

CONFERENCE ON PRODUCTION SYSTEMS AND LOGISTICS
CPSL 2023

__

DOI: https://doi.org/10.15488/13480
ISSN: 2701-6277

4th Conference on Production Systems and Logistics

Towards Finding Optimal Solutions For Constrained Warehouse
Layouts Using Answer Set Programming

Pascal Kaiser1, Andre Thevapalan2, Moritz Roidl1, Gabriele Kern-Isberner2, Marco
Wilhelm2

1Chair of Material Handling and Warehousing, TU Dortmund University, Germany
2Chair of Logic in Computer Science – Information Engineering, TU Dortmund University, Germany

Abstract

A minimum requirement of feasible order picking layouts is the accessibility of every storage location.
Obeying only this requirement typically leads to a vast amount of different layouts that are theoretically
possible. Being able to generate all of these layouts automatically opens the door for new layouts and is
valuable training data for reinforcement learning, e.g., for operating strategies of automated guided vehicles.
We propose an approach using answer set programming that is able to generate and select optimal order
picking layouts with regards to a defined objective function for given warehouse structures in a short amount
of time. This constitutes a significant step towards reliable artificial intelligence. In a first step all feasible
layout solutions are generated and in a second step an objective function is applied to get an optimal layout
with regards to a defined layout problem. In brownfield projects this can lead to non-traditional layouts that
are manually hard to find. The implementation can be customized for different use cases in the field of order
picking layout generation, while the core logic stays the same.

Keywords

warehousing; layout planning; order picking; optimization; answer set programming

1. Introduction

Warehouse layout planning is a well-studied problem with good results for predefined shapes and
designs [1]. However, a completely rule-based generation without predefined shapes and designs is missing.
This is considered a poorly structured decision problem [2]. Therefore, planners rely on their personal
experience in designing warehouses [3]. Although there are systematic planning approaches to address this
problem [2], the automation of the internal layout design problem depends on idealized conditions, e.g.,
rectangular space, predefined layout (multi-block, fishbone, etc.) or parallel aisles [4–6]. Each of these
designs have to follow the same rules to be a feasible solution for an order picking system, e.g., every storage
location has to be accessible.

For highly constrained warehouses with spatial or resource-related constraints, it is even more difficult to
find viable layout options. This is the case, for example, in brownfield projects with given structural
restrictions and other constraints (e.g., existing material flow restrictions). Planning such highly constrained
order picking layouts can be challenging even for experts, with no good solutions being found. One reason
for this may be the planners bias based on their personal experience, and new layout options may not even
be considered. Formalizing this expert knowledge to be machine-readable creates new possibilities for the
automated generation of layouts. When all of the rules for the layout generation are formalized, it is no longer
necessary to idealize the conditions (e.g., rectangular space, predefined layout). The layouts are generated

600

implicitly following the formalized knowledge. We are investigating the use of a declarative rule-based
approach for the automated generation of layouts for this problem.

Answer set programming (ASP) is a declarative problem solving approach from the area of logic
programming [7] which can solve highly complex combinatorial problems [8]. Such problems are modeled
in form of logic programs which consist of possibly defeasible rules that lead to a conclusion when the
premise of the rule applies. The defeasibility of a rule is formalized by the use of default negation which
causes that the rule is usually applicable unless the default-negated part of the rule is true. Therewith, ASP
can resolve conflicts which arise from competing objectives automatically which represents an added value
compared to classical constraint programming. Typically, ASP programs have several feasible solutions
from which the optimal solutions with regard to a certain objective function can be filtered. In [9,10] the
authors showed that ASP is an appropriate method for logistical problems. Here, we formalize the constraints
and the basic objectives of the warehouse layout generation task by ASP rules and optimize the area
utilization in order to find suitable warehouse layouts.

The goal of this paper is to show that ASP is predestined to generate optimal order picking layouts respecting
a defined objective function by reason of its declarative nature, readability, and versatility. After the
formalization of the knowledge in a logic program, the implementation is capable of generating every
optimal layout that satisfies all building restrictions and constraints, considering the optimization objective.
Furthermore, it is possible to add and remove constraints and objectives in form of rules in a straightforward
manner. Default negation allows to easily define exceptions to general rules. Together with their declarative
nature, which deems the order of rules irrelevant, answer set programs are generally easily extendable. We
will show that with all these key advantages, ASP constitutes an effective tool to assist the planning of
layouts especially in brownfield projects. To demonstrate the benefits of ASP, we extended the solution
presented in [9] in order to showcase an implementation that creates layouts for a manual order picking
process based on given building restrictions and constraints abstracted from a real-world example.

The remainder of this paper is structured as follows. After presenting an introduction into answer set
programming and warehouse layout generation in Section 2, Section 3 outlines the goals of this paper and
provides an overview of the implementation’s main functionalities. In Section 4, the developed
implementation is illustrated and key components are explained. Then, the program is used to generate a
possible layout for a given problem instance (building restrictions, number of racks, base position, etc.). The
final section concludes the paper with a short summary and provides an outlook on future work.

2. Preliminaries

This section provides the necessary background on ASP and layout generation. Therefore, we first introduce
ASP with the underlying definitions in order to illustrate on which bases the implementation in Section 4 is
built. Afterwards we elaborate on the challenges of the layout generation and which indicators and goals can
be pursued with different layouts.

2.1 Answer Set Programming

Answer set programming [7] constitutes a declarative programming paradigm based on logic programs
which allows for a rule-based description of real-world problems. ASP features the concept of default
negation with which it is possible to formulate default statements that hold unless an exceptional case arises.
Therewith, conflicts in ASP programs can be resolved automatically. For more details, see [8,11]. Here, we
consider ASP based on normal logic programs (NLPs), which are sets of rules r of the form

ℎ ∶ −	%!, … , %", ()*	%"#!, … , ()*	%$. (1)

601

where h and each bi are atoms. An atom a is of the form !(#!, … , #") where p is a predicate of arity k, and
each ti is either a constant or a variable, like in classical first-order logic. Conventionally, variables are
written in uppercase letters and constants in lowercase letters. Variable-free programs, rules, respectively
atoms are called ground. The prefix not in r indicates a default-negated atom. Intuitively, the rule r states
that unless any of the default-negated atoms is true, the rule head h follows from '!, … , '#. Otherwise, the
rule is blocked. Rules with n = 0 are facts, in this case we omit the symbol “: -”, and rules with an empty
head are constraints. Constraints serve to filter out unwanted solutions.

The semantics of an NLP (is defined over reducts of (which are built w.r.t. possible solutions of (, more
formally w.r.t. interpretations which are sets of ground atoms. The reduct (ℐ of a ground NLP (w.r.t. an
interpretation ℐ is basically (but from which all rules r are removed that contain a default-negated atom not
bi with bi ∈ ℐ. Further, from all remaining rules the default-negated atoms are removed as well as they are
satisfied in ℐ and, hence, do not block r. An interpretation ℐ now is a solution of (, formally called answer
set, if ℐ satisfies every rule in (ℐ, i.e., if {'!, … , '#} ⊆ ℐ implies ℎ	 ∈ ℐ for every rule ℎ	: −	'!, … , '# ∈ (ℐ,
and ℐ is set-minimal with this property. An interpretation ℐ is an answer set of a non-ground NLP (if ℐ is
an answer set of the grounding of (which means the ground NLP (′ that is obtained by replacing every
variable in (by each available constant once. While logic programs have a unique solution, NLPs with
default negation may have several answer sets.

The implementation described in this paper is implemented with the ASP system clingo1. Technically, the
grounding of NLPs is executed by ASP grounders (e.g., gringo) and the answer sets are computed by ASP
solvers (e.g., clasp). Clingo offers several language extensions and the integration of external methods (either
in the programming language Python2 or Lua3) into the solving process which will be shown later.

2.2 Warehouse Layout Generation

A large extent of the warehousing costs is already determined during the design phase. This design phase is
characterized by many trade-offs between conflicting objectives which means it is a highly complex task,
resulting in a large number of feasible designs. The authors in [12] define the warehouse design as a
structured approach to decision making at a strategic, tactical and operational level.

An integral part of the warehouse design process are decisions on the warehouse layouts. It can be
distinguished between two types of layout decision problems. The first type of decision problems is the
placement of various departments such as receiving, picking, storage, etc. [13]. This is usually called the
facility layout problem and it results in a warehouse block layout that is often based on minimizing the
handling costs. The second type of problem is called internal layout design or aisle configuration problem.
It consists of placing the equipment, storage space, paths, etc. within the departments [4,14].

The warehouse layout problem is usually defined as finding an optimal or at least good layout of the storage
or order picking area. In contrast to the other areas, the order picking area layout design is not represented
sufficiently in the literature [1,4]. It is mainly focused on conventional layouts or adaptations of it (fishbone
or flying-V layouts) which is sufficient for greenfield projects [5,15]. Therefore, a limited amount of
different layouts can be found in the majority of warehouses today. Usually these warehouses use a
conventional warehouse layout for the storage area and the order picking area. These traditional warehouse
layouts have a rectangular shape with parallel straight aisles [16]. There are two possibilities to change the
aisles, at the front and rear of the warehouse. These aisles meet the main aisles at a right angle (as shown on

1 https://potassco.org/clingo/
2 https://python.org/
3 https://lua.org/

602

the left in Figure 1: Order picking layoutsFigure 1). There are some modifications of this general form that
are usually created by adding one or more additional cross aisles [5]. Such layouts are then called multi-
block layouts (as shown on the right in Figure 1) [17].

The optimization of layouts usually takes place regarding two objectives, capacity and performance. These
two aspects are conflicting with each other, optimizing the capacity usually has negative influence on the
performance and vice versa. Several objectives can be pursued within these categories, e.g., minimizing
inventory, maximizing storage capacity, maximizing area or space utilization, minimizing travel distance or
travel time. Ultimately all these objectives aim at reducing costs [1,18–20]. Within a greenfield project, the
capacity is usually set for the warehouse and thus, the optimization aspect is performance. In contrast, in a
brownfield project the total available space is set [21]. Maximizing the capacity can be an important
objective. Nevertheless, the performance still has to be considered in order to reduce the operational costs.
This leads to the problem of warehouse layout planners on how to define the objective function and generate
warehouse layouts with given restrictions.

3. Problem Formulation

In order to assist the layout planning process, we propose a modular framework that allows planners to input
project-specific key values like the size of the available warehouse, the available types of racks and their
respective sizes, and the amount of racks that have to be positioned. They are also able to define more
detailed, project-specific properties and constraints regarding the project, e.g., inaccessible parts of the
warehouse, constraints regarding the placement of racks of specific types, or the minimum/maximum
distances between elements. The implementation presented in this paper constitutes a key part of such a
framework with the goal to integrate ASP into the layout planning process. An overview of the framework's
workflow is depicted in Error! Reference source not found.. It starts with the user who can enter the
aforementioned key instance values. This instance data is then added to the problem encoding which contains
the general facts and conditions that hold for the typical warehouse layouts like ensuring that each rack must
be accessible. The problem encoding can be adapted and extended by further project-specific rules and
constraints. The ASP solver computes the answer sets of the logic program where each answer set represents
a layout based on the knowledge base modeled in the logic program. Subsequently, the set of layouts can be
further reduced using additional algorithms via external functions. The filtered layouts can then be rendered
as 2D graphics and displayed to the user.

4. Implementation

In this section, we outline the main aspects of the implementation.

Problem Instance: In ASP, logic programs are often divided into the problem encoding and the problem
instance [8]. The problem instance can be viewed as the input data for the logic program that varies from

Figure 1: Order picking layouts

603

case to case. The base of our implementation is a logic program where the problem encoding contains the
encoding of structural warehouse elements, the definition of general dependencies, and constraints regarding
their positioning. The problem instance comprises case-based, individual specifications, e.g., details
regarding the structure of the order picking area. Thus, the same problem encoding can be used for different
use cases.

Let (be the answer set program of our implementation. The following rules r1-r8 constitute a part of the

problem instance of (4.
r1: #const size_x = 20. r5: coords(1,1..size_x/2,1..size_y/2).
r2: #const size_y = 20. r6: coords(2,size_x/2+1..size_x,1..size_y/2).
r3: elem_quantity(1,47). r7: blocked(1..2,1..2).
r4: elem_quantity(2,13). r8: blocked(19..20,1..5).

The order picking area is represented by a grid structure comprising x columns and y rows where a cell
stands for a specific position in the area and is denoted by its coordinates. This kind of representation allows
a coarse-grained but flexible modeling of the available area. A cell is either free, blocked from the start
(which is illustrated by rules r7 and r8), or occupied by another element, e.g., a rack. Using the representation
of an order picking area as a grid offers high flexibility with respect to scalability. In rules r1 and r2, a
language extension called constants is used that works analogously to constants in common programming
languages, i.e., constants are globally accessible but fixed variables. With the constants size_x and
size_y, the size of the area is defined. Other mandatory instance values include the amount of racks for
each rack type that each layout has to contain and the area restriction regarding each type of racks, i.e., the
planner is able to define that certain rack types must be positioned in specific areas of the layout. Here, r3
and r4 define that 47 racks of type 1 and 13 of type 2 must appear in a layout. Rule r5 ensures that racks of
type 1 are only allowed to be positioned inside the lower left quadrant of the warehouse whereas rule r6 states
that racks of type 2 must be positioned in the lower right quadrant.

In the following, we present the key parts of the problem encoding.

Defining Part: In the defining part, we provide auxiliary predicates and specify further general details
regarding the order picking area and the structural elements. The following rules lay down the dimensions
regarding two of the four rack types and state the possible orientations a rack can have.

r9: elem_type(1,"BlockStorage",1,1). r10: elem_type(2,"ShelvedRacking",3,1).
r11: types_rack(1;2;3;4). r12: orient(h;v).

Rule r9 represents an element type named “BlockStorage” with id 1 that occupies exactly one cell. With rule
r10 another rack type named “ShelvedRacking” is defined with id 2 and the width of three cells and depth of
one cell. In rule r11, the distinction between racks and other structural elements like conveyor belts or bases
is stipulated by explicitly stating that element types with ids 1,2,3 and 4 are rack types. The concept of

4 The code snippets partially contain language extensions that go beyond the definitions stated in Section 2. For a formal explanation of such
extensions, we refer the reader to [22].

Figure 2: Framework overview

604

rotating an element is represented by orientation-literals in rule r12. The available orientations are horizontal
where an element either faces the north or south side of the layout and vertical, where the element faces the
east or west side.

Another important functionality in this encoding is the assurance that in every layout, each rack is accessible
from the base, that is, there must be a path consisting of free cells from the base to each rack.

r13: reach(10,5,1). r14: reach(11,5,2).
r15: reach(X,Y,TID) :- reach(X+1,Y,TID), not blocked(X,Y), coords(X,Y).
r16: elem_reach(ID,TID,h,X,Y) :- elem(ID,TID,_,h,X,Y), reach(X,Y+1,TID).

For this, we define the cells directly above the base as “reachable” (e.g., rules r13 and r14 for
rack types 1 and 2, respectively). Using (recursive) rules like rule r15, every free cell that is adjacent to a
reachable cell is also flagged as reachable. In case of r15, we mark all cells right of a reachable cell as
reachable if they are not blocked. This rule shows how default negation can be used to define exceptions to
a general rule, that is, a cell in the layout is reachable unless it is marked as blocked. By rule r16, the program
collects all horizontally positioned elements that have a reachable cell above. Doing this for all possible
combinations of racks and neighboring cells, we can later check if all racks are indeed accessible, that is, if
all racks have a reachable cell in front of them.

Generating Part: In the generating part of this program, the goal is to calculate the position of all racks that
are requested via the instance data. A rack that is positioned in a layout is represented by the cells it occupies
and a cell that is occupied by a rack is encoded by an elem-literal. The following rules r17-r19 constitute a
segment of the program’s generating part.

r17: elem_core_coords(T,X,Y) : coords(T,X,Y) :- elem_quant(T,Q).
r18: 1 {elem_core(@get_rack_id(X,Y),T,O,X,Y) : orient(O)} 1
 :- elem_core_coords(T,X,Y), elem_orient(T).
r19: 1 {elem(ID,T,N,O,X,Y) : coords(T,X,Y) , not blocked(X,Y)} 1
 :- X=STX..ENX,Y=STY..ENY, elem_core(ID,T,h,STX,STY),
 elem_type(T,N,SX,SY), ENX=STX+SX-1, ENY=STY+SY-1.

The exact positions of a rack are gradually computed. Keep in mind that the declarative nature of ASP does
not involve a specific order or preference over rules. Instead, the importance of rules can be indirectly given
using certain dependencies between rules. In this case, we compute more general elem_core_coords-
literals that encode the starting point of each rack, i.e., racks larger and taller than one cell is first represented
by a single cell and expanded according to their actual size using another rule. Rule r17 states that for every
rack type T there have to be Q elem_core_coords-literals in the answer set. The coordinate restrictions

defined in r5 and r6 are used to let the racks appear in specific areas of the layout according to their type.
Before the racks can be expanded, their respective orientation have to be established. In r18, to each
elem_core_coords-literal, an orientation (see r12) is added, yielding fitting elem_core-literals. In the head

of r18, the external atom @get_rack_id(X,Y) represents the return value of a function that is located in a
connected Python script. This function uses the coordinate values X and Y to compute and return a unique id
for the respective rack based on its coordinates. This does not only create explicit references to each rack, it
also induces a total ordering over all racks.

605

For racks that are derived to be horizontal, rule r19 states the expansion of each elem_core-literal by deriving

the aforementioned elem-literals. A literal elem(ID,T,N,O,X,Y) encodes a (part of a) rack named N of type
T with an id ID that is occupying cell (X, Y). Since during the expansion, the value in ID is adopted from
the respective elem_core_coords-literal, every such unique identifier in elem(ID,T,N,O,X,Y) refers to
each part of the expanded rack in the layout. Note that N identifies each of these parts as belonging to rack N.

The default-negated body literal not blocked(X,Y) in rule r19 prevents the ASP solver from placing racks
on blocked cells. The effect of this literal is that, by default, a rack can be expanded to any cell of the grid
unless this cell is blocked (see Figure 3). For vertical racks, a rule analogously to r19 is considered in the
implementation.

Testing Part: According to the generating part, the layouts contain the correct number of racks and are
positioned in the respective area, but there are no restrictions defined yet to ensure that the positioning of the
racks is sound (e.g., racks do not overlap with other racks and every rack is accessible). For that reason, in
the testing part of the program, constraints are added that prevent undesirable layouts.

r20: :- elem(ID1,_,_,_,X,Y),elem(ID2,_,_,_,X,Y),ID1!=ID2.
r21: :- elem(_,300,_,_,X,Y),elem(_,T,_,_,X-1..X+1,Y-1..Y+1), types_rack(T).
r22: :- not elem_reach(ID,TID,O,X,Y), elem(ID,TID,_,O,X,Y).

As only the starting points of racks are positioned in the layout and expanded separately according to the
actual respective size, the expansion can lead to the overlapping of racks. Rule r20 prevents such errors by
stating that rack parts that share the same coordinates must not belong to different racks. Another aspect to
consider are minimum distances, e.g., between racks and the base. With rule r21, any layout that is solved
contains a clearance of at least one cell between the base and racks of any type, where
element(_,300,_,_,X,Y) stands for any element that belongs to the base. Rule r22 makes sure that every

layout where a positioned rack is not accessible from the base is omitted. In this manner, further constraints
can be added to satisfy further restrictions and requirements.

Optimization Criteria: As logic programs output all possible solutions that satisfy all rules, a vast amount of
layouts can arise. Therefore, for all computed layouts further properties are calculated externally in order to
obtain optimal layouts. From the logistical viewpoint, there are several key values that can be used to define
optimal layouts. In the current implementation, we exemplify the optimization of such values by minimizing
the path lengths between each pair of racks and additionally minimizing the path from each rack to the base.
In both cases, we use an external Python script that computes the different minimal path lengths for each
layout using existing algorithms for breadth-first search and outputs those layouts that have minimal values.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

c

c

c

c

e e

b

b

b

b

rack blocked cell

b c ebase conveyor exit

rack on
blocked cell

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

c

c

c

c

e e

b

b

b

b

rack blocked cell b base rack blocked cell

b c ebase conveyor exit

rack on
blocked cell

Figure 3: Effect of the default-negated literal not blocked(X,Y) in rule r19: Consideration of blocked areas

606

5. Case Study

In order to show the capabilities of the implementation, we conduct a small case study based on a real-world
example. The aim of this case study is to illustrate that it is possible to generate order picking layouts based
on defined rules and show its different possibilities, e.g., positioning of different systems, constructional
constraints and implementation of objective function. The goal of the use case is the positioning of different
types of racks inside a predefined layout for a manual order picking system. Such different types of racks
can be e.g., shelf storage or pallet racks. The basic layout is a 20 meters by 20 meters square with restricted
cells. Within restricted cells, racks cannot be positioned. These cells can be e.g., walls, pillars or rooms and
are colored grey in Figure 4. Further restricted cells are the basis, where every picking task starts and ends,
and a corresponding conveyor belt. This information is encoded in the problem instance (Section 4).

To show that the implementation is able to handle different types of racks, the task is to position four types
of racks. Since from a logistical point of view, it is not advantageous to mix different kinds of racks, for each
group of racks an area where to put them is predefined. The racks to be positioned are 47 1x1-racks of size
1 meter by 1 meter, 13 1x3-racks of size 1 meter by 3 meters, seven 1x5-racks of size 1 meter by 5 meters
and five 1x6-racks of size 1 meter by 6 meters. Racks are marked as black outlined rectangles. The smallest
racks should be positioned in the bottom left quadrant of the layout, the next bigger kind of racks in the
bottom right quadrant of the layout. The second largest racks in the top left quadrant and the largest racks in
the top right quadrant. The defining part (Section 4) of the encoding specifies these different types of racks.
Besides defining the different types of racks, further layout specific restrictions can be defined.

In order to generate valid layouts, basic rules of layout planning have to be obeyed. These are general rules
that apply for most of the warehouses, such as two racks cannot be positioned in the same cell or that every
rack needs to be accessible from one side. This is encoded in the testing part (Section 4).

With these defined input parameters, we are generating unique layout models for the racks. The layout
generation results in 474 different models for the 1x1 racks, 163 different models for the 1x3-racks,
22 models for the 1x5-racks and 826 different models for the 1x6-racks. The generation of all layouts took

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

c

c

c

c

e e

b

b

b

b

rack blocked cell b base c econveyor exit

Figure 4: Example of a generated layout

607

approximately 51 seconds. In order to get an optimal solution, we are calculating the travel distance between
two racks and between the racks and the base for each model. The objective is to minimize the total travel
distance in the layout. For this calculation, the orientation of a rack has to be considered, i.e., a rack must
face a reachable cell. In some cases, a rack can have multiple possible orientations. As in each layout a
unique orientation must be specified for each rack, additional models can arise. As a consequence, regarding
the 1x1-racks, 1x3-racks, 1x5-racks, and 1x6 racks, we obtain 653440, 169, 32, and 1340 different models,
respectively. The current implementation allows the calculation of distances in 50-200 milliseconds per
model. Here, we reach total execution times of 107263.05 seconds (1x1-racks), 36.5 seconds (1x3-racks),
8.99 seconds (1x5-racks), and 169.47 seconds (1x6-racks). Considering all requirements and the
optimization directives, we get ultimately a single layout that is optimal w.r.t the total travel distance (see
Figure 4). If desired, a user can always inspect the next best options to obtain a better overview of the results.

To make further improvements to the layout, a manual refinement process can follow. In this case for
example, the rack in cell (3,2) creates a dead space to guarantee minimum travel distances. The dead space
can be avoided by moving this rack into cell (3,1). Additionally, the rack in cell (2,11)-(2,15) could be moved
to cell (1,11)-(1,15) to get a passage between the different areas. To improve the visualization of the layout
for a warehouse planner, the output data of the program can be used to generate a three-dimensional layout.
This layout can then be used to validate the generated layouts as showcased in [9]. After this refinement
process, the new rack positions can then be entered into the program instance in order to check if all defined
constraints are still obeyed. This ensures that the warehouse planner does not generate an invalid layout.

6. Conclusion and Future Work

We have shown that ASP poses a powerful tool to enhance the layout planning workflow by presenting a
logic program that generates feasible layouts where structural elements are positioned in a highly-constrained
warehouse meeting predefined optimization directives. As a solver for ASP computes all possible answer
sets that satisfy the program, all computed layouts meet the requirements and conditions defined in the
program’s rules. To yield the most preferred layouts, specifications can be refined further, e.g., by adapting
and adding suitable constraints and optimizations statements. The declarative nature of ASP innately implies
a high degree of modularity (e.g., the generated solutions are independent of the actual order of the rules in
a program) which allows for a continuous improvement of the program and therefore the layout generation
process. This simplifies the process of adding or changing constraints in a logic program. Thus, using ASP
allows a step by step approach of implementing the constraints and focusing on rather difficult problems at
the beginning.

The presented solution is able to generate restricted warehouse layouts within a short amount of time. In
future work, we want to optimize the calculation of the travel distances to reduce the total computation time
even further. For this, we will explore ways to decrease the number of models without sacrificing the
expressiveness of the encoding and further algorithms to measure the distances.

The generated layouts (including those computed without any optimization directives) can be utilized to
create additional input data to train operating strategies of automated guided vehicles (AGVs). As the solver
computes every possible layout w.r.t. the program’s rules, the AGVs are able to train on potential edge cases,
i.e., layouts that in manual layout planning perhaps would not have been taken into consideration. This kind
of reinforcement learning constitutes a significant step towards reliable artificial intelligence.

The proposed framework aims at supporting a layout planner in the decision-making process rather than
replacing them. One aspect that reflects the need for the planner is highlighted in the case study where even
in technically optimal layouts further refinements might be necessary. The possibility to manually refine
generated layouts is also crucial and the implementation of a refinement step is part of our future work.

608

References

[1] Dukic, G., and Opetuk, T., 2012, “Warehouse Layouts,” Warehousing in the Global Supply Chain.

[2] Schmidt, M., 2018, Distribution Center Design Process: Ein Systemtechnikorientiertes Vorgehensmodell Zur
Konzeptplanung von Logistikzentren.

[3] Wunderle, A., and Sommer, T., 2014, “Erfahrung Und Augenmaß Zählen,” Hebezeuge Fördermittel.

[4] de Koster, R., Le-Duc, T., and Roodbergen, K. J., 2007, “Design and Control of Warehouse Order Picking: A
Literature Review,” European Journal of Operational Research.

[5] Roodbergen, K. J., and Vis, I. F. A., 2006, “A Model for Warehouse Layout,” IIE Transactions.

[6] Cardona, L. F., Soto, D. F., Rivera, L., and Martinez, H. J., 2015, “Detailed Design of Fishbone Warehouse
Layouts with Vertical Travel,” International Journal of Production Economics.

[7] Gelfond, M., and Lifschitz, V., 1991, “Classical Negation in Logic Programs and Disjunctive Databases,” New
Gener. Comput.

[8] Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T., 2012, Answer Set Solving in Practice.

[9] Kaiser, P., Thevapalan, A., Reining, C., Kern-Isberner, G., and ten Hompel, M., 2021, “Generating Highly
Constrained Warehouse Layouts Using Answer Set Programming,” Logistics Journal : Proceedings.

[10] Kaiser, P., Thevapalan, A., Reining, C., Roidl, M., Kern-Isberner, G., and ten Hompel, M., 2022, “Hybrid
Production: Enabled By Controlling The Output Sequence Of A Matrix Production Using Answer Set
Programming,” Procedia CIRP.

[11] Brewka, G., Eiter, T., and Truszczynski, M., 2011, “Answer Set Programming at a Glance,” Commun. ACM,
54(12), pp. 92–103.

[12] Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G. J., Mantel, R. J., and Zijm, W. H. M., 2000,
“Warehouse Design and Control: Framework and Literature Review,” European Journal of Operational Research.

[13] Mohsen, 2002, “A Framework for the Design of Warehouse Layout,” Facilities.

[14] Grosse, E. H., Glock, C. H., and Neumann, W. P., 2015, “Human Factors in Order Picking System Design: A
Content Analysis.”

[15] Öztürkoğlu, Ö., Gue, K. R., and Meller, R. D., 2012, “Optimal Unit-Load Warehouse Designs for Single-
Command Operations,” IIE Transactions.

[16] Zhang, Z. Y., Liang, Y., Hou, Y. P., and Wang, Q., 2021, “Designing a Warehouse Internal Layout Using a
Parabolic Aisles Based Method,” Advances in Production Engineering & Management.

[17] Sancakli, E., Dumlupinar, I., Akcin, A. O., Cinar, E., Geylani, I., and Düzgit, Z., 2022, “Design of a Routing
Algorithm for Efficient Order Picking in a Non-Traditional Rectangular Warehouse Layout,” Digitizing
Production Systems.

[18] Arnold, D., and Furmans, K., 2007, Materialfluss in Logistiksystemen: Mit 19 Tabellen, Springer.

[19] Köbler, J., Schöning, U., and Torán, J., 1993, “Decision Problems, Search Problems, and Counting Problems,”
The Graph Isomorphism Problem: Its Structural Complexity.

[20] Noortwyck, R., Müller, T., Wehking, K.-H., and Weyrich, M., 2018, “Dezentrale Assistierte Planung: Integrierte
Layout- Und Systemplanung von Intralogistiksystemen Auf Grundlage Einer Agentenbasierten Software,”
Logistics Journal : Proceedings.

[21] Accorsi, R., Baruffaldi, G., and Manzini, R., 2017, “Design and Manage Deep Lane Storage System Layout. An
Iterative Decision-Support Model,” The International Journal of Advanced Manufacturing Technology.

[22] Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J., Schaub, T., Thiele, S., and
Wanko, P., “Potassco Guide Version 2.2.0 (2019).”

609

Biography

Pascal Kaiser is a research assistant at the Chair of Material Handling and Warehousing, TU Dortmund
University.

Andre Thevapalan is a research assistant in the working group Information Engineering at the Chair of Logic
in Computer Science at the Department of Computer Science, TU Dortmund University.

Moritz Roidl is the chief engineer at the Chair of Material Handling and Warehousing, TU Dortmund
University.

Prof. Dr. Gabriele Kern-Isberner is the head of the working group Information Engineering at the Chair
of Logic in Computer Science at the Department of Computer Science, TU Dortmund University

Marco Wilhelm is a research assistant in the working group Information Engineering at the Chair of Logic
in Computer Science at the Department of Computer Science, TU Dortmund University.

610

