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Abstract 

Industrial manufacturing plants, including machine tools, robots, and elevators, perform dynamic 
acceleration and braking processes. Recuperative braking results in an increased voltage in the machines’ 
direct current (DC) links. In the case of a diode rectifier, a braking resistor turns the surplus of energy into 
lost heat. In contrast, active rectifiers can feed the braking energy back to the AC grid, though they are more 
expensive than diode rectifiers. DC link-coupled energy storage systems are one possible solution to 
downsize the supply infrastructure by peak shaving and to harvest braking energy. However, their control 
heavily depends on the applied load profiles that are not known in advance. Especially for retrofitted energy 
storage systems without connection to the machine’s control unit, load profile recognition imposes a major 
challenge. A self-tuning framework represents a suitable solution by covering system identification, proof 
of stability, control design, load profile recognition, and forecasting at the same time. This paper introduces 
autonomous load profile recognition in industrial DC links using an audio search algorithm. The method 
generates fingerprints for each measured load profile and saves them in a database. The control of the energy 
storage system then has to be adapted within a critical time range according to the identified load profile and 
constraints given by the energy storage system. Three different load profiles in four case studies validate the 
methodology. 
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1. Introduction 

Industrial applications, e.g., robots [1], machine tools, and lifts [2], perform dynamic movements. Braking 
processes lead to an increased DC link voltage within the machine’s frequency converters [1]. A braking 
resistor usually wastes this surplus of energy in case there is no active rectifier for feeding the current back 
to the AC grid [3]. Energy storage systems represent one way to avoid the dissipation of braking energy and 
increase manufacturing systems’ energy efficiency. Here, mechanical, electrical, electrochemical, hydraulic, 
and hydroelectric storages come into consideration [4]. In literature, the use of flywheel energy storage 
systems [1,5] as well as supercapacitors [6–8] with limited capacity is widespread. As stated in [8] and [2], 
a plug-and-play feature is crucial for retrofitting industrial DC links with energy storage systems. Proprietary 
communication units of manufacturing machines endanger this requirement [2]. Therefore, avoiding 
communication between the machine’s and the energy storage system’s control unit is a desirable feature 
[2]. Moreover, load profiles may vary during operation depending on the specific energy demands of 
manufactured products [9]. According to the product, there can be cyclically recurring load profile 
sequences. 
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This paper deals with autonomous load profile recognition in industrial DC links to facilitate self-tuning 
control of retrofitted energy storage systems. A well-established audio search algorithm [10] provides a 
feasible solution for autonomous load profile recognition as the problem statement is similar to identifying 
pieces of music. Furthermore, this paper addresses measurement uncertainty. Noise amplitudes are usually 
smaller than a tenth of their sensors’ accuracy. As a multiplication of the current and voltage signal takes 
place before receiving the actual load profile, their two single uncertainties add up to the total uncertainty 
[11]. Band-limited white noise expresses itself as a zero-mean statistical fluctuation [12]. As proposed in 
[11], a normally distributed random number generator provides the added white noise in this paper. Adding 
noise enlarges the amount of training data [11]. 

The rest of this paper is structured as follows. Chapter 2 illustrates the state of the art for industrial DC links 
as well as load profile recognition and forecasting. Chapter 3 presents the audio search algorithm and 
translates it according to the problem statement of this paper. Then, chapter 4 proves the validity of the 
algorithm using three different load profiles of a machine tool under the influence of noise. Chapter 5 
concludes this paper and motivates future research work. 

2. State of the art 

This chapter introduces industrial DC links and distinguishes them from DC microgrids. In addition, it 
explains several variants of adaptive and self-tuning control. At last, this chapter discusses scientific 
approaches for load profile recognition and forecasting. 

2.1 Industrial DC links 

Figure 1 distinguishes variants of industrial DC grids connecting the AC grid to drive systems using power 
electronic converters. An intermediate circuit transfers energy from a rectifier to an inverter. DC links consist 
of at least two intermediate circuits and are usually based on one proprietary system manufacturer, e.g., for 
robots with more than one axis [13]. DC microgrids further extend DC links by integrating multiple drive 
systems, renewable energy sources, and energy storage systems [14]. 

 

Figure 1: Topological distinction between industrial DC grids. 

DC microgrid

DC link

Intermediate
circuit

AC grid Line filter Rectifier Inverter Motor

Renewable energy

Energy storageDC-DC converter

13



2.2 Adaptive and self-tuning control 

There are three variants of adaptive control. The first is gain scheduling, often referred to as look-up table 
[15]. This approach is applied to energy storage systems in [16], and especially useful if the system 
performance and disturbances are known in advance [15]. The second variant is model reference adaptive 
control (MRAC) relying on a pre-developed model [17]. Model identification adaptive control (MIAC) 
marks the third variant. MIAC identify the process model during operation making them suitable for systems 
with high uncertainty [17]. MIAC and self-tuning control are used interchangeably [18]. Furthermore, 
iterative learning control (ILC) also belongs to self-tuning techniques [19]. Iterative learning control 
modifies the control loop’s set point depending on error information of past cycles. Moreover, the quite 
similar repetitive control is appropriate for continuous processes, while iterative learning control returns to 
its initial conditions after each iteration [20]. 

2.3 Load profile recognition and forecasting 

Forecasts are a sub-group of predictions. Both approaches rely on historical data to project future events. 
Forecasting represents a prediction based on time series data, whereas a prediction does not necessarily have 
to use time-based data [21]. This paper interprets recognition as a prediction of a load profile identifier. As 
soon as the applied algorithm correctly recognizes the load profile due to the knowledge of previous cycles, 
forecasting the future power demand seems rather trivial for deterministic processes. 

This section provides the results of a literature review for load profile recognition and forecasting. Dietmair 
and Verl develop a generic energy consumption model for a milling machine [22]. They link system states 
to their specific energy consumption and simulate the G-code in advance [22]. Mühlbauer et al. forecast the 
energy intake of a milling machine using information from the G-code (e.g., rotational speeds, coordinates, 
tools, etc.). The authors compare several regression models, including linear, Gaussian process, polynomial, 
and random forest regression [23]. Brillinger et al. examine how decision trees and random forests can be 
applied when forecasting the energy use of CNC machines [24]. In order to recognize load profiles in an 
industrial DC microgrid and to enable adaptive control for energy storage systems, Männel et al. propose 
cross-correlation analysis [25]. Reger et al. combine hidden Markov models with cross-correlation analysis. 
Furthermore, the authors apply short-term Fourier analysis and wavelet transformation to generate features 
in the frequency domain [26]. K-means clustering is the basis for load profile recognition of a machining 
center and forecasting of an industrial robot in [9]. In addition, Barreto et al. use fuzzy c-means clustering 
to define typical load profiles of three industrial machines in the textile industry [27]. In [28], support vector 
machines for load profile forecasting are compared to neural networks and linear regression. Dietrich et al. 
analyze deep learning approaches, including long short-term memory networks (LSTM) and convolutional 
neural networks (CNN), to use demand response on the machine and factory level [29]. Efimov et al. 
investigate an adaptive neuro-fuzzy inference system (ANFIS) for load profile forecasting in an industrial 
robot [30]. 

Most of the described approaches rely on information provided by the machines’ G-code, i.e., a widespread 
computer numerical control programming language. Interpreting G-code is a time-consuming challenge due 
to different software standards and numerous control system manufacturers. Therefore, this paper proposes 
a novel solution path. The authors apply a well-known audio search algorithm to measured load profiles of 
a DC link. A voltage, a current, and a trigger signal suffice to recognize several electrical load profiles 
without the need to access and analyze the machines’ G-code. The proposed algorithm recognizes the load 
profiles within only a few seconds, is robust against noise and easily transferable onto other machines. 
Eventually, this allows for self-tuning energy storage control. 
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3. Modified audio search algorithm 

This chapter introduces the adapted audio search algorithm, including its most crucial functions and 
calculation steps. In 2003, Wang [10] proposed a robust audio search algorithm to recognize music segments 
using hashed time-frequency constellations. Based on these generated fingerprints, the algorithm can identify 
tracks within a database containing millions of songs [10]. Multiple MATLAB implementations of the 
algorithm are available online. This paper uses a customized MATLAB version of [31]. The original 
methodology is adapted to the electrical load profile data of a machine tool. Figure 2 illustrates the adapted 
methodology of the load profile recognition in this paper. 

 

Figure 2: Simplified methodology of the load profile recognition. 

First, the algorithm receives a trigger signal from the machine tool’s control unit. This induces the 
manufacturing process as well as the DC current and DC voltage measurement located right behind the 
rectifier for the load profile recognition. The trigger signal solely marks the load profile’s start and end. After 
five seconds, the algorithm starts generating so-called hashes from the load profile as well as the time vector 
and adds them to a table. As part of the hash generation, a filter has to smooth the load profile to eliminate 
irrelevant extrema and reduce disturbances. After applying the filter, the algorithm identifies the power 
extrema, i.e., relevant minimum and maximum power values. The hashes have a length of ten digits and are 
composed of four parts as described in (1): 
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1. Sign of the anchor point (!! = 0 for negative power, !! = 1 for positive power) 
2. Absolute power value %! of the anchor point rounded to one decimal place 
3. Absolute power value %!"# of the consecutive point rounded to one decimal place 
4. Difference between the time stamp of the anchor point &! and the consecutive point &!"# 

Each extremum once serves as an anchor point within a loop. This logic is suitable for loads that are smaller 
than 100 kW and bigger than -100 kW. A higher number of digits is appropriate if the power values exceed 
the said limits. The number of digits also depends on the required accuracy and hash composition. Even an 
overflow caused by increased values would presumably not infringe on the uniqueness of a hash. To make 
the recognition more robust, one can easily generate additional hashes using a second consecutive extremum, 
as shown in Figure 3. 

If at least one load profile has been measured before, another function calculates whether there are common 
hits between the recently generated hash table and already stored hash tables in the hash database. If a 
minimum of two hits is reported, the algorithm publishes the identifier of the matching load profile within 
the self-tuning control framework. 

 

Figure 3: The load profile extrema lead to unique hashes. 

Moreover, the time vectors of the currently sampled load profile and historical load profiles in the database 
can be put in a scatter plot to visualize hits (see Figure 4). In this example of an ideal recognition, the hits 
lie on a line with a slope of 1. 

 

Figure 4: Exact hits in the second cycle of load profile 1 without added noise. 

Eventually, the algorithm checks its trustworthiness by looking at the relation between exact hits and the 
total number of found hashes in (2). 
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Subsequently, either the load profile identifier is sent to the control design function or it supplies already 
designed trajectories for the energy storage system’s state of charge and exchange power. In case the 
recognition of a load profile is not successful, it becomes a new part of the hash database with its own new 
identifier. Finally, a database stores the results. 

4. Case study 

The following case study validates the adapted audio search algorithm. First, the chapter focuses on the 
experimental design. Afterward, this chapter presents and discusses the results. 

4.1 Experimental design 

Three load profiles from the same machine tool are the inputs to the MATLAB simulation containing the 
recognition algorithm and a trigger signal that initiates the machine tool’s manufacturing cycles. In the 
beginning, the algorithm has not yet witnessed any of the three load profiles. Therefore, the first cycle of 
each load profile will not lead to a recognition. Table 1 provides the chosen sequence of ten load profile 
cycles that all have a length of 50 s with a waiting time of 5 s at the beginning of the simulation to see the 
first trigger. 

Table 1: Simulated sequence of load profiles. 

Periods Load profile identifiers Number of cycles 

5 s ≤ t ≤ 155 s 1 3 

155 s < t ≤ 255 s 2 2 

255 s < t ≤ 355 s 3 2 

355 s < t ≤ 405 s 1 1 

405 s < t ≤ 455 s 2 1 

455 s < t ≤ 505 s 3 1 

 

In this paper, a Savitzky-Golay filter of 15th order over 501 samples serves to smooth the load profile before 
the generation of characteristic extrema and hashes. Furthermore, the extrema have to possess a time 
difference of at least 100 ms and a power difference of more than 2 kW. Moreover, white noise is added to 
the load profiles to check on the algorithm’s robustness. The white noise accounts for measurement 
inaccuracies. This results in four case studies with noise amplitudes of 0.0 %, ± 0.1 %, ± 0.2 % and ± 0.5 % 
of the load profile’s maximum power. 

4.2 Results 

Figure 5a depicts the load profile sequence of Table 1. The actual computing times for the recognition in 
Figure 5b are always less than two seconds. This computing time marks the period between the buffering of 
the first relevant extrema and the publishing of the load profile identifier. 

./0!&12/&ℎ345!! = 67(8&	ℎ3&!
.2&(:	40;<5/	2=	=204>	ℎ(!ℎ5! ≥ 50	% (2) 
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Figure 5: a) Load profile sequence, b) Computing times of the load profile recognition. 

To challenge the algorithm’s robustness, the authors add three noise amplitudes to the original load signal. 
The authors assume that ordinary sensors possess an accuracy of ± 1 %. The noise amplitudes should not 
exceed a tenth of this value for one sensor and, respectively a fifth of the accuracy for two sensors, i.e., 0.2 
%  in this specific case. Figure 6a shows the actual sequence of load profile identifiers according to Figure 
5a. Figure 6b to Figure 6e depict the case study of different noise amplitudes. Figure 6f reveals the 
trustworthiness of each case. For a noise amplitude (NA) of 0 %, the algorithm provides almost ideal results 
as expected. A noise amplitude of 0.1 % also achieves good trustworthiness of over 70 %. The demanded 
robustness at a noise amplitude of 0.2 % is mostly achieved, but in the eighth cycle (355 s < t ≤ 405 s), the 
algorithm publishes the load profile identifier quite late, and the trustworthiness is sometimes lower than 50 
% during the load cycle. This occurs due to the sparse number of extrema during the first 20 s of load profile 
1. However, the algorithm can recognize load profiles 2 and 3 with levels of trustworthiness around 60 %. 
These two load profiles procure more hash information. A noise amplitude of 0.5 % pushes the algorithm 
beyond its limits, and the trustworthiness falls below the threshold of 50 % for most of the simulation time. 

5. Conclusion 

This paper has introduced the application of a well-established audio search algorithm for autonomous load 
profile recognition in industrial DC links to enable self-tuning control of energy storage systems. The present 
publication distinguishes DC links from DC microgrids, defines several variants of self-tuning control, and 
provides the state of the art for load profile recognition and forecasting. The methodology of the audio search 
algorithm is visualized, and its implementation in a case study leads to promising results. Increased added 
noise negatively influences the algorithm’s trustworthiness. 

Future research should focus on further reducing the computing time and storage space requirements. The 
authors have to increase the algorithm’s robustness to cover applications with lower measurement accuracy. 
At least half of the found hashes should be exact hits to safely recognize the load profile. 
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Here, the filter design plays an important role. In addition, other signal features for hash generation might 
be suitable, e.g., in the frequency domain. 

 

Figure 6: a) Actual sequence of the load profile identifiers and recognized load profile identifiers for noise amplitudes 
(NA) of b) 0.0 %, c) 0.1 %, d) 0.2 %, e) 0.5 % of the maximum occurring power, and f) trustworthiness and 

recognition threshold for the presented cases. 
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