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Abstract 

With the aim of enabling better utilization of renewable power and reducing the environmental impact of 

industrial sites, we propose an approach for implementing electric demand response. Cleaning machines 

provide significant potential for demand response due to their large water tanks, which can be used for 

thermal energy storage. Furthermore, many batch cleaning machines allow process interruptions without 

impacting the cleaning result. We show that utilizing inherent energy storage and process interruptions are 

practical ways to implement demand response.  

Hence, we present a mathematical demand response model of an aqueous parts cleaning machine and 

integrate it in a cyber-physical production system. The mathematical demand response model is used to 

determine the energy consumption of the machine resulting from the cleaning process and the tank heater. 

The model is divided into an event-based part describing the individual steps of the cleaning process and a 

time-based part representing the energy required by the tank heater to satisfy specified tank temperature 

limits. 

In addition to the mathematical model, we present the data model required for communication with the 

physical machine. We validate the mathematical model and the complete cyber-physical production system 

including a real machine in a field test in the ETA research factory for their demand response capabilities. 
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1. Introduction 

Purchasing electricity is currently more expensive than ever for industrial companies. Average annual 

electricity spot market prices in Germany rose from 28.20 €/MWh in 2016 to 93.35 €/MWh in 2021 and 

235.52 €/MWh in 2022 [1]. The latest price increase is caused by the dependence on conventional energy 

sources such as oil and gas [2]. The worldwide average price for gas already increased by 549 % between 

December 2020 and one year later. [3]. One way to reduce dependence on fossil fuels is to expand the use 

of renewable energy. Between 2011 and 2021, renewable generation worldwide has nearly doubled from 

402 TW h to 763 TW h [4]. An adjustment of the electricity system is required for the switch to renewable 

electricity generation. Due to the stochastic nature of renewable electricity generation consumers should 

adapt to fluctuating generation through the integration of energy storage and by using demand response (DR) 

as part of demand side integration [5], thus reducing energy costs. 
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In previous research we performed an analysis of the DR potential of an industrial aqueous parts cleaning 

machine [6]. We also developed an automation data model to be used for the communication between DR 

services and the machine automation in cyber-physical production systems (CPPS) [7]. In [8] we 

implemented a CPPS based on the automaton data model including a simulation model of the cleaning 

machine and a simple rule-based DR service to control the tank heater of the machine. The approach shown 

in the present paper extends this research with a mathematical model for the machine’s production schedule. 

The model integrates the flexibility potentials identified in [6]. We also extend the automation data model 

to include the newly required information and update the automation structure of the machine.  

In section 2 of this article we provide a literature review of industrial process and production scheduling. 

Then, we briefly describe the cleaning machine and its DR potential in section 3. We subsequently present 

the DR service in section 4. The data model for interaction between the machine automation and the DR 

service is shown in section 5. Finally, we apply the DR service to a cleaning machine in a field test in section 

6 and draw a conclusion in section 7. 

2. Literature 

The literature review identified many research articles focused on energy flexible or energy efficient 

scheduling of single machines. Some exemplary approaches for minimizing the energy cost of production 

by applying DR are [9], where the schedule is optimized for an unspecified single machine, and [10], where 

a machining process is considered and multiple factors are optimized, including the cutting speed. Biel et 

al. [11] provide a comprehensive overview of research in this area, and a more recent review has been 

published by Bänsch et al. [12]. 

Most of the previously mentioned research lacks a standardized method for the implementation of the 

proposed optimization on actual machines in real production environments. The creation of cyber-physical 

production systems might offer a path towards further proliferation of the proposed scheduling 

optimizations. In [13], Meissner et al. describe how the development of cyber-physical production systems 

influences process planning and scheduling. They point out a variety of factors affecting the implementation 

of data driven process planning and scheduling approaches, such as the interconnectedness of machines and 

products, big data, and cyber security. The benefits of integrated process planning and scheduling lie mostly 

in the increased capacity for real-time adaptation of process plans and schedules.  

Leiden et al. present an approach for energy and resource efficient operation of plating process chains using 

a cyber-physical system implementation [14]. They created an agent based discrete-event simulation of the 

process chain to support planning and operational processes. The authors assert that the implementation as 

a cyber-physical system led to high process transparency and attest good applicability of their system by 

utilizing it for decision support as well as direct control of processes [14]. 

In the literature review we observed a lack of cyber-physical production system implementations which aim 

to make single machine scheduling with an energy-related objective more attainable. We therefore attempt 

to fill this gap by presenting a scheduling model with an energy-cost objective which is integrated in a cyber-

physical production system. 

3. System description and demand response potential  

We develop a demand response scheduling model for the aqueous parts cleaning machine MAFAC KEA in 

the ETA Factory at the Technical University of Darmstadt [15]. The machine has a total rated power of 

20.7 kVA. It is equipped with one closed treatment chamber and a 320 l tank for cleaning fluid, which is 

heated by an electrical tank heater with 10 kW nominal load. The cleaning process duration is 12 minutes 
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and consists of the three energy-relevant process steps spray cleaning (600 s), impulse blowing (30 s) and 

convection drying (90 s).  

We analysed the potential of the cleaning machine for DR measures in [6]. The DR potential analysis of the 

machine showed that it has high potential to implement the DR measures interrupt process and store energy 
inherently defined in [16]. Interrupt process means pausing between cleaning processes or between the 

process steps. By controlling the tank heater with a DR service and using the thermal inertia of the tank as a 

thermal storage, the heating system can be used to store energy inherently [6].  

In this study we aim to replace the simple control strategy previously described in [8] with a mathematical 

optimization model, executed as a model predictive controller (MPC). While we previously presented a 

simple rule-based approach for controlling just the tank heater, we now design a more sophisticated model 

for the temperature of the cleaning fluid in the tank, which takes the cleaning stages into account. We also 

integrate the ability to make the interrupt process decision. These changes of the model also require some 

adaptations of the automation structure. The entire implementation of the cyber-physical production system 

is based on the eta-utility software framework [17]. 

4. Demand response scheduling model 

To use the cleaning machine for DR we create a mixed integer linear programming (MILP) scheduling 

model. The model is used as the DR service by executing it in a MPC loop. The objective function of the 

scheduling model aims to minimize the energy cost of the cleaning machine which depends on the machine’s 

power consumption and the changing energy price. We separate the model into two parts: We develop an 

event-based approach to model the cleaning process for the DR measure interrupt process and a second 

discrete-time model for the control of the tank heating system to implement store energy inherently. 

The total energy costs are the sum of the energy costs for every cleaning process event ! ∈ {1,… ,'}, plus 

the sum of the energy costs for tank heating for every timestep ) ∈ 	 {0, … , ,}, where 	
' ∈ ℕ	is	the	total number of cleaning process events and , ∈ ℕ is the optimization horizon. Every cleaning 

process event is defined by its start time 3! ∈ ℕ" and duration 4! ∈ ℕ". The energy costs of each cleaning 

process event are determined by the time-dependent energy price 5# ∈ ℝ for every timestep k and the power 

consumption 7! ∈ ℝ$" of the cleaning process event n. The energy cost of the tank heater is the product of 

the tank heaters power consumption 7heat ∈ ℝ$", the tank heater state ℎ# ∈ {0,1}, and the energy price 5#. 

We minimize the costs over the durations of cleaning process events 9 = (4), … , 4*) ∈ ℕ"* and the 

switching state of the tank heater = = (ℎ", … , ℎ+) ∈ 	 {0, 1}+,), i.e. 

min
-,/

	@ @ 7!5#
0!,1!2)

#30!

+ 7heat@ℎ#5#
+

#3"

*

!3)

. (1) 

4.1 Event-based model of the cleaning process  

Each cleaning process event n has an associated power consumption value 

7! 	= 	C
7456,												∀!	 = 	1, 3, . . . , '							
7789:5, ∀!	 = 	2, 6, . . . , ' − 3
7;<=,												∀!	 = 	4, 8, . . . , ' − 1

 (2) 

with 7456 ∈ ℝ$" representing the power consumption in interruption, 7789:5 ∈ ℝ$" during process steps 

spray cleaning and impulse blowing combined due to the short duration of impulse blowing, and 7;<= ∈ ℝ$"	
during drying. !start represents the MPC’s process event currently activated on the machine. Since all 

previous events lie in the past, the starting time 3!	of the active event and all prior events is zero, i.e. 
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3! 	= 	0, ∀	! ≤ !start. (3) 

The start of the next event 3!,)	is the sum of the start 3!	 and duration 4! of the anterior event, i.e. 

3!,) 	= 3! 	+ 4!, ∀	!	 = !start, … , ' − 1. (4) 

The first, last and all uneven events ! = {1,3, … ,'} of a process are defined as interruptions. Only the 

duration of interruptions can be changed, the duration of cleaning and drying events is fixed. Hence the 

duration is set to 

4! 	= 	

⎩⎪
⎨
⎪⎧
0										, ∀	! < !start																																																
4@6:<6		, ∀	!	 = 	2, 4, . . . , ' − 1	with	! = !start
4789:5		, ∀	!	 = 	2, 6, . . . , ' − 3	with	! > !start
4;<=				, ∀	!	 = 	4, 8, . . . , ' − 1	with	! > !start

 (5) 

where the duration of past events is zero, the durations of the cleaning and drying events 4789:5	 ∈ ℕ and 

4;<= ∈ ℕ and the remaining time of the current cleaning or drying event is 4@6:<6	 ∈ ℕ. The total process 

duration is limited by the fixed end time of all cleaning processes S ∈ ℕ and the optimization horizon K i.e. 

3* + 4* ≤ min(,, S).	 (6) 

At the end of each cleaning process, there must be unscheduled time to allow for loading the machine, except 

when approaching the end time of all scheduled processes S. The duration for loading is specified by: 

4! 	≥ 	min(48B:;, S), ∀	!	 = 	5, 9, . . . , '	with	! ≥ !start (7) 

4.2 Time-based model of the tank temperature 

The optimization of the tank heater is time-based, and the operation of the tank heater depends on the 

temperature inside the machine’s cleaning fluid tank W# ∈ ℝ$", which must remain within the hysteresis 

limits determined by a lower bound Wlb ∈ ℝ$" and an upper bound Wub ∈ ℝ$": 

W8F ≤ W# ≤ WGF, ∀	)	 = 0, . . . , , (8) 

The tank temperature at a specific time step is determined by the starting temperature Wstart ∈ ℝ$", the 

temperature loss to the environment and to cleaned parts X# ∈ ℝ$" and the temperature increase due to tank 

heater operation Y# ∈ ℝ$". 

W#,) = W# + Y# − X# , ∀	)	 = 	0, . . . , , (9) W" = Wstart (10) 

To determine experimental factors for the heat losses in section 4.3, we need approximate analytical models 

to integrate them appropriately with the optimization. Therefore, we assume the fluid inside of the tank of 

the cleaning machine to be a closed homogenous system. There is no exchange of work between the system 

and the environment, and the heat exchange is isobaric. The conversion from electric energy to heat in the 

tank heater has an efficiency near one, hence the heat flow into the system by the tank heater is equal to its 

electric power rating (Żheat = 7heat). The positive heat flow of the tank heater into the system leads to a 

temperature change dependent on the specific heat capacity 5p,fluid, the volume \tank, and density ]fluid of 

the cleaning fluid and the time step duration ^ ∈ ℕ. ℎ# is the decision variable for tank heater operation: 

Y# =	
7heat	^

5N,	fluid	\tank	]fluid
∙ ℎ# , ∀)	 = 	0, … , ,	 (11) 
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In addition to the heat flow generated by the tank heater, there is a heat flow X# from the cleaning liquid to 

the environment and to the cleaned parts. We chose to separate the heat flow to the environment during the 

operational state of the machine and the heat flow to environment and washed parts during the working state 

because they differ significantly. Equation (12) yields the heat flow to the environment Żenv due to 

conduction and convection. We did not consider the effects of radiation and judging from the experimental 

results this simplification is acceptable. The heat flow depends on the surface area `tank, the thermal 

conductivity between tank and environment atank,	env, the heat-transfer coefficient benv and the environment 

temperature Wenv: 

Żenv(W#) = catank,	env + benvd	`tank	(W# − Wenv) (12) 

Assuming an equilibrium between the temperature of the washed parts and the cleaning fluid at the end of 

the cleaning process, the total change of inner energy of the parts ∆fparts(W#) with specific heat capacity 

5p,	wp, the number of parts !wp, the mass of each part gwp and the temperature when being loaded Wwp =
	Wenv is defined as 

∆fparts(W#) = 5p,	wp	!wp	gwp	(W# − 	Wwp) (13) 

The third factor contributing to heat loss to the environment is most likely mainly based on forced convection 

between the cleaning fluid and the walls of the cleaning chamber because of the spray cleaning process 

Żspray(W#) with a separate heat-transfer coefficient bspray: 

Żspray(W#) = bspray`tank	(W# − Wenv) (14) 

Based on the analytical heat transfer equations (12), (13) and (14), we identify three regression factors to 

simplify the models. henv describes the heat loss to the environment, hparts describes the heat loss to the parts 

during cleaning and hspray describes the heat loss due to spray cleaning. 

henv ≅	
(atank,	env + benv)	`tank
5p,	fluid	\tank	]fluid

 (15) hparts ≅
5p,	wp

5p,	fluid	\tank	]fluid
	 (16) 

hspray ≅	
bspray	`tank

5p,	fluid	\tank	]fluid
 (17) 

Using these factors, we can simplify the above equations and determine X#, which includes the temperature 

change of the cleaning fluid during the cleaning process X#,clean: 

X#,clean = ch@S<:=^ + hS:<6@!TSgTSd(W# − W95U)	∀) = 0,… , , (18) 

Using this in combination with the heat loss to the environment yields the total temperature difference due 

to losses to the environment and during the cleaning process X#: 

X# = −h95U^(W# − W95U) − j
	X#,clean, if	3! ≤ ) < 3! + 4!, ∀!	 = 	2, 6, … ,' − 3

0, else																																																												 	∀) = 0,… , ,	 (19) 

4.3 Experimental parameter identification 

We performed three experiments to determine the β-factors specified in equations (15), (16) and (17). During 

the experiments we measured the temperature of the environment Wenv as 22.5 °C. To determine the heat loss 

to the environment, we heated-up the cleaning machine to a specified temperature, then allowed the machine 

to cool down for 127 minutes. We then set henv to be equal to the average temperature gradient of the cleaning 

fluid ∆tenv during the measured time interval, divided by the average temperature difference between the 

cleaning fluid and the environment W − Wenv	as given by equation (20). hspray describes the temperature 

gradient ∆tspray	during spray cleaning without any parts in the machine (only an empty cleaning basket) 
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calculated by equation (21). Finally, we measured the temperature gradient ∆tparts while cleaning 42 metal 

parts each weighing 0.262 kg to determine hparts using equation (22). Prior to cleaning the parts, their 

temperature was 22.5 °C. 

henv = − avg(∆tenv)
avg(W − Wenv)

≅ 1.67 ∙ 102V (20) 

hspray = −
avg(∆tspray − ∆tenv)

avg(W − Wenv)
≅ 1.72 ∙ 102V (21) 

hparts = −
avg(∆tparts − ∆t@S<:= − ∆tenv)

avgcW − Wwpd	!wp	gwp	
≅ 1.03 ∙ 102V (22) 

4.4 Additional equations for the implementation of the optimization problem 

For the implementation of the model in the Python-based modelling language Pyomo we had to adapt the 

event-based model of the cleaning process, since it was not natively possible to implement an objective 

function with variable sum limits. Therefore, we introduce q!,# ∈ {0, 1} which is 1 during the execution of 

process event n at time step k. The objective function (1) then becomes 

min
-,/

	@@q!,#7!5#
+

#3"

+ 7WXYZ@ℎ#5#
+

#3"

*

!3)

. (23) 

To construct q!,# we introduce qr!,# ∈ {0, 1} which is 1 during and before the execution of process event n 

at time step k and thereby ensure the correct order of the process events, such that  

@qr!,# =
+

#3"

@44
!

43"

, ∀!	 = 	1, . . . , ' (24) 

With the binary help variable s! ∈ {0, 1} and 

qr!," = js!	, ∀!	 = 	!0ZY[Z , . . . , '0			, ∀!	 < 	!0ZY[Z												 (25) 4! ≤ s!4\N, ∀!	 = 	1, . . . , ' (26) 

qr!,# ≤ qr!,#2), ∀! = 1, . . . , ', ∀) = 1, . . . , , (27) 

where 4\N ≫ gqu(40ZY[Z , 4]^XY!, 41[_ , 4^`Y1), we guarantee that qr!,# = 0 for ! < !0ZY[Z and qr!," = 0 or 

qr!," = 1 else. This allows interruptions with a duration 4! = 0. Now, we construct q!,# by subtraction 

q!,# = j qr!,# , ∀! = 1				
qr!,# − qr!2),# , ∀! = 2, . . . , '	 , ∀) = 0, . . . , , (28) 

and introduce the interruption variable v# ∈ {0, 1} which is like the tank heater state	ℎ# and defined by 

v# = @q!,#
*

!3)

, ∀! = 1,3, . . . , ', ∀) = 0, . . . , ,. (29) 

Also, we must modify (18) and include q!,# such that 

!!,clean =#$%()*+,& + %)+*-((.)).)*$+/,! − -/,!.012*

/

345

∀( = 2,6, . . . , 3 − 3,∀5 = 0, . . . , 7 (30) 

where w6,# = W#q!,# , w6,# = 0, ∀( ≠ 2,6, . . . , 3 − 3 and 

0 ≤ w6,# ≤ WGFq!,# (31) W# − WGF(1 − q!,#) ≤ w6,# ≤ W# (32) 
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such that  w6,# = W# if q!,# = 1 and w6,# = 0, else. 

5. Automation structure and data model 

We adapt the cleaning machine’s automation program to be able to close the control loop and to use the 

machine for DR measures. For the interrupt process DR measure, we add the additional operating state 

interrupted to the machine automation. For communication between the machine’s automation system and 

the DR service, we implement the automation structure and data model described below to standardize the 

data exchange based on [7,6,8]. 

The automation program’s main system KEA extends System2Point (see [7] for an in depth explanation of 

the different classes) and can be set to the two setpoint states off or on by an external signal which sets the 

cleaning machine to the machine states standby or operational. The system KEA represents the whole 

cleaning machine and contains the three subsystems CleaningChamber, Tank and InletAirHeating. The latter 

two are extensions of SystemContinuous, a system with a continuous setpoint, e.g. a tank temperature [7]. 

The system Tank includes the Actor2Point TankHeater, the system InletAirHeating includes the Actor2Point 
InletAirHeater. The Actor2Point class represents an actor with binary setpoint and enables the execution of 

the DR measure store energy inherently by implementing external control by a DR service via OPC UA [7]. 

We extend the flow control of the cleaning machine such that it can execute the DR measure interrupt 
process [6]. The machine has the states stand-by, ramp-up, operational and working following [19,18]. We 

separate the working state into the cleaning process stages spray cleaning, impulse blowing, and convection 
drying [6]. In the mathematical model, we combine spray cleaning and impulse blowing into one as described 

in section 4.1. The DR potential analysis showed that only the stages spray cleaning and convection drying 

have a high potential for the DR measure interrupt process so we only implemented this option before each 

of these two stages [6].  

The automation data model is used for the communication between the DR service and the machine’s 

automation system. It consists of the automation data specification, an OPC UA data model implemented in 

the machine automation system, and the automation data dictionary, a JavaScript Object Notation (JSON) 

file, that includes all information necessary for mapping the OPC UA data to the DR service [8]. To execute 

the DR measure store energy inherently, the extended automation data model includes information about 

- nominal load of the tank heater 7heat, 
- current temperature of tank Wstart and 

environment Wenv, 
- tank temperature limits W8F and WGF, 

- cleaning fluid density ]fluid and specific heat 

capacity 5N,	fluid	, 

- tank volume \tank, 
- workpiece mass gwp, 

- number of workpieces 	!wp, 

- Boolean setpoint variable to control the tank 

heater ℎ#. 

For the DR measure interrupt process, we include the following data points: 

- power consumption operational 7456, 
cleaning 7789:5 and drying 7;<=, 

- operating state !start, 

- remaining step duration 4@6:<6, 
- duration of cleaning 4789:5	 and drying 4;<=, 

- Boolean setpoint variable for interruption. 

The information is integrated as a OPC UA data structure as part of the automation data specification in the 

automation program. The DR service reads the OPC UA data structures denoted in the automation data 

dictionary and writes the contained information into the DR scheduling model variables. This process is part 

of the eta-utility framework [17]. 
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6. Field test 

We integrate the demand response scheduling model and the automation data model as a cyber-physical 

production system using eta-utility and apply it to the aqueous parts cleaning machine model MAFAC KEA 

in the ETA Factory to show its applicability. For the electricity prices we use data from EPEX Spot  [8] and 

take the prices of  December 1st 2021 6:00 am to 9:00 am. Since we are only executing a single cleaning 

process in the field test, we scaled the interval of price changes from 15 to 5 minutes. This would not be 

necessary for a typical industrial use case, where multiple cleaning processes may be optimized in sequence. 

The CPPS uses the IBM ILOG CPLEX solver to solve the mathematical model and was executed on a PC 

with Intel Core i-5 6200U CPU and 8 GB of RAM in 10 s intervals. We analyse a single cleaning process 

which should be completed within 30 minutes and set the prediction scope for the model to 30 minutes. The 

workpiece is a control plate for a hydraulic pump. The model parameters are the following: 

3 = 5 & = 10	s (78 = 42 @heat = 10	kW 

7 = 1800	s Dtank = 320	l )wp = 0.262	kg @31- = 0.2	kW 

G = 1800	s H8,	fluid = 	4.19
kJ

kg	K
 .CD = 55	°C @EC0+1 = 3.43	kW 

NCF+G = 120	s Ofluid = 1
kg

l
 .HD = 65	°C @G*, = 9.35	kW 

We reduce S by 10 s for every cycle of the MPC to ensure process termination within 30 minutes. 

 

Figure 1: Results of the field test with a duration of 30 minutes. The upper diagram shows the machine’s measured 
total power consumption and the energy price !!. The middle diagram displays the cleaning process operating state 
"start and the boolean interruption variable #!. The lower diagram shows the measured tank heater state, tank 

temperature $start and tank temperature forecast $! for 200 seconds. 

The results of the field tests are shown in Figure 1. The energy price, displayed in the upper diagram, 

becomes negative after five minutes which leads the solver to optimize for an increase in the total power 
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consumption during the negative-price-period. The DR service postpones the start of spray cleaning by 

activating the interruption, shown in the middle diagram to utilize the negative price. The tank heater is 

activated slightly after the start of the cleaning process, visible in the lower diagram. When the energy price 

increases, the tank heater is deactivated, and spray cleaning continues. The DR service interrupts the process 

again when spray cleaning is finished to postpone convection drying to a time interval with a lower price at 

the end of the given period. The cleaning terminates after 30 minutes. In the lower diagram the temperature 

prediction based on the β-factors is shown in grey. The heat loss to the environment during the first five 

minutes and at the end of the process is so accurate that the predicted grey temperature values completely 

align with the actual tank temperature drawn in black. The temperature increase during operation of the tank 

heater is also predicted accurately (between 15:36 and 15:41), however there are significant dead times after 

the heater turns on and before the heat transfer stops, which cannot be reproduced by the model. Especially 

at the beginning of the cleaning process, the temperature drop during spray cleaning does not correspond to 

the real temperature. This is due to a transient response when activating the spray pump. It takes about two 

minutes for the tank temperature to stabilize after the pump starts. After the transient processes (dead times 

of the tank heater and response of the cleaning fluid) have settled, the prediction represents the reality 

accurately. When looking at the cleaning process overall, The model is accurate enough for our the case. 

7. Conclusion 

In this paper we present a detailed mathematical mixed integer linear programming model which is used as 

a MPC within the DR service of a cyber-physical production system that uses a cleaning machine for DR. 

The mathematical model consists of two parts: an event-based model that represents the cleaning process 

and is used for the DR measure interrupt process and a discrete-time model for the tank heating system used 

to store energy inherently. We apply the model to an aqueous parts cleaning machine in a field test and show 

that the DR service successfully controls the machine depending on a fluctuating electricity price. In the 

future the model should be used in other field tests to compare an energy-flexible operation implementing 

DR measures with a conventional operation. The ramp-up process of the tank heating system and the 

execution of several cleaning processes in a row should also be investigated. 
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Appendix 

The software code for the presented work is available as an open-source project on GitHub: 

https://github.com/PTW-TUDa/cpsl2023-dr-for-cleaning-machines  
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