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Abstract 

Due to the global warming, a significant reduction in the emission of greenhouse gases is necessary. One 
part of the solution is the electrification of today’s transportation and traffic sector. An essential component 
of today's electric vehicles is the lithium-ion battery (LIB), which is largely responsible for their range, 
performance and cost. In order to increase the use of such climate-friendly technologies, it is therefore 
essential to reduce the production costs of LIBs. With a duration of up to three weeks, the process steps of 
formation and aging are particularly capital-intensive and have high demands on storage capacities. 
Formation and aging therefore account for up to 30% of the manufacturing costs for battery cells. During 
formation, the solid electrolyte interphase (SEI) is formed, which has a major influence on the quality and 
lifetime of the LIB, among other things. In order to reduce production costs and simultaneously increase 
battery cell quality, it is therefore necessary to optimize the formation and aging process. Because of the 
complexity and the interdependency of these processes towards previous process parameters the application 
of machine learning algorithm is predestined to optimize these process steps. For this purpose, a general 
approach for the application of a machine learning algorithm in the formation and aging are first analysed 
and relevant parameters from the literature as well as reasonable assumptions about the structure are derived. 
Based on these requirements and boundary conditions a machine learning algorithm structure will be 
developed to optimize the cell finishing process in the battery cell production. 
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1. Introduction and motivation 

The conversion of the energy supply to renewable energies and the increasing demand for electric vehicles 
are leading to a rapidly growing need for high-performance storage technologies. In this context, the lithium-
ion battery (LIB) has established itself as a key technology in recent years. So far, the higher manufacturing 
costs, lower energy and power density, and safety concerns compared to the internal combustion engine limit 
the widespread use of this technology. The battery accounts for the largest share of the total costs of an 
electric vehicle, which in turn is partially related to the battery cell production [1]. Optimizing the battery 
cell production process plays a key role in reducing costs since it is related to almost 20 % of the total 
production costs [2,3]. Manufacturers are currently attempting to reduce production costs through economies 
of scale, automation and digitization of production. One of the highest costs shares is created in the cell 
finishing with 25-30 % of the total production costs [4,5]. The process in the cell finishing are the wetting, 
formation, degassing and End-of-Line (EoL)-Test as shown in Figure 1.  
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Figure 1: Battery cell production process for a pouch cell 

The wetting process is a storage phase in which the optimal wetting degree with the infiltrated electrolyte 
should be achieved. This can take several hours. The formation process is defined as the first charging and 
discharging cycle(s). This process step is characterized by very long process times up to several hours due 
to the formation process of the solid electrolyte interface (SEI) layer on the anode surface during the first 
cycles [4,6,7]. To remove the gases that have been produced in the formation, cells are degassed. Followed 
by a long aging step (part of the EoL-Test) which takes for larger cells up to 3 weeks and is mainly there for 
the quality control of the production process and especially the formation process [6]. There the self-
discharging of the cells is measured. Due to other internal balancing reactions (after formation) to attain an 
electrochemical equilibrium, the self-discharge can only be measured correctly after a few weeks.  

The SEI is an essential component of the LIB including the impact on its initial capacity loss, self-discharge 
characteristics, rate capability, and safety [8]. The initial SEI creation and its growth are dependent on 
multiple factors e.g. anode material, electrolyte, and previous process parameters [8]. Beside those factors 
there are also different factors in the formation process that influence the SEI layer, e.g. the formation 
protocol, temperature, pressure, wetting degree [9,6]. Therefore, process control and optimization are 
difficult to conduct due to the high complexity, strong dependency of previous production parameters and 
sensitivity to the process. There is no standardization regarding an optimal formation protocol. Every cell 
manufacturer is setting up a functional protocol and process order to fit their individual requirements. To 
reduce the time identifying a suitable cell finishing protocol or to be able to predict the quality earlier in the 
production process, research approaches are invested regarding the application of machine learning 
algorithm to solve those challenges. [10] 

2. Technical background 

A few machine learning applications and approaches do exist that deal with process optimization for a 
complex process system with interlinked product-quality relation in the battery cell production. These 
approaches mainly focus on other production processes than cell finishing. THIEDE ET AL. (2020) [11] have 
investigated the influence of process parameters on energy consumption of the coating plant in electrode 
production without considering the effect on the cell quality. CUNHA ET AL. (2020) [12] investigated the 
relationships between final electrode properties and production parameters of the slurry. In this study several 
trends between the electrode properties and the independent variables could be found. DUQUESNOY ET AL. 
(2020) [13] designed a hybrid model based on experiments and physics-based models together with Machine 
Learning (ML) approaches to determine the influence of production parameters on final electrode properties. 
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In regard of quality prediction, TURETSKYY ET AL. (2021) [14] developed a model for deriving necessary 
interim product features (IPFs) to achieve desired final product properties (FPPs). A total of 191 battery cells 
from the entire process chain except formation and aging were used as data for the predictive model. 
SCHNELL ET AL. (2019) [15] used and compared ML models to predict cell quality and identify quality 
parameters. STOCK ET AL. (2022) [16] analysed two algorithms regarding the ability to predict quality and 
cluster cells based on the results already in the cell production process. 
As previously stated, the cell finishing, especially the formation and aging, have only been insufficiently 
researched in terms of their potential in machine learning based optimization. One challenge in the data-
based optimization is the high dependency of the cell finishing on multiple factors and properties. To reduce 
the complexity of this, three main clusters have been identified and are introduced in the following. 

2.1 Material and design properties 

In SHIN ET AL. (2020) [17] differences between the SEI formation, compositions and challenges in a graphite 
vs. Silicon containing Si/graphite anode are analysed. It was shown that the SEI and the optimal formation 
parameters are highly dependent on the used anode material and their properties. In Li et al. (2017) [18] the 
impact of different electrolyte additives on the formation and the SEI quality have been studied. It was shown 
that the additives not only have an impact on the SEI layer composition but also should be considered for 
the development of the formation parameters. In GÜNTER ET AL. (2020) [19] the impact of the cell format 
on the electrolyte filling and wetting process have been analysed. The results are stressing out that the 
electrolyte filling and wetting process as a preparation for the formation process has to be designed based on 
the individual cell design and format. Since the structural design and later the electrochemical reactions are 
dependent on the used materials, format and design, the cell finishing parameters and the detection of the 
quality has to be adapted to every material combination in the cell. 

2.2 Process parameters before cell finishing 

In LIU ET AL. (2017) [20] the porosity and film thickness of both electrodes are related to the achievable 
specific energy density and the capacity loss in the formation. The results show that, in general, cells with 
increased porosity have also a higher capacity. Increasing the porosity can improve the conductivity and 
diffusivity of lithium ions through the electrode. However, an optimum porosity cannot be derived because 
the formation of the solid electrolyte interphase also varies with varying porosity within the electrode. 
GÜNTER ET AL. (2019) [21] investigate the relationship between the amount of electrolyte and the maximum 
current rate during formation. The results show that there is no change in the increase in current rate above 
a ratio of 1.2 between electrolyte quantity and pore volume. Overall, it can be said that previous process 
parameters, e.g. the electrode manufacturing steps and the electrolyte filling, have an impact on the optimal 
process parameters. 

2.3 Process parameters in the cell finishing 

In the approach of XU ET AL. (2019) [22], an optimal multistage charging protocol for lithium-ion batteries 
is developed for an LFP (Lithium iron phosphate) cell using an electrochemical and thermal model. In the 
model, the relationships of the capacity drop due to the increase in solid electrolyte interphase (SEI) are to 
be minimized, the SEI potential maximized to reduce lithium plating, and the temperature rise reduced to 
avoid thermal runaway. The model result shows that the optimized charging current profile varies with state 
of charge (SOC) and cycle number. In the approach of DREES ET AL. (2021) [23] an electrode equivalent 
circuit model is introduced to reduce the process time of the formation time. The model optimises the 
charging profile of the cell by predicting the electrode voltages. In HEIMES ET AL. (2022) [6] it was shown 
that pressure and temperature during the formation can decrease the formation time. Different approaches 
already exist to develop an optimal process parameter setting in the formation, which however are limited 
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to the local optimization and cannot or only to limited extent integrate previous process parameters and 
properties in their optimization. 

2.4 Research gap 

There is a significant gap in terms of an universal approach for the identification of the ideal process 
parameter in the cell finishing or for the early quality prediction in the cell finishing due to various reaction 
taking place after the formation. In the next chapter, a framework is presented to describe an approach how 
to develop a data-based optimisation model in the cell finishing. 

3. Approach and methodology 

The standard process for the application of Machine Learning is the Cross Industry Standard Process for 
Data Mining (CRISP-DM). This approach contains six steps: Business understanding, data understanding, 
data preparation, modelling, evaluation and deployment. The approach was chosen because the step 
monitoring is not included in the CRISP-DM approach and also not considered in this paper instead e.g. the 
CRISP-ML or the approach of AMERSHI ET AL. (2019) [24]. [25],[26] 

3.1 Business and data understanding  

The first two steps, business understanding and data understanding, are closely linked and are therefore 
combined in the CRISP-DM process. Here, economic or research-oriented goals are derived and translated 
into machine learning-specific goals. In the cell finishing there are two main challenges in terms of 
production optimization: 

- Standardized parameter definition for an optimal cell finishing process with minimum process times 
while maintaining or even increasing the cell quality. 

- Quality prediction before or directly after the formation process for a reduction or even elimination 
of the EoL-Test, especially the aging process. 

Both approaches could reduce the cell cost about 7 % for the optimal process parameters and 4 % for the 
quality prediction [4]. In Figure 2 the basic concept of the two mentioned use cases in the cell finishing are 
presented. In general there are roughly around 2,100 product process relation in the battery production [27]. 

 

Figure 2: Overview of the main optimization use cases in the cell finishing 

But the measurable process, material and intermediate product feature do not have the same impact on the 
cell finishing. The mixing, coating, drying and calendaring are the main steps to create the electrode structure 
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and are therefore critical for the reaction mechanism in the battery cell, e.g. diffusion processes and de-
/intercalation processes [8],[20]. The electrolyte filling has also a high impact on the wetting time and 
formation results [21],[19]. The vacuum drying, stacking and contacting process have a medium impact on 
the cell finishing. The slitting and cutting processes only have a limited effect on the cell finishing. Therefore, 
the data points for the use case has to be selected.  

3.2 Data preparation 

The business and data understanding are followed by data preparation. In this process, data is selected, 
cleaned and standardized. Data that does not meet the required quality are removed during this process. Also, 
only input variables that have an influence on the modelling are selected. In the cleaning process, missing 
values are determined by, for example, interpolation or the average, and distortions are removed. In the so-
called feature engineering, new variables (features) can be derived from the already existing ones. Features 
are divided into predictors and output factors. While predictors provide the input for the machine learning 
algorithms, the output is predicted by the algorithm.  

3.3 Modelling, evaluation and deployment 

Most machine learning algorithms can process a high number of predictors. However, most algorithms are 
single output algorithm and can only predict one output. For both approaches in the cell finishing, the process 
optimization and the quality prediction, algorithm which predict multiple targets simultaneously are 
necessary. There are different approaches for multi target algorithm as shown in Figure 3. In general, the 
approaches can be clustered into two groups: Problem transformation and algorithm adaption. The approach 
of the problem transformation is to reduce the problem into single output problems and solve them 
individually. In the algorithm adaption, single output algorithms are adapted and modified to solve a multi 
output problem. Those kinds of algorithm are more difficult to develop but can also consider 
interdependencies between the output variables. [28] 

 

Figure 3: Overview of multi-output regression methods [28] 

For the optimal process parameter development, there is a strong interdependency between the output 
parameter. Therefore, the algorithm adaption approach is favoured. For the quality prediction both 
approaches could be used. Based on the selected use case an algorithm has to be selected, modified and 
trained. The resulting model is assessed in the subsequent evaluation and compared with the defined success 
criteria. If the model does not meet the criteria, the previous steps are run through again. In machine learning, 
this usually involves going back as far as the modelling stage, and more rarely also the data preparation 
stage. If the algorithm covers the defined target, then it is transferred into practice. 
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4. Case study: Cell finishing 

Business and data understanding: To address one of the two main challenges in the cell finishing EL-cells 
in a three-electrode setup were manufactured in the pilot line at the PEM. The cell configuration is listed in 
Table 1. The goal of the case study was to predict the cell quality based on variable process parameters. Due 
to the limited amount of data, the number of variables has been primarily reduced to four variables in the 
cell finishing. The electrode manufacturing and the selected variables for this test series have been the 
electrolyte amount, wetting time, formation temperature and C-rate during the charging of the cell. The 
formation protocol was a constant current-charging phase until 4.2 V and a constant charging-constant and 
voltage-discharging until 3.0 V. In total 57 data points have been generated with four variable production 
parameters. The range of the varied process parameters have been listed in Table 2. 

Table 1: Cell configuration of the manufactured cells 

 Positive electrode Negative electrode 

Active material NMC 622 SMG-A5 

Areal capacity 2.37 mAh/cm² 2.70 mAh/cm² 

Loading density 14.4 mg/cm² 8.8 mg/cm² 

Thickness 117 µm 133 µm 

Current collector material Aluminium  Copper 

Separator  20 µm Celgard 2320 

Electrolyte  1.0M LiPF6 in EC:DMC (1:1) 

 

Table 2: Overview of the process parameter variation range 

Process 
parameter  

Electrolyte 
amount [µl] 

Wetting temperature 
[°C] 

Formation 
temperature [°C] 

C-Rate during the 
charging in 

formation [C] 

Range 50 – 100 20 – 40 20 – 50 1/20 – 1 

 

For the quality parameter that should be predicted with the machine learning algorithm, the quality parameter 
of the SEI layer that develop during the first cycles are an important factor. The quality of the SEI layer can 
not be measured only by one quality parameter. It is related to numerous factors, e.g. initial capacity loss, 
self-discharge characteristics, cycle life [8]. To reduce the complexity for this study, the output variable of 
the algorithm is reduced to the capacity after the first full cycle. 

Data preparation: 

Outliers were identified and removed. For the data preparation, non-numerical attributes are converted to 
numerical attributes. Based on the assumption that the data are approximately Gaussian distributed, the 
dataset was converted into a standard normal distribution with mean value of 0 and standard deviation of 1. 
The quality target is transformed by Min-Max normalization to a range between 0-1. After the data 
preparation there were 18 observations with four features and one quality target. 

Modelling, evaluation and deployment: 

For the modelling the support vector regression (SVR) algorithm was selected since this algorithm also 
showed good results for small samples sizes compared to other algorithms [29]. The aim of SVR is the 
identification of a ε-intensive function. In this context, ε refers to a threshold, and the data points that fall 
within the ε band are considered to be accurately predicted, while those outside the ε band are not included 
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in the fitting of the regression. The support vectors are data points with residuals greater than the threshold, 
and they determine the regression line. The function for the linear SVR model is given in equation 1. [30] 

!(#,%) = ∑ %!)!(#)"
!#$ + +    (1) 

!: multi-dimensional input data points 

w: weights for each transformation 

b: constant term 

gj (∙): a set of non-linear transformation 

The loss function "#$, &(!, ()*, which quantifies the error cost and is 0 for all points inside of the ε-intensive 

function band, is defined as seen in equation 2 [30]: 

,-., !(#,%)/ = 0 						0																																			|. − !(#,%)| − 5 
0, if |. − !(#,%)| ≤ 5, (2) 
otherwise 

For the training of the model 13 data points are used and five data points are used for the evaluation. This 
data set is split into a training set (80 % of the data) and a test set (20 % of the data). After a first cross 
validation hyper-tuning of specific parameters are conducted with the grid search approach. For the SVR 
there are five parameters C, ε and three kernel parameters [27]. The values after the parameter tuning has 
been set to: C = 1.707 and ε = 0.001, kernel type = radial basis function, gamma = 1 / (nfeatures * Xvar). After 
the training the model was evaluated with five new data points. The results are shown in Figure 4. 

 

Figure 4: Prediction result of cell capacity after formation (mAh) with support vector regression 

The results show that the prediction based on the SVR model is always predicting a lower capacity. The 
strong unilateral deviation can be a sign of overfitting of the model due to insufficient data base. This applies 
when all data points in the training set are used as support vectors. Therefore, the model actually overfits 
and has a poor prediction accuracy with new data sets. Afterwards a sensitivity analysis on the impact of the 
varied parameter on the cell quality is conducted. It was shown that the current rate in formation charging 
identified has the highest impact followed by the wetting temperature. The formation temperature has a much 
smaller impact than the other two factors. 

5. Summary, discussion and outlook 

In this paper two general use cases for the application of machine learning algorithm in the cell finishing has 
been introduced, the optimal process parameter selection and the quality prediction. The influencing 
parameter has been clustered into three groups: material and design parameters, process parameters before 
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the cell finishing and process parameters within the cell finishing. For the modelling selection and 
development, the challenges within the cell finishing has been analysed and the multi-output regression 
algorithms has been introduced as a solution for both use cases.  

On a data set of manufactured 3-electrode cells the quality prediction approach has been applied using a 
SVR model. The focus of the varied parameters was on the process parameters within the cell finishing. The 
following three process parameters have been varied: the electrolyte amount, the wetting temperature, the 
C-Rate and the formation temperature. As the output (quality prediction parameter) the capacity of the cells 
after three cycle have been selected. After data pre-processing and model development as well as training 
the results showed that the model prediction shows in four out of five data points a strong unilateral deviation. 
That is probably due to the small data base. The model tends towards overfitting. A sensitivity analysis 
showed that wetting temperature and C-rate during the formation have a higher impact on the quality than 
the formation temperature. Based on the results the next steps are (i) expand the data base to reduce 
prediction errors, (ii) modify the model to a multi-output regression model and (iii) compare and 
benchmarking the model towards other algorithm approaches, e.g. KNN, decisions trees. 
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