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Abstract 

Reconfigurable manufacturing systems (RMS) are capable of adjusting their operating point to the 
requirements of current customer demand with high degrees of freedom. In light of recent events, such as 
the covid crisis or the chip crisis, this reconfigurability proves to be crucial for efficient manufacturing of 
goods. Reconfigurability aims thereby not only at adjust production capacities but also for fast integration 
of new product variants or technologies. However, the operation of such systems is linked to high efforts 
concerning manual work in production planning and control. Simulation-based optimization provides the 
possibility to automate processes in production planning and control with the advantage of relying on mostly 
existing models such as material flow simulations. This paper studies the capabilities of the meta heuristics 
evolutionary algorithm, linear annealing and tabu search to automate the search for optimal production 
reconfiguration strategies. Two distinct use cases are regarded: an increase of customer demand and the 
introduction of a previously unknown product variant. A parametrized material flow simulation is used as 
function approximator for the optimizers, whereby the production system’s structure as well as logic are 
target variables of the optimizers. The analysis shows that meta-heuristics find good solutions in a short time 
with only little manual configuration needed. Thus, metaheuristics illustrate the potential to automate the 
production planning of RMS. However, the results indicate that the performance of the three meta-heuristics 
considering optimization quality and speed differs strongly.  
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1. Introduction 

Reconfigurable manufacturing systems (RMS) are characterized by a high degree of adjustability concerning 
the structure of the system and the structure of machines associated to the system [1,2]. Whilst the design of 
flexible manufacturing systems aims to plan for all possible upcoming demands, RMS are designed to fit the 
current requirements with its provided functionality and capacity and, thus, allow to be more cost efficient 
in the long run [3]. The ability to reconfigure a manufacturing system to a more efficient operating point gets 
increasingly important with regard to disruptive and highly volatile markets in a VUCA-world [4]. 
Moreover, new use cases, such as remanufacturing, increase the demand for highly adjustable and scalable 
manufacturing systems [6,5]. By providing the changeability enablers – modularity, scalability, 
compatibility, universality and mobility – a manufacturing systems is enabled to adjust its functionality and 
capacity to the current requirement [8,7]. Today there are several technical solutions available that provide 
the changeability enablers for production and logistical processes, such as modular automated assembly 
stations, autonomous guided vehicles and reconfigurable material handling systems. However, frequently 
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reconfiguring a manufacturing system results in increased planning efforts and cost, since associated tasks 
are currently performed in practice manually by experts [9]. A solution to automate reconfiguration planning 
is the use of optimization methods [10].  

There exist numerous examples in the literature that show how optimization is successfully utilized in 
planning tasks associated to manufacturing system reconfigurations. Uribe et al. present a simulation-based 
optimization approach for capacity planning in agile manufacturing [11]. Based on a two-stage stochastic 
integer programming under budget constraints they configure their system while taking multiple products, 
flow paths and tool types into consideration. Finally, they test their approach on a semiconductor 
manufacturing use case. Youssef & Elmaraghy propose an approach for the configuration of RMS taking 
into account the arrangement of the machines, selection of the equipment and the assignment of operations 
[12]. Besides cost and availability of the system, they also consider the reconfiguration effort between 
production periods within the evaluation. Genetic algorithms as well as a reactive tabu search algorithm had 
been developed for the formulated optimization problem. The authors prove that the reconfiguration effort 
plays a vital role if the total cost of a system is considered over multiple planning periods. Stähr et al. propose 
a foresighted planning method for RMS with a scalable degree of automation [13]. The aim of the method 
is to determine optimal scaling paths for the system catering for evolving requirements such as a rise in 
demand or increasing labour costs. The planning uncertainties are reduced and a decision support is granted 
by the integration of Monte-Carlo chains and stochastic scenario analysis. Further approaches on the 
optimization of RMS configuration had been recently summarized by Sabioni et al. [14]. The authors divide 
existing approaches by the configuration level in system, machine and hybrid approaches as well as into 
exact and approximate methods.  

Existing approaches have in common that either only a subset of the planning tasks associated to a 
reconfiguration are considered or that their underlying model is bound to many assumptions. Therefore, the 
following optimization approach aims to extend previous approaches by considering the following 
requirements: (1) include all tasks associated to a system reconfiguration [1,2] and (2) utilize a model with 
a high degree of model accuracy and detail compared to previous approaches. In order to satisfy requirement 
(1), structural as well as logical reconfigurations are possible on a machine and system level. While structural 
reconfigurations affect the hardware used, logical reconfigurations affect the control logic of the machines 
and system by changing the decision process for sequencing, i.e. the control policy, and allocation of jobs to 
resources, i.e. the routing policy. The selection of decision variables of the optimization problem is thereby 
based on a real-world testbed for the approach, as shown in [15]. Requirement (2) considering model 
accuracy and detail is met by using a digital twin represented by a discrete-event simulation (DES) as a 
model of the RMS [16–19].  DES are generally applicable in the manufacturing domain and allow specific 
modelling enhancement, such as extending a material flow simulations with consideration of machine 
failures and repair [20], activity based costing [21] or energy consumption of production processes [22]. 
Considering the combinatorial complexity of the reconfiguration of a manufacturing system, global 
optimization methods, such as meta-heuristics, are advisable [24,23]. This is based on the general 
applicability, simplicity and good behaviour of meta-heuristics concerning global optimization in large and 
discrete search spaces [14]. Therefore, this paper aims to investigate the suitability of simulation-based 
optimization with meta-heuristics for manufacturing system reconfiguration planning by assessing and 
comparing the performance of three distinct meta-heuristics: evolutionary algorithms, simulated annealing 
and tabu search. The paper is structured as followed: the optimization problem and the used meta-heuristics 
are described in chapter 2. Chapter 3 shows, explains and discusses the results of the experiments. Lastly, 
the paper concludes with a summary and an outlook in chapter 4.  
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2. Methods 

2.1 Optimization Problem Description  

The description of the optimization problem is oriented towards the description of a complex job-shop 
scheduling problem [25] and the formalization of RMS [12]. There is a set of ! jobs " = {"!, "", … , "#}, that 
need to be processed on ' resources, where the set of ' resources is ( = {(!, (", … , ($}. Each job "% 
consists thereby of a sequence of !% operations (+%,!, +%,", … , +%,#!). The execution of each operation - of job 

. (+%,') requires a resource ((-, .) that is capable to perform this process. Each resource (( is thereby 

equipped with a set of /( process modules 0( = {'!, … ,')" 	}, where each process module '*2	0( 	 enables 

the resource to perform a distinct subset +$# of all possible operations +',%. The set of all / process modules 

will be called 0+ = {'!, … ,')} in the following. The sequence of performed operations of a resource (( 
is determined by a control policy 3( ∈ 5, where 5+ = {3!, … , 3,} defines the set of all 6 possible control 

policies. The configuration of resource (( is then defined by the tuple (0( , 3().  

Each resource  (( is located in the RMS at location 7( = (8( , 9() ∈ :, where :+ = {7!, … , 7-} is the set of 

all possible ; locations. By introducing the set L= {7!, … , 7$} that includes the locations of all ' resources, 
the system configuration < is defined by the tuple < = ((, :).  

In the problem of  the reconfiguration of a RMS from configuration < = ((, :) to <. = ((., :′) several  
degrees of freedom concerning the structure and logic of the manufacturing system exist [1,2]. At first, due 
to the mobility and compatibility, a resource  (( can be added ((′ = ( ∪ ((), removed ((′ = (	\	(() or 
relocated in the manufacturing system (7(′ ≠ 7(). Moreover, it is possible to add (0(′ = 0( ∪'*) or remove 
(0(

. = 0( 	\	'*) a process module '* from a resource (( and, furthermore, move a process module from 

one resource to another ('* ∈ 0(
.  and '* ∈ 0/  where A ≠ B). Lastly, the control policy 3( of a resource 

(( can be altered (3(′ ≠ 3().  

The objectives of the optimization problem at hand are minimal reconfiguration cost C, minimal inventory 
D in the RMS and a maximum throughput E. Although lead time or throughput time F is an important 
performance measure in practice, it is neglected in regard of its correlation with inventory level D and 

throughput E, according to Little’s Law (F =
0
1) [26]. The mentioned objectives describe a conflict of 

objectives, since they describe independent and contradictory goals. For example, increasing the throughput 
of a production system requires a larger production capacity, that is only reached by increased cost. 
Therefore, the optimization problem yields a set of pareto-optimal configurations. Identification of a 
particular optimum can only be achieved by knowing the weighting of the objectives. 

2.2 Specific use case 

In order to investigate the performances of the three meta-heuristics to solve a reconfiguration problem, a 
representative benchmark use case of an RMS is used. In the benchmark use case, an initial configuration is 
chosen as the initial state <0 and reconfiguration cost is evaluated by a comparison of the reconfigured and 
the initial configuration. The initial configuration <0 is described in Table 1.  

The task of the manufacturing system is the completion of jobs that require the operation sequence +- =
{G!, G", G2, G3, G4} to be finished. Since all jobs require the same process sequence, the second index is 
omitted for sake of simplicity. Moreover, every operation is performed by a distinct process module in the 
use case, for which reason a differentiation of operations and process modules is in this case unnecessary.  

 

 

212



Table 1: Initial configuration !! of the manufacturing system in the studied benchmark use case 

Resource  Operations Location Control policy 

Machine 1 G!, G2 (5, 5) FIFO 

Machine 2 G", G4 (5, 10) SPT 

Machine 3 G3 (10, 5) FIFO 

Machine 4 G4 (10, 10) FIFO 

Transport resource 1 - (5, 0) SPT 

Source - (0, 0) - 

Sinks - (35, 35) - 

 

Table 2: Overview of the distribution parameters of the time of processes in the benchmark use case 

Process  Distribution type Mean H  

G! Normal distribution 50 s 5 s 

G" Normal distribution 250 s 25 s 

G2 Normal distribution 40 s 4 s 

G3 Normal distribution 180 s 18 s 

G4 Normal distribution 40 s 4 s 

Product arrival Exponential distribution 150 s 150 s 

Machine TTF Exponential distribution 700 min 700 min 

Transport resource TTF Exponential distribution 1100 min 1100 min 

 

Individual jobs are released into the manufacturing system by the source with exponentially distributed 
interarrival times. Each performed operation takes a normal distributed process time. The transport time 
required to transfer products from one machine to another is calculated by considering the transport distance 
by the Manhattan distance and assuming a velocity of 1 m/s and a constant reaction time of 2 s.  Moreover, 
machine and transport resources fail in exponentially distributed time to failure (TTF) and the associated 
repairs require 15 min. An overview of the parameters of the time distributions of the individual processes 
can be found in Table 2. 

The reconfiguration of the benchmark use case is also constrained by some restrictions. These restrictions 
aim to represent real planning situations, where only a limited amount money is available, additional 
equipment is related to some expenditure and infrastructure and hardware can only be used in some defined 
boundaries. Table 3 presents the constraints in the benchmark use case.  

The degrees of freedom specified by the reconfiguration problem are realized by the benchmark use case. 
Machines, transport resources and process modules can be added and removed in the reconfiguration in the 
defined boundaries of the constraints. Moreover, machines can be relocated, control policies can be changed 
and process modules can be transferred to other machines. However, there are some special assumptions 
made in the use case. At first, transport resources do not require a process module for the transport and they 
always start at position 7 = (5, 0). Additionally, if a machine is added to the manufacturing system, the 
process modules and location of the machine are selected randomly. Machines and transport resources can 
only perform a single operation at a time.  
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Table 3: Overview of the distribution parameters of the time of processes in the benchmark use case 

Constraint type  Constraint 

Maximum reconfiguration cost 100.000 

Buying a machine 30.000 

Buying a transport resource 15.000 

Buying a process module 5.000 

Maximum number of machines 6 

Maximum number of transport resources 3 

Machine TTF 3 

Maximum process modules per machines 3 

Possible machine positions (5, 5), (5, 10), (10, 5), (10, 10), (15, 10), (10, 15), 
(20, 25), (25, 20), (25, 25), (30, 25), (30, 30) 

Possible control policies FIFO, LIFO, SPT [27] 

 

For the evaluation of the configurations with the DES, a time range of 10.000 minutes (approx. 7 days) is 
simulated. This simulation time is long enough to neglect stochastically induced effects. The output of the 
system, which represents the system throughput since a constant time range is simulated, is determined by 
the number of individual products that arrived at the sink and the inventory is calculated as the average 
number of products in the system. For the calculation of the inventory, the first quarter of simulation results 
is discarded to neglect the impact of the warm-up phase within the DES.  

2.3 Meta-heuristics 

Meta-heuristics are approximative optimization techniques that use high-level algorithms, that do not rely 
on any domain knowledge, which results in their wide applicability across optimization problems. This class 
of optimization techniques can be divided in population-based and trajectory-based methods. [28] 

Evolutionary algorithm (EA) is a population-based method that relies on Darwin’s principle of natural 
selection. The algorithms rely thereby on three basic operations that are repeated for every generation: 
selection, crossover and mutation. Each individual, i.e. a possible solution, of a population is evaluated and 
a selection of the best individuals is done according to the objective values of the individuals. Subsequently 
in crossover, pairs of individuals are combined to generate new individuals. Lastly, individuals are randomly 
modified in mutation. The sequence of these three operations is repeated until a predefined number of 
generations is evaluated.  

In the presented approach, each individual in the population represents a configuration of the RMS. The 
population is randomly initialized at start of the optimization. As the reconfiguration optimization problem 
has multiple objectives, NSGA-II [29] is used for selection, because of its good behaviour in finding a pareto-
optimal front and no need to weight the different objectives. In crossover, the individuals are combined by 
exchanging a random number of machines or transport resources. Lastly, in mutation, an individual is 
randomly altered by one of the earlier defined degrees of freedom.  

Contrarily, simulated annealing (SA) is a trajectory-based method that is motivated by the cooling process 
of metals. The algorithm is started with an initial solution and an initial temperature that decreases over time. 
At first, a candidate solution is generated by altering the initial solution and both solutions are evaluated and 
the compared to each other. With a certain acceptance probability, the candidate solution is accepted 
although it has a lower performance. This acceptance probability decreases with temperature and allows SA 
to leave local minima. This process is repeated until a stop criterion is met. [30] 

214



Similar to the implementation of EA, a solution in the SA approach is a distinct configuration of the RMS 
and the altering of solutions is done randomly according to the degrees of freedom of the RMS. Instead of 
starting with a random configuration, as in EA, the initial solution of SA is the earlier mentioned initial 
configuration <0. As SA requires a single objective, a weighted sum of the objectives, in the following 
referred to as fitness, cost (K5 = −0.001), throughput (K1 = 0.025) and WIP (K0 = −1.0) is used. The 
parameter choice of the weights is thereby done according to the magnitude of the objectives.   

The last evaluated meta heuristic, tabu search (TS), is also a trajectory-based method introduced by Glover 
[31]. In each iteration of TS, the best nonvisited solution is selected from the neighbourhood of the previously 
selected solution. The memory of visited solutions, also called tabu list, has a maximum length and gets 
updated if a new best nonvisited solution is found. If the tabu list reaches its maximum length, the oldest 
solutions get removed when adding new solutions. Similar to SA, TS allows worsening moves with the help 
of the tabu list. The algorithm iterates until a stop criterion is reached.  

With regard to the benchmark use case, TS starts optimization with the initial configuration <0. Since the 
concept of neighbourhood is not obvious for an RMS, we define a neighbourhood as 10 configurations that 
can be reached from the starting configuration by randomly using one degree of freedom. Similar to SA, TS 
requires a single objective for performance comparison of solutions, which is defined in this case as the 
previously described weighted sum of objectives.  

3. Results and Discussion 

The analysis of the three meta-heuristics for the presented benchmark use case is performed by comparing 
their performance on the same hardware (Intel Core i7 1185G7, 4,8GHz) within a limited optimization time 
range of 180 minutes. In order to evaluate the solutions more precisely, we define an interesting region of 
solutions by a minimum throughput E$'# = 3000 and a maximum inventory D$+6 = 150. The 
hyperparameter selection of all three algorithms is done based on a similar grid search and choosing the best 
parameter set. The hyperparameter sensitivity of SA can be observed to be much higher than that of TS and 
NSGA-II.  

       

Figure 1: Maximum and rolling average performance of the three meta heuristics over time (left) and number of 
found pareto-optimal solutions per meta heuristic over time (right) 

In the left diagram of Figure 1, the max and rolling average of the fitness of the three heuristics over 
optimization time is displayed. All three algorithms manage to improve their best fitness over time and 
NSGA-II and SA improve their average dramatically. It is also visible that all algorithms reach a steady 
fitness level, where TS reaches this steady state very early. When comparing the rolling average fitness, 
NSGA-II reaches a higher fitness than SA and TS.  

The right diagram of Figure 1 shows the number of found pareto-optimal solutions for the three algorithms 
over time. As the combinatorial complexity of the benchmark use case is too big to evaluate all possible 
configurations, the pareto-optimal solutions are only derived from all evaluated configurations of the three  
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Figure 2: Output, inventory and cost distribution of found configurations per meta heuristic in the interesting region.  

optimization runs. The diagram indicates that SA finds no pareto-optimal solution and TS finds much more 
pareto-optimal solutions than NSGA-II. Similarly, to the left diagram of Figure 1, TS finds good solutions 
fast when compared to SA and NSGA-II. Although TS is based on fitness optimization and NSGA-II on 
multi-objective optimization, TS finds more pareto-optimal solutions and NSGA-II has a higher average 
fitness. 

As the reconfiguration problem is a multi-objective optimization problem, we want to consider how the 
found configurations are distributed in the earlier defined interesting region. Figure 2 shows this by 
displaying the three objectives cost (colouring), output and inventory for the analysed three meta heuristics. 
It is visible that NSGA-II and SA has a very broad distribution of found configurations in the interesting 
region but especially solutions of SA with high inventory are on average costlier than the ones found by 
NSGA-II and TS. Contrastingly, TS has the narrowest search, focusing heavily and low inventory, medium 
cost configurations.  

 

Figure 3: Output, inventory and cost distribution of found configurations per meta heuristic in the interesting region 
with an interpolation of the pareto-front and display of pareto-optimal points.  

In order to evaluate, where the pareto-optimal configurations are found in the search space per algorithm, 
Figure 3 can be regarded. The three diagrams show 3D plots of the three objectives cost, output and inventory 
where all configurations of the interesting region are displayed in grey and pareto-optimal solutions are 
displayed in blue. The pareto-front is thereby displayed as an interpolated surface with a colour according 
to the fitness. The pareto-front can be divided into two distinct regions: low cost with high inventory (I) and 
low inventory with high cost (II). Interestingly, the pareto-optimal solutions of region I are exclusively found 
by NSGA-II and the solutions of region II exclusively by TS. It is visible that the configurations found by 
TS have a very high focus in the region with high fitness values whereas configurations found by NSGA-II 
are much broader distributed. This can be explained by the fact, that TS optimizes fitness whereas NSGA-II 
optimizes all objectives. The fact that NSGA-II finds no pareto-optimal solutions in region II is due to the 
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fact that TS exploits this region more strongly and finds better solutions there. The previous observation that 
TS finds more pareto-optimal solutions but has a lower average fitness compared to NSGA-II can be 
explained by two facts. At first, the pareto-optimal solutions are much more densely packed in region II than 
in region I as TS searched this region very exhaustively. Secondly, the selection method of NSGA-II leads 
to redundant but good solutions in a population which explains the high average fitness.  

In summary, TS and NSGA-II show a better performance in optimization than SA while SA showed to be 
much more instable and hyperparameter sensitive. This limits the use of SA for practical applications. TS 
and NSGA-II exhibit a good performance for different objectives. If a multi-objective search space of an 
RMS has to be evaluated, NSGA-II is more suited. Contrarily, if a designated operating point considering 
the objectives is given, TS shows a better behaviour. As combinatorial complexity increases strongly with 
the size of the RMS, fast optimization gets more important. This motivates again the use of TS. Future 
research should examine how this approach is applicable to larger problem settings. However, as TS is not 
as easily parallelizable as population-based optimization methods, the potential of parallelization and 
combination of TS with a population-based method should be evaluated. Lastly, future research could 
evaluate how this approach can be extended with more degrees of freedom in order to represent a more 
generalizable production planning approach.  

4. Conclusion 

The paper at hand evaluates the capability of the meta-heuristics SA, TS and NSGA-II for the optimization 
of a RMS. After reviewing state-of-the-art literature from the domain of RMS optimization, it is motivated 
that recent approaches either lack high model accuracy and detail or many degrees of freedom considering 
the reconfigurations. Therefore, we formulate an optimization problem description of an RMS that considers 
structural as well as logical changes on the machine and system level. To evaluate the capability of SA, TS 
and NSGA-II optimization experiments are performed with use of discrete-event simulation as evaluation 
model. The results indicate that all meta-heuristics are able to find good configurations of the RMS in a 
defined amount of time. However, SA shows an inferior performance than TS and NSGA-II. As a 
conclusion, the approach demonstrates that reconfiguration planning of RMS is possible to automate by 
simulation-based optimization with only little need for manual meta-heuristic configuration. These insights 
motivate to conduct further research that assesses how this approach is applicable to larger problem settings, 
how parallelization can be used to reduce optimization time and how the degrees of freedom of the RMS 
could be extended to a broader, more general production planning approach.  
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