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Abstract

Various applications leverage location data to increase transparency, efficiency, and safety in intralogistics.
There are several properties of location data, such as the data’s degrees of freedom, system latency, update
rate, or accuracy. To select a suitable indoor localization system, corresponding data requirements must be
derived by analyzing the considered application. To date, the dependencies of the system performance and
location data requirements have not been satisfactorily described in the literature. Thus, no method exists to
adequately derive location data requirements. For intralogistics, such a method is of particular relevance due
to the high-cost sensitivity and heterogeneity of partially safety-relevant indoor localization applications. To
fill this gap, a method for selecting and quantifying location data requirements for the application in
intralogistics is presented in this work, creating substantial added value for warehouse managers and system
integrators. The method is based on a spatial model that is built on the premise that location data is used to
determine the presence or absence of an entity in a multidimensional interest space. The usage of the method
is demonstrated in an exemplary case study for the application of ‘ Automated Pallet Booking’.
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1. Introduction

Industry 4.0, Smart Logistics, and Industrial Internet of Things are terms used to describe the ongoing shift
in production and logistics driven by modern information and communication technologies. One of the key
technologies in intralogistics is indoor localization [1]. Indoor Localization Systems (ILS) generate location
data of entities, such as goods, assets, personnel, or vehicles that can be leveraged by a wide range of
applications to increase efficiency, safety, transparency, and flexibility in intralogistics. The much-discussed
Real-Time Locating Systems (RTLS) are a subcategory of ILS for real-time remote locating. ‘Automated
Pallet Booking’ [2], ‘Risk Assessment’ [3], and ‘Location-Dependent Order Allocation’ [4] are just a few
examples of the myriad applications of ILS presented in the literature.

For warehouse managers or system integrators to select a suitable ILS for an application, the requirements
must be met by the system’s performance. Mautz [5] lists the most important requirement parameters for
ILS, such as accuracy, integrity, or market maturity. Measurable properties related to the location data itself
are considered location data requirements, for which corresponding performance metrics can be determined
by experimental evaluation. The results of such experiments are often published in benchmarking studies
[6,7] and summarized in literature surveys [5,8]. But how are the data requirements for an application to be
determined? As pointed out by Hohenstein and Gilinthner [9], data requirements depend on the specific
implementation and environment of an application. Thus, providing universally applicable figures is not
possible. Instead, methodical approaches can be applied to specify data requirements. High-level procedures
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for the determination of user requirements were proposed by Mautz [5] as well as Gladysz and Santarek
[10]. However, when it comes to explicitly selecting and quantifying data requirements, they are not
applicable.

In this work, a method is proposed to select and quantify data requirements for intralogistics applications.
The remaining work is structured as follows. In Section 2 an overview of related work is presented to provide
a basis for the method presented in Section 3. Subsequently, the usage of the method is demonstrated for the
application of ‘Automated Pallet Booking’ in Section 4. Finally, the results are discussed and conclusions
are made in Section 5.

2. Related work

This section provides an overview of the most relevant work regarding the specification of localization data
requirements and concludes by pointing out the identified gaps. Individual indoor localization technologies
are deliberately not presented, since data requirements must be considered independently of the functionality.

The most holistic examination of localization requirements is provided by Mautz [5], as part of an extensive
literature survey on ILS. Mautz provides a list of 16 well-defined user requirement parameters, divided into
the categories ‘positioning’, ‘human-machine interface’, ‘security and privacy’, and ‘costs’. Requirement
parameters of the ‘positioning’ category are ‘accuracy’, ‘coverage’, ‘integrity’, ‘availability’, ‘continuity’,
‘update rate’, ‘system latency’, and ‘data output’. In addition, a generic procedure for capturing user
requirements is provided. Finally, requirements for selected application domains are exemplarily derived,
such as for ‘Underground Construction’ and ‘Ambient Assisted Living’. However, the work lacks to provide
information on how the data requirements are ultimately quantified.

Gladysz and Santarek [10] present a procedure for selecting suitable ILS for an application, whereby the
initial step deals with the definition of requirements by describing the business case and determining the
limits of acceptable requirement parameters. The authors list ‘costs/benefits’, ‘accuracy’, and ‘reliability’ as
common requirements, but do not limit the possible parameters to be considered. In addition, a case study
of a forklift truck control and diagnostic tool in a cold chain warehouse is presented. The minimum
requirement for horizontal position accuracy is specified as 0.5m. Similar to the procedure provided by
Mautz [5], the procedure presented by Gladysz and Santarek remains at a high level, without further
explanation on how values are quantified.

Hohenstein and Giinthner [9] present a survey to examine the suitability of 25 ILS for localizing forklift
trucks. The considered evaluation criteria are ‘localization accuracy’, ‘outdoor capability’, ‘flexibility’, and
‘scalability’. In addition, ‘real-time capability’ and ‘integration effort’ are mentioned as relevant parameters
but were not further considered due to a lack of data availability. The localization accuracy is defined as the
95™ percentile of the horizontal position error. The authors identify the size of the object that must be
(indirectly) localized as the relevant criterion to quantify the requirement for localization accuracy. For
example, in the course of an automatic booking process, a pallet to be localized must be assigned to a storage
location with a known position. The horizontal position accuracy requirement concerning the center of the
pallet is accordingly determined by half the width of the storage location. For comparison, the authors give
arough range estimation for the required localization accuracy of five common areas/objects in intralogistics,
such as ‘storage area’, ‘storage aisle’, and ‘storage location’. A generalized method is not provided.

Although the performance requirements of ILS are discussed in several publications, depth is lacking when
it comes to quantifying the data requirements. Dependencies of system performance and location data
requirements are barely discussed. Hohenstein and Giinthner [9] present an interesting approach to determine
the requirements for the horizontal position error for the localization of forklift trucks in intralogistics based
on the dimensions of the object or area of interest. To create significant added value for warehouse managers
and system integrators, this approach must be generalized and further developed.
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3. Method for deriving location data requirements

In this section, a method is presented for systematically deriving location data requirements. The method is
based on the concept of localization functions and comprises the definition of data requirement parameters
(Section 3.1), a generic model to describe the spatial dependencies of the data requirement parameters and
localization functions (Section 3.2), and a procedure to support the systematical derivation of the defined
parameters (Section 3.3).

3.1 Localization functions and data requirement parameters

Location data requirements are a subcategory of system requirements that deal with the properties of location
data. Location data serve an application to enable localization functions that describe which entity (or entity
class) is within (or outside of) a given multidimensional space. This space is considered Interest Space and
the entity is considered Entity to be Localized. If the Interest Space is entered or exited, an event is created
and transmitted to an application. The application then processes the information to create value for the end-
user. Figure 1 illustrates this process for an application with multiple localization functions, ILS, and Entities
to be Localized.
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Figure 1: Different localization functions creating events for an application based on the location of different entities.

Location data (Z) are a set of discrete values that convey information about an entity’s location over time.
The term location (L—,;) denotes a position and orientation in space at a certain point in time. Considering a
rigid body in three-dimensional space, L-,; is given by (x¢, V¢, Z¢, @, Be, Vi), With the position (x;, V¢, z¢) and
orientation (&g, B¢, ¥+), whereby the z-axis is corresponding to the vertical direction. Hence, location data
consist of up to six Degrees of Freedom (DoF). ILS often provide additional data, such as the velocity,
acceleration, or the predicted position of an entity. This information can be crucial, for example, in
controlling robots. If no additional data is provided, location data may be used for their calculation. When
examining location data requirements for the computation of such data, different complex effects must be
taken into account [11]. Therefore, the conclusions drawn in this work only apply to localization functions
as explained above.

Location data can be differentiated according to the Localization Type into absolute and relative
localization [5]. The term absolute localization refers to location estimation in a global frame of reference
as defined by landmarks or anchor nodes. In contrast, relative locations are expressed in a local coordinate
frame. Figure 2 shows the top view of a logistics scenario with a forklift truck (Opmir) and a pallet (Opairer)
within an area of a warehouse (O.r..). Here, absolute localization refers to the forklift’s or the pallet’s location
in the global reference frame O.... Relative localization refers to the forklift’s location with respect to the
pallet’s location or vice versa.
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Figure 2: Absolute and relative localization

The location estimate is subject to various error components and thus differs from an entity’s true location.
The closeness of agreement between the location estimate and the true location is described by the term
Localization Accuracy [12]. The associated absolute localization error vector is given as the elementwise
distance between the location estimate and the true location. Localization errors can be expressed by each
element or any combination, such as the horizontal position error.

A parameter closely related to localization accuracy is Localization Repeatability. Localization
repeatability indicates the closeness of agreement between location estimates at the same true location [12].
Figure 3 visualizes the distinction between accuracy and repeatability. Repeatability can be high even when
accuracy is low. In intralogistics applications, localization repeatability is relevant, if the Interest Space is
specified with respect to location estimates from the same ILS. This is the case, for example, when a robot's
navigation is based on a map recorded by the same system [13].
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Figure 3: Difference between localization accuracy and repeatability

Relevant metrics for localization accuracy and repeatability are the percentiles of the localization error
distribution, which indicate a value below which a certain percentage of location estimates fall. For example,
for the horizontal position error, a 95™ percentile of one meter indicates, that 95 % of location estimates from
a set of location data map to a value below this number. Percentiles are essential from an end-user perspective
as they indicate the Confidence with which a localization accuracy threshold will be met to reliably enable
a localization function. The 95" percentile became established to define a comparable value for localization
accuracy. However, depending on the required confidence of the location estimate, other percentiles can be
considered.

Typically, ILS provide Location Updates periodically with a constant update rate (U). The time gap
between two consecutive location measurements is then given by t; = 1/U (Figure 4). For moving entities,
the update rate is relevant since the last location update could indicate the entity is within an Interest Space
even though the space has already been exited, or vice versa. Besides periodic updates, location updates can
be provided upon request by an outside trigger or upon event triggered by a sensor of the ILS [5].
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Figure 4: Time gap and system latency
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Finally, the System Latency describes the time delay (t;) from the actual measurement to the provision of
the location data, whereby the timestamp associated with the location estimate is usually set to the
measurement point in time. System latency is relevant when location data must be processed near real-time,
which is often the case in safety-sensitive applications such as collision avoidance [5].

3.2 Spatial model of data requirements

The DoF, localization type, localization accuracy, localization repeatability, location update type, and system
latency can be relevant data property parameters to determine the presence of an entity within an Interest
Space. In this subsection, the dependencies of the data requirement parameters are described in a generic
model under consideration of the spatial requirements of localization functions. Finally, the dependencies
are expressed in a mathematical equation.

A location update provided by an ILS relates to a specific coordinate frame of the entity to be localized that
is usually given by the location of a localization device. This is referred to as the Entity’s Localization
Frame (O;). The coordinate frame that is to be determined as being within an /nterest Space is referred to
as the Entity’s Interest Frame (O)). Figure 5 illustrates the top view of an Entity’s Localization Frame and
the Entity’s Interest Frame for a forklift truck. The location estimate of the ILS refers to the rear of the truck,
whereby the center between the fork ends of the truck is the relevant location for the localization function.
To compute the location of the Entity’s Interest Frame, the coordinate transformation (77, ;) must be applied
to the location data provided by the ILS.

TL,I
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Figure 5: Top view of transformation between the Entity’s Localization Frame and the Entity’s Interest Frame

If the localization error at the Entity’s Interest Frame is too high, the presence or absence of the entity within
the Interest Space cannot be reliably determined. The closer the Entity’s Interest Frame is to the boundary
of the Interest Space, the smaller the localization error must be. The multidimensional space in which the
Entity’s Interest Frame is allowed to move without falsely triggering an event is referred to as Motion Space.
The closest distance for each of the considered DoF is referred to as Requirement Margin. Optionally, a
Safety Margin can be added. Figure 6 (left) illustrates these spaces for 2-DoF (x¢, y;).

The Requirement Margin specifies the maximum localization error that a location estimate at the Entity’s
Interest Frame can have while ensuring the correct determination of presence inside or outside an /nterest
Space. The Uncertainty Space, on the other hand, is introduced to describe the localization error at the
Entity’s Interest Frame as a consequence of the system’s performance. It refers to the same dimension as the
location estimate and comprises the three components shown in Figure 6 (right).

Depending on the relevant reference coordinates for the localization function, Static Uncertainty is either
determined by the localization accuracy or by the localization repeatability of an ILS, transformed to the
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Figure 6: Planar view of spatial components for the Requirement Margin and the Uncertainty Space
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Entity’s Interest Frame. Rotational error components in the Entity’s Localization Frame lead to additional
translational error components for the location estimation in the Entity’s Interest Frame. The Static
Uncertainty (ﬁC‘ Acc/Rep,1) at the Entity’s Interest Frame is provided as the same percentile as the respective
accuracy or repeatability of the ILS, which is chosen according to the required confidence level (C). This
uncertainty component is referred to as static because it is considered to be independent of the entity’s
motion. This assumption applies to a good approximation at low velocities, depending on the applied
localization technology. Time-related uncertainty components are additionally considered for dynamic
scenarios. The Time Gap Margin refers to the uncertainty component that is resulting from the Entity’s
Interest Frame changing its location since the last location update (tg). The Time Gap Margin is not relevant
for location updates upon request or upon event, in which case the data is requested when required. Finally,
the Time Delay Margin refers to the location uncertainty as a result of the system latency tg;. During this
time delay, the entity’s location changes according to its velocity components. Thus, the Time Delay Margin
must be considered when the real-time location of the entity is relevant.

The dependencies of the presented model can be expressed in a mathematical equation. The Requirement
Margin is denoted as a vector R, with each element relating to a required DoF. The Interest Space is denoted
as I, the Motion Space as M, and the Safety Margin as S. The Uncertainty Space U is a vector of the same
dimension as R and is given as the sum of the Static Uncertainty U?, the Time Gap Margin T—g, and the Time

Delay Margin TD. From the condition that the data requirements must be met by the system performance, it
follows

R(I,M,S) > U, +TG + TD. (1)

An upper bound for the time delay and the Time Gap Margin results from considering the maximum velocity
(Umax ) Of the Entity’s Interest Frame multiplied by the maximum time gap or latency. With the accuracy or
repeatability percentile for the chosen confidence, it follows

R(I' M' S) 2 PC,Acc/Rep,I + ﬁmax * tg + ﬁmax * td' (2)

Equation 2 thus leads to a conservative estimate of the requirements. The left side of the equation can be
estimated downward and the right side upward, so that the condition of a higher Requirement Margin than
the Uncertainty Space remains satisfied. To quantify location data requirements, the components of this
generic equation must be specified in terms of a particular localization function.

3.3 Procedure for deriving location data requirements

The presented spatial model and its associated equation form the basis for deriving location data
requirements. In this subsection, a procedure with four main steps is presented that is used to specify the
localization function (A), determine the Requirement Margin (B), estimate the Uncertainty Space (C), and
finally calculate the data requirements (D). In the following, the steps are briefly explained in the context of
intralogistics. The procedure is illustrated in (Figure 7).

Specify Localization Function (A): The basis for deriving data requirements is formed by specifying the
localization function under consideration. For this purpose, it must be clarified which entity or entity class
is to be localized (1) inside or outside which Interest Space (2). For example, should a person be localized
in front of a shelf or a forklift in an aisle? The localization type (3) can already be deduced from the answer
to the question of whether the relevant location data of the /nterest Space should be specified with respect
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Figure 7: Procedure for deriving location data requirements

to the entity’s location or a global reference frame. Furthermore, the relevant DoF of the Interest Space must
be specified (4). Localization functions for intralogistics applications rarely require 6-DoF. Usually, roll and
pitch can be neglected, resulting in location data with a maximum of 4-DoF (x,y, z,y). Often, the number
of DoF can be further reduced. For example, for ground-based vehicles, considering 3-DoF (x, y,y) and for
personnel, the position in the horizontal plane, i.e., the 2-DoF location (x, y), is usually sufficient.

Determine Requirements Margin (B): In the second step, the Requirement Margin is determined. This is
done by considering the dimensions of the Interest Space (1), the Motion Space (2), and the Safety Margin (3)
for the required DoF. The spatial structure of warehouses and production halls can be well described by
rectangular areas or cuboid spaces. For example, an aisle or a storage area in a warehouse can be modeled
by rectangles, while a typical storage compartment can be modeled by a cuboid. These abstractions and the
resulting symmetries can prove useful in specifying the Requirement Margin. For example, if the presence
of a forklift in a warehouse aisle is to be determined (localization function), the Interest Space is given by
the boundaries to the adjacent aisles, including racks. However, the Motion Space is limited by the free aisle
area and the forklift's dimensions. If the Entity's Interest Frame is in the center of the forklift, the boundary
of the Motion Space is given by the free aisle area (without racks) minus half the width of the forklift.

Estimate Uncertainty Space (C): Next, the components of the Uncertainty Space are specified, i.e. the
right-hand side of Equation 1. If the estimation of the time-related uncertainty components based on the
maximum velocity is considered reasonable with respect to the given localization function, Equation 2 can
be applied. (1) The maximum velocity (Vi,ax ) at the Entity’s Interest Frame can be estimated considering

the application processes. (2) The Time Delay Margin (ﬁ) must be considered, if the location data must be
provided in near real-time. (3) The confidence level (C) can be chosen using standard percentiles or
according to the Six Sigma-method, which has become an established quality management tool in the
industry. (4) The coordinate transformation (77, ;) between the Entity’s Localization Frame and the Entity’s
Interest Frame can either be measured or estimated. If the transformation does not contain translational and

rotational components, it does not influence the Static Uncertainty (ﬁ;) and can therefore be neglected.

Compute Data Requirements (D): Finally, the data requirement parameters can be calculated. The
Uncertainty Space can depend on multiple data requirement parameters, such as (1) localization accuracy,
(2) localization repeatability, (2) time gap, and (3) time delay. If one uncertainty component is lower, another
can be higher. There can be an infinite number of value combinations that satisfy the equation. The specified
equation can therefore either be used to calculate different combinations of values or to prove the suitability
of an ILS with given data requirement parameters.

4. Case study

The proposed method is applied to the exemplary application ‘Automated Pallet Booking’, which
automatically reports the storage or retrieval of pallets in a storage compartment or area to the warehouse
management system. This case study serves to demonstrate the feasibility and the usage of the method.
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The case study focuses only on the localization function that associates a pallet to a storage compartment of
apallet rack. Thus, the Entity to be Localized is a pallet (A, 1) and the Interest Space is a storage compartment
in a pallet rack (A, 2). Regarding the localization type (A, 3), the location of the storage compartment is
known in a global coordinate system. Consequently, the absolute localization of the pallet is required. To
determine which compartment a pallet is in, the horizontal and vertical positions are of relevance. Hence,
3-DoF (x, y, z) are considered (A, 4).

Next, the Requirement Margin must be determined. Figure 8 shows the front view of an exemplary pallet
rack in which pallets are stored lengthwise. To ensure that a pallet can be assigned to the correct
compartment, its presence must be distinguished from the adjacent storage compartment. The Interest Space
is therefore given by a cuboid with the width, depth, and height of the storage compartment (B, 1). The
Motion Space in x, relative to the center of the pallet, results from the space between two adjacent
pallets (B, 2). Since the pallet is placed on the crossbar, the z-component of the Motion Space is zero.
Therefore, in Figure 8, the Motion Space is visualized as a line in the xz-plane. The x and z-components of
the Requirement Margin are marked as X and Zy. Additionally, a Safety Margin is considered (B, 3).
Analogous considerations can be applied to the y-component. The calculation of the individual values will
not be discussed further, since the focus is on the method itself. For the following derivation of requirements
parameters, a Requirement Margin of (0.3m, 0.5m, 0.15m) is assumed.

— | | Safety Margin
% |
=

Figure 8: Interest Space, Motion Space and Safety Margin for the application ‘automated pallet booking’

The vector for the maximum velocity is assumed to be (0.1 m/s, 0.7 m/s, 0.1 m/s), with substantially higher
maximum velocity in the storage direction (C, 1). No real-time capability is required for the localization
function (C, 2). Incorrect entries in the warehouse management system lead to various further mistakes and
must be avoided. Therefore, a high confidence level (C, 3) of 4o is exemplarily chosen, which refers to
0.62% false location estimates. The localization device is assumed to be attached at the center of the pallet,
which is also the Entity’s Interest Frame. Thus, the coordinate transformation from the Entity’s Localization
Frame into the Interest Frame can be neglected (C, 4). By inserting the values into Equation 2, it follows.

03\ 0.1y
(00'155> = P4o,Acc/Rep,I + (81): * tg' (3)

Since the location of the Interest Space is provided in absolute coordinates, localization accuracy is the
relevant criterion for the Static Uncertainty (D, 1). The localization repeatability can thus be neglected (D,
2). Table 1 shows the resulting 4c-percentiles of the absolute accuracy for selected values of t; (D, 3). For

an ILS transmitting periodic location updates at an update rate of 2 Hz, corresponding to a time gap of 0.5s,
the minimum localization accuracy would therefore be given by ﬁ40, ace equal to (0.25m, 0.15m, 0.12m).
Based on these data requirements, an ILS suitable for the considered localization function can be selected.

Table 1: Location data requirements for different time gaps and 4c-percentiles of the absolute accuracy components

ty /[s] 0.1 0.2 0.3 0.4 0.5 0.6
Pyoacex / [m] 0.29 0.28 0.27 0.26 0.25 0.24
Pigacey ! [m] 0.43 0.36 0.29 0.22 0.15 0.08
Pyo.ace ! [m] 0.15 0.14 0.13 0.13 0.12 0.12
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5. Discussion and conclusions

The potential of leveraging location data in warechouse and production environments is immense as a wide
range of applications can be implemented or supported by location data. For warehouse and system
integrators, selecting an appropriate ILS is key to implementing a reliable and cost-effective application.
Although requirements for ILS have been studied in the literature, the dependencies between the data
requirement parameters and spatial requirements have not been adequately described. Thus, a method for
the systematic selection and quantification of data requirements does not yet exist. This work fills this
research gap by providing a method for systematically deriving location data requirements for intralogistics
applications. The method thus supplements the high-level methods for deriving user requirements for ILS as
presented by Mautz [5] or Gladysz and Santarek [10]. The presented method comprises the following
contributions. (1) Selection and definition of location data requirement parameters that are relevant in terms
of the concept of localization functions, (2) a generic model describing the spatial dependencies of the
application requirements and data requirement parameters, and (3) a procedure to support the systematic
quantification of the data requirement parameters based on the presented model. To demonstrate the
applicability of the presented method, a case study on the application of ‘Automated Pallet Booking’ was
presented.

Some limitations of the proposed method remain. First, based on the generic equation of the spatial
model (Equation 1), different abstractions were proposed to estimate the individual components. In practice,
these should be treated with caution on a case-by-case basis. Often, the exact values are unknown and must
be conservatively estimated. Second, the method is based on reliably determining the presence or absence
of an entity in an Interest Space. This corresponds to a semantic discretization of location data. However,
some applications require quasi-continuous location data, for example, to derive dynamic properties. Finally,
the method focuses on the data requirement parameters relevant to localization functions. The selection of a
system requires the consideration of many more requirements, such as ‘size’, ‘integrity’, or ‘power supply’.

There are numerous benchmarking studies to evaluate the performance of ILS using various performance
metrics. To be meaningful from the end user's perspective, the testing procedure and performance metrics
should meet the application requirements. Currently, an application-driven framework is being developed
that aims at the meaningful testing and evaluation of ILS [14]. Future work will integrate the discussed
concepts and the presented method presented into a holistic approach for application-driven testing and
evaluation of ILS.
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