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Abstract 

The importance of job shop production is increasing in order to meet the customer-driven greater demand 
for products with a larger number of variants in small quantities. However, it also leads to higher 
requirements for the production planning and control. In order to meet logistical target values and customer 
needs, one approach is the focus on dynamic planning systems, which can reduce ad-hoc control 
interventions in the running production. In particular, the release of orders at the beginning of the production 
process has a high influence on the planning quality. Previous approaches used advanced methods such as 
combinations of reinforcement learning (RL) and simulation to improve specific production environments, 
which are sometimes highly simplified and not practical enough. This paper presents a practice-based 
application of an automated order release procedure based on RL using the example of real-world production 
scenarios. Both, the training environment, and the data processing method are introduced. Primarily, three 
aspects to achieve a higher practical orientation are addressed: A more realistic problem size compared to 
previous approaches, a higher customer orientation by means of an objective regarding adherence to delivery 
date and a control application for development and performance evaluation of the considered algorithms 
against known order release strategies. Follow-up research will refine the objective function, continue to 
scale-up the problem size and evaluate the algorithm’s scheduling results in case of changes in the system. 
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1. Introduction 

Due to a customer-driven increasing demand for higher product variants in correspondingly smaller  
numbers, flexible structures must enable their production and therefore the importance of job shop 
production is growing [1]. However, in a job shop production, the products take different routes through the 
production which complicates the allocation of machine capacities as well as operator and material 
availabilities to specific orders. To keep track of the order-specific view and simultaneously control the 
overall system, requirements on production planning and control (PPC) increase [2]. In order to cope with 
the higher requirements, one recognizable focus of PPC lies in the optimization of throughput times [3] while 
other logistical target values such as capacity utilization and adherence to delivery date still remain relevant 
for manufacturing companies [4]. In consequence, PPC processes become more dynamic and advanced [5]. 

Order-related optimization attempts can be achieved on two levels – on the upper level (order release) 
considering the logistical chain by starting production orders and on the lower level (sequencing) by 
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changing the queue sequence in front of production units [3]. Although the high importance of an optimized 
order release system on the planning quality is well known [6], it is not yet used as standard today to achieve 
logistical target values and to reduce ad-hoc control interventions [7]. When focusing on scheduling tasks in 
a job shop production, discrete-event simulation is suitable for modelling the complex interrelationships and 
thus the main system behaviour [8]. Especially, in the context of flexible routes and considering unplanned 
machine downtimes, simulation holds a significant role in solving PPC tasks [9]. Previous paper and recent 
research on that topic combine simulation with reinforcement learning (RL) as an important field of machine 
learning [10]. By utilizing current advances in algorithm development with RL and combining this with 
simulation, a promising tool to effectively solve production scheduling problems is created [11]. 

In this context, recent approaches put a strong focus on further development from a computer science point 
of view and do not reflect the realistic complexity and framework conditions of real-world production 
systems in terms of machines, orders and uncertainties. It becomes important to align those approaches with 
practical requirements derived from an engineering perspective, e.g. a realistic problem size and 
representative data set [1]. Therefore, this paper formulates necessary steps for a stronger practical 
orientation of RL approaches in production scheduling based on the approach presented in [12]. The 
remaining of this work is organized as follows: In section 2, the studied problem is described, the method 
for implementing RL-based scheduling problems is specified and it is explained why previous approaches 
for order release are not yet practice-based enough. A review on order release strategies considering 
conventional approaches, heuristics and concepts based on RL is given in section 3. The application of a 
practice-based RL-approach for automated order release is explained in section 4. Finally, in section 5 the 
work is concluded and important aspects for further research are elucidated. 

2. Background 

In this section, the main reason for optimizing the representative task of order release is explained and the 
general principle of RL algorithms as a tool used for production scheduling is introduced. Then, with the 
rise of promising RL approaches, the need for more practice-based approaches is motivated. 

2.1 Order release in the job shop scheduling problem (JSP) 

In our previous paper [1], the substantial reasons for focusing on order release as a representative task within 
production control (PC) have been motivated. As argued, order release marks a “critical decision point” [13] 
for subsequent PC tasks and regardless a widespread use of enterprise resource planning (ERP), advanced 
planning and scheduling software (APS) [4] and still conventional heuristics, there is further need for 
optimization in production practice [1]. Especially due to the further increasing importance of job shop 
production, which has been proven to be NP-hard [5], it becomes necessary to develop advanced methods 
to solve the known practical problem.  

Therefore, this work considers the order release in a job shop production by adapting the typical assumptions 
[1,14]: 

• One operation at a time on each machine and on any job 
• An operation of a job can be executed by only the assigned machine 
• The next operation of a job can be started after completing its preceding operations 
• No alternative routings for a job 
• Each machine is available for production according to the machine calendar (in the application phase 

additional machine breakdowns and order cancellations will be included) 
• No restriction on queue length before any machine 
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2.2 Implementing a RL algorithm for production scheduling 

For solving job shop scheduling problems, either basic correlations presented as heuristics or deep problem 
related knowledge for exact solutions are required [15]. Since such knowledge is not always available and 
significant effort is required to parameterize expert knowledge, the desire for further advanced approaches 
has emerged [16]. Model-free RL has proven to be a suitable approach without requiring this expert 
knowledge [11] by just interacting with the production environment in a “trial and error” scheme [17]. 

In order to be used in a RL algorithm job shop scheduling problems are modelled as a Markov Decision 
Problem (MDP). MDPs are characterized by the fact that future states only depend on the present state and 
action [18]. Since the decision process requires frequent repetitions it is not directly applicable to real 
production environments and thus needs to be represented by a discrete-event simulation [8,19]. 

The core idea of reinforcement learning is based on the interaction between a RL algorithm – referred to as 
agent – and an environment – usually represented by a simulation model (see Figure 1). At each time step, 
the agent observes the environment described by its state !!	#	$ and decides on an action %!	#	& to perform. 
Subsequently, the taken action leads to the state !!"#	#	$ and a specific reward for the agent, which over 
time aggregates to a total reward of '! = ∑ *$%

$&! . Those two aspects are combined during the training phase, 
where the agent tries to learn and adapt an optimal policy +!(%|!) based on the actions it performs and the 
reward it gets [20]. The learnt policy allows the agent in the following application phase to solve the stated 
problem. According to the defined objective function, during training phase the RL agent tries to maximize 
the sum of rewards gotten from its actions in order to solve the stated problem [21]. For the approach at 
hand, related works suggest the Deep Q-Network (DQN) training method as a suitable approach [11,12]. 

 

Figure 1: General principle of RL algorithms [20] 

 

Especially in the training phase, the environment is represented by a simulation model, because in contrast 
to real systems, it reacts reproducibly and thus can be iterated [22]. For training, the agent needs the interface 
to the simulation model and a set of training data. Complying with the practice requirement claimed in this 
paper, this should be historical feedback data from an ERP system. For training purposes fast interfaces 
between the simulation model and the RL agent significantly improves the training time [11]. For the 
application after the completed training phase, the trained RL agent can apply its improved value function 
on a production case either still represented by a simulation or a real production. 

2.3 Practical application of RL-based production scheduling 

As stated in the introduction, this paper is intended to give a more practical direction to the application of 
RL algorithms in production scheduling. Therefore, the following three sections present what would be 
required for more practice-based approaches. Similar to other areas e.g. big data analysis, this field of 
research also benefits from cooperation between data science and engineering, because engineering brings 
in the necessary production expertise[23]. 

 

Observation !"#$

Action %"

Reward &"
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2.3.1 Problem size and data set 

A major challenge for production scheduling approaches is the excessively increasing complexity with the 
increase in problem size until an approximate realistic production scale of e.g. 200 machines is reached. One 
problem of RL approaches that prevents user from simply scaling-up the problem size is the state design 
representing the number of jobs and machines. It can be overcome by using production expertise for state 
aggregation, function approximation or modelling adaptions in the state-action space [24]. Another 
requirement for practice-based approaches would be the validation with real production data to ensure 
transferability to real-life problems [1]. Without focus on features of real production environments, possible 
influencing factors such as machine breakdowns, order cancellations, sequence dependent setup time, and 
precedence constraints could thus be unintentionally hidden [24]. 

2.3.2 Objective function and action space 

One important enabler of a performant RL approach is the objective, from which the reward is directly or 
indirectly derived. Yet, it is noticeable that the total makespan is the most widespread objective [24,11]. 
Although reliable results in not directly optimized performance measures are achieved as well, a survey of 
manufacturing companies showed, that due to recent crises, companies are paying more and more attention 
to on-time delivery as a target for their PPC [7]. Therefore, this paper claims to primarily focus on the value 
adding measure adherence to delivery date. Here it should be also covered that a new order release method 
should directly focuses on identification of orders instead of indirectly determining them. 

2.3.3 Control interface for development and evaluation 

The third missing aspect towards practice-based approaches is a specialized control interface for fast 
evaluation and algorithm development, by means of evaluation against logistical target values and 
comparison against classical or adapted control heuristics. Standard control and evaluation interfaces such 
as Tensorboard or WandB, that are widely used for ML development[25,26], mainly focus on the comparison 
of different algorithm variants and the performance evaluation of machine learning methods. Certainly, for 
optimizing the RL method itself, this is an important part of algorithm development, but it misses the special 
characteristics that must be mapped in production to justify a method even against other less advanced 
solution options that are not ML based. Therefore, the application presented in this paper integrates the Plant 
Simulation environment to easily create and compare different scenarios based on common order release 
heuristics or an optimized solution from the RL agent. With the selected combination of order and machine 
related graphs an effective analysis of a job shop production is enabled based on production expert 
knowledge. 

3. Related work 

In this section, conventional and recent approaches on the job shop scheduling problem are reviewed. 
Especially the task of order release and approaches with transferable findings are considered in detail. In the 
second part of the chapter, existing AI-based approaches for order release and order scheduling are specified.  

3.1 Conventional approaches and heuristics 

A brief overview on order release methods has been given in the previous paper [1]. Two methods that are 
not advanced but found in many production systems are the instant order release and order release by 
deadline. Orders are released directly as soon as they have been created or once the planned starting date is 
reached, regardless any production performance measures e.g. the quantity of orders in production [27]. The 
constant work in process (Conwip) and the load-oriented order release are two common inventory controlling 
order release approaches. This includes the two heuristics workload-control and bottleneck-control, where 
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either the workload of all order processing stations or just the stations up to the bottleneck station must be 
considered. The order release with linear programming differs from the previously presented heuristics in 
the manner that mathematical optimization is used. A calculation module that can solve linear equations 
minimizes the target value of an objective function [27]. This is usually used by production software such 
as ERP or APS, which aim for a direct integration of the order release task into the overall order management 
process of the organization [4]. 

3.2 RL-based approaches 

Especially in the last two decades, conventional approaches and heuristics have been steadily extended by 
those based on Artificial Intelligence and here especially the subarea RL [24]. An overview of existing meta-
heuristics including learning-based systems is provided in [1]. The reinforcement learning approach 
introduced by [12] is designed to simultaneously decide on order release and operation sequencing. The 
Deep Q-Network (DQN) agent tries to minimize the makespan and is evaluated in random simulation 
instances regarding solution quality, solution speed, and scalability to bigger problems. [28] utilize a deep 
reinforcement learning approach to determine the release times of the orders in a flow shop with three 
machines. The reward that the agent receives after every action depends on the number of backorders, current 
WIP and size of the inventory. The validation results are limited to the simulated case. 

Three DQN agents used by [29] independently control three machines to automate scheduling tasks. The 
model is implemented in MATLAB for training and evaluation purposes and aims to minimize the cycle 
time spread for three product groups. However, information about the origin of the data is not provided. A 
centralized learning policy is added to a multiple agent approach by [30]. Individual agents make decisions 
in a decentralized manner but share a common Q-network. This approach which objective it is to minimize 
the makespan is validated against 15 generated data sets. 

Google DeepMind’s AlphaGo Zero algorithm applied to optimize sheet-metal production schedules by [31] 
interacts with a discrete event simulation and schedules operations to idle machines. The agent aims to jointly 
minimize tardiness and material waste and is validated using 80 different offline scheduling instances. The 
multi-step reinforcement learning algorithm introduced by [32] is developed to minimize the total weighted 
unsatisfied demand in the scheduling horizon. While real industrial datasets are used for evaluation, the 
validation in this study considers various problem sizes as randomly generated datasets. The approach 
presented by [33] differs slightly from other reinforcement learning approaches since the DQN agent does 
not directly decides on the order in this case but selects an operation selection rule and a machine assignment 
rule. The overall goal to reduce the total tardiness is validated by making assumptions concerning data and 
by randomly generating test benchmarks. The reinforcement learning mechanism applied in [34] is 
considered in this paper despite the dispatching focus because of its unique policy transfer. The policy 
transfer allows it to apply a trained agent in a new factory setting and reduces the effort for model training 
and data collection. For the validation of the agent aiming to minimize the lateness and tardiness of orders, 
a simulation based on artificial data is built. 

The review on related works supports the three recognized shortcomings of current approaches (see 2.3). 
First, regarding the problem size it can be seen that when mentioned small instances of 3 to 15 machines are 
studied and are not usually based on real production data. Using artificial or open-source data sets can help 
to better fulfil demands on the training data such as data size and independencies but doesn’t necessarily 
support the solution of real-world problems. Second, the mainly used objective is a minimization of the 
makespan. Only few approaches focus on the adherence to delivery date, customer demand or tardiness. 
Also regarding action space it is missing, that within action spaces an order is directly chosen for the next 
scheduling step as a direct consequence from the policy of the algorithm. Lastly, in most cases, no application 
set-up is described that would facilitate the development and evaluation of algorithms by taking realistic 
framework conditions on the shop floor with a strong focus on logistic target values into account. 
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4. Application 

This section presents the practice-oriented application approach for an automated order release process, 
which has been motivated throughout this paper. The main objective aims to optimize adherence to delivery 
dates. Also, the used online application which allows for a quick validation is introduced. 

4.1 Setup of the Application 

This approach uses the setup of a RL agent and discrete-event simulation described in our previous paper 
[1] (see Figure 2). The program architecture of the RL algorithm builds on that of [12] and adapts it in the 
parts relevant to this paper (see 2.3).  

 

Figure 2: Used setup for the proposed RL approach [1] 

In order to model the more-realistic production instance, that is required in this paper, especially the discrete-
event simulation in the Plant Simulation environment (see stage III) includes statistically distributed machine 
breakdowns and order cancellations, the agent must deal with. 

4.2 Simulation model and state space 

As introduced in the general approach for applying RL algorithms, the current state represented by the state 
vector provides the agent with all necessary information to decide on his next action. In particular, while 
some information like work plans and machine lists are loaded once into the simulation environment for its 
initial creation, data transferred per time step comprises the machine and order status as depicted here: 

• General information: Current episode, current simulation time 
• Machine status: Availability, remaining processing time of in-que operations, remaining processing 

time of the current order 
• Order status: Machine on which the order is currently processed, downstream machine, processing 

time of the next process step, remaining processing time of current process step, remaining total lead 
time of the current order, remaining time until the due date 

The general information mainly indicates the simulation progress. In the machine status, for each machine 
the availability and information on processing times considered with this machine is transferred. Then follow 
information about each order in production. The vector is successively assembled and its length varies with 
the number of orders. For calculation of the “remaining total lead time” it is assumed that the waiting times 
are excluded, so that it is up to the overall system to keep these correspondingly small. By considering the 
sequence-dependent setup time it is exactly reflected in the calculation of the remaining total lead time. 
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4.3 Action space 

In contrast to [12], in this approach a dependent action space which directly consists of orders to be released 
or not released at each specific time step is used instead of approximated duration times to which orders 
must be first assigned. In order to cope with the disadvantage of a dependent action space – its initially 
defined and constant size – an order release pool has been established which is initially filled with pending 
orders. The prioritization to fill the order release pool is currently based on the due date of the respective 
order. In order to be able to link the actions with the corresponding orders in the order pool, each action has 
an index that matches the index of an order. Once the agent selects an action, the action is used to search for 
the corresponding order. To depict the case of not releasing any order into the production one more possible 
action is added into the action space. Besides the possibility of releasing a specific order, the action of not 
releasing any order is referred to as “No-Op” action. 

4.4 Algorithm and reward function 

Like the approach of [12], a DQN algorithm learning by experience replay is used with the RL library Stable 
Baselines. Each step of the agent’s experiences is used by the agent in many other steps for weight updates, 
resulting in a great data efficiency.[35] The biggest change has been done by exchanging a reward on 
minimizing the makespan to the optimization of adherence to delivery dates (see Table 1). To calculate the 
reward, the remaining processing time for all orders is determined. An increasing positive and normalized 
reward is allocated for each order depending on the difference between the remaining time until the due date 
and the remaining process time. If the difference is negative, the agent receives a negative reward. In addition 
to this unsteady function, the positive part is multiplied by the value of 10 to enhance positive rewards. 

Table 1: Formulation of the algorithm used 

Algorithm 

Import work plan, list of orders and machine calendar from csv 
Initialize state !' filled with general information and machine/order status 
Define discrete action space 
Initialize action space $	 ∈ 	 {0,1, … ,5(} (0,1,…) 
Initialize parameters of the DQN library 
For episode 7 ∈ 	 {1,2, … ,5)} do 

     Get state vector !! 
     Select action from action space  

     Determine reward *! 
     Proceed state to !!"# 

     End 

End 

4.5 Control interface and evaluation concept through DAPPS online application 

The control interface for rapid evaluation and simple improvement of the RL agent used in this approach is 
the self-developed online application DAPPS. This tool is based on the approach presented by [36] and has 
since been further developed and enhanced with more advanced features. DAPPS creates a linkage between 
the programming and simulation environment and visualizes the agent’s order release results by simulating 
a production scenario. Thus, the agent’s decisions on the production environment can be analyzed by 
comparison against conventional order release scenarios that are simulated as well. By choosing different 
visualizations of production key figures like adherence to delivery dates, throughput times or Gantt-charts, 
this helps to quickly derive adjustment possibilities and further develop the algorithms. 
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The application of the setup presented in this paper, has been conducted on basis of two problem instances: 
The first with 10 machines and 76 orders, the second with 10 machines and 259 orders. Hypotheses such as 
the presented objective function or the action space have been derived from expert knowledge and have been 
directly tested in the DAPPS application with the adherence to delivery dates being the key measure.  

As there have been major changes on the problem formulation compared to the first application in [11], the 
final target of outperform current approaches has not yet been reached. For the smaller data set an adherence 
to delivery date of 84,21% has already been proven considering maximum freedom the agent got in choosing 
actions. Then, by applying the second data set with a larger order number, the adherence to delivery dates 
decreases to 91,89%. Another even larger problem size – with 28 machines and 474 orders – was applied 
but it emerged that the direct scaling without adjustment in the problem formulation is not purposeful 
regarding a justifiable training time of around 12 hours. Within the scope of this paper, no solution could be 
developed yet for the scaling of large problem sizes. Therefore, by using DAPPS as a support system for 
development, the announced steps (see 2.3.1) must be further carried out here in order to scale the problem. 

4.6 Discussion 

Within the scope of this paper, we were able to adjust the action space so that the action space is dependent 
and directly consist of orders to be released. To deal with a dependent action space, we additional add an 
order release pool. In addition, we are introducing the DAPPS tool to enable an evaluation of release results 
and a comparison against conventional heuristics such as CONWIP. For the application we use two scenarios 
with different numbers of orders and 10 machines each. A larger problem size with more machines and 474 
orders led to a long training period. The problem of scaling could not be solved within the scope of the paper. 

5. Conclusion and further research 

This paper elaborates on the usage of reinforcement learning algorithms for automated order release in a 
practice-based application. Therefore it aims to further develop the reinforcement learning agent presented 
in our previous paper and introduces the evaluation tool DAPPS. After identifying the shortcomings of 
current RL approaches, the functionality of our agent and the advancements compared to the previous agent 
has been explained. Finally, by embedding this practice-based approach into DAPPS, the tool has been 
presented and the agent been tested on two problem sizes.  

The approach can be used in practice, in order release planning to support decision making and thus lead to 
a better achievement of logistical target values as well as to a reduction of ad-hoc control interventions. The 
focus of further research must be on an improvement of the problem formulation and on the identification 
of the computationally intensive component. Finally, the approach has to be validated and the behaviour of 
the algorithm’s decision needs to be evaluated by means of unforeseen disruptions in the production.  
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