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Abstract. The disassembly of complex capital goods is characterized by strong 
uncertainty regarding the product condition and possible damage patterns to be 
expected during a regeneration job. Due to the high value of complex capital 
goods, the disassembly process must be as gentle as possible and being adapta-
ble to the varying und uncertain product's state. While methods based on data 
mining have already been successfully used to forecast capacity and material 
requirements, the determination of the product's or component's condition has 
become apparent in the recent past. Despite the rapid increase in sensor tech-
nology on capital goods such as aircraft engines and their use for condition 
monitoring due to countless interfering effects, it is only possible to react spon-
taneously to the product's condition. So far, we have concentrated on product 
condition-based prioritization of disassembly operations in a logistics-oriented 
sequencing strategy. In this article, we present an approach to predict disassem-
bly process-planning parameters based on operational usage data using machine 
learning. With the prediction of disassembly forces and times, processes, tools 
and capacities can be efficiently planned. Thus, we can establish a component-
friendly disassembly process adaptable to varying product conditions. In this ar-
ticle, we show the successful validation on a replacement model of an aircraft 
engine. 
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1 Introduction 

In order to expand the lifetime of complex capital goods, they must be maintained and 
overhauled regularly. That allows the monetary value to be continued into further 
service phases by maintenance, repair and overhaul (MRO) [1]. However, high stress 
on components and the resulting effects of wear on them lead to the partial or com-
plete loss of their initially designed product properties. From an economic and ecolog-
ical point of view, an efficient regeneration process can be useful, especially with 
regard to the regeneration of complex capital goods and their components [2]. The 
research of the Collaborative Research Center (CRC) 871: "Regeneration of Complex 
Capital Goods" addresses this issue and the process steps for the regeneration of lost 
component properties of such capital goods, using aircraft engine's high-pressure 
turbines (HPT) as an example [3]. Particularly with regard to the capacity planning of 
the regeneration process, a critical process step from an economic point of view is the 
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component-protecting disassembly of undefined solidified connections between HPT 
blades and disks. The joints solidify during the engine's service life depending on 
operating parameters, e.g. operating hours, landing-takeoff (LTO) cycles, and envi-
ronmental influences, e.g. flight routes over sea or deserts. After disassembling indi-
vidual components, a detailed inspection is performed, and the regeneration effort is 
identified. 

Due to the high number of turbine blades, the technologically complex component 
properties, and thus economic aspects, a component-protecting disassembly process 
of these components is of high relevance for the actual regeneration of a complex 
capital good. Damage to the blades must be avoided to prevent the need for spare 
parts and successful regeneration. Also, the disassembly of the individual blades, as 
the last component when disassembling the engine, must be performed fastest possi-
ble to prevent unnecessarily long slack times for components disassembled prior 
[1,4]. Due to the uncertain condition of the blade-disk joint, the disassembly is carried 
out by manually or hydraulic hammering out. Performing the disassembly by highly 
qualified personnel ensures the adaptability to the unknown und varying condition of 
the operational solidified joint, in order not to irreparably damage or destroy the com-
plex and sensitive components.  

In this article, we present an approach to predict the effort for disassembly tasks 
based on the engine's usage. Using the example of HPT blades, we show the imple-
mentation and usage of a learning model that predicts tool dimension and disassembly 
time, increasing the workload information in order to plan and prioritize disassembly 
tasks [1]. However, since we cannot use components with a real product history for 
the experiment due to availability, the approach is validated on a replacement model. 

2 Related Work 

Due to environmental conditions, the turbine's hot exhaust gas mixture and high ten-
sile loads during typical operation, its blading is subjected to three major influences: 
fatigue, corrosion and creep [5]. These influences can negatively affect the properties 
of the components, which requires regular maintenance and overhaul, as well as re-
generation at the end of their life cycle. As a result of the service life and the previ-
ously mentioned influences, solidification mechanisms occur in the joint between the 
blades and the turbine disk. Usually, it requires a complex and costly disassembly 
process of these components during the regeneration of the capital goods. Depending 
on the degree of solidification, a defined breakaway force has to be applied to the 
disassembly object for the detaching movement of the components. Currently, differ-
ent disassembly strategies are used for this process and the loosening of these solidi-
fied joints. The individual blades can be released from the turbine disk by hydraulic 
extraction using a special pulling device [6]. With this tool, the blade is dismantled 
hydraulically by pulling out in the axial direction of the turbine disk using a hook 
slide located between the gap of the turbine disk and the blade root. Due to the neces-
sary support of the device on the disk and the positioning cycles after each individual 
disassembled blade, this disassembly strategy is considered to be very time-
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consuming. There is also an increased risk of component damage, such as pressure 
notches on the components, due to contact points between the disassembly objects 
and the device. Another strategy is to hammer the blades out of the turbine disk with 
hydraulic or manual hammer blows. This leads to an undefined high introduction of 
non-reproducible disassembly forces into the disassembly object, which can lead to 
irreparable damage to the components. Therefore, highly trained and qualified em-
ployees generally perform the disassembly tasks [7]. 

The time required for this disassembly step during regeneration depends on the de-
gree of solidification between blades and disk. Due to the high number of blades 
(e.g. 64 in a IAE V2500 engine, according to the manufacturer), this is a critical pro-
cess step that significantly influences the actual capacity planning of the regeneration. 
Therefore, it is highly relevant for capacity planning to obtain exact knowledge of the 
expected damage pattern on the components already in an early planning horizon. 
Also, due to the loss of knowledge of the blade disk joints condition, the planning of 
workforce, disassembly times and tools can only be adaptively performed when the 
engine has already been partially disassembled. 

That challenge is addressed by predictive maintenance. Ran et al., for example, 
summarized in their work the primary purpose of predictive maintenance as the re-
duction of costs, elimination of unexpected downtime and the improvement of availa-
bility and reliability of systems [8]. As an approach, Eickemeyer developed a damage 
library to predict the effort for the regeneration of capital goods, such as aircraft en-
gines [9]. He defined temporal model categories to optimally perform workforce, 
resources or time planning. The categories are divided into long-term, from a 
timeframe of several months up to a year, medium-term, of several weeks and short-
term, of hours during regeneration. The database has information on 650 regenera-
tions so far performed, containing data such as operating hours, LTO cycles or engine 
type. A Bayesian network processes that data to predict the regeneration effort for 
particular assemblies or components.  

Based on Eickemeyer's research, we present our work on setting up a learning 
model to predict the regeneration effort of disassembling HTP blades with the en-
gine's operational data as input. As aforementioned, the challenge of the disassembly 
is the loss of knowledge of the blade disk joints condition. Using the learning model, 
we achieve the prediction of disassembly tools and time before the initial disassembly 
sequence. In order to set up the learning model, we identified potential factors influ-
encing the disassembly effort, using the response surface method as explained in the 
following. 

3 Setup  

The regeneration of turbine blades requires a component-protecting disassembly of 
the solidified joints between the individual blades and the turbine disk. In [10], we 
introduced and presented a replacement model of a solidified blade disk joint. Since 
no     operational solidified turbine blade disk joints were available in our investiga-
tion, we used an external force by clamping the turbine disk segment with a defined 
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clamping force FCl. That induces a contact pressure on the joint's contact surfaces, 
replicating the solidification. By varying the external force, we achieve a variation of 
different operation scenarios, like differing flight hours or LTO-cycles. That results in 
a solidification force FS(z) opposing the disassembly of the blade. Therefore, the dis-
assembly force FD(z) must be greater than FS(z) to initiate a disassembly movement. 
However, FD(z) must not exceed a material-specific maximum to prevent damaging 
the blade root [11].  

In order to ensure an automated, reproducible and component-protecting disassem-
bly process of these components with an optimum cycle time, the further procedure is 
based on a vibration-aided disassembly. The vibration, induced by a piezo stack actu-
ator, is superimposed on the disassembly movement, and it is positioned in an electri-
cally operated linear drive on the disassembly [8]. As known from the literature, vi-
bration superimposed on a movement reduce the coefficient of friction [12]. Using as 
a tool in the disassembly, it reduces the disassembly force required to detach the so-
lidified connections between the turbine blades and disk [13]. In order to determine 
the degree of solidification and thus also the necessary capacity utilization prior to the 
actual regeneration, information on previous regenerations can be used as input data.  

As shown by Eickemeyer in [9], using machine learning (Bayesian network) can 
predict the regeneration effort. However, in this work, we use the replicated model of 
the solidified joints [10] to train the learning model to predict disassembly tools and 
times. Based on the joint's condition, suitable feed motion and piezo parameters in 
order to ensure an optimum cycle time while ensuring a component-protective disas-
sembly of the turbine blades are selected. In the first step, we use the response surface 
method (RSM) to identify and characterize the input variables, like the clamping force 
as the solidification replacement or the vibration's parameters [14,15]. As a result, we 
obtain information on how they influence the disassembly force needed to dismantle 
the blades. In the second step, we use the RSM's result, to set up a learning model, 
able to predict the disassembly force based on the joint's condition. Integrated into the 
disassembly tool, it also sets the parameters to execute a component-friendly disas-
sembly while achieving low disassembly times. 

4 Results 

As aforementioned, we use the RSM to identify and analyze the disassembly process 
of solidified HPT turbine blade disk joints. Depending on the solidification condition, 
a prediction of planning parameters becomes possible with the calculated optimal 
parameters.  

 
4.1 Characterization of disassembly parameters 

The initial step of the RSM analysis is the identification of the inputs and outputs. 
Since we aim to identify the influences on the disassembly force, we will set FD as the 
system's output. The input factors are accordingly the clamping force FCl, representing 
the operational data, the piezo stack actuator vibration's characteristics, such as ampli-
tude, frequency and waveform and the disassembly speed vD, defined as disassembly 
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length lD(z) per disassembly time. The piezo actuator allows the use of three wave-
forms, sinusoidal, triangle and sawtooth, representing a categorical factor, with the 
experimental design repeated for each category. Using a face centred composite de-
sign of experiments (CCF), we performed 72 randomized experiments in order to 
investigate the relationship and interaction of each input (Table 1).  

Table 1. Levels of influential parameters in CCF 

Factor Low (-1) Medium (0) High (+1) 
Clamping force FCl 2,000 N 3,500 N 5,000 N 
Disassembly speed vD 1 mm/s 5.5 mm/s 10 mm/s 
Frequency fPi 10 Hz 35 Hz 60 Hz 
Amplitude APi 10 µm 55 µm 100 µm 
Waveform WFPi Sinusoidal Triangle Sawtooth 

 
The following analysis using multiple linear regression (MLR), we can set up an 
equation which predicts the disassembly force depending on the inputs and their in-
teractions, as in Equation 1: 

஽෢ܨ = ଴ߚ + ଵߚ ∙ ௄௟ܨ + ଶߚ ∙ ௉݂௜ + ଷߚ ∙ ஽ݒ + ସߚ ∙ ௉௜ܣ + ହߚ ∙ ௌ௜௡ܨܹ + ଺ߚ ∙ ௥௜்ܨܹ + ଻ߚ ∙
௄௟ܨ ∙ ௉݂௜ + ଼ߚ ∙ ௄௟ܨ ∙ ஽ݒ + ଽߚ ∙ ௄௟ܨ ∙ ௉௜ܣ + ଵ଴ߚ ∙ ௄௟ܨ ∙ ௌ௜௡ܨܹ + ଵଵߚ ∙ ௄௟ܨ ∙ ௥௜்ܨܹ + ଵଶߚ ∙
௉݂௜ ∙ ஽ݒ + ଵଷߚ ∙ ௉݂௜ ∙ ௉௜ܣ + ଵସߚ ∙ ௉݂௜ ∙ ௌ௜௡ܨܹ + ଵହߚ ∙ ௉݂௜ ∙ ௥௜்ܨܹ + ଵ଺ߚ ∙ ஽ݒ ∙ ௉௜ܣ + ଵ଻ߚ ∙
஽ݒ ∙ ௌ௜௡ܨܹ + ଵ଼ߚ ∙ ஽ݒ ∙ ௥௜்ܨܹ + ଵଽߚ ∙ ௉௜ܣ ∙ ௌ௜௡ܨܹ + ଶ଴ߚ ∙ ௉௜ܣ ∙  ௥௜ (1)்ܨܹ

The individual factors are each influenced by a coefficient βi in the regression equa-
tion, describing the factor's influence on the disassembly force. After the experimental 
procedure, we evaluated the results using the analysis of variance (ANOVA) [15]. 
Among other information, we also obtain a statement on whether the model is statisti-
cally significant. That examines whether the model can be applied as calculated, i.e. 
whether the input variables significantly influence the output variable as calculated. 
The determination of the validity in predicting the disassembly force according to the 
regressions equation (Equation 1) is determined by the p-value. If the p-value is less 
than 0.05, the model can be considered significant, i.e. it is robust in predicting the 
disassembly force. With the calculated p-value lower than 0.001, we can assume that 
the model is valid. 

In addition, we evaluate the goodness of fit by calculating the coefficient of deter-
mination R² and the adjusted-R². Adding more input variables to the equation always 
increases R², even if the variable has no influence. The adjusted-R² indicates the per-
centage of variation explained only by the inputs that actually affect the output. An R² 
value of 0.9714 and an adjusted-R² value of 0.9602 indicate a good model fit using 
MLR. Therefore, we can assume a sufficient precision of the prediction accuracy. 

According to the RSM procedure, we calculated the optimal setting parameters to 
reduce the disassembly force in the next step. We perform a comparison with varying 
disassembly speed and vibration waveform to demonstrate the results. We particularly 
highlight these two factors, since the speed regards the time and capacity aspect, and 
varying the waveform showed a dependence on the reduction of the disassembly force 
in preliminary experiments. Table 2 shows the values of each input factor. The tests 
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are executed with a disassembly with a clamping force of 4,000 N and the shown 
parameters for the piezo stack actuator. 

 

Table 2. Optimal parameters to minimize the disassembly force 

Fixed Parameters 
Clamping force (FCl) 4,000 N 
Amplitude (APi) 100 µm 
Frequency (fPi) 60 Hz 
Varying Parameters 
Disassembly speed (vD) 1 mm/s, 5.5 mm/s, 10 mm/s 
Waveform (WFPi) Sinusoidal and Triangle 
 
We performed the disassembly tests in a randomized order. Table 3 shows the results 
of 45 runs, each the mean value of the maximum disassembly force. In addition, we 
present the percentage reduction compared to without vibration.  

Table 3. Result of the reduction of the maximum disassembly force 

 vD = 1 mm/s vD = 5.5 mm/s vD = 10mm/s 
FD without vibration 2,157 N 2,139 N 2,144 N 
FD w. sinusoidal vibration 1,717 N (-20.4 %) 1,950 N (-8.8 %) 1,931 N (-9.9 %) 
FD w. triangle vibration 1,802 N (-16.5 %) 1,910 N (-10.7 %) 2,022 N (-5.7 %) 
 
We achieved the maximum reduction of the disassembly force at a sinusoidal wave-
form and a disassembly speed of 1 mm/s. The maximum reduction decreases with 
increasing disassembly speed when superimposing the triangle vibration. However, 
when using sinusoidal vibration, the influence of the disassembly speed is more com-
plex. In addition, the waveform also influences the maximum reduction of the disas-
sembly force, depending on the disassembly speed. Based on the results, we can de-
velop a learning model in the following step that can predict process parameters for a 
component-protecting disassembly. 

4.2 Learning model to predict disassembly parameters 

In order to predict disassembly process parameters, we developed a learning model. 
Based on operational usage data of an aircraft engine, tool dimension for a compo-
nent-protective and disassembly times for capacity planning are the primary determi-
nants. However, as mentioned initially, we approximate these data through the re-
placement model. A variation of the clamping force represents different operational 
usage of the aircraft engine [10]. Using the experiment's data described in chapter 4.1, 
we train another regression model to predict the disassembly force based on the pre-
set clamping force, representing the aircraft engine's usage. In addition, we executed 
further disassembly runs with random levels of the influential factors to obtain a test 
subset to test the trained model, with the split between training and test data being 80 
to 20 %.  
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To evaluate the learning model, we calculate the coefficient of determination R² 
and the symmetric mean absolute percentage error (sMAPE). As discussed in the 
literature, they are used to evaluate machine learning studies [16]. An R² of 0.9248, 
close to 1, and sMAPE of 8.594 %, close to 0 %, indicate a good predictive perfor-
mance of the learning model. 

Integrated into the control of the disassembly device, tool parameters such as the 
values of the piezo stack actuator are automatically adjusted. The input parameters for 
the learning model are the maximum disassembly force according to material-specific 
limits and the clamping force set at the disassembly test rig, replicating the joint's 
solidification. Additionally, an operator has to specify the maximum disassembly 
speed. The disassembly speed, which mainly determines the time per disassembly 
operation, serves as the key influencing variable on the disassembly force. The learn-
ing model attempts to keep the disassembly speed as fast as possible while at the same 
time adhering to the force limit. It then calculates the difference between predicted 
and given maximum disassembly force by varying the piezo stack actuator's parame-
ters, amplitude, frequency and waveform. The difference is necessary to determine by 
how much the predicted force is less than the given force. That results in the setting 
parameters for disassembly at maximum disassembly speed while the force limit is 
not exceeded and the difference is within a predefined safety interval. 

Figure 1 shows an exemplary disassembly process of ten blades being successively 
disassembled. The disassembly speed is increased step by step up to the maximum 
speed (in the shown example 6 mm/s) while never exceeding the force limit by vary-
ing the adjustment parameters of the piezo stack actuator. If the force limit might be 
exceeded, either the speed is reduced, or the disassembly is stopped. That will prevent 
any possible damage to the blade root. 
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Fig. 1. Diagram of an exemplary disassembly process including ten runs 

That results in the following disassembly scenario for capacity planning: Based on 
the known operational data of the engine, the learning model predicts reasonably ac-
curate the disassembly force. If an engine is to be disassembled with an identical op-
erational history to an already known and disassembled engine, the setting parameters 
already learned can be reused. However, assumed an engine is to be disassembled of 
an unknown type or a flight scenario that has not yet been disassembled. In that case, 
the disassembly force is calculated based on previously executed disassembly runs by 
the learning model. The example in Figure 1 shows that only a few disassembly runs 
are needed until a target speed of 6 mm/s, set by the operator as the maximum disas-
sembly speed, is reached. Thus, if the engine type or flight data is unknown, within a 
short approximation interval of, in our case, ten out of 64 blades, approx. 15 % of the 
disassembly runs, the learning model adapts to the target disassembly speed. The data 
collected can then be integrated into the learning model's database to enhance and 
improve its performance. 

For capacity planning, it follows that disassembly time and tool dimension can be 
predicted depending on the knowledge of the engine's condition. With a minimum 
number of disassembly runs to achieve the optimal setting parameters, an efficient 
disassembly process planning can be realized. That allows the disassembly process, 
characterized by a high degree of uncertainty, to become plannable and adaptable to 
the unknown product's condition.  

5 Conclusion and Outlook 

This paper presents the development of a learning model to predict disassembly pa-
rameters for optimal process and capacity planning. An aircraft engine's operation 
leads to a loss of knowledge of its assembly joint's condition. The exemplary investi-
gated connection of the HPT blades and disks solidifies to an unknown extent. There-
fore, it is challenging to predict the data, such as tool dimensioning and disassembly 
time, required for the disassembly process. Resources, machines or workforce can 
thus only be determined in short-term during disassembly. 

In order to tackle that challenge, we developed a learning model which predicts the 
disassembly force to perform a component-protective disassembly. By adding the 
disassembly time as the crucial factor for time capacity planning, we were able to 
show its dependence on the disassembly force. That allows the planning of tools and 
temporal capacity based on the engine's operational data, such as flight hours, routes, 
or LTO-cycles. 

We identified influential factors during the disassembly on needed dismantling 
forces using the response surface method. With the aid of superimposed vibration, we 
reduced the maximum needed disassembly force to overcome the solidification force 
induced by the joint's solidification. The subsequent multiple linear regression al-
lowed the disassembly force to be described as a function of the influencing variables. 
These include the clamping force as a replacement model of operational solidifica-
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tion, the vibration's adjustment variables, and the disassembly speed. The reduction of 
the     maximum disassembly force due to vibration, thus allowing an increase of the 
disassembly speed. 

From the results of the RSM, we then developed the learning model to predict the 
disassembly force based on the clamping force as the replacement model for the 
joint's solidification. Based on that prediction, the control chooses optimal setting 
parameters for the piezo stack actuator adhering the material-specific maximum force 
limit        (Figure 1). That enables the execution of a component-protecting disassem-
bly. The learning model can considers the target disassembly speed, set by an opera-
tor. Depending on the knowledge of the joint's condition in comparison with already 
disassembled blade disk joints, the learning model increases the speed as fast as pos-
sible. In our example, only a few disassembly runs were required. With the predicted 
knowledge of required disassembly duration and tool dimensioning and thus operat-
ing resources and workforce, the disassembly as the initial step in the regeneration 
chain can be planned so that resources are used optimally and slack times are prevent-
ed. Thus, disassembly process planning can already be carried out on a medium-term 
planning horizon, as the engine's operation data provides the database.  

In future work, the application of the learning model should be applied and con-
firmed on components with a real usage history. Also, a comparison of multiple linear 
regression to artificial neural networks (ANN) showed an advantage in the predictive 
accuracy of the MLR. That was possibly due to the small database of training data. 
Other machine learning approaches such as ANN or Bayesian networks should be 
compared by expanding the amount of input and training data. 
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