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Abstract 

Considering its high energy demand, the manufacturing industry has grand potential for demand response 
studies to increase the use of clean energy while reducing its own electricity cost. Production scheduling, 
driven by smart demand response services, plays a major role in adjusting the manufacturing sector to the 
volatile electricity market. As a state-of-the-art method for scheduling problems, reinforcement learning has 
not yet been applied to the job-shop scheduling problem with demand response objectives. To address this 
gap, we conceptualize and implement deep reinforcement learning as a single-agent approach, combining 
electricity cost and makespan minimization objectives. We consider makespan as an ancillary objective in 
order not to entirely abandon the timely completion of production operations while assigning different 
weights to both objectives and analyzing the resulting trade-offs between them. Our main contribution is the 
integration of the electricity cost-related objective. We present two innovative reward functions, which 
consider the dynamic electricity prices to select a job for the machine or allow the machine idle. The 
reinforcement learning agent finds optimal schedules determined by cumulative electricity costs for 
benchmark scheduling cases from the literature. 
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1. Introduction 

Sustainable energy consumption has become a critical issue of the industry concerning its massive energy 
demand and related emissions. The industry sector is accountable for the largest share of electricity 
consumption with 42% in 2018 compared to other sectors including household, commerce and transportation 
[1]. According to [2], the global greenhouse emissions caused by industrial processes reached a record level 
in 2021 with 2.54 Gt CO2eq. Demand response (DR) is one of the mechanisms to tackle the growing energy 
and emissions problem of the the industry, which has a key role in energy management. With the help of 
smart grid devices, DR aims to improve electricity grid reliability, increase the demand for renewable energy, 
and cut energy-related emissions. Furthermore, DR motivates end-users to plan their consumption based on 
time-varying electricity prices in order to reduce their electricity bills [3,4]. 

Regarding the planning of electricity consumption of manufacturing, researchers have developed several 
approaches for integrating the DR aspect into the scheduling and utilized various scheduling techniques. 
Through rapid developments in artificial intelligence and machine learning, reinforcement learning (RL) has 
recently brought new ground for scheduling problems [4,5]. By continuously learning through interaction 
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with the problem’s environment, RL can create optimal, generic and rapid solutions for dynamic and 
complex problems [3]. These features make RL a convenient method for handling the dynamic 
characteristics of manufacturing as well as electricity markets. 

Although numerous studies on the application of RL in scheduling problems are available, only a few have 
considered energy management aspects [4,6]. None of these studies address job-shop scheduling (JSS) 
intending to minimize electricity costs. Therefore, in this study, we work on developing a deep RL (DRL) 
methodology for JSS with electricity cost and makespan minimization objectives. Although yet to be 
published, [7] show a highly promising RL approach for JSS to minimize makespan. This paper presents 
how we successfully augmented their approach with DR aspects. To do this, we develop two different reward 
functions for two machine states: operating and being idle. This study considers makespan minimization as 
an auxiliary objective only to ensure the completion of production operations on time, whereas the electricity 
cost objective is assessed more in-depth. We give weights to both objectives to analyze the trade-offs in 
between and provide flexibility in the decision-making process of production planners. Our results show that 
the RL agent can reduce electricity costs with the help of our two reward functions. 

The rest of the paper continues as follows: Section 2 explains the background behind this study, including 
JSS, DR, the related literature and RL. Section 3 provides our data and RL model. Section 4 presents the 
results of the model and discussion. Finally, section 5 gives a summary and an outlook for the future work 
direction. 

2. Background 

2.1 Job-Shop Scheduling 

Among various scheduling problems, JSS is characterized as a combinatorial optimization problem, aiming 
to find an optimal solution from a finite set of feasible ones. Although the number of possible solutions is 
finite, JSS is one of the hardest manufacturing problems to solve, being identified as NP-hard (non-
deterministic polynomial-time hard) [7]. 

JSS has two main components, which are jobs and machines. Each machine performs a specific processing 
step of a job, called an operation, in a specific sequence. There exist precedence constraints between 
operations. Machines can only execute one operation at a time until it is finished [8]. 

2.2 Demand Response 

Due to limited transmission and storage opportunities for electricity, electricity supply and demand should 
always be in balance [9]. To keep balance, DR motivates alterations on the demand side in order to 
compensate for dynamic changes in electricity supply owing to diverse factors, including weather for 
renewable energy sources. In addition to balancing supply and demand, another goal of DR is to increase 
the electricity demand for times with large generation from renewable sources [10].  

Without emission costs, electricity generation from renewables has lower marginal costs than conventional 
energy sources [11]. This cost advantage also makes DR attractive for consumers to save on their electricity 
bills. As the most significant electricity consumption sector, the industry could potentially benefit from DR 
to a great extent. Many studies have shown the applicability and advantages of industrial DR [4]. 
Nevertheless, according to [3], participation in DR is far less in the industry sector than residential and 
commercial sectors due to several barriers. The modeling of DR should consider complex and interdependent 
industrial processes and various electricity consumption profiles depending on equipment and job [12]. 
Another issue is potential risks for daily production, such as losses or penalties because of the shift in 
schedule [13]. Thus, the manufacturing sector approaches DR cautiously. That is why this study considers 
the timely completion of production tasks while scheduling DR. 
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2.3 Related Work 

There have been numerous studies on scheduling problems, focusing on diverse objectives. This section 
presents the literature only dedicated to energy and makespan-related objectives applied to various 
scheduling problems (not only JSS). The applied methods can be categorized as heuristics, mathematical 
models and RL. 

Heuristics applied to scheduling problems by previous studies include simulated annealing algorithm [14], 
particle swarm optimization [15], colony optimization [16], backtracking search algorithm [17] and genetic 
algorithm [18]. Overall, heuristics are preferable for their practicality, but they do not ensure globally optimal 
solutions and mostly offer near-optimal solutions [7,19]. 

Researchers focus on mathematical models to find the globally optimal solution for scheduling problems, 
such as mixed integer linear programming [20] and constraint programming [21]. However, compared to 
heuristics, these methods require complex mathematical expressions, precise modeling for each specific 
scheduling problem and much longer computational times [4]. 

The application of RL to scheduling problems has received much attention recently and is already utilized 
in a variety of optimization and decision-making problems [5]. [8,19,22] perform various RL algorithms 
intending to minimize the makespan. Regarding energy-relevant objectives, the authors of [4] utilize multi-
agent DRL for the flow-shop scheduling problem to minimize the cost of energy and materials for 
manufacturing, while [6] use single-agent RL for rescheduling the production after a machine breakdown to 
minimize makespan and electricity consumption. However, until now, there have not been many studies for 
energy-flexible JSS using RL. With this study, we aim to fill this gap in the literature. 

2.4 Reinforcement Learning 

RL is a branch of machine learning, and its naming originates from psychological reinforcement theory, 
which explains the ability to shape personal behaviors by reinforcement and punishment [23]. Figure 1 
illustrates the fundamental components of RL and the interaction in between. The main components include 
an agent and the environment in that the agent is located. In RL, the agent learns how to achieve a goal by 
interacting with the environment.  

Figure 1: Representative deep reinforcement learning diagram (based on [4,24]) 

[24] states that the RL problem is based on an incompletely known Markov decision process where the agent 
partly observes the environmental state (st) and takes an action (at) regarding the observation. Taking an 
action (at) leads to a transition to the next state of the environment (st+1) and a numerical reward (rt+1) from 
the environment. The RL agent tries to learn a policy that maps actions to the environmental states to 
maximize the numerical reward. The value function of the policy π is given by equation (1), which is the 
expected value (E) of discounted cumulative future rewards. In the equation, R	stands for the set of rewards 
that the agent can obtain given that the state s at time t, while γ represents the discounting factor for future 
rewards [24]. 
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A variety of RL algorithms have been developed so far, split into model-based and model-free algorithms. 
The main difference between the two categories is that model-based ones require modeling of state transition, 
whereas model-free ones do not. According to [5], due to the high computational effort for modeling state 
transition for a production environment, researchers preferred the model-free algorithms in scheduling 
problems more often, which are categorized as value-based and policy-based. Value-based algorithms try to 
learn state values Vπ to find an optimal policy. In contrast, vanilla policy-based algorithms try to find an 
optimal policy by policy updates. Actor-critic methods, which are advanced policy-based algorithms, 
combine the advantages of these two methods by considering both the value function and policy update [25].  
The main issue of actor-critic methods is to ensure a stable learning performance for the agent. As a DRL 
algorithm based on the actor-critic method, the proximal policy optimization (PPO) algorithm tries to ensure 
reliable learning performance by limiting policy updates with a hyperparameter called clipping parameter 
[26]. 

3. Methodology 

We base our methodology on the work by [8], who build an RL environment to minimize makespan in the 
JSS problem. The following subchapters present our modifications on this JSS environment and the 
benchmark JSS datasets from the literature in order to integrate our primary objective of electricity cost 
minimization and to provide flexibility in production planning. 

3.1 Data preparation 

We implement our modified JSS model on the first ten instance datasets from [27]. The datasets are identical 
in size, including 15 machines and 15 jobs, each job has 15 operations. [27] gives processing times and 
machine numbers as the statistical data to describe an operation. 

Our work in this stage includes the integration of external electricity data into the instance datasets. As 
external data, we add electricity demand per operation (kW) and the German day-ahead electricity prices 
(€/kWh). Electricity demand data is sampled from a discrete uniform distribution over the unit interval [1, 
20] and given for each operation. We obtain the German day-ahead electricity prices from EPEX Spot 
through the Price API developed by aWATTar [28]. The data includes the prices between 11.10.2022 at 
15:00 and 13.10.2022 at 00:00. 

3.2 Modeling 

In this stage, we enhance the JSS environment by considering energy-flexible scheduling. Specifically, the 
major modifications occur in the observation space and reward function, whereas the action space stays the 
same as the original version. 

3.2.1 Action Space 

The authors of [8] design the action space as the selection of a job for machines or keeping them idle, called 
“No-Op” by the authors. It is defined by the discrete space with the input {j0, j1, …, jJ-1, No-Op}. A boolean 
vector, representing the legal actions, eliminates ineligible actions, such as selecting finished or ongoing jobs 
or occupied machines, which is explained in Section 3.2.2. Additionally, the authors implement the “action 
masking” technique that equates the likelihood of taking illegal actions close to 0%. We employ these action-
related settings without an alteration since our electricity cost objective does not require any change in the 
action space. 
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3.2.2 Observation Space 

In the JSS environment from [7], the observation space of the agent includes seven attributes about required 
and leftover times for operations as well as idle times. Regarding our objective of electricity cost 
minimization, we add 2 new electricity-related attributes to the agent’s observation space: the electricity 
demand of the operation and weighted electricity price. We weigh the hourly electricity price by the 
processing time because operations might take longer than one hour. The authors scale the majority of the 
attributes by the associated maximal values to treat them equally and benefit from the stability of the gradient 
calculation of the PPO network. We scale our two attributes accordingly. Table 1 shows all attributes of the 
observation space with explanations. 

Table 1: Observation space attributes 

State attribute  Description Scaling Parameter Range 

s1 Boolean parameter shows if jobs can be allocated to 

the machine 

- {0, 1} 

s2 Left over time for the currently performed operation Longest operation time [0,1] 

s3 Percentage of finished operations of a job - [0,1] 

s4 Left over time until total completion of a job Longest job completion time [0,1] 

s5 Required time until the machine is free Longest operation time [0,1] 

s6 Idle time since last job's performed operation Durations of all operations [0,1) 

s7 Cumulative idle time for the job in the schedule Durations of all operations [0,1) 

s8 Electricity demand of the operation Largest electricity demand [0,1] 

s9 Weighted electricity price Highest electricity price [0,1] 

3.2.3 Reward Function 

Equation (2) shows the original reward function from [8], which is an approach to minimize the makespan, 
calculated by taking the difference between the processing time of operation i of job j (pij), and idle times on 
machine m (emptym), caused by selecting job j between old (s) and new states (s'). The authors scale the 
reward R(s,a) by maximum operation length. 

0(1, 3) = 	4*+ − ) 67489,(1, 1-)
	

,∈/
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We develop two separate reward functions for selecting a job as the action and the “No-Op” action. Equation 
(3) represents the first reward function for the action for selecting a job. α represents the weight parameter 
for two objectives: makespan and electricity cost minimization. We integrate the electricity costs at the end 
of the formula. eij refers to the electricity demand of operation i of job j and πh stands for the electricity price 
at hour h. p h

ij represents the fraction of the processing time, which falls into each pricing hour. We scale the 
electricity costs by the largest electricity cost possible, which is the product of the highest electricity price 
and demand in the datasets. We subtract the weighted electricity costs from one, because the reward and 
electricity cost are inversely related. The agent receives less reward if it chooses an energy-intensive 
operation during an hour with a high electricity price. 
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For the “No-Op” action, the reward function given in equation (4) cannot have the operation-related 
parameters (eij and p h

ij). Instead, we add only the electricity price to the reward function and scale by its 
maximum value. There is a different concept behind the reward function in equation (4) than in equation (3). 
On the one hand, the idle operation is not favorable for makespan minimization, because it can extend the 
total makespan. On the other hand, when the prices are high, it can be advantageous to not operate the 
machine to reduce the electricity cost. This concept is reflected in the change of the sign before the weight 
of the electricity minimization objective. 

+5($, ;) = (1 − <)	=− ) ?@>AB2($, $-)
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4. Results and Discussion 

We execute the PPO algorithm on a computer with AMD Ryzen 9 3950X CPU and 2 Nvidia Titan RTX 
GPU. We employ the same training time (10 minutes) and hyperparameters as [8]. 

Table 2 presents the results with all instance datasets. The results clearly show the antagonistic effect of α 
on the makespan and the electricity cost. Larger α values result in lower electricity costs and longer 
makespan. There are a few exceptions to this, such as the electricity costs of the datasets Taillard-03, 
Taillard-04 and Taillard-06. When we increase α from 0.5 to 0.8 for these datasets, we obtain higher 
electricity costs. In addition, incrementing α from zero to 0.2 provides shorter makespan values for the 
datasets Taillard-01 and between Taillard-05 and Taillard-09.  

We obtain the significant difference, once we set α to 1, giving no focus on the makespan objective. Our 
reward functions provide an average 13% reduction in electricity costs when we focus fully on the electricity 
cost objective (α=1) compared to the model with full focus on makespan (α=0). Among the datasets, Taillard-
09 has the biggest electricity cost savings with 18%. However, this rate may also depend on the electricity 
price data used for electricity cost calculation. The range of our price data lies between 0.2 and 0.49 €/kWh. 

Table 2: Results in terms of electricity costs and makespan for the instance datasets with different weights 

  Electricity costs (Euro) Makespan (minute) 

Dataset α=0 α=0.2 α=0.5 α=0.8 α=1 α=0 α=0.2 α=0.5 α=0.8 α=1 

Taillard-01 687.20 671.63 659.08 651.38 574.37 1335.03 1310.48 1331.00 1343.05 1978.59 

Taillard-02 589.64 572.66 572.15 539.43 497.22 1323.00 1323.00 1295.55 1421.28 1813.57 

Taillard-03 596.35 595.96 581.99 583.99 546.44 1317.04 1333.01 1339.45 1338.11 1851.42 

Taillard-04 608.01 597.18 579.19 582.67 536.16 1226.49 1264.63 1291.00 1333.80 1863.42 

Taillard-05 587.55 574.10 556.34 549.01 507.46 1339.00 1309.04 1400.99 1427.38 1715.81 

Taillard-06 569.59 546.69 545.10 553.94 495.90 1347.26 1325.25 1331.00 1366.76 1927.81 

Taillard-07 608.94 620.05 607.67 600.00 566.02 1342.73 1294.12 1346.53 1412.49 1781.08 

Taillard-08 598.03 599.66 596.70 594.88 497.15 1324.37 1319.08 1319.14 1349.10 2093.88 

Taillard-09 620.32 594.84 597.37 581.84 511.03 1424.19 1392.53 1409.62 1506.72 2085.78 

Taillard-10 609.57 598.08 596.76 581.88 528.85 1320.68 1367.03 1397.00 1413.77 1939.35 

 
Figure 2 illustrates the evolution of makespan and electricity cost for the last instance data (Taillard-10) 
during the training with regard to α. At the beginning of the training, electricity costs are low since the agent 
has still jobs to finish. The costs rise as the agent assigns these jobs to machines. After reaching a peak, the 
agent is able to reduce the costs continuously through the half of the training. The results are stable 
afterwards. For α=1, the electricity cost is the lowest with €528.85 and the makespan is the longest with 
1939.35 min at the end of the training. Contrarily, for α=0, the electricity cost is the largest with €609.57, 

358



while the makespan is the shortest with 1320.68 min. The intermediate α values lead to sequential results 
between these peak values. However, their results are closer to the results with α=0 rather than α=1. This 
may indicate that the makespan objective has a greater influence on the agent than the electricity cost 
objective for intermediate α values. 

Figure 2: Evolution of the mean electricity costs and makespan during the training 

Figure 3 compares the predictive schedules for the same instance data (Taillard-10) with the maximum and 

minimum α values. The left schedule focuses on makespan minimization and shows that the agent is able to 
reduce the idle times of machines by limiting the “No-Op” action. The right schedule focuses completely on 
the electricity cost objective and illustrates how the agent distributes the operations over the longer time 
horizon by considering the electricity prices and demands of the operations. The agent completes the 
majority of the operations during the first 21 hours in the right schedule, similar to the left schedule. Three 
out of 15 jobs (Job 0, 6 and 7) are postponed to hours between 21 and 33. Completing 80% of the jobs within 
the same time as in the left schedule, the agent is still able to reduce the electricity costs from €609.57 to 
€528.85 in the right schedule (see Table 2). 

Figure 3: The estimated schedules with full weights on makespan (α=0) and electricity costs objectives (α=1) 

5. Summary and Outlook 

In this study, we aim to present the RL-based method for energy-flexible production planning on the job-
shop problem considering the timely completion of production tasks. For this purpose, we integrate the 
objective of electricity cost minimization into the RL environment built by [8] for makespan minimization. 
Our key contribution is the development of two distinct reward functions for operating a job and leaving the 
machine idle. Using the weight parameter for the objectives of makespan and electricity cost minimization, 
the algorithm provides flexibility in production planning, considering the preferences of the manufacturing 
company between the makespan of jobs and electricity costs. The results clearly show the trade-off situation 
between two objectives. Implementation on the benchmark scheduling cases show that giving full weight to 
the electricity cost objective can reduce electricity costs by 13% on average compared to giving full weight 
to makespan objective. One of the benchmark cases indicates that the agent schedules 20% of the jobs to a 
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later time to decrease the electricity costs, while 80% are completed within the optimal time determined by 
the algorithm with full weight given to minimize the makespan. 

Future research work may build on our findings by testing our agent for more available instance data and 
comparing PPO against other RL algorithms. A significant research direction would be adapting the 
algorithm to the more complicated form of JSS: the flexible JSS, which includes many available machines 
for each operation and different electricity demands for machine-operation pairs. 
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