails (doc4 and doc5), the model predicts for both that there are relevant. However,
in the last step, the human domain expert will review the predictions and she will
investigate the reasons for the prediction of each test email. In our example, the
model misclassifies the first testing e-mail (doc4) as relevant, still the email’s subject
is not an advertisement on a means of transport. Consequently, even in this simple
everyday life classification system, we show that human experts should be included
as the final evaluators of prediction before those are available for public use.

Figure 1.1. Example of classification steps for automatic prediction of relevant e-
mails, given that the user is interested in acquiring a new means of transport.

1.2 Research Questions

In this thesis, I focus on distinct challenges in the aforementioned classification
components.

Specifically, I research on how to develop: (i) a novel classifier for data stream
input which deals with the changes of input data in a data stream (model building),
(ii) an alternative representation of input protein data to tackle their low-abundant
training sets (input representation), (iii) a rules-based approach to classify human
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variants for a specific disease in diagnostic-grade level (model assessment).
In the following sub-chapters, I explain our research questions for each distinct

type of input data.

1.2.1 Model Building: Textual Streams

Streams of posts from social media may experience changes on which topics are pos-
itive or negative as perceived by the public, equivalently the social media user may
change her opinion on words polarity to convey her intended meaning. Therefore, a
model to classify the polarity class of a tweet post in a textual stream scenario, im-
poses a model building component which can capture the different temporal relation
of the words with the polarity class and the drifting aspect of the popularity of the
topics. These challenges leads us to our first research question:

RQ1 How to adapt a machine learning model for classification of data streams
that exhibit feature-drifts? Given that each feature can be best described by a specific
temporal process, how to ensure that this adaptation contain statistical guarantees
compared to the feature best-describing process?

To answer this research question, I focus on an established machine learning model
that uses limited memory and computing power in order to be able to predict the
polarity of a textual post in anytime fashion. I also constrain on this simple ML
model to be able to change its estimated relation of input with the output as the
stream experiences temporal changes.

1.2.2 Input Representation: Protein Prediction

Our second research interest is to develop feature engineering methods to lower the
data variability in order to achieve well performing models when the training data
are limited. This is a common scenario for molecular biology and specifically protein
prediction tasks. For this specific field, I aim to develop techniques that transform
the input proteins into representations that can be assessed using the metadata of
fundamental characteristics of proteins. Besides, I need to ensure that that resulting
prediction performance is superior or comparable to the one produced using other
established protein representations. I summarize this research question as follows:

RQ2 For which conceptual level of a protein, we should learn a representation,
in order to be quantitatively evaluated? Can such representation boost the predic-
tion performance, on supervised learning tasks, compared to other protein embedding
baselines?

For this research question, we ask for a representation that can be evaluated not
only qualitatively but also quantitatively. Therefore, the end-user will be able to
validate that the representation captured substantial information on the distinctive
biological characteristics of the chosen input representation. This characteristic of our
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representation can thus increase the trust of the end-user, before she actually applies
dom2vec to represent protein instances as input to prediction models. Furthermore,
as the assessment of the acquired information is quantitative, the end-user can select
the representation instance with the highest information content related to the final
prediction task at hand.

1.2.3 Model Assessment: Human Variant Pathogenicity Pre-
diction

More than building a dynamic model or an informative input representation, there
is the need to enable the model assessment component through the construction of
a human explainable classifier. To do so, how to implement all expert-based criteria
for a rules-based system to classify genomic variants for a specific disease? How to
enable the practical and convenient usage of such system by the human diagnostic
personnel? These criteria compose the following research question:

RQ3 Given that hereditary hearing loss is a polygenic disease and a commonly
used subset of variants a patient contains a large number of variants (in the multiple of
10,000); can we classify genomic variants of patient automatically and in diagnostic-
grade manner? How we can provide an practical end-user application for diagnostics
personnel?

Given that a heterogeneous disease may be caused by more than one malfunction-
ing genes and that the variants found in the range of known genes are approximately
60,000 for one patient, RQ3 asks for an answer with two characteristics. First, I
aim to develop a new method on automating domain expert rules in a time and space
efficient manner. Second, I draw also our attention on how to make this method prac-
tically usable by the diagnostics personnel. The second characteristic is important,
as an easy-to-use application for variant classification may have practical benefits in
the research diagnostics field.

1.3 Contributions

Table 1.1 presents the conceptual summary of the contributions of the thesis for
the three classification scenarios imposed by the research questions: (i) classifying
transient textual data streams, (ii) classifying low-abundant labeled protein data sets,
(iii) classifying genomic variants associated with hearing loss by a resource-efficient
and intuitive application for the clinicians. In the following, I describe in brief these
contributions:
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Data Type Challenge Classification Step Contribution

Textual Streams Concept Drift Model Building temporalMNB
Protein Sequences Limited Labeled Sets Input Representation dom2vec

Human Genomic Variants Assessment of Classification Model Assessment GenOtoScope

Table 1.1. Thesis contributions in key-words.

1.3.1 Model Building: Textual Streams

To answer RQ1, I concentrate on textual streams that exhibit temporal changes in the
popular topics and the polarity of their textual features (word). On this assumption
I created the following contribution:

TemporalMNB
In Chapter 3, I present TemporalMNB, an extension of the Multi-nominal Naive

Bayes (MNB) to capture the transient nature of textual streams. Our methodology
contains two essential steps. First, I create an ensemble of time series experts, each
with a complimentary periodicity, to predict the class priors and the conditional prob-
abilities of input text features given the class. In the second step, I encapsulate this
ensemble learning in the framework of sequential prediction with experts to acquire
guarantees for the prediction performance.

I evaluate our method in real-world data by comparing it to established temporal
versions of MNB for three data sets: (i) sentiment classification in Twitter stream and
(ii-iii) email category classification for two smaller data sets with known time-drifting
features.

1.3.2 Input Representation: Protein Prediction

I have developed dom2vec representation of protein domains and applied to protein
prediction tasks to answer the RQ2.

dom2vec
Based on the analog that maps amino acids to letters and protein domains to

words in protein and English (spoken) languages, I describe our method, dom2vec,
to compute a new representation for protein domains in Chapter 4. To do so, I ap-
ply an established word embeddings method to protein domain architectures from
InterPro database. As InterPro contains metadata for the most important character-
istics of a protein domain, our representation can be evaluated quantitatively using
such information. Therefore, I use k nearest neighbor (k-NN) classifier to predict
biologically-important aspects of domain such as, secondary structure, enzymatic
and GO molecular function, for a given domain based on its representation, embed-
ding vector. To fulfill the second requirement of the RQ2, I input protein domain
embeddings in simple neural networks architectures and compare their prediction per-
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formance with protein sequence embeddings for three tasks: (i) toxicity, (ii) enzymatic
function and (iii) cellular location.

1.3.3 Model Assessment: Human Variant Pathogenicity Pre-
diction

To answer our last research question, RQ3, I develop the GenOtoScope bioinformatics
tool as follows:

GenOtoScope
I have designed and implemented GenOtoScope tool that accepts as input the vari-

ants of one or more patients, it assesses, in automatic fashion, 12 out of the 24 expert-
based rules specified for hearing loss. Then it combines the triggered rule to predict
the variant pathogenicity class. Finally, the posterior probability of pathogenicity is
calculated and the comments for each examined rule are presented in the output file.

I evaluate our method compared to two other established methods for pathogenic-
ity prediction on two data sets: (i) the set of manually annotated variants by the ex-
pert panel for hearing loss (ii) the manually annotated variants by the human genetics
department of the Hannover medical school (MHH). For both data sets, GenOtoScope
outperform the other methods in terms of accuracy and precision. Finally, I interro-
gate this performance discrepancy computing the ratio of the activation frequency of
an expert-based rule by a classification method compared to the manual annotation.
By this analysis, I conclude that GenOtoScope triggers the rules in a highly-similar
fashion as the manual curation; which is not the case for the other two competing
methods.

1.4 Thesis Outline

This thesis is organized as follows: In Chapter 2 I introduce the essential elements
needed for a reader to understand the thesis contribution. More specifically, I de-
scribe the fundamentals for ML (Classification, Regression, Time Series, Prediction
of Expert Advice and Word Embeddings) in section 2. Then, I give a brief introduc-
tion and the main challenges for the three data types, targeted in this thesis (Textual
Streams, Protein Sequences and Genomic Variants), at section 2.3.4.

The following three chapters (Chapter 3-5) fully describe the thesis three main
contributions. That is, Chapter 3 presents temporalMNBonline classifier for textual
streams, Chapter 4 introduces dom2vecprotein domain embeddings and Chapter 5
describes GenOtoScope variant classification software tool. Finally, Chapter 6 sum-
marizes the presented works and outlines future directions based on these works.

To promote open and reproducible science, all presented research works are found
at my GitHub repository: Damianos P. Melidis GitHub account.

https://github.com/damianosmel


2
Background

In this chapter, we give a brief introduction on the technical background needed to
comprehend the contributions of this thesis. We first introduce the machine learning
field focusing on the two main clades of supervised learning, the classification and the
regression. This introduction is based on the book “Understanding Machine Learning
- From Theory to Algorithms” by Shalev-Shwartz and Ben-David (2014). Then, we
present a short intuition on ensemble learning and sequential prediction with expert
advice. Next, we summarize common obstacles in learning for transient data. Last,
we discuss our main data types: (i) textual streams, (ii) proteins and (iii) genomic
variants. For each data type, we give a short introduction of the nature of the data,
with the goal to motivate the learning challenges, and a survey of techniques proposed
by others to solve our posed research questions.

2.1 Machine Learning

2.1.1 Supervised Learning

Let X an arbitrary set of data instances and Y to be the set of possible target
labels. Then, let the set of pairs, X × Y , each containing a data instance and its
corresponding label, be the training set S = ((x1, y1) . . . (xm, ym)). The output of
the learner is expected in the form of a prediction rule, h : X → Y . This mapping
function is also known as a predictor, a hypothesis or a classifier. This predictor
can subsequently be used to assign the value of the target label for an unseen set
of unlabeled instances, test set, T = ((x1 . . . xk)). The training and test instances
are assumed to be generated by the same probability distribution, denoted as D.
Let each data point, xi, that D produces to lie in the d-dimensional space of input
characteristics, feature space, xi ∈ Rd. Concerning the “correct” label generation,
we assume that there exists a labeling function f : X → Y . It is fundamental for

9
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the learning process to suppose that the learner does hold no information about the
generating distribution D. Last, we introduce the measure of success of a learner
using the quantity known as error of the classifier. The error of h is the probability
to draw an random instance, using the distribution D, such as the h(x) is not equal
to f(x).

Based on the range of values of Y , supervised learning techniques are subdivided
into regression and classification methods. In regression methods, Y is allowed to be
any real number Y ∈ R, whereas, Y ∈ N+ for classification methods. For common
types of classification are: (i) the binary classification, Y ∈ {0, 1}, and (ii) the multi-
class classification where |Y| > 2.

2.1.2 Regression

Linear Regression

Linear regression is an established statistical method to infer the relationship between
the features of a data instance and a real valued outcome. Let the domain set to be
X ∈ Rd, for some d, and the label set be the set of real numbers. We aim to learn a
linear hypothesis function h : Rd → R that best captures the “connection” between the
features and the target outcome. The hypothesis class of linear regression predictors
is set of linear functions to linearly relate the feature value to predict the outcome,
as follows:

Hreg = Ld = {x 7→ ⟨w,x⟩+ b : w ∈ Rd, b ∈ R}, (2.1)

where w is the weight vector lying in Rd, b ∈ R is the bias term and the ⟨w,x⟩ is
the inner product of the features of a instance and the regressor’s estimated weight
vector. To measure the performance of a regression we need to define a quantity, loss
function, that penalizes predicted outcome (h(x)) which is far from the real outcome
(y). A common loss function is the squared-loss function, which is defined as:

l(h, (x, y)) = (h(x)− y)2. (2.2)

Equivalently, the empirical risk function for the square loss is known as the Mean
Square Error and it equals to:

Ls(h) =
1

m

m∑
i=1

(h(xi − yi))
2. (2.3)

We will use the “least squares” method to optimize for the Mean Square Error (Equa-
tion 2.3). Given a training set S and applying a linear regression hypothesis Ld (2.1),
we seek to optimize the:

argmin
w

LS(hw) = argmin
w

1

m

m∑
i=1

(⟨w,xi⟩ − yi)
2. (2.4)
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Using eigenvalue decomposition method, and assuming m > d, we can derive the
following closed form solution:

ŵ = (XXT )−1Xy, (2.5)

where X is the matrix created by adding each training instance as a column (X ∈
Rd×m).

2.1.3 Classification

Naive Bayes

In machine learning theory, we assume that we have no information on the data dis-
tribution, D, consequently we are building a model to be able to discriminate/predict
the input. Nevertheless, there are cases that it is easier to assume a distribution and
then learn its parameters, this paradigm of models in supervised learning is known
as generative models.

Naive Bayes is the simplest representative of generative models. Assume the vector
of a testing instance x = (x1, . . . , xd), where each feature is binary xi ∈ {0, 1}, and we
aim to predict its label binary label y ∈ {0, 1}. The set of hypotheses, which use the
probabilistic approach to find a predictor with minimum error, are known as Bayes
optimal predictors. For such classifiers the task is solved by the following hypothesis:

hBayes(x) = argmax
y∈{0,1}

P [Y = y|X = x]. (2.6)

The probability function P [Y = y|X = x] needs 2d parameters to find when
P [Y = 1|X = x] for a specific value of x ∈ {0, 1}d. Therefore, to describe this
probability function we need exponential number of examples with respect to the
number of features.

Naive Bayes model solves this drawback by the generative assumption, that the
features are not related to each other, given the label. This results to:

P [X = x|Y = y] =
d∏

i=1

P [Xi = xi|Y = y]. (2.7)

Using this assumption and according to the Bayesian Decision Theory Duda et al.
(1973), we have for the Bayes optimal classifier:

hBayes(x) = argmax
y∈{0,1}

P [Y = y|X = x]

= argmax
y∈{0,1}

P [Y = y]P [X = x|Y = y]

= argmax
y∈{0,1}

P [Y = y]
d∏

i=1

P [Xi = xi|Y = y].
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Therefore, Naive Bayes model needs 2d + 1 parameters, 2d for the distribution of
each feature given each of the two class values and one more parameter for class
distribution. This decrease makes the number of parameters linear to the number of
features with the drawback of this strong assumption of independence.

Based on Maximum Likelihood principle (MLP), we find the two keys distributions
using the observed m training instances ((x1, y1), . . . , (xm, ym) where xi ∈ Rd) and
thus derive the equation of the Naive Bayes predictor:

hBayes(x) = argmax
y∈{0,1}

⨿(y)
d∏

i=1

⨿j(xi|y), (2.8)

where

q(y) =

∑m
i=1[[y

i = y]]

m
=

count(y)

m
, (2.9)

with [[yi = y]] to equal 1 when yi equals y and 0 otherwise. Thus, the count(y)
quantity is the number of times the y label is found in the training instances. Then
the maximum likelihood estimate of qj(x|y), the distribution of the j-th feature given
a class y, equals to:

qj(x|y) =
∑m

i=1[[y
(i) = y and x(i) = x]]∑m

i=1[[y
i = y]]

=
countj(x|y)
count(y)

, (2.10)

where countj(x|y) =
∑m

i=1[[yi = y and xj
i = x]].

Here, we have presented the Bayes optimal classifier for a Naive Bayes model that
aims to predict a binary class (y ∈ 0, 1). If Y ∈ N, then the respective model is known
as Multinomial Naive Bayes (MNB) based on the respective multinomial distribution
on Y .

k- Nearest Neighbor

The k -Nearest Neighbor algorithm (k-NN) is the most common example of the set of
“lazy” learners. Given a training set, k-NN intuition is to use the majority of labels
of the closest training instances to the new (testing) instance, in order to predict the
class of the test instance. Last k-NN does not construct a hypothesis class, H, to
perform the predictions in contrary with the supervised learning models explained
previously. This property makes k-NN a lazy learner.

Let the instance domain X equipped with a metric function ρ, ρ : X × X → R.
This ρ is a function that computes the distance between any pair of points of the
domain X . For example, the ρ can be the Euclidean distance in the X = Rd, that is

ρ(x,x′) = ∥x− x′∥ =
√∑d

i=1(xi − x′i)
2.
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The k-NN algorithm with input a sequence of training instances S = (x1, y1), . . . , (xm, ym)
and a testing instance x ∈ Rd will perform the following two steps to predict the test-
ing class. First, it orders the training instances based on their distance to the testing
one. This step creates a reordering of the training instances through the π() function
as: π1(x), . . . , πm(x) so that holds ρ(x,xπi(x)) ≤ ρ(x,xπi+1(x)), for all i < m. In the
second step, k-NN will predict as class for the testing x the majority label among the
k nearest neighbor of x, {yπi(x) : i ≤ k}.

Even if, k-NN is efficient to work for large data sets, there are many cases that not
all of the features are informative or that the distance of the testing to the training
instance holds not all the information needed to predict x class. Therefore, the k-NN
is used as a baseline classifier for performance comparison to another advanced learn-
ing technique. Also it is used as a benchmark classifier to examine the homogeneity
of the labels with respect to the domain dimensions (features).

2.1.4 Ensemble Learning

Ensemble learning is the sub-field of machine learning that investigates how to com-
bine distinct learning models, experts/ weak classifiers, to improve the performance
of the aggregate predictor composed by these sub-models, also known as the ensemble
of classifiers Dietterich (2000). The main intuition is that each expert can learn the
search space in its own way to find the best hypothesis function, therefore by combin-
ing (most commonly by voting) such hypothesis function produced by each expert,
the ensemble can improve its prediction performance compared to a single expert.
Interestingly, Hansen and Salamon (1990) give the following theoretical intuition, if
each expert makes errors independently and its error rate is lower than 0.5, then the
error of the ensemble model decreases monotonically with the number of included
experts.

In the following, we will review ensemble learning based on the way that experts
are combined (architecture) and how the prediction of each expert is used for the final
ensemble prediction (voting), using the survey work Gomes et al. (2017). Concerning
the ensemble architecture, we distinguish three types, parallel, cascading and hier-
archical. In a parallel architecture, initially each expert predicts, then the outputs
are combined together by a single classifier (for example a simple linear function) to
create the final prediction. Cascading architectures include all arrangements at which
the prediction of an expert is used as input to a series of classifiers (more than one).
The last type of architecture is the hierarchical, where the prediction of each expert
are combined based on a tree-like structure.

As far as voting is concerned, there are five categories of common mechanisms:
majority, weighted majority, rank, classifier selection and relational. These categories
can be ordered by their implementation complexity. Majority voting is the simplest
where the majority of experts prediction is used as output of the ensemble. Instead
of using equal weights for the majority computation the weighted majority scheme
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uses a different weight value for each expert. In the rank category, predictions over
all possible class labels are averaged over the experts, with different weights per
expert, to compute the final prediction of the ensemble. Classifier selection mechanism
follows the distinct weighting of each expert as the weighted majority one, but it
changes these weights dynamically through the training process. In the last and most
sophisticated voting category, experts can relate their prediction to other experts
predictions, through a specified model, to finalize their prediction. Then their finalized
prediction can be combined through a majority or weighted majority voting.

2.1.5 Prediction with Expert Advice

Based on the foundational book by Cesa-Bianchi and Lugosi (2006), we present a brief
introduction in the field of prediction with expert advice. The basic scheme of this
research area is a series of sequential decisions by a forecaster. That is, the forecaster
goal is to guess an unknown sequence of y1, y2, . . . of an outcome space Y ′. These
predictions p̂1, p̂2, . . . belong to the decision space D′. The forecaster computes its
predictions in one-after-the-other (sequential) fashion and we compare its predictive
performance to the respective performance of a set of reference forecasters known
as experts. That is, at each time point t the forecaster is informed for the set of
the predictions of experts {fE,t : E ∈ E}, with fE,t ∈ D and E be the fixed set of
indices for the experts. The forecaster using the experts predictions fE,t outcomes its
prediction p̂t for the element in the next time-point yt. After its guess the real value,yt,
is uncovered. The predictive performance is computed through a non-negative loss
function l : D′ × Y → R.

This basic sequence of steps can be seen as a repeated game of two actors, at
which for a given time-point t, the “environment” selects the new outcome yt and
the expert advice {fE,t : E ∈ E}. Then, the “forecaster” constructs its own guess p̂t
and subsequently the “environment” uncovers the true value of the current time-point
yt ∈ Y ′. In the final step of this prediction round, the loss for the forecaster and each
expert is computed, l(p̂t, yt) and l(fE,t, yt) respectively. We present the pseudo-code
of this repeated game in the following Algorithm 1.

Algorithm 1 Prediction with Expert Advice
for each round t = 1, 2, . . . do

(1) the environment chooses the next outcome yt and the expert advice {fE,t : E ∈ E}
and the forecaster is informed for the expert advice

(2) the forecaster chooses the prediction p̂t ∈ D′

(3) the environment reveals the next outcome yt ∈ Y ′

(4) the forecaster experiences loss l(p̂t, yt) and the expert E experiences loss l(p̂t, yt)
end for

The main goal of a forecaster is to be as close as the best expert in predictive
performance and thus the forecaster tried to minimize the cumulative regret (or regret)
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with respect to each expert. The regret for an expert E is defined as follows:

RE,n =
l∑

t=1

(l(p̂t, yt)− l(fE,t, yt)) = L̂l − LE,l, (2.11)

where L̂l =
∑l

t=1 l(p̂t, yt) is the cumulative loss of the forecaster and LE,l =
∑l

t=1 l(fE,t, yt)
to denote the cumulative loss of the expert E. Therefore, in the Equation 2.11, we
defined the difference between the forecaster total loss and that of the E expert after
l rounds of predictions. Besides, we can define the regret for only the specific time
point t by:

rE,t = l(p̂t, yt)− l(fE,t, yt). (2.12)

Therefore we can have that RE,n =
∑l

i=1 rE,t. Intuitively, we can regard the rE,t

quantity as the regret that the forecaster experiences not having listened the expert
E right after the reveal of the true outcome, yt.

Given a loss function with specific properties, the work by Kivinen and Warmuth
(1999) has proved that a forecaster which keeps exponentially decreasing weights
for each expert Ei and uses these weights to compute the weighted average of their
predictions as his final prediction (p̂) can achieve cumulative loss that is bounded
from above by the cumulative loss of the best expert plus a constant. This forecaster
is known as the Weighted Average Algorithm (WAA). We present the pseudo-code of
WAA as follows:

Algorithm 2 Weighted Average Algorithm (WAA) for combining expert predictions
Initialize the weights to some probability vector v1,i; set the parameter c to some positive value
for each round t = 1, . . . , l: do

1. Receive the instance xt

2. Output the forecaster prediction p̂t = vt · xt

3. Receive the outcome yt
4. Update the weights by the loss update defined as follows:

vt+1,i = vt,iexp(−L(yt, xt,i)/c)/normt

where

normt =
n∑

i=1

vt,iexp(−L(yt, xt,i)/c).

end for

The WAA needs to use a constant c ≥ cL. Given a loss function L, let us denote
Ly(ŷ) = L(y, ŷ) for convenience in writing derivatives with respect to ŷ. To define cL,
we first need to define the quantity:

R(z, p, q) =
L′p(z)L

′
q(z)− L′q(z)L

′
p(z)

2

L′p(z)L
′′
q(z)− L′q(z)L

′′
p(z)

; (2.13)
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where we define R(z, p, q) = 0 in the special case p = q. Then the cL is defined as:

cL = sup
0≤z,p,q≤B

R(z, p, q). (2.14)

For a y ∈ [0, B] and the square loss function (Equation 2.2), we derive cL = B2

2
.Last

we present the theorem on the bound of the WAA cumulative loss as stated by Kivinen
and Warmuth (1999):

Theorem 1. Let L be a monotone twice differentiable loss function and WAA be
initialized with uniform initial weights v1,i = 1 and with c ≥ cL. Then for any
sequence S = ((x1, y1),. . . , (xl, yl)) holds:

LossWAA(S) ≤ (min
i

LossEi(S)) + cln(n).

2.2 Representation Learning

2.2.1 Vector Space Model

Here, we will introduce word embeddings mainly based on Almeida and Xexéo (2019).
Word embeddings is the new established form of text representation used by Natural
Language Processing (NLP) research community. Historically, the first used form of
text representation was the Vector Space Model (VSM) introduced by Salton et al.
(1975) and it was founded by Information Retrieval (IR) research community. This
model represents each distinct term of a document as a vector in a T-dimensional
space, where T is the number of words of the vocabulary of the used language. The
values of each dimension of this T-dimensional vector can be binary, also known as
one-hot representation, or real. The VSM facilitates the operations on term vector
through the usage of linear algebra and statistics, inherited by the vector space model.
For example, the similarity of two term can be calculated by the inner-product of the
terms vectors.

The vector space model was used extensively by the IR and NLP communities
approximately up to 2010. The main reasons that this model is now used only as
a baseline comparison are its two main drawbacks. First, the model is not space-
efficient, because the dimensions of the space are analogous to the dimensions of
the language dictionary, not allowing efficient processing of very big data set of doc-
uments. Second and most important is the inability of the model to capture any
linguistic feature, syntactic or semantic, of the used language. Therefore, a classi-
fier, which uses such representation for the input words, cannot know the meaning
of semantically similar words compared to the training set words. In turn, this will
decrease the classifier performance for documents with unseen words. These draw-
backs along with technical improvements of learning neural representation of words
founded a new form of words representation known as word embeddings.
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2.2.2 Word Embeddings

Harris Harris (1954) has suggested that words with similar meaning appear in similar
contexts. In linguistics, this is also known as the distributional hypothesis. All meth-
ods to build word embeddings are stemming from this assumption. Consequently,
we define the word embeddings as dense distribute and fixed-length word vectors,
computed by word co-occurrence statistics based on the distributional hypothesis.
The first creation of word embeddings is attributed to Miikkulainen and Dyer (1991)
and Bengio et al. (2003). In the following years after the latter publication researchers
have improved the time-efficiency of the neural network, which learns the word em-
beddings, and they have focused on designing models to build only word embeddings,
without training a more general language model. Among these methods, the studies
by Mikolov and colleagues Mikolov et al. (2013c,a,b) resulted to the first established
version of word embeddings used by NLP community from 2013. Their methods are
described in the following paragraph.

Mikolov and colleagues Mikolov et al. (2013a) have introduced two models to build
word embeddings, the continuous bag-of-words (CBOW) and the skip-gram (SG).
Both models are consisting of an one layer neural network followed by an non-linear
output layer. The difference of the models is on the problem formulation. That is,
in the CBOW model, the input is the surrounding words appearing before and after
a center word and network aims to predict this center word. In contrast, SG model
inputs the center/target word and predict its surrounding words. Words embeddings
produced by these models, were the state-of-the-art word representation for NLP
community from 2013 and at least 5 years. These dense word vectors resulted to
state-of-the-art text classification systems. Another benefit of this representation is
its ability to capture not only syntactic but also semantic similarities between words.

Even since, the adaption of words embeddings, researchers have investigated their
ability to capture words semantic and syntactic information. We will present the
most evident example of such evaluation methods. First, qualitative methods have
been used word analogies, for example between names of countries and their respec-
tive capitals to show that the trained word embeddings can capture the semantic
similarity of words Mikolov et al. (2013a). That is, if we search for the trained vector
X : X = v(Italy) − v(Rome) + v(Cairo), using cosine similarity, we will find that
X = v(Egypt), proving that these low-dimensional vector can capture the analogous
similarity of related word pairs. Besides researchers have also applied quantitative
methods to evaluate the captured linguistic information by the word embeddings.
For instance, researchers have examined if the trained embeddings can be used to
retrieve semantically similar words to a given query word compared to human an-
notated similar words of the query word. To do so, they commonly compute the
correlation coefficient between the two resulted sets, the retrieved words found as
similar to the query based on the trained embedding space and the human annota-
tors respectively Mikolov et al. (2013b).
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Word embeddings offer a time-efficient computation of word representation, but
still they have shortcomings. The main two challenges with these traditional word
embeddings models is their inability to produce context-aware and lexically inductive
word representations. Concerning the first challenge, take as example the word “bank”
based on its context it can have similar meanings (the financial institute or the land
at the side of a river) SG and CBOW will learn only one vector representation for the
word “bank”. However, more sophisticated language models, such as ELMo Peters
et al. (2018) and BERT Devlin et al. (2018), will learn a distinct vector for this word
based on its context. There exist also methods to learn for a sequence of letter of a
given word, n-grams, thus allowing to represent input words which are not seen in
the training corpora, based on the learned vectors for words morphologically similar
to these input words. Such example word vectors compose the FastText embeddings
developed by Bojanowski et al. (2017).

2.3 Time Series

In the previous sub-chapter, we gave the foundation for machine learning methods
which are used for static data sets. This means that the feature value of a instance do
not change over time. Nevertheless, in many real-life scenarios variables change over
time. Storing the sequence of values of a random variable X is known as time−series
and a common notation is using the natural number as time-index of the sequence:

Xt = x1, x2, . . . , xt−1, xt

Two common applications on time series are forecasting and pattern identification.
Fundamental concepts for both applications are the trend and seasonality notions.
The first captures the linear or non-linear function that generates the values of the
series in a general and systematic way. The second is the part of the series that
generates the values by duplicating itself in periodic fashion.

2.3.1 Trend

Focus on long-term patterns or cycles and reduce the effects of short-term pattern,
the technique of moving average is used. The simple moving average of the last n
time points is defined as:

MAt = MAt−1 +
xt−(n−1)

n
+

xt+1

n
.

2.3.2 Seasonality

Autocorrelation is the relation of a time-series with itself. It can be used to identify
repeating patterns such as cycles of a same sequence of values. Let l to denote the
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time lag between the current time point t the respective next one t + l, then the
autocorrelation of these two points can be calculated as:

r(x, l) =

∑n−l
i=1(xi − x̄)(xi+l − x̄)∑n

i=1(xi − x̄)2
,

where x̄ is the mean of the first n values.

2.3.3 Stationarity

Many methods for prediction and pattern identification on time series data assume
that the series is stationary. That is the mean, variance and autocorrelation of the
series is static, it does not change over time.

2.3.4 ARIMA

Auto-Regressive Integrated Moving Average (ARIMA) models are a general class of
models to capture seasonality, trend and even stationarity, by differencing, properties
of a time series. Therefore, ARIMA methods can differenciate a times series and
then cast it as a two-component function composed by the signal and the noise parts.
Formally, given a time-series Xt where t is the time index and xi ∈ R, the ARIMA
model is defined as follows:

(1−
p∑

i=1

ϕiL
i)(1− L)dXt = δ + (1 +

q∑
i=1

θiL
i)ϵt, (2.15)

where L is the lag operator, ϕi the parameters of the auto-regressive part of the
model and θi the parameters of the moving average part of the model. Equation 2.15
is commonly denoted in short as ARIMA(p,d,q).

2.4 Data Types

2.4.1 Textual Streams

Nature of Data

Input data can be grouped by their change over time in: stationary and transient.
Data of the first category are sampled from a stationary distribution, for example
when a person enters images of the 0-9 digits as input data into a computer. However,
nowadays many of the input data are collections of the same data type over time,
also known as data streams. Examples of data streams are the posts accumulated
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over time on a social media platform and the plant consumption measurements of a
energy network collected in a specific frequency over time.

Automatic feeds of social media create textual data streams, collections of texts
over time. These streams of textual posts have some main characteristics. That is,
they are created with high speed, in large volumes and their enclosed information
may vary over time, for instance change of public view on global warming. Therefore,
classical classification approaches which build a single static model over a finite num-
ber of data samples cannot cope with the nature of this data type. Instead, based
on Gama (2010), the requirements on a streaming algorithm imposed by textual data
streams are: (i) to use limited computation and memory resources (ii) to process each
data sample only once (iii) to be capable of predicting in an anytime protocol (iv) to
have the ability to forget older data samples.

The last requirement, the model to be able to remove obsolete data samples, is
due to the time-varying data generating distribution, a phenomenon known as concept
drift first described by Schlimmer and Granger (1986). A concept drift is a change on
the data distribution that cannot be predicted ahead of time. Such change modifies
the relation of the produced data and the target class to be predicted for each data
instance. There is a diverse set of possible changes of the data distribution for an
example a reoccurring or gradual change in the distribution. That is, a new theme
in social media may appear and gain users attention in an abrupt fashion, an always
increasing fashion, an oscillating fashion or reoccurring one.

Opinions on diverse themes can be incrementally found in different Internet sources
from BBC online to Twitter, creating streams of opinionated documents. In these
documents, users give their opinion on themes as products, institutes, services, social
and political events. They usually use short to medium text messages where they
express their opinion, by presenting their views on the overall impression (explicit
opinion), by presenting their views for the aspects of the service or by comparing dif-
ferent services or by presenting their “thwarted expectations” (implicit opinion), first
introduced by Pang et al. (2002), or discuss facts of the service (neutral opinion).
Imposing even more challenges for the design of a model to classify such opinion-
ated textual streams, the opinion-related polarity of words may change over time,
for instance in a tweet post: “today’s weather is very warm”, the polarity of “warm”
depends on the season of the year. Besides, they may change also in time-related
context. For example, the tweet post: “the music is peaceful”, the polarity of the
“peaceful” depends on the current music festival type (Blues or Hip-Hop). Last, as
other data stream types opinionated streams are dynamic and present concept drifts,
for instance, people changing their opinion on a specific subject over time and words.

Challenges in Streaming Algorithms

The main challenge in online learning for data streams is the concept drift phe-
nomenon. We will first explain this phenomenon from the mathematical point of
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view and then we will give a real-world example, based on the survey work by Gama
et al. (2014). Applying the Bayes rule according to Duda et al. (1973), a classifier h
will use the following equation to predict the class y ∈ {1, . . . , c} of an instance x:

p(y|x) = p(y)p(x|y)∑c
y=1 p(y)p(x|y)

(2.16)

As the stream of data evolves over time, quantities of Equation 2.16 may change in an
unexpected manner. These changes may caused by a real-world situation (increase of
public interest in climate change) or a natural effect (sensor read-outs are not possible
due to a heavy storm in the energy plant). Formally, we will say that a concept drift
happens between time point t0 and t1 when:

∃x : pt0(x, y) ̸= pt1(x, y), (2.17)

where the pt0 and pt1 are the joint probability of a seen instance x and the target
class y for the t0 and t1 time-points respectively. Using the chain rule which links the
joint probability with the conditional and the prior, that is:

pt(X = x, Y = y) = pt(Y = y)pt(X = x|Y = y) = pt(X = x)pt(Y = y|X = x),
(2.18)

Equation 2.17 holds, based on Equation 2.18, under the following assumptions:

• the prior probabilities of classes, p(y) may change,

• the conditional probabilities p(x|y) may change,

• and thus, the posterior probabilities of classes p(y|x) may change over time
affecting the final prediction.

We distinguish the types of concept drift by the realization of the previous facts:

1. When the posterior probability, p(y|x) changes with or without alternation of
the p(x), the prior on the data generating function, D. Such change affects the
correctness of the predictive decision of the classifier and therefore is named as
real concept drift.

2. When the distribution of data change but the posterior p(y|x) is not altered,
then the classifier can still use its existing model to predict the current instances,
we refer to this drift type as virtual drift.

Real concept drift was firstly described by Salganicoff (1993) and virtual drift by De-
lany et al. (2004).

To explain concept drift terms take as real-world example the search for a means
of transport (bike or car). The tasks of a classifier is to read user’s news feed and
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predict if the user would be interested to read a post (y=“relevant”) or not (y=“not
relevant”). If the regulations of the city, where the user lives, have changed to promote
the advertisements of used means of transport compared to brand new ones, but the
news editor and the user interests have remained the same, the prior probabilities
of the classes have experienced a drift. If the advertisement posts have started to
describe the ecological footprint of the described vehicle, the advertisement posts on
means of transport are still relevant for the user. This is an instance of virtual drift.
In contrast, if the user has made his choice for an used bike and then he is now
interested in his local city news, the advertisement posts in bikes and cars would turn
now into irrelevant and the news posts about his local city will become relevant. Such
scenario describes a real concept drift.

We can categorize the drift by the speed of change into five general class. A stream
can experience a sudden drift caused by an abrupt change of temperature read-outs
from a sensor during a storm. A sensor that starts to malfunction due to its time usage
will introduce an incremental drift, because its read-outs will slowly be inaccurate. A
newly installed sensor will slowly and steadily report correct measurements, giving an
example of gradual drift. Last, old topics (climate change) may re-appear as popular
in the Twitter stream, creating an example of reoccurring drift.

Streaming Algorithms Dealing with Concept Drift

Here, we review streaming algorithms dealing with concept drift phenomenon. These
approaches can be grouped by their focus on parts of the learning model: memory,
change detection, learning procedure and loss estimation. For the first category,
memory, the initial methods were able to store only the current instance on the model.
An example of such methods is the Very Fast Decision Tree (VFDT) by Domingos and
Hulten (2000) which has used the Hoeffding bounds Hoeffding (1994) to optimally
choose the number of instances needed to split a node of a decision tree; which is
built using the information gain criterion. Subsequent methods design a forgetting
mechanism, to remove obsolete instances from the model memory. The models may
forget instantly by using a fixed-size sliding window Babcock et al. (2002) or gradually
by keeping all instances in memory but decreasing their importance weights for the
learning model Klinkenberg (2004). Besides, methods have focused on the change
detection component by designing statistical methods to identify a possible drift in
the data. A common example of this category is the ADaptive sliding WINdow
(ADWIN) detection algorithm. In short, ADWIN keeps a sliding window of the most
recent instances and a past window containing a higher amount of instances, then it
applies the Hoeffding bounds to spot distribution changes between these two windows.
If such difference is identified, the model is alarmed for a possible drift. Thus it will
re-build its model for the current window of instances.

Streaming algorithms with focus on designing a sophisticated learning model to
deal with concept drift may re-train the model, at each time, a new batch of data ar-



2.4 Data Types 23

rives Gama et al. (2004). In contrast, incremental methods will process each instance
at its arrival time and it will change its own stored sufficient statistics based on each
instance. One established example of incremental methods is the CVFDT Hulten
et al. (2001). Furthermore, models can adapt slowly to the drift, known as blind
adaptation, or more quickly using an informed strategy most often coupled with a
detection method. During an informed adaptation of the model, after the drift de-
tection either the full model is re-build or only the part of the learned model affected
by the drift, equivalently the affected subspace of the constructed hypothesis of the
model. The CVFDT follows such local replacement technique. Researchers have also
proposed ensemble learning techniques to overcome drifts. The intuition is to use
each weak learner of the ensemble to follow a distinct concept distribution and then
combine their based on their accuracy on the current instances of the stream. Such
example is the SEA ensemble algorithm which trains a new weak classifier for each
batch of sequential instances. This model predicts by simply averaging the predic-
tions of the existing weak classifiers. The SEA ensemble forgets, by deleting the weak
classifier with the minimum performance at each batch iteration.

In Chapter 3, we will describe our contribution on classifying textual streams with
a specific type of drift, the feature drift, using an ensemble learning technique.
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2.4.2 Protein Sequences

Nature of Data
Our second contribution is in the field of protein classification. We will give a

brief overview on proteins based on Van Vranken and Weiss (2018). Proteins are
macro-molecules playing important role for most of the biological processes. In 1983
Gerrit Jan Mulder, Dutch chemist, coined this name originated by the Greek word,
πρώτειος (proteios), which means of first significance, to show their central part in
biology. The elementary building blocks of proteins are the 20 amino acids, oligomers,
which are connected by specific chemical bonds, “amide bonds”. These formations
result to molecules with low molecular mass, peptides or intermediate mass (multi-
peptides). This chain of connected amino acids creates the protein backbone. Based
on the backbone chemical properties, proteins fold in the three dimensional space and
acquire well-defined substructures. Based on these sub-structures proteins interact
with other macro-molecules or proteins and create protein complexes to accomplish
or regulate a biological process. The hierarchical levels of protein structure are shown
in Figure 2.1. Therefore, the most prominent question of structural biology is how to
predict the protein structure based on its amino acid sequence.

Figure 2.1. Hierarchical elements of protein structure. Adopted by National Human
Genome Research Institute (NIH) resource page: NIH - Genetics Terms - Protein.

As proteins act based on their structure in space, a equivalently important research
question is how to predict protein function based on the mere amino acid sequence of

https://www.genome.gov/genetics-glossary/Protein
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the protein. The gold-standard method is the manual annotation of the target pro-
tein by domain experts, bio-curators. The bio-curators need to review publications
related to the protein and the already determined structure of close-related proteins
to elucidate the biochemical properties, the local and global structure and the main
function of the target protein. Last step of this manual annotation is a specific exper-
iment, crystallography experiment Hofmeister (1890); Osborne (1894), to determine
the three-dimensional structure of the target protein, so as to cross-validate the man-
ual annotation. However, all the steps of the manual annotation are time-consuming
and needed extensive amount of resources. For that reason, databases containing
manually annotated and/or reviewed proteins are needed. UniProt Knowledge Base
(UniProtKB) is composed by two sub-databases the UniProtKB/SwissProt database
including manually curated proteins and the UniProtKB/TrEMBL database which
contains computer-assisted annotated proteins. Approximately the 0.26% of TrEMBL
proteins are not been manually reviewed yet (UniProt version: March of 2021) Con-
sortium (2021).

One important annotation field on UniProtKB database is the domains of the
protein entry. A domain is a protein sub-unit that can fold independently of the rest
of the whole sequence. Therefore, a domain does have its own individual function. To
maintain its function through evolution, the domain’s structure is conserved and thus
it exhibits conserved sequence segments. As in engineering multi-unit systems are
constructed by combining smaller and independent modules, nature tends to re-use
self-functioning modules to new biological machines (proteins) with the goal to en-
able new complex functions. That is, it commonly accepted that proteins evolve also
through re-arranging already self-functioning sub-structures (domains) Moore et al.
(2008). This means that evolutionary signals can be found, between distinct proteins,
not only by the presence of the same domain, but likewise by the existence of a similar
domain architecture, the linear order of the domains found in this pair of proteins.
Works by Moore et al. (2008); Forslund and Sonnhammer (2012) have presented
detailed surveys on protein domains and the evolution of the architectures respec-
tively. A common database for protein domains is InterPro Blum et al. (2021), which
automatically integrates protein domains from a diverse set of biological databases.

Challenges in Classifying Protein Data

Machine learning approaches have been applied for various supervised learning tasks
in protein research. Such techniques have used to predict protein biochemical and
biological properties, thus to facilitate protein design and engineering, see Fox et al.
(2007); Bedbrook et al. (2017). Nevertheless, classical ML methods have used protein
properties for its input features. Besides, the number of such training examples,
containing protein properties as features, should be sufficient large in order to build
a robust learning model. Based on the high cost and execution time of laboratory
experiments to measure such protein proteins, these two requirements for protein
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learning introduce a fundamental challenge. To add on, another hurdle on data
collection for protein learning, is to distinguish the informative protein properties,
from the uninformative ones, before building the model. Moreover, deep learning
techniques have also been applied in protein learning. Consequently, their need for
large labeled data sets increases the significance of the large training set challenge.
This is because, to assign labels for a large training set (in the order of 100,000
instances) results to high time and monetary cost.

Classifying Protein Data Using Representation Learning

Compared to extracting protein properties as features, using the mere protein se-
quence can be an effective answer on the aforementioned challenges on supervised
learning for proteins. The first reason is the existence of high throughput laboratory
techniques to read-out the protein sequence, compared to the time-consuming tech-
niques to extract protein properties. Second and foremost, representation learning
techniques for input have shown promising results in the NLP research domain. In
short, representation learning tries to find an input representation, which the learning
model will use to capture discriminating characteristics of the input and thus be more
robust on input variation Bengio et al. (2013). The ultimate goal of representation
learning is to improve prediction performance. Therefore the use of this sub-field of
machine learning can enable an enhanced set of features for the protein instances
lowering the need for biochemical properties as features and large labeled training
sets.

Indeed, learning neural representations amino acid sequence of the protein in-
stances has achieved great success, as shown in the example works: Asgari and Mofrad
(2015); Yang et al. (2018); Alley et al. (2019); Rives et al. (2021). In ProtVec work As-
gari and Mofrad (2015), the authors split the protein sequence in 3-mers with the 3
possible starting shifts. They then used the skip-gram model to learn the embeddings
for each distinct 3-mer. The embedding for a protein was taken as the mean of all its
3-mers. Next, Yang et al. (2018) applied ProtVec by using doc2vec method Le and
Mikolov (2014) to aggregate the embeddings of all 3-mers contained in a given protein
into its whole embedding vector. Following the NLP trend to use models of higher-
complexity to learn embeddings for input text, Alley et al. (2019) have deployed a
language model with recurrent neural networks (RNN) to learn the embedding vector
for each amino acid of approximately 24 million protein sequences (UniRef50 data
set of UniProt Consortium (2021)). Therefore, the learned vectors capture properties
of amino acids for a large set of protein families. Subsequently, the authors applied
a fine-tuning step, by updating the embeddings with a trained labeled set targeting
their specific protein family of interest. As final step, they benchmarked the predic-
tive performance of trained models using these embeddings by predicting the stability
and phenotype of diverse variants of the green fluorescent protein.

Besides, Rives et al. (2021) researched if application of a language model with
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higher complexity, on a diverse set of sequences, could build representations captur-
ing more protein characteristics. To do so, they applied the Bert language model on
250 million proteins (Uniparc data set of UniProt). Their experiments have shown
that the learned representation capture the secondary structure and residue-residue
contacts. To benchmark on downstream tasks, they compared their prediction per-
formance on pathogenicity of protein variants and reported comparable results to the
state-of-the-art variant predictors. All previous methods have shown the applicability
of NLP techniques in protein learning. Nevertheless, researchers have designed meth-
ods to learn sequence embeddings using neural techniques customized for biological
sequences. For example, Lu et al. (2020) have developed a model to learn represen-
tations for sub-sequences of a protein by differentiate between random and original
fragments of a given protein. They have shown that this model achieved comparable
performance with NLP models for proteins, with the beneficial need of only 2-10% of
the complexity of the NLP models.

Our contribution on protein embeddings, Chapter 4, is the computation of protein
domains embeddings, dom2vec, which can be quantitatively evaluated compared to
sequence embeddings. We also have benchmarked the performance gain by the us-
age of dom2vec embeddings on down-stream prediction tasks, compared to sequence
embeddings.

2.4.3 Genomic Variants

Nature of Data

Another foundational macromolecule for living organisms is the deoxyribonucleic acid
(DNA). It is stored in the cells of all living organisms. Compared to proteins, DNA
is a double-stranded chain of four chemical substructures, nucleotides or bases : ade-
nine (A), guanine (G), cytosine (C) and thymine (T). The DNA is fundamental for
living organsisms, as the sequence of its alphabet encloses all information required
for a cell to develop, grow, function and reproduce. More specifically, based on the
central dogma of Biology, certain DNA regions, genes, encode the instructions to
create (transcribe) ribonucleic acid (RNA) molecules, which in turn are translated
into proteins, the basic biological “machines” of the cell. This information is passed
to the offsprings of parent organisms forming the majority of hereditary information
between generations. The three-dimensional structure of the DNA was discovered
by Watson and Crick in 1953 Watson and Crick (1953). The verified double helix
structure of DNA is shown, as cartoon, in Figure 2.2. In eukaryotes the DNA is
stored and maintained in the nucleus compartment of the cell. Inside the nucleus, the
DNA is grouped into 23 large units, chromosomes, firstly identified using microscopy
experiments by Schleiden Schwann (1847), Virchow and Bütschli in the second half
of the 19th century.
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Figure 2.2. Double helix of DNA. Adopted by National Human Genome Research
Institute (NIH) resource page: NIH - Genetics Terms - Double Helix.

Based on its importance for life, researchers aimed to compile the complete collec-
tion of DNA bases for a given cell, genome. Frederik Sanger and colleagues achieved
to read short segments of the genome, through a technique known as Sanger sequenc-
ing in 1977 Sanger and Coulson (1975). A international consortium, named Human
Genome Project (HGP), sequenced the 99% of the human genome, containing 3.2
billion bases, in 2003 Collins et al. (2003), at an adequate error level to be used in
research purposes. This draft genome served as a reference to find differences, vari-
ations, in the genetic code between individuals. It is estimated that the genomic
variants of a subject compared to the human reference is approximately 0.1%. This
genomic variation is sufficient to make each of us unique, because a smaller set of these
genomic variants is related to physical traits, such as height or eye color. Neverthe-
less, the genomic variants also cause disease phenotypes, genetic diseases. Currently
are cataloged 6,000 genetic diseases Hamosh et al. (2000). The most common types
of variants are shown in Figure 2.3.

https://www.genome.gov/genetics-glossary/Double-Helix
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Figure 2.3. Types of DNA Variants. Adopted by National Human Genome Research
Institute (NIH) resource page: NIH - Genetics Terms - Mutation.

As a consequence of knowing that a large amount of diseases is based on genomic
variation, diagnostic laboratories would benefit from sequencing the whole genome
of each individual. However, the use of Sanger sequencing to read-out the whole
genome of an individual was time-consuming and costly. In 2005, a new technology
for sequencing was invented, Next Generation Sequencing (NGS), which allowed the
high-throughput reading of the genome with low cost and sufficiently low error rate.
From 2015, the NGS was established in the level to be used in routine diagnostic
setting to assist the clinicians Singh et al. (2016).

After the NGS technique extracts a magnitude of copies of short reads-out of
each base on the genome, these reads are mapped to human reference and differences
between the observed (patient’s) sequence and the reference are called. These dif-
ferences are also known as variants. Variants can be categorized by their length in
micro- and macro-variants. Micro-variants are short differences between the observed
and the reference and include the following types: (i) substitution of a reference nu-
cleotide with another one, (ii) deletion of a reference nucleotide and (iii) insertion
of a base next to reference nucleotide. The macro-variants are larger differences be-
tween the observed and reference genomes and are categorized in five sub-classes: (i)
substitution of a section of one chromosome with a section of another chromosome,
(ii) deletion of a larger section of a chromosome, (iii) duplication, the insertion of the
same sequence of a larger section of a reference chromosome to the same chromosome,
(iv) inversion insertion of the inverted sequence of larger section of a chromosome

https://www.genome.gov/genetics-glossary/Mutation
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to the same chromosome and (v) translocation, the directionality-preserved exchange
of a chromosome section with another chromosome section. All these variants are
caused by naturally-occurring errors during DNA replication or by the interaction
of a cell with external sources such special chemicals or viruses. Next, we discuss
the challenges to classify the identified variants of a patient in the routine diagnostic
setting.

Challenges in Automatic Interpretation of Genomic Variants

In the routine diagnostic setting, a patient with a given phenotype is sequenced and its
variants are extracted using the previously described pipeline. However, there is still
the need to interpret these variants, before the diagnostic personnel can advise the
patient, finishing the clinical genomics analysis cycle. Most of the times, to interpret
a variant we need to classify its pathogenicity which can be (i) benign, (ii) pathogenic
or (iii) uncertain significance. Given that patient’s variants found in human genes are
approximately 60,000 the manual curation of all variants by a diagnostic personnel
poses the two following challenges.

First, the human curator should annotate each variant, using bioinformatics soft-
ware and by reviewing biological articles with functional studies on this variant. Next,
using these annotation data, the human expert can classify the potential result of the
variant. This results to a time-consuming and error-prone step of the interpretation
process. Second, as each diagnostic laboratory may use distinct biological criteria to
classify a variant, there is the danger of inconsistency on the classification of a spe-
cific variant. Therefore, methods to classify variants without the need of the manual
curation are needed.

There exist two general approaches on designing a variant classification algorithm.
The first, uses the machine learning paradigm to learn a prediction hypothesis based
on already classified human genomic variants. Three examples of machine learning
classifiers for variant pathogenicity are: CADD Rentzsch et al. (2019), REVEL Ioan-
nidis et al. (2016) and LEAP Lai et al. (2020). The latter set of approaches use
an alternative method which it first examines accepted evidence-based criteria to as-
sess the effect of a given variant based on different type of data and then it applies
a rules-based scheme to assign the final pathogenic class of a variant. Experienced
molecular geneticists commonly prefer to trust classification algorithms of the sec-
ond paradigm, because they can firmly review the evidence-based criteria, assigned
by such algorithm and therefore grant the variant classification in routine diagnos-
tic manner. As a consequence, accepted methods and guidelines are needed for the
variant classification.

To fill this gap on diagnostic analysis cycle, the American College of Medical Ge-
netics and Genomics (ACMG) and the Association for Molecular Pathology (AMP)
have established a working group to create twenty eight evidence-based criteria to
classify a genomic variant in one of the following give classes: benign, likely benign,
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variant of uncertain significance (VUS), likely pathogenic and pathogenic Richards
et al. (2015). These criteria are described for a general phenotype stemming out of
a hereditary disease trait. As far as the automatic implementation of these crite-
ria is concerned, there are important obstacles to assess a variant using the ACMG
guidelines. First, a molecular geneticist, curator, needs access to population, com-
putational, functional and segregation data to use these evidence-based criteria. Be-
sides, these evidences contain different degree of importance (ranging from very strong
to supporting) and are attributed to the two broader impact classes, benign and
pathogenic. After the human curator examines all evidences, she will combine the
ones activated by a rules-based scheme also published by ACMG to classify the variant
into one of the five pathogenicity classes. Even of the great benefit of the establish-
ment of the ACMG guidelines, there is yet the unfulfilled requirement of algorithms
which can apply these specifications automatically ; whose classifications will be only
reviewed by the diagnostic personnel before the final classification of variants.

Automatic Interpretation of Genomic Variants Using the ACMG Guide-
lines

Li and Wang (2017) implemented the InterVar, the first algorithm to automate the
variant classification using the ACMG criteria. In more details, InterVar takes ad-
vantage of functional and computational annotations of variants by the ANNOVAR
database Wang et al. (2010) to examine 18 out of the total 28 criteria, without the
need of the human curator. The unimplemented criteria by InterVar need manual
examination of functional, population and segregation data. A subset of the unimple-
mented functional criteria are covered by the VarSome search engine Kopanos et al.
(2019), utilizing indexing techniques to extract publications with functional studies
on the specific variant. In total, the VarSome algorithm implements 19 criteria out of
the 28 ACMG criteria. Last, this search engine uses the users feedback, e.g. manual
assessment of a criterion, to enhance the variant classification. The last example of
variant classification algorithm focuses on automating the criterion that need manual
assessment, such as criteria based on segregation and functional data. To this end,
Mastermind algorithm Chunn et al. (2020) indexes the title, abstract, full text and
supplementary material of medical publications registered in the National Library of
Medicine/MEDLINE/PubMed database. After the indexing step, the algorithm as-
sociates several variants types to the functional information described by the indexed
publications. The applicable variant types are single-base variants, copy number vari-
ants (CNV), deleted or duplicated stretches of 1,000 nucleotides or more, and gene
fusion pairs; a pair of genes which, when are found next to each other, can express a
hybrid gene. Applying these algorithms on a clinical diagnostics setting includes two
obstacles: the free license only for academic usage and the closed source code.

Hearing impairment is the most common sensory disorder and a genetic etiology
can explain half of affected patients Shearer et al. (2017). ACMG has refined their
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guidelines for hearing impairment phenotype. Though, the closed source code of all
these algorithms does not facilitate the creation of variant classification system for
this disease. In Chapter 5, we describe our open source method GenOtoScope to
annotate and classify variants associated with congenital hearing loss.



3
TemporalMNB: Learning under Feature Drifts in

Textual Streams

In this chapter, we present our contributions by answering our first research question
RQ1, defined in 1.2.1. Namely, how to adapt an established learning model for a
special type of concept drift, feature drifts? How to ensure that this adaptation
contain statistical guarantees compared to the feature best-describing process?

Huge amounts of textual streams are generated nowadays, especially in social
networks like Twitter and Facebook. As the discussion topics and user opinions on
those topics change drastically with time, those streams undergo changes in data
distribution, leading to changes in the concept to be learned, a phenomenon called
concept drift. One particular type of drift, that has not yet attracted a lot of attention
is feature drift, i.e., changes in the features that are relevant for the learning task at
hand. In this work, we propose an approach for handling feature drifts in textual
streams.

Our approach integrates i) an ensemble-based mechanism to accurately predict
the feature/word values for the next time-point by taking into account the different
features might be subject to different temporal trends and ii) a sketch-based feature
space maintenance mechanism that allows for a memory-bounded maintenance of the
feature space over the stream. Experiments with textual streams from the sentiment
analysis, email preference and spam detection demonstrate that our approach achieves
significantly better or competitive performance compared to baselines.

3.1 Introduction

Huge amounts of textual streams are generated nowadays, especially in social
networks like Twitter and Facebook. A key characteristic of those streams is veloc-
ity, i.e., the content of the stream changes over time as new topics arise, old topics
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disappear and even for persistent topics, changes might occur. Such changes in the
underlying data generation process might cause changes in the learned hypothesis,
a phenomenon known as concept-drift Gama et al. (2014). Concept drift introduces
new challenges for stream learners with the most important being the ability of the
models to adapt to the underlying population changes. One particular type of change,
that has not yet attracted a lot of interest Barddal et al. (2017) is feature drifts, i.e.,
changes in the features that are relevant for the learning task. The recent publication
of Manzoor et al. (2018) discusses such streams referring to them as feature-evolving
streams, where new features may arrive over time and existing features may update
their value.

Such changes are especially frequent in textual streams as the feature space is high-
dimensional (e.g., when considering words as features) and sparse (i.e., words are not
observed in all documents and over the whole course of the stream). To deal with
the new incoming features, one has to maintain a valid feature space over time that
reflects the (temporal) importance of the features for the learning task. We mostly
interested in the second property of such streams, the update of value of features. We
are especially interested in temporal feature drifts, i.e., changes in the importance of
features for the different classes over time, we refer to this as trends, hereafter. For
the sentiment analysis task, we show an example of words with temporal trends in
3.1.

Figure 3.1. Sentiment Ratio ( num. positives+1
num. negatives+1

) for four words, where the red dashed line
indicates the threshold for the change of sentiment.

By the figure we observe that exist words which are always associated with the
same class like the word “love” (positive). On the other hand, there are words like
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“summer” that display a seasonal trend and are probably negative out of season. Or
words, like “weather” that display an autocorrelated trend depending on the weather
conditions of the last days. Finally, there are sudden words such as “followFriday”
that display short peaks in a class. Such sort of temporal drifts might also occur at
the class level, more positive tweets in weekends as shown by Vosoughi et al. (2016).
Such temporal trends are existing also in other textual streams such as in prediction
of email preference or spam detection. For example an user may change her interest
on a subject turning not interesting email to interesting ones as time evolves.

In this work, we propose an approach for handling feature drifts that discovers
trends in the association of features with the different classes and uses those trends to
predict the feature values for the next timepoint. As already shown via the aforemen-
tioned examples, there is a large variety of such trends from regular to seasonal and
sudden occurrences; to capture this variety we propose an ensemble that takes into
account different feature periodicities. The ensemble’s prediction are seamlessly inte-
grated in a Multinomial Naive Bayes (MNB) classifier whose model naturally depend
on the class conditional feature probabilities. Although there are already approaches
for adaptive MNB classifiers over streams, e.g., Nishida et al. (2012) and Wagner
et al. (2015), our work is the first to explicitly tackle the feature drift problem. Our
experimental findings show that such an explicit handling of feature drifts, result in
improved performance compared to existing adaptive approaches.

The remainder of the paper is organized as follows: related work is discussed
in Section 3. Basic concepts are discussed in Section 3, together with the problem
definition. Our approach for handling feature drifts in textual streams by exploiting
different feature/class trends is presented in Section 3. Experimental results are
discussed in Section 3.4.3. Finally, we conclude in Section 3.5.5.

3.2 Related Work

Data streams are generated from non-stationary distributions and therefore, the
learned hypotheses might change over the stream, a phenomenon known as concept
drifts Gama et al. (2014).

A particular type of drifts, not adequately addressed thus far by the related work,
is feature drifts referring to changes in the relation between a feature and the target
class over time. The authors in Nguyen et al. (2012a) argue that concept drifts
might lead into feature drifts and propose online feature selection to maintain a
representative feature space over the stream, upon which a heterogeneous ensemble,
of MNB and SVM experts, is trained.

Our approach also maintains a representative feature space over the stream, how-
ever differently from online feature selection methods our goal is to use feature history
over the stream and different feature trend detectors in order to predict future feature
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values that comprise the input to an final MNB model.
Feature drifts are frequent in textual streams; we focus hereafter on approaches

based on Naive Bayes (NB) classifiers. In Katakis et al. (2006), the authors couple
NBs with incremental feature selection based on information gain, for the email spam
detection task. In Lebanon and Zhao (2008), a local likelihood method was presented
that extends NBs by considering feature/word information from a particular time-
spanning window. In Nishida et al. (2012), the authors employ exponential weighted
moving average to improve NBs in the presence of sudden words. In Wagner et al.
(2015), a temporal extension of NBs is proposed that decays the likelihood of a fea-
ture/word for a class and also the class priors based on the recency of their occurrence
in the stream. In contrast to the aforementioned methods, in our approach we ex-
plicitly model feature drifts and moreover, we consider four different types of feature
drifts.

Regarding the application domain, feature drifts for textual streams have been
investigated in the context of sentiment analysis e.g., Wagner et al. (2015) and spam
detection, e.g., Lin et al. (2017). Besides, time series prediction methods have been
employed for analyzing sentiment in the Twitter stream. For example, in Giachanou
and Crestani (2016), such methods are used to investigate particular sentiment char-
acteristics like sentiment velocity for a given entity, whereas in Nguyen et al. (2012b)
the goal is to predict the overall sentiment in Twitter stream. Finally in Melidis et al.
(2018a), authors improved lexicon-based sentiment analysis using the predicted senti-
ment of words based on simple time series methods. In our approach, we also rely on
time-series prediction methods for predicting different trends for the features/words,
however those predictions are integrated in an MNB model for predicting sentiment
at the tweet level.

Most similar to our work, is the taxi-demand prediction method of Moreira-Matias
et al. (2013) which consists of an ensemble of three experts, each capturing different
trends, namely, regular, seasonal and autocorrelated. In our approach, we moreover
allow for the detection of sudden events and we average out the predictions of the
experts assuring that the ensemble will predict as good as the best single expert or
the best combination of experts in hindsight. Moreover, the application domain is
completely different.

3.3 Basic Concepts and Problem Statement

We observe a textual stream D of documents arriving at distinct time-points
t1, · · · , ti with ti being the current time-point. Depending on the application, at each
time-point ti, a batch of documents instead of a single document might arrive. A
document d ∈ D is represented by the bag-of-words model as d = {v1, v2, · · · vk}.
Given a predefined set of classes C, the goal of a stream classifier is to maintain
a valid classification model over the stream. Without loss of generality, we assume
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the classification problem is a binary classification problem, i.e., C = {+,−}. Our
learning setting is fully supervised, that is, class labels are available for all documents.
However, the label of a document d is available shortly after its arrival. Therefore,
the goal is to make a prediction for d using the current classifier and then, upon the
arrival of its label to use the labeled instance (d, c), c ∈ C, for training. This setup is
known as first-test-then-train or prequential evaluation Gama (2010).

Assuming a (hidden) probability distribution P generating the instances of D, the
characteristics of P might change with time, i.e., for two time-points ti ̸= tj it might
hold that Pi ̸= Pj, a phenomenon called concept drift Gama et al. (2014). There are
different reasons for concept drifts in a stream environment, which can be explained
based on the Bayes theorem Hoens et al. (2012). In particular, according to the Bayes
theorem, the classification of a new document d from the stream depends on the class
priors, i.e., P (c), c ∈ C, and the likelihood of observing d under the different classes,
i.e., P (d|c):

P (c|d) = P (d|c)P (c)

P (d)
(3.1)

We assume that the document probability P (d) is the same for all documents
d ∈ D. Consequently, concept drift Pi ̸= Pj between two different time-points ti ̸= tj
might occur due to changes in the following variables of Equation 3.1:

[C1] changes in the class priors, i.e., Pi(c) ̸= Pj(c).

[C2] changes in the likelihood of a document for a class c ∈ C, i.e., Pi(d|c) ̸= Pj(d|c).

[C3] changes in the posterior of a document for a class c ∈ C, i.e., Pi(c|d) ̸= Pj(c|d).

A specific type of drifts, not directly captured by the C1 − C3 types above, is
feature drifts Barddal et al. (2017). A feature drift occurs when there are changes in
the relevance of the features for the learning task over time. We distinguish between
two types of feature drifts that might occur between two different time-points ti ̸= tj,
namely:

[F1] the likelihood of a feature v for a class c may change with time, i.e., Pi(v|c) ̸=
Pj(v|c). For example, for the sentiment classification task the feature “summer”
displays a seasonal trend being positive in-season and negative off-season.

[F2] the feature space might change, i.e., Fi ̸= Fj, where Fi (Fj) is the feature space
for time-point ti (tj, respectively). In literature this is referred as dynamic
feature space, e.g., Nguyen et al. (2012a).

Our goal is to build a classification model over the stream that besides dealing
with concept drifts (types C1−C3), it also explicitly targets feature drifts (types F1
and F2). An MNB classifier comprises a natural model choice for dealing with feature
drifts as it decomposes the problem of estimating the likelihood of a document for a
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class to the problem of estimating the likelihood of observing the features/words of
the document under that class (the so-called class-conditional feature independence
assumption). In particular, according to a MNB classifier, the class of a document d
is the class that maximizes the posterior, namely:

ĉd = argmax
c∈C

P (c)P (d|c) = argmax
c∈C

P (c)
∏
v∈d

P (v|c) (3.2)

Based on this formula, MNB captures F1 type drifts (variable P (v|c)) and C2
type drifts (by combining F1 type drifts as: P (d|c) =

∏
v∈d P (v|c)). Moreover, the

classifier explicitly models the class priors, so it tackles C1 type drifts. Finally, it
tackles F2 type drifts by maintaining a feature space of the top most frequent features
over the stream (c.f. Section 3.4.2). Since, C3 type drift is the result of C1 and C2
type drifts, we show how to integrate C1−C3 and F1 type drifts to an MNB classifier
in Section 3.4.3. The seamless integration of feature drifts in the model is not the
only reason for choosing MNB as the learning model. The MNB classifier has proven
to perform modestly over streams Bifet et al. (2009) and in particular, over high
dimensional streams like textual streams Spiliopoulou et al. (2016). Moreover, such
models can be efficiently maintained over streams as they rely on simple statistics.

3.4 Methods

We propose an MNB classifier that deals with concept drifts and feature drifts.
Our approach is based on the observation that different features/words follow different
trends with respect to their association to the class attribute. That is, in a sentiment
classification task the word “love” has a regular trend in positive class, the word
“summer” has a seasonal trend, the word “weather” may exhibit autocorrelated trend
based on the atmospheric conditions of previous days and sudden words, in a Twitter
stream, such as “followFriday” may exhibit short (sudden) peak trends. Therefore,
our idea is to learn those trends for each feature/word independently and combine
their predictions via an MNB classifier. An overview of our framework is shown in
Figure 3.2.
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Figure 3.2. Overview of our approach.

As shown in this figure, our approach combines three components:

• a feature prediction component that uses an ensemble of experts each capturing
distinct feature/word trends to tackle the C1 − C3 and F1 type drifts (Sec-
tion 3.4.1),

• a feature space maintenance component that maintains a valid fixed size feature
space over the stream to fulfill the memory-bounded requirement of streams but
also to tackle F2 type drifts (Section 3.4.2), and

• a feature-drift enabled MNB model that utilizes the aforementioned components
for document classification (Section 3.4.3).

Consequently, the proposed the feature-drift enabled MNB model can accommodate
all types of drift C1, C2, C3, F1, and F2.
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3.4.1 An Ensemble for Learning Different Feature Trends

The goal of the ensemble is to predict for each feature/word its value at the next
time-point. To this end, we rely on a feature’s history from the stream. In particular,
let us assume the textual stream D arriving over time and let T = {t1, .., ti} be the
ordered set of observed time-points up to point ti. We observe feature occurrences
over the stream and in particular, class priors and word class-conditional counts. For
simplicity, hereafter we refer to words, however we follow the same methodology for
class priors.

We denote nv,c the conditional count of a word v in a class c ∈ C. Assuming an
aggregation period of P time units, the sampling values form a discrete univariate
time series, defined as follows:

Nv,c = {nv,c(P ), . . . , nv,c(lP )} (3.3)

where nv,c(lP ) is the observed conditional count of v in class c at the l-th aggregation
period. We will refer to the history of the whole time series as word history, Hv. Each
of the following models will use the whole or a sliding window of Hv, which is referred
to model history, hereafter.

In order to solve the problem statement, we will present an ensemble of experts
each modeling a distinct trend. We present each expert in Section 3.4.1 and the
aggregation of their prediction by the ensemble in Section 3.4.1.

Feature Prediction by Experts

Thus far we discuss four distinct trends, regular, seasonal regular, autocorrelated and
sudden. In this section we present four models, each to capture one of these distinct
trends.

Poisson Model: We employ a Poisson model to capture regular trends. This
model uses the Poisson distribution to relate the probability of having n as nv,c((l+
1)P ), (P (nv,c((l + 1)P ) = n)) defined by the following equation:

P (n;λ) =
e−λλn

n!
(3.4)

where λ is the average number of nv,c(P ) over the model history. The goal is to learn
regular trends over the whole history of the word, therefore the Poisson model utilizes
the whole word history. That is HPoisson ≡ Hv.

Seasonal Poisson Model: This model can capture time series with a sea-
sonal regular trend. Using the exponential smoothing algorithm Holt (2004), the
expert will find the average over each group of aggregation periods and then it will
aggregate all averages using weighted average with fading weights αs based on the
recency of the group. For example if the aggregation period is P = 1 hour and the
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model group these periods in weeks, storing the last γs weeks, it will keep 7 · 24 ag-
gregation periods for each group (week). Then it will aggregate the average of each
week using the exponential smoothing algorithm. These weights increase as we move
from the current week to the previous ones. By this, the averages observed two weeks
before are less relevant to the average observed in this week. We calculate the weights
set ω using the exponential smoothing algorithm Holt (2004). Thus we can compute
the weighted average over the weeks of the history.

Thus we define ωs as follows:

ωs = αs · {1, (1− αs), (1− αs)
2, . . . , (1− αs)

γs−1}, γs ∈ N (3.5)

where γs is the number of groups of aggregation periods which the model considers
and 0 < as < 1 is the smoothing factor. Both variables are user-defined. Having
computed the average for each group, λk, k = {1, . . . , γs}, we can now define the
weighted average µs as follows:

µs =

γs∑
k=1

λk · ωsk

Ωs

,Ωs =

γs∑
k=1

ωsk (3.6)

Then substituting the smoothed average, µs, into 3.4 we get the seasonal Poisson
model. The expert keeps the newest γs groups containing g aggregation periods (P ),
consequently its history is sliding and equals to |HSeasonal| = γs g P and it holds
HSeasonal ⊂ Hv.

Autoregressive Integrated Moving Average Model: To model
autocorrelated trends, we use the AutoRegressive Integrated Moving Average tech-
nique (ARIMA) Box and Jenkins (1976). The model is defined by three parameters
ARIMA(p, d, q), where p and q are the order of the autoregressive and moving av-
erage submodels, respectively and d is the lag of the series. The model stores a
sliding window of size γa aggregation periods (P ). We denote the model’s history
by HARIMA ⊂ Hv and it holds |HARIMA| = γa P . A detailed description of ARIMA
model can be found at Cryer and Chan (2008) (Chapter 4 and 5).

Exponential Weighted Moving Average Model: The last model
intends to capture regularity only on the short-term history and it is inspired by
Nishida et al. (2012). The model aggregates the observations in the history HEWMA ⊂
Hv using the exponential moving average with fading weights αe reflecting the recency
of the observations. More formally, we use the exponential smoothing Holt (2004)
to weight each observed value (Nv,c(jP )) of the short history, containing the last
γe aggregation periods P of the series (HEWMA ⊂ Hv). The model keeps a sliding
window over the last γe P , |HEWMA| = γe P . Then predicts the future value as the
weighted average of the values in HEWMA, using the same logic as the second model.
We define the set of weights we for each observed value inside the sliding window of
size γe:

ωe = αe · {1, (1− αe), (1− αe)
2, . . . , (1− αe)

γe−1}, γe ∈ N (3.7)
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We combine the predictions using the ωe of 3.7 as their weighted average µe as
follows:

µe =

γe∑
k=1

Xi,tk · ωek

Ωe

,Ωe =

γe∑
k=1

ωek (3.8)

Averaging Predictions of Experts

Our assumption is that the trend of each word can be modeled in the best way by one
expert or by a (weighted) combination of them. More formally, given the time series
Nv,c up to aggregation period l−1, the M experts will predict for the next aggregation
period l and input their values to the ensemble, which will aggregate their prediction
to result in the final prediction. In this work, we have four experts (M = 4). For them
we denote their predictions as n̂v,c(l)

Poisson, n̂v,c(l)
Seasonal, n̂v,c(l)

ARIMA, n̂v,c(l)
EWMA and

of the ensemble as n̂v,c(l)
Ensemble. Let nv,c(l) be the observed value of the conditional

count of v in c, at the next aggregation period l. We assume each of the predicted
values and the observed one are in the range of [0, B], where B ∈ N is the upper limit
of the conditional count of such word in the total stream and it is user-defined.

To measure the performance of the ensemble we use a loss function L which
outputs a non-negative quantity L(nv,c(l), n̂v,c(l)) indicating the difference between
the observed (true) outcome and the predicted one. Assuming an expert that can
best model the input then we can measure the difference of the ensemble performance
compared to this learner using the regret measure, r, which is defined as:

r =
∑
l

L(nv,c(l), n̂v,c(l)
Ensemble)− min

e=Poisson,Seasonal,
ARIMA,EWMA

∑
l

L(nv,c(l), n̂v,c(l)
e) (3.9)

In order to predict with guaranteed regret we follow the results of Kivinen and
Warmuth (1999). To this end we use the weighted average algorithm, WAA, as
formulated in Kivinen and Warmuth (1999). We show the whole method in algo-
rithm 3, which follows the prequential process. We use the square loss function,
L(nv,c, n̂v,c) = (nv,c − n̂v,c)

2. By the equation 8 in Kivinen and Warmuth (1999),
for nv,c ∈ [0, B] we compute the c̃L equal to 2B2. This weighting scheme gives us
constant upper bound on the regret of the ensemble predictions, as stated by the
following theorem:

Theorem 2. [Kivinen & Warmuth Kivinen and Warmuth (1999)] Let L be a mono-
tone convex twice differentiable loss function the WAA as in algorithm 3 with uni-
form initial weights, wl=1,i = 1 and with c ≥ c̃L. Then for any sequence of Nv,c =
{nv,c(P ), . . . , nv,c(lP )} we have

LossWAA(Nv,c) ≤ (mineLosse(Nv,c)) + clnM. (3.10)

As stated in Kivinen and Warmuth (1999), having a bound for the regret compared
to the combination of learners that models best the input is better than regrets
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compared to the best single model (2). Using the same setting, we can state the
following theorem that bounds the regret compared to the best combination as follows:

Theorem 3. [Kivinen & Warmuth Kivinen and Warmuth (1999)] Let L be a mono-
tone convex twice differentiable loss function in WAA as in algorithm 3 using arbi-
trary initial weights, ql=1 and parameter c = c̃L. Then for any sequence of Nv,c =
{nv,c(P ), . . . , nv,c(lP )} and for all probability vectors p we have

LossWAA(S) ≤ Lossavgp + c̃Ldre(p,q). (3.11)

Where qt is the weight vector to combine each expert. As the weight vector is
normalized and sums up to 1 is also a probability vector. Let p be such a probability
vector, being the best combination of averaging the experts. To measure the difference
of the two probability vectors, we use the relative entropy defined as dre(p,q) =∑n

b=1 piln(pi/qi).

3.4.2 A Sketch-based Approach for Feature Space Mainte-
nance

To fulfill the bounded memory requirement of data streams Bifet et al. (2009), we
maintain a fixed-size feature space over the course of the stream. We have used three
versions of the algorithm. The baselineSketch uses the original algorithm by Met-
wally et al. (2005). In our setting the sketch saves pairs of (word, occurence count).
To account for the importance of frequent words we use the fadingSketch version.
The last version is the adwinSketch which uses the ADWIN algorithm Bifet and
Gavalda (2007) as change detector to remove a saved word when it is significantly
not used anymore in the stream. All different sketches allow us to maintain a fixed
size feature space over the stream. Depending on the sketch type though, the update
of the feature space varies. That is the sketch decides to remove not frequent words
to accommodate new words coming from the stream. We devote Section 3.5.2 on the
experiments to evaluate the impact of the sketch.

3.4.3 Incorporating Feature Drifts in MNB

This last section combines the previous two components, sketch and ensemble, to
introduce a MNB classifier that can tackle the stated problem. We refer to this model
as temporalMNB . As shown we present by its algorithm 3, for each arriving document
di, firstly its words are saved in the sketch. Then assuming the l − 1 as the current
index of periods for the priors of each class c and the conditional counts of each word
v. The ensemble predicts the n̂c(lP ) and n̂v,c(lP ), for the l-th (next) aggregation
period using the weighted average of the experts’ prediction (EnsemblePredict()).
Then we define Ptemporal(c) as the predicted class prior probability and Ptemporal(wi|c)
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Algorithm 3 Temporal MNB
diffTime, tprevious, l← {0c, 01, . . . , 0|V |}
xprevious, xperiod ← {[0, 0]c, [0, 0]1, . . . , [0, 0]|V |}
V ← {}

W ← {
[ 1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

]
c

,

[ 1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

]
1

, ..,

[ 1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

]
|V |
}

N ← {{{}, {}}c, {{}, {}}1, . . . , {{}, {}}|V |}

function ensembleTrain(xv ,Wv , x̂v , t)
diffTime[v]← diffTime[v] + (t− tprevious[v])
if diffTime[v] ≤ P then ▷ Aggregate for P time units

for all cj ∈ C do
xprevious[v][c]← xprevious[v][c] + xv [cj ]
Nv [cj ][l[v]]← xprevious[v][cj ]

end for
else ▷ New aggregation period

for all cj ∈ C do
xperiod[v][cj ]← xprevious[v][cj ] ▷ Observe real value
Nv [cj ][l[v]]← xperiod[v][cj ]
for e = 1 to 4 do ▷ Update experts’ weights

W
l[v]+1
v [cj , e]←

W
l[v]
v [cj ,e]exp(−(xperiod[v][cj ]−x̂v [cj ])

2/c)∑4
e=1 W

l[v]
v [cj ,e]exp(−(xperiod[v][cj ]−x̂v [cj ])2/c)

end for
end for
k[v]← l[v] + 1, diffTime[v]← 0, tprevious[v]← t ▷ Reset aggregation
for all cj ∈ C do

xprevious[v][cj ]← xprevious[v][cj ] + xv [cj ]
end for

end if
return W

k[v]
v

end function

function ensemblePredict(Xv ,Wv , cj , t)
x̂experts ← [0, 0, 0, 0], x̂ensemble ← 0
for e = 1 to 4 do ▷ Experts predict

x̂experts[e]← Experte.predict(Xv [cj ],Wv [cj ], t)
end for
x̂ensemble ←Wv [cj ] · x̂experts ▷ Ensemble predicts
return x̂ensemble

end function

function main( )
for all (di, ti) ∈ D do

Vdi ← features(di)
V ← sketch(Vdi , V )
for all cj ∈ C do ▷ Predict for priors and likelihoods

N̂c[cj ]← ensemblePredict(Nc,Wc, cj , ti)
for all vdi ∈ Vdi do

N̂vdi
[cj ]← ensemblePredict(Nvdi

,Wvdi
, cj , ti)

end for
end for

▷ Predict for document by eq.3.12

ĉd = argmax
cj∈C

Ptemporal(cj)
∏

i Ptemporal(vi|cj)
freqd

vi

▷ Train for priors and likelihoods
Observe nc for both classes at ti
Wc ← ensembleTrain(nc,Wc, N̂c, ti)
for all vdi ∈ Vdi do

Observe nvdi
for both classes at ti

Wvdi
← ensembleTrain(nvdi

,Wvdi
, N̂vdi

, ti)

end for
end for

end function
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as the respective predicted likelihood for the word. The temporalMNB model predicts
using the following equation:

ĉdi = argmax
c∈C

argmax
y∈{0,1}

ĉdi = argmax
c∈C

Ptemporal(c)
∏
v∈Vdi

Ptemporal(v|c)
(3.12)

Finally, the true class of the di is observed. We aggregate the observed values. When
a new aggregation period (lP ) is reached the ensemble observes the real outcome
nc(lP ), nv,c(lP ), it incurs loss and updates its weights as shown in EnsembleTrain().

3.5 Experiment Evaluation

We evaluated our approach on a real dataset from Twitter, which is related to
sentiment classification (Section 3.5.1).

The role of the sketch in feature space selection is investigated in Section 3.5.2.
The prediction accuracy is evaluated in Section 3.5.3, where we compare our approach
to several baselines, listed below:

• accumulativeMNB Bifet and Frank (2010), the original MNB for streams where
the word-class and class counts are accumulated over the stream. This is an
incremental approach, however it does not deal with drifts Spiliopoulou et al.
(2016).

• fadingMNB Wagner et al. (2015), adapts accumulativeMNB for concept drifts
by introducing a fading function that decays (the accumulated over the stream)
class counts and conditionals counts based on the recency of their observation.
The fading function depends on the decay factor λ which controls how fast the
observations age and on the aggregation period (e.g., daily vs weekly).

• aggressivefadingMNB Wagner et al. (2015), is a variation of fadingMNB that
stores the decayed counts and applies ageing over them, thus leading to faster
adaptation. The aggressivefadingMNB depends on the same parameters as
fadingMNB.

We implemented our approach in MOA, Version 2017.06 Bifet et al. (2010). For
the sketch, we used its publicly available implementation from the MOA-tweetreader
package Bifet et al. (2011). For ARIMA, we used the available Java library1. Our
implementation is available at a public repository2.

1Java TimeSeries Library: https://github.com/signaflo/java-timeseries.
2GitHub Repository:https://github.com/damianosmel/temporalMNB

https://github.com/signaflo/java-timeseries.
https://github.com/damianosmel/temporalMNB
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We employed prequential evaluation over a sliding window of 1,000 instances over
each day of the dataset. As evaluation measures, we use accuracy and kappa Bifet
and Frank (2010). Accuracy is the percentage of correctly predicted instances over
all instances of the sliding window. However, accuracy cannot indicate if the model
achieved a high value by overfitting on the current data distribution. To this end,
the kappa statistic is also employed that normalizes the model performance by that
of a chance classifier. We report on both average and standard deviation of those
measures for each sliding window of each day.

3.5.1 Datasets

TSentiment Go et al. (2009) consists of 1.6M tweets collected over a period of three
months (April 6 - June 25, 2009) annotated as positive or negative through distant
supervision using emoticons as proxies for the class labels. We preprocessed the data
set following the typical preprocessing steps for sentiment analysis [Jianqiang and
Xiaolin (2017), Angiani et al. (2016)]. Firstly, we treated negations spliting them
into two words for example we substitute “can’t” with “can not”. Then, we removed
hashtags, mentions and URLs and converted all remaining words to lowercase. We
replaced each positive emoticon with the word “EMO_POS” and each negative with
the word “EMO_NEG”. We substituted a word with repetitions of letters with the
normal writing of the word for example “cooool” to “cool”. We expanded acronyms
using the dictionary of Angiani et al. (2016). We removed punctuation, numbers and
whitespaces. Also we used stemming, keeping the common base form of each word.
Finally, we removed stop words using the list in Manning et al. (2008).

The dataset is in overall balanced (50% positive, 50% negative tweets) but the
empirical class distribution changes with time as shown in Figure 3.3 where the tweets
are aggregated on a daily basis. As we can see, at the end of the monitoring period
only the negative class is observed. This is an example of concept drift. No feature
drifts are known for this data set.
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Figure 3.3. TSentiment: Class distribution over the stream (daily aggregation).

Email data Katakis et al. (2010) consists of 1,500 emails of 913 attributes. The
task is to predict if an email is interesting or not for a given user. The authors know
the trends of drift for some words, namely “medicine”, “baseball” and “space”.

Spam data Katakis et al. (2010) consists of 9,324 emails of 500 attributes. The
task is to predict if an email is spam or ham. The authors use this data set as a
complementary to Email data set to experiment with a data set where the features
evolve smoother compared to the Email data set. For both of these data sets, we
preprocessed the data set using the same techniques as before. As these two data sets
are small we did not use the sketch component but we kept all found words. The goal
using this data set is to verify that our proposed ensemble can capture such already
known trends.

3.5.2 Sketch Evaluation

The sketch (c.f., Section 3.4.2) allows us to adapt to feature drifts in a memory-
efficient way, by controlling the number of maintained words (parameter nf ). The
adaptation rate of the sketch and consequently of the feature space depends on the
selected sketch type (baselineSketch, fadingSketch, adwinSketch). In this section
we evaluate the effect of nf (sketch size) and of the different sketch types (sketch
adaptation type).
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Sketch Size

We experimented with three different sketch sizes nf : 3,000, 5,000 and 10,000 distinct
words. We fixed the type of sketch to baselineSketch that has the lowest ability
to adapt to changes. We evaluate the impact of nf on stream classification using the
accumulativeMNB classifier.

As shown in Figure 3.4, the performance has two phases, before and after the
point of the class drift. Before class drift, the larger sketch size results to the best
performance, after change the smallest sketch size performs better. This is reasonable,
as during stable phases the larger the sketch the more frequent words are kept thus
improving the performance of the learner. However, when a change occurs, a smaller
sketch will faster forget the old words and will start maintaining more recent words.
A trade-off is nf = 5, 000, which performs decently in terms of both accuracy and
memory usage. So, for the rest of the experiments we fixed nf to 5,000 distinct words.

Figure 3.4. TSentiment: Effect of sketch size (daily aggregated stream, 1,000 in-
stances evaluation window, accumulativeMNB classifier, baselineSketch adapta-
tion type).

Sketch Adaptation Type

We evaluate the performance of the different sketch types, baselineSketch, fadingSketch and
adwinSketch, using a fixed sketch size of nf = 5, 000 words. Again, we use accumulativeMNB as
the learning model.

From the results, in Figure 3.5, we can see that the performance has again two
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phases separated by the point of class drift. Before the drift, the fadingSketch per-
forms better closely followed by the baselineSketch. After drift, adwinSketch per-
forms better, followed again by baselineSketch. The difference in the behavior
of fadingSketch and adwinSketch before and after the drift point is due to their
update rate. The adwinSketch adapts faster to changes as it replaces words which
display significant drop in their usage. On the other hand, fadingSketch downgrades
words based on their recency without counting for changes in their usage frequency.
Since we are interested in a sketch that performs decently in both times of stability
and times of change, we chose baselineSketch that was consistently the second best
performing sketch for the experiments hereafter.

Figure 3.5. TSentiment: Effect of sketch adaptation type (daily aggregated stream,
1,000 instances evaluation window, accumulativeMNB classifier, nf = 5, 000 words).

Sketch Variability

Thus far, we have evaluated the effect of sketch size and sketch adaptation type on the
performance of a stream classifier. In this section, we evaluate the sketch variability,
i.e., how the words in the sketch are replaced over the stream. Recall that due to
the memory constraint, only a fixed number of nf words can be maintained over the
stream.

To this end, we plot i) the existence of change as the percentage of instances
introducing new words over the total number of instances of the day. Moreover, we
are interested in the degree of such changes. To this end, we also plot ii) the degree of
change as the percentage of new introduced words in the documents with new words
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normalized with the length of the document and averaged over all documents with
new words. The results are shown in Figure 3.6 (blue for (i) and red for (ii)).

We can observe that approximately half of the tweets introduce new words (blue
axis) over all the course of the stream. However, the percentage of change for each
such tweet is roughly 20%, i.e one new word is found in every five words of a document
(red axis). We observe a large variability in the sketch in the beginning of the stream
(from 6/4 to 15/4), which is probably due to the instable initialization of the sketch
on 6/4. The variability scores are lower after the class drift point (Figure 3.3). A large
drop is also observed on 23/5 where we observe the smallest number of documents
introducing new words. However, the actual number of such documents is small as
we can see from Figure 3.3.

Consequently, we can state that the baselineSketch produces a feature space
that does not drastically change. Thus the resulted space can be employed by the
learning component.

Figure 3.6. TSentiment: Variability of sketch, left y axis (blue): % of tweets introduc-
ing new words per day, right y axis (red): average % new words per document over all
documents introducing new words (daily aggregated stream, baselineSketch with
nf = 5, 000 words).
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3.5.3 Performance Evaluation

Parameter Setting

Before comparing our approach to the baselines, we tuned their parameters. That is,
for the fadingMNB and the aggressivefadingMNB we tested for λ = {0.1, 1, 2} and
aggregation of second and hour based on the results of Wagner et al. (2015). The
best values for these two baselines is hourly aggregation and λ = 0.1. This means
halving the conditional count after 10 hours of observing the word.

For the ensemble, we set the aggregation period P based on two facts. First, we
intend to use value of P such that the ensemble can follow potential drifts of the
class or the word feature. Secondly, the series for the class has very short interval as
it comes by each instance but the respective series for a word has a wider interval.
Thus, we tuned the parameters to capture distinct trends using aggregation period
of P = 1 second for the class prior and P = 1 minute for the conditional counts of
each word. For the first model, Poisson, we do not need to tune parameters as it is
parameter-free. For the seasonal model, we set the sliding window history to γs = 1
week, i.e HSeasonal = 2 week, capturing seasonal events during two weeks period. As
the first two models capture long term dependencies we will select parameters for the
last two to capture short term dependencies. Thus, for the ARIMA model, we use
(p = 1, d = 1, q = 1) to capture non-stationary time dependencies, over the last 50
periods, HARIMA = 50P . Following the same intuition, with the EWMA model that
captures short time-dependencies we used a sliding window of size γe = 22 periods,
HEWMA = 22 P . We set the values for fading factors of Seasonal and EWMA equal
to αs = 0.9 and αe = 0.1 respectively, using the corresponding equations from Holt
(2004). Experimentally, running the first three days of the stream and observing the
maximum value for the class prior and the conditional count of a word we set B = 30,
consequently c̃L = 1800.

Performance

In Figure 3.7, the accuracy of the different approaches over the TSentiment dataset is
depicted. We can observe that our approach performs always better than the baselines
except for two days 23/05 and 25/05. After manual observing the distribution of
timestamps in these two days we found that on both days we had only 169 instances
having a time span of 2 minutes, on 23/05 there are instances from 18:04:32 to
18:06:34 and on 25/05 are from 10:42:48 to 10:44:22. Given our parameter selection,
the ensemble samples every second for the class prior and every hour for the likelihood
of each word, all changed words found in these days cannot be used for learning and
consequently for their prediction the Laplace correction is used. From Figure 3.6, we
can observe that the percentage of documents with changed words is close to 50%
and 56% and the average number of changed words in these documents is close to
2 out of 10. Thus, in addition having words with short life span, the half of the
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documents introduce new words which again span a short period of time not allowing
the ensemble to be used for prediction. On the contrary, a method that the update
of the model for a word is per instance, and not per aggregation period, should not
show this drop in accuracy. This is true for the other two competitive baselines, the
accumulativeMNB and fadingMNB.

Figure 3.7. TSentiment: Accuracy over the stream for the different methods.(daily
aggregated stream, 1,000 instances evaluation window, baselineSketch, nf = 5, 000
words)

We also plot the kappa measure in Figure 3.8 that normalizes the accuracy of the
classifier with that of a chance predictor. Again, our approach outperforms the rest
of the approaches over the stream, with the only exception of one day (25/05). This
is caused because the time span of instances is shorter than the sampling rate of the
ensemble as previously explained.
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Figure 3.8. TSentiment: Kappa over the stream for the different methods.(daily ag-
gregated stream, 1,000 instances evaluation window, baselineSketch, nf = 5, 000
words)

To check the statistical significance of our findings, we performed the McNemar’s
test3. We found that temporalMNB makes different predictions compared to the best
baseline, accumulativeMNB, significantly with p < .001.

3.5.4 Efficiency

The running times for the different methods are presented in Table 3.1. Our approach
is 713 times slower for total learning per instance comparing to the accumulativeMNB base-
line; this is due to the employment of four different predictors for the ensemble. How-
ever, our approach can still perform at modest speed with an average of 2.53 · 10−2
seconds per instance for the total learning process. Finally, the needed main memory
to run this algorithm for the TSentiment is maximum 20 GB.

Method Training Testing Total

accumulativeMNB 4.85 · 10−5 (1) 1.67 · 10−5 (1) 6.53 · 10−5 (1)
fadingMNB 7.14 · 10−6 (0.1) 2.31 · 10−5 (1.3) 3.03 · 10−5 (0.5)

aggressivefadingMNB 9.66 · 10−6 (0.2) 2.04 · 10−5 (1.2) 3.01 · 10−5 (0.5)
temporalMNB 8.34 · 10−5 (1.72) 2.52 · 10−2 (1, 508.9) 2.53 · 10−2 (387.4)

Table 3.1. Execution times per instance in seconds and relative times compared to
the accumulativeMNB in parenthesis.

3McNemar’s test: https://en.wikipedia.org/wiki/McNemar’s_test.

https://en.wikipedia.org/wiki/McNemar's_test
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3.5.5 Ensemble Validity

Parameter Setting

Compared to the previous data set we note that this data set does not have time
stamps so we assume periods over number of instances. Then, we tuned the pa-
rameters of the baselines. For the fadingMNB and aggressivefadingMNB, we found
λ = 2.0 and λ = 0.1 over a period of 50 instances for the Email and Spam data sets
respectively. We also tuned the parameters for temporalMNB . We found the same
parameters for both data sets. For both the class prior and the conditional counts of
words we use P = 2 instances. The Poisson model is parameter-free. For the seasonal
model, we set the sliding window history to γs = 2 instance groups, i.e HSeasonal = 2
groups, where an instance group is 25P instances. For the ARIMA model, we used
(p = 1, d = 1, q = 1) to capture non-stationary time dependencies, over the last 150
periods, HARIMA = 150 P . For the EWMA model, we used a sliding window of size
γe = 22 periods, HEWMA = 22 P . We set the values for fading factors of Seasonal
and EWMA equal to αs = 0.9 and αe = 0.1 respectively, using the corresponding
equations from Holt (2004). Experimentally, running the first instances of the stream
and we observed the maximum value for the class prior and the conditional count of
a word we set B = 2 and B = 6, consequently c̃L = 8 and c̃L = 72 for prior and the
conditional count respectively.

Performance

We plot the accuracy and kappa measure every 50 instances in order to be compared
to the evaluation of the original research work of Katakis et al. (2010). The accuracy
plots are shown in Figure 3.9. We can observe that the ensemble achieves compet-
itive results for both data sets. For the Email data set the temporalMNB cannot
achieve the best results as it uses experts of sliding windows and this data set con-
tains abrupt class changes. However, after an abrupt class change, for example at
the batch of 350 instances, the ensemble recovers to its normal accuracy after two
batches of instances. For the Spam data set which has a more gradual class change
the temporalMNB achieved better performance competitive to fadingMNB.
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Figure 3.9. Email: Accuracy of batches of 50 instances over the stream.

Figure 3.10. Spam: Accuracy of batches of 50 instances over the stream.

Validity

As for the Email data set the authors know the trends of three words, “medicine”,
“space” and “baseball”, we aim to validated the first stated theorem 2. To this end, we
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plotted the observed value and the predicted values of the best single expert (ARIMA)
and of the ensemble for “medicine” and “space” as shown in the Figure 3.11. From
this figure, we observe that truly the ensemble follows the best single expert, and the
observed value, in an optimal way much lower than the given upper clnM = 99.8.

(a) “Medicine”. (b) “Space”.

Figure 3.11. Email: Observed and predicted conditional counts for the words
“medicine” and “space” by the best single expert and the ensemble. The positive
y-axis shows the counts for the positive class and the negative for the negative class.

3.6 Conclusion

To sum up, to answer our first research question, we have proposed a method to
tackle concept and feature drift using two components. The first component is a sketch
to maintain an updated feature space over the stream. The second is an ensemble to
average out potential different trends of a feature. For the average out mechanism,
we can guarantee that we can find the best single or probabilistic combination of
trends representing the drift of each feature. Our experiments on textual streams
demonstrated that our approach achieves competitive results compared to baselines.
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dom2vec: Assessable domain embeddings and

their use for protein prediction tasks

In this chapter we present our contributions made for the second research question
RQ2, defined in 1.2.2: how we can devise protein embeddings that can be intrinsically
evaluated in a quantitative manner? Can such embeddings outperform established
sequence embeddings? What is the minimum amount of training data to observe no
performance gains for the embeddings use?

Predicting biological properties of unseen proteins is shown to be improved by the
use of protein sequence embeddings. However, these sequence embeddings have the
caveat that biological metadata do not exist for each amino acid, in order to measure
the quality of each unique learned embedding vector separately. Therefore, current
sequence embedding cannot be intrinsically evaluated on the degree of their captured
biological information in a quantitative manner. We address this drawback by our
approach, dom2vec, by learning vector representation for protein domains and not
for each amino acid base, as biological metadata do exist for each domain separately.
To perform a reliable quantitative intrinsic evaluation in terms of biology knowledge,
we selected the metadata related to the most distinctive biological characteristics of
a domain, which are its structure, enzymatic, and molecular function.

Notably, dom2vec obtains an adequate level of performance in the intrinsic as-
sessment—therefore, we can draw an analogy between the local linguistic features in
natural languages and the domain structure and function information in domain archi-
tectures. Moreover, we demonstrate the dom2vec applicability on protein prediction
tasks, by comparing it with state-of-the-art sequence embeddings in three downstream
tasks. We show that dom2vec outperforms sequence embeddings for toxin and en-
zymatic function prediction and is comparable with sequence embeddings in cellular
location prediction.

57
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4.1 Introduction

A primary way in which proteins evolve is through rearrangement of their func-
tional/structural units, known as protein domains Moore et al. (2008); Forslund and
Sonnhammer (2012). The domains are independent folding and functional modules,
and thus they exhibit conserved sequence segments. Prediction algorithms exploited
this information and used, as input features, the domain composition of a protein
for various tasks. For example, Chou and Cai (2002) classified the cellular location,
and Forslund and Sonnhammer (2008); Doǧan et al. (2016) predicted the associated
Gene Ontology (GO) terms. There exist two ways to represent domains; either by
the linear order in a protein, domain architectures Scaiewicz and Levitt (2015), or
by a graph where nodes are domains and edges connect domains that co-exist in a
protein Moore et al. (2008); Forslund and Sonnhammer (2012).

Moreover, Yu et al. (2019) investigated whether the domain architectures had
grammar as a natural spoken language. They compared the bi-gram entropy of do-
main architectures for Pfam domains Sonnhammer et al. (1998) to the respective
entropy of the English language, showing that although it was lower than the English
language, it was significantly different from a language produced after shuffling the
domains. Prior to this result, methods had exploited the domain architecture repre-
sentation to various applications, such as fast homology search Terrapon et al. (2013)
and retrieval of similar proteins Marchler-Bauer et al. (2016).

Word embeddings are unsupervised learning methods which have, as input, large
corpora, and where they output a dense vector representation of words contained in
the sentences of these documents based on the distributional semantic hypothesis,
that is, the meaning of a word can be understood by its context. Thus, a word vector
represents local linguistic features, such as lexical or semantical information, of the
respective word. Several methods to train word embeddings have been established,
for example, Collobert et al. (2011); Mikolov et al. (2013a); Pennington et al. (2014).
These representations have been shown to hold several properties, such as analogy
and grouping of semantically similar words Mikolov et al. (2013b); Drozd et al. (2016).
Importantly, these properties are learned without the need of a labeled data set. Word
embeddings are currently the mainstream input for neural networks in the Natural
Language Processing (NLP) field, as firstly, they reduce the feature space, compared
to 1-hot representation, and secondly, they provide word features that encapsulate
relations between words based on linguistic features. The use of word embeddings
improved the performance on most of the tasks, such as sentiment analysis or Named
Entity Recognition (NER) Attardi et al. (2015).

Various methods used to create embeddings for proteins have been proposed As-
gari and Mofrad (2015); Yang et al. (2018); Bepler and Berger (2019); Asgari et al.
(2019); Heinzinger et al. (2019); Alley et al. (2019); Buchan and Jones (2020). ProtVec
fragmented the protein sequence in 3-mers for all possible starting shifts, then learned
embeddings for each 3-mer and represented the respective protein as the average of its
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constituting 3-mer vectors Asgari and Mofrad (2015). SeqVec utilized and extended
the Embeddings from Language Models (ELMo) Peters et al. (2018) to learn a dense
representation per amino acid residue, resulting in matrix representations of proteins,
created by concatenating their learned residue vectors Heinzinger et al. (2019).

Focusing on their word segmentation, we note that learning embeddings for each
amino acid or 3-mer may not always reflect evolutionary signals. That is, a pair of
proteins with low sequence similarity is still a member of the same protein super-
family, preserving similar function Loewenstein et al. (2009).

The previous embedding approaches evaluated the learned representations intrin-
sically, in a qualitative manner. They averaged out the whole protein amino acid
embeddings to compute the aggregated vector. Then, known biological characteris-
tics of proteins are used, such as biophysical, chemical, structural, enzymatic, and
taxonomic, as distinct colors in a reduced 2-D embedding space. In such visualiza-
tions, previous embedding approaches reported the appearance of distinct clusters of
proteins, each consisting of proteins with similar properties. For downstream evalua-
tion, they measured the improvement of performance in downstream tasks.

Concerning the qualitative intrinsic evaluation, two caveats exist. First, researchers
averaged out the protein amino acid vectors, where consequently, this qualitative eval-
uation is not related in a straightforward way with each learned embedding vector
trained per amino-acid. In addition, this averaging-out operation may not reveal the
function of the most important sites of a protein, meaning the comparative result holds
a low degree of biological significance. Second, we argue that the presented qualitative
evaluations lack the ability to assess different learned embeddings in a sophisticated
manner. This is because there is no systematic way to quantitatively compare 2-D
plots of reduced embedding spaces, each produced by a protein-embedding method
in investigation.

Indeed for word embeddings, there has been an increase in methods to evaluate
word representations intrinsically and in a quantitative manner, such as Schnabel et al.
(2015); Lastra-Díaz et al. (2019). Having such evaluation metrics allows us to validate
the knowledge acquired per each word vector and use the best-performing space for
downstream tasks. However, intrinsic evaluations of current amino acid embedding
representations are prevented by incomplete biological metadata at amino acid level,
for all disposed proteins, in the UniProtKnowledgeBase (UniProtKB) The UniProt
Consortium (2017).

To address this limitation in quantitative intrinsic evaluations of protein sequence
embeddings, we present our approach with five major contributions:

1. Our dom2vec approach is developed, in which words are InterPro annotations
and sentences are the domain architectures. Then, we use the word2vec method
to learn the embedding vector representation for each InterPro annotation.

2. A quantitative intrinsic evaluation method is established based on the most sig-
nificant biological information for a domain—its structure and function. First,
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we evaluated the learned embedding space for domain hierarchy comparing
known domain parent–children relations to cosine similarity of the parent do-
main. Then, we investigated the performance of a nearest neighbor classifier,
Cd

nearest, to predict the secondary structure class provided by SCOPe secondary
structure class Fox et al. (2013) and the Enzyme Commission (EC) primary
class. Finally, we equally examined the performance of the Cd

nearest classifier to
predict the GO molecular function class for three example model organisms and
one human pathogen.

3. Strikingly, we observed that Cd
nearest reaches adequate accuracy, compared to

Cd
nearest on randomized domains vectors, for secondary structure, enzymatic

function, and GO molecular function. Thus, we hypothesized an analogy be-
tween word embedding clustering by local linguistic features and protein do-
mains clustering by domain structure and function.

4. To evaluate our embeddings extrinsically, we inputted the learned domains em-
beddings to simple neural networks and compared their performance with state-
of-the-art protein sequence embeddings in three full-protein tasks. We surpassed
both SeqVec and ProtVec for the toxin presence and enzymatic primary func-
tion prediction task, and we reported comparable results in the cellular location
prediction task.

5. The pre-trained protein domain embeddings are available online at https://doi.
org/10.25835/0039431, to be used by the research community.

The remainder of the paper is organized as follows: related work on protein embed-
dings is reviewed in Section 4. The methodology used to train and evaluate dom2vec
embeddings is described in Section 4. The intrinsic and extrinsic evaluation results
are presented in Section 4.3.5. In Section 4.4.7, we conclude.

4.2 Background

Current studies on protein embeddings are evaluated intrinsically and extrinsi-
cally. In extrinsic evaluation, prediction measures, like performance on a supervised
learning task, are most commonly used to evaluate the quality of embeddings. For ex-
ample, the ProtVec work Asgari and Mofrad (2015) evaluated their proposed embed-
dings extrinsically by measuring their performance in predicting protein family and
disorder. SeqVec Heinzinger et al. (2019) assessed their embeddings extrinsically by
measuring performance on protein-level tasks, prediction of sub-cellular localization
and water solubility, and residue-level tasks, and prediction of the functional effect of
single amino acid mutations. However, extrinsic evaluation methods are based on a
downstream prediction task, thus not measuring the biological information captured
by each learned subsequence vector separately.

https://doi.org/10.25835/0039431
https://doi.org/10.25835/0039431
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Previous studies evaluated the quality of their sequence embeddings intrinsically,
by averaging the amino acid embedding vectors per protein and then drawing t-SNE
visualizations Maaten and Hinton (2008) using distinct biological labels of a protein
as colors, such as taxonomy, SCOPe, and EC primary class. However, this qualita-
tive assessment hinders the selection of the best-performing embeddings, irrespective
of the downstream task, because there is not a sophisticated method to rank 2-D
visualizations.

Nevertheless, in NLP, the quality of a learned word embedding space is often
evaluated intrinsically in a quantitative manner by considering relationships among
words, such as analogies. Compared to qualitative evaluation, quantitative intrinsic
evaluation enables assessment of the degree of biological information captured by the
embeddings. This advantage allows us to choose the best set of parameters to create
the embeddings that contain the highest degree of meaningful information without
choosing a specific downstream task.

From all discussed protein embeddings studies, only Buchan and Jones (2020) de-
veloped quantitative intrinsic evaluation methods. To benchmark their Pfam domain
embeddings, they used the following three experiments. First, they benchmarked the
performance of the nearest neighbor classifier predicting the three main GO ontologies
of a Pfam using its embedding vector. Second, they assessed the Matthew’s corre-
lation coefficient Matthews (1975) between Pfam embedding and first-order Markov
encodings. They also assessed the vector arithmetic to compare GO conceptual binary
assignment—for example, one pair was intracellular (GO:0005622) vs. extracellular
(GO:0005615).

Our approach differs from Buchan and Jones (2020) in four main points. First, we
trained embeddings for all domain annotations of all proteins available in Interpro.
That is, we included all available InterPro annotations, consisting of super-family,
family, single domains, and functional sites, as “words” input to the word2vec method.
Therefore, we used a broader set of annotations for the whole spectrum of organ-
isms. Besides, word2vec was developed for sentences of natural languages, which
have a moderate number of words. In order to copy with this assumption for the
sentence length, we resolved overlapping and redundant annotations in order to in-
crease the number of InterPro annotations, making our input more suitable for the
word2vec method. Second, we benchmarked over the two word2vec models (CBOW and
SKIP) and their parameters for each experiment of our quantitative intrinsic evalu-
ation step, and consequently, we used our assessment to choose the best embedding
space. Third, we established three unique intrinsic evaluation benchmarks for do-
main hierarchy, SCOPe secondary structure, and EC primary class. Lastly, our ap-
proach was also extrinsically evaluated on three downstream tasks in order to show
that dom2vec embeddings can surpass or be comparable to state-of-the-art protein
sequence embeddings.
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4.3 Methods

In the following, the methodology for each part of our approach is explained. A
conceptual summary is presented in Figure 4.1.

Figure 4.1. Summary of our approach divided in four parts, building two forms of
domain architectures, training domain embeddings, performing intrinsic and extrinsic
evaluation of dom2vec embeddings.

4.3.1 Building Domain Architectures

The InterPro database contains functional annotations for super-family, family, and
single domains, as well as functional protein sites. Hereafter, we will refer to all such
functional annotations as InterPro annotations. Furthermore, we will denote by do-
main architectures the ordered arrangement of domains in a protein. We consider two
distinct strategies to represent a protein based on its domain architecture, consisting
of either non-overlapping or non-redundant annotations. For both annotation types,
we insert each annotation, based on the annotation’s beginning and end, in an inter-
val tree Thit. For each entry of the Thit, we save the annotation InterPro identifier,
significance score, and length. Based on the annotation type, we apply the following
two distinct strategies to create the linear domain architectures:

Non-overlapping annotations. For each overlapping region in a protein, we
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keep the longest annotation out of all overlapping ones. Annotations of non-overlapping
regions are included.

Non-redundant annotations. For each overlapping region in a protein, we
keep all annotations with a distinct InterPro identifier. We break ties for annotations
with the equal InterPro identifier by filtering in the longest one. Similarly, we keep
annotations of non-overlapping regions.

For both annotation types, we sort the filtered-in annotations by their starting
position. Finally, following the approach of Doǧan et al. (2016), we also added the
“GAP” domain to annotate more than 30 amino acid sub-sequences, which does not
match any InterPro annotation entry.

An example of the resulting domain architectures for the Diphthine synthase pro-
tein is shown in Figure 4.2. All domains are overlapping, with the largest one colored
in blue, and the non-overlapping annotation is the single longest domain (IPR035966).
All other domains have a unique InterProID; therefore, the set of non-redundant In-
terPro annotations includes all presented domains which are sorted with respect to
their starting position, and colored in green.

Applying the previous steps for all annotated proteins produces the domain ar-
chitectures, constituting the input corpus to the following embedding module.
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Figure 4.2. Non-overlapping and non-redundant domain architectures of the Diph-
thine synthase protein.

4.3.2 Training Domain Embeddings

Given a protein, we assumed that words were its resolved InterPro annotations and
sentences were the protein domain architectures. By this assumption, we learned
task-independent embeddings for each InterPro annotation using two variants of
word2vec: a continuous bag of words and skip-gram model, hereafter denoted as
CBOW and SKIP respectively. See Mikolov et al. (2013a) for technical details on the
difference between these approaches. Through this training, each InterPro annotation
is associated with a task-independent embedding vector.
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4.3.3 Quantitative Intrinsic Evaluation

In the following, we use the metadata for the most characteristic properties of do-
mains, in order to evaluate the learned embedding space for various hyper-parameters
of word2vec. We propose four intrinsic evaluation approaches for domain embeddings:
domain hierarchy based on the family/subfamily relation, SCOPe secondary structure
class, EC primary class, and GO molecular function annotation.

We refer to the embedding space learned by word2vec for a particular set of hy-
perparameters as Vemb. The k nearest neighbors of a domain d is found by using the
Euclidean distance, and it is denoted as Cd

nearest.
To inspect the relative performance of Vemb on each of the following evaluations,

we randomized all domain vectors and ran each evaluation task. That is, we assigned
to each domain vector a newly created random vector, for each unique dimensionality
of embedding space, irrespective of all other embedding method parameters.

Domain hierarchy

InterPro defines a strict family–subfamily relationship among domains. This rela-
tionship is based on sequence similarity of the domain signatures. We refer to the
children of domain p as Sp. We use these relationships to evaluate an embedding
space, posing the following research question,

RQhierarchy: Did vectors of hierarchically close domains form clusters in the Vemb?
Evaluation We predicted the closest |Sp| domains on cosine similarity of their

vector to the parent vector, and we denote this predicted set as Ŝp. For all learned
embedding spaces, we measured their recall performance, Recallhier, defined as fol-
lows:

Recallhier =
∑
p

|Sp ∩ Ŝp|
|Sp|

. (4.1)

SCOPe Secondary Structure Class

We extracted the secondary structure of Interpro domains from the SCOPe database
and formed the following research question,

RQSCOPe: Did vectors of domains, with same secondary structure class, form
clusters in the Vemb?

Evaluation We evaluated Vemb by retrieving Cd
nearest of each domain. Then, we

applied stratified 5-fold cross-validation and measured the performance of a k-nearest
neighbor classifier to predict the structure class of each domain. The intrinsic evalu-
ation performance metric is the average accuracy across all folds, AccuracySCOPe.
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EC Primary Class

The enzymatic activity of each domain is given by its primary EC class Fleischmann
et al. (2004) and we pose the following research question,

RQEC: Did vectors of domains, with the same enzymatic primary class, form
clusters in the Vemb?

Evaluation We again evaluate Vemb using k nearest neighbors in a stratified 5-fold
cross-validation setting. The average accuracy across all folds, AccuracyEC , is again
used to quantify the intrinsic quality of the embedding space.

GO Molecular Function

For our last intrinsic evaluation, we aimed to assess Vemb using the molecular function
GO annotation. We extracted all molecular function GO annotations associated
with each domain. In order to account for differences in specificity of different GO
annotations, we always used the depth-1 ancestor of each annotation, that is, children
of the root molecular function term, GO:0003674.

Since model organisms have the most-annotated proteins, we created GO molecu-
lar function data sets for one example of prokaryote (Escherichia coli, denoted E. coli);
one example of a simple eukaryote (Saccharomyces cerevisiae, denoted S.cerevisiae);
and one complex eukaryote (Homo sapiens, denoted Human). To also assess our
embeddings for not highly annotated organisms, we included a molecular function
data set for an example of a human pathogen (Plasmodium falciparum, denoted as
Malaria). Finally, we pose the following research question,

RQGO: Did vectors of domains, with the same GO molecular function, form clus-
ters in the Vemb?

Evaluation Similarly, k nearest neighbors is used here in a stratified 5-cross-
validation setting. Average accuracy across all folds, AccuracyGO, is again used to
quantify performance.

4.3.4 Qualitative Evaluation

As a preliminary evaluation strategy, we used qualitative evaluation approaches adopted
in an existing work. To follow the qualitative approach of ProtVec and SeqVec we
also visualized the embedding space for selected domain superfamilies, to answer the
following research question,

RQqualitative: Did vectors of each domain superfamily form a cluster in the Vemb?
Evaluation First, we added the vector of each domain in a randomly chosen

domain superfamily to an empty space. Then, we performed principle component
analysis (PCA) Pearson (1901) to reduce the space in two dimensions, and observed
the formed clusters.
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4.3.5 Extrinsic Evaluation

In addition, we assessed the learned Vemb by examining the performance change in
downstream tasks. For the three supervised tasks, TargetP, Toxin, and NEW, the
domain representations were used as input in simple neural networks. Next, our model
performance was compared to the state-of-the-art protein embeddings, ProtVec and
SeqVec.

TargetP

This data set is about predicting the cellular location of a given protein. We down-
loaded the TargetP data set provided by Emanuelsson et al. (2000), and we also used
the non-plant data set. This data set consists of 2,738 proteins accompanied by their
uniprot ID, sequence, and cellular location label, which can be nuclear, cytosol, path-
way, or signal and mitochondrial. Finally, we removed all instances with a duplicate
set of domains, resulting in a total of 2,418. This is a multi-class task, and its class
distribution is summarized in Table 4.1 (a).

Evaluation For the TargetP, we used the mc-AuROC performance metric.

Toxin

The research workGacesa et al. (2016) introduced a data set associating protein se-
quence to toxic or other physiological content. We used the hard setting, which
provides a uniprot ID, sequence, and the label toxin content or non-toxin content, for
15,496 proteins. Finally, we kept only the proteins with unique domain composition,
resulting in 2,270 protein instances in total. This is a binary task, and the class
distribution is shown in Table 4.1 (b).

Evaluation As the Toxin data set is a binary task, we used AuROC as a perfor-
mance metric.

NEW

The NEW data set Li et al. (2017) contains the data for predicting the enzymatic
function of proteins. For each of the 22,618 proteins, the data set provides the se-
quence and the EC number class. The primary enzyme class, the first digit of an EC
number, is our label on this prediction task, resulting in a multi-class task. Finally,
we removed all instances with duplicate domain composition, resulting in a total of
14,434 protein instances. The possible classes are six, and the class distribution is
shown in Table 4.1 (c).

Evaluation The NEW data set is a multi-class task; thus, we used mc-AuROC
as a performance metric.
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Location No. of proteins
Nuclear 1 072

Cytosolic 405
Pathway/Signal 605
Mitochondrial 304

(a) TargetP

Toxicity No. of proteins
Toxin 1 747

Non toxin 523

(b) Toxin

EC Primary class No. of proteins
Oxidoreductases 2 234

Transferases 5 232
Hydrolases 4 099

Lyases 1 124
Isomerases 731

Ligases 1 124

(c) NEW

Table 4.1. Class summary for downstream tasks. a: TargetP, b: Toxin and c: NEW

Data Partitioning

We divided each data set into 70/30% train and test splits. To perform model selec-
tion, we created inner three-fold cross-validation sets on the train split.

Out-of-vocabulary experiment We observed that the performance of classifiers
depending on protein domains was highly dependent on the out-of-vocabulary (OOV)
domains, as first discussed in Luong et al. (2015). OOV domains are all the domains
contained in the test set, but not in the train. For TargetP, Toxin, and NEW, we
observed that approximately 60%, 20%, and 20% of test proteins contained at least
one OOV domain, respectively.

For the TargetP containing the highest OOV, we experimented to compensate for
the high degree of OOV. We split the test set into shorter sets by an increasing degree
of OOV, namely 0%, 10%, 30%, 50%, 70%, and 100%. Then, we trained models for
the whole train set and benchmarked the performance on each of these test subsets.

Generalization experiment For the Toxin and NEW data sets, experiencing
low OOV, we sought to investigate the generalization of the produced classifier. We
increased the number of training examples that the model was allowed to learn from
and we benchmarked always in the entire test set. To do so, we created training splits
of size 10%, 20%, and 50% of the whole train set. To perform significance testing, we
trained on 10 random subsamples for each training split percentage, and then tested
on the separate step set. We used the paired sample t-test, the Benjamini–Hochberg
multiple-test, to compare the performance between a pair of classifiers on the test set.

Simple Neural Models for Prediction

We consider a set of simple, well-established neural models to combine the InterPro
annotation embeddings for each protein to perform downstream tasks, that is, for
extrinsic evaluation tasks. In particular, we use FastText Joulin et al. (2017), convo-
lutional neural networks (CNNs) LeCun et al. (1998), and recurrent neural networks
(RNNs) with long- and short-term memory (LSTM) cells Hochreiter and Schmidhuber
(1997) and bi-directional LSTMs.
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4.4 Experimental Evaluation

4.4.1 Building Domain Architecture

We used the domain hits for UniProt proteins from InterPro version 75, contain-
ing 128,660,257 proteins with an InterPro signature, making up 80.9% of the total
UniProtKB proteome (version 2019_06). For all these proteins, we extracted the non-
overlapping and non-redundant sequences, which we process in the next section. The
number of unique non-overlapping sequence was (35,183 + 1), where the added “GAP”
domain and non-redundant domain was (36,872 + 1) plus the “GAP”. Comparing this
to the total number of domains in InterPro version 75, which was 36,872, we observed
that non-overlapping InterPro annotations captured 95.42%, and the non-redundant
domain captured 100% of the InterPro annotation entries. To enable visual com-
parison of the created type of domain architectures versus the downloaded InterPro
annotations, in Figure 4.2 we illustrate the non-overlapping and non-redundant do-
main architectures of the Diphthine synthase protein. This same protein, Diphthine
synthase, was picked as an example illustration for annotations in the latest InterPro
work Mitchell and et al. (2019).

4.4.2 Training Domain Embeddings

Domain Architectures

Before applying the word2vec method, we examined the histograms of the number of
non-overlapping and non-redundant InterPro annotations per protein in Figure 4.3.
We observed that these distributions were long-tailed with modes equal to 1 and
3, respectively. Then, we used both CBOW and SKIP algorithms to learn domain
embeddings. We used the following parameter sets. Based on the histograms, we
selected the context window parameter for the word to be 2 or 5, w = {2, 5}. For
the number of dimensions, we used common values from the NLP literature, dim =
{50, 100, 200}. We trained the embeddings from 5 to 50 epochs with step size 5 epochs
ep = {5, 10, 15, . . . , 50}. Finally, all other parameters were set to their default values.
For example, the negative sampling parameter was set to default, ng = 5.

4.4.3 Quantitative Intrinsic Evaluation

In the following, we evaluated each instance of learned embedding space Vemb for
both non-overlapping and non-redundant representations of domain architectures.
An instance of Vemb space is the embedding space learned for a combination of the
product annotation_type ·w ·dim · ep. Consequently, the total number of embedding
space instances is |annotation_type| · |w| · |dim| · |ep| = 2 · 2 · 3 · 10 = 120. Let V i

emb
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denote such an embedding space instance. In the following subsection, we evaluated
each V i

emb for domain hierarchy, secondary structure, enzymatic primary class, and
GO molecular function. Finally, all reported performances are shown for the best-
performing epoch value (ep).

Figure 4.3. Histograms of number of InterPro annotations per protein. (a) Non-
overlapping and (b) non-redundant InterPro annotations.

RQhierarchy: Did vectors of hierarchically close domains form clusters in the
Vemb?

For the first research question, we loaded the parent–child tree Thier, provided by
InterPro, consisting of 2,430 parent domains. Then, for each V i

emb, we compared the
actual and predicted children of each parent, and we averaged out the recall for all
parents.

From Tables 4.2, we observed that SKIP performed better overall, and the em-
beddings learned from non-redundant InterPro annotations always had better aver-
age recall values compared to the non-overlapping ones. The best-performing V i

emb

achieved average Recallhier of 0.538. We compared this moderate performance of Vemb

with the performance of the randomized spaces, which was equal to 0. We concluded
that our embedding spaces greatly outperformed each randomized space for domain
hierarchy relation. Therefore, we admitted that the majority of domains of the same
hierarchy were placed in close proximity in the embedding space.
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(a) Recallhier for non-overlapping InterPro annotations

Model⧹ Dimension dim=50 dim=100 dim=200
CBOW,w=2 0.242 (ep=15) 0.259 (ep=20) 0.263 (ep=15)
CBOW,w=5 0.242 (ep=45) 0.252 (ep=30) 0.25(ep=15)
SKIP,w=2 0.287 (ep=20) 0.316 (ep=30) 0.32 (ep=20)
SKIP,w=5 0.284 (ep=20) 0.302 (ep=30) 0.311 (ep=30)
random 0 0 0

(b) Recallhier for non-redundant InterPro annotations

Model⧹ Dimension dim=50 dim=100 dim=200
CBOW, w=2 0.406 (ep=10) 0.412 (ep=10) 0.414 (ep=5)
CBOW, w=5 0.405 (ep=30) 0.402 (ep=35) 0.382 (ep=10)
SKIP, w=2 0.512 (ep=5) 0.53 (ep=5) 0.538 (ep=5)
SKIP, w=5 0.507 (ep=5) 0.525 (ep=5) 0.524 (ep=5)

random 0 0 0

Table 4.2. Intrinsic evaluation performance for domains hierarchy. a: Average
Recallhier for non-overlapping InterPro annotations b: Average Recallhier for non-
redundant InterPro annotations. For all sub-tables, results shown for the best per-
forming ep value; if k not shown then k=2. Best performance is shown in bold case.

The histogram of average recall for best performing embedding space is shown at
Figure 4.4 (a). We observe that the embeddings space brought close domains with
unknown family-subfamily relation for almost the one third of the parent domains
(827 out of 2 430).

To diagnose the reason for this moderate performance, we plotted the histogram
of the number of children for each parent having recall 0, Figure 4.4 (b). We observed
that most of these parents had only one child. Consequently, the embedding space
should have been very homogeneous, for each of these parent child relation, in order
to acquire better recall than 0.
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Figure 4.4. Diagnostic plots for domain hierarchy assessment task. (a) Recallhier his-
togram for SKIP, w=2, dim=200, ep=5 for non-redundant InterPro annotationsand
(b) histogram of number of children for parents with Recallhier=0.

RQSCOPe: Did vectors of domains with the same secondary structure class
form clusters in the Vemb?

We extracted the SCOPe class for each InterPro domain. This resulted in 25,196
domains with an unknown secondary structure class, 9,411 with a single secondary
structure class, and 2,265 domains with more than one assigned class (multi-label).
For clarity, we removed all multi-label and unknown instances, resulting in 9,411
single-labeled instances. The class distribution of the resulting data set is shown in
Table 4.3.

We measured the performance of the Cd
nearest classifier in each V i

emb to examine the
homogeneity of the space with respect to the SCOPe class. We split the 9,411 domains
in 5-fold stratified cross-validation sets. To test the change in prediction accuracy for
an increasing number of neighbors, we used different sets of neighbors, namely, k =
{2, 5, 20, 40}. We summarized the results for the best-performing Cd

nearest, which was
k = 2 for non-redundant InterPro annotations in Table 4.3c. We show the respective
table for non-overlapping InterPro annotations in Table 4.3b. We compared these
accuracy measurements to the respective ones of the random spaces, and we found
that the lowest accuracy values, achieved for (non-overlapping, CBOW, w = 5, dim
= 200, ep = 15) are twice as high as the accuracy values of the random spaces for all
possible dimensions.

Consequently, we concluded that domain embeddings of the same secondary struc-
ture class formed distinct clusters in the learned embedding space.
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(a) SCOPe classes

SCOPe class No. of domains
a 1 868
b 1 806

a|b 2 303
a+b 2 320

multi-domain 304
membrane/cell 309

small 501

(b) AccuracySCOPe for non-overlappping InterPro annotations

Model⧹ Dimension dim=50 dim=100 dim=200
CBOW,w=2 50.01(ep=30) 50.69(ep=25) 50.45(ep=20)
CBOW,w=5 49.59(ep=25) 50.03(ep=25) 48.82(ep=15)
SKIP,w=2 51.83(ep=30) 51.79(ep=20) 51.78(ep=15)
SKIP,w=5 51.54(ep=35) 51.65(ep=15) 51.34(ep=15)
random 22.75 (k=40) 24.18 (k=40) 23.39 (k=40)
(c) AccuracySCOPe for non-redundant InterPro annotations

Model⧹ Dimension dim=50 dim=100 dim=200
CBOW, w=2 77.09 (ep=5) 76.35 (ep=5) 75.77 (ep=5)
CBOW, w=5 78.15 (ep=5) 76.94 (ep=5) 76.84 (ep=5)
SKIP, w=2 84.42 (ep=45) 84.42 (ep=40) 84.08 (ep=30)
SKIP, w=5 84.56 (ep=25) 84.06 (ep=45) 83.72(ep=10)

random 23.39 (k=40) 23.49 (k=40) 22.76 (k=20)

Table 4.3. SCOPe evaluation. a: SCOPe class summary, b-c: Cd
nearest average ac-

curacy over all folds, AccuracySCOPe, for (b) non-overlapping and (c) non-redundant
InterPro annotations. Default k=2, best performance value shown in bold case.

RQEC: Did vectors of domains, with the same enzymatic primary class,
form clusters in the Vemb?

We processed the EC primary class, resulting in 29,354 domains with unknown EC,
7,248 domains with only one EC, and 721 with more than one EC. As before, we
removed all multi-label and unknown instances, leaving 7,428 domains with known
EC. We augmented a domain instance with its vector representation for each V i

emb, and
then we used Cd

nearestto predict the EC label. See Table 4.4 for the class distribution
of the EC task.

We reported the average AccuracyEC obtained in embedding spaces learned using
non-overlapping and non-redundant InterPro annotations in Table 4.4. We compared
these accuracy measurements to the respective ones of the random spaces. We found
that the minimum average AccuracyEC value was equal to 60.51 and was achieved
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using (non-overlapping, CBOW, w = 5, dim = 200, ep = 15), presented in Sub-
table 4.4b. That value was approximately twice as large as the accuracy values of
the random spaces for all possible dimensions; the maximum average AccuracyEC for
random space with dim = 100 was 32.64.

Hence, we were able to accept that domain embeddings of the same EC primary
class formed distinct clusters in a learned embedding space.

(a) EC classes

EC primary class No. of domains
Oxidoreductases 1 102

Transferases 2 490
Hydrolases 2 190

Lyases 524
Isomerases 318

Ligases 448
Translocases 176

(b) AccuracyEC for non-overlapping InterPro annotations

Model⧹ Dimension dim=50 dim=100 dim=200
CBOW,w=2 61.23(ep=10) 61.33(ep=10) 60.66(ep=15)
CBOW,w=5 61.22(ep=20) 60.51(ep=10) 60.61(ep=15)
SKIP,w=2 63.56(ep=10) 63.92(ep=20) 62.58(ep=20)
SKIP,w=5 62.47(ep=10) 63.44(ep=10) 62.94(ep=15)
random 31.51 (k=40) 32.64 (k=40) 31.68 (k=20)
(c) AccuracyEC for non-redundant InterPro annotations

Model⧹ Dimension dim=50 dim=100 dim=200
CBOW, w=2 76.88(ep=5) 75.85(ep=5) 75.39(ep=5)
CBOW, w=5 80.89(ep=5) 79.89(ep=5) 77.16(ep=5)
SKIP, w=2 89.47(ep=35) 89.06(ep=40) 88.86(ep=5)
SKIP, w=5 90.85(ep=30) 90.41(ep=15) 90.2(ep=5)

random 33.62 (k=40) 32.06 (k=40) 32.28 (k=40)

Table 4.4. EC evaluation. a: EC class summary, b-c: average Cd
nearest accuracy

over all folds, AccuracyEC , for (b) non-overlapping and (c) non-redundant InterPro
annotations. Default value of neighbors k=2, best accuracy shown in bold case.

RQGO: Did vectors of domains with the same GO molecular function form
clusters in the Vemb?

We parsed the GO annotation file of InterPro to extract first-level GO molecular
function for domains for the four organisms. We followed the same methodology to
examine the homogeneity of a Vemb with respect to GO molecular function annota-
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tions. For each V i
emb, we augmented each domain by its vector and its GO label,

and we classified each domain using Cd
nearest. As before, we used 5-fold stratified

cross-validation for evaluation. In our experiments, we varied the number of neigh-
bors k = {2, 5, 20, 40} to test its influence on the change of performance. For space
limitations, we summarized the performances showing only the best average accuracy
over the number of neighbors.

For Malaria, the best average accuracy was 76.86 (non-redundant, SKIP, w =
5, dim = 100, ep = 40) and the minimum was 56.94 (non-overlapping, CBOW, w
= 5, dim = 100, ep = 10), presented in Table 4.5 (b-c) respectively. We compared
this moderate minimum accuracy to the maximum level of accuracy obtained by the
randomized embedding space, which was 47.57 for dim = 200.

Therefore, we concluded that dom2vec embeddings outperformed the random
baseline by at least 10 percent.
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(a) GO classes

GO class No. of domains
Catalytic activity 676

Binding 440
Structural molecule activity 171

Transporter activity 63
Molecular function regulator 22

Transcription regulator activity 13
Cargo receptor activity 1

Molecular carrier activity 1

(b) AccuracyGO for non-overlapping InterPro annotations

Model⧹ Dimension dim=50 dim=100 dim=200
CBOW, w=2 58.2 (k=5,ep=35) 58.24(k=5,ep=5) 57.87(ep=5)
CBOW, w=5 57.87(ep=10) 56.94(ep=10) 57.1(ep=5)
SKIP, w=2 59.48(k=5,ep=10) 59.82(ep=15) 58.68(ep=10)
SKIP, w=5 60.61(ep=10) 59.01(ep=10) 59.39(ep = 5)

random 46.21(k=40) 46.62(k=40) 45.99(k=40)
(c) AccuracyGO for non-redundant InterPro annotations

Model⧹ Dimension dim=50 dim=100 dim=200
CBOW, w=2 67.33(ep=5) 64.88(ep=5) 61.13(ep=5)
CBOW, w=5 66.74(ep=5) 66.75(ep=5) 63.89(ep=5)
SKIP, w=2 75.79(ep=35) 75.64(ep=45) 74.91(ep=5)
SKIP, w=5 76.79(ep=10) 76.86(ep=40) 72.75(ep=20)

random 46.58(k=40) 46.22(k=40) 47.57(k=40)

Table 4.5. Malaria GO molecular function evaluation. a: GO class summary, b-c:
Average Cd

nearest accuracy over all folds, AccuracyGO, for non-overlapping and non-
redundant InterPro annotations, whenever k is not shown k=2, best shown in bold
case.

For E. coli, the best accuracy score was 81.72 (non-redundant, SKIP, w = 5, dim
= 50, ep = 5), and the minimum was 67.34 (non-overlapping, CBOW, w = 2, dim
= 200, ep = 5), shown in Table 4.6 (b-c) respectively. Compared with the random
baseline, achieving a best accuracy score of 64.46, we observed that, again, dom2vec
was able to surpass the random baseline.
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(a) GO classes

GO class No. of domains
Catalytic activity 1 565

Binding 476
Transporter activity 211

Structural molecule activity 117
Transcription regulator activity 39
Molecular function regulator 15

Molecular carrier activity 3
Translation regulator activity 1
Molecular transducer activity 1

(b) AccuracyGO for non-overlapping InterPro annotations

Model⧹ Dimension dim = 50 dim = 100 dim = 200
CBOW, w=2 67.66(k=5,ep=30) 67.46(k=20,ep=5) 67.34(k=20,ep=5)
CBOW, w=5 67.78(k=5,ep=5) 67.46(k=20,ep=5) 67.34(k=20,ep=5)
SKIP, w=2 68.15(k=5,ep=5) 67.54(k=5,ep=5) 67.75(k=20,ep=5)
SKIP, w=5 69.1(k=5,ep=5) 67.82(k=5,ep=5) 68.15(k=5,ep=5)

random 64.46(k=40) 64.46(k=40) 64.46(k=40)
(c) AccuracyGO for non-redundant InterPro annotations

Model⧹ Dimension dim=50 dim=100 dim=200
CBOW, w=2 71.41(k=5,ep=5) 68.45(k=5,ep=5) 67.87(ep=5)
CBOW, w=5 74.95(ep=5) 71.69(ep=5) 68.91(ep=5)
SKIP, w=2 81.27(ep=5) 80.32(ep=5) 80.36(ep=5)
SKIP, w=5 81.72(ep=5) 81.64(ep=5) 80.77(ep=5)

random 64.38(k=40) 64.46(k=40) 64.38(k=40)

Table 4.6. E.coli GO molecular function evaluation. a: GO class summary, b-
c: Average Cd

nearest accuracy over folds, AccuracyGO, for non-overlapping and non-
redundant InterPro annotations. Whenever k is not shown k=2, best shown in bold
case.

For Yeast, the best accuracy score was 75.10 (non-redundant, SKIP, w = 5, dim =
50, ep = 50), and the minimum accuracy value was 59.82 (non-overlapping, CBOW,
w = 5, dim = 50, ep = 50), presented in Table 4.7 (b,c) respectively. We contrasted
this to the maximum accuracy level obtained in a random space, which was 53.73
(achieved for dim = 100), to report that dom2vec vectors in V E.coli

emb captured GO
molecular function classes at a much higher degree than randomized vectors.
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(a) GO classes

GO class No. of domains
Catalytic activity 1 177

Binding 585
Structural molecule activity 208

Transporter activity 112
Transcription regulator activity 46
Molecular function regulator 40
Translation regulator activity 2
Molecular transducer activity 2

Molecular carrier activity 1
Cargo adaptor activity 1

(b) AccuracyGO for non-overlapping InterPro annotations

Model⧹ Dimension dim=50 dim=100 dim=200
CBOW, w=2 60.05(k=20,ep=5) 59.87(k=20,ep=5) 59.87(k=20,ep=5)
CBOW, w=5 59.82(k=20,ep=15) 60.24(k=20,ep=5) 60.70(k=20,ep=5)
SKIP, w=2 60.74(k=5,ep=10) 60.79(k=5,ep=10) 61.53(k=5,ep=5)
SKIP, w=5 61.38(k=5,ep=10) 60.75(k=20,ep=5) 60.61(k=20,ep=10)

random 53.36(k=40) 53.64 (k=40) 53.64 (k=40)
(c) AccuracyGO for non-redundant InterPro annotations

Model⧹ Dimension dim=50 dim=100 dim=200
CBOW, w=2 64.37(k=5,ep=5) 64.87(k=5,ep=5) 62.4(k=5,ep=5)
CBOW, w=5 67.17(k=5,ep=50) 65.11(k=5,ep=5) 63.31(k=5,ep=5)
SKIP, w=2 73.36(k=5,ep=20) 73.86(k=5,ep=5) 72.29(k=5,ep=5)
SKIP, w=5 75.1(k=5,ep=50) 74.1(k=5,ep=10) 73.02(k=5,ep=5)

random 53.59(k=40) 53.73(k=40) 53.18(k=40)

Table 4.7. S.cerevisiae GO molecular function evaluation. a: GO class summary,
b-c: Average Cd

nearest accuracy over folds,AccuracyGO, for non-overlapping and non-
redundant InterPro annotations, best shown in bold

For Human, the best average performance for non-redundant InterPro annotations
are shown in Table 4.8. The best average accuracy level was 75.96, scored by 2-NN
for V human

emb (non-redundant, SKIP, w = 5, dim = 50, ep = 40). The minimum
accuracy value was 57.7, obtained by (non-overlapping, CBOW, w = 2, dim = 50,
ep = 10) shown in Table 4.8b. The best performance of a random space was 37.36
(Table 4.8b). We compared the minimum accuracy level of trained spaces with the
best of the random spaces. We found that the minimum accuracy achieved in the
dom2vec spaces was 20 percentage values higher than the best performance of the
random space.
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(a) GO classes

GO class No. of domains
Catalytic activity 1 945

Binding 1 583
Transporter activity 377

Molecular transducer activity 355
Structural molecule activity 262

Transcription regulator activity 203
Molecular function regulator 168

Cargo receptor activity 9
Molecular carrier activity 1
Cargo adaptor activity 1

(b) AccuracyGO for non-overlapping InterPro annotations

Model⧹ Dimensions dim=50 dim=100 dim=200
CBOW, w=2 57.7(ep=10) 58.82(ep=10) 58.04(k=5,ep=10)
CBOW, w=5 58.1(ep=30) 58.9(ep=35) 58.2(ep=10)
SKIP, w=2 60.51(k=5,ep=15) 60.67(ep=10) 59.3(ep=10)
SKIP, w=5 60.59(k=5,ep= 35) 60.18(k=5,ep=10) 59.84(k=5,ep=10)

random 36.72 (k=40) 36.44 (k=40) 37.36 (k=40)
(c) AccuracyGO for non-redundant InterPro annotations

Model⧹ Dimension dim=50 dim=100 dim=200
CBOW, w=2 66.94(ep=5) 66.32(ep=5) 66.32(ep=5)
CBOW, w=5 67.77(ep=5) 65.87(ep=5) 65.77(ep=5)
SKIP, w=2 74.77(ep=40) 74.18(ep=5) 73.14(ep=5)
SKIP, w=5 75.96(ep=40) 75.53(ep=10) 74.98(ep=5)

random 37.05 (k=40) 37.03 (k=20) 37.05 (k=40)

Table 4.8. Human GO molecular function evaluation: a: GO class summary, b-c:
Average Cd

nearest accuracy over folds, AccuracyGO, for (b) non-overlapping and (c)
non-redundant InterPro annotations, when k is not shown k=2, best shown in bold
case.

For all four example organisms, we observed that the SKIP on non-redundant
InterPro annotations produced Vemb, in which Cd

nearest achieved the best average ac-
curacy. For three out of the four organisms, the best performances were achieved
for the lowest number of dimensions (dim = 50). In all cases, we found that the
worst-performing dom2vec embeddings outperformed the random baselines. By these
findings, we affirmed that domain embeddings of the same GO molecular function
class formed distinct clusters in the learned embedding space.
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4.4.4 Concluding on Quantitative Intrinsic Evaluation

Based on the previous four experiments, we aimed to evaluate the learned Vemb spaces
and select the best domain embedding space for downstream tasks. In all experiments,
the non-redundant InterPro annotations created better-performing embedding spaces
compared to non-overlapping annotations. We reached this finding by comparing the
modes of a number of annotations per protein for the two annotation types, Figure 4.3.
We hypothesized that, by the very low mode for non-overlapping annotations, a mode
equal to one annotation, the word2vec method could not produce embeddings for even
the stringent context window value of two. In contrast, 52% of proteins contained
less than or equal to three non-redundant InterPro annotations.

This makes SKIP able to produce embedding spaces by attaining the best intrinsic
performance. From the individual results, we saw that the configuration of parameters
(non-redundant, SKIP, w = 5, dim = 50) brought the best results in Cd

nearest perfor-
mance for SCOPe, EC, and GO for E. coli, Yeast, Human, second best for Malaria,
and the sixth best recall (0.507) for the domain hierarchy relation. Therefore, we will
denote as V best intrinsic

emb , the space produced by (non-redundant, SKIP, w = 5, dim =
50, ep = 50).

4.4.5 Qualitative Evaluation

RQqualitative: Did vectors of each domain superfamily form a cluster in the
Vemb?

To explore the Vemb in terms of the last research question, RQqualitative, we randomly
selected five InterPro domain superfamilies to perform the visualization experiment.
The selected domain superfamilies were PMP-22/EMP/MP20/Claudin superfamily
with parent InterPro id IPR004031, small GTPase superfamily with parent InterPro
id IPR006689, Kinase-pyrophosphorylase with parent InterPro id IPR005177, Exonu-
clease, RNase T/DNA polymerase III with parent InterPro id IPR013520, and SH2
domain with parent InterPro id IPR000980.

We loaded the parent–child tree Thier, provided by InterPro, and for each domain
superfamily starting from the parent domain, we included recursively all domains
that had a subfamily relationship with this parent domain. For example, the Kinase-
pyrophosphorylase domain superfamily had domain parent IPR005177, which in turn
had two immediate domain subfamilies IPR026530 and IPR026565. The IPR026565
domain contained a subfamily domain with ID IPR017409, where consequently, the
set of domains for Kinase-pyrophosphorylase domain superfamily was {IPR005177,
IPR026530, IPR026565, and IPR017409}. We retrieved the vectors for each domain
in each superfamily in the V best intrinsic

emb . Finally, we applied principal component
analysis (PCA) to produce a two-dimensional space.

Visualization of the reduced space is depicted in Figure 4.5. Domain embeddings
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of each superfamily are organized in well-separated clusters. The cluster of the Ex-
onuclease, RNase T/DNA polymerase III superfamily had the highest dispersion of
all presented superfamilies. By this finding, we could answer the research question
with the following: Embedding vectors of the same superfamily are well-clustered in
the trained Vemb.

Figure 4.5. Domain vectors for five domain superfamilies in the dom2vec space.

4.4.6 Extrinsic Evaluation

Extracting Domain Architectures

For each data set that contained the UniProt identifier for the protein instance,
we extracted the domain architectures for non-redundant InterPro annotations, al-
ready created in Section “Building domain architectures”. For all proteins whose
UniProt identifier could not be matched, or for data sets not providing the protein
identifier, we used InterProScan Jones and et al. (2014) to find the domain hits
per protein. For proteins without a domain hit after InterProScan, we created a
protein-specific, artificial protein-long domain; for example, we assigned to the pro-
tein G5EBR8, a protein-long domain named “G5EBR8_unk_dom”.
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Model Selection

To select which simple neural model we should compare to the baselines, we performed
hyperparameter selection using an inner, three-fold cross-validation on the training
set; the test set was not used to select hyperparameters. We used common parameters,
with a dropout of 0.5, batch size of 64, an Adam optimizer Kingma and Ba (2015)
with learning rate of 0.000, weight decay for the last fully connected layer of 0, and
number of epochs equal to 300. As a final hyperparameter, we allowed updates to the
learned domain embeddings, initialized by selected dom2vec embeddings. The results
are shown in Table 4.9.

Model ⧹ Data set TargetP Toxin NEW
CNN, size=(1,2),filters=200 0.9191 0.9074 0.9845

CNN, size=1,filters=128 0.9288 0.8957 0.9844
FastText (uni-gram) 0.8829 0.9029 0.9818

LSTM, dim=512,layer=1 0.9103 0.9025 0.9857
bi-LSTM, dim=512,layer=1 0.921 0.9052 0.9857

SeqVecNet dim=32 0.9017 0.9086 0.9876
SeqVecNet dim=512 0.9206 0.9145 0.9864
SeqVecNet dim=1024 0.9228 0.9034 0.9861

Table 4.9. Average performance of simple neural architectures using as input
dom2vec on inner three-fold cross validation. For Toxin AuROC is shown and for
the two other data sets mc-AuROC is shown. Best values shown in bold case.

4.4.7 Running Baselines

Then, we used the same network as the one in the right side of Figure 5 of Heinzinger
et al. (2019); we refer to this network as SeqVecNet. Namely, the network first
averages the 100 (ProtVec) or 1024 (SeqVec) dimensional embedding vector for a
protein; it then applies a fully connected layer to compress a batch of such vectors
into 32 dimensions. Next, a ReLU activation function (with 0.25 dropout) was applied
to that vector, followed by batch normalization. Finally, another fully connected layer
was followed by the prediction layer. As the third baseline, we added the 1-hot of
domains in order to investigate the performance change compared to dom2vec learned
embeddings.

Evaluation

For TargetP, we sought to investigate the effect of OOV on the produced classifier
compared to sequence-based embeddings classifiers which do not experience OOV, as
their used sequence features were highly common in both the train and test sets. For
the Toxin and NEW datasets, we benchmarked the generalization of the produced
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classifier compared to the sequence-based embeddings classifiers. Finally, for both
kinds of experiments, we used the trained models on each test set. Hence, this
evaluation shows how differences in the training set affect performance on the test
set. The resulting performances are shown in Figure 4.6.

Out-of-vocabulary experiment For TargetP, we validated that OOV will af-
fect the performance of domains dependent classifiers. That is, for OOV in the range
of 0–30%, the dom2vec classifier was comparable to the best-performing model, Se-
qVec. However, when OOV increased even further, then the performance of our
model dropped, though still being competitive with the SeqVec. dom2vec greatly
outperformed the 1-hot representation, validating the NLP assumption that unsu-
pervised embeddings improve classification on unseen words—in this context, protein
domains—compared to 1-hot word (domain) vectors.

Generalization experiment For both Toxin and NEW, dom2vec significantly
outperformed SeqVec, ProtVec, domains 1-hot vectors, and Benjamini–Hochberg
multiple-test corrected p-value < 0.05. In the Toxin data set, we observed that
ProtVec learned the less variant model, but with the trade-off obtaining the lowest
performance (mc-AuROC). For the NEW data set, the dom2vec 1-hot representation
was the second-best representation outperforming SeqVec and ProtVec, allowing us
to validate the finding that domain composition is the most important feature for
enzymatic function prediction, as concluded by Li et al. (2017).
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Figure 4.6. Downstream performance. Subfigure (a) refers to the OOV experiment,
while (b) and (c) refer to the generalization experiment. The marked points represent
the mean performance on the test set, and the shaded regions show one standard
deviation above and below the mean.
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4.5 Conclusion

To answer the second research question, we presented dom2vec, an approach for
learning quantitatively assessable protein domain embeddings using the word2vec
method on domain architectures from InterPro annotations.

We have shown that dom2vec adequately captured the domain SCOPe structural
information, EC enzymatic function, and the GO molecular function of each domain
with such available metadata information. However, dom2vec produced moderate
results in the domain hierarchy evaluation task. After investigating the properties
of domain families that dom2vec produces these moderate results, we concluded that
dom2vec cannot capture the domain hierarchy, mostly for domain families of low
cardinality. We argue that by using more complex classifiers compared to Cd

nearest,
we could gain in hierarchy performance, but this was not the scope of our evaluation.

Importantly, we did discover that dom2vec embeddings captured the most dis-
tinctive biological characteristics of domains, secondary structure, and enzymatic
and molecular function for an individual domain. That is, word2vec produced do-
main embeddings which clustered sufficiently well by their structure and function
class. Therefore, our finding supported the accepted modular evolution of proteins
Moore et al. (2008), in a data-driven way. It also made possible a striking analogy
between words in natural language that clustered together in word2vec space Mikolov
et al. (2013b), and protein domains in domain architectures that clustered together
in dom2vec space. Therefore, we parallel the semantic and lexical similarity
of words to the functional and structural resemblance of protein domains.
This analogy may augment the research on understanding the nature of rules under-
lying the domain architecture grammar Yu et al. (2019). We are confident that this
interpretability aspect of dom2vec will allow researchers to apply it reliably, so as to
predict biological features of novel domain architectures and proteins with identifiable
InterPro annotations.

In downstream task evaluation, dom2vec significantly outperformed domain 1-hot
vectors and state-of-the-art sequence-based embeddings for the Toxin and NEW data
sets. For the TargetP, dom2vec was comparable to the best-performing sequence-
based embedding, Seqvec, for OOV up to 30%. Therefore, we recommend using
dom2vec in combination with sequence embeddings to boost prediction performance.
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5
GenOtoScope: Towards automating

ACMG/AMP classification of variants associated
with congenital hearing loss

In this chapter we introduce our bioinformatics software tool, GenOtoScope.
GenOtoScope automates half of the evidence-based criteria for the classification of
variant pathogenicity based on the ACMG/AMP guidelines. Thus, this work con-
tributes on the research questions of third research question RQ3, defined in 1.2.3.
Namely, how can we classify genomic variants associated with a polygenic heretidary
disease, like hearing loss, in a time-efficient and standardized manner? and how the
automated classification can be easily usable by diagnostics personel with limited
bioinformatics experience?

Since next-generation sequencing (NGS) has become widely available, large gene
panels containing up to several hundred genes can be sequenced cost-efficiently. How-
ever, the interpretation of the often large numbers of sequence variants detected when
using NGS is laborious, prone to errors and are often difficult to compare across lab-
oratories. To overcome this challenge, the American College of Medical Genetics
and Genomics and the Association for Molecular Pathology (ACMG/AMP) have
introduced standards and guidelines for the interpretation of sequencing variants.
Additionally, disease-specific refinements have been developed that include accurate
thresholds for many criteria, enabling highly automated processing. This is of par-
ticular interest for common but heterogeneous disorders such as hearing impairment.
With more than 200 genes associated with hearing disorders, the manual inspection
of possible causative variants is particularily difficult and time consuming.

To this end, we developed the open-source bioinformatics tool GenOtoScope, which
automates the analysis of all ACMG/AMP criteria that can be assessed without
further individual patient information or human curator investigation, including the
refined loss of function criterion (“PVS1”). Two types of interfaces are provided: (i) a
command line application to classify sequence variants in batches for a set of patients

87
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and (ii) a user-friendly website to classify single variants.
We compared the performance of our tool with two other variant classification

tools using two hearing loss data sets, which were manually annotated either by the
ClinGen Hearing Loss Gene Curation Expert Panel or the diagnostics unit of our
human genetics department. GenOtoScope achieved the best average accuracy and
precision for both data sets. Compared to the second-best tool, GenOtoScope im-
proved accuracy metrics by 25.75% and 4.57% and precision metrics of 52.11% and
12.13% on the two data sets, respectively. The web interface is freely accessible. The
two interfaces, along with all source code, documentation and example outputs can be
accessed via the GenOtoScope web page: http://genotoscope.mh-hannover.de:5000/.

5.1 Introduction

Due to the establishment of modern high-throughput next generation sequencing
(NGS) technologies, an ever-increasing amount of sequencing data can be generated.
Nevertheless, a whole exome sequencing (WES) file contains approximately 60,000
variants per proband. Consequently, laboratories have to overcome the hurdle of
processing this vast amount of data to link the genotype to phenotype Linder et al.
(2021). Notably, the manual classification of variants, by expert curators, is not only
time-consuming, but even more, prone to inconsistent functional interpretation and
pathogenicity classification of a variant between distinct laboratories Berrios et al.
(2021).

To address this challenge, the American College of Medical Genetics and the
Association for Molecular Pathology (ACMG/AMP) published a set of evidence-based
criteria to classify patients variants in five classes of pathogenicity, “benign” (class 1),
“likely benign” (class 2), variants of uncertain significance (“VUS”) (class 3), “likely
pathogenic” (class 4), and “pathogenic” (class 5) Richards et al. (2015). According
to these guidelines, various information about a variant of interest and its associated
phenotype (e.g., population data, computational data, functional data, segregation
data) can be assorted into 28 well-defined categories that function as evidence criteria
for a variant to be pathogenic or benign. The acronym of each criterion is a composite
of P (pathogenic) or B (benign) and the respective graded strength level, A (stand-
alone), VS (very strong), S (strong), M (moderate), P (supporting), followed by a
numerical identifier denoting different types of information. The graded combination
of evidence criteria results in the five-tier classification system mentioned above. An
overview of the evidence-based criteria is depicted in Fig. 5.1 and the classification
scheme shown in Fig. 5.2.

To specialise for a diverse set of phenotypes with distinct penetrance, allelic and
genetic heterogeneity, ACMG updated its classification criteria for specific heredi-
tary diseases, for example hereditary (breast/ovarian) cancer Lee et al. (2019) or car-
diomyopathy Kelly et al. (2018), through the ClinGen Variant Curation Expert Panels

http://genotoscope.mh-hannover.de:5000/
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Figure 5.1. Overview of ACMG/AMP evidence-based criteria. Green mark shows
implemented criteria. Grey font shows not implemented criteria. Striked-through
shows removed or not applicable criterion for hearing loss. Thresholds shown for
BA1 and BS1 are specific for HL.

(VCEP). Even more than the general ACMG recommendations, these disease-specific
criteria are predestined for a computerized approach due to their precise thresholds.

Hearing loss (HL) is the most common sensory disorder with a high impact on
the quality of social and work life of the patient. A genetic etiology can be linked to
approximately 50% of the affected individuals Shearer et al. (2017). Besides various
forms of nonsyndromic hearing loss (NSHL) affecting only the function of the ear,
HL can also be a symptom of a superordinate disorder involving other organ systems
(syndromic hearing loss). Thus, HL is very heterogeneous with well over 100 genes
known to be associated with monogenetic NSHL and more than 400 distinctive syn-
dromes comprising HL as one of their characteristic symptoms as well Shearer et al.
(2017). Because of this tremendous versatility combined with the high overall fre-
quency of occurrence, we selected HL as a model disease for the development of our
software tool. Therefore, the algorithms presented in this work are by default set to
HL-specific thresholds, but can be easily modified to suit other medical conditions.
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Figure 5.2. ACMG/AMP classification scheme evidence-based criteria. The table
contains 2 columns. The right column contains sufficient conditions of triggered
criteria that result to the left column, pathogenicity class. Sufficient combination
of criteria specified for HL are marked with (HL). Pathogenicity probability and its
relaxed version are shown for the criteria combinations with the lowest strength that
can result to “likely benign” or “likely pathogenic” class.

There are orthogonal approaches to perform the challenging classification of HL
variants. The first approach is to use machine learning models that predict the
pathogenicity of variants with respect to hearing loss phenotype such as DVPred Bu
et al. (2022). However, such approaches do not output the triggered ACMG evidence-
based criteria supporting the classification result, thus the classification results cannot
be easily interpreted by the human variant curator. An alternative is to gather
and organise all known and classified variants for HL, into an open-access database.
Gene4HL Huang et al. (2021), is a database that the human curator can import,
export and find a HL variant of interest. Nevertheless, the database approach has
limited validity in the variant assessment process, assuming that the human curator
aims to assess the pathogenicity of a variant, which is not already catalogued in the
database. The last approach is to automate ACMG/AMP guidelines specified for
HL. In this work, we focus on such an approach. The main reasons are that such a
bioinformatics tool will annotate and classify all variants of WES experiment with
respect to HL phenotype and output the triggered ACMG evidence-based criteria
supporting each pathogenicity classification. Consequently, this tool provides to the
human curator, pathogenicity classification for a variant not yet classified and reports
the triggered ACMG/AMP criteria allowing for an interpretable classification.
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Oza et al. (2018) work has introduced disease-specific evidence-based ACMG/AMP
criteria, to facilitate the challenging classification of variants for HL. Noteworthy, 2
criteria were marked as not applicable (PP2 and BP1) for HL and 2 criteria (PP5 and
BP6) have been sorted out as generally not applicable. Application of the remaining
24 adjusted criteria has been shown to achieve better classification performance com-
pared to the standard evidence-based criteria for known HL-related variants Patel
et al. (2021). A recently published bioinformatics tool, VIP-HL Peng et al. (2020),
automates 13 out of the 24 evidence-based criteria specified for HL. However, VIP-
HL is an online tool that accepts only a single variant per time, thus hindering the
automatic and time-efficient interpretation of all variants of WES files for a set of
investigated patients, for a heterogeneous condition as HL.

To address this limitation of VIP-HL, we present GenOtoScope, a bioinformatic
tool which accepts as input a genomic variant file (VCF) and compute the pathogenic-
ity class and pathogenicity probability for each input variant, based on Oza et al.
(2018) and Tavtigian et al. (2018). To this end, we designed and implemented al-
gorithms to automate all the evidence-based criteria that need no further individual
patient information or human curator investigation. This results to 12 implemented
criteria, out of the 24 criteria in total, namely PVS1 (all strengths), PS1, PM1, PM2
(PM2 supporting), PM4, PM5 (PM5 strong), PP3, BA1, BS1 (BS1 supporting), BP3,
BP4 and BP7. We will provide GenOtoScope as an open-source project, accessible as
command line application to classify the WES patients files and as an online tool to
classify a single genomic variant of interest.

We benchmarked the performance of GenOtoScope compared to two established
classification tools, InterVar Li and Wang (2017) and VIP-HL, in two HL data sets.
These data sets consist of manually curated HL variants. GenOtoScope outperformed
the other two classification algorithms, both, in terms of accuracy and precision.
Finally, we investigated the reasons for this best performance of GenOtoScope, by
calculating the difference between the activation frequencies of a tool over the manual
curation, for each evidence-based criterion.

In summary, our contributions are:

• introduce GenOtoScope in two forms, a command line application for bioinfor-
matics experts to classify WES VCF files of a set of patients and a web-based
application for non-bioinformatics experts to classify single variants.

• compare GenOtoScope classification performance to InterVar and VIP-HL for
two manual annotated HL data sets.

• make GenOtoScope an open-source bioinformatics tool, therefore enabling the
research community to extend the tool for other diseases.
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5.2 Methods

5.2.1 Automating the examination of ACMG evidence criteria

GenOtoScope currently implements 12 out of 24 ACMG evidence-based criteria spec-
ified for hearing loss Oza et al. (2018). More specifically these criteria are PVS1 (all
strengths), PS1, PM1, PM2 (PM2 supporting), PM4, PM5 (PM5 strong), PP3, BA1,
BS1 (BS1 supporting), BP3, BP4 and BP7. Based on class category the implemented
criteria are sorted in 7 pathogenic and 5 benign criteria. With respect to the data
types needed for ACMG criteria, we categorize our implemented criteria into 3 popu-
lation data criteria, 8 computational and predictive data criteria and 1 functional data
criterion. The comparison of GenOtoScope with VIP-HL and InterVar is summarised
in Table 5.1.

Tool Implemented
Criteria

Phenotype-
specific

Open Code
Implementation

Open Annotation
Data Sets

Command-line
Application

(variant sets)

Web
Application

(single variant)

Evaluation
Data Sets

InterVar
18/28

Benign: 8/12
Pathogenic: 10/16

No Yes No Yes Yes
• De novo variants in

neurodevelopmental disorders
(9,305)*

• Benign & pathogenic
ClinVar (49,167)*

• Pathogenic HGMD
(616)*

• All CLINVITAE
(11,696)*

VIP-HL
13/24

Benign: 6/10
Pathogenic: 7/14

Yes No Yes No Yes
• Pilot VCEP-HL (50)**

• All deafness-related
ClinVar (4,948)*

GenOtoScope
12/24

Benign: 5/10
Pathogenic: 7/14

Yes Yes Yes Yes Yes

• All VCEP-HL (158)**
• Manually classified

by diagnostics unit of MHH
(118)**

Table 5.1. Overview of ACMG classification tools benchmarked against GenOto-
Scope.
* Classification not based on ACMG/AMP.
** Classification based on ACMG/AMP guidelines specified for HL, by manual cura-
tors.

The unimplemented criteria by GenOtoScope are 12. These criteria are: PS2,
PS3, PS4, PM3, PM6, PP1, PP4, BS2, BS3, BS4, BP2 and BP5. The main reasons
not to implement these criteria are: (i) the lack of established processing algorithm
(ii) the lack of data and (ii) further patient information. That is, for the criteria
needing functional data, PS3 and BS3, there are no established algorithms that can
automatically extract the result of a functional study publication for a given human
variant. As the lack of data is concerned, the examination of the PS4 criterion
cannot be automated as there is no database to contain the prevalence of affected
and control individuals for all possible variant types. Equally, there is no database
with the respective information to automate BS2 and BP2 criteria. Last, the need for
genomic data from the patient’s family disables the examination of the segregation
data criteria: PS2, PM3, PM6, PP1, PP4, BS4 and BP5.
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The number of missing implemented criteria is competitive with the other classi-
fications tools. VIP-HL implements only one extra criterion, BS2. The main reason
not to also implement BS2 is that VIP-HL uses particular thresholds, which are not
specified by ACMG HL original work, and thus it may not reflect all penetrance and
inheritance modes of all HL-related genes.

InterVar implements 18 out of the 28 ACMG original criteria Richards et al.
(2015). As explained in the introduction, disease-specific ACMG criteria may vary
from the original 24. Therefore the PP2, PP5, BP1 and BP6 criteria automated
by InterVar are not applicable for HL. The remaining two criteria automated by
InterVar and not by GenOtoScope are PS4 and BS2. To automate these criteria,
InterVar used the ANNOVAR annotation tool Wang et al. (2010). However, this
tool implements PS4 using a general threshold on a phenotype-based GWAS catalog,
consequently the called enriched pathogenic variants may not include all HL-relevant
variants. Similarly, to automate BS2 criterion, InterVar uses the zygotic information
of a healthy individual in the 1000 Genomes project Clarke et al. (2017) based on
the inheritance mode of the variant. Nevertheless, specific thresholds of healthy
individuals should be used for HL, which are not published by Oza et al. (2018).
As a consequence, there may be false negative cases; InterVar should activate PS4
or BS2 for a given HL variant but it does not. Finally, the remaining criteria need
manual curation or additional information not publicly available (e.g. segregation or
phenotypic data), therefore they are not implemented by any of the three classification
tools.

In our thorough evaluation, shown in the results section, we demonstrate that
regarding the 12 ACMG criteria processed by either tool, GenOtoScope achieved the
best averaged accuracy and precision scores for both tested data sets. This is due
to the activation frequency of these criteria being much closer to human curation in
GenOtoScope than in VIP-HL and InterVar, which trigger the commonly implemented
12 criteria much less frequently. To sum up, our choice to implement these 12 criteria,
which are refined for HL, can lead to standardized classification results for all HL-
relevant genes.

Besides, our implementation of the criteria presents two more advantages: In
contrast to the usage of the ANNOVAR annotation tool, licensed for commercial use,
we construct all annotation files needed to examine the ACMG criteria, using freely
accessible databases and offer GenOtoScope with an open-source software licence.
Therefore, any interested researcher can update the corresponding code section to
produce adjusted annotations to her needs. Equally, the researcher can update the
code to change the steps used to examine a given criterion. The second advantage
is that GenOtoScope (like VIP-HL) outputs comments for each examined criterion,
whereas InterVar does not. This extra information can facilitate the variant curator
to justify the activation of a criterion and thus increace the explainability of the
classification.
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Implementation note

To automate the examination of the ACMG evidence-based criteria we used the
Python programming language. First, we used the hgvs library Wang et al. (2018)
to parse the variant information for each Ensembl transcript. Then, using the HGVS
format we constructed the observed coding sequence and we extracted the needed
information for the criteria, through the PyEnsembl library1. For example, we ex-
tracted the start and stop positions of exons and the positions of the start and stop
codons. This library uses the Ensembl version 75 for GRCh37 human genome. We
used the PyVCF library2 to parse variants from VCF files, for instance the ClinVar
variants. We applied the Pybedtools Dale et al. (2011) to find the intersections of
annotation files, such as the overlap of UniProt domains with repeat regions. Finally,
we utilized the BioPython library Cock et al. (2009) for all other tasks for exam-
ple, to convert cDNA codons to amino acids. GenOtoScope currently works only for
grch37 genome assembly coordinates. The performance metrics were calculated using
scikit-learn library Pedregosa et al. (2011).

The bioinformatics user shall download the whole tool code along with the set of
data needed for its execution, e.g. annotation files HL or known variants with high
MAF from the github repository. Besides, at this repository, the user can find example
configuration files, example input with the corresponding output files and a documen-
tation on how to install and execute GenOtoScope on a linux machine or server. Last,
to be able to use the variant annotation script, genotoscope_annotate.py, the user
needs to install the megSAP application on a docker container, as explained on the
respective tool github repository 3.

5.2.2 GenOtoScope Workflow

In the following, the methodology to implement the ACMG evidence-based criteria
for congenital hearing loss is explained in five key steps. The conceptual workflow of
the web and command line interface (CLI) of GenOtoScope is depicted in Fig. 5.3.

In the first step, the user inputs a variant file (.vcf), which, depending on the used
interface, may contain a single variant or a larger set of variants of a patient (e.g. full
WES data set). Multiple VCFs can be submitted simultaneously.

Next, functional annotation of the VCF takes place using the VeP annotation
tool McLaren et al. (2016) through the megSAP bioinformatics application 4. The
resulting intermediate variant file is organized as a standard matrix file (tabular
file) where each row is a variant and a column contains variant annotation. These
columns contain the basic variant information (for example chromosome position of

1https://github.com/openvax/pyensembl
2https://github.com/jamescasbon/PyVCF
3https://github.com/imgag/megSAP
4https://github.com/imgag/megSAP

https://github.com/openvax/pyensembl
https://github.com/jamescasbon/PyVCF
https://github.com/imgag/megSAP
https://github.com/imgag/megSAP
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Figure 5.3. Conceptual workflow of GenOtoScope.

variant and affected gene name), the transcript and the protein HGVS signature
and the unique functional annotation for the variant (e.g. minor allele frequency
in gnomAD subpopulations Karczewski et al. (2020), the OMIM variant observed
clinical description Hamosh et al. (2000) and the REVEL pathogenicity score for the
variant Ioannidis et al. (2016)).

The third step uses the core sub-algorithms of GenOtoScope to automatically an-
alyze the listed variants according to ACMG criteria. These sub-algorithms access
programmatically four databases: the human clinical variants database ClinVar Lan-
drum et al. (2018), the human exomes database gnomAD Karczewski et al. (2020),
the protein knowledge database UniProt Consortium (2021) and the clinical genome
database Rehm et al. (2015). Extracted annotations are organized based on the
Ensembl features Howe et al. (2021) for a variant-affected transcript. Beyond the
mere result of checking a criterion (activation or non-activation), the tool stores a
descriptive comment on the reason for activation or non-activation, to be used as an
explanation for the user.

In the following step, the tool combines the activated evidence-based criteria to
classify the variant into 5 pathogenicity categories (“benign”, “likely benign”, “VUS”,
“probably pathogenic” and “pathogenic”) according to ACMG guidelines. If none
of the criteria is activated, the tool classifies the variant as VUS. Subsequently, in
the same fourth step, GenOtoScope computes the pathogenicity posterior probability
based on Tavtigian et al. (2018). This is intended to allow a better discrimination of
VUS and additional re-classification of VUS into benign or pathogenic variants.

In the fifth and final step, GenOtoScope extends the intermediate annotation tab-
ular file with the criteria activation results and the comments along with the predicted
ACMG class and the computed pathogenicity probability. Finally, the tool will save
this file as the produced classification output.

A crucial sub-step of this workflow is the construction of annotation files, which
is needed for the automatization of the examination of the ACMG evidence-based
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criteria. We constructed the needed annotation files, clinical-significant exons, HL-
relevant transcripts, critical regions for proteins, critical regions for proteins without
benign variants and protein repeat regions without domain intersection, using publicly
available data sets.

5.2.3 GenOtoScope Interfaces

Web Interface

The web application is targeted for free online usage. Advanced bioinformatics skills
are not required. A screenshot of the home page of the GenOtoScope website is shown
in Fig. 5.4. Users can upload a single variant file (.vcf). The website will annotate
and convert the VCF to GSvar file through the megSAP application. A result page
(.html) will be generated to show the basic annotation of the variant, its ACMG
classification and the computed pathogenicity posterior probability.
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(a)

(b)

Figure 5.4. Web interface of GenOtoScope. (a): The home page of the
GenOtoScope website. (b): The output page, for an example variant (RS id:
1064797096), which includes its classification based on HL-specified ACMG guide-
lines.

Command Line Interface

The command line interface (CLI) is tailored to bioinformatics personnel. The first
command of this mode, genotoscope_annotate.py, will accept as input a folder
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of VCF files or a single VCF file. It will annotate the input VCF files and convert
them into GSvar files. The second command, genotoscope_classify.py, will accept
as input a folder of GSvar files or a single GSvar file, the output of the previous
command. Then it will automatically examine the ACMG evidence-based criteria to
classify and compute the pathogenicity posterior probability for each variant in an
input GSvar file. The output will be an extended GSvar file containing information
on the examination of the ACMG evidence-based criteria, the ACMG pathogenicity
class and the pathogenicity posterior probability. Examples of these two commands
are shown in Fig. 5.5.

(a) (b)

Figure 5.5. Command line examples for the two commands of GenOtoScope. (a) An-
notate all variants presented in VCF files, in input folder, using megSAP application
and save results in GSvar files. (b) Classify all variants presented in GSvar files based
on ACMG guidelines specified for HL.

5.2.4 Automating Examination of ACMG Evidence-based Cri-
teria

In the following subsections, we briefly describe our implementation of the aforemen-
tioned 12 ACMG criteria: PVS1 is automated based on Abou Tayoun et al. (2018).
Information from ClinVar database is used for the implementation of PS1 and PM5
(including PM5 Strong). Automation of PM1 examines critical regions provided
by Oza et al. (2018) and a purpose-built annotation file containing critical regions
without benign mutations. Customized annotation files are also used for (non) repet-
itive region dependent criteria PM4 and BP3, whereas automation of PP3, BP4 and
BP7 employs established prediction algorithms. Population frequency data for im-
plementation of PM2 (PM2 Supporting), BA1 and BS1 (BS1 Supporting) is taken
from gnomAD database.

Refined PVS1

PVS1 criterion is assessed for start-loss, nonsense (stop gained), stop-loss, frameshift,
in-frame, splice acceptor and donor variants according to Abou Tayoun et al. (2018).

First, the occurrence of nonsense-mediated decay (NMD) is predicted by a sub-
routine for each affected transcript using the HGVS signature of the variant to create
the observed coding sequence per exon. Altered region is defined as variant-affected
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coding region. The algorithm locates the 5’-closest stop codon and follows the scheme
of Hu et al. (2017) to assess impact of this premature termination codon (PTC) on
NMD: Observed coding sequence is rated to escape NMD if PTC appears either within
the 50 last bases of the penultimate exon or at most 200 bases downstream from the
start codon or alternatively the transcript contains no introns. Otherwise, NMD is
classified to occur. Fig. 5.6 illustrates this subprocess.

Figure 5.6. Conceptual flowchart to assess NMD for the refined PVS1 rule.

If NMD is predicted to occur, the algorithm intersects the stored variant-affected
coding region to phenotype-relevant transcripts to decide the PVS1 outcome. If NMD
is not predicted to occur, it intersects the variant-affected coding region with protein
domain regions. If there is an intersection, it examines if the affected region overlaps
a critical domain for protein function, to decide the PVS1 outcome. If the affected
region is not within a known domain, overlap with clinically significant exons and
phenotype-relevant transcripts is examined. If this is confirmed, it is investigated
whether the PTC results in the removal of more than 10% of the reference protein
product.

For start-loss variants, the algorithm first checks if any other transcript contains
an alternative start codon. If not, it extracts potential in-frame start codons that
are no further than 200 bases downstream of the lost start codon. Next, it queries
ClinVar for pathogenic entries with at least one review star between the lost start
codon and the detected in-frame start codon. If there is such a ClinVar entry, PVS1
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(Moderate) is triggered, otherwise PVS1 (Supporting).

PS1 and PM5 (PM5 Strong)

The workflow of assessing the PS1 and PM5 criteria is shown in Fig. 5.7.

Figure 5.7. Conceptual flowchart for examining PS1 and PM5 (PM5 Strong).

First, genomic positions of the affected codon are computed based on exonic vari-
ant location and directionality of the respective gene. Then, all missense variants at
corresponding genomic positions are extracted from ClinVar and filtered by strand
to match the directionality of the affected gene. Additionally, ClinVar entries can be
filtered by review status as the user can define a minimum number of quality stars as
a threshold for variants to be considered (default value: 1).



5.2 Methods 101

The filtered variants and resulting amino acids are used for further assessment of
PS1 and PM5 criteria: PS1 is triggered if any filtered-in variant from ClinVar that is
rated as pathogenic results in the same amino acid change as the observed variant.
PM5 is triggered if the filtered-in ClinVar entries do not contain the observed amino
acid change but at least one pathogenic variant affecting the same codon. If the
entries include two or more such variants, PM5 is applied as strong evidence (PM5
Strong) according to Oza et al. (2018).

PM1

For automation of PM1 a custom-made annotation file is used. It comprises all critical
protein regions without benign ClinVar entries and also includes specific domains and
motifs of hearing loss related proteins as defined by Oza et al. (2018). Precisely,
these regions are the pore-forming domain of KCNQ4 gene and the three-stranded
helices of the collagen genes COL11A2, COL4A3, COL4A4 and COL4A5. PM1 is
applied to missense variants overlapping any of the annotated genomic regions. If the
variant overlaps on the three-stranded motifs of the collagen genes, it accepts only
the matches that affect the Glycine residues contained in a Gly-X-Y motif.

The precise regions, used for PM1 criterion, are the pore-forming domain of
KCNQ4 gene and the three-stranded helices of the collagen genes COL11A2, COL4A3,
COL4A4 and COL4A5. PM1 is applied to missense variants overlapping any of the
annotated genomic regions. If the variant overlaps on the three-stranded motifs of the
collagen genes, it accepts only the matches that affect the Glycine residues contained
in a Gly-X-Y motif.

PM4

The algorithm for this criterion is applied to all in-frame (deletions/duplications) and
stop-loss variants that do not trigger PVS1 in any strength level. Considering PTC
assessed in PVS1 subroutine, length of observed proteins is calculated and compared
to reference protein length. For length differences >10%, PM4 is triggered except for
variants in known repetitive regions derived from UniProt.

BP3

The algorithm for this criterion is applied to all in-frame (deletions/duplications) and
nonsense (stop gained) variants. Based on an annotation file containing functional
domains and repeat regions derived from UniProt, BM3 is triggered if the variant-
affected coding region overlaps a repetitive region without known function.
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PP3, BP4 and BP7

GenOtoScope incorporates in silico tools for conservation (PhyloP Cooper et al.
(2005)), splicing (MaxEntScan Yeo and Burge (2004), dbscSNV Jian et al. (2014))
and missense-prediction (REVEL Ioannidis et al. (2016), CADD Rentzsch et al.
(2019)).

For missense variants, activation of PP3 requires positive pathogenicity prediction
(REVEL/CADD) and high conservation (PhyloP) scores. In contrast, BP4 is trig-
gered if conservation and predicted probability of pathogenicity are low and moreover,
the variant is also estimated not to affect splicing (MaxEntScan/dbscSNV).

Variants with no immediate impact on amino acid sequence (exclusion: canonical
splice site variants) are similarly screened for potential effects on splicing. If splicing
is predicted to be affected and the nucleotide is highly conserved, PP3 is activated.
Conversely, if a potential splice variant is predicted to have no splicing effect and
conservation is low, BP7 is triggered for synonymous variants and BP4 for other
variant types respectively.

The used thresholds by prediction follow. To decide upon pathogenicity, we aggre-
gated CADD and REVEL in the following scheme: if CADD score is greater than 20,
then we set CADDvote = 1 otherwise CADDvote = 0. For REVEL, if REVEL score is
greater or equal to 0.7, then REVELvote = 1, else if REVEL score is lower or equal to
0.15, then REVELvote = 0, otherwise we set REVELvote = 0.5. Finally, if the average
voting of CADDvote and REVELvote is greater or equal to 1, GenOtoScope assumes
that the variant is pathogenic. For splicing impact, we aggregate the predictors Max-
EntScan and dbscSNV in the following scheme: if |observedscore−referencescore

referencescore
| is greater

than 0.15, then MaxEntScanvote = 1 otherwise MaxEntScanvote = 0. For dbscSNV,
if either ADA score or RF score is greater than 0.6 then dbscSNVvote = 1, other-
wise dbscSNVvote = 0. We aggregate the votes similarly to pathogenicity. That is,
if the average voting of MaxEntScanvote and dbscSNVvote is greater or equal to 1,
GenOtoScope decides that the variant has a splicing impact. Last for conservation
prediction, we used PhyloP score, as follows: if PhyloP score is greater of 1.6 then
GenOtoScope decides that this is a conserved site, otherwise GenOtoScope decides
that the site is not a conserved site.

PM2 (PM2 Supporting) BA1 and BS1 (BS1 Supporting)

Assessment of population data criteria uses adjustable minor allele frequency (MAF)
thresholds, which by default are the ones defined by Oza et al. (2018). Each gene
can be assigned a preferred mode of inheritance, which can be customized by pro-
viding an input file. Default settings comprise the inheritance modes of 164 hearing
loss gene-disease pairs defined by the ClinGen Hearing Loss Gene Curation Expert
Panel DiStefano et al. (2019) plus preferred inheritance patterns for additional genes
specified by the HG department of MHH. We will refer to ClinGen Hearing Loss Gene
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Curation Expert Panel commitee as VCEP-HL for convenience.
For each variant, allele frequencies (AF) of gnomAD subpopulations are retrieved.

Known pathogenic variants with high AF are excluded from further assessment of BA1
and BS1 according to Oza et al. (2018). AF of each subpopulation and the median AF
of all subpopulations are evaluated with respect to the appropriate inheritance mode
threshold. PM2 (PM2 Supporting), BA1 and BS1 (BS1 Supporting) are triggered, if
any subpopulation’s AF or the median AF matches the respective inheritance mode
threshold.

Regarding different inheritance patterns, the algorithm by default utilizes distinct
thresholds for autosomal dominant and autosomal recessive inheritance mode as spec-
ified by Oza et al. (2018). For the X-linked mode of inheritance, autosomal dominant
thresholds are adopted. If no mode of inheritance is provided, it is assumed to be
unknown. In these cases, the algorithm selects the strictest threshold between auto-
somal dominant and recessive for each criterion. For mitochondrial genes, the same
procedure is used as for unknown mode of inheritance, with an additional warning,
since the application of ACMG criteria is validated only for Mendelian disorders.

Hearing-loss Specific ACMG Classification

Having assessed all applicable criteria for a given genomic variant, GenOtoScope
combines the activated criteria to compute the respective ACMG class using the
five-tier terminology system (“benign”, “likely benign”, “VUS”, “likely pathogenic” and
“pathogenic”) defined by Richards et al. (2015).

Moreover, GenOtoScope incorporates the extended recommendations of VCEP-HL
for the following criteria combinations: (i) Variants triggering PVS1 and PM2 (Sup-
porting) will be classified as “likely pathogenic” for genes associated with autosomal
recessive inheritance. (ii) Variants activating BS1 without triggering any pathogenic
criterion will be classified as “likely benign”.

Computation of Pathogenicity Probability

After having classified all exome variants of a patient, a number of variants are clas-
sified as VUS, due to insufficient or conflicting triggered evidence criteria. To help
the human curators to discriminate the pathogenicity of the VUS cases in a quanti-
tative manner, GenOtoScope calculates the pathogenicity probability for each variant
following Tavtigian et al. (2018). The calculation of the pathogenicity probability is
calculated automatically for all input variants.

GenOtoScopeapplies the naive Bayes model to calculate the posterior probability of
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pathogenicity given the triggered ACMG evidence rules using the following equations:

Pathogenicityposterior =
Pathogenicitylikelihood · Pathogenicityprior

(Pathogenicitylikelihood − 1) · Pathogenicityprior + 1
(5.1)

Pathogenicitylikelihood = OPVST
(
NPSU
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8
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2
), (5.2)

where the default parameters are used: Pathogenicityprior = 0.1, OPVST = 350 and
X = 2.

The calculation of the pathogenicity probability is calculated automatically for all
input variants.

5.3 Experimental Evaluation

5.3.1 Variant Classification

Data Sets

GenOtoScope variant classification was compared to similar tools: (1) InterVar, a tool
for variant classification tested across a spectrum of phenotypes Li and Wang (2017);
(2) VIP-HL, the recently published tool for hearing loss Peng et al. (2020). We
benchmarked the accuracy and precision of variant classification on two data sets.

The first data set is the publicly available set of manually annotated variants
by ClinGen VCEP-HL Patel et al. (2021), hereafter referred to as VCEP-HL data
set. This data set contains manual annotation for 158 variants associated with HL.
These variants are contained in 9 HL-relevant genes (USH2A, COCH, GJB2, KCNQ4,
MYO7A, MYO6, TECTA,SLC26A4 and CDH23 ). The second data set is the private
set of manually annotated variants by the HG department of MHH, hereafter referred
to as MHH data set. The MHH data set contains 118 variants, contained in 36 HL-
relevant genes. More specifically, the included genes are: COL11A1, USH2A, NLRP3,
OTOF, ALMS1,PAX3, ILDR1, WFS1, COL11A2, COL9A1, MYO6, SLC26A4, CHD7,
GRHL2, TMC1, WHRN, TNC, MYO3A, PCDH15, CDH23, OTOG, MYO7A, TECTA,
COL2A1, MYO1A, P2RX2, GJB2, GJB6, ACTG1, MYH14, KCNE1, TMPRSS3,
MYH9, SOX10, POU3F4 and PRPS1.

Performance Metrics

To assess the prediction performance, we combine “benign” and “likely benign” classes
to “Benign”, “pathogenic” and “likely pathogenic” classes to “Pathogenic”. Thus, we
created a three-class prediction task, containing the “Benign”, “Pathogenic” and “VUS”
as the three possible broader classes.

Following the evaluation of the classification tool TAPES citexavier2019tapes, we
evaluated the accuracy and precision of each software tool, calculating the area under
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the curve (AUC) of the Receiver Operating Characteristics (ROC) curve and of the
precision-recall curve, accordingly.

Refined Classification of VUS

We acknowledge that not all evidence-based criteria for HL can be automated, due to
the need of further patient’s genomic information and the need for manual curation
of certain criteria. Therefore, GenOtoScope currently implements 12 out of the 24
ACMG criteria for HL. Thus, GenOtoScope, which uses the standard classification
scheme (Fig. 5.2), will misclassify a variant as VUS even if it belongs in the broader
classes of “Benign” or “Pathogenic”.

To investigate the GenOtoScope classification potential, we provided a refined
classification of variants, classified as “VUS”, by original GenOtoScope, based on cal-
culated pathogenicity probability and not the mere classification scheme, following
the idea from TAPES classification tool Xavier et al. (2019). We will refer to this
refined version of GenOtoScope, as GenOtoScope_prob.

Based on Tavtigian et al. (2018), the range of values of the pathogenicity proba-
bility would be lowered, if a subset of the original ACMG criteria were automatized.
Thus, the range of values of the pathogenicity probability calculated for a variant,
using the automated criteria by GenOtoScope, will be reduced, compared to the classi-
fication provided, by a manual curator, who has evaluated all possible ACMG criteria.

To this end, GenOtoScope pathogenicity probability reclassified the VUS variants,
classified by the GenOtoScope, by their calculated pathogenicity probability in the
following Alg. 4 :

Algorithm 4 GenOtoScope_prob
function refine_variants_of_uncertain_significance(predicted_classgenotoscope, pathogenicity_posteriorgenotoscope)

if predicted_classgenotoscope = ”VUS” then
if predicted_posteriorgenotoscope ≥ 0.49988 then

refined_class← ”Pathogenic”
else if predicted_posteriorgenotoscope ≤ 0.05072 then

refined_class← ”Benign”
else

refined_class← ”VUS”
end if

else ▷ Do not refine "Benign" or "Pathogenic" classifications
refined_class← predicted_classgenotoscope

end if
return refined_class

end function

For an immediate comparison with the probability threshold if all criteria were
implemented, see Fig. 5.2.

We have chosen these threshold values, based on relaxing the lowest combina-
tion of the triggered criteria needed to predict either one of the broader classes of
“Pathogenic” or “Benign” based on Richards et al. (2015) and Oza et al. (2018). Con-
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sequently, the selection of these thresholds is not dependent on a given test data set,
but on the currently implemented ACMG criteria for HL.

Then we have transformed this relaxed combination of criteria to pathogenicity
probability based on Eq. 5.1.

That is, for the “Pathogenic” broader class, the combination of the criteria, with
the least pathogenicity strength, resulting in “likely pathogenic” class, is “1 pathogenic
moderate criterion and at least 4 pathogenic supporting criteria” (Richards et al.
(2015) and Oza et al. (2018)). However, based on available open data and further
patient genetic data we have implemented seven out of the fourteen ACMG criteria
favouring the “Pathogenic” broader class. Therefore we lowered the combination
to “1 Moderate and 1 Supporting criterion” which translated to the probability of
0.49988. Therefore, the GenOtoScope_prob will refine the “VUS” class, by the original
GenOtoScope, to “Pathogenic” for a variant with pathogenicity probability equal to
at least 0.49988.

Similarly, for the “Benign” broader class, the combination of criteria with the
lowest strength is “at least two benign supporting criteria” and results in the “likely
benign” class. For the same reasons, the GenOtoScope currently implements five
out of the total ten applicable criteria for the “Benign” broader class. Therefore
we reduce the requirements of this combination to be “one benign supporting cri-
teria” which translates to the pathogenicity probability of 0.05072. Consequently,
GenOtoScope will reclassify a variant classified as “VUS”, by GenOtoScope, to “Be-
nign” broader class if the variant’s probability is lower or equal to 0.05072.

Investigation of Performance Discrepancies

We sought out to investigate the reasons for the discrepancy in prediction performance
between the classification tools. To do so, we extended the troubleshooting plots
of Nicora et al. (2018), by calculating the log ratio of the activation frequency of an
evidence-criterion by a classification tool and the manual curation, as:

re,ck = log10(
αe,c
k

αe,c
manual

), (5.3)

where αe,c
k is the activation frequency of e, any of the implemented ACMG rules, by a

tool k = {InterVar,VIP-HL,GenOtoScope} for a broader class c = {pathogenic,VUS, benign}.
We computed all log ratios for each evidence rule, e, by each classification tool

for the three grouped classes, c. Finally, we used heatmap plots to depict these log
ratios.

5.3.2 VCEP-HL Data Set

The ROC and precision-recall curves are shown in Fig. 5.8 and Fig. 5.9, respectively.
We observe that GenOtoScope and GenOtoScope pathogenicity probability achieved
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the best AUC scores for all three classes. In Precision-recall curves, VIP-HL achieved
slightly higher AUC compared to GenOtoScope for the benign class. However, for
the other two classes again GenOtoScope and GenOtoScope pathogenicity probability
achieved the best AUC scores. Besides, we calculated the performance scores, AUC
of ROC and the average precision of the precision-recall curves for all classification
tools. We show the micro-averaged scores, over the three broader classes (“Benign”,
“VUS”, “Pathogenic”), are shown in Table 1. Based on this table, the two versions of
GenOtoScope classification achieved the best results for both AUC of ROC and the
average precision.

Figure 5.8. ROC curves and AUC scores of all classification tools for VCEP-HL data
set: (a) Prediction of the “Benign” broader class versus the “Pathogenic” broader class
and the VUS class (b) Prediction of the “Pathogenic” broader class versus “Benign”
broader class and the VUS class (c) Prediction the “VUS” class versus the “Benign”
broader class and the “Pathogenic” broader class.

Additionally, we calculated the performance scores, AUC of ROC and the average
precision of the precision-recall curves for all classification tools. We show the micro-
averaged scores, over the three broader classes (“Benign”, “VUS”, “Pathogenic”) in
Table 5.2. Based on this table, the two versions of GenOtoScope classification achieved
the best results for both AUC of ROC and the average precision.

To explain the difference in prediction performance, we plot the heatmaps of the
log ratio of activation frequency between a classification tool and the manual curation
(5.3). The results are shown in Fig. 5.10.
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Figure 5.9. Precision-recall curves and AUC scores of all classification tools for VCEP-
HL data set: (a) Prediction of “Benign” broader class versus the “Pathogenic” broader
class and the VUS class (b) Prediction of the “Pathogenic” broader class versus “Be-
nign” broader class and the VUS class (c) Prediction of the “VUS” class versus the
“Benign” broader class and the “Pathogenic” broader class.

Performance scores Classification Tools
GenOtoScope GenOtoScope_prob VIP-HL InterVar

ROC AUC 0.79114 0.85759 0.68196 0.65823
Average Precision 0.61342 0.71960 0.47307 0.44817

Table 5.2. Micro-averaged performance scores for all classification tools, over the three
broader classes in the VCEP-HL data set. Best values of a performance score, across
all classification tools, are shown in bold.

We observed the following patterns for each grouped class. First, for the “Pathogenic”
broader class, VIP-HL activated 8 implemented pathogenic rules (PVS1 (Strong),
PVS1 (Moderate), PM1, PM5, PVS1 and PM2) from 32 times less (PVS1 (Strong))
to 79 times less (PM2) than the manual curation. Nevertheless, GenOtoScope acti-
vated 5 out of these 8 rules with the same frequency as the manual curation (PVS1,
PM2, PP3, PM2 (Supporting) and PM5). It activated the remaining 3 rules (PVS1
(Moderate), PM1 and PVS1 (Strong)) approximately twice as much as the manual
curation.

For the “VUS” class, we observed that VIP-HL activated 8 implemented rules
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Figure 5.10. Activation frequency ratios for VCEP-HL data set. Log ratios calculated
for each of the three classes classified by the VCEP-HL: (a) the “Benign” broader class,
(b) the “VUS” class and (c) the “Pathogenic” broader class.

(BP4, BA1, PVS1, BS1, PM2 (Supporting), PP3 and PM2) from 25 times less (BP4)
to 50 times less (PM2) than the manual curation. In contrast, GenOtoScope activated
3 out of the 8 rules (PM2, PP3, PM2 (Supporting)) with the same frequency as the
manual curation and it activated the remaining 5 rules (BS1 (Supporting), BS1,
BA1, BP4, PVS1) approximately one to two times more frequently than the manual
curation.

For the “Benign” broader class, VIP-HL activated 6 implemented rules (PP3, BS1
(Supporting), BP7, BP4, BS1 and BA1) from 32 times less (BA1, BS1, BP4, BP7,
BS1 (Supporting)) to 40 times less (PP3) than the manual curation. GenOtoScope ac-
tivated 4 of these rules (BS1, BP7, BA1, BP4) with approximately the same frequency
as the manual curation. The other two rules (PP3 and BS1 (Supporting)) were acti-
vated by genotoscope , one time more frequently than the manual annotation.

To examine the reasons for the lower precision of GenOtoScope for the “Benign”
broader class compared to VIP-HL, despite GenOtoScope comparable activation fre-
quency of criteria with manual curation, we examined GenOtoScope misclassifications
in this class. That is, we examined the variants belonging in the VUS class and mis-
classified in the “Benign” broader class by GenOtoScope. These misclassified variants
are seven, a significant amount for the calculation of precision score, due to the total
of 44 variants in the “Benign” broader class. The main reason for the misclassifica-
tion was that manual annotation used criteria not implemented by GenOtoScope to
classify these variants as “VUS”. More specifically, the manual curation used criteria
which need manual investigation or not available patient’s family genomic data (for
example PP1, PP4 or PM3), to classify the five out of these seven variants as “VUS”.
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The last two variants were misclassified by GenOtoScope pathogenicity probability
as their calculated probability was lower than the set threshold for refining a VUS as
a variant in the “Benign” broader class. VIP-HL could classify correctly four out of
these seven variants.

To examine the reasons for the lower precision of GenOtoScope for the “Benign”
broader class compared to VIP-HL. We examined GenOtoScope misclassifications for
this grouped class. That is, we examined the variants belonging in the VUS class
and misclassified in the “Benign” broader class by GenOtoScope. These misclassified
variants are seven, a significant amount on the calculation of precision for the total of
44 variants in the “Benign” broader class. The main reason for the misclassification
was that manual annotation used unimplemented rules to classify these variants as
VUS. More specifically, for five out of the seven variants the manual curation used
rules not implemented by GenOtoScope (for example PP1, PP4 or PM3) to clas-
sify the variants as VUS. The last two variants were misclassified by GenOtoScope
pathogenicity probability as their calculated probability was lower than the set
threshold for refining a variant classified from “VUS” into the “Benign” broader class.
For completeness, VIP-HL classified correctly, as “VUS”, four out of these seven vari-
ants.

5.3.3 MHH Data Set

The ROC curve and AUC scores are shown in Fig. 5.11 and Fig. 5.12, respectively.
In ROC curves, GenOtoScope or GenOtoScope pathogenicity probability scored
the highest performance values, compared to VIP-HL and InterVar, for all three
classes. In the Precision-Recall curves, GenOtoScope outperformed all other classi-
fication tools, in terms of AUC score, for benign classification. GenOtoScope and
GenOtoScope pathogenicity probability outperformed all classification tools, in
AUC score for pathogenic and VUS classes.

We calculated the micro-average AUC of ROC curves and average precision of
Precision-Recall curves, across the three broader classes for each classification tool.
We show the results in Table 5.3. As in the previous data set, the two versions of the
GenOtoScope classification achieved the best scores for both performance metrics.

Performance scores Classification Tools
GenOtoScope GenOtoScope_prob VIP-HL InterVar

ROC AUC 0.88701 0.90395 0.86441 0.77966
Average Precision 0.73212 0.76864 0.68544 0.53085

Table 5.3. Micro-averaged performance scores for all classification tools, over the three
broader classes in the MHH data set. Best values of a performance score, across all
classification tools, are shown in bold.

To explain the discrepancy in performance scores, we plotted the heatmap of log
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Figure 5.11. ROC curves and AUC scores of all classification tools for MHH data
set: a) Prediction of the “Benign” broader class versus the “Pathogenic” broader class
and the VUS class b) Prediction of the “Pathogenic” broader class versus “Benign”
broader class and the VUS class c) Prediction of the “VUS” class versus the “Benign”
broader class and the “Pathogenic” broader class.

ratio of the activation frequency of a given tool compared to the activation frequency
of the manual curation in Fig. 5.13.

For the “Pathogenic” broader class, VIP-HL activated 5 evidence-based rules
(PVS1 (Strong), PP3, PM2, PS1 and PVS1) from 8 times less (PVS1 (Strong))
to 16 times less (PVS1). In contrast, for the same class, GenOtoScope activated 3 out
of these 8 rules with the same frequency (PVS1, PS1 and PM2) as the manual cu-
ration. The remaining two rules were activated approximately one time more (PP3)
and twice more often (PVS1 (Strong)) as the manual curation, respectively.

VIP-HL activated 8 implemented rules (BP7, BP4, BS1 (Supporting), BS1, PM2
(Supporting), PP3, PM5 and PM2) from 20 times less (BP4 and BP7) to 40 times
less (PM2) than the manual curation for the “VUS” class. GenOtoScope activated
2 of these 8 rules (PM5 and PP3) with equal frequency to the manual curation.
GenOtoScope activated the remaining six rules (PM2, PM2 (Supporting), BS1, BP4,
BS1 (Supporting) and BP7) with approximately one time more (BP7), up to one time
less (PM2) as the manual curation.

For the “Benign” broader class, VIP-HL activated 6 rules (PP3, BS1 (Supporting),
BP7, BS1, BA1 and BP4) from 12 times less (PP3) to 25 times less (BP4) than the
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Figure 5.12. Precision-recall curves and AUC scores of all classification tools for
the MHH data set: a) Prediction of “Benign” broader class versus the “Pathogenic”
broader class and the VUS class b) Prediction of the “Pathogenic” broader class ver-
sus “Benign” broader class and the VUS class c) Prediction of the “VUS” class versus
the “Benign” broader class and the “Pathogenic” broader class.

manual curation. Contrary to VIP-HL pattern, GenOtoScope activated 2 out of these
6 rules (BA1 and BS1) with the same frequency as the manual classification and the
remaining 4 rules (BP4, BS1 (Supporting), BP7 and PP3) with approximately two
times more (PP3) up to one time less (BP4) as the manual curation.

Based on the observed motives on the activation frequency of each tool com-
pared to the manual curation, we conclude that VIP-HL activated the aforemen-
tioned evidence-based rules less frequently than the manual curation. However,
GenOtoScope was able to trigger the selected rules with similar or at most twice
higher frequency compared to the manual curation. Consequently, we justify the best
performance achieved in ROC and Precision-Recall scores by GenOtoScope for all
three broader classes compared to the other two classification tools.

5.3.4 Constructing Annotations for ACMG Criteria

In the following, we explain how GenOtoScope utility scripts create the needed anno-
tations for the automatic examination of the ACMG criteria. First, we present our
methods to construct the annotations for PVS1 criterion: (i) critical regions for pro-
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Figure 5.13. Activation frequency ratios for MHH data set. Log ratios calculated for
each of the three classes classified by the MHH manual curators: (a) the “Benign”
broader class, (b) the “VUS” class and (c) the “Pathogenic” broader class.

tein function, (ii) clinical significant exons and (iii) HL-relevant transcripts. Finally,
we present how the respective GenOtoScope utility script creates the critical regions
for protein function with no benign mutation.

Critical Regions for Protein Function

To automate the assessment of PVS1 rule, the GenOtoScope’s sub-process construct
three annotation files. In the first annotation file we include all critical regions for
protein function. To create this file, the GenOtoScope’s respective sub-process maps
all available ClinVar entries to the genomic positions of each UniProt domain, re-
specting the genomic strand of the domain. Then it filters-in all mapped ClinVar
entries with at least 2 quality stars on their review status field. For each domain, it
uses the interpretation field of the filtered-in overlapping ClinVar entries to calculate
the probability that the region is pathogenic (and so critical for protein function) as:

Pd
pathogenic =

Nd
pathogenic + δ∑

c={pathogenic,VUS,benign}(N
d
c + δ)

, (5.4)

where Nd
c is the number of filtered ClinVar entries, found in the protein domain with

UniProt id d, with class equal to c. The parameter δ = 10−6 is used as a smoothing pa-
rameter for the probability computation. Finally, the sub-process calls domains with
Pd
pathogenic ≥ 0.51 as critical for protein function. It saves all these critical domains

for protein function in a BED file containing as columns: their genomic position,
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strand, their protein UniProt id and their corresponding Pd
pathogenic probability. The

described procedure is also depicted in the Fig. 5.14.

Figure 5.14. Conceptual workflow to call critical regions of proteins for assessment of
PVS1 rule.

Clinically Significant Exons

We also developed a sub-process to create an annotation file for clinically significant
exons, which are exons at which loss of function variants are not frequent in the general
population Abou Tayoun et al. (2018). To do so, the sub-process first aggregates
putative loss of functions (pLoF) variants of gnomAD Karczewski et al. (2020) per
Ensembl exon Howe et al. (2021). Second, for a given exon, it extracts the AF for
each subpopulation of a pLoF variant intersecting the exon. Finally, it aggregates
the AF of each extracted pLoF variant, for each subpopulation, and if this sum is
lower than 0.001 for any subpopulation, the exon is called clinically significant. The
output annotation file is in BED format containing the columns: the genomic position,
strand, its exon Ensembl id and all containing transcript Ensembl ids, for each called
clinical significant exon. The procedure is depicted in Fig. 5.15.
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Figure 5.15. Conceptual workflow to call clinical significant exons for PVS1 rule.

Hearing Loss-relevant Transcripts

The last annotation file for PVS1 is the hearing loss relevant transcripts. The respec-
tive sub-process utilizes three independent annotation files to create the hearing loss
relevant transcripts and exons. The first file contains the phenotype relevant tran-
scripts and their clinically relevant exons from DiStefano et al. (2018), the second file
contains disease-gene pairs for hearing loss from ClinGen repository DiStefano et al.
(2019) and the last file contains the clinical diagnostics panel for hearing loss created
by the HG department of the MHH.

To aggregate these files, we argue that the DiStefano et al. (2018) work contains
the most detailed information as it contains not only hearing loss relevant transcripts
for a given gene but also the clinically relevant exons of the respective transcripts.
In contrast, the two remaining files contain either disease-gene pairs or only relevant
transcripts of genes without specifying their clinically relevant exons. Therefore, the
sub-process extends the relevant transcripts and clinically relevant exons reported
by DiStefano et al. (2018) with the relevant transcripts and all their contained exons
from the diagnostic panel of HG department of MHH. Further, it extracts the longest
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coding transcript or the clinical relevant transcript annotated by Locus Reference
Genomic resource (LRG) MacArthur et al. (2014), and their contained transcripts,
for all genes annotated by ClinGen but not found in the extended list of annotations
of the last intermediate step. As final step, it aggregates the ClinGen unique genes
annotations with DiStefano et al. (2018) and the HG department of the MHH annota-
tions to create the final hearing loss relevant transcripts and clinically relevant exons.
The output annotation file is in BED format, containing the columns: chromosomal
position, strand, transcript and exon ids for each clinically relevant exon.

Critical Regions for Protein Function With No Benign Mutation

To automate PM1 evidence-based rule we need an annotation file containing the
critical regions for protein function without benign mutations. To construct these
annotated regions, we implemented a similar sub-process as for the critical regions
used for PVS1 rule. The only difference is that this sub-process constraints the
candidate domains with Ppathogenic ≤ 0.51 (Eq.5.4) to contain no benign ClinVar
mutations. The resulting file is in BED format, containing the same columns as
described above for the critical regions for protein function.

PVS1 Annotations

GenOtoScope sub-processes created the three annotation files needed for the refined
PVS1 criterion. For the first file, critical regions, we applied our methodology using
the 25,552 ClinVar entries, version of March 2021 and 12,776 UniProt domains, version
of February 2021. The resulting file contains 1,478 UniProt domains annotated as
critical for protein function. Using the HL-relevant transcripts and exons curated
in DiStefano et al. (2018), DiStefano et al. (2019) (VCEP-HL) and MHH diagnostic
panel, we extracted 2,812 unique exons and 215 unique transcripts, contained in 154
genes. For the annotation file with the clinical significant exons, the used version of
the pLoF variants and the allele frequency of exomes of gnomAD was the version
2.1.1. By this process, we annotated 107,966 exons as clinical significant exons.

PM1 Annotations

The 10 mutational hotspots relevant to HL as published by VCEP-HL committee, at
page5, were utilized to create the annotation file to evaluate the PM1 criterion. Using
the ClinVar entries and UniProt domains, same versions as described above. Besides
750 UniProt domains were called as critical regions for protein function without a
benign variant. To evaluate the PM1 evidence-criteria we intersect the chromosomal
position of the input variant with both annotation files.

5https://submit.ncbi.nlm.nih.gov/ft/byid/vroiax8b/hearing_loss_acmg_specifications_v1_
2018.pdf

https://submit.ncbi.nlm.nih.gov/ft/byid/vroiax8b/hearing_loss_acmg_specifications_v1_2018.pdf
https://submit.ncbi.nlm.nih.gov/ft/byid/vroiax8b/hearing_loss_acmg_specifications_v1_2018.pdf
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5.3.5 Disclaimer

The classification produced by GenOtoScope is intended for an efficient pathogenicity
prediction of WES files, thus for research use only. It is not intended for diagnostic
or clinical purposes. The classification provided by GenOtoScope does not replace a
physician’s medical judgment and usage is entirely at your own risk. The providers
of this resource shall in no event be liable for any direct, indirect, incidental, conse-
quential, or exemplary damages.

5.4 Conclusion

In this chapter, we presented GenOtoScope, an automated classification tool for
variants associated with congenital HL. By this work we answered towards the third
research questions of thesis.

We have shown that GenOtoScope outperformed other variant classification tools
in terms of AUC score of ROC curve and of Precision-recall curve for all three broader
classes (“Benign”, “VUS” and “Pathogenic”). To explain the difference in performance
between the tools, we calculated the ratio of the activation frequency of triggered
criteria by each tool and the manual curation. By comparing the ratios for each
ACMG criterion, we observed that GenOtoScope achieved the most similar activation
frequency to the manual curation, compared to the VIP-HL and InterVar.

Besides, the scope of this work is to provide an easily accessible tool to use for the
classification of variants for HL phenotype. Therefore, we implemented two versions
of the tool for two different scenarios. A CLI version to be used by experienced
bioinformatics personnel aiming to classify a set of patients WES VCF files and a
web interface to be used by other life scientists, with no bioinformatics expertise,
to classify a single variant of interest. We hope that this tool will be applied in
research settings of molecular genetics to provide a time-efficient and standardized
classification of HL variants.

For future extension of GenOtoScope we aim to implement the most frequently
activated evidence-based criteria by manual curation to predict the two complemen-
tary broader classes. For the “Benign” broader class, the not implemented criteria
with highest activation frequency, by the manual curation, were the BS2, BP2, BP3,
BP5 and BS3 (Supporting). For the “Pathogenic” broader class, the most frequently
activated criteria, by the manual curation, were PM3, aggregated for all strengths,
PP1, aggregated for all strengths, PS3 and PS4. To implement these criteria which
need heavily manual curation, we aim to utilize databases for genotype to pheno-
type such as DisGeNET Piñero et al. (2020) or to use prediction algorithms to link
a mutation of interest to its respective functional study publications, for example
AVADA Birgmeier et al. (2020). Last, methods should be implemented to automati-
cally examine the segregation criteria, whenever genomic data of the patient’s family
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are available. Also, to facilitate even more the personnel with no bioinformatics ex-
perience to use the web interface, we would allow the user to input a single variant
information, without the need of creating a VCF file on the GenOtoScope website.

Last, by making the GenOtoScope an open source project, we aim to facilitate
researchers to expand its range of usage to other phenotypes compatible with ACMG-
based analysis - for example cardiomyopathy Kelly et al. (2018) or monogenic dia-
betes6 – by adjusting specific thresholds, providing customized annotation files and
adapting the source code if needed.

6https://clinicalgenome.org/site/assets/files/7039/clingen_diabetes_acmg_specifications_v1.
pdf

https://clinicalgenome.org/site/assets/files/7039/clingen_diabetes_acmg_specifications_v1.pdf
https://clinicalgenome.org/site/assets/files/7039/clingen_diabetes_acmg_specifications_v1.pdf


6
Conclusions and Future Work

6.1 Conclusion and Contributions

Artificial Intelligence (AI) aims to design and develop practical solutions to au-
tomate everyday or industrial processes. It spans a wide range of applications from
email spam detection to self-automating vehicles. An important step of AI applica-
tions is to categorize input instances into a predefined set of classes. For example,
the image detection system on the car-assembly pipeline, needs to recognize the com-
partment of the car, front, middle or rear. This step is known as classification. The
classification is significant as it enables the AI system to perform a set of similar
(processing) steps for input of the same class. That is, in the previous example,
AI system can trigger the mechanical arm to perform the same processing steps for
each front compartment of a car. Methods to perform the classification steps can be
based on domain experts rules or data-driven methods. All classification methods are
composed of the four steps: (i) input representation, (ii) model building (iii) model
prediction and (iv) model assessment.

Based on the input data characteristics, the availability of labeled data and the
need for model assessment by experts, there many challenges on applying the classifi-
cation steps. That is, in Chapter 3, I discussed my work on improving the model build-
ing step to tackle the concept drift phenomenon on classifying the textual streams. In
Chapter 4, I improved the input representation step by learning neural representation
for protein domains which can be intrinsically assessable and improved the perfor-
mance for protein learning tasks. In the last chapter 5, I described my method to
classify human genomic variants associated with hearing loss based on well-accepted
criteria, created by ACMG/AMP Oza et al. (2018). Therefore, I contributed on
a classification model that enables the model assessment step for human variants
pathogenicity prediction.

119
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6.1.1 Contributions

Our contributions are summarized as follows:

Classifying Textual Streams under Feature Drifts

In Chapter 3, we defined feature drift phenomenon as a special type of concept drift.
To tackle feature drifts in learning over a stream of documents I made the three
contributions. First, I conceptualized four complementary temporal processes that
may capture the periodical pattern of a word of a document. Then, I aggregated
the predictions of these four processes, by an ensemble learning model, using the
“sequential prediction with expert advice” framework, Kivinen and Warmuth (1999),
to guarantee a minimal prediction loss compared to the process best explaining the
word periodicity. Our second contribution was to deploy these predictions, for each
word, in order to enhance MNB model so that it can predict document class, in an
online fashion, under feature drifts. I deployed a sketch algorithm to keep the most
frequent used words for each period of the stream and thus I restrict the main memory
resources and allow our model, temporalMNB, to predict in “anytime protocol”. More
specifically temporalMNB needs 0.0253 seconds for both training and predicting of a
new instance and the needs 20GB at maximum for a tested Twitter stream of 1.6
million tweets. Our third contribution was to compare temporalMNB to other time-
aware MNB approaches in three tasks, sentiment prediction in a Twitter stream of
1.6 million tweets, email spam detection for two smaller data sets. Our results show
that temporalMNB outperformed the other approaches for all three tasks. Last, I
verified the prediction guarantees for words with known periodicities from the two
spam detection data sets.

Classifying Protein Sequences using Intrinsically Assessable Domain Em-
beddings

In Chapter 4, I presented our method to improve input representation for full-protein
learning tasks. This work has three contributions. First, I applied the word2vec al-
gorithms to learn embeddings for protein domains, named dom2vec, based on domain
architectures provided by the InterPro database Blum et al. (2021). Importantly,
as metadata for the most important biological characteristics exist, our protein do-
mains embeddings can be intrinsically evaluated in a quantitative manner. Thus,
compared to amino acid sequence embeddings, our approach brings the advantage
of enabling quantitative validation of the captured knowledge by the embeddings,
before using them on downstream tasks. Second, I performed quantitative evaluation
for four biological characteristics of proteins domains: domain hierarchy, secondary
structure class, enzymatic commission class and Gene Ontology molecular function
class for three model organisms and a human pathogen, (Escherichia coli, Saccha-
romyces cerevisiae, Homo sapiens and Plasmodium falciparum). Our experiments
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showed that dom2vec embeddings captured the most important biological features of
an individual domain: secondary structure class, enzymatic and molecular function
classes. Therefore, our findings supported, in a data-driven approach, the accepted
modular evolution of proteins Moore et al. (2008). Besides, they proved that neu-
ral networks can capture language information for the approved grammar of protein
domains Yu et al. (2019), in a full parallel to the captured semantic and lexical fea-
tures by neural word embeddings in natural languages. Our last contribution was
to benchmark the performance gains for three protein learning tasks compared to
sequence embeddings. I showed that dom2vec outperformed state-of-the-art sequence
embedings for the prediction tasks of enzymatic commission class and toxicity pres-
ence. Last, I investigated the performance of dom2vec for a data set of which the
test set contains unseen domains, compared to the training set. For such out-of-
vocabulary scenario, I showed that if the unknown domains are from the range of
0-30% dom2vec embeddings were comparable with sequence embeddings.

Classifying Human Genomic Variants Associated with Congenital Hearing
Loss

In Chapter 5, I discuss my contribution to improve model assessment step on the
scenario of classifying the pathogenicity of human genomic variants. I designed and
developed a open source bioinformatics tool,GenOtoScope, to classify the pathogenic-
ity of variants associated with congenital hearing loss based on the ACMG/AMP
guidelines. Our second contribution was to compare GenOtoScope performance to
two other classification tools on two hearing loss variants data sets. I showed that
GenOtoScope outperformed both classification tools. Importantly, I verified the high
performance of GenOtoScope, by observing that our tool trigger the ACMG/AMP
evidence-based criteria in the most similar fashion, to the manual curators, as com-
pared to the other two classification tools. Our final contribution was to develop two
software interfaces for GenOtoScope, a command line and a website, enable the wide,
free and easy usage of our tool by the research community and medical diagnostics
personnel.

6.2 Future Work Directions

The ideas on future work directions are split into the three main topics of this the-
sis. On online learning algorithms for drifting textual streams, I achieved to enhance
MNB model, however a more complex model can capture better the expressiveness
of textual documents. Therefore, a research direction is to apply the “sequential
prediction with expert advice” framework for more complex models such as recur-
rent neural networks (RNNs) Graves and Schmidhuber (2008). To do so, researchers
can conceptualize an ensemble model which has RNNs of different time periods as
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experts optimally combining by expert advice framework. As I proved that expert
advice framework can provide practical guarantees for the expert prediction aggrega-
tion, such ensemble of RNNs may acquire a high performance on classifying a textual
stream over concept drifts.

Next, I describe two future research ideas for dom2vec embeddings. The first
research direction is to use dom2vec embeddings to improve the functional prediction
of domains of unknown function (DUF). That is, assuming that DUFs are similar
to rare words that a human reads in a large collection of corpora, I will also apply
embedding models for tiny data, such as nonce2vec Herbelot and Baroni (2017), to
improve the captured information for DUF vectors. These re-trained DUF vectors,
will be input to a learning model to predict the domain function. Our second research
direction is to use dom2vecembeddings for functional characterization of hypothetical
proteins; proteins with no alignment to a protein with a known function. For this
direction, the embedding of the whole protein architecture can be learned and then
sequence embeddings can be trained through a siamese neural network, Chicco (2021),
with input the domain architectures and amino acid sequences of a pair of proteins.
Finally, the representation of hypothetical protein can be retrieved from the trained
siaseme network and it can be contrasted to protein with known function.

Last, I describe research ideas based on the GenOtoScope bioinformatics tool.
First, research can be conducted to increase the coverage of automatic examination
of even more ACMG/AMP evidence-based criteria. To do so, new methods needed to
be developed to connect, automatically, a human variant signature to the published
works with functional studies for this variant. Second, researchers can take advantage
of the open source license of GenOtoScope and use its code as code base to implement
the ACMG/AMP evidence-based criteria for more disease phenotype such as cancer
or hereditary cardiomyopathy.
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