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Abstract

Squeezed states of light play a significant role in various technologies ranging from
high-precision metrology such as gravitational wave detection to quantum informa-
tion. These quantum states are prepared to carry particular characteristics depending
on their application. For instance, some applications require squeezing in one, others
only in the combination of two distinct optical modes. Furthermore, squeezing can
appear constant for all frequencies or frequency-dependently. In this thesis, novel
quantum optical methods employing different, tailored non-classical light sources,
are developed and described. The individual squeezed states are controlled and
characterised, each tailored for a particular application.

In high-precision spectroscopy, the measurement sensitivity is often limited by
technical noise at low frequencies. The first publication shows that small phase
signals at low-frequency are resolvable without increasing the laser power. We use a
phase-modulated field, shifting the signal to high frequencies where technical noise is
circumvented. In addition, the field is squeezed by 6 dB at high frequencies to reduce
shot noise arising from quantum fluctuations. Our approach resolves sub-shot-noise
signals at 100 Hz and 20 kHz on a reduced noise floor.

In opto-mechanical sensors such as gravitational wave detectors, the fundamental
measurement limitation arises from the combination of shot noise and quantum
back-action noise induced by quantum radiation pressure noise. A conventional
fixed-quadrature squeezed state generated by a resonant optical parametric oscillator
(OPO) can only fight one of these two contributions simultaneously. To cancel both
quantum noise contributions, a particularly frequency-dependent squeezed state is
required. Our second publication shows that a detuned OPO generates frequency-
dependent squeezing. It can be used as an approximate effective-negative mass
oscillator in an all-optical coherent quantum noise cancellation scheme and is suitable
to coherently cancel quantum noise. Our generated state, which is reconstructed by
quantum tomography, rotating over megahertz frequencies, exhibits a rotation angle
of 39° and a maximal squeezing degree of 5.5 dB.

Two-mode squeezed quantum states are resources required in modern applica-
tions such as quantum information processing. In the third publication, we address
the challenge of determining the ten independent entries of a two-mode squeezed
state’s covariance matrix to fully characterise the quantum state. We demonstrate a
full reconstruction of a 7 dB two-mode squeezed state using only a single polarisation-
sensitive homodyne detector, which avoids additional optics and potential loss chan-
nels.

The findings of this thesis are relevant for experiments in high-precision quantum
metrology, e.g. in spectroscopy or gravitational wave detectors operating at the
standard quantum limit. The insights gained on the generating and handling non-
classical states enable advances in quantum information technology.

Keywords: squeezed states of light, homodyne detection, quantum tomography,
spectroscopy, bipartite entanglement
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Kurzfassung

Gequetschtes Licht spielt eine wichtige Rolle für Gravitationswellendetektoren oder
Anwendungen in der Quanteninformationstechnologie. Diese Quantenzustände
werden je nach Anwendung speziell präpariert. Für einige Anwendungen ist bei-
spielsweise die Quetschung in einer, für andere nur in der Kombination zweier
verschiedener optischer Moden erforderlich. Außerdem kann die Quetschung für
alle Frequenzen konstant oder frequenzabhängig auftreten. Im Rahmen dieser Ar-
beit werden neuartige quantenoptische Methoden entwickelt, die unterschiedlich
angepasste nicht-klassische Lichtquellen verwenden. Die einzelnen gequetschten
Zustände werden anwendungsbezogen erzeugt, stabilisiert und charakterisiert.

In der Spektroskopie ist die Messempfindlichkeit oft durch technisches Rauschen
bei niedrigen Frequenzen limitiert. Die erste Publikation zeigt die Messung von
kleinen, niederfrequenten Phasensignalen, ohne die Leistung des Lasers zu erhöhen.
Unser phasenmoduliertes Lichtfeld verschiebt das Signal zu hohen Messfrequenzen
und umgeht daher technisches Rauschen. Weil wir zusätzlich mit gequetschtem
Licht arbeiten, kann dort auch Quantenrauschen um 6 dB verringert werden. Unsere
Messmethode zeigt die Detektion von Signalen, die bei 100 Hz und 20 kHz oszillieren.

Die Messgenauigkeit von optomechanischen Sensoren wie zum Gravitations-
wellendetektoren ist fundamental begrenzt durch eine Kombination aus quanten-
mechanischem Schrot- und Strahlungsdruckrauschen. Ein Zustand mit konstanter
Quetschquadratur, der von einem resonanten optisch parametrischen Oszillator
(OPO) erzeugt wird, wirkt nur gegen einen dieser beiden Rauschbeiträge. Um bei-
de Beiträge zu unterdrücken, ist ein besonderer frequenzabhängiger gequetschter
Zustand erforderlich. Unsere zweite Publikation zeigt, dass ein von der Resonanzfre-
quenz verstimmter OPO frequenzabhängiges gequetschtes Licht erzeugt. Er kann
annähernd als effektiver negativer Massen-Oszillator verwendet werden, um Quan-
tenrauschen kohärent zu unterdrücken. Der von uns erzeugte Zustand, der durch
Quantentomographie rekonstruiert wird und über Megahertz-Frequenzen rotiert,
weist einen Rotationswinkel von 39° und eine maximale Quetschung von 5.5 dB auf.

Gequetschte Quantenzustände mit zwei Moden werden für moderne Anwendun-
gen wie die Quanteninformationstechnologie benötigt. In der dritten Publikation
befassen wir uns mit der Aufgabe, die zehn unabhängigen Einträge der Kovarianz-
matrix eines um 7 dB gequetschten Zweimodenzustands zu bestimmen. Damit ist
der Quantenzustand vollständig charakterisiert. Wir zeigen eine vollständige Re-
konstruktion eines zweimodigen gequetschten Zustands unter Verwendung eines
einzigen polarisationsempfindlichen Homodyn-Detektors, der zusätzliche Optiken
und potenzielle Verlustkanäle vermeidet.

Die Erkenntnisse dieser Arbeit sind relevant für Experimente in der Quantenme-
trologie, z.B. in der Spektroskopie oder bei Gravitationswellendetektoren, die mit
Sensitivitäten am Standardquantenlimit arbeiten. Die gewonnenen Erkenntnisse über
die Erzeugung und Handhabung nicht-klassischer Zustände ermöglichen Fortschritte
in der Quanteninformationstechnologie.

Schlagwörter: gequetschtes Licht, Homodyn-Detektion, Quantentomographie,
Spektroskopie, bipartite Verschränkung
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Chapter 1

Introduction

Interferometry revolutionised the understanding and application of waves and light.
The phenomenon of interference was first described by Hooke in 1665 [Hoo65] and
later studied and published by Newton in 1704 [Na04]. Two centuries later, Michelson
and Morley set up an optical interferometer using light waves in 1887 [MM87b]. This
experiment first falsified the ether theory but also marked the hour of birth for many
following interferometric approaches.1 For instance, the two scientists observed the
fine structure splitting for hydrogen using light interferometry [MM87a].

During the late 19th and early 20th century, light was subject to many exciting
investigations. In 1899, Planck found that the accurate black body radiation spectrum
model can only be obtained when light is assumed to be emitted in discrete units
of energy [Pla00; Pla01].2 A few years later, Einstein proposed a theory of the
photoelectric effect [Ein05], which also built on the energy quantisation of light.3 In
1913, Bohr used the concept of quantisation to verify the spectral lines of the hydrogen
atom [Boh13].4 Now, light was considered a stream of particles called photons, which
marked the beginning of modern quantum mechanics and quantum optics.

A great milestone in optical metrology was the new field of laser science, which
experimentally began with the development of the first laser by Maiman in 1960
[Mai60]. Lasers significantly enhanced the sensitivity in interferometry and opened
the door to an increasingly more detailed discussion on the statistics of light. The con-
cept of the coherent state was introduced by Glauber [Gla63b].5 It refers to a classical
and maximally coherent state of the quantised electromagnetic field. The quantum
theory of the coherent electromagnetic field was described by Glauber [Gla63a] and
by Sudarshan, who related the classical and quantum mechanical descriptions of light
in 1963 [Sud63]. The coherent state turned out to be a minimum uncertainty Gaussian
wave packet, fulfilling the famous uncertainty relation Heisenberg formulated in 1927
[Hei27].

For some exotic states of light, the classical description did not hold anymore. The
research on these non-classical states was pushed with the experimental demonstra-
tion that light consists of single photons by Kimble and co-workers in 1977 [KDM77].
The so-called squeezed states [Wal83] can be considered the first class of these new
states. Squeezing was first generated by Slusher and co-workers in 1985 [Slu+85].

1For his optical precision instruments and the spectroscopic and metrological investigations carried out with
their aid, Michelson was awarded the Nobel Prize in Physics 1907 [N07].

2In recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta,
Planck was awarded the Nobel Prize in Physics 1918 [N18].

3For his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect,
Einstein was awarded the Nobel Prize in Physics 1921 [N21].

4For his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect,
Bohr was awarded the Nobel Prize in Physics 1922 [N22].

5Therefore, coherent states are also called Glauber states. For his contribution to the quantum theory of
optical coherence, Glauber was awarded the Nobel Prize in Physics 2005 [N05].



2 Chapter 1. Introduction

In 1972, twelve years after the invention of the laser, Weiss suggested that laser
interferometers should be able to detect gravitational waves [Wei72]. He already
expected technical challenges such as thermal and laser amplitude or frequency noise.
The search for gravitational waves by using high-precision laser interferometers
had begun. Caves found that even quantum mechanical noise will be expected to
influence the measurements in a gravitational wave detector [Cav80]. He proposed
the usage of squeezed light to overcome this limitation [Cav81]. Unruh advanced
this idea in 1983, and he suggested using a frequency-dependent squeezed state to
achieve a broadband noise reduction [Unr83]. Many follow-up works were published
presenting different approaches to beat the quantum noise in an interferometric
gravitational wave detector in a broad frequency band [BS84; JR90; VZ95]. In 2001,
it was again Kimble, together with co-workers, who showed how quantum non-
demolition gravitational wave interferometers could be designed [Kim+01]. They
suggested using a tailored squeezed state to compensate for the ponderomotively
squeezed state generated by the interferometer.

In the meantime, the gravitational wave detectors’ measurement sensitivity was
gradually increased due to technical improvements. The application of non-classical
states was not required for the first detection of gravitational waves in 2015, generated
by a binary black hole merger [Abb+16a].6 This first detection event was a milestone
in optical high-precision metrology and ignited the era of multi-messenger astronomy
with gravitational waves [Abb+17]. These new times call for further improvement
of the existing detectors and the construction of new detectors, such as the Einstein
Telescope [Pun+10; Mag+20] or the Cosmic Explorer [Rei+19] with exceedingly
high sensitivities. In any case, the goal is to beat the standard quantum limit of
interferometry, which can be realised by the injection of squeezed states [Heu18].

Frequency-independent squeezing has been applied to other high-precision mea-
surements, as in [XWK87; Gra+87; PCK92; Luc+16]. Recently, it has also significantly
improved the sensitivity in gravitational wave detectors [Tse+19; Ace+19; Lou+21].
The stable generation of a tailored frequency-dependent squeezed state is subject to
current research, which usually works with single-mode squeezing and filter cavities
[Oel+16b; Zha+20; McC+20] or with two-mode squeezing [Ma+17; Yap+20; Süd+20].

Other high-precision opto-mechanical measurements have also been working
near the standard quantum limit. As in gravitational wave detectors, in some cases,
displacement is measured [Wil+15; Ros+18; Mas+19], in others, mass [Liu+19], or
acceleration [Kra+12; Qva+18]. Opto-mechanical force measurements [Cav+80] were
demonstrated with atomic clouds [Sch+14], Bose-Einstein condensates [Mot+19] or
microdisks [BE+19]. However, it is possible to beat the standard quantum limit with
particular quantum states, exhibiting squeezing [XT14; Mot+16; Cla+16; Møl+17;
Sud+17; Kam+17] or entanglement [Ma+17].

In our working group, we investigate an idea called coherent quantum noise
cancellation (CQNC) [TC10; Wim+14; Ste19; Sch+22]. In our all-optical approach
of CQNC, we want to cancel quantum back-action noise generated by an opto-
mechanical system. An effective negative-mass oscillator is required to achieve
cancellation and beat the standard quantum limit. A beam-splitter and a two-mode
down-conversion process can form this oscillator. Interestingly, this quantum state is
equivalent to Kimble’s suggested inversely input squeezed state [Kim+01]. In recent
years, realisations of quantum back-action evasion noise reduction, analogous to
CQNC, have been already realised with spin ensembles [Møl+17; Koh+18].

6For decisive contributions to the LIGO detector and the observation of gravitational waves, Weiss, together
with Barish and Thorne, was awarded the Nobel Prize in Physics 2017 [N17].



Chapter 1. Introduction 3

In recent times, another species of quantum states is gaining increasing attention:
entangled states. They form the basis for many modern technologies. In 1992, Ou
and co-workers demonstrated the Einstein-Podolsky-Rosen paradox for continuous
variables with two-mode squeezed states [Ou+92]. Quantum entanglement is not
only used to increase the measurement sensitivity [DLPP01; T1́2] – it also lays the
basis for modern technologies in quantum information.

With two-mode entangled states, quantum teleportation and quantum logic gates
are possible. Quantum logic gates are required for quantum computing, which
pinpoints the limitations of classical cryptography. The reaction to these limitations is
quantum cryptography, which has the advantage of detecting passive eavesdropping
and is considered a secure communication channel. Entangled states are also well
suited to violate the Bell inequalities [AGR82; Wei+98]7 or to test local hidden-variable
theories [Cla+69; FC72].

This thesis discusses the need for squeezed states for numerous applications.
Thus, some questions are relevant and need to be addressed for each application.
Is quantum entanglement needed? Is frequency dependence required? How much
degradation of the squeezed state by vacuum noise is permissible? When these
questions have been answered, then the required squeezed state can be defined and
generated with care.

The aim of this thesis is to investigate particular squeezed states of light, each
tailored for a specific application. First, a theoretical description of the squeezed state
is essential. Since squeezed states are very fragile and susceptible to optical losses,
care has to be taken when manipulating them. The squeezed states used in this thesis
are generated by sub-threshold optical parametric oscillators (OPOs). Depending
on the non-linear crystal used for the down-conversion process and the resonance
condition of the OPO, the squeezing has specific characteristics. The squeezed state
can be frequency-dependent or -independent. It can be located in a single or two
orthogonally polarised modes, so separating the modes by polarisation optics is
straightforward. Working with squeezed states requires precise phase stabilisation
of different electric fields in the full optical setup. This thesis works with specific
approaches to detect and characterise squeezed states. It employs various homodyne
detector setups and quantum tomography.

The main research question of this thesis can be summarised as this: How can each
required squeezed state be theoretically understood, generated with high fidelity, sta-
bly controlled and coherently detected? In this thesis, novel quantum optical methods
employing different, tailored non-classical light sources, are developed. This thesis
gives a better understanding of the applied quantum states and features significant
technical improvements to previously existing systems used in our working group. It
underlines the diverse usage of squeezed states, from high-precision spectroscopy to
gravitational wave detection or quantum information.

7For experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum
information science, Aspect, Clauser and Zeilinger were awarded the Nobel Prize in Physics 2022
[N22].
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FIGURE 1.1: Structure of this thesis.

Structure of this thesis

This thesis is structured as shown in Fig. 1.1. The introduction is intentionally kept
short. Chapter 2 treats general theoretical and experimental basics. This chapter
serves as a background for the following three chapters. A central part deals with the
properties of quantum states and how they are generated in non-linear optical cavi-
ties and measured by photodetectors. Also, classical cavities and second-harmonic
generation cavities are discussed. Chapter 2 closes with a comparison of the three
important squeezers used for the experiments.

Each of the following three Chapters 3, 4 and 5 is devoted to one particular ex-
periment (symbolised by the rows in Fig. 1.1). The main results of these experiments
have already been published as peer-reviewed publications. Chapter 3 deals with a
particular high-frequency and phase-modulated squeezed state that can be applied
to spectroscopy [P1]. The single-mode squeezer is again subject of Chapter 4 but
now operated in a detuned resonance condition to generate frequency-dependent
squeezing [P2]. Chapter 5 considers a two-mode squeezed state that is fully recon-
structed by taking measurements with a single homodyne detector [P3]. The three
Chapters 3, 4 and 5 are each organised as follows. First, a more general introduction
is presented, including the context and the concept of the applied methods. Then, the
original publications are reprinted. At the end of the chapters, detailed background
information is given which is not included in the publications. This completion
should deliver more general explanations and, in particular, more technical details
and characterisations of the experiments, which are omitted in the papers. In the
end, the three chapters each close with an individual conclusion and discussion. The
papers stand for themselves, but potential open questions will hopefully be answered
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by the supplements given in these chapters.
The thesis ends with an overall conclusion and discussion. Here, the three previ-

ous chapters are set in relation. In particular, the most relevant insights are highlighted
and contextualised. Finally, the key research results are brought back into a larger
framework.

Remarks on the nomenclature

Some remarks on the nomenclature should be noted first. Whenever the word
squeezer is used, it implicitly means that both squeezers are addressed, the OPO
and the non-degenerate optical parametric oscillator (NDOPO). Throughout this
thesis, I often speak about low-frequency and high-frequency. If not stated otherwise,
low-frequency refers to frequencies in the hertz to kilohertz range.8 High-frequency
usually refers to frequencies in the order of the free spectral range of our squeezers
which is approximately 200 MHz. This thesis uses different quantum mechanical
operators. In most parts, it dispenses with using operator hats.

How to read this thesis

I recommend reading this thesis chronologically, starting with Chapter 2. The pub-
lications are smoothly included in the corresponding Chapters 3, 4 and 5, which
are designed to be largely independent. Busy readers are advised to focus on the
publications and selectively on the framework around them in the corresponding
chapters.

8Note that we are not using one-to-one the definitions from the International Telecommunication
Union [Lya16] here.
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Chapter 2

Theoretical and experimental
background

This chapter is devoted to presenting the basic theory, technical details and experi-
mental methods applied in this thesis. It by no means covers everything in its entity.
Some theoretic aspects have been accurately discussed by other works, which are
referenced at these points. The experimental content mentioned in this chapter is
tailored to the following three Chapters 3, 4 and 5.

This chapter starts with the classical description of an optical cavity1 in Sec. 2.1.
We theoretically study the electrical fields interacting with a cavity and plot their
intensities. The equations for the fields are the basis for an experimental method
to characterise the intra-cavity losses of a single-ended cavity. The section ends
with the definition of the escape efficiency, the free spectral range, the linewidth
and the finesse of a cavity. Section 2.2 describes the basics of quantum optics and
introduces the quadrature state operators defined for a light field. Different quadra-
ture distributions are plotted in the phase state picture, and the Wigner function is
defined. Subsequently, the homodyne detection technique is presented, which is
used to measure quantum states of light. Section 2.3 deals with the generation of
quantum states. It begins with the theoretical input-output formalism of an optical
cavity containing a non-linear medium. This general formulation derives the out-
put states of the second harmonic generation (SHG) cavity and the sub-threshold2

optical parametric oscillator (OPO). Here, the SHG and the OPO are treated from
a more experimental perspective. This chapter ends with Sec. 2.4 focussing on the
experimental implementation of the three different squeezers used for this thesis.
Namely, they are a resonant 6-mirror OPO, a detuned 4-mirror OPO and a 4-mirror
non-degenerate optical parametric oscillator (NDOPO). In this thesis, the NDOPO
is often called two-mode squeezer. This section illustrates how to set up a two-mode
squeezer and ends with the method characterising a squeezing experiment, including
the process of generation and detection.

2.1 Classical description of an optical cavity

In this thesis, optical cavities with different objectives play a major role in all the
presented experiments. For instance, a mode cleaner cavity [Wil+98] spatially filters
the Gaussian beam and a four-mirror SHG cavity generates pump light for the down-
conversion process in the squeezers.

This section aims to describe the classical properties of an arbitrary optical cavity
theoretically. In the experiment, this theoretical model strongly helps to characterise

1Throughout this thesis, the term cavity is used instead of resonator.
2Throughout this thesis, the prefixed term sub-threshold is omitted.



8 Chapter 2. Theoretical and experimental background
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grt(ω)~
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r3
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FIGURE 2.1: Schematic of an optical cavity with the electric input field Ein, the
reflected field Erefl, the circulating field Ecirc and the transmitted field Etrans. The
parameter g̃rt(ω) represents the frequency-dependent total intra-cavity gain per
round-trip.

real cavities. One important parameter is the intra-cavity loss, which is directly related
to the cavity’s escape efficiency. Reaching a minimal loss is particularly important
when working with squeezers.3

The section is distributed into two subsections. Subsection 2.1.1 derives the elec-
trical fields inside, in transmission and reflection of an optical cavity. Subsection 2.1.2
defines the important parameters of the escape efficiency, the free spectral range, the
linewidth and the finesse.

2.1.1 Electric fields in a cavity

The presented model is a scattering matrix formalism.4 We start with a resonant
three-mirror travelling-wave cavity shown in Fig. 2.1. An electric field Ein is sent onto
the input mirror with amplitude reflectivity r1.5 At this mirror, the reflected electric
field is Erefl. The cavity consists of two more mirrors with amplitude reflectivities
r2 and r3. The mirror with r2 is determined to be the output coupler, without loss
of generality, where the transmitted field Etrans leaks out. In the cavity, a circulating
field Ecirc builds up, which is defined by6

Ecirc = it1Ein + g̃rt(ω)Ecirc. (2.1)

Here, g̃rt(ω) depends on the frequency ω and gives the net complex gain for a wave
travelling one round-trip in the cavity. Note that in any passive optical cavity, this
gain is less than unity, i.e. |g̃rt| < 1.

Before g̃rt is defined, the meaning of the mirror coefficients needs to be introduced.
A convenient and general formulation, which holds for mirrors with arbitrarily high-
and low-reflectivity mirrors,7 is the usage of mirror coupling coefficients δ. They are
defined as

δi = ln
(

1
Ri

)
= 2 ln

(
1
ri

)
. (2.2)

3In this context, the term squeezers represents all cavities with non-linear crystals used for this thesis:
OPO, detuned OPO and NDOPO.

4Here, I follow the model from [Sie86], Secs. 11.3 and 11.4.
5We assume lossless mirrors, meaning each mirror fulfils 1 = r2 + t2, where t is the amplitude

transmission. Any losses arising in the cavity are considered by δx later.
6Here, the symmetric beamsplitter convention is used.
7See [Sie86], Sec. 11.4.
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In the limit of high reflectivities we use the approximations δi ≈ T, with T and
δi ≈ 1− R.8

Using the delta notation, the round-trip gain g̃rt is defined as

g̃rt(ω) = eiωLopt/c+α−δc/2. (2.3)

The exponent in Eq. (2.3) shows three different summands. The first represents the
actual cavity resonance depending on the frequency ω, and the optical cavity length
Lopt = L1 + L2 + L3. Further, we can use the coefficient α for any active gain media.
However, in the scope of this thesis, α is set to zero.9 The total cavity loss factor δc
contains all losses arising in the cavity. Note that δ0 includes not only the losses due
to the mirrors δ1, δ2, δ3. Moreover, δ0 also contains other arbitrary loss channels δx,10

which may originate from stray light, absorption or lossy optical components in the
beam path, e.g., crystals. Then, the total cavity loss factor reads

δc = δ1 + δ2 + δ3 + δx. (2.4)

Equation (2.1) is solved for the circulating electric field Ecirc which, after normali-
sation, reads

Ecirc

Ein
=

it1

1− g̃rt(ω)
. (2.5)

From this result, the normalised transmitted and reflected fields are calculated:

Etrans

Ein
=
−t1t2 exp(−iωLopt/c)

1− g̃rt
, (2.6)

Erefl

Ein
=

1
r1
× r2

1 − g̃rt(ω)

1− g̃rt(ω)
. (2.7)

Equation (2.7) is an important result as it helps to characterise the intra-cavity losses
of a single-ended cavity, which is often used in this thesis. In our experiments, usually,
the power is measured, which is the integral of the intensity I ∝ |E|2 [ST19]:

P =
∫

dA I. (2.8)

Using normalised modes, the power becomes also proportional to the intensity, with
P ∝ I [Ste19].

2.1.2 Escape efficiency, free spectral range, linewidth, finesse

First, this subsection derives how the cavity escape efficiency is obtained from mea-
surements of the reflected field. Then, the three important parameters, free spectral
range, linewidth and finesse, are introduced.

8Here, R is the power reflection and T the power transmission of a mirror.
9Whenever we operate with cavities containing active gain media, we use the quantum-mechanical

approach from Sec. 2.3.
10The index x refers to the fact that the origins of the intra-cavity loss, which can be, e.g. scattering

loss or absorption are often unknown and not distinguishable when measuring the reflected
modes.
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FIGURE 2.2: Reflected modes of a single-ended cavity with input/output mirror
R1 = 90 % (δ1 ≈ 10.5 %). Each trace corresponds to a specific intra-cavity loss δx.

We start with Fig. 2.2 where each trace shows the power of the modes in reflection
of a ramped11 cavity12 for three different internal losses δx. Considering a single-
ended cavity, it is convenient to rewrite Eq. (2.4) as

δc = δ1 + δx, (2.9)

where δx simply includes all bad losses13 of the cavity, independent of their origins.
In Fig. 2.2, the reflectivity of the input mirror is chosen to be R1 = 90 %.14 Taking
also the reflected powers on resonance Pres and anti-resonance Pares into account, the
intra-cavity power loss δx is calculated with the absolute squared of Eq. (2.7).15 We
find

δx ≈
r1 + δP

1 + r1 δP
with δP =

√
Pres

Pares
. (2.10)

With δx being determined, the cavity’s escape efficiency is calculated as

ηesc =
δ1

δ1 + δx
. (2.11)

Beneficially, the cavity does not have to be stabilised when using this method of
studying modes in reflection. We also apply this method to optical cavities containing
non-linear crystals.16 For such cavities, the dominating loss usually arises due to
residual beam reflections on the crystal surfaces. For squeezers, minimising the
intra-cavity loss is of high relevance.

11Ramping the cavity means that the cavity phase is linearly changed.
12A full cavity transfer function for the electric field includes plots of the absolute |E| and the phase

given by arg(E).
13Later in Subsec. 2.3.2, also good losses will be defined arising from conversion in an SHG cavity
14In an experiment, this can be measured by the single-pass transmission.
15This approach assumes an ideal mode-matching of the input beam to the cavity eigenmode.
16In this case, we need to ensure that the conversion process is suppressed since it would manifest

itself as a loss channel.
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Figure 2.2 reveals further characteristic quantities of optical cavities. It shows the
free spectral range of a cavity, defined by

∆ω =
c0

Lopt
(2.12)

and the linewidths of the cavity’s resonance peaks, defined by their full width at half
maximum (FWHM)

δω =
4c0

Lopt
arcsin

(
1− grt

2
√

grt

)
. (2.13)

Here c0 is the speed of light in vacuum. In Fig. 2.2, the cavity linewidth δω varies for
the three different loss values δx. The finesse F of a cavity indicates how narrow the
resonances are in relation to their frequency distance. It is defined by

F =
π
√

grt

1− grt
, (2.14)

with
grt = |g̃rt|. (2.15)

The current section focusses on the longitudinal resonance conditions for cavities
since this part is most relevant to this thesis. Other aspects, such as the transversal
resonance analysis of beams in cavities, mode-matching or the stability criteria, are
intentionally omitted. However, they are also essential to consider when working
with optical cavities. The interested reader is referred to, e.g. [KL66] or to doctoral
theses [Thü09; Ste19]. In the scope of this thesis, the stabilisation of optical cavities
is important and thus done with different methods: I used the Pound-Drever-Hall
(PDH) technique [Dre+83; Bla01], the internal dither approach [Her+06], and the
polarisation-based homodyne locking method [HC80; Heu+09].

Complex electric fields can be visualised in a sideband picture. It is helpful
to present and understand phase or amplitude modulated electric fields by using
sidebands. The sideband picture is thoroughly explained, e.g. in [Mal06; Kau18].
Moreover, Subsec. 2.3.3 introduces the quantum sideband picture.

2.2 Characteristics of quantum states

This section deals with the quantum-mechanical properties of light. It starts with
describing the electromagnetic field and its quantisation in Subsec. 2.2.1, whose result
is the quantised Hamilton operator. Next, the Hermitian quadrature operators are
defined, which are thus observables playing a major role in the experiments in this
thesis. In Subsec. 2.2.2, relevant terms such as the variance, the covariance matrix
and the Wigner function are defined for a statistical description of quantum states.
Different quantum states are discussed and compared in Subsec. 2.2.3. The phase-
state picture is introduced to gain a better visualisation and understanding of these
states. This section closes with Subsec. 2.2.4 explaining the homodyne detection
technique used to measure quantum states.



12 Chapter 2. Theoretical and experimental background

2.2.1 Electromagnetic field quantisation and quadrature operators

The quantum-mechanical properties of light are not revealed by the classical descrip-
tion used in Sec. 2.1. This subsection deals with the quantisation of the electromag-
netic field and introduces the quadrature operators as observables.17

Light can be described by electromagnetic fields. To find out how light propagates
in free-space, the electromagnetic wave equation needs to be solved as derived by
the Maxwell equations [Max65]. One solution of the wave equation can be written as
the electric field vector consisting of discrete modes j

E(r, t) = i ∑
j

(
h̄ωj

2ε0

)1/2 (
ajuj(r)e−iωjt − a†

j u∗j (r)e
iωjt
)

. (2.16)

Here, the normalisation factor contains the vacuum permittivity ε0, the angular mode
frequency ωj and the reduced Planck constant h̄ = h/(2π). The vector u describes
the polarisation state and the spatial mode properties of the wave. For plane waves,
Eq. (2.16) simplifies with uj(r) = eikjr. The complex field amplitudes a and a† are
dimensionless in Eq. (2.16). For the canonical quantisation, they are converted into
mutually adjoint operators via

a→ â, a† → â†. (2.17)

With the same canonical quantisation, and by implementing the boundary conditions,
the classical Hamiltonian for the electromagnetic field is converted via

H =
1
2

∫ (
ε0E2 +

B2

µ0

)
dV → Ĥ = ∑

j
h̄ωj

(
a†

j aj +
1
2

)
, (2.18)

into the quantum mechanical Hamilton operator Ĥ.18 It means that the state in each
mode is described by a state vector |ψ〉j in the Hilbert space. Below, all operator hats
are omitted to increase readability. After the quantisation, the electric field becomes a
superposition of individual and independent modes of harmonic oscillators, which all
have a different frequency ωj. For a specific mode j, a†

j aj = nj represents the number
of photons and corresponds to the energy of the vacuum fluctuations h̄ωj.

The concept of a mode is essential for this thesis. Different parameters, e.g. the
frequency, the polarisation, the spatial shape19 and the direction of propagation,
determine a distinct mode. Hence, all these parameters are well defined for a mode
[Sch17]. In this thesis, we deal with different modes that are well distinguishable. For
instance, two orthogonally polarised modes do not interfere with each other since the
orthogonal polarisation states are basis functions.20

For any experimental work, it is beneficial to work with observables. Thus, we
define the Hermitian quadrature operators as21

X1 = X+ = a† + a, (2.19)

X2 = X− = i(a† − a). (2.20)

17This subsection is geared to [WM08].
18Here, µ0 is the vacuum magnetic permeability.
19More details can be found in literature, for basic definitions, e.g. the Rayleigh range, the beam waist

and the Gouy phase, see [Sie86], Sec. 17.1.
20For the polarisation, other basis functions are possible, e.g. left circular and right circular polarised

states.
21The quadratures are normalised for a unitary vacuum variance.
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fulfilling the commutator relation

[X1, X2] = 2i, (2.21)

and translating the Hamilton operator from Eq. (2.18) into

H =
h̄ωj

4
(
X2

1 + X2
2
)

. (2.22)

We call X1 the amplitude quadrature and X2 the phase quadrature of a specific
quantum state.

In quantum optics, an often-used linearisation facilitates working with operators.
Mode operators can be decomposed into a complex number α = 〈a〉 representing
the mean field and into the operator δa containing the time dependent-fluctuations.
This linearisation is valid for bright, steady-state electric fields, namely fields with
amplitudes much larger than their fluctuations [Whi97]. We write them as

a = α + δa,

a† = α∗ + δa†.
(2.23)

Subsequently, the linearisation is analogously applied to Eqs. (2.19) and (2.20)

X1 = α+α∗ + δa† + δa = 〈X1〉+ δX1, (2.24)

X2 = i(α−α∗ + δa† − δa)= 〈X2〉+ δX2. (2.25)

These linearisations are used several times throughout this thesis.
Before continuing to the statistics, we should first clarify what a quantum state

is. In classical physics, we can accurately determine the state of an object, e.g.,
by determining its specific position x0 and momentum p0. However, in quantum
mechanics, we do not know in which exact state a quantum particle is. We can only
describe the wave function of a particle’s trajectory. The wave function gives the
probability of measuring quadratures X1 and X2 of the particle.

2.2.2 Statistics of quantum states

Since a quantum state is always determined by a probability distribution, it is useful
to use statistics for its description. For any two arbitrary operators X and Y, the
covariance is defined as

cov(Y, X) = cov(X, Y) =
1
2
〈XY + YX〉 − 〈X〉〈Y〉. (2.26)

Additionally, for any arbitrary operator X, the variance is defined as

var X = cov(X, X) = 〈X2〉 − 〈X〉2, (2.27)

and the standard deviation as
∆X =

√
var X. (2.28)

This thesis mostly discusses Gaussian states, which are related to normal distri-
butions. A Gaussian quantum state is fully characterised by the first two statistical
moments [SSM87]. The first moments d are the mean values defined by

di = 〈Xi〉. (2.29)
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The second moments are represented in the covariance matrix σ, which is a real,
symmetric, positive definite matrix. It contains information about the quantum
noise and fully characterises the state. The covariance matrix σ uses the definitions
from Eq. (2.27) and Eq. (2.26). For any N-mode state with 2N canonical quadratures
X = {X1, ..., X2N}, it has a dimension of 2N × 2N and is entry-wise defined by

σi,j = cov(Xi, Xj). (2.30)

When measuring the quadratures of a quantum state, the result cannot be pre-
dicted with arbitrary precision. In the simple scenario of a single-mode state, this is
expressed in the famous Heisenberg uncertainty, which is here formulated for the
standard deviations of the quadrature operators:

∆X1 ∆X2 ≥ 1. (2.31)

If the equality is fulfilled in Eq. (2.31), the quantum state is a minimum uncertainty
state or pure state. This is true, e.g. for a vacuum state or a coherent state, as will be
seen in the next Subsec. 2.2.3. Before discussing different quantum states, the phase
state picture is explained.

The phase space picture22 is used to visualise a quantum state and represents
possible measurement outcomes of the state. Often only an ellipse is drawn. The
ellipse is defined for any N-mode Gaussian state by a cross-section’s contour line of
the Wigner quasi-probability23 distribution or Wigner function [Wig32; ASI04]

W(X) =
1

πN
√

det(σ)
e−(X−d)>σ−1(X−d). (2.32)

The ellipse‘s major and minor axes represent the standard deviations ∆X1 and ∆X2
of the state, see Fig. 2.3a). The Wigner function is normalised:∫ ∞

−∞
W(X)dX = 1. (2.33)

We also can use the phase space picture to obtain the variance of a quantum state in
an arbitrary quadrature rotated by an angle θ

Xθ = ae−iθ + a†eiθ = X1 cos θ + X2 sin θ. (2.34)

Now, we can also determine the widths ∆Y1 and ∆Y2 of the quantum state in the new
coordinates Y1 = Xθ and Y2 = Xθ+π/2, as shown in Fig. 2.3b).

The phase state picture is a powerful tool to represent a quantum state. However,
it only shows the situation at a specific measurement frequency Ω. The frequency Ω
refers to modes that are measured at ω0 ±Ω around a reference state oscillating at
ω0. Thus, to fully describe a frequency-dependent24 quantum state, the phase state

22The phase state picture originates from [Wey27; Wig32] and was further developed by [Gro46;
Moy49]. Here, the optical phase state picture is used, where the two quadrature operators X1 and
X2 are plotted instead of momentum and position operators.

23A quasi-probability distribution does not need to fulfil the first axiom of probability. Thus, it can,
e.g. contain negative values.

24In reality, all quantum states are frequency-dependent. For instance, in the case of squeezing
generated by an OPO, the cavity itself and the down-conversion process have limited bandwidths,
which is limited by the phase-matching condition, as can be seen, e.g. in [Whi97], Sec. 2.4.2.
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FIGURE 2.3: a) The phase space picture presents a quantum state described by
its distribution W(X1, X2). The widths of the quantum state correspond to the
standard deviations ∆X1 and ∆X2. b) In the new coordinate system rotated by θ,
the quantum state has widths of ∆Y1 = ∆Xθ and ∆Y2 = ∆Xθ+π/2.

picture must be drawn at all frequencies of interest.25

The basic principles of quantum states visualised by the phase space picture were
introduced. Next, we will discuss different quantum states.

2.2.3 Vacuum states, coherent states, squeezed states

This section is devoted to presenting some Gaussian quantum states that are impor-
tant for this thesis.26 It starts with vacuum and coherent states and will be continued
explaining by squeezed states. Finally, the influence of optical loss on these kinds of
states is discussed.

Vacuum and coherent states

Before analysing the coherent states, the Fock states or number states |nj〉 are introduced.
They are eigenstates of the number operator Nj = a†

j aj with

a†
j aj |nj〉 = nj |nj〉 . (2.35)

The Fock states are orthogonal and form a complete set of basis vectors for a Hilbert
space.

For our experiments, the most important Fock state is the ground state represent-
ing the vacuum state |0〉j of the field mode j, see its phase space representation in
Fig. 2.4a). This is an exceptional Fock state since it is the only Gaussian one. It has
no defined phase and thus equal variances for any quadrature Xθ . Even though this
state contains zero photons, it has a zero point energy of h̄ωj/2.

The coherent state can be seen as the most classical27 quantum state and is created
by letting the displacement operator D(αj) = exp(αja†

j − α∗j aj) act on the vacuum
state:

|αj〉 = D(αj) |0〉 . (2.36)

We see that in the phase space picture in Fig. 2.4b), the coherent state is created by
displacing the vacuum state by |αj|. The parameter αj is the complex eigenvalue of

25In Subsec. 2.3.3, the quantum sideband picture is introduced, which elaborates more on the fre-
quency dependence. A detailed presentation can be found in [Che07], Sec. 2.10.

26A more detailed explanation of different quantum states can be found in [WM08], Chapter 2, or in
[GK04], Chapter 3 and 7.

27For instance, a field emitted by a laser can be described as a coherent state for high Fourier
frequencies, where quantum noise dominates over technical noise sources.



16 Chapter 2. Theoretical and experimental background

X1

X2

X1

αj αj
X2

X1

X2

X1

X2

a) b) c) d)

FIGURE 2.4: Representation of a a) vacuum state, b) coherent state, c) quadrature
squeezed state, d) bright quadrature squeezed state in the phase space picture. The
dashed error ellipses show the widths of the variances for each state, and the arrow
indicates a coherent amplitude with length |α| = 1/2〈X1 + iX2〉.

the annihilation operator aj:
aj |αj〉 = αj |αj〉 . (2.37)

Physically, it’s absolute squared refers to the average photon number of the field
n̄j = |αj|2. The vacuum state and the coherent state both have a unitary variance in
all arbitrary quadratures and are, thus, states with minimum uncertainty.

Single-mode squeezed vacuum and bright squeezed states

The next class of quantum states to discuss are single-mode quadrature squeezed
states.28 We distinguish between vacuum squeezing and bright squeezing, which
can be seen in analogy to vacuum and coherent states. A squeezed state has less
noise in one quadrature (squeezed) and increased noise in the orthogonal quadrature
(anti-squeezed).

Squeezed vacuum states do not have a coherent amplitude, as shown in Fig. 2.4c).
They are generated by applying the squeezing operator

S(ξ) = exp
(

1/2(ξ∗a2 − ξa†)
)

(2.38)

to the vacuum state
|ξ〉 = S(ξ) |0〉 , (2.39)

which is a Bogoliubov transformation [BL04]. The argument of the squeezing operator
is defined as ξ = r eiθ with squeezing factor r fulfilling 0 ≤ r < ∞ and squeezing angle
θ fulfilling 0 ≤ θ < 2π.

Bright squeezed states are squeezed vacuum states displaced by |αj|, as presented
in Fig. 2.4d). They are generated by applying the squeezing operator and the dis-
placement operator to a vacuum state:

|α, ξ〉 = D(α)S(ξ) |0〉 . (2.40)

Even though the standard deviation in one quadrature can fall below unity for a
squeezed state, the uncertainty relation from Eq. (2.31) is always fulfilled.

The four states presented in Fig. 2.4 are fully defined by the covariance ma-
trix σ(X1, X2) according to Eq. (2.30). Since they are single-mode states (N = 1 in

28The terms quadrature squeezed states should not be mixed with squeezed states. The latter class is not
relevant to this thesis. Amplitude squeezed states are shown in [GK04], Fig. 7.13, or in [BLZ19],
Fig. 3.1. They were generated, e.g. in [Yam+87]. However, throughout this thesis, the term
squeezed states always implicitly stands for quadrature squeezed states.
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Eq. (2.30)), the covariance matrix is 2× 2-dimensional:

σ =

(
var X1 cov X1, X2

cov X2, X1 var X2

)
. (2.41)

For the vacuum and the coherent state, the covariance matrix reads

σvac = σcoh =

(
1 0
0 1

)
. (2.42)

For the single-mode squeezed states, the covariance matrix is [FOP05; ARL14]

σ1ms =

(
cosh(2r) + sinh(2r) cos(θ) sinh(2r) sin(θ)

sinh(2r) sin(θ) cosh(2r)− sinh(2r) cos(θ)

)
, (2.43)

which takes a diagonal form for θ = 0 or θ = π. Then the state is squeezed/anti-
squeezed only along the X1- respectively X2-axis.

After considering a single mode a, next, two-mode squeezed states are introduced.

Two-mode squeezed states

In analogy to the single-mode quadrature squeezed state discussed before, for the
two-mode squeezed state, a new squeezing operator is required with

S2(ξ) = exp
(

1/2(ξ∗asap − ξa†
s a†

p)
)

. (2.44)

To create a two-mode squeezed state, this operator is applied to a two-mode vacuum

|ξ〉2 = S2(ξ) |0s, 0p〉 . (2.45)

The two-mode squeezed state is entangled and exhibits correlations between the two
modes as and ap.29 Hence, squeezing is not visible in the individual modes but rather
in a superposition of the two modes, e.g. in one of the quadratures30

XΣ = (as + a†
s + ap + a†

p) = Xs
1 + Xp

1 , (2.46a)

X∆ = −i(as − a†
s + ap − a†

p) = Xs
2 + Xp

2 . (2.46b)

Two other combinations are possible with

XΓ = Xs
1 − Xp

1 , (2.47a)

XΛ = Xs
2 − Xp

2 , (2.47b)

For a fixed squeezing angle, we find that the operators XΣ and XΛ are squeezed and
X∆ and XΓ are anti-squeezed. Hence, XΣ and XΛ are Einstein-Podolsky-Rosen (EPR)
variables.31 They can be used to demonstrate the EPR paradox as they are measured
with arbitrary precision at the same time [EPR35; Ou+92].

For the two-mode squeezed state, we also calculate the four-dimensional Wigner
function using Eq. (2.32) with N = 2. Now, the covariance matrix σ is a 4× 4 matrix

29The indices s and p already refer to the two orthogonal polarisations used in Chapter 5. However,
any other mode distinction is valid here.

30In the other one, anti-squeezing is visible. For more details, see, e.g. [GK04], Sec. 7.7.
31For a different squeezing angle, also X∆ and XΓ can be EPR variables.
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and reads for θ = 032

σ2ms =


cosh 2r 0 sinh 2r 0

0 cosh 2r 0 − sinh 2r
sinh 2r 0 cosh 2r 0

0 − sinh 2r 0 cosh 2r

 . (2.48)

Chapter 5 shows an experiment, where two-mode squeezed states are generated
and detected. There, the meaning and visualisation of the 4× 4 covariance matrix is
visualised.

Influence of loss on quantum states

Up to this point, all considered states were treated as pure states with minimum
uncertainty according to Eq. (2.31). Next, the influence of optical losses on quantum
states is considered. Optical loss is described as mixing the state with vacuum on a
beamsplitter. The electric field operator changes according to

aout =
√

ηain +
√

1− ηavac, (2.49)

where the efficiency depends on the power loss factor L via η = 1− L. Any variance
Vin that is affected by optical loss can be written by

Vout = ηVin + (1− η). (2.50)

Sometimes it is more helpful to see how the full covariance matrix changes due to
optical loss because it directly presents all required information and can be used
to create a phase space picture of the state. For a single-mode squeezed state with
efficiency η, the covariance matrix from Eq. (2.43) changes to

σ1ms =

(
1− η (1− cos(θ) sinh(2r)− cosh(2r)) η sin(θ) sinh(2r)

η sin(θ) sinh(2r) 1− η (1− cos(θ) sinh(2r)− cosh(2r))

)
.

(2.51)
For a two-mode squeezed state, the covariance matrix changes from Eq. (2.48) to
[Ste19]

σ2ms =


1− ηs + ηs cosh 2r 0 √

ηsηp sinh 2r 0
0 1− ηs + ηs cosh 2r 0 −√ηsηp sinh 2r√

ηsηp sinh 2r 0 1− ηp + ηp cosh 2r 0
0 −√ηsηp sinh 2r 0 1− ηp + ηp cosh 2r

 ,

(2.52)
where ηp and ηs are mode-dependent efficiencies.

In conclusion, squeezed states are theoretically described by the covariance matrix,
and they are visualised in phase space pictures. To experimentally benefit from
squeezed states, they need to be detected. The next section deals with the homodyne
detection of quantum states.

2.2.4 Detection of quantum states

The quadrature variances are utilised in quantum optical experiments to describe a
quantum state. The characteristics of the state are usually analysed with a spectrum

32For a derivation, see e.g. [ARL14] or [Ste19].
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FIGURE 2.5: Schematic of a homodyne detection (HD) scheme. The local oscillator b
interferes with the signal a on a 50/50 beamsplitter. The resulting modes c and d
are detected by individual photodiodes (PDs). In the photodetector, the difference
photocurrent ∆i is generated and converted into a voltage ∆u by a transimpedance
amplifier (TIA). Finally, the voltage is applied to a spectrum analyser to measure
its variance.

analyser measuring voltages. A photodetector is employed to change from the optical
to the electronic regime. The photodetector consists of a photodiode converting
the incident photons into a photocurrent. A transimpedance amplifier converts
the photocurrent into a voltage. In the following, we call the quantum state under
consideration signal field.

Photodetectors are deployed for different detection schemes. The most straight-
forward scheme is when the signal is directly detected on a photodetector. Then only
the field’s amplitude is measured for sufficiently high coherent amplitude signals.
Using two photodetectors and a local oscillator field enables the advanced homodyne
detection method. Various realisations are possible, from balanced homodyne detec-
tion to polarisation-based homodyne detection.33 In this section, we want to focus on
balanced homodyne detection because it is used in Chapter 3 and 4. In Chapter 5,
two particular homodyne detection schemes are applied, which will be explained in
Subsecs. 5.3.1 and 5.3.2.

The basic setup of homodyne detection is depicted in Fig. 2.5. Here, the local
oscillator b = b0 exp(iφ) interferes with the signal a on a 50/50 beamsplitter. The
resulting modes c and d are detected by individual photodiodes (PDs). The output
modes are defined by34

c =
1√
2

a +
1√
2

b, (2.53)

d = − 1√
2

a +
1√
2

b. (2.54)

In the photodiode, the n photons are converted into a photocurrent i. The performance
of the process to detect photons can be ascribed by the quantum efficiency

ηqe =
I
P

hc0

eλ
, (2.55)

with the wavelength of the light λ, the elementary charge e, the Planck constant h and
the speed of light c0. The photocurrents from both photodiodes are subtracted, and the
difference current ∆i, proportional to the difference power ∆P, is ∆i ∝ ∆P ∝ c†c− d†d.
Then, the transimpedance amplifier in the photodetector (TIA) generates a difference

33A more detailed overview of different detection schemes is given, e.g. in [Che07; Den16].
34Here, the asymmetric beamsplitter convention is used where one reflected (or transmitted) field,

here a, experiences a phase shift of π.
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voltage ∆u ∝ ∆i.35 Deploying the linearisations from Eq. (2.23), the two fields can be
written as

a = α + δa, (2.56)
b = (β0 + δb) exp(iφ). (2.57)

We find the difference voltage36

∆u ∝ c†c− d†d ≈ 2αβ0 cos(φ) + αδX−φ,b + β0δXφ,a. (2.58)

This equation is an approximation which neglects higher order terms going with δ2

that are relatively small. Equation (2.58) shows that the signal’s field fluctuations
are amplified with the amplitude of the local oscillator. Further, the local oscillator’s
fluctuations scale with the signal’s amplitude. Equation (2.58) is simplified when the
two homodyne conditions

β0 � α, (2.59)
β0δXφ,a � αδX−φ,b (2.60)

are fulfilled.37 Then the difference voltage reads

∆u ∝ c†c− d†d ≈ 2αβ0 cos(φ) + β0δXφ,a. (2.61)

It means that the local oscillator’s amplitude β0 scales the signal’s quadrature fluctu-
ations δXφ,a. Depending on the relative phase φ,38 any arbitrary signal quadrature
δXφ,a can be read out.

Finally, the difference voltage is applied to a spectrum analyser to measure its
variance39

var ∆u ∝ α2〈δX2
−φ,b〉+ β2

0〈δX2
φ,a〉. (2.62)

If the homodyne conditions from Eqs. (2.59) and (2.60) are fulfilled, Eq. (2.62) is, after
shot noise normalisation, approximated to

var ∆u′ ∝ 〈δX2
φ,a〉. (2.63)

The calculation of the homodyne detection assumes some idealisations. We im-
plied the beamsplitter’s reflectivity to be 50/50, equal quantum efficiencies of both
diodes and that all optical fields are in the same spatial mode. In an experiment,
an imperfect mode overlap has the most significant consequences for the homo-
dyne detection. Then, the local oscillator field β0 from Eq. (2.61) will amplify the
signal’s quadrature fluctuations δXφ,a and a fraction of incoupling vacuum noise. The
imperfect mode-overlap is covered by the visibility efficiency

ηvis = V2, (2.64)

35To calculate the exact voltage, use Eq. (2.55) and replace the current with Ohms law u = Ri, where
R is the transimpedance resistance.

36Remind the definition for an arbitrary quadrature Xφ from Eq. (2.34). A step-by-step derivation of
∆u can be found in [Che07], Sec. 2.9.5.

37For large quadrature fluctuations of the local oscillator, Eq. (2.60) might not be fulfilled anymore for
a bright signal field (a 6= 0). Therefore, in this thesis, the homodyne detection is usually done at
high Fourier frequencies, where the local oscillator is shot noise limited.

38Often, φ is called the detection angle.
39As can be seen e.g. in [Che07], Sec. 2.9.3.
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where V is the visibility. The visibility is measured by using equal amplitudes a = b0,
scanning the phase φ and detecting the maximal Imax and minimal Imin intensity
measured on one photodiode of the homodyne detector:

V =
Imax − Imin

Imax + Imin
. (2.65)

In particular for detecting squeezed states, a good mode-matching and highly-efficient
photodiodes are very crucial. Here, the goal is, to maximise the homodyne efficiency

ηhd = ηqeηvis. (2.66)

In this subsection we have seen that the homodyne detection technique is capable
of detecting the quadrature fluctuations of a weak signal field, e.g. a squeezed state.
The next Sec. 2.3 addresses the question how quantum states as squeezing can be
generated by using optical cavities.

2.3 Cavities with non-linear crystals

The section is dedicated to the input-output formalism, which predicts the quan-
tum mechanical noise behaviour of optical cavities. First, Subsec. 2.3.1 describes
the general quantum model of an optical cavity with a χ(2)-interaction.40 In this
subsection, all needed parameters are introduced, and the equations of motion are
shown. The first application of these equations is made for an SHG in Subsec. 2.3.2.
This subsection already links the experimental part because it explains the actual
design of the SHG used for all three experiments in Chapters 3, 4 and 5. The section
ends with the input-output formalism applied on an OPO in Subsec. 2.3.3. Here, a
recipe is presented, including all steps to calculate the output variances of an OPO.
After obtaining the output variance, important parameters such as the cavity escape
efficiency and the pump parameter are defined.

2.3.1 General theoretical model

Here, the general quantum model is applied to optical cavities containing a non-linear
χ(2) medium. The quantum Langevin equations are used to describe these cavities.
First, Gardiner and Collett used this approach in 1985, which is shown here [GC85].41

It is adapted from its original formulation developed by Langevin in 1908 [Lan08;
LG97].

The considered cavity is shown in Fig. 2.6. It consists of a non-linear χ(2)-crystal
and three mirrors, all designed for the fundamental mode a. For now, we assume
type-0 phase matching,42 meaning the fundamental a and the harmonic b are in the
same polarisation state. We also assume, that a oscillates with frequency ωf and b
with frequency ωp and that 2ωf = ωp. For simplicity, the cavity does not exist for the
harmonic mode b, which is experimentally legitimated due to anti-reflective coated
mirrors for this wavelength. The following parameters are needed for the description:

40The model can also be studied for empty cavities, as done e.g. in [WM08; Whe16; BR19].
41A general explanation of the input-output formalism, e.g., for an empty cavity and an optical

parametric oscillator, can be found in [WM08], Chapter 7.
42Basically, phase matching means that the interacting waves do not run out of phase along the

propagation direction, eventually inverting the process. For more information regarding phase
matching in squeezers, see [Boy20], Chapter 2.
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FIGURE 2.6: Schematic of an optical cavity containing a non-linear χ(2) medium. We
distinguish between the fundamental cavity mode a and cavity rates A and the
harmonic mode b and cavity rates B. The cavity only exists for the fundamental
field with detuning ∆ and round-trip time τ. The coupling strengths of the mirrors
are given by the decay rates κ.

• The intra-cavity modes a and b representing the photon numbers in dimension-
less units.

• The input and output rates Ain, Bin, Aout and Bout in units of
√

Hz.

• The cavity round-trip time τ in units of second.

• The cavity decay rate43 for the fundamental mode κa = κa
in + κa

out + κa
l in units

of Hz. The decay rate is connected to the absolute of the round trip gain grt
from Eq. (2.15) via κ = (1− grt)/τ [Sie86; Lam98]. In the case of a single-ended
cavity with the input coupler’s power transmission of T and low internal losses,
we can approximate κ ≈ T/(2τ).44

• The impinging vacuum rates δAl and δAv in units of
√

Hz.

• The coupling strength χ, proportional to the second-order non-linear suscep-
tibility in units of Hz. In the experiment, it also depends on the intensity
distribution,45 the mode-matching, the phase matching of the down-conversion
process and imperfections of the crystal.

• The detuning of the cavity for the fundamental mode ∆ in units of Hz.

The system is modelled by the Hamiltonian in the rotating frame of the pump field46

H = h̄ωfa†a + h̄ωpb†b +
ih̄χ

2
(a†2

b− a2b†) + driving and decay terms. (2.67)

43Here, all cavity decay rates are defined as FWHM linewidths; This explains the factor of 1/2 in
Eqs. (2.68) and (2.69). Note that in [P1] and in [P2], half width at half maximum values are used.

44Moreover, different definitions for the decay rate exist as discussed in [Whi97], Sec. 2.2.2.
45Highest coupling can be reached by using an optimally chosen beam waist in the crystal, see [BK68],

Eq. (3.39).
46This means: a→ e−iωp a and b→ e−2iωp b [DMW81; CG84; WM08].
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For the single-mode case, the equations of motion for the intra-cavity modes a and b
read47

ȧ = −κa

2
a + ia∆ + χa†b +

√
κa

in Ain +
√

κa
outδAv +

√
κa

l δAl, (2.68)

ḃ = −κb

2
b− χ

2
a2 +

√
κb

inBin +
√

κb
outδBv. (2.69)

The change of the circulating mode amplitudes ȧ, ḃ depends on the modes themselves,
scaled with the decay rates κ and the detuning ∆.48 Furthermore, they change with
all incoupling photon rates A and B. The two Eqs. (2.68) and (2.69) are coupled via
the down-conversion coupling strength χ and the detuning ∆.

Equations (2.68) and (2.69) are the starting point for the theory that is applied in
the publications [P1], [P2] and [P3]. In any case, the goal is to find an expression for
the output fields of interest. To do so, first, the field operators are decomposed in a
constant and a fluctuating term in the form a = α + δa, as introduced in Eq. (2.23).
Then, the equations are solved for the relevant intra-cavity mode a. Finally, the
boundary conditions are applied to find expressions for the output rates [GC85].

The classical behaviour of the cavity can be studied by solving Eqs. (2.68) and
(2.69) for the constant terms. Then, all fluctuating operators are omitted. The changes
of the modes α̇ and β̇ are set to zero to calculate the steady output of the cavity. Next,
the output field rate can be calculated as described above. The quantum behaviour is
considered when solving Eqs. (2.68) and (2.69) for the fluctuation operators δA and
δB in the Fourier space.

2.3.2 Second harmonic generation

This subsection consists of two parts. First, the output field in the harmonic mode
Bout is calculated for an SHG pumped with the fundamental mode Ain.49 The ratio of
the modes’ powers define efficiency of the SHG. In the second part, this subsection
makes the link to our experiments. We will discuss what is important when designing
an SHG. Furthermore, the design and the performance of our developed SHG are
presented.

We consider an SHG which has an input field in the fundamental mode Ain. The
field of the harmonic mode Bin is zero. Assuming α is real, Eqs. (2.68) and (2.69) can
be semi-classically written as50

α̇ =
κa

2
α + χαβ +

√
κa

in Ain, (2.70)

β̇ =
κb

2
β− χ

2
α2. (2.71)

47In these equations, the cavity is assumed to be resonant for mode a and b.
48The detuning is ∆ = 0 except from Chapter 4.
49The wavelengths for the harmonic and the fundamental modes are λh = 532 nm and λf = 1064 nm

in our experiments.
50For this subsection, a semi-classical description is sufficient. If the differential equations are solved

for their fluctuating part, also squeezing could be observed in the harmonic mode [Per+88;
Siz+90; LK94; Pas+94; WM08].
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For a steady state, the two differential equations become a regular system of equations:

0 =
κa

2
α + χαβ +

√
κa

in Ain, (2.72)

0 =
κb

2
β− χ

2
α2. (2.73)

Since most of the harmonic field leaves the cavity at the output port, we can assume
κb ≈ κb

out. Equations (2.73) and (2.72) are solved for β and the cavity boundary

condition Bout =
√

κb
outβ is applied. Then the output field reads as

Bout =
(− 3
√

6κaκbε2 + Ã(Ain))
2

6 3
√

6
√

κbε3Ã(Ain)
, (2.74)

with

Ã(Ain) =

(√
6
√

κ2
bε6
(
54A2

inκa
inε2 + κa3κb

)
+ 18Ain

√
κa

inκbε4
)2/3

. (2.75)

Equation (2.74) looks cumbersome but accurately describes the conversion process in
an SHG cavity. Often it is helpful to work with the conversion efficiency ζ defined as

ζ =
h̄ωpB2

out

h̄ωfA2
in

=
2B2

out

A2
in

=
Pout,B

Pin,A
. (2.76)

Here, PA and PB are the powers of the two fields, which relate to the photon rates

A =
√

PA/(2πhωf) and B =
√

PB/(2πhωp). (2.77)

The newly developed second harmonic generation cavity

In our experiment, the goal is to build a highly-efficient SHG cavity. This is often
done by building a single-ended cavity, where one of the mirrors is defined as the
input/output mirror for the fundamental field. To reach the best impedance matching,
the accumulated loss in the cavity needs to equalise the input/output coupler’s
transmission. In an SHG, it is meaningful to distinguish between good loss and bad
loss. The frequency conversion in the non-linear crystal accounts for the good loss. The
bad losses consist, e.g. of scattering losses, absorption losses or residual transmissions
of high-reflective cavity mirrors. If the cavity is impedance-matched, the reflected
electric field is zero Aref = 0. Then the cavity reaches the point of maximal conversion
efficiency.

The intra-cavity loss δx, the non-linear interaction strength χ and the input/output
mirror (Rin/out, respectively κin) for the second harmonic field play a big role when
designing an SHG cavity. In general, δx cannot be reduced, and χ cannot be increased
arbitrarily.51 A parameter that is free to choose is the reflectivity of the input/output
coupler Rin/out. If the available input power is defined, we find the optimal reflectivity
(given by κa

in) by maximising Eq. (2.76).
We have increased the performance of the SHG during the last years by changing

its design. Compared to old SHGs [Den16; Wim16], the new cavity now has a six-axis
alignment stage, see Fig. 2.7. This figure shows a CAD design of the new SHG with

51Note that χ can be changed, e.g. by modifying the cavity eigenmode and thus the waist size in the
crystal or by changing the phase matching with temperature detuning.
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FIGURE 2.7: CAD model of the new SHG cavity including the six-axis alignment
stage.

labelled components. In our experiments, the fundamental field has a wavelength
of 1064 nm, and the harmonic has half the wavelength, which is 532 nm. With the
six-axis alignment stage, the crystal can be precisely moved and tilted to the ideal
position, where no beam clipping and best frequency conversion occurs. We could
reduce the intra-cavity losses from > 1 % to 0.2 %. The non-linear interaction strength
χ was increased from 115 Hz to a range from 179 Hz and 196 Hz. The old design
reached a maximal conversion efficiency of 65 %. We measured conversion efficiencies
of up to 94 % with the new design. A more detailed description of the new SHG
cavity can be found in [Bar20], which also shows measurements and fits by using
Eq. (2.76) in Fig. 5.7.

The demands for harmonic power are different for the three experiments set up
in this thesis. Our fundamental laser source is a non-planar ring oscillator (NPRO)
[Coherent Mephisto], with maximal 2 W of output power. For the experiment in
Chapter 3, only roughly 300 mW of green pump power was used. This experiment
was conducted with the old, low-efficient SHG. Anyhow, for the experiments in
Chapters 4 and 5, powers of up to 800 mW were required. Here, it was necessary to
use the new design of the SHG with a larger conversion efficiency of up to 94 %. The
squeezers in these experiments have individual green power demands because of a
lower input/output coupler or a different non-linear crystal. Each squeezer has its
characteristic functionality, which will be presented in the following section.

2.3.3 Squeezing from optical parametric oscillation

In this section, the input-output formalism introduced in Subsec. 2.3.1 is applied to an
OPO. The starting point for the calculations is the quantum-mechanical Hamiltonian
for the parametric down-conversion process. The goal is to derive the quantum noise
variances describing the output state of the OPO. In this subsection, we present a
recipe including all computational steps performed to compute the variances.

First, some general remarks are relevant to be mentioned. To drive the parametric
down-conversion process, we usually only need the harmonic input field Bin. Since
we are considering the down-conversion process in a cavity that is only resonant for
the fundamental wavelength, we assume that this pump field is undepleted. The
consequence is that we replace b→ βeiθ , with real mean field β and the relative phase
between squeezed fundamental and harmonic field θ. In the following, we work
again with Fig. 2.6 depicting the system of consideration.
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Calculating the noise variances is a straightforward analysis consisting of the
following seven steps:52

1. The Hamiltonian
The starting point is the Hamiltonian giving the energy distribution of the
system. To describe the OPO, the interaction part of the Hamiltonian from
Eq. (2.67) can be rewritten as

H = iεa†2 − iε∗a2, (2.78)

with the complex parameter ε = ih̄χβeiθ/2.

2. Equations of motion
Analogous to Eq. (2.68), the equations of motion for the fundamental field a are
considered:

ȧ = εa† − κa

2
a +

√
κa

in Ain +
√

κa
outδAv +

√
κa

l δAl. (2.79)

3. Fourier transform
Equation (2.79) is transformed to frequency domain by using the Fourier trans-
form F{a(t)}:

ã(ω) = F{a(t)} = 1√
2π

∫
dteiωta(t). (2.80)

Thus, the field operators transform as ã(ω) = ã†(−ω).53 In the following we
write: ã(ω) ≡ ã and ã†(−ω) ≡ ã†.54 Next, we obtain two equations of motion
in the frequency domain, namely for ã and its complex conjugated ã†, which
read as

−iωã = εã† − κa

2
ã +
√

κin Ãin +
√

κa
outδÃv +

√
κa

l δÃl, (2.81)

−iωã† = ε∗ ã− κa

2
ã† +

√
κa

in Ã†
in +

√
κa

outδÃ†
v +

√
κa

l δÃ†
l . (2.82)

4. Solution for cavity mode
Next, Eqs. (2.81) and (2.82) are solved for the intra-cavity mode fields ã and ã†.

5. Cavity output rate
Now, the boundary condition for the fundamental field Ãout =

√
κa

out ã− δÃv
is applied to calculate the cavity output rate Ãout.

6. Output quadrature fluctuations
From the output field rates, the output quadrature operators X±out are calculated
by using Eqs. (2.19) and (2.20) (X+ ≡ X1 and X− ≡ X2). Here, the quadrature
operators are again decomposed into a constant X and fluctuating term X:
δX = X + δX.

52For the following theoretical remarks, I follow [CG84; BR19]. A similar overview was already given
in [Whi97], Fig. 3.6.

53This indicates that the electric field is the sum of its positive and negative frequency parts as in
[Gla63b], Sec. II.

54See e.g. [Ste19], Eqs. (1.37) and (1.38).
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7. Output variance noise
The final step is to compute the output noise variances V±out(ω) = 〈|δX±out|2〉:

V±out = 1± 8κout|ε|
4ω2 + (κ ∓ 2|ε|)2 . (2.83)

All incoming vacuum field rates have a unity variance (V±v = V±l = 1). In an ex-
periment, relative squeezing and anti-squeezing values are usually used, which
are normalised to vacuum noise. These values are obtained, by transforming
Eq. (2.83) into decibels units via

todB(x) = 10 log10(x), (2.84)

fromdB(x) = 10x/10. (2.85)

By following the recipe above, the output noise variances are calculated. Equa-
tion (2.83) can be written differently as

V±out = 1± ηesc
4x

(1∓ x)2 + 4Ω2 . (2.86)

Equation (2.86) reveals some important experimental parameters. We can identify
the escape efficiency ηesc, which is compared to Eq. (2.11) now defined with decay
rates κ as

ηesc =
κout

κin + κl + κout
. (2.87)

Further, we introduced the normalised linewidth of the cavity in Eq. (2.86), defined
as

Ω =
ω

κin + κl + κout
, (2.88)

and the pump parameter

x =
ε

κin + κl + κout
=

√
P

Pthr
, (2.89)

which is connected to the pump power P and the pump threshold Pthr. The best
squeezing can be obtained for a resonant cavity (Ω = 0) with no losses (ηesc = 1).
Then Eq. (2.86) gives the initial squeezing and anti-squeezing, which are only theoret-
ical values.55 We have seen how the squeezed output state of an OPO is calculated.
In this thesis, we use the concept of homodyne detection from Subsec. 2.2.4 to detect
the state.

Detecting a squeezed state with a homodyne detector

We want to briefly discuss how phase noise and optical loss spoil the homodyne
measurement of a squeezed state. During the process from generation to detection,
the squeezed state accumulates optical loss of Ltotal, which is converted into the total
efficiency ηtotal.56 A homodyne detector can detect the amplitude or phase quadrature
of the state, as mentioned in Subsec. 2.2.4. The readout quadrature depends on the
detection angle φ, as shown in Eq. (2.62). In the experiment, φ is usually locked for

55These values are impossible to measure in an experiment due to optical losses.
56In the publications [P1] and [P2], η ≡ ηtotal is used. More details on efficiencies will be discussed in

Subsec. 2.4.3.
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lower frequencies.57 Fast oscillating disturbances are not suppressed by the control
loop and lead to a noisy detection angle. When fluctuations are present with a period
of τ smaller than the measurement time Tmeas, the detected variance V±det will be
an average over a range of quadratures [Oel+16a]. The residual fluctuations in the
detection angle are assumed to follow a normal distribution with standard deviation
of ∆φ. Then, the effectively detected variance is [Zha03; ATF06; Sch18]

V±det = η
(
V±out cos2(∆φ) + V∓out sin2(∆φ)

)
+ 1− η. (2.90)

If phase noise is present (∆φ 6= 0), mixing between the two variances occurs. Then, the
squeezed state becomes a mixed state with non-Gaussian statistics.58 For a constant
amount of phase noise ∆φ, the observable squeezing can be optimised for the pump
parameter x (see Eqs. (2.86) and (2.90)). The experiments in this thesis aim to operate
near this optimised pump power.

A squeezed state in the quantum sideband picture

The squeezed probability distribution shown in Figs. 2.4c) and d) can be derived from
a different, intuitive perspective using the quantum sideband picture.59 There, the
situation is only sketched for one measurement frequency, Ω.

In the following description, Ω is a representative for all frequencies inside the
linewidth of the OPO. In the OPO, a pump photon with frequency ωp = 2ωf decays
into two photons at frequencies ωf −Ω and ωf + Ω inside the cavity’s linewidth.60

Both photons are created simultaneously and are correlated because of energy and mo-
mentum conservation. We study the situation for an amplitude quadrature squeezed
state in Fig. 2.8. The quantum sideband picture shows the electric fields in the frame
of reference rotating with ωf in Fig. 2.8a). The blue arrows draw correlated electric
fields at ±Ω. Uncorrelated fields at this frequency are depicted as blurred, red cir-
cles. The four pictures in Fig. 2.8a) demonstrate the situation at four arbitrary time
stamps t1 – t4. Due to phase indetermination, the phasors do not follow a predictable
trajectory as in the case of a classical modulation. Notwithstanding, they are always
correlated and aligned parallel in the phase quadrature X2 and anti-parallel in the
amplitude quadrature X1.

The top picture of Fig. 2.8b) shows how the sideband pairs of the four different
times add up at the measurement frequency Ω. For instance, correlated phasors in the
X1 direction interfere destructively, and correlated phasors in the X2 direction add up.
The uncorrelated phasors shown by the blurred red circles from a) will not cancel. The
bottom part summarises the situation when not only four but all possible situations of
correlated phasors are considered. The result is a squeezed state, exhibiting squeezing
in X1 and anti-squeezing in X2. In conclusion, the quantum sideband picture shows
that squeezing will be visible due to correlations of sidebands.

57Our control loop bandwidths typically go up to kilohertz frequencies, limited by the phase response
of the piezoelectric transducer (PZT) used as the actuator.

58A phase space picture of a phase-diffused squeezed state can be found in [Fra+06].
59A more detailed view of the quantum sideband picture is given in [Che+05], Sec. 2.10.2 or in

[Bon+17], Sec. 6.1.
60The two photons can also be created at higher free spectral ranges (see Eq. (2.12)) of the OPO, e.g.

at ωf − ∆ω and ωf + ∆ω.
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FIGURE 2.8: Quantum sideband picture of an amplitude quadrature squeezed state in
the rotating frame. a) Correlated (blue arrows) and uncorrelated sidebands (blurred
red circles) at frequency ±Ω at different times t1–t4. The correlated sidebands are
always parallel in phase quadrature X2 and anti-parallel in amplitude quadrature
X1. b) The four cases are added in the top picture, only showing the situation at the
measurement frequency Ω. In the bottom picture, the resulting squeezing ellipse is
shown, squeezed in the amplitude quadrature X1.

Distinction between single- and two-mode squeezing

Above, we assumed the phase-matching process to be of type-0, which means that all
contributing fields have the same polarisation. An NDOPO, which is a two-mode
squeezer, requires the consideration of two orthogonally polarised modes.61 Then,
Eq. (2.67) must be modified and exhibits the modes as and ap. The equations of
motion can be traced back to the equations for a single-mode OPO from Eqs. (2.81)
and (2.82) and then solved accordingly. Here, I omit to present the theory of the
NDOPO since it is not needed for this thesis. The interested reader can get more
information, e.g. in [Ste19].

For completeness, we should discuss the distinction between single- and two-
mode squeezed states more precisely. It seems to be terminological but is at least
interesting to expound. Two-mode squeezing consists of two distinguishable modes.
For polarisation two-mode squeezed states, the distinction is obvious. However, what
is with squeezing where the correlated sidebands have the same polarisation but
different frequency modes? From a nitpicking perspective, we can call this state a
frequency two-mode squeezed state. Single-mode squeezing only occurs when both
sidebands have the same polarisation and frequency of ωf.

A different perspective is helpful to maintain our terminology of single- and two-
mode squeezed states. In the experiment, the sideband distinction is only sometimes
visible. In the example of a polarisation two-mode squeezed state generated by
an NDOPO, the sidebands can easily be separated by any polarisation-sensitive
beamsplitter because they occur in perpendicular polarisation modes. The simple
distinction of perpendicular polarisations justifies the term two-mode squeezing. In case
of an OPO, the correlated sidebands are created at ωf −Ω and ωf + Ω. However, we
are usually not susceptible to any two-mode character when the correlated sidebands
at ωf ±Ω stay in the same spatial mode. They stay indistinguishable when the mode
is detected on a photodetector. For instance, in gravitational wave detectors with

61A two-mode squeezer does not necessarily deal with polarisation modes. Also, e.g. frequency modes
at different colours are possible [Vil+05].
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frequency-independent squeezing, it is reasonable to still treat the squeezed state
from the OPO as single-mode squeezing.62

In our experiments, we always measure squeezing at the first free spectral range
of the squeezing cavity. Thus, we detect correlated sidebands with frequencies of
ωf ± ∆ω, where ∆ω is the free spectral range frequency according to Eq. (2.12).63

This section has explained two cavities with non-linear crystals. For the SHG,
the equation for the harmonic output field was derived. Additionally, the design
of the built SHG was presented, which we developed for the experiments in the
publications [P2] and [P3]. Then, a recipe to calculate the output field of an OPO
cavity was presented. This section closed with an introduction to the quantum
sideband picture and a distinction between single- and two-mode squeezing. The
following section links the theoretically described OPO to our three experimental
squeezers.

2.4 Experimental view on the OPO, the detuned OPO and the
NDOPO

In each of our publications [P1], [P2] and [P3], we used a different squeezer. Since
Sec. 2.3 considered the squeezers mostly from a theoretical perspective, we want
to bring this together with the experimental realisation. This Sec. 2.4 summarises
various technical details and measurement methods employed in the publications.

The section starts with a comparison of the three squeezers in Subsec. 2.4.1:
the resonant OPO from [P1], the detuned OPO from [P2] and the NDOPO from
[P3]. I point out commonalities and differences in the squeezer topology and used
components. An essential point for the comparison is the non-linear crystal and how
the phase-matching conditions are reached. Subsection 2.4.2 precisely instructs how
to set up the two-mode squeezer from [P3]. It elaborates on the beam path in the
cavity and the construction of the oven for the crystal. Finally, Subsec. 2.4.3 explains
how squeezing is usually characterised in the scope of this thesis. An important
measurement that needs to be mentioned is a squeezing slope from which the total
efficiency η of the squeezing process and the phase noise δφ can be derived.

2.4.1 Comparison of the squeezers

This subsection elaborates on the three different squeezer designs used for this
thesis. Each squeezer produces a differently tailored squeezed quantum state. This
subsection starts with a broader perspective and compares the squeezers as a whole
which includes the squeezer topology. The most relevant parameters for the three
systems are listed in Table 2.1. Next, the perspective is changed, and squeezer
differences are pointed out. We zoom into different subsystems of the cavities. We
discuss the cavity eigenmodes, the input/output coupler’s choice and the oven
designs enabling the phase-matching.

Squeezer topology

The three squeezers’ topological commonalities are shown in Fig. 2.9. The figure’s
upper row shows the topology for the six-mirror OPO cavity used for the spectroscopy

62In the case of single-mode squeezing with sidebands created at ωf ±ω it is possible to create
two-mode squeezing by using frequency dispersive components [Hun+05; HSS10].

63Finding the maximum amount of squeezing/anti-squeezing is a sufficient method to determine the
free spectral range of the squeezer cavity.
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FIGURE 2.9: The two squeezer topologies used in this thesis. The cavities are only
resonant for 1064 nm. Picture a) shows the OPO consisting of six mirrors used
for the spectroscopy experiment in Chapter 3. Picture b) presents a squeezer
with only four mirrors taken for the experiments presented in Chapters 4 and 5.
Note that the two systems in b) are not identical since they use different crystals
and input/output couplers, see Table 2.1. The numbers represent the geometric
distances in centimetres.

experiment [P1] in Chapter 3. In the bottom row, a four-mirror squeezer is depicted
employed for the frequency-dependent squeezing experiment [P2] in Chapter 4 and
the Gaussian state estimation [P3] in Chapter 5. In all three cases, squeezing is
generated by pumping a non-linear periodically-poled potassium titanyl phosphate
(PPKTP) crystal sitting in a cavity. Then, the process of optical parametric oscillation is
driven.64 Depending on the squeezer, either a single- or a two-mode phase matching
condition must be ensured. Hence the type of crystal differs for the detuned OPO
and the NDOPO. All the squeezers were operated at a fundamental wavelength of
1064 nm and are pumped with 532 nm.

To give a clear overview, Table 2.1 compares the three systems’ most important
parameters. The individual points are discussed in the following.

The OPO cavity has a quasi-monolithic design, similar to the SHG cavity shown
in Fig. 2.7. The mirrors are clamped to an aluminium spacer to make the cavity stable
and robust. In operation mode, the cavity will be closed with a lid which decreases air
fluctuations inside the cavity and thus reduces phase fluctuations. Notwithstanding,
there are also disadvantages of the quasi-monolithic design. Since the mirrors can
only be attached to a fixed position, the alignment procedure can be tenacious. Due
to the static design, any quick changes, e.g. in cavity length and thus eigenmode,
are hardly feasible. During this thesis, no measurable differences were identified
regarding phase noise in the free space and the quasi-monolithic design.65

Cavity eigenmode

The eigenmode in the cavity and, thus, the beam waist in the crystal affects the effec-
tive non-linear coupling strength. For a given pump power, the coupling strength

64There are numerous other methods to generate squeezing, e.g. in opto-mechanical experiments
[Pur+13; Agg+20], after frequency doubling [Per+88; Siz+90; LK94; Pas+94], or by using Kerr
materials [SL99; Whi+00] or semiconductors [YIM86; MYI87; Kar+04].

65A discussion on phase noise and other limitations is given in Chapter 6.
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TABLE 2.1: Overview of important parameters of the three used squeezers. The beam
waists are averages for the tangential and sagittal planes in the cavity. The pump
threshold is highly prone to the current mode-matching of the pump beam into the
squeezing cavity. Poling periods of the order of 9 µm were already used by [Ari+97;
Eng+97; Ari+98]. The manufacturing uncertainty of γ is given by the polishing
company DDO Strichplatten und Dünnschicht GmbH to ±0.08°.

a) OPO c) detuned OPO b) NDOPO

number of mirrors 6 4 4
setup quasi-monolithic free-space free-space

stability without crystal no yes yes
large beam waist 486 µm 678 µm 678 µm
small beam waist 26 µm 22 µm 22 µm

input/output coupler Rin/out 90 % 80 % 95 %
pump threshold 368 mW 1.62 W 1.25 W

phase matching type-0 type-0 type-II
poling period p 9 µm 9 µm 458 µm
crystal polish angle γ plane wedged 0.5° wedged 1°
temperature control crystal single oven dual oven dual oven

can be optimised with respect to the beam intensity. For our 10 mm long crystals
the optimal beam waist is wopt = 24.4 µm according to [BK68]. For this beam waist,
a squeezing cavity with optical round-trip length of Lopt ≈ 1.5 m and curved cav-
ity mirrors with radius of curvature of ROC = −100 mm is only marginally stable
[Den16; Wim16; Ste19]. This comes with a drawback: The cavity without crystal
becomes unstable due to the change of optical path length, which is observed in the
six-mirror squeezing cavity used in Chapter 3.66 In general, this is not a big problem,
but it makes aligning the cavity more difficult. Therefore, for the experiments in
Chapter 4 and 5, squeezers with different cavity eigenmodes were built. Due to the
changed beam waist of w = 22 µm the squeezing cavity is even stable without the
crystal but at the same time provides a good coupling strength. The required infrared
power is increased by roughly 2 % to reach the same coupling strength as with an
optimal beam waist wopt [BK68].

The input/output coupler

For a constant intra-cavity escape efficiency ηesc and coupling strength χ, the
input/output coupler choice determines the pump threshold of the squeezer.
When dealing with single-ended squeezers, Eq. (2.89) simplifies with κout = 0
and κin ≡ κin/out. With increasing κin, the pump threshold Pthr increases with
the square root. Before selecting an input/output coupler for the system, some
technical questions need to be analysed. First, how much harmonic pump power
is available? Second, how problematic are high beam intensities in the crystal
regarding the integrity of the crystal [Bou+99], potentially causing other effects
such as thermal lensing or thermal instabilities [Dou+99; TZL05; Wan+17]? For
the OPO, the input/output coupler of Rin/out = 90 % leads to a pump threshold

66Here, the w = 26 µm beam size is differing from the optimal wopt = 24.4 µm due to imprecisions in
the spacer design.
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FIGURE 2.10: a) Schematic of the copper oven which holds the 10 mm long PPKTP
crystal. I have implemented two temperature controls: to achieve phase matching
for the down-conversion process and to adjust the polarisation degeneracy ∆ in the
squeezing cavity. b) The optical beam path in the wedged crystal can be changed
by translating it perpendicular to the beam axis.

of Pthr ≈ 300 mW.67 When the OPO is detuned, the effective pump threshold is
increased depending on the amount of detuning, which is the reason for the 80 %
input/output coupler in this constellation.68 The coupler of the NDOPO has a
large reflectivity of 95 %. Since the non-linear coefficient χ(2) for the type-II phase
matching is more than a factor of 4 less than for the type-0 phase matching69 the
pump threshold is still large with 1.62 W.70

Phase matching and oven design

The efficiency of the down-conversion process in the squeezers depends on how
well the phase-matching condition is met. For the OPO, only two electric fields are
involved: The squeezed fundamental field, consisting of the degenerate signal and
idler fields, and the harmonic pump field, all s-polarised. Three fields need to be
considered in the NDOPO because signal and idler are orthogonally polarised and
thus polarisation non-degenerate.

We use quasi-phase-matching for our squeezers, so that the crystal’s non-linearity
varies over its length periodically. Thus, the actual poling period p defines the phase-
matching temperature TDC. If this temperature is achieved, the squeezing process in
the OPO works best. For the OPO and the NDOPO, the crystals are periodically
poled, such that TDC ≈ 30 °C.71 Figure 2.10a) shows a simplified schematic of our
oven used for the crystal.72 The actual temperature of the copper oven is sensed with
a negative temperature coefficient thermistor (NTC). Depending on the resistance,
the left Peltier element (blue) is driven to heat or cool the oven part for a chosen
reference temperature. The unity gain frequency of the temperature control loops
was in the order of 200 mHz.

67Will be discussed in Subsec. 3.4.2.
68Will be discussed in Subsec. 4.5.2.
69For type-0 phase matching the non-linear coefficient d = d33 ≈ 17.4 pm V−1 and for type-II phase

matching d = d24 ≈ d32 ≈ 3.7 pm V−1 are employed [Mam+18]. Note that the coefficient we use
is reduced by deff = d π/2 due to quasi-phase-matching, see [Boy20], Sec. 2.4.

70Will be discussed in Subsec. 5.4.1.
71The temperature dependency of the conversion efficiency can be seen, e.g. in [Bar20], Fig. 5.5.
72This design was only used for [P2] and [P3]. Only a single temperature control was employed in

[P1].
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Since the crystal is placed in a cavity, we also need to care about the accumulated
phases in the cavity. We can neglect the pump field for this consideration because it
does not see the cavity.73 Subsequently, the OPO needs to be resonant only for the s-
polarised squeezed field. In the NDOPO, the situation is more complicated. The idler
and signal field generally accumulate different phases in the cavity. The reason for the
phase difference ∆ is twofold. First, all cavity mirrors generate a small non-degenerate
phase shift for the reflected field depending on the polarisation state. Second and
dominating, due to the crystal’s birefringence, both fields collect different phases
in the crystal. In the following, we will discuss how the polarisation degeneracy of
the two orthogonally polarised modes can be adjusted in our experiment. We have
implemented two options for adjusting the polarisation phase degeneracy ∆ in the
cavity.

I have installed a second temperature control for the fine adjustment (see
Fig. 2.10a). It also works with a NTC and the right Peltier element (green). A small
fraction of the right crystal side (roughly 2 mm) is controlled to the temperature
TPD. Because the beam intensity is very small compared to the centre of the crystal,
changing the temperature here does not affect the strength of the down-conversion
process much. However, this second temperature control facilitates changing the
relative phases between s- and p-polarised fields propagating inside the crystal. The
reasons for this behaviour are the photo-thermal and thermo-refractive effects of
PPKTP. Temperature changes influence the effective optical path length difference
between the s- and p-polarised fields.

The rough alignment of the polarisation degeneracy can be adjusted by changing
the optical path length in the trapezoidally wedged crystals. It can be done manually
by translating the crystal perpendicular to the beam axis in the cavity plane, see
Fig. 2.10b). Then, due to the birefringent crystal, the relative phase between both
polarisation contributions φ(γ) will change according to

φ(γ) =
2 tan(γ)(nz − ny)

λf
≈

2γ(nz − ny)

λf
, (2.91)

where γ is the angle of the crystal wedging, λf the fundamental wavelength and
ny = 1.7455, ny = 1.8297 are the refractive indexes of PPKTP [KT02]. In Fig. 2.10b),
shorter or longer optical beam paths are drawn by the light red arrows. For the two
wedging angles used in this thesis, we find

φ(γ1 = 1°) =
1.74 rad
100 µm

, (2.92)

φ(γ2 = 0.5°) =
0.87 rad
100 µm

. (2.93)

The meaning of these values is that when displacing the 1° (0.5°) wedged crystal
100 µm along the x-axis, the polarisation phase degeneracy will change by 1.74 rad
(0.87 rad). Using the wedge shape of the crystal allows for roughly adjusting the
point of desired polarisation (non-)degeneracy.

In conclusion, the phase matching for the down-conversion is realised by TDC.
The polarisation degeneracy ∆ is controlled by TPD and the position of the wedged
crystal. In the case of the resonant OPO needed in [P1], the polarisation degeneracy
does not play a role, and the oven consists only of one part controlling TDC. For the
detuned OPO [P2] and the NDOPO [P3], we use the second temperature control

73See again Fig. 2.9.
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FIGURE 2.11: Constructing the oven and inserting the PPKTP crystal. a)–d) Prepa-
ration of the bottom part of the oven. e)–h) Wrapping the PPKTP crystal in two
pieces of indium foil. i)–j) Crystal is placed on the bottom part of the oven. k)–o)
The top part of the oven is fixed to bring the crystal to its final position. p)–q) Final
pictures of the oven with built-in crystal.

TPD and the wedged design of the crystal to change the polarisation degeneracy ∆
between s- and p-polarised fields.74

2.4.2 Setting up a two-mode squeezer

Setting up a two-mode squeezer consists of different steps and requires working with
high accuracy. This subsection focuses on two main parts. First, it describes how the
non-linear PPKTP crystal is mounted in the oven. Second, the most relevant steps for
the cavity alignment procedure are explained.

As explained in Subsec. 2.4.1, the non-linear PPKTP crystal needs to be tempera-
ture controlled. For the case of an NDOPO (or a detuned OPO cavity), two different
temperature locks are necessary; see Fig. 2.10 again. In the scope of this thesis, a
new oven design compared to [Ste19] was developed that enables the independent
temperature control of both crystal sides. The oven consists of individual elements
that need to be stacked together.

The process of constructing the oven is visualised in Fig. 2.11. The pictures a)–d)
show the preparation of the bottom stage of the oven. The symmetric copper base

74The idea is to lock the cavity with a p-polarised field and set ∆ as desired to get a detuned cavity for
the s-polarisation. More information will follow in Chapter 4.
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plate from a) has two rectangular notches for the two Peltier elements placed in
b). Pieces of indium foil cover the heating plates of the Peltier elements to ensure
better heat conductivity. In c), the bottom part of the polyoxymethylene (POM) hat,
including the bottom oven parts, is put over the Peltier elements. Both copper parts
must form a horizontally planar level, as seen in d).75 Before the crystal is inserted, it
needs to be carefully cleaned.76 The pictures e)–h) depict how the crystal is covered
in indium foil. First, two pieces of indium foil are prepared in e) such that they can be
wrapped around the crystal in f). In the end, a small gap of roughly 1 mm separates
the two indium regions g), h). Then, in i), the crystal is placed on the oven’s bottom
parts. The gap of the indium foil should match the gap of the bottom copper parts.
Next, the two top copper parts are placed to cover the crystal in k) (side view) and
l) (top view). Finally, the top POM hat is screwed on oven’s top parts in m). The
two holding screws, visible in n), o), are slowly and carefully screwed downwards
to softly press the top oven parts against the bottom oven parts. The final oven,
including the crystal, is seen in p), q).

When aligning an NDOPO cavity care has to been taken with respect to some
critical points. Here, I want to list the most relevant points how to process.

1. Align empty cavity: The cavity is first aligned without crystal. The laser beam
must hit all mirrors in the centre and, in particular, a planar cavity geometry77

(at the standard beam height of 5 cm) should be ensured. The intra-cavity losses
of the empty cavity are measured using the method from Subsec. 2.1.2.

2. Prepare curved mirrors: A wedged crystal will change the cavity eigenmode
as indicated in Fig. 2.10b). Before inserting the crystal, the effect on the beam
path must be calculated theoretically. Then, it can be compensated by carefully
tilting the two curved mirrors by the pre-calculated angle. In this state, the
cavity is misaligned and does not show light enhancement in a length scan.

3. Insert crystal: Now the oven with the crystal is inserted into the cavity. The
crystal is moved to a position, such that the new cavity eigenmode corresponds
to the mode of the input beam.

4. Optimise crystal temperature: Optimise TPD with respect to the best single-pass
SHG green light production. Adjust TPD, such that TPD ≈ TDC.

5. Crystal fine alignment: Minimise the intra-cavity loss when the cavity is
ramped by changing the crystal position in translation and analysing the mode
in reflection (see Subsec. 2.1.2 and Eq. (2.10)). The weaker the peak height of
the reflected mode, the smaller the intra-cavity loss is. In the extreme case of a
single-ended loss-less cavity, no modes are visible in reflection. Optimise the
crystal’s position in rotation for potential polarisation coupling.

6. Eliminate polarisation degeneracy: Eliminate the polarisation non-degeneracy
by translating the crystal perpendicular to the beam axis, as shown in Fig. 2.10.
Since beam clipping could occur when the crystal is moved too far, simultane-
ously check and preserve a small intra-cavity loss. Then, fine-tune to the point
of polarisation degeneracy by changing TPD.

75If this is not ensured, the crystal can break . . .
76This is usually done with a special polymer from Photonic Cleaning Technologies, LLC.
77A non-planar geometry can cause polarisation coupling between the two resonant modes [SK96;

GK97; DK87] which should be avoided.
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TABLE 2.2: Left: Different coating techniques electron beam evaporation (EBE) and
ion beam sputtering (IBS) produce coating losses due to absorption Labs and due
to scattering Lsc. Right: typical polishing losses depending on the roughness Rq.

Coating losses78

Labs Lsc

EBE 10 ppm 150 ppm
IBS 3 ppm negligible

Substrate polishing losses

Rq (RMS) Lsc

< 0.1 nm < 1 ppm
0.2 nm 6 ppm
0.3 nm 13 ppm
0.5 nm 35 ppm
1.0 nm 140 ppm

2.4.3 Squeezing characterisation – from generation to detection

This subsection explains how the squeezers used in this thesis are characterised.
A complete characterisation always includes the squeezer itself and the detection
scheme. For the squeezed state, the biggest opponent is optical loss. Thus, it is
convenient to study different parts of the setup individually and assign efficiencies
ηi = 1− Li with each including the specific loss Li of a subsystem. A squeezing slope
is measured to evaluate the total optical loss Ltotal of the entire system and the phase
noise ∆φ at the detection.

Before measuring squeezing, the squeezer is characterised by its escape efficiency
ηesc, which is related to the intra-cavity loss Lcav. In the experiment, this loss mainly
originates from two contributions: First, the cleanness of the optical components (mir-
rors and crystal), second, the quality of the components. Table 2.2 gives an overview
of expected losses arising from the coating quality and the substrate polishing quality.
We further distinguish between losses due to absorption and scattering.

In the left Table 2.2, we see that the ion beam sputtering (IBS) coating technique
is always recommendable for components used in squeezing experiments. Here,
the expected absorption loss Labs is small with 3 ppm, and the scattering loss Lsc is
negligible.

The right Table 2.2 lists the expected scattering loss Lsc depending on the root
mean square (RMS) roughness Rq

79 of the substrate. The parameter Rq is related to
the scattering loss Lsc via80

Lsc =

(
4πRq

λ

)2

, (2.94)

for an opaque coated substrate, where λ is the wavelength of the incident light. For
squeezers, consistently high-quality polished optical components should be used.

However, the most dominating loss in our OPO is the residually reflecting surfaces
of the crystal. Even though they are anti-reflective coated, they usually have a
specified power reflectivity of less than 0.1 % per surface. The cavity loss is usually in
the order of Lcav = 0.2 % and is measured as pointed out in Subsec. 2.1.2. The loss is
converted into an escape efficiency ηesc according to Eq. (2.11).

There are some more relevant parameters characterising the squeezer. From the
obtained intra-cavity loss, the linewidth of the cavity is obtained, ignoring conversion
in the crystal. The free spectral range is calculated from the cavity’s optical round-trip

78These are experience values received from LASEROPTIK GmbH.
79The definition of Rq can be found in [Whi02], Sec. 3.2.1.2.
80See [ERB83], Eq. (1b) who cite themselves [BP61; EBB79].
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length. It can be easily verified when squeezing spectra are measured at higher free
spectral ranges.

The squeezed state experiences optical losses along its propagation to a potential
experiment and detection. These losses are measured by the power drop when a
coherent beam travels the same path in the same optical mode. They are converted
into the propagation efficiency ηprop.

At the homodyne detection, two optical loss factors play a role. These are the
visibility efficiency ηvis from Eq. (2.64) and the quantum efficiency ηqe from Eq. (2.55).
Subsection 2.2.4 already explained how ηvis and ηqe can be obtained. The visibility ef-
ficiency ηvis is usually measured with an accuracy of at least ±0.1 %. However, larger
uncertainties are involved when analysing ηqe. By measuring the photodetector’s
transimpedance resistor, the electric gain in a photodetector, and thus the photocur-
rent, is accurately determined. However, accurately measuring the optical power is
not that trivial. Often the used power meters have high measurement uncertainties
of around 3 % – 7 % [Pow], which limits the determination of ηqe.

Now the total efficiency ηtotal consists of all individual efficiencies of the subsys-
tems:

ηtotal = ηescηpropηvisηqe. (2.95)

However, there is also an alternative method to determine the total efficiency.
The total efficiency η can also be obtained when measuring a squeezing slope.81

Then, squeezing and anti-squeezing values are measured for different pump powers
at the homodyne detector. The measured data is compared to the theoretical model

V±det = η

((
1± η

4x
(1∓ x)2

)
cos2(∆φ) +

(
1± η

4x
(1∓ x)2

)
sin2(∆φ)

)
+ 1− η, (2.96)

which is basically Eq. (2.90), with Ω = 0 (the measurement is taken for a resonant
OPO). Note that Eq. (2.96) is power dependent because of the pump parameter
x =
√

P/Pthr (Eq. (2.89)). Also, note that Pthr depends on the actual mode-matching
from the pump light into the crystal. Thus, sometimes this value might vary a
little. Usually, during the measurement, squeezing and anti-squeezing values are
monitored for different pump powers. Hence, each pump power corresponds to
two measurement values. Therefore, a maximum logarithmic likelihood estimation
is performed to fit the data to the model from Eq. (2.96).82 From the fit, the pump
threshold Pthr, total efficiency η and phase noise ∆φ are obtained as fitting parameters.
Comparing Eqs. (2.95) and (2.96) is an elegant way accurately to determine ηqe.83

This chapter presented theoretical and experimental points forming the back-
ground of this thesis. In the following three Chapters 3, 4 and 5 often subsections or
important equations from this chapter will be cross-referenced.

81The efficiency η can also be obtained from the fit of a measured squeezing spectrum as done in [P1].
82The fit was made by using the Mathematica [Wol] function LogLikelihood. A tutorial on maximum

likelihood estimation can be found in [Myu03].
83As done in [Vah+16].
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Chapter 3

Cavity spectroscopy enhanced with
squeezed light

Light does not reveal the colours of the world. Light creates them since it is absorbed or
reflected depending on its wavelength, which determines an object’s colour. Newton
published this famous finding more than 300 years ago. It can be seen as one of the
oldest experiments in spectroscopy [Na04].

Light can also be used as a carrier of information. The information is modulated
on the light, which is sent over larger distances via a channel, and demodulated
by the receiver. The first experiments on amplitude modulation were conducted by
Mayer and Leblanc in the late 19th century [Czy18]. They set the basis for inventions
such as the radio, television or modern digital modulation processes used in the
internet.

Light can be used to perform high-precision phase measurements when it is
prepared in a particular quantum state. This quantum state is called squeezing and
was first generated in 1985 [Slu+85]. Nowadays, it is applied to high-sensitive
instruments such as, e.g. gravitational wave detectors [Tse+19; Ace+19; Lou+21].

This chapter is dedicated to making use of a modulation technique and a particular
state of squeezed light, applicable in the field of spectroscopy. Section 3.1 elaborates on
the background and the motivation for our publication [P1]. This publication deals
with a particular high-frequency and phase-modulated squeezed state that can be
applied to a spectroscopy experiment. We show that a small phase signal generated
in a cavity can be resolved below shot noise using our squeezed quantum state.
We discuss current limitations in spectroscopic experiments, such as low-frequency
technical and quantum shot noise. The important point is to define the difference
between noise and signal. The idea of our method is illuminated in the intuitive
sideband picture. Then, Sec. 3.2 reprints the publication [P1]. Next, Sec. 3.3 deals with
the required quantum state, which is a high-frequency phase-modulated amplitude
quadrature squeezed state. The preparation and characterisation of this state is
explained here. Section 3.4 complements experimental details omitted in [P1]. Here,
I want to highlight experimental challenges faced when working with the optical
parametric oscillator (OPO) and the Fabry-Pérot (FP) cavity. This chapter ends with a
discussion and conclusion of the conducted spectroscopy experiment in Sec. 3.5.

3.1 Introduction

The sensitivity of high-precision metrology devices as gravitational wave detectors
is defined by the signal-to-noise ratio (SNR). To be sensitive to any potential signal,
the SNR needs to be larger than one. Two straightforward ways exist to increase the
SNR. Either the signal is increased, or the noise is decreased. The distinction between
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noise and signals is the content of the first Subsec. 3.1.1. Then, Subsec. 3.1.2 deals
with the motivation of our method from [P1] applied in spectroscopy. This subsection
shows phasor pictures visualising how a low-frequency signal is detected at high
frequencies.

3.1.1 Noise versus signals

This subsection discusses the two terms noise and signals. It starts with a famous
historical example, demonstrating that sometimes assigning the signal or the noise
is not trivial. This subsection emphasises that understanding and reducing noise
sources is crucial to be sensitive to small signals of interest. The usual goal is to reach
an SNR larger than one. Next, a more practical example of a laser beam susceptible to
different types of noise is considered. We distinguish between quantum and classical
technical noise. The subsection ends with comparing additive and multiplicative
noise sources, which will be important for our method from [P1].

The key question is: How can we distinguish signal and noise? The simple
answer is that a signal is relevant to an application (meaningful); contrarily, noise is
irrelevant (meaningless). Moreover, the definition of a signal is highly dependent on
the receiver, as shown by history. The astronomers Penzias and Wilson wanted to
detect weak radio waves from satellites with the Holmdel Horn Antenna [CHH61] in
1965. Under their first impression, their measurements contained noise, which they
could not eliminate. It turned out that they directly measured the cosmic microwave
background for the first time, a radiation originating from the big bang of the universe
[PW65]. For this discovery, Penzias and Wilson received the 1978 Nobel Prize in
Physics [N78].

The discovery of the cosmic microwave background shows that depending on
the perspective, one person’s noise can become a future signal or be understood as a
signal by another person. Noise can be interpreted as unwanted signals. Thus, noise
can also contain information that is irrelevant to the receiver. Contrarily, a signal
contains the information we are looking for.

Before the measurement, it is advantageous to predict the appearance of the
signal, which is often done by simulating templates [Cam+06; Abb+16c; Abb+16b].
For instance, a simple signal can be modelled by a defined sinusoidal modulation.
Additionally to the signal, the noise budget needs to be analysed by simulating
models, estimation or direct measurements.

Understanding and characterising noise sources is crucial for their reduction in
high-precision metrology. In general, stochastic noise is described by a stochastic
process whose random variables do not follow a deterministic pattern.1 Statistical
parameters characterise the randomness of the process. Probability theory is used to
determine the mean, variance, or covariance [VE06], as defined in Subsec. 2.2.1.

Another important parameter is the SNR, which is defined as

SNR =
Psignal

Pnoise
, (3.1)

where Psignal is the signal power and Pnoise the noise power. Only when Psignal > Pnoise,
and thus SNR > 1, the signal can be resolved, as seen in the logarithmic power
spectrum shown in Fig. 3.1. The figure shows a signal oscillating at Ω that peaks out
of the noise floor.

1Deterministic noise occurs when the process is too complex to model, which, e.g., is important in
machine learning [AMMIL12].
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FIGURE 3.1: Logarithmic power spectrum of a signal peaking at frequency Ω out of
the noise floor. The signal-to-noise ratio gives the power of the signal compared to
the power of the noise floor.

Example: noise of a laser beam

Now, consider the example of an electric field emitted by a laser. To consider its noise,
we can monitor the laser’s power over a specific measurement time. We observe a
randomly fluctuating quantity P(t). It is not possible to predict the state of the laser
field described by the random variable P(t). Hence, we cannot attribute constant
modulation coefficients or a fixed phase to describe the noise.

Often, the random signal is studied more conveniently in the frequency regime
where we can assign specific noise powers to each frequency bin.2 Stationary pro-
cesses will create constant spectral densities. Noise can also be shown in the optical
phase space picture introduced in Subsec. 2.2.1 by extending the picture with a third
axis for the frequency.3 In the example of noise on a laser field, we need to distinguish
between amplitude and phase noise.4 Another important discrimination is to consider
the origin of the noise. It can be of technical and quantum nature.

Quantum noise originates from vacuum fluctuations and sets a fundamental
classical limit for classical optical systems. Quantum noise on the laser field arises,
e.g., from spontaneous emissions in the laser gain medium [HK96]. It also couples
into the optical mode of interest at open ports, e.g. at non-perfect reflecting mirrors,
as described in Subsec. 2.2.3. Quantum noise is white and occurs equally in the
phase and amplitude quadratures. It occurs as photon shot noise if the laser power
is measured with a photodetector. The signal-to-shot-noise ratio can be improved
by increasing the laser power, as relative shot noise falls with the square root of the
laser power [Kwe10]. Another option to fight quantum noise is the application of
squeezed states of light.

Technical noise is caused by the technology, e.g. by the measurement instrument,
the equipment or any unwanted environmental influences. For an optical experiment
working with laser light, typical examples of technical noise sources are fluctuations in
the pump current of the laser diode, beam pointing or polarisation fluctuations. These
noise sources couple to the laser field’s amplitude. Phase noise can be caused, e.g. by
variations in the air current where the propagating laser light leads to fluctuations in
the index of refraction.

2This is done by measuring power spectra (Fig. 3.1) or power spectral densities [SM05].
3Quantum noise is treated in the quantum noise sideband picture, as introduced in Subsec. 2.3.3. For

more explanations on the representation of classical noise, see, e.g. [Kau18], Sec. 2.3.
4Phase noise is directly related to frequency noise since the frequency is the temporal derivative of

the phase.
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In principle, technical noise sources can be suppressed to arbitrarily low noise
levels, depending on the time, effort, energy, cost, and corresponding technical
sophistication invested in the experimental setup. All the mentioned noise sources
can couple differently to the signal.

We will distinguish between multiplicative and additive noise, depending on how
noise couples into the optical experiment. We again consider the stochastic process of
the laser power described by the random variable P(t).

Additive noise was first considered in [Kub62], and it arises if the influence of
environmental fluctuations does not depend on the state variable of the system (the
actual power P(t)) [Hor84]. Examples of additive noises can be found, e.g. at the
photodetection because of stray light or electric noise originating, e.g. from dark
current, or due to spontaneous emission in the laser [YAR89; BTW20]. Additive noise
does not scale with the used laser power.

Multiplicative noise couples into state variables and thus changes the system
dynamics [YS88]. It depends on the actual state of the system P(t), i.e. on the used
laser power. In the example of a laser beam, multiplicative noise sources are, e.g.
vibrations on optical components or temperature fluctuations causing optical length
changes. In the phasor picture, multiplicative noise scales with the size of the carrier.

3.1.2 Motivation for our method applied in spectroscopy

This subsection introduces publication [P1] by covering two points. First, it motivates
our applied approach and accurately states when it becomes useful for experiments in
spectroscopy. Second, it explains how we create and detect our spectroscopic signal.

Spectroscopic experiments frequently deal with inordinately small signals and
call for high sensitivities [He+19; Ma+20]. Often, noise spoils the measurement and
limits its sensitivity. We assume a scenario where the goal is to resolve a small signal
expected at low frequencies. Furthermore, we assume that the signal is not visible
due to two major limitations, as sketched in the two left blocks of Fig. 3.2: additive
low-frequency noise and white photon shot noise. We use a modulation technique, so
the signal also appears at high frequencies. Thereby, additive low-frequency noise, e.g.
due to the electronics after the detection process,5 can be circumvented. Increasing
the laser power is the conventional way to reduce relative shot noise. However, in
some applications, the laser power must not be increased due to technical limitations
[Den+06; Cas+20] as damage thresholds. Therefore, we want to follow an alternative
approach to fight photon shot noise by using high-frequency squeezing.

By applying both, high-frequency modulation and high-frequency squeezing, we
can increase the SNR and resolve a low-frequency signal. Next, we should consider
the signal and its detection. In [P1], we apply a length modulation of an optical cavity
to mimic a spectroscopic signal. The key question is: How can we detect this artificial
signal created by the cavity’s length modulation? In the following, two situations
are discussed. First, a low-frequency phase modulation signal generated inside a
cavity is investigated at low-frequencies. Second, a second phase modulation shifts
the signal to high frequencies. We will see, that in both situations, the signal can be
detected in the light’s amplitude quadrature.

5Here, I do not mean photon detection noise (shot noise) but rather thermal noise in the resistors or
photodiode dark noise. An extensive study regarding electronic noise is made in [Sei+06].
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FIGURE 3.2: Motivation for our approach presented in [P1]. Assuming a low-
frequency signal that is not resolvable due to additive technical low-frequency
noise and photon shot noise. Our approach uses modulation and squeezing, both
at high-frequencies to increase the SNR and make the low-frequency signal visible.

Single phase modulation

Assuming a mirror whose position is modulated at ωm around x0. Then, the mirror
position at xm = x0 cos(ωmt) will induce a phase shift φm = 2ωxm/c to an electric
field upon reflection.6 This phase change also happens inside a cavity. If the position
of a cavity mirror is modulated, the intra-cavity light will be phase-modulated.7 Thus,
we need to measure the phase modulation to observe our signal, which is impossible
with a direct detection on a single photodetector. However, a homodyne detector can
measure a phase modulation imprinted on a light field.

For the following consideration, we work in the rotating frame of reference. We
can write the phase-modulated classical field as

a = a0 exp (im1 cos(2πωst)) (3.2)

and the local oscillator as b = b0 exp(iθ). Here, m1 is the modulation index and ωs
the modulation frequency.

The homodyne detector measures the difference of the two powers, as seen in
Eq. (2.58). The difference power ∆P depends on the relative phase θ between the two
fields and reads

∆P(θ) ∝ 2b0 cos (θ −m1 cos(2πωst)) . (3.3)

We would expect to see the phase modulation for a phase quadrature readout, i.e. for
θ = π/2 (see again Eq. (2.61)). However, due to the concatenated cosine function this
is not easy to see. Hence, Eq. (3.3) is expanded for small modulation indices m1 ≈ 0:

∆P(π/2) ∝ 2b0m1 cos(2πωst) +O(m3
1). (3.4)

Now, the phase modulation can be directly seen oscillating with ωs.

6For more details, see [Bon+17], Sec. 3.6.
7Assuming the modulation frequency ωm is much smaller than the cavity linewidth.
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FIGURE 3.3: Phasor pictures of phase-modulated laser fields in the rotating frame of
reference (ω ≡ 0). In a) a single phase modulation is applied at ωs (red phasors). If
a homodyne detector reads out the amplitude quadrature, the purple sum phasor
is projected onto the X1 axis. The difference power is proportional to the change
of X1 and shows a 2ωs oscillation. In b) phase modulations are applied at ωs (red
phasors) and Ω (blue phasors). The resulting purple phasor follows a trajectory
dominated by the beat notes Ω±ωs. The pictures omit all higher-order phasors.
Simulation parameters to compute ∆P: m1 = m2 = 0.3, Ω = 20ωs.

When detecting the amplitude quadrature (θ = 0), the analogous Taylor expansion
as in Eq. (3.4) leads to

∆P(0) ∝ 2b0 − b0m2
1 cos(2πωst)2 +O(m4

1) (3.5)

= −1
2

b0
(
m2

1 cos(2× 2πωst) + m2
1 − 4

)
+O(m4

1). (3.6)

According to Eq. (3.5) we also see a signal oscillation for θ = 0, when we detect
the amplitude quadrature.8 However, we find, that ∆P(0) predominantly oscillates
with the double frequency 2ωs and the term scales with m2

1. This oscillation is a
second-order effect, which is often neglected.9

The phase modulation at frequency ωs detectable in the amplitude quadrature
at 2ωs can also be understood in the phasor picture, as shown in Fig. 3.3a). The
phase-modulated field from Eq. (3.2) is depicted by the purple phasor, which is
the vectorial sum of the carrier (green phasor) and the rotating phase modulation
sidebands (red phasors). According to Eq. (2.61), the homodyne detector always
measures the actual projection of the purple phasor on the X1-axis since it measures
the amplitude quadrature fluctuations. The measurement result is seen in the small
diagram showing that var ∆P(t) oscillates with 2ωs. This study concludes that a
phase modulation applied with ωs can be either detected in the phase quadrature at
ωs or, significantly smaller, in the amplitude quadrature at 2ωs.

Two cascaded phase modulations

In our approach, we are not detecting the intra-cavity modulation at the oscillation
frequency ωs, which is assumed to be a low frequency. Instead, we are applying a
high-frequency phase modulation at Ω to shift the signal originating from the cavity
length modulation towards higher frequencies. We can write this cascaded phase
modulation as

a = a0 exp (im1 cos(2πωst) + im2 cos(2πΩt)) . (3.7)

8Here, the difference between amplitude and amplitude quadrature becomes visible.
9The theoretical derivation in Sec. 2.1 in [P1] also neglects this second-order effect.
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Again, we can calculate the Taylor expansions of the difference powers ∆P obtained
from homodyne detection which read

∆P(θ = π/2) ∝ 2b0 (m1 cos(2πωst) + m2 cos(2πΩt)) +O(m2), (3.8)
∆P(θ = 0) ∝ −b0m1m2 cos(2π(Ω−ωs)t)

+b0m1m2 cos(2π(Ω + ωs)t) (3.9)

−2b0 +O(m2). (3.10)

These equations show an important result: To detect the intra-cavity phase modu-
lation at high frequencies, we need to look at the amplitude quadrature given by
Eq. (3.9), which is measured by a homodyne detector. Here, we find intermodulation
products oscillating with Ω±ωs.

For our experiment, we assume that the sidebands at ±Ω act as a new carrier
having an electric field proportional to m1. Measuring the beat notes at Ω±ωs is a
first-order effect which is proportional to m2. Consequently, it does not matter if we
detect the signal at ωs or at Ω±ωs if we assume the same power in the sidebands at
±Ω as in the carrier field at ω ≡ 0.

The cascaded phase modulation is also presented in Fig. 3.3b). This phasor picture
shows the first phase modulation at ωs (red phasors), but also the second phase
modulation at Ω (blue phasors) and the intermodulation sidebands (orange phasors).
The cascaded phase modulation affects the resulting phasor (purple phasor). Now,
the tilting of this phasor is dictated by a slow oscillation ωs and a fast oscillation Ω.
The phasor’s projection onto the X1 axis is seen in the difference photocurrent ∆P.
The beat note from ∆P has contributing frequencies of ωs −Ω and ωs + Ω which
corresponds to Eq. (3.9). In conclusion, two cascaded phase modulations can be
observed in the amplitude quadrature of the light field.10

In the next section, the publication [P1] is reprinted.

3.2 [P1]: High-precision cavity spectroscopy using high-
frequency squeezed light

This subsection reprints the following publication, which was accepted on 15 January
2021 and published on 10 February 2021 in Optics Express. The author contributions
and a short abstract can be found on Page iii.
[P1] J. Junker, D. Wilken, E. Huntington, and M. Heurs. “High-precision cavity
spectroscopy using high-frequency squeezed light”. In: Opt. Express 29.4 (Feb. 2021),
pp. 6053–6068. DOI: 10.1364/OE.416713

10They could also be observed in the phase quadrature but weaker at different beat notes.

https://doi.org/10.1364/OE.416713
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Abstract: In this article, we present a novel spectroscopy technique that improves the signal-to-
shot-noise ratio without the need to increase the laser power. Detrimental effects by technical noise
sources are avoided by frequency-modulation techniques (frequency up-shifting). Superimposing
the signal on non-classical states of light leads to a reduced quantum noise floor. Our method
reveals in a proof-of-concept experiment small signals at Hz to kHz frequencies even below
the shot noise limit. Our theoretical calculations fully support our experimental findings. The
proposed technique is interesting for applications such as high-precision cavity spectroscopy,
e.g., for explosive trace gas detection where the specific gas might set an upper limit for the laser
power employed.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Successful blue-sky experiments, such as the first direct detection of gravitational waves (GWs)
in 2015 [1] require an intimidatingly high measurement sensitivity. In a GW detector the signal
originates from the relative differential distance change caused by a GW, as measurable with a
Michelson-type interferometer [1]. In this particular case of the GW event GW150914 a strain
sensitivity of ∆L/L ≈ 10−23 was required. Other types of high-precision metrology experiments
detect other types of signals, but they have one requirement in common: All call for high
sensitivity and detection with a sufficiently large signal-to-noise ratio (SNR).

As an example, in laser absorption spectroscopy [2,3] the concentration of a gas phase can be
determined by measuring the interaction of a laser field with the gas molecules. The challenge
here often lies in the fact that the spectroscopic signal to be detected is inordinately small - this
makes its detection inherently difficult, but it additionally makes the signal highly susceptible to
noise. These challenges can be generalized to the detection of any small signal.

The obvious way to maximize the SNR is to increase the signal and to decrease the noise. At
low measurement frequencies, active feedback control often serves to suppress the dominant
technical noise sources down to the fundamental shot noise limit [4–7]. In addition to noise
reduction, the achieved signal-to-shot-noise ratio can be improved by increasing the laser power,
as relative shot noise falls with the square root of the laser power.

In spectroscopic applications, amplifying the laser power increases the interaction strength
and hence amplifies the signal. In some cases, however, the signal strength cannot be increased:
for technical reasons such as damage thresholds [8,9], or for fundamental reasons, e.g. if the
origin of the signal is astrophysical [10]. In other cases, the intrinsic noise of the measurement
apparatus is already governed by quantum shot noise, making a further reduction of the noise
floor seem initially unfeasible.

Technical noise is always present in experiments, in particular at low measurement frequencies
in the Hz and kHz regions. Typical examples of technical noise sources include seismic noise
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and mechanical vibrations, electronic noise, laser intensity and frequency noise, or fluctuations
of air currents leading to variations in the index of refraction of the air through which light
propagates. In principle, technical noise sources can be suppressed to arbitrarily low noise levels,
depending on the time, effort, energy, cost, and corresponding technical sophistication invested
in the experimental setup. Quantum noise, however, poses a more fundamental limit, which
is expressed in the Heisenberg Uncertainty Relation. Quantum shot noise occurring in laser
experiments originates from the Poissonian photon statistics of the coherent state [11], which is
emitted by a technically well-stabilized laser.

The application of squeezed light [12] can reduce the relative shot noise and thus improve the
SNR [13–15]. In this regard it acts like an increase in laser power, but without the drawbacks
associated with higher optical power, such as increased absorption, higher thermal load, excess
scattering, etc. Squeezed light first was experimentally demonstrated in 1985 [16] and has
gained increasing relevance over the last decades. While the first squeezing experiment reduced
the shot noise only by 0.3 dB, the highest achieved squeezing level to date lies at more than
15 dB [17]. The number of possible applications is too numerous to list, ranging from GW
detection [14] over continuous variable quantum computing [18] to quantum imaging [19,20]
and teleportation [21,22]. Squeezing generated at low frequencies (LFs) [23,24] always comes at
the cost of considerable technical effort; in comparison, high-frequency (HF) squeezing [25–27]
can drastically reduce these efforts.

Squeezing at base-band has been utilized to improve spectroscopic measurements [28,29],
e.g. on atomic cesium [30]. Recently, a quantum enhancement of the SNR of 3.6 dB relative
to the shot noise limited SNR was demonstrated in stimulated Raman spectroscopy [31]. In
these experiments [28–31], a squeezed probe beam was transmitted through samples and then
detected. However, an even higher signal strength can be achieved by enhancing the probe field
in an optical resonator.

In this paper, we show in a proof-of-concept experiment the application of HF squeezing for
cavity enhanced phase-sensitive spectroscopy. We report on a novel method that circumvents
technical noise sources and improves the SNR without the need to increase the laser power and
enables more advanced techniques such as noise-immune cavity-enhanced optical-heterodyne
molecular spectroscopy (NICE-OHMS) [32]. We benefit from the advantages of HF squeezing
by shifting the signal of interest (at Hz or kHz frequencies) to 200 MHz. We apply a small
cavity length modulation as a signal that would conventionally be masked by quantum shot
noise at HF. With our approach this signal can be revealed in a 6 dB squeezed noise floor. The
results of our research are very promising for applications in high-precision metrology as in
quantum spectroscopy, in particular for frequency modulation spectroscopy (FMS) [33] or trace
gas detection [34,35] where the potentially explosive gas sets an upper limit for the employed
laser power.

In Sec. II we provide a theoretical description of the effect of a cavity length modulation
on a phase modulated laser field. We derive the variances, if the modulated field’s amplitude
quadrature is squeezed in an optical parametric oscillator (OPO) before it senses the cavity length
modulation. Sec. III gives a detailed description of our experimental setup. In Sec. IV we
present our results including the measurements that show cavity length modulation signals in the
reduced noise floor around 200 MHz. In Sec. V we discuss our results, identify drawbacks and
benefits of our method and give a brief outlook. We end with a conclusion in Sec. VI.

2. Theory

We detect artificial length variations of a cavity that are generated with a piezoelectric actuator at
LFs. If we send a probe field through this cavity, a phase modulation (PM) is imprinted on the
field that can be detected in transmission. In this section, we first calculate the variance of such a
field. Second, we look at the case of a probe field that is phase modulated at the free spectral
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range (FSR)-frequency. Third, we determine the output variance when using a probe field that is
additionally squeezed. This allows an improvement of the SNR, when the classical measurement
was shot-noise-limited.

2.1. Detecting a cavity length modulation

We start with the simple case of a Fabry-Perot (FP) cavity shown in Fig. 1. From the left, a
classical laser field Âin is sent into the impedance matched cavity with two loss-less mirrors with
equal reflectivities R and detuning ∆. We want to determine the output field Âout in transmission.

Fig. 1. Schematic of the length modulated FP cavity.

For the calculations we are following the approach in [11]. We can express the circulating
cavity mode amplitude âfp after one cavity round-trip time τfp by

âfp(t + τfp) = exp(i∆)
(︂
Râfp(t) +

√︁
Tτfp

(︁
Âin(t) + Âvac(t)

)︁ )︂
. (1)

The circulating mode amplitude after one cavity round-trip time depends on the initially
circulating mode âfp(t) and on the two input rates Âin(t) and Âvac(t). Next, we consider the
cavity length modulation as phase modulation for the intra-cavity field. Therefore, we set
∆ = d sin(ωst) where ωs is the modulation frequency. After separating DC and fluctuating terms
with â(t) = ā + δâ(t) and linearizing then, we can focus on the fluctuating part of Eq. (1) and find
that

δâfp(t + τfp) = −āfp

(︂
1 − exp(id sin(ωst))

)︂
+ exp(id sin(ωst))

(︂√︁
Tτfp

(︁
δÂin(t) + δÂvac(t)

)︁
+ Rδâfp(t)

)︂ (2)

The exponential expressions in Eq. (2) can be approximated using Bessel functions of the first
kind. For small cavity length changes d ≪ 1 we can approximate

exp(id sin(ωst)) ≈ 1 +
d
2

(︂
exp(iωst) − exp(−iωst)

)︂
(3)

and call the exp(±iωst) terms sidebands. Next, we can transform Eq. (2) to Fourier space analog
to [25] by substituting â(t + τ) ⇌ ã(ω) exp(iωτ). We can solve for the fluctuating part

δãfp(ω) =
2(δÃin + δÃvac)

√︁
Tτfp + āfpd(δω+ωs − δω−ωs )

2(exp(iτfpω) − R)
. (4)

The cavity length modulation sidebands are now represented by the Dirac delta functions
δω±ωs : = δ(ω ± ωs), both scaling with the modulation amplitude d and with the cavity mean
field āfp.
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We use the input-output theory from [36], including the quantum boundary conditions, to
derive the field fluctuations leaving the FP cavity as

δÃout,fp =
√︂

T/τfpδãfp −
√

RδÃvac. (5)

If we detect the output field, we can measure the amplitude (+) or phase quadrature (-)
fluctuations

δX̃+(ω) = δÃ(ω) + δÃ(−ω)†, (6)
δX̃−(ω) = i

(︁
δÃ(ω) − δÃ(−ω)†

)︁
, (7)

where δã†(ω) = δã(−ω)† [37]. Finally, we are interested in the variances V±(ω) =
⟨︁
|δX̃±(ω)|2

⟩︁
.

Since the Dirac delta function δ is only an idealization and its square is not defined mathematically,
below we replace them by Dirac delta-like functions δ̃ with finite width, which are later defined
in Eq. (23). Physically, the width of those sidebands corresponds to the technical noise present in
the modulation sidebands. Assuming uncorrelated input fields Ãvac and Ãin, the output variances
read

V+fp(ω) =
|︁|︁A(ω)|︁|︁2V+in(ω) +

|︁|︁B(ω)|︁|︁2V+vac(ω) + V+n (ω), (8)

V−
fp(ω) =

|︁|︁A(ω) |︁|︁2V−
in(ω) +

|︁|︁B(ω) |︁|︁2V−
vac(ω)

+

|︁|︁|︁|︁ iāfpd
√

T
√
τfp(exp(iτfpω) − R)

(δ̃ω+ωs − δ̃ω−ωs )

|︁|︁|︁|︁2 + V−
n (ω),

(9)

where A(ω) and B(ω) are cavity related pre-factors specified as

A(ω) =
T

exp(iτfpω) − R
(10)

B(ω) = −
√

R +
T

exp(iτfpω) − R
. (11)

Evidently, the two sidebands oscillating withω±ωs originate from the cavity length modulation.
They will only appear in the phase quadrature output variance V−

fp. We use the term Vn to
describe uncorrelated noise sources that add to the measured variance, e.g. electronic noise.
Noise that is initially on the probe beam or noise sources that affect the probe beam at any
point in the experiment (e.g. mechanical cavity resonances or an unstable cavity lock) are more
comprehensive to describe and would overcomplicate the calculations shown here. We therefore
neglect these noise terms but want to empathize that our approach is not immune to this type
of noise. However, we elaborate on this in Sec. 5 and extend our idea to suppress these noise
sources in Sec. 5.1.

2.2. Frequency up-shifting the signal

Typical noise sources occur primarily at LFs (<10 MHz). To circumvent the noise Vn(ω), we
measure our signal at HFs. Therefore, we extend our setup according to Fig. 2. A PM at HF
(Ω ≫ ωs) is imprinted by an electro-optic modulator (EOM) on the input field Âin, before the
field enters the cavity. To maximize the transmission of the modulation sidebands, the modulation
frequency Ω should correspond to the FSR of the FP cavity (Ω = FSRfp = 1/τfp).

Again, we assume a small modulation index β and use the Bessel approximation from Eq. (3).
For the fluctuating part we get in frequency domain for the new input field

δ̃Ãin(ω) =
(︁
δ̃Ãmod(ω) +

β

2
Āmod(δ̃ω−Ω − δ̃ω+Ω)

)︁
exp(iθ), (12)

where Ãmod corresponds to the field before the EOM. Here, we have dropped the dδ̃Ã terms
assuming dδ̃Ã ≪ dāfp. Then, the output variances of the cavity can be calculated analogously to
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Fig. 2. Schematic of the length modulated FP cavity, with a phase modulated input field.

Sec. 2.1 yielding

V+fp,pm(ω) = V+fp(ω) +
|︁|︁|︁|︁ ĀmoddTβ
2(exp(iτfpω) − R)

|︁|︁|︁|︁2
×
|︁|︁(δω+Ω−ωs + δω−Ω+ωs − δω+Ω+ωs − δω−Ω−ωs )

|︁|︁2,
(13)

V−
fp,pm(ω) = V−

fp(ω) +

|︁|︁|︁|︁ iĀmodTβ
exp(iτfpω) − R

(δω+Ω − δω−Ω)

|︁|︁|︁|︁2 (14)

where V±
fp corresponds to the results from the previous section derived in Eqs. (8) and (9). The

terms oscillating with ω ± ωs and ω ± Ω can be only seen in the phase quadrature V−. The
intermodulation terms oscillating with ω ±Ω ± ωs can be detected only in the output amplitude
quadrature V+, which is an important result. This result means that the cavity length modulation
can also be resolved at HFs. External noise Vn, introduced in Eqs. (8) and (9) may still couple
into the measurement. However, we can assume that there is negligible noise at hundreds of
MHz.

Fundamentally, this measurement will be limited by the shot noise when technical noise
sources on the probe beam are suppressed sufficiently. The relative shot noise level might be
reduced by increasing the used laser power. However, this is often only possible in the limits of
available and permissible power.

2.3. High-frequency phase modulated squeezing

One approach to further reduce noise and thereby improve the shot-noise-limited SNR is the
usage of a squeezed probe field. In the following section we explain how such a field is generated
and how its variances can be derived. The following calculations were similarly done for an
unmodulated seed in [25].

We consider a singly resonant OPO that is operating below threshold at the fundamental
frequency ω0 as shown in Fig. 3. For simplification, we assume a cavity consisting of a partially
reflective (PR) input mirror with R1<1, a highly reflective (HR) mirror with R2 ≈ 1 and an ideal
non-lossy mirror R3 = 1 surrounding a non-linear χ(2) medium. It is convenient to include the

Fig. 3. Schematic of an OPO with a phase modulated seed as input.
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effect of all intra-cavity losses in the reflectance of mirror 2. The nonlinear medium is pumped
with the field B̂in at the second harmonic frequency ωpump = 2ω0. The cavity round-trip time is
τopo and, ideally, should be identical to the round-trip time in the FP cavity (FSRopo = FSRfp). A
vacuum field Âvac is impinging on mirror 1 and the phase modulated seed field Âin, identical to
Eq. (12), is sent into the cavity on mirror 2. We are dealing with a single mode as we do not
discriminate in frequency between the upper and lower sidebands. Thus we assume a single-mode
interaction Hamiltonian with an undepleted pump field:

H =
iℏχ
2

(︂
a2 − a†2

)︂
. (15)

As in subsections 2.1 and 2.2, the fundamental cavity mode âopo after a single cavity round-trip
with round-trip time τopo can be expressed on resonance by

âopo(t + τopo) = −χτopoâ†opo(t) +
√︁

R1R2âopo(t)

+
√︁

R1T2τopoÂin(t) +
√︁

T1τopoÂvac(t).
(16)

The solution for the fluctuating part δã(ω)opo of the intra-cavity field in frequency domain can
be computed similarly as above. Since the OPO is seeded with a phase modulated field, δÃin is
defined as in Eq. (12). To derive the desired fluctuations for the output field of the OPO, the
boundary condition

δÃout,opo =
√︂

T1/τopoδãopo −
√︁

R1δÃvac (17)

needs to be applied. We can now use δÃout,opo for the OPO’s output to substitute the FP cavity’s
input δÂin in Eq. (5). Then, the output variances of the FP cavity can be computed similarly to
Eqs. (8) and (9)

V±
fp(ω) = V±

cav(ω) +
|︁|︁C±(ω)

|︁|︁2 + V±
n , (18)

but become rather complex. The variance V±
cav is specified as

V±
cav =

|︁|︁|︁|︁A(ω)(︁ − √
R +

T1

exp(iτfpω) −
√

R1R2 ± τopo χ

)︁
+ B(ω)

|︁|︁|︁|︁2V±
vac(ω)

+

|︁|︁|︁|︁ √
R1T1T2T

(exp(iτfpω)) − R)(exp(iτfpω) −
√

R1R2 ± τopo χ)

|︁|︁|︁|︁2V±
in(ω).

(19)

It shows how the variances of the impinging vacua and the seed are transformed by the two
cavities and thus defines the shot noise level. In fact, it is important to take a closer look onto
C+. The situation is similar as before in Eqs. (13) and (14). C+ represents the intermodulation
sidebands we are interested in. We find

C+(ω) =
ĀmoddTβ

√
R1T1T2

2(exp(iτfpω) − R)(exp(iτopo) −
√

R1R2 − τopo χ)

× (δω+Ω−ωs + δω−Ω+ωs − δω+Ω+ωs − δω−Ω−ωs ).
(20)

The sidebands oscillating with ω ± ωs and ω ±Ω can be found in C−(ω):

C−(ω) =
iĀmodTβ

√
R1T1T2

(exp(iτfpω) − R)(exp(iτopo) −
√

R1R2 − τopo χ)
(δω+Ω − δω−Ω)

+
iāfpd

√︁
T/τfp

exp(iτfpω) − R
(δω+Ω − δω−Ω).

(21)

Choosing amplitude quadrature squeezing by setting the phase of the seed θ = 0 in Eq. (12),
we achieve a reduced noise floor in the amplitude quadrature and an increased noise floor in
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the phase quadrature in Eq. (18). Thereby, we improve the SNR measuring the cavity length
modulation.

The variance in Eq. (18) is only an idealization. If the field is measured with a homodyne
detector (HD) to access the phase quadrature, phase fluctuations between the signal and the local
oscillator (LO) need to be taken into account. For small standard deviations of the normally
distributed phase fluctuations, phase jitter with a root mean square of ϕ will affect the detection
angle at the HD. Including the total efficiency η and thus optical loss, we can write the measured
variances behind the FP cavity as [38]

V±
fp,det(ω) = η

(︁
V±

fp(ω) cos2(ϕ) + V∓
fp(ω) sin2(ϕ)

)︁
+ (1 − η). (22)

Hence, the output variance will be a mixture of the amplitude and phase quadrature V+ and V−.
In consequence, the squeezing level will be reduced and all existent sidebands, to some degree,
will be visible in both measured variances. We will use Eq. (22) for fitting our experimental data
in Sec. 4. However, we will first present our experimental setup in the next section.

3. Experimental setup

Our experimental setup shown in Fig. 4 can be divided into three subsystems. The first part is
the preparation stage and consists of the OPO, our non-classical light source. Here, our probe
beam is generated which is a phase modulated but amplitude quadrature squeezed field. This
field is sent into our second subsystem, the FP cavity. Here, we apply a cavity length modulation
to mimic a spectroscopic signal. Finally, our third subsystem consists of a balanced HD where
we resolve the length modulation signal in a squeezed sub-shot-noise floor at HFs.

Fig. 4. The experimental setup consisting of the three subsystems: squeezed state preparation,
spectroscopy and homodyne detection.

3.1. Non-classical light source

Our non-classical light source consists of a sub-threshold OPO, shown in the upper block of
Fig. 4. In this block, all shown laser fields are s-polarized. The OPO has a comparably long
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round-trip length of Lopo ≈ 1.5m. This leads to a relatively small FSR of 199.66 MHz. Two
curved mirrors with radius of curvature of −100 mm create a cavity eigenmode with beam waist
of 25.6 µm in the crystal. The OPO is seeded with a phase modulated classical laser field through
an HR mirror (transmission T = 0.01%) that is attached to a piezoelectric element (PZT2) from
the left side. The PM frequency of 199.733 MHz is chosen to match the FSR of the OPO and, in
particular, of the FP cavity (see Sec. 3.2 and Table 1). This ensures that the PM sidebands are
transmitted by the two cavities. The singly-resonant OPO cavity is held on resonance with PZT2
for 1064 nm using a field in counter-propagating direction of the cavity. This field is not depicted
in the Fig. 4 for simplicity. The 1mm × 2mm × 10mm nonlinear PPKTP crystal is pumped
with 170 mW at 532 nm. To reach a stable production of amplitude quadrature squeezing in the
probe beam, the squeezing angle needs to be locked: First, we modulate the phase of the seed
with 73 kHz, by dithering the PZT1 attached to a steering mirror. Second, 0.3 % of the probe’s
power are detected on the photodiode (PD1) behind a PR mirror. Then, the detected signal is
demodulated to generate an error signal which is sent back to PZT3. The full characterization
of our non-classical light source ("squeezing comb") and its performance is given in detail in a
publication currently under preparation. The most important parameters characterizing the OPO
are given in Table 1.

Table 1. Important parameters of OPO and FP cavity.

OPO Value Error Unit

linewidth (FWHM) 4.5 ±0.1 MHz

FSR 199.66 ±0.01 MHz

pump power 170 ±12 mW

escape efficiency 97 ±1 %

FP cavity Value Error Unit

linewidth (FWHM) 200 ±7 kHz

FSR 199.733 ±0.01 MHz

finesse 998 ±33

round-trip-loss 90 ±10 ppm

3.2. Fabry-Pérot cavity for spectroscopy

The second subsystem is shown in the right bottom block of Fig. 4 including the FP cavity as
the spectroscopic device. In the FP cavity the artificial signal is created by actuating PZT4
which corresponds to a cavity length modulation. The FP cavity consists of two PR mirrors
(R = 99.69%, ROC = 2m) attached to an aluminum spacer in a distance of roughly 37.5 cm. The
intra-cavity loss per round-trip is 90 ppm and the exact FSR of the FP cavity is 199.733 MHz.
Hence, the cavity finesse is 998 and the linewidth at the full width at half maximum (FWHM) is
200 kHz. The output mirror is attached on PZT4 to modify the cavity length.

We stabilize the FP cavity with the p-polarized lock beam, so that it is resonant for our
s-polarized probe beam. This is possible because the cavity is radially symmetric and therefore
degenerated for s- and p-polarization. The lock field is phase modulated with EOM2 at 2 MHz
and sent into the FP cavity. The part that is reflected is detected on PD2, demodulated, low-pass-
filtered and fed back to PZT4 [39]. The s-polarized amplitude quadrature squeezed probe field
coming from the OPO is reflected at PBS1 and it is also injected into the resonant FP cavity.
PBS2 is used to separate the lock field from the signal field in transmission of the FP cavity.

In our approach we show that small phase signals created in the FP cavity can be resolved
by the use of amplitude quadrature squeezing. In order to generate these signals, we can apply
tiny length modulations with a) 20 kHz (amplitude (9.8±1.0) pm) and b) 100 Hz (amplitude
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(25.4±1.0) pm) on PZT4. The corresponding PZT amplitudes are obtained from the fits in Fig. 6,
see Sec. 4.2, via the fitting parameter d. Both modulation frequencies are smaller than the
linewidth of the FP cavity. We can easily modify the modulation strength by changing the voltage
applied to the PZT4. We summarize all important parameters in Table 1.

3.3. Balanced homodyne detection

The detection stage is the third subystem of our setup, depicted in the bottom left corner of
Fig. 4. In this stage we measure the phase and amplitude quadratures of the signal field. We
use a balanced HD where the signal is interfered with the s-polarized LO. The detector has a
low-noise AC output to access the signal’s fluctuations. The detector’s DC output is used to lock
the detection angle. The relative phase information between LO and signal is encoded in the beat
signal. The DC slope can be taken as error signal to lock the detection angle on phase quadrature.
For an amplitude quadrature readout, we need to stabilize at an interference maximum. Therefore,
we demodulate the signal at 73 kHz and low-pass filter it to obtain the corresponding error signal.
In both cases, the error signal is applied to PZT5. In the next section we present measurements of
the signal’s phase and the amplitude quadratures.

4. Results

In this section, we present, characterize and discuss our measurements. First, we quantify the
performance of our non-classical light source after integration into the setup, behind the FP
cavity. Second, we detect two different cavity length modulation signals. Finally, we discuss our
approach and give a brief outlook.

4.1. Squeezing performance behind the FP cavity

We measured the noise spectrum of our amplitude quadrature squeezed state in transmission
of the FP cavity with an unmodulated probe field (EOM1 turned off in Fig. 4). For a full
characterization, we measured squeezing (sqz) in the amplitude quadrature (blue trace) and
anti-squeezing in the phase quadrature (red trace) in Fig. 5. The measurements are normalized
to the shot noise which is measured classically when the pump of the OPO is turned off. Thus,
the 0 dB level corresponds to the quantum shot noise limit. All presented measurements in this
section are taken with a Keysight N9020a MXA signal analyzer.

Table 2. Fitting parameters plugged in Eq. (22) for
creating the fits in Fig. 5.

Parameter Value

R1 90 %

R2 99.99 %

FSRopo 199.66 MHz

χ 7.39 MHz

R 99.69 %

FSRfp 199.733 MHz

Āmod 0

η 86 %

φ 38 mrad

On cavity resonance, we detected 6.7 dB squeezing and 14.7 dB anti-squeezing after subtracting
the electronic DN, which is approximately 14.2 dB below the shot noise. For comparison, without
the FP cavity 8.2 dB of squeezing and 15.1 dB of anti-squeezing were measured. This vertical
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Fig. 5. Spectrum of the amplitude quadrature squeezed state behind the FP cavity. The
simulation was obtained with Eq. (22). For the measurement, the detection angle is locked
onto amplitude quadrature to observe squeezing and onto phase quadrature to see anti-
squeezing. The spectrum was taken around the center frequency of 199.733 MHz which
is equal to the FSR of the FP cavity, see Table 2. The dark noise (DN) of the HD was
subtracted from the raw data. Further, it was normalized to the shot noise level, which was
14.2 dB above the dark noise (DN). Span 1 MHz, resolution bandwidth (RBW) 5.1 kHz,
video bandwidth (VBW) 20 Hz, avg 10. For comparison, without the FP cavity 8.2 dB of
squeezing and 15.1 dB of anti-squeezing with a phase noise of 30 mrad were measured.

asymmetry depends on the amount of optical loss and phase noise [17,40] and can be explained
by Eq. (22). The FSRs of the OPO and the FP cavity were not perfectly matched and differed
by 73 kHz (see Table 1), which corresponds to an optical round-trip length difference of 55 µm.
Notwithstanding, the maximal squeezing degradation due to this mismatch is only 0.01 dB.

Our measured data agrees well with our theoretical model from Eq. (22), fitted by the dashed
traces in Fig. 5. Table 2 gives an overview of the fitting parameters. The most relevant parameters
to characterize the performance are the total efficiency η = 86% and the root mean square phase
noise ϕ = 38mrad. For comparison, without the FP cavity 30 mrad of phase noise was measured.
In further measurements we determined the composition of η. The escape efficiency of our OPO
was ηesc = 97 ± 1%. The total propagation efficiency including all optics and FP cavity was
ηprop = 94 ± 1%. The efficiency of the detection process is determined by the homodyne visibility
ηvis = 98.5 ± 0.5%. Thus the quantum efficiency ηqe = 96 ± 1% of the HD was obtained as in
[17], by using η = ηescηpropηvisηqe.

The linewidths of squeezing and anti-squeezing become unequal behind the FP cavity, see
again Fig. 5. This linewidth asymmetry can be explained by the smaller linewidth of the
FP cavity compared to the OPO. Frequency contributions outside of the linewidth of the FP
cavity experience a significantly higher loss which degrades the squeezing far more than the
anti-squeezing, see Eq. (22). To our knowledge, this created asymmetry has not been shown in
previous publications.
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4.2. Measuring a cavity length modulation

We turned on the PM applied on EOM1 to acquire the length modulation signals of the FP cavity
at the first FSR. As before, we generate an amplitude quadrature squeezed state, but additionally
it is phase modulated at 199.733 MHz. The frequency is tuned to match the FSR of the FP
cavity. We first demonstrate the general feasibility of our method by injecting a kHz cavity length
modulation. Since external noise often increases with decreasing frequency, we secondly push
the experiment to the LF limit. In each case we compare our results with the classical (class)
case which corresponds to shot noise, when the pump of the OPO is turned off.

First, we apply a cavity length modulation at 20 kHz with an amplitude of 9.8 pm and measure
the output variances plotted in Fig. 6(a)). We see two peaks in a frequency distance of 20 kHz to
the EOM peak corresponding to the length modulation. The peaks maxima are located 2.9 dB
below shot noise in the 5.7 dB squeezed noise floor. Again, the turquoise dashed trace was
plotted with Eq. (22) and agrees well with the measured data. For comparison, we repeated
the measurement for the classical case when the OPO’s pump is blocked. This measurement is
shown in red in Fig. 6. Here, we effectively cannot reveal the cavity length modulation. Our
simulation (dashed orange trace) predicts a peak size of 0.08 dB above shot noise which would
require significantly more averaging to resolve experimentally. In conclusion we see an effective
SNR improvement of 5.7 dB. The parameters needed for the simulation can be found in Table 3.
To plot the Dirac delta-like function from Eq. (22), we used a normalized Gaussian distribution,
with

δ̃ω = δ̃(ω) = exp
(︂
−
ω2

2σ2

)︂
and σ = RBW. (23)

Table 3. Parameters plugged in Eq. (22) for creating the fits in
Fig. 6. Missing parameters are identical to Table 2.

Parameter a) b)

ωs 20 kHz 100 Hz

Ω 199.733 MHz

Āmod 3.3×106 √Hz

β 3.3×10−5 9.1×10−5

d 5.8×10−5 1.5×10−4

φ 49 mrad 51 mrad

Finally, we demonstrate that our method can even resolve sub-kHz signals, that are presumably
more affected by LF external noise. We have chosen a cavity length modulation of 100 Hz with
an amplitude of 25.4 pm. The measured spectrum can be found in Fig. 6(b). We get similar
results as in a): the two peaks originating from the length modulation have a maximum of 2.8 dB
below shot noise in a 6.0 dB squeezed noise floor. Thereby, we improved the signal to noise ratio
by 6.0 dB at this frequency compared to the classical case, where the length modulation cannot
be effectively resolved. Again, the experimental data can be well fitted with our derived theory,
shown by the dashed traces.

For the given set of seed power and modulation index of the EOM, we could resolve displacement
signals with an amplitude down to 4 pm at 20 kHz and 14 pm at 100 Hz with signals 1 dB larger
than the squeezed noise floor.
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Fig. 6. Resolved cavity length modulation signals applied at a) 20 kHz and b) 100 Hz in the
squeezed noise floor. The center frequency corresponds to Ω = 199.733MHz. The peaks
located at this frequency are related to the PM sideband of the EOM and mainly originate
from phase quadrature to amplitude quadrature coupling via phase noise, see Eq. (22). For
the squeezed case, the peaks are enhanced compared to the classical case since the phase
quadrature is amplified due to anti-squeezing. In a), the peaks at a distance of 2.6 kHz to
the center peak originate from a FP cavity resonance. Parameters of the signal analyzer: a)
two distinct measurements: span 400 kHz: RBW 1 kHz, VBW 10 Hz, avg 50; span 50 kHz:
RBW 5.1 kHz, VBW 20 Hz, avg 10 (DN and SN avg 50), b) span 500 Hz: RBW 5.1 Hz,
VBW 1 Hz, avg 300.
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5. Discussion

We have demonstrated that our method is capable of resolving tiny signals otherwise masked by
quantum shot noise, by using HF squeezed light and sophisticated modulation techniques. In
comparison to previous spectroscopic experiments in literature employing base-band squeezed
light [28–30], we have significantly improved the squeezing level while sending our probe beam
through an optical resonator.

In contrast to base-band experiments, we need significantly less effort locking the squeezing
angle. Even though it is possible to control the squeezing angle using a noise dither technique
without a carrier [23,41], more stable locks can be achieved using bright optical fields that
co-propagate with the squeezed vacuum [42,43]. However, for base-band measurements these
fields need to be frequency shifted [24] to avoid excess noise caused by the LF laser noise. In our
case of measuring at HFs, we can avoid this effort and use our seed field to control the squeezing
angle.

Our experiment is sensitive to some types of noise and immune to others. It is not immune
to any disturbances that act as phase or amplitude noise coupling into our laser field, similar to
[30]. These disturbances cannot be differentiated from the cavity modulation signal we want to
detect. This kind of noise might be caused by e.g. temperature fluctuations or vibrations that
are affecting the stability of the laser resonator or optical components. These sources have in
common that they will also appear around the EOM sideband at HF, since they all experience
the modulation process. Contrariwise, any noise sources coupling into the measurement that do
not add coherently on our laser field, are circumvented because they do not occur on the EOM
sideband at HF. Those noise sources are predominantly at LFs. Examples for these kind of noises
are electric or post processing noise, incoherent stray light like ambient light or infrared thermal
radiation.

Our demonstrated approach has a number of advantages. Technical laser noise typically
occurs at frequency ranges from Hz to 100 kHz and drops off for higher frequencies (∼ MHz).
Therefore our LO does not exhibit technical noise around 200 MHz and is thus shot noise
limited. Imperfections like a non-ideal common-mode rejection at the HD will have a much
lower impact than at LF, where technical noise is present. Since our high-frequency squeezer
is built in a bow-tie topology, back-scattered light is significantly suppressed in comparison to
linear squeezers [44]. Furthermore, in our case of perfect frequency matching (FSRfp = Ω) all
PM sidebands are transmitted by the cavity symmetrically in frequency. Therefore all sidebands
experience frequency noise identically, such that frequency-to-amplitude noise coupling in the
cavity is strongly suppressed. This feature is often referred to as laser frequency noise immunity
[45] and is used e.g. in NICE-OHMS [32].

Our technique is not fundamentally limited to the detection of preferably LF signals. However,
to resolve the cavity length modulation sidebands with high precision, two technical requirements
need to be fulfilled: The spectrum analyzer needs a sufficiently high resolution, and the EOM
must produce sufficient narrowband and stable sidebands. We used a network analyzer [Keysight
E5061B] to generate the signal at 199.733 MHz. The generated signal has a measured bandwidth
of <1Hz, which is limited by the RBW of our spectrum analyzer. For further improvement
towards measurements at lower cavity length modulation frequencies a better RBW is hence
required.

5.1. Outlook

With our approach we have demonstrated the detection of small sub-shot-noise phase signals. In
order to measure amplitude signals, merely the detection angle at the HD needs to be adjusted
for readout of the orthogonal quadrature. For an improved common-mode rejection of phase
fluctuations on LO and probe beam the two beams have to co-propagate in the FP cavity. This will
lead to a significant reduction of phase noise imprinted by the FP cavity on the probe beam. To
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achieve this, the LO has to be orthogonally polarized to the probe beam. The common-mode phase
fluctuations do not affect our final measurement in transmission, where the probe’s amplitude
quadrature can be measured with a polarization based HD scheme [46].

As discussed before, our approach is still sensitive to technical noise sources that couple into
our probe beam. We therefore propose to implement the spectroscopic FP cavity in one arm
of a Michelson interferometer. A HF phase modulated field similar to our seed is coupled into
the interferometer’s input port. The HF squeezed field is sent into the interferometer’s output
port. For a specific interferometer design, the LF cavity length modulation sidebands will exit
the interferometer at HF in the squeezed noise floor and will interfere with a coherent field at
DC. This technique is similar to a gravitational wave detector operated with DC readout [47]. To
reduce technical noise on the probe beam this is a promising approach which deserves further
investigation.

6. Conclusion

We have presented a new method to significantly improve the signal-to-shot-noise level in
high-precision spectroscopic measurements without increasing the laser power. Our approach
circumvents technical noise sources such as low-frequency detection noise by applying a high-
frequency PM. Additionally, the shot noise of the probe beam is squeezed by a sub-threshold OPO.
With this prepared phase modulated, amplitude quadrature squeezed probe, we demonstrated a
sub-shot-noise limited detection of small spectroscopic phase signals. In our experiment, we
were able to resolve tiny cavity length modulations at 20 kHz (100 Hz) on a squeezed noise floor
of 5.7 dB (6.0 dB). The derived theory confirms the measurements very well.

Our approach is interesting for spectroscopic applications, e.g. for FMS [33]. Experiments
where the probe under investigation (e.g. a gas) may set a certain laser power limit can also
benefit from our technique, since it allows to increase the SNR without the need for higher laser
power.
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3.3 Preparation of the required quantum state

For the method used in [P1], a phase-modulated and amplitude quadrature squeezed
state is required. The experimental generation and characterisation of this particular
quantum state is discussed in this section. Subsection 3.3.1 explains how the phase of
the squeezed state is locked and modulated. Here, the focus is on the different electric
fields required to ensure a stable operation. In [P1], the OPO was not characterised
independently, and squeezing measurements were only shown behind the FP cavity.
Therefore, Subsec. 3.3.2 is dedicated to investigating the squeezing performance of
the OPO. A squeezing slope is presented that is well suited to get essential parameters
characterising the OPO.

3.3.1 Phase-modulated amplitude quadrature squeezed state

We decided to modulate at a relatively large frequency of roughly 200 MHz so that
the modulation sidebands are resonant in the OPO due to its free spectral range of
also 200 MHz.11 This subsection explains how the amplitude quadrature squeezed
state is generated and how the phase modulation can be easily switched on/off by
the function generator.

In the following, we distinguish between co- and counter-propagating travel di-
rection in the OPO. The co-propagating mode is referred to the direction of generated
squeezing. The counter-propagating mode is reversed and is thus ideally decoupled
from the co-propagating mode.

The OPO, used for this experiment is described in Sec. 3.1 in [P1]12 and in Sec. 2.4.
It is locked on resonance for the fundamental field at 1064 nm. For the OPO length
lock, a fundamental field is coupled through a high-reflective cavity mirror in counter-
propagating direction (for simplicity not shown in Fig. 4 in [P1]). A piezoelectric
transducer (PZT2) is clamped between another high-reflective mirror and the cavity
spacer. It is used to dither the mirror at 106 kHz to imprint a phase modulation on
the locking field. Then, the locking field, leaking out at the input/output coupler,
is measured on a photodetector. External demodulation with the dither frequency
generates the error signal. It is is applied on a proportional–integral–derivative (PID)
controller, amplified and fed back to the PZT2.

The squeezing angle must be locked to generate an amplitude quadrature
squeezed state. We use a coherent field called seed, see Fig. 4 in [P1], which is coupled
in the co-propagating direction through a high-reflective mirror into the OPO. Its
amplitude is amplified or de-amplified, depending on its phase relation to the pump
field.13 Thus, the power of the seed serves as an indicator of the actual squeezing
angle. To actively control this angle, the phase of the seed is modulated with 73 kHz,
by dithering PZT1, as shown in Fig. 4 in [P1]. A fraction of 0.3 % of the seed’s power
is detected on the photodiode (PD1) behind a partial-reflective mirror. Then, the
detected signal is demodulated to generate an error signal which is sent back to PZT3.
If the loop is closed by a PID controller, an amplitude quadrature squeezed state
is generated. After being reflected at the 99.7 % mirror in Fig. 4 in [P1], the seed is
called probe.

11Using smaller modulation frequencies at baseband (zeroth free spectral range) would also work in
principle. However, then it would be beneficial to use shorter squeezers having linewidths in the
order of 100 MHz as in [Vah+16].

12Note that for simplicity, the depicted OPO consists of four mirrors in Fig. 4 in [P1]. In reality, it
consists of six mirrors as shown in 2.9a).

13A graphical presentation of how a fundamental input field is transformed in a OPO is given in
[BWS13].
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Now, the generated amplitude quadrature squeezed state must also be phase-
modulated to be used for the spectroscopy experiment. Beneficially, the seed field
already travels through the OPO to lock the squeezing angle. Hence, it can be used as
a carrier field for the high-frequency phase modulation, which is applied before the
seed couples into the OPO, as can be seen in Fig. 4 in [P1]. The modulation frequency
of 199.733 MHz is switched on if it is needed for the spectroscopy. We switch it off to
characterise the OPO independently. The characterisation of the squeezing generated
by the OPO is covered in the next Subsec. 3.3.2.

3.3.2 Squeezing characterisation behind the OPO

The characterisation of the OPO was performed according to Subsec. 2.4.3. The
intra-cavity loss was measured to be δx = 0.3 % as explained in Subsec. 2.1.2. This
loss corresponds to a cavity escape efficiency of ηesc = 97 %. Knowing the escape
efficiency and the reflectivity of the input coupler (Rin = 90 %), the linewidth of the
unpumped OPO is determined to be δω = 3.5 MHz.14 The free spectral range of
∆ω = 196.66 MHz is obtained from the frequency where maximum squeezing and
anti-squeezing occur in a squeezing spectrum.15 It matches the expected free spectral
range calculated from the optical path length according to the design dimensions of
the OPO spacer.16

A homodyne detector measures the squeezing of the probe field from the OPO.
It was set up directly after the squeezed beam is reflected from the 99.7 % pick-off
mirror (not shown in Fig. 4 in [P1]). Then, the propagation efficiency and the visibility
efficiency were measured to ηprop = 99.0 % and ηvis = 98.5 %.

Finally, a squeezing slope is measured. For this measurement, the squeezing
angle is locked to generate an amplitude quadrature squeezed state. The phase
modulation of the seed is switched off. Then, we can take a zero-span measurement
at 199.66 MHz – the first free spectral range frequency of the OPO.17 The detection
angle at the homodyne detector is continuously ramped to measure the maximal
and minimal noise values in the signals quadrature. This procedure is done for
different pump powers, as shown in Fig. 3.4. Squeezing is measured in the amplitude
quadrature V+ (blue) and anti-squeezing in the phase quadrature V− (red). The
maximal squeezing level of −8.6 dB was observed at 190 mW. The theoretical traces
are created by fitting Eq. (2.96) to the measurement data, as explained in Subsec. 2.4.3.
The fitting parameters are the pump threshold Pth = 368 mW, the total efficiency
η = 90.9 % and the phase noise ∆φ = 30 mrad. From the total loss η, we can infer the
average quantum efficiency of the photodiodes, which is ηqe = 96 %.

A careful characterisation of the OPO and the generated squeezed state is im-
portant because it is injected into the FP cavity. With a previous characterisation,
the influences of FP cavity on the squeezed state can be investigated and debugged.
For instance, the increase in phase noise can be measured and attributed to the FP
cavity. The following Sec. 3.4 focuses on our metrology experiment consisting of the
FP cavity.

14In Table 1 in [P1], the value of 4.5 MHz is larger because it was obtained when the OPO was
operated as second harmonic generation (SHG). Then the total cavity loss is larger due to
frequency conversion, which is also expressed in the linewidth.

15The measurement of the squeezing spectrum behind the OPO is not shown here.
16The free spectral range can also be determined by observing destructively interfering modulation

sidebands while ramping the cavity, see [Den16], Sec. 8.2.3.
17The measurement was taken with a spectrum analyser [Keysight, N9010B MXA].
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FIGURE 3.4: Squeezing and anti-squeezing generated by the OPO for different pump
powers. The theoretical traces showing the squeezing slopes are created by using
Eq. (2.96) with fitting parameters: Pth = 368 mW, η = 90.9 % and ∆φ = 30 mrad.
The maximal squeezing level of −8.6 dB was observed at 190 mW.

3.4 Fabry-Pérot cavity as spectroscopic device

This section discusses the design and the performance of the FP cavity. A former
version of the FP cavity was already built in [Den16]. However, it turned out that this
design exhibited several problems which needed to be tackled.

First, the new design of the FP cavity is presented in Subsec. 3.4.1. Then, Subsec-
tion 3.4.2 gives a summary of the characterisation of the FP cavity. In particular, we
attribute the amount of optical loss and phase noise that this system introduces. This
section ends with Subsec. 3.4.3 where we discuss experimental problems that were
faced while working with the FP cavity and the OPO.

3.4.1 Design of the Fabry-Pérot cavity

One important parameter is the optical length of the FP cavity. To use squeezing
generated at the first free spectral range of the OPO, the FP cavity must be resonant
at these frequencies. This is reached by choosing an equal free spectral range for the
FP cavity as for the OPO.

An old design of the FP cavity for the spectroscopy experiment was already
published in [Den16]. Since this design exhibited critical drawbacks, we decided to
implement some modifications. Table 3.1 compares the relevant changes from the old
to the new design. In the new design, we use a quasi-monolithic FP cavity consisting
of an aluminium spacer,18 see Fig. 3.5. This increases the stability and decreases the
susceptibility to air fluctuations in the beam path.

A crucial change is related to the quality of the mirrors. The two old mirrors19

exhibited a total optical loss of roughly 400 ppm, probably dominated by the scatter-
ing loss in the electron beam evaporation (EBE) coating (see Table 2.2). With the new
mirrors,20 the intra-cavity loss was reduced to 90 ppm. In a white light interferometer,

18The spacer is a 60 mm× 60 mm profile [item Industrietechnik GmbH].
19These 99.5 % reflective mirrors are from CVI Laser Optics with model type PR1-1064-99-1025-0.50CC.
20These 99.69 % reflective mirrors are from LASEROPTIK GmbH, with substrate type S-03975 and

coating models B-08899 (AR) and B-00013-04 (PR).
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ITEM spacer mirror

PZT

end cap
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FIGURE 3.5: New design of the FP cavity. The mirrors are clamped with circular black
clamps made of polyoxymethylene to the aluminium spacer.

the root mean square (RMS) roughness Rq was measured to be Rq ≈ 0.151 nm.21

Thus, according to Eq. (2.94), the scattering loss is expected to be in the order of
3 ppm per mirror. We assume that the limiting loss contribution comes most likely
from insufficiently clean mirrors. However, the propagation efficiency increased from
roughly ηfp = 94 % to ηfp = 97 %.

Another important consideration is the higher-order mode suppression of the FP
cavity which depends on the optical cavity length and the radius of curvature of the
mirrors.22 For the old design, the round-trip Gouy phase of −119.8° led to a mode
separation of 66.4 MHz. This mode separation is not optimal as it is approximately
a third of the free spectral range of the FP cavity, meaning third-order modes are
also partly resonant in the FP cavity. Due to the new cavity mirrors having radii of
curvatures of 2000 mm, the mode separation reduces to 57 MHz, which significantly
improves the effect of mode suppression in the FP cavity.

The free spectral range of the FP cavity must match with it from the OPO to ensure
that no squeezing is lost. Hence, I accurately adjusted the optical cavity length of
the FP cavity. Therefore, the length of the aluminium profile was measured with a
coordinate measuring machine, and the two aluminium end caps were manufactured
with a precision of 100 µm accordingly. Thus, the free spectral ranges of the two
cavities distinguish only by roughly 73 kHz. The squeezing degradation because of
this mismatch is expected to be 0.01 dB and thus negligible. Due to temperature drifts
in the laboratory, the thermal expansion of the aluminium spacer causes a minimal
change in the free spectral range. The effect of this change on the degradation in
squeezing is even smaller and also negligible.23

This subsection demonstrated the new design the FP cavity. The next subsection
characterises the cavity, by investigating the squeezing performance behind it.

21The measurement was taken by LASEROPTIK GmbH.
22See e.g. [KL66].
23I estimated the change of free spectral range to be in the order of 19 kHz for temperature changes

of 4 °C at room temperature conditions according to the linear thermal expansion coefficient of
aluminium [NM41].
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TABLE 3.1: The main differences between the old FP design from [Den16] and the
new FP cavity design.

old design new design

setup free-space quasi-monolithic
mirror coatings EBE IBS
intra-cavity loss 400 ppm 90 ppm

propagation efficiency ηfp 94 % 97 %
mirror power reflectivity 99.5 % 99.69 %

radius of curvature 500 mm 2000 mm
round-trip Gouy phase −119.8° 102.7°

mode separation 66.4 MHz 57.0 MHz

3.4.2 Squeezing characterisation behind the Fabry-Pérot cavity

At the homodyne detector behind the FP cavity, the squeezed state has degraded due
to optical loss, which has three main reasons. First, the squeezed state propagates
along additional optical components as steering mirrors and two polarising beam
splitters. This additional loss is included in the propagation efficiency ηprop = 98 %.
Second, the FP cavity acts as a mode filter and transmits only the mode-matched
content of the squeezed probe field. The effect of the mode-matching is represented
by ηmm = 99 %. Third, the intra-cavity loss in the FP, investigated in Subsec. 3.4.1
leads to the efficiency ηfp = 97 % for mode-matched light being transmitted through
the FP cavity.

In analogy to Eq. (2.95), the total efficiency η is then

η = ηescηpropηmmηfpηvisηqe. (3.11)

The visibility of the homodyne detection was measured as ηvis = 98.5 %. Assuming
that the escape efficiency is the same ηqe ≈ 96 % as measured in Subsec. 3.3.2, we
found the total efficiency to be η = 86.3 %, using Eq. (3.11). This is in agreement
within the measurement uncertainties with the fitting parameter of η = 86 % from
Table 2 in [P1] used for the squeezing spectrum in Fig. 5 in [P1]. The total escape
efficiency can be validated again by measuring a squeezing slope.

To measure the squeezing slope, first, the squeezing angle is locked so that an
amplitude quadrature squeezed state is generated by the OPO. The high-frequency
phase modulation of the seed is switched off, and the FP cavity is locked on resonance.
The artificial spectroscopic signal is also turned off. Then, the detection angle is
ramped by PZT5 in Fig. 4 in [P1] to observe the noise in each readout quadrature.
Now, the noise is measured at a zero-span at the free spectral range of the FP cavity,
which is 199.733 MHz.

The measured squeezing slope can be seen in Fig. 3.6. Again, the blue trace shows
squeezed and the red trace anti-squeezed noise. Now, the maximal squeezing of
−6.8 dB was measured at 150 mW. The fit results in a total efficiency of η = 86.6 %.
We see, that η is in the order as obtained from the fits shown Fig. 5 in [P1] or from the
individual efficiencies from Eq. (3.11). Note, that the pump threshold has decreased
from 368 mW in Fig. 3.4 to 297 mW in Fig. 3.6. This change can be explained by
a better mode-matching of the green pump light into the OPO during the second
measurement behind the FP cavity. Independent of the pump threshold change, we
observe that the point of maximal squeezing has moved towards lower pump powers.
This is explained by the increase of phase noise from 30 mrad to 40 mrad. A higher
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FIGURE 3.6: Squeezing and anti-squeezing of the state for different pump powers after
being transmitted through the FP cavity. The theoretical traces show the squeezing
slopes and are created by using Eq. (2.96) with fitting parameters: Pth = 297 mW,
η = 86.8 % and ∆φ = 40 mrad. The maximal squeezing of −6.8 dB was measured
at 150 mW.

phase noise will cause the anti-squeezing to couple stronger into the squeezed noise
measurement (visible in Eq. (2.96)). The larger the anti-squeezing, the more this effect
is observable. Most likely the dominating reasons for the increased phase noise is
due to a not perfectly stably locked OPO due to coupling between the cavities, as will
be explicated in Subsec. 3.4.3.

When applying the intra-cavity length modulation, phase noise increases,
as determined by our fits from Fig. 6 in [P1]. For the phase modulation at
ωsig = 20 kHz the phase noise was ∆φ = 49 mrad and for ωsig = 100 Hz the phase
noise was ∆φ = 51 mrad. An increase in phase noise is expected because the signal’s
intra-cavity phase modulation directly affects the detected detection angle.

3.4.3 Experimental challenges

This subsection is dedicated to polarisation couplings, an effect found to be critical
for the spectroscopy experiment. The outcome of this study is that two perpendicular
polarised light fields can not be treated as uncoupled in a realistic setup. Care has
to be taken because all optical components might introduce polarisation-sensitive
effects, creating polarisation coupling.

Often, the approach is to divide an experiment into individual subsystems and
consider them separately. In the spectroscopy experiment, the OPO, the FP cavity
and the detection scheme were first improved independently. However, it turned
out that after the optimisation, the sequential combination of OPO and FP cavity
involved serious coupling problems.

An overview of the situation between the three involved and competing laser
fields is shown in Fig. 3.7. The figure shows the OPO on the left side and the FP
cavity on the right side. Beams depicted by a solid line are s-polarised and dashed
lines present p-polarised light fields. Apart from the pump field, three different laser
beams are involved.

First, the orange beam presents the counter-propagating lock field used to lock
the length of the OPO. It is detected on PD1 to generate the Pound-Drever-Hall (PDH)
error signal.
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FIGURE 3.7: Experimental setup showing the dominating coupling effects between
the OPO and the FP cavity. On PD1, not only the locking field (orange) is detected,
generating the error signal for the OPO. In addition, the competing fields of the
seed (red) and the FP locking field (purple) are interfering on PD1 and distract the
OPO lock. The FP locking field only appears on PD1 because its polarisation is
slightly rotated in the FP cavity, and its reflection has s-polarisation contributions
reflected at the polarising beam splitter (PBS).

Second, the s-polarised seed24 field shown in red is transmitted by the resonant
OPO and sent to the FP cavity. Here, two situations can be distinguished. If the FP
cavity is off-resonant, nearly all the light power is back-reflected into the counter-
propagating mode of the OPO and beats with the OPO locking field on the PD1.
Hence, a stable OPO lock is not possible anymore for that case. Otherwise, if the
FP cavity is resonant, the seed will be transmitted to a large extent. Small residual
reflections will still occur due to impedance mismatches of the cavity and will beat
with the locking field in the same optical mode on PD1.

The third laser field is a p-polarised field used to lock the FP cavity (FP lock,
purple beam). It is reflected on the FP cavity and detected on PD2. The detected
signal is used to lock the FP cavity on resonance by applying the PDH technique.
Nevertheless, we found that the FP cavity slightly rotates the polarisation of the intra-
cavity locking field from p- to s-polarisation (purple dashed to solid line). Hence, a
fraction of the locking field leaking out at the input mirror is reflected at the polarising
beam splitter (PBS) and also beats on PD1 with the two other fields. But why does
the cavity rotate the polarisation?

We found that the effect of the polarisation rotation inside the FP cavity depends
on how the mirrors are clamped onto the spacer. While screwing the clamp, the
mirrors sit at the bottom of the clamps due to gravity. This procedure presumably
applies asymmetric force to the mirror. The more the mirror is pressed, the stronger
the effect of the polarisation rotation becomes. Therefore, we assume that induced
stress causes the mirror to become birefringent.25 To reduce this photoelastic problem,
the two cavity mirrors are carefully clamped onto the spacer in a vertical orientation
to distribute the load onto the clamp more evenly.

The influence of distracting fields beating with the seed on PD1 should be min-
imised. Only then stable locks of the FP cavity and the OPO is possible. After the
couplings from technical imperfections26 had been minimised, we fine-tuned the coupling

24Even though the seed transmitted through the FP cavity is called probe, only seed is used here.
25Stress-induced birefringence has been already investigated in the context of gravitational wave

detection. For more information, see, e.g. [Kr15; Web18].
26Here, I mean coupling origins because of impedance mismatch of the FP cavity, polarisation rotation

in the FP cavity or misalignments of polarisation bases.
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magnitudes, namely the optical powers of the three beams. For the following consid-
eration, all power values are rough measurements, and the exact values do not have
a special meaning. However, these values should be understood more qualitatively
in their order of magnitude. The power of the locking field was POPO lock = 12 µW on
PD1. This is the benchmark for the competing powers of FP locking field PFP lock and
the seed Pseed, seen in Fig. 3.7.

Looking at the role of the seed, its power reaching PD1 was Pseed = 4 µW for an
off-resonant FP cavity. 27 Then, POPO lock ≈ Pseed and a stable lock of the OPO is not
possible. However, when the FP cavity is resonant, the reflected seed is reduced and
the power on PD1 drops down to Pseed = 4 nW.

Next, we analyse the behaviour of the field locking the FP cavity. Due to the
R = 0.5 % mirror, a power of only 6 µW impinges on the FP cavity. Off-resonance,
PD1 detects PFP lock = 0.2 nW which originates from non-ideal polarisation optics. On
resonance, this value increases to PFP lock = 4 nW, which is potentially caused by the
residual photoelastic polarisation rotation explained before. This power is only 4 nW
and scales with the reflectivity R of the partially reflective mirror in the path of FP
locking field.28 The value of R = 0.5 % was used to reach a low PFP lock.

Finally, the adjusted powers accomplished that POPO lock ≈ 3000× Pseed and
POPO lock ≈ 3000× PFP lock for a resonant FP cavity. Thus, a more stable lock of the
OPO is ensured. However, we know that the beating effect of competing light fields
is not fully suppressed. We assume this effect is a major contribution to our detected
phase noise ∆φ.

3.5 Discussion and conclusion

In any high-precision measurement, defining the signal of interest is essential. In our
approach, the signal is a tiny cavity length modulation at low frequencies (100 Hz
and 20 kHz) applied in an optical FP cavity. This artificial signal is imprinted as a
phase modulation on the intra-cavity probe field. We have studied that the signal can
be resolved with the help of another phase modulation at high frequencies (200 MHz).
It might be unintuitive, but the cavity length modulation can then be detected in
the amplitude quadrature of the probe field. Frequency up-shifting the signal of
interest is useful when the sensitivity is limited by low-frequency additive technical
noise originating, e.g. from the detection electronics. Then this type of noise is
circumvented; however, the sensitivity might still be limited by photon shot noise.

The effect of photon shot noise in a spectroscopic experiment can usually be
decreased by increasing the laser power. However, some experiments work with
small laser powers due to technical reasons such as damage thresholds of the probes.
Here, the second feature of our tailored quantum probe field helps out. It is not
only phase-modulated, but also an amplitude quadrature squeezed state. Then, the
quantum noise is reduced, and since the cavity length modulation appears in the
amplitude quadrature, the SNR is improved.

The OPO is seeded with a phase-modulated field, whose sidebands are reso-
nant in the first free spectral range at 200 MHz. One experimental challenge is to
precisely match the free spectral range of the FP cavity and OPO. Furthermore, a
well-characterised experiment is preferable. We found that the total efficiency of the
generated and detected squeezing coming from the OPO is η = 90.9 % with an RMS

27Here, for simplicity no pump is used and thus the gain is zero. The initial powers are as in Fig. 4 in
[P1].

28The PDH error signal used for the FP cavity lock is independent of the mirror reflectivity R.
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phase noise of ∆φ = 30 mrad. When the squeezed state is transmitted through the
FP cavity before the detection, the total escape efficiency drops by roughly 4 % to
η = 86.6 %. This degradation is caused by loss in the FP cavity and due to additional
lossy optical components. In addition, the phase noise increases to 40 mrad, which
might originate from the cross-talk between the two cavities. The cross-talk is caused
by non-ideal optics, i.e. the polarising beam splitter and the FP cavity mirrors. The
consequence is that the locking field used to stabilise the OPO needs to compete with
distracting fields, provoking a slightly more unstable OPO lock. However, when the
artificial signals are injected into the FP cavity, the phase noise increases anyway to
roughly 50 mrad.

Finally, our measurements resolve small cavity length modulations on a squeezed
noise floor of around 6 dB. The measurements are well confirmed by the theory
presented in Sec. 2 in [P1]. In the following, I want to comment on a few points that
were not addressed in the publication.

Our approach is particularly useful when the laser power cannot be increased
arbitrarily. The signal from the cavity length modulation scales with the size of
the high-frequency modulation sidebands at Ω = ±199.733 MHz. Thus, the carrier
field is not directly involved in detecting the signal at high-frequencies. It would be
beneficial to prepare the probe field to contain only the phase modulation sidebands,
not the carrier, which would also decrease the interacting laser power. A good
solution would be to filter out the carrier of the phase-modulated seed, e.g. by a
filter cavity before the seed is sent into the OPO. Another option could be the use of a
frequency-shifted laser field.

Another remark also points to the direction of the laser power used. In [P1], we
compared the case when the amplitude quadrature squeezed state is used and when
a classical state is applied to sense the cavity length modulation. For both cases, the
same parameters for the high-frequency phase modulation Āmod and β were used
(see Table 3 in [P1]). Importantly, this does not mean that the total power in the
modulation sidebands is the same after the OPO, as can be seen in Eq. (21) in [P1].
For a pump phase adjusted to produce amplitude quadrature squeezing, the effective
phase modulation of the seed will increase due to amplification. A fairer comparison
has to use equal powers in the phase modulation sidebands at Ω. In principle, this
could be investigated by measuring the height of the phase modulation sidebands
visible in the phase quadrature (not shown in Fig. 6 in [P1]). However, this effect is
only small and does not change anything about the usability and applicability of our
approach.

Squeezing was already used to improve spectroscopic measurements at base-
band frequencies [PCK92; Geo+95; Luc+16]. Recently, a quantum enhancement of the
SNR of 3.6 dB relative to the shot noise limited SNR was demonstrated in stimulated
Raman spectroscopy [And+20]. However, in our publication, we came up with a
new approach. The combination of squeezing and modulation techniques at high
frequencies has the potential to improve sensitivities in cavity spectroscopy.
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Chapter 4

Detuning a squeezer to generate
frequency-dependent squeezing

Squeezing can be applied to experiments dealing with opto-mechanical force mea-
surements to increase their sensitivities. These kinds of experiments are limited by
two types of noise depending on the measurement frequency. Photon shot noise
arises in the phase quadrature and dominates at higher frequencies. Quantum-back
action noise reveals in the amplitude quadrature and shows up at lower frequencies.1

A conventional2 squeezed state generated by an optical parametric oscillator (OPO)
can only tackle either shot noise or quantum back-action noise, depending on its
squeezing angle.

The straightforward solution seems to be a particularly tailored state with an
optimised squeezing angle at each measurement frequency [Kim+01]. This state is
called a frequency-dependent squeezed state and can reduce the quantum noise over
a broad frequency band in opto-mechanical force measurements.

The most popular approach to generate frequency-dependent squeezing is to use
conventional squeezing and reflect it from detuned filter cavities. The correlated
quantum sidebands experience asymmetric phase responses when reflecting on a
cavity. The result is that the reflected quantum state has a frequency-dependent
squeezing angle.

In this chapter, a new way of generating frequency-dependent squeezing is pre-
sented. The chapter introduces the standard quantum limit of interferometry and
shows how it is surpassed with frequency-dependent squeezed states in Sec. 4.1.
The quantum sideband picture is used, showing the correlated quantum noise side-
bands, to gain a better understanding of frequency-dependent squeezing. Next,
Sec. 4.2 reprints the publication [P2] about the detuned squeezer. Section 4.3 gives
an overview of quantum tomography since this is not covered in detail in [P2]. The
following two Secs. 4.4 and 4.5 give more details and characterisations on the resonant
and the detuned squeezer. Additional explanations and measurements support the
concept of the detuned squeezer. Finally, this chapter ends with a discussion and
conclusion in the last Sec. 4.6.

4.1 Introduction

This section introduces the problem of quantum noise in opto-mechanical force
measurements. It starts with a description of the standard quantum limit of inter-
ferometry (SQL) in Subsec. 4.1.1. Squeezed states of light can be injected to beat the
SQL. Moreover, a sophisticated, frequency-dependent squeezed state turns out to be

1The lower and higher frequency regime will be determined in Subsec. 4.1.1.
2Or frequency-independent.
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a better choice leading to a broad-band sensitivity improvement. In particular, this
concept is applied to a gravitational wave detector. An intuitive explanation of how
frequency-dependent squeezing is presented in a quantum sideband picture is given
in Subsec. 4.1.2. With the help of the quantum noise phasors, the frequency-dependent
behaviour becomes more visual.

4.1.1 The standard quantum limit of interferometry

Opto-mechanical force measurements are fundamentally limited by quantum noise,
composed of photon shot noise and quantum back-action noise induced by radiation
pressure noise. Both these types of noise are caused by the random appearance of
photons in time following a Poissonian distribution. Photon shot noise directly arises
when photons are detected on a photodetector, which manifests in an inconstant
photocurrent over time. Shot noise is a white process increasing with the square
root of the optical power. Contrarily, quantum back-action noise arises when the
randomly distributed photons are reflected from a suspended mirror. On reflection,
they randomly transfer their momentums and thus a fluctuating radiation pressure
force. Thus, the mirror’s position varies over time as well. Quantum radiation
pressure noise goes with 1/ω2 above the mirror’s resonance frequency and scales
with the square root of the power. Due to their frequency characteristics, the photon
shot noise is dominant at higher frequencies, and quantum radiation pressure noise
dominates at lower frequencies.3

In an interferometer, quantum noise consists of the uncorrelated sum of photon
shot noise and quantum radiation pressure noise, see the blue trace in Fig. 4.1a). If the
optical power is varied, the envelope of this sum results in the SQL (black dashed line).
The SQL refers to the minimal amount of achievable quantum noise without using
advanced techniques such as the injection of squeezing.4 Frequency-independent
squeezing has already been injected into gravitational wave detectors. It leads to
sensitivity improvements of 6 dB in GEO600 [Lou+21] and 3.2 dB in LIGO [Tse+19]
and in VIRGO [Ace+19]. The next subsection links to one of the advanced techniques
to beat the SQL, which is the injection of frequency-dependent squeezing.

4.1.2 Frequency-dependent squeezing

A quantum state is fully determined by its covariance matrix σ, as described in
Subsec. 2.2.2. Generally, a state can be different for each measurement frequency ω.
Then, the covariance matrix must be written in a frequency-dependent form σ(ω). In
the case of σ(ω) = σ = const., the state is frequency-independent.

A loss-less single-mode squeezed state has a covariance matrix only depending
on two parameters: the squeezing factor r and the squeezing angle θ, as shown by
Eq. (2.43). In an accurate description, a squeezed state generated by an OPO is always
frequency-dependent. The dependence is ascribed to the limited bandwidth of the
down-conversion process and the limited linewidth of the OPO cavity. Consequently,
the squeezing factor r(ω) has to be frequency-dependent. However, such a squeezed
state is often attributed as frequency-independent because the frequencies of interest
are in a region where the squeezing factor is constant in the first approximation.

3The SQL was covered in numerous publications, see e.g. [Cav81; WM08; Bas14; DKM19]. Lower and
higher frequencies are determined with respect to the properties of the interferometer.

4There are numerous more advanced techniques as variational readout [VZ95; Kim+01], two-tone
measurements [Her+10; Suh+14; Sho+19], stroboscopic measurements [BVT80; Vas+15], the
optical spring effect [Che+11] or the use of Kerr media [Bon86].
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considering and reducing optical loss and squeezing ellipse phase error. Figure 11 illustrates
the possibilities of squeezing enhancement from that perspective. For second generation
detector upgrades, total optical loss limited to 20% and ellipse phase error reduced to 20 mrad
would realise at least 6 dB improvement—the dashed rectangle area of figure 11, representing
a factor of 2 sensitivity gain. Third generation GW detectors now being designed, such as the

Figure 10.Quantum noise and applied squeezing in gravitational-wave readout. (a) The
quantum noise curve consists of the combined QRPN and shot noise in the different
Fourier regimes. The locus is added for completeness. (b) Quantum noise enhancement
for applied single quadrature squeezing (amplitude, phase and °45 ) and frequency-
dependent squeezing where the squeezing ellipse is rotated to obtain maximum
enhancement.

Figure 11. Contour plot of measured squeezing versus optical loss and squeezing
ellipse phase error. The input squeezing is 12 dB. Dashed rectangle—6 dB
improvement will be realised with 20% optical, and 20 mrad of ellipse phase error.
Dashed circle—reduction of both optical loss to 5% and ellipse phase error to 10 mrad
would realize at least 10 dB of enhancement in sensitivity.

Class. Quantum Grav. 31 (2014) 183001 Topical Review

11

a) b)

FIGURE 4.1: a) The quantum noise (blue line) in a gravitational wave detector is the
uncorrelated sum of shot noise (red) and quantum radiation pressure noise (green).
The point where the quantum noise touches the SQL depends on the optical power
used. b) The injection of frequency-dependent squeezing reduces the quantum
noise for all measurement frequencies (pink line). Frequency-independent squeez-
ing leads to a high-frequency improvement (phase squeezing, dashed line) or a
low-frequency improvement (amplitude squeezing, dotted line). The figure is
taken from [Chu+14].

The definition of a frequency-dependent squeezed state is sometimes misleading.
Often, the term frequency-dependent squeezing is used for a squeezed state that has a
frequency-dependent covariance matrix σ(ω) arising from a frequency-dependent
squeezing angle θ(ω). Injecting such a state into a gravitational wave detector
improves the strain sensitivity over the whole measurement band according to the
pink trace of Fig. 4.1b). Due to the optimised squeezing angle for each frequency,
there is a sensitivity improvement of er, with squeezing factor r, compared to the
classical case depicted by the solid blue trace [Kim+01]. The injected state is squeezed
along the amplitude quadrature for lower frequencies and rotates towards higher
frequencies by approximately 90° such that it becomes phase quadrature squeezed.
In particular, r remains constant for all frequencies. In the scope of this thesis, we
call quantum states as frequency-dependent squeezing that have a frequency-dependent
squeezing angle and/or a frequency-dependent squeezing factor.

Another opto-mechanical experiment, which calls for frequency-dependent
squeezed states, is coherent quantum noise cancellation (CQNC) [TC10]. CQNC
uses an anti-noise path coupled to the opto-mechanical meter cavity to destructively
interfere with quantum back-action noise.5 The anti-noise path consists of an ancilla
cavity, which generates a particularly frequency-dependent squeezed state reversing
the effect of the ponderomotive squeezing of the opto-mechanical system.6 That is
why the ancilla system is often called an effective negative-mass oscillator [PH14]. In
the proposed all-optical realisation of CQNC [Wim+14; Ste19; Sch+22], the effective
negative-mass oscillator is an optical cavity including a beam splitter and a two-mode
down-conversion process.7

5Sometimes, radiation pressure noise and back-action noise are used as synonyms. In fact, the effect of
(quantum) radiation pressure noise causes the opto-mechanical oscillator’s position to fluctuate.
Then, this displacement fluctuation is subject to (quantum) back-action noise.

6For a rotating ponderomotive squeezed state in phase space, see, e.g. [Ste19], Fig. 2.12.
7Also other realisations of this oscillator are conceivable to achieve back-action evasion. A spin

ensemble in a magnetic field can act as an effective negative-mass oscillator [Ham+09] as demon-
strated in [Møl+17; Koh+18]. Also, effective negative-mass characteristics were observed in
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FIGURE 4.2: Quantum sideband representation for differently squeezed states. Ar-
rows of the same colour correspond to a correlated sideband pair at a different
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The effective negative-mass oscillator for the all-optical CQNC has to gener-
ate a particular frequency-dependent squeezed state. This state needs to have a
frequency-dependent squeezing angle θ(ω) and factor r(ω). The reason for this
can be found in the susceptibility of the opto-mechanical oscillator, which has
a frequency-dependent phase and amplitude behaviour. Using such a particular
frequency-dependent squeezed state was already suggested in the context of gravita-
tional wave detection [Kim+01]. Kimble et al. used the term inversely input squeezed
state since it has the same Wigner function as an interferometer’s ponderomotive
squeezed state, but it is mirrored on either of the quadrature axes.8

Next, a brief, intuitive comparison is given on different frequency-dependent
squeezed states. In Fig. 4.2, we use the quantum sideband picture introduced in
Subsec. 2.3.3 and distinguish four cases.

Figure 4.2a) shows the correlated sideband pairs around ω0 for a frequency-
independent squeezed (FIS) state. The three presented sideband pairs (red, blue and
green) represent three different frequencies, and they are only drawn at the specific
time when they are aligned anti-parallel. Note that the phase of the individual
phasors is not determined. However, phasor pairs always underlie correlations. Due
to the destructive interference of sideband pairs, the squeezing ellipse is squeezed
in the X1-quadrature in phase space.9 The ellipse is identical for all measurement
frequencies ω, since all sidebands have the same length. With this picture, we can
describe the output of an OPO, pumped with frequency 2ω0, when we only consider
frequencies much smaller than the OPO’s linewidth.

Figure 4.2b) shows the squeezed state generated by an OPO pumped with the fre-
quency 2ω0. This state has a frequency-dependent squeezing (FDS) factor. Depending
on the frequency, the sidebands experience the down-conversion process weaker or

the dispersion relation of matter waves propagating through an optical lattice [Eie+03] or for
two-mode measurements [WC13; OK+16].

8See Figs. 5 and 8, and especially Sec. D in [Kim+01].
9Then, the orthogonal X2-axis is automatically anti-squeezed.
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stronger, as indicated by the grey cavity amplitude transfer function. Consequently,
the squeezing degree is largest close to ω0 (blue phasors) and reduces towards higher
frequencies (red and green phasors). In both pictures a) and b), the situation is fully
symmetric around ω0.

To generate a state having a frequency-dependent squeezing angle, the symmetry
between the upper and lower sidebands needs to be broken. This can be done, e.g. by
reflecting a frequency-independent squeezed state shown in Fig. 4.2a) from a loss-less
filter cavity detuned by ∆. This scenario is depicted in Fig. 4.2c). The quantum
sidebands accumulate a phase change according to the phase transfer function of
the cavity, shown by the grey graph. After reflection, each upper and lower phasor
pair has a specific phase relation. There will be one timestamp where the phasors
point parallel (or anti-parallel), indicated by the faded-out phasors.10 Parallel phasors
indicate constructive and anti-parallel destructive interference. Thus, the squeezing
ellipses are drawn for all three treated frequencies. Employing a detuned filter cavity
is only one way to generate a state having a frequency-dependent squeezing angle.
One alternative is injecting a two-mode squeezed state into the measurement cavity
of a gravitational wave detector [Ma+17; Yap+20; Süd+20]. The signal recycling
cavity must be resonant for the signal but detuned for the idler field whose sidebands
accumulate a frequency-dependent phase shift [Süd+20]. After a spatial separation,
the signal and idler sidebands are independently detected on homodyne detectors
with matched local oscillator frequencies.11 The electrical combination of the signals
leads to frequency-dependent squeezing.

Figure 4.2d) shows a state that has a frequency-dependent squeezing factor and
angle. This state is generated by a detuned OPO. The sidebands experience a phase
response analogue to Fig. 4.2c). However, although the amplitude response is asym-
metric for the red and the green phasor pair, they pairwise have the same length. The
reason is that the down-conversion process only happens if both the upper and lower
sideband can be correlated. Thus, the phasor corresponding to the smaller amplitude
response value dictates the squeezing factor at that frequency. In the next section, the
publication [P2] is reprinted, which shows how such a state is generated.

4.2 [P2]: Frequency-Dependent Squeezing from a Detuned
Squeezer

This subsection reprints the following publication, which was accepted on 31 May
2022 and published on 14 July 2022 in Physical Review Letters. The author contribu-
tions and a short abstract can be found on Page iii.
[P2] J. Junker, D. Wilken, N. Johny, D. Steinmeyer, and M. Heurs. “Frequency-
Dependent Squeezing from a Detuned Squeezer”. In: Phys. Rev. Lett. 129 (3 July 2022),
p. 033602. DOI: 10.1103/PhysRevLett.129.033602

10Note that the sideband pairs do not follow a predictable rotation as classical phasors would. Though
their direction is entirely random, they will always occur correlated.

11Similar as the dual homodyne detection scheme explained in Subsec. 5.3.1.

https://doi.org/10.1103/PhysRevLett.129.033602
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Max Planck Institute for Gravitational Physics (Albert Einstein Institute), and Institute for Gravitational Physics,

Leibniz Universität Hannover, Callinstraße 38, 30167 Hannover, Germany

(Received 3 March 2022; accepted 31 May 2022; published 14 July 2022)

Frequency-dependent squeezing is a promising technique to overcome the standard quantum limit in
optomechanical force measurements, e.g., gravitational wave detectors. For the first time, we show that
frequency-dependent squeezing can be produced by detuning an optical parametric oscillator from
resonance. Its frequency-dependent Wigner function is reconstructed quantum tomographically and
exhibits a rotation by 39°, along which the noise is reduced by up to 5.5 dB. Our setup is suitable for
realizing effective negative-mass oscillators required for coherent quantum noise cancellation.
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According to quantum mechanics, the continuous meas-
urement of an object’s position creates a random quantum
backaction perturbation on its momentum. This backaction
noise, together with the shot noise, fundamentally limits the
precision in ultrasensitive force measurements, e.g., in cavity
optomechanics [1] or gravitational wave detection [2–5].
The sensitivity limit imposed by backaction noise and shot
noise is referred to as the standard quantum limit (SQL) of
interferometry. Previous experiments measured mechanical
motions with an imprecision below the SQL [6,7] observed
quantum backaction [8–12] or demonstrated sensitivities
near the SQL [10,13–15]. To reduce or even evade the effect
of quantum backaction and to overcome the SQL, various
quantum nondemolition techniques have been proposed,
e.g., variational readout [16,17], two-tone measurements
[18–20], stroboscopic measurements [21,22], the optical
spring effect [23], or the use of Kerr media [24].
The SQL can also be beaten by the injection of

frequency-dependent squeezing. For a lossless and non-
detuned interferometer, the squeezing angle is optimized
for each frequency ω with θðωÞ ¼ −arccotKðωÞ, and
Kimble factorK [16]. Then, the sensitivity can be improved
by e−2r with squeezing factor r in a broad frequency band
[16]. Typically, frequency-dependent squeezing is gener-
ated by reflecting frequency-independent squeezed light off
a detuned filter cavity [25–28]. However, frequency-
dependent squeezing of this form cannot entirely evade
quantum backaction noise because r is frequency-
independent [16].

In contrast, the entire backaction noise can be evaded by
using an effective negative-mass oscillator [29–31]. In the
cascaded all-optical realization of coherent quantum noise
cancellation [31,32], the optomechanical system and the
effective negative-mass oscillator are independent subsys-
tems [33]. There, the effective negative-mass oscillator
produces a state that effectively exhibits frequency-
dependent squeezing to counteract the effect of the dis-
turbing ponderomotive squeezing of the optomechanical
oscillator [33]. The squeezing, generated by this effective
negative-mass oscillator, exhibits both a frequency-
dependent rotation angle θðωÞ and squeezing factor
rðωÞ. Ideally, this state entirely evades backaction noise
and is equal to the inversely input squeezed state [16]. To
realize a well-matched effective negative-mass oscillator, a
complicated coupled system, using a beam splitter process
and a down-conversion interaction, has been studied in
detail [32]. Instead of this complex system, in this Letter,
we propose using a simpler and elegant alternative as an
effective negative-mass oscillator.
We report on the generation of frequency-dependent

squeezing using a detuned optical parametric oscillator
(OPO). We show that the output state of this squeezer
exhibits a frequency-dependent squeezing factor and rotation
angle. We analyze the state by tomographically reconstruct-
ing itsWigner function at different measurement frequencies.
The obtainedWigner functions agree well with our measured
and simulated noise spectra. Our findings are relevant for
optomechanical force measurements, e.g., gravitational wave
detectors, limited by quantum backaction noise.
The system is described theoretically by applying the

input-output formalism [34,35] on a linear lossless OPO,
shown in Fig. 1. The interaction Hamiltonian for this
nonclassical light source is

H ¼ iℏg
2

ðâ2 − â†2Þ; ð1Þ
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where we assume an undepleted pump field B̂pump.
The coupling strength of the down-conversion process is
given by g ¼ 2χð2ÞB̂pump, where χð2Þ is the nonlinear
coefficient of the down-conversion process. The pump
oscillates with ωp and does not exceed the threshold of
the OPO. Vacuum fluctuations Âvac couple to the intra-
cavity field through the input coupling mirror. The deriva-
tive of the circulating intracavity field is

_̂a ¼ iâΔ − âκ þ â†gþ Âvac

ffiffiffiffiffi
2κ

p
: ð2Þ

We define the detuning Δ as the difference between
cavity resonance frequency and fundamental frequency
ω0 ¼ ωp=2. The authors in [36] also considered the theory
of a detuned but doubly resonant OPO (but they did not
consider the frequency-dependent output state rotation).
However, in many other publications [37–39], Δ is set to
0. The cavity has a decay rate κ, where κ ¼ 2πν=F with
finesseF , free spectral range (FSR) ν ¼ c=L, and round-trip
length L. We can decompose the field operators â in a
constant and a fluctuating term in the form â ¼ hâi þ δâ.
Then, Eq. (2) can be solved in the frequency domain as in
[40,41] using the input-output theory [34,35] for the fluc-
tuating terms δâðωÞ and δâ†ðωÞ. After applying the cavity
boundary condition [42], we can compute the fluctuating part
of the output field δÂout ¼

ffiffiffiffiffi
2κ

p
δâ − δÂvac. The fluctuations

of the output amplitude and phase quadrature are δX̂1 ¼
δÂout þ δÂ†

out and δX̂2 ¼ iðδÂout − δÂ†
outÞ, respectively.

To characterize the output state, it is convenient to derive
the symmetrized covariance matrix of the output state. It
contains the spectral densities and is defined by
σkl ¼ 1

2
hδX̂kδX̂l þ δX̂lδX̂ki − hδX̂lihδX̂ki, where δX ¼

ðδX̂1; δX̂2Þ. When assuming an input variance for the
vacuum field of Vvac ¼ 1, the covariance matrix is

σ11 ¼ 1þ 4gκðjχþj2 − Δ2Þ
jΔþ χþχ−j2 ;

σ22 ¼ 1 −
4gκðjχ−j2 − Δ2Þ
jΔþ χþχ−j2 ;

σ12 ¼ σ21 ¼ −
8gκ2Δ

jΔþ χþχ−j2 : ð3Þ

Here, we have introduced χ� ¼ κ þ iω� g. For nonzero
detuning Δ ≠ 0, we obtain nonvanishing off-diagonal
elements of σ. These entries arise from the rotation of
the output state in phase space. Hence, the rotation depends
on the detuning Δ and the measurement sideband
frequency ω.
The covariance matrix σ describes a pure state because

we consider a lossless OPO. Passive optical losses will
degrade the squeezed output state. When the state expe-
riences power losses l, corresponding to an efficiency
η ¼ 1 − l, the lossy covariance is σl ¼ ησ þ ð1 − ηÞI2,
with I2 being the 2 × 2 identity matrix.
This state can be phase sensitively detected with a

balanced homodyne detector (HD), where it interferes with
a local oscillator (LO) at frequency ω0. The phase differ-
ence ψ between LO and output state defines the detection
angle and, accordingly, the projection axis for the meas-
urement. The measurement result of the HD corresponds to
σ̃11ðψÞ, with

σ̃ðψÞ ¼ R⊤ðψÞσlRðψÞ; ð4Þ

with rotation matrix RðψÞ.
At ω ¼ 0, a specific detection angle ψ0 diagonalizes

σ̃ðψ0Þ and maximized the measurable squeezing and
antisqueezing values. This specific angle ψ0 is

ψ0 ¼ −
1

2
arctan

2κΔ
Δ2 − κ2 − g2

: ð5Þ

However, for measurement frequencies ω ≠ 0, σ̃ðψ0Þ is not
diagonal anymore. It still can be diagonalized with a
frequency-dependent detection angle ψω. The rotation
angle θðωÞ of the quadrature distribution in phase space is

θðωÞ ¼ ψ0 − ψω ¼ ψ0 þ
1

2
arctan

2κΔ
Δ2 − κ2 − g2 − ω2

: ð6Þ

This shows again that the state rotation depends on the
measurement frequency ω, indicating frequency-dependent
squeezing. When changing the sign of Δ, the rotation
direction flips because of the off-diagonal elements in
Eq. (3). Thus, in the context of coherent quantum noise
cancellation, the sign of Δ defines the positive or negative
energy character of the oscillator.
A noisy detection angle ψ at the HD degrades the

squeezing measurements. Assuming normally distributed
fluctuations with a small standard deviation of δψ [38], the
detected noise level is

σ̃det11 ¼ σ̃11cos2ðδψÞ þ σ̃22sin2ðδψÞ þ σ̃12 sinð2δψÞ: ð7Þ

To aid understanding, the detuned OPOs’ essential
features are shown in Fig. 2. Here, the output state’s noise
distribution is depicted by an ellipse in phase space.

FIG. 1. Schematic of the optical parametric oscillator with
decay rate κ and intracavity field â. The χð2Þ medium is pumped
with B̂pump. When the cavity is detuned by Δ from its resonance,
the vacuum fluctuations Âvac are converted into an output field
Âout exhibiting frequency-dependent squeezing.
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Figure 2(a) shows the ordinary case of a resonant OPO at a
measurement frequency ω ¼ 0. The pump’s phase is set to
deamplification of δX̂1, and no state rotation can be seen. In
(b), the OPO is detuned (Δ ≠ 0) but the measurement
frequency is still at ω ¼ 0. The cavity phase response leads
to a rotation of the ellipse by ψ0, represented by the
whitened state with nondiagonal covariance matrix σ. After
using Eq. (4), the diagonalized state σ̃ðψ0Þ is depicted, with
main diagonal elements σ̃11ðψ0Þ and σ̃22ðψ0Þ. Because of
the detuning, the squeezing and antisqueezing levels
σ̃11ðψ0Þ and σ̃22ðψ0Þ are reduced compared to (a). In (c),
the OPO is still detuned but now the measurement
frequency has changed. Depending on the actual measure-
ment frequency ω, positive and negative sideband frequen-
cies accumulate nonsymmetrical phases. The main
consequence is a frequency-dependent squeezing angle
θ. Additionally, the maximum squeezing and antisqueezing
levels are also frequency-dependent and they are depicted
by σ̃11ðψωÞ and σ̃22ðψωÞ.

The schematic of our experimental setup is shown in
Fig. 3. The core element of our free-space OPO is a
1 mm × 2 mm × 10 mm nonlinear periodically poled
potassium titanyl phosphate (PPKTP) type I crystal. It is
temperature-controlled to 31 °C to ensure phase matching
for the s-polarized down-conversion process. The 0.5°
trapezoidal-shaped crystal is placed in a four mirror cavity
topology with an FSR of ν ¼ 197 MHz. The plane input
(front) mirror has a power reflectivity of Rin=out ¼ 80%.
The plane rear mirror and the curved mirrors are highly
reflective for the fundamental wavelength of 1064 nm and
antireflective for the 532 nm green pump light.
We want to lock the OPO cavity to an arbitrary detuning

Δ. This is realized by using perpendicularly polarized fields
for locking and pumping using the cavity’s adjustable
birefringence. The refractive index of the PPKTP crystal is
polarization- and temperature-dependent. Its trapezoidal
shape allows us to change the crystal’s effective length by
shifting it perpendicular to the beam axis and parallel to the
cavity plane. Thus, we can adjust the frequency difference
between s-polarization and p-polarization resonances.
Fine-tuning can be achieved by changing the crystal’s
temperature (a frequency difference of 1 MHz corresponds
roughly to a temperature change of 0.1 °C). Here, the effect
on the nonlinear efficiency can be neglected. For the
measurements presented in this Letter, the detuning was
set to Δ ¼ −2π × 3.6 MHz.
We inject a p-polarized 14 MHz phase-modulated field

into the cavity to stabilize to the chosen detuning via
Pound-Drever-Hall locking. For locking on resonance,
an s-polarized beam is used. The locking field is sent in
counterpropagatingly to avoid cross-coupling and is
detected in reflection of the OPO by photodetector PD1.
After demodulation and filtering, the control signal is fed
back to the piezoelectric transducer PZT1 clamped onto the
rear mirror.
The squeezing angle needs to be actively stabilized.

Therefore, we inject a seed through the rear highly
reflective mirror, which is phase-modulated at 92 kHz
by PZT2. This field serves as a reference for the frequency-
dependent squeezing. By detecting and demodulating a
fraction of the seed field behind the R ¼ 99.2% mirror on
PD2, we are able to lock to the pump phase. The locking
point is chosen such that the amplitude quadrature fluctua-
tions are minimized. Technically, the seed displaces the
squeezed vacuum converting it into a bright squeezed state.
The generated state is detected by a balanced HD

scheme. Technical noise of the seed would dominate the
measurement at baseband frequencies. Therefore, we take
our measurements around the first FSR of the OPO at ν.
The covariance matrix will be identical at frequencies
corresponding to higher FSRs σ̃ðψ ;ωÞ ¼ σ̃ðψ ;ωþ nνÞ,
n ∈ Z, because of the spectral periodicity of the OPO’s
response. This approach has two advantages: First, meas-
urement frequencies both above and below the resonance

(a) (b) (c)

FIG. 2. The output state of the OPO is represented by the noise
ellipse in phase space. In (a) the resonant OPO generates a noise
ellipse with diagonal covariance matrix σ at baseband (ω ¼ 0). In
(b) the OPO is detuned by Δ, generating a noise ellipse having a
nondiagonal σ. According to Eq. (4), the covariance matrix can
be rotated to σ̃ðψ0Þ, which is diagonal. In (c) for a larger
measurement frequency ω > 0 the noise ellipse given by
σ̃ðψ0Þ has rotated by θ. Now, the maximum squeezing and
antisqueezing levels can be obtained from σ̃11ðψωÞ and σ̃22ðψωÞ.

FIG. 3. Experimental setup consisting of the detuned OPO that
generates a frequency-dependent squeezed state (bottom) and the
HD with the data acquisition for reconstructing the state’s Wigner
function (top). The actuators of the locking loops are indicated
in blue.
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frequency can be resolved, and second, experimental
challenges of measuring squeezing at baseband can be
avoided. The phase difference between the strong LO and
the bright squeezed field determines the detection angle
and can be changed with PZT3. In order to measure the
squeezing spectrum at a certain detection angle, the phase
difference is usually stabilized at this angle. However, even
with a swept LO, a full tomographic state reconstruction is
possible, as can be seen in the following.
We record the homodyne projections for a measurement

time of 1 s per measurement frequency while the LO phase
is ramped for our tomographic reconstructions. The low-
frequency output of the HD is recorded by an oscilloscope
and shows the interference between seed and LO. The
high-frequency output is demodulated at the measurement
frequency around ω using a spectrum analyzer [Keysight,
N9020A MXA] and recorded as amplitude time series on a
computer. This signal exhibits the quadrature fluctuations
of the squeezed state scaled with the amplitude of the LO.
The data acquisition is realized with a MATLAB script that
triggers and stores the measurement for each frequency bin.
The Wigner function is tomographically reconstructed in

four steps. First, we use the low-frequency interference
signal to map each voltage amplitude recorded by the
spectrum analyzer to a detection angle between 0° and
180°. Second, the amplitudes are sorted into 180 angular
bins depending on their detection angle. Third, for each
angular bin, all amplitudes are distributed in a histogram
with 201 bars. Now the data are stored in a 201 × 180 array.
Fourth, the array is inversely Radon transformed by using
the built-in MATLAB function iradon, leading to the
filtered back-projected Wigner function [43]. This algo-
rithm is repeated for a vacuum state measurement to
normalize the Wigner function. The Wigner function is
connected to the previously derived covariance matrix.
Using the first moments dj ¼ hðX̂1; X̂2Þi of the state, the
Wigner function reads [44]

WðXÞ ¼ 1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðσÞp e−ðX−dÞ⊤σ−1ðX−dÞ: ð8Þ

Before characterizing the detuned OPO, we analyze the
performance of the resonant OPO. We generate an ampli-
tude quadrature squeezed state by locking the pump’s phase
to the seed. From the measurements of the (squeezed)
amplitude quadrature and the antisqueezed phase quad-
rature for different pump powers, we obtained δψ ¼
15 mrad phase noise and a total efficiency η ¼ 92.8%
the same way as in [45]. At a pump power of 711 mW,
we observed −9.8 dB of squeezing and 15.3 dB of
antisqueezing at the first FSR, which corresponds to
g ¼ −2π × 2.3 MHz. In separate measurements, we deter-
mined the OPO decay rate κ ¼ 2π × 3.2 MHz, the escape
efficiency of the OPO ηesc ¼ 98.3%, the propagation
efficiency ηprop ¼ 99.0%, and the homodyne efficiency

ηhd ¼ 97.6%. From these measurements, we estimated
the quantum efficiency of the HD with ηqe ¼
η=ðηescηpropηhdÞ > 97.6% as in [46].
In a second step, we stabilized the OPO with a detuning

of Δ ¼ −2π × 3.6 MHz and again produced an amplitude
quadrature squeezed state. We investigated the frequency
behavior of the state with the tomographic reconstruction
method described above. In the top row of Fig. 4, three
examples for reconstructed Wigner functions are shown for
the frequencies 194, 197, and 203 MHz. An animation
showing the rotation over the entire spectrum can be found
in the Supplemental Material [47]. In the middle row, we
show the measured maximal and minimal noise levels, and
the rotation angle (both with estimated absolute errors).
These data points are obtained by fitting the reconstructed
Wigner distribution to Eq. (8). Equation (6) yields the solid

FIG. 4. Top row: Tomographically reconstructed Wigner func-
tions for the frequencies (a) 194 MHz, (b) 197 MHz, and
(c) 203 MHz; see Supplemental Material [47] for more recon-
structions. The dashed circles indicate the shot noise levels as a
reference. Middle row: Rotation angles, squeezing, and anti-
squeezing values obtained from fitting a two-dimensional Gaus-
sian function to our reconstructed distributions. The solid green
trace was plotted using Eq. (6). The solid black traces show
simulations when the detection angle is aligned to the maximum
squeezing and antisqueezing axes at each measurement fre-
quency, σ̃11ðψωÞ and σ̃22ðψωÞ, respectively. Bottom row: The
widths of the Wigner function are measured at four different
detection angles of the HD shown by the colored traces with a
spectrum analyzer ([Keysight, N9020A MXA]; resolution band-
width (RBW), 100 kHz; video bandwidth (VBW), 100 Hz; sweep
time, 5 s; average, 10). The black dashed traces are simulations of
σ̃11ðψ − ψ0Þ from Eq. (7) for these four specific angles.
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curves for θðωÞ and ψω. Note that in the upper two rows,
the coupling strength (g ¼ −2π × 2.2 MHz) was slightly
reduced with respect to the measurements in the bottom
row, as the measurements were taken at different times. In
the bottom row, we show recorded spectra for different
detection angles ψ . Here, each colored trace corresponds to
a width of the Wigner function under a specified and
stabilized detection phase ψ of the LO (0° corresponds to
detecting the amplitude quadrature). The chosen angles
represent four qualitatively different spectra. All measure-
ments are normalized to shot noise. The electronic dark
noise was 14.3 to 15.0 dB below the shot noise and was
subtracted from the data. The angles are obtained from the
fits (black dashed traces), which are based on Eq. (7). When
choosing the optimal detection angle at all frequencies, we
get the black solid envelop traces.
We observed frequency-dependent squeezing over the

full measurement band of 30 MHz. At the first FSR at
197 MHz, the state rotates from θ ¼ 0° to θ ¼ 39° clock-
wise toward higher and lower frequencies (see
Supplemental Material [47]). This rotation symmetry can
only be seen at higher FSRs and was, to our knowledge, not
observed before. The rotation angle θ agrees with the angle
θ0 determined to diagonalize the output covariance matrix
at each measurement frequency; see Eq. (4). We detected a
maximum squeezing of −5.5 dB and a maximum anti-
squeezing of 6.2 dB at the first FSR. These noise values
match the independently measured and reconstructed
Wigner functions, which validates our tomographic
reconstruction method. The detuned OPO requires larger
coupling strengths than the resonant OPO to reach equiv-
alent squeezing values. This does not imply any additional
losses. Compared to the resonant case, the pump threshold
changed from gthr ¼ −2π × 3.2 MHz to −2π × 4.8 MHz
for the detuned case.
The relevant parameter defining the shape of the Wigner

function of the output state is the relative detuning
Δ̃ ¼ jΔj=κ. In fact, when Δ̃ increases, the maximum
rotation angle increases as well. For a given pump power,
the maximum squeezing level reduces for larger detunings.
Our choice for Δ̃ ¼ j − 3.6 MHzj=3.2 MHz ¼ 1.125 is a
trade-off to achieve a state rotation of roughly 45° (required
for the inversely input squeezed state [16]) and a decent
squeezing level. For a large detuning Δ̃ ≫ 1, the state
experiences a rotation of 90°. However, the squeezing will
vanish then.
Finally, we discuss the applicability of the detuned OPO

to enhance sub-SQL measurement sensitivities. In gravi-
tational wave detectors, the filter cavities require very low
linewidths of hundreds of Hertz to rotate the squeezing over
the detector's measurement band. Instead, building a
detuned squeezer with equally low linewidth seems to
be technically very challenging. Because of the residual
parasitic reflections of the crystal, the detuned squeezer’s
cavity length would have to be even longer than that of

the filter cavities. Moreover, to ensure a sufficiently large
escape efficiency, the cavity finesse would need to be
reduced. However, using our detuned squeezer approach
(instead of the usual resonant squeezer) can serve as a
phase-rotation correction mechanism in addition to the
filter cavities. This is especially relevant for systems
dominantly limited by quantum backaction noise, such
as the low-frequency Einstein Telescope [48,49]. Other
experiments in the field of cavity optomechanics have
begun to observe backaction noise due to quantum radi-
ation pressure noise [8–10]. Using a detuned OPO could be
an approximate but simple and promising approach to
realize an effective negative-mass oscillator to cancel
quantum backaction noise [32]. However, experimentally
applying the detuned OPO to an optomechanical system
requires sophisticated parameter matching. We plan to
further investigate the detuned OPO as an effective neg-
ative-mass oscillator for coherent quantum noise cancella-
tion in the future.
We have demonstrated the generation and quantum

tomographic reconstruction of frequency-dependent
squeezed states from a detuned OPO. The observed
squeezed state rotates by 39° for increasing frequencies
until it is amplitude quadrature squeezed at the first FSR of
197 MHz. For frequencies larger than the first FSR, the
state rotates backward by −39°. The state exhibits maxi-
mum squeezing and antisqueezing levels of −5.5 and
6.2 dB, with a measurement efficiency of η ¼ 92.8%.
The detuned OPO provides a simple realization for the
required effective negative-mass oscillator in quantum
backaction evasion schemes, such as coherent quantum
noise cancellation.
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4.3 Quantum tomography

In [P2], we use quantum tomography to reconstruct the Wigner function of the
frequency-dependent squeezed state. Because it is not treated comprehensively in
the publication, it will be the subject of this section. It starts with a brief introduction
to the concept of tomography in Subsec. 4.3.1. We will see that tomography is
divided into acquisition and reconstruction. After the introduction, tomography is
applied to quantum states, called quantum tomography. The goal is to reconstruct the
Wigner function of the quantum state under investigation. Our quantum tomographic
method is explained in Subsec. 4.3.2 and is performed after taking measurements
with a homodyne detector. For the required measurements, we do not need to lock
the detection phase of the local oscillator. Subsection 4.3.3 presents a roadmap with
all the important steps required to convert the raw data into a Wigner function.

4.3.1 Tomography: imaging by sections

Tomography is a cross-sectional imaging procedure where an object is illuminated
from different directions [KS01]. The transmitted or reflected rays are measured for
different angular directions. These measurements form the projections of the object.
The projections are required to create an image of the object using tomographic
reconstruction. Computer-assisted tomography set the foundation for many modern
revolutionary applications, e.g. in medicine [Rub14].12 With the multi-directional
method of tomography, it is e.g. possible to resolve the brain of a human [CPM87].

The tomographic acquisition and reconstruction are explained with the help of
Fig. 4.3.

The tomographic acquisition yields in measured projections p(s, θ), which all
depend on the projection angle θ and on the projection coordinate s. The object is
defined by the function f (x, y) in the object plane. The projections are calculated
by using the Radon transform R of the object, which is the line integral along the u
coordinate

p(s, θ) = R{ f (x, y)} (4.1)

=
∫

Ls,θ

f (x, y)du (4.2)

=
∫ ∞

−∞
f (s cos θ − u sin θ, s sin θ + u cos θ)du. (4.3)

The projections p(s, θ) are concatenated and visualised in a so called sinogram.
In the experiment, usually, the projections are measured,13 and the object must

be reconstructed. To solve this problem, the inverse Radon transformR−1 is required,
which is defined by [Leo97]

W(x, y) = R−1{p(s, θ)} = − P
2π2

∫ π

0

∫ ∞

−∞

p(s, θ)ds dθ

(x cos θ + y sin θ − s)2 . (4.4)

12The Nobel Prize in Physiology or Medicine 1979 was awarded jointly to Cormack, and Hounsfield
for the development of computer-assisted tomography [N79].

13The projections are measured by either rotating the object or the projection plane, which is indicated
by the dashed arrow in Fig. 4.3.
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FIGURE 4.3: The basic principle of tomography. Left: The object consists of two
solid black points in the object plane. The tomographic acquisition consists of
the projections p(s, θ), which are obtained from measurements under different
angles θ. They are all visualised in a sinogram. Right: The back projection leads to
the tomographic reconstruction of the object, as indicated by the upper picture. For
an unfiltered back projection, the object looks blurry. However, if the correct filters
are applied, the original picture is reconstructed. The idea for this visualisation is
taken from [Sei14].

The integral from Eq. (4.4)14 calculates the unfiltered back projection creating the
picture of the object. However, it has a blurred appearance with less contrast; see
bottom right of Fig. 4.3. Due to this problem, a filtered back projection is usually more
appropriate to reconstruct the image. It consists of different high-pass filters applied
in the Fourier plane [Rad17]. Overall, finding the reconstructed image W(x, y) from
Eq. (4.4) is the main goal of tomography.15

4.3.2 Locking-free tomographic acquisition of a squeezed state

Squeezing can be detected with a homodyne detector, but why do we need quantum
tomography? Figure 4.4 visualises what is stated in Eq. (2.63): A homodyne detector
measures a specific quadrature depending on the detection angle. In the figure,
the detection angle is ramped over time, and the variance is monitored. For each

14The normalisation consists of P that is defined as Cauchy’s principal value of another integral from
Eq. (5.5) from [Leo97].

15In comparison to the inverse Radon transform, other options are possible to reconstruct the image,
such as the maximum likelihood reconstruction [Our+07; LR09; WF18].
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FIGURE 4.4: Homodyne measurement of a squeezed state while tracing over the
detection angle. The projected noise on the vertical grey axis is measured for each
detection angle.

detection angle, the squeezing ellipse has a particular orientation in phase space, and
the measured noise is the state’s projection onto the vertical grey axis. For instance,
the maximum squeezing is observed when the ellipse is rotated perpendicular to
the grey projection axis. However, it is not possible to directly generate the ellipse
distribution from these measurements with the homodyne detector. Quantum tomog-
raphy addresses the problem of reconstructing the squeezed ellipse indirectly from
these projection measurements.

The first reconstruction of a squeezed state by applying quantum tomography
was realised almost 30 years ago [Smi+93; BSM97]. From then, many experiments
dealt with quantum tomography of various quantum states. In these experiments,
two-mode squeezed states [D’A+09], Schrödinger cat states [Our+07], single-photon
Fock states [ZVB04], or higher order Fock states [OTBG06; Coo+13] and frequency-
dependent squeezed states [Che+05; Mil+22] were reconstructed.

First, we need to acquire the data, as mentioned in Subsec. 4.3.1. The standard
approach is to take projection measurements with a homodyne detector for discrete
detection phases θ ∈ [0, π). Usually, for each locked and thus defined detection phase
θi, many noise measurements are taken.16 The noise data is sorted into a histogram
to create a projection p(s, θi). For the histograms, parameters such as the bin size b
and the number of bins n are chosen. The more data points N are monitored per
detection angle, the higher the resolution of the reconstructed Wigner function.17

This procedure is repeated for nθ different detection angles, resulting in an angular
resolution of δθ = π/nθ .

I used a slightly different approach to create the histograms in our tomographic
acquisition. Instead of locking to fixed phase values, I continuously ramped the
detection angle by changing the phase of the local oscillator (LO). For the setup, see
again Fig. 3 in [P2]. Then, we beneficially do not need any active control for the
detection angle, which could be unstable and noisy. The measured AC voltage UAC
(high-frequency noise amplitudes) and DC voltage UDC (low-frequency interference
signal) for a squeezed state being under tomographic acquisition are presented in

16Note that noise amplitudes are measured instead of variances.
17This is also true for the number of bins n, as long as enough data points N are taken, which is

discussed in Sec. 4.6.



88 Chapter 4. Detuning a squeezer to generate frequency-dependent squeezing

θ∝arccos(UDC)

0° ≤ θ < 1°45° ≤ θ < 46°90° ≤ θ < 91°

DC data

AC data

U
A
C

U
A
C

θ
(°
)

U
D
C

t

t

0

0

0

0

45

90

180

FIGURE 4.5: Tomographic acquisition. With the help of the DC voltages UDC, each
timestamp is connected to a specific detection angle θ. Then the AC voltage noise
UAC is sorted into nθ = 180 bins for the detection angle, e.g. 0° ≤ θ < 1°. For each
bin, a histogram is generated.

Fig. 4.5. From the DC trace, each timestamp is attributed to a detection angle by using
the interference response θ ∝ arccos(UDC). Consequently, each AC noise voltage
UAC is connected to a specific detection angle θi. Then, the noise data is sorted into
nθ = 180 angle bins with a bin size of δθ = 1°. For instance, the first bin is bounded
by 0° ≤ θ < 1°. The noise data is distributed in a histogram corresponding to our
angle-dependent projections for each angle bin. In total, roughly 6 million data points
are considered.

Experimentally, the detection phase is changed by a mirror clamped on a piezoelec-
tric transducer (PZT). We applied a triangular voltage to the PZT.18 The movement
of the PZT has a slightly non-linear behaviour. The non-linearity of the ramping
function has no direct influence on our locking-free tomographic acquisition. Since
each noise data point is always attributed to its actual detection angle, a ramp or a
sine wave could also be used to change the phase via UDC. Hence, our method is also
not prone to any hysteresis or non-linear effects of our phase shifter.

Once the histograms are created, we reconstruct the Wigner function, which will
be covered in the next subsection.

4.3.3 Quantum tomographic reconstruction

For the reconstructions, the following remarks are important. The projections are
given by the obtained histograms. However, in general, each histogram can have
a different number of data points due to the locking-free tomographic acquisition.
Thus, the next step is to normalise all histograms and write them all in one matrix to

18A triangular ramp is used to get an equal number of data points per angle bin.
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create the sinogram (matrix dimension: 201× 180). I use the iradon command from
MATLAB [Mat] to calculate the inverse Radon transform. Here, I first need to define
the output size, which is the resolution of our image later. I chose an output size
of r = 140. Namely, the resolution of the reconstructed Wigner function consists of
r2 = 19600 pixels. Then, the inverse Radon transform is computed, resulting in the
reconstructed Wigner function. The last step includes two normalisations. First, the
Wigner function is normalised on a vacuum state and independently reconstructed.
It serves as a reference for our state under reconstruction. A two-dimensional, nor-
malised Gaussian fit provides the widths of the two states. The actual squeezing
and anti-squeezing values are obtained from the normalisation with a reconstructed
vacuum state.

Finally, the Wigner function of a quantum state is reconstructed! Compared to the
reconstruction procedure from Chapter 5, we do not have to assume a Gaussian state
for quantum tomography. Since quantum tomography is a direct imaging procedure,
it can also be applied to non-Gaussian states.19 Dealing with arbitrary quantum states
is one big advantage of quantum tomography.

The choice of the parameters n, N, b and r was iteratively optimised. An indica-
tion of a good parameter choice is the visualised Wigner function, particularly its
symmetry. For instance, the reason for a non-symmetric Wigner function can be in an
even number of histogram bins20 or if the histograms have an unequal number of
data points.21

4.4 The single-mode resonant squeezer

This section starts with a characterisation of the setup in Subsec. 4.4.1. For the
characterisation of the squeezer and the detection process, the same methods as in
Subsec. 3.3.2 and Subsec. 5.4.1 are used. Then, parameters such as the total efficiency
η are extracted, which later help to understand the detuned squeezer better. This
section ends with Subsec. 4.4.2 where a 9 dB squeezed state reconstructed by quantum
tomography is presented.

4.4.1 Characterisation

The resonant OPO is characterised in the same way as the similar22 OPO used for the
spectroscopy experiment from Subsec. 3.3.2. A squeezing slope is measured to char-
acterise the full system, presented in Fig. 4.6a). The curve fitting of the measurement
data has the following parameters: pump threshold Pth = 1.62 W, total efficiency
η = 92.8 % and phase noise ∆φ = 15 mrad. From the individual efficiencies, the
quantum efficiency of the homodyne detector ηqe > 97.6 % is derived, as explained
in Subsec. 2.4.3. In a separate measurement, the linewidth of the unpumped OPO
was determined to 7.2 MHz. In the squeezing slope, the maximal anti-squeezing of
17.4 dB and squeezing of 9.8 dB were measured for a pump power of 920 mW, which
is roughly 57 % of the pump threshold.

The amplitude quadrature squeezed state is analysed at different frequencies
when the OPO is pumped with 770 mW. The spectrum analyser [Keysight, N9020A

19An example of a non-Gaussian state reconstructed with tomography is a phase-diffused squeezed
state [Fra+06], which was also reconstructed in our laboratory.

20Then, there is no defined centre bin in the histograms. Hence, the rotation axis is not in the
distribution centre.

21Then, the number needs to be normalised.
22See Fig. 2.9 again.
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FIGURE 4.6: Top: Single-mode squeezing from a resonant OPO for different pump
powers. The fitting parameters are Pth = 1.62 W, η = 92.8 % and ∆φ = 15 mrad
obtained from the theoretical traces by using Eq. (2.96). Bottom: The spectrum
is measured with a pump power of roughly 770 mW (vertical dashed line in the
top plot). It shows maximal squeezing in the amplitude quadrature V+ = −9.8 dB
(blue trace) and maximal anti-squeezing in the phase quadrature V− = 14.5 dB
(red trace) at 197 MHz. RBW 200 kHz, VBW 100 Hz. All traces are normalised to
shot noise, and the electronic dark noise is subtracted.

MXA] measured a spectrum shown in Fig. 4.6b). This plot shows anti-squeezing again
in the V− variance (red trace) and squeezing in the V+ variance (blue trace). The
extreme values of the spectrum are observed at the first free spectral range frequency
of δω = 197 MHz. There, the noise values are V− = 14.5 dB and V+ = −9.8 dB. They
match the data from the squeezing slope. No better squeezing performance was
published from our quantum control group before.23

4.4.2 Wigner function of a 9 dB squeezed state

The squeezed state generated by the resonant OPO is tomographically reconstructed
by applying the methodology from Sec. 4.3. The state under reconstruction is an am-
plitude quadrature squeezed state generated by the OPO pumped with P = 700 mW.
For the reconstruction, 3.4 million data points are used. The angular resolution is

23A previously locked squeezing spectrum revealed 1.96 dB of squeezing, see Fig. 7.6 from [Den16].
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FIGURE 4.7: Shown are three-dimensional Wigner functions from a squeezed state in
a) and a vacuum state in b). The vacuum state serves as a reference to calculate the
widths and, thus, the squeezing factor of the squeezed state. In c), the calibrated
Wigner function of the state is shown. It has linear widths of ∆X1 = 0.34 and
∆X2 = 4.85 at FWHM (the vacuum has ∆X1 = ∆X2 = 1). These values are already
corrected for the electronic dark noise.

δθ = 0.5°, such that nθ = 360 histograms are created. The bin size of the n = 201 bins
in the histograms is b = 37 µV.

The reconstructed Wigner function of the squeezed state is depicted in Fig. 4.7. The
images a) and b) show three-dimensional Wigner functions of the squeezed state and
a vacuum state used as a reference. In c), the squeezed Wigner function is visualised
in a two-dimensional colour density plot. From the two-dimensional Gaussian fit,
the widths of the minor (red data points) and major (green data points) axis are
obtained. The dashed white circle gives the width of the reference vacuum state at
full width at half maximum (FWHM). The variance of the amplitude quadrature is
var X1 = −9.1 dB and of the phase quadrature var X2 = 13.7 dB. The electronic dark
noise undergoing the shot noise by 15 dB is already subtracted from these values.

The Wigner function of the squeezed state agrees with the previously presented
characterisations from Subsec. 4.4.1 within the measurement uncertainties. The
agreement indicates that the suggested quantum tomographic approach creates
valuable results. It can be applied to any arbitrary Gaussian or non-Gaussian quantum
state of interest. The next section deals with a frequency-dependent squeezed state
generated by the detuned OPO.

4.5 The single-mode detuned squeezer

To generate frequency-dependent squeezing from the OPO, only one modification
is required: The resonance frequency of the OPO needs to be detuned to the laser
frequency. The first Subsec. 4.5.1 of this section is devoted to showing how the detun-
ing in the OPO is realised experimentally. With a locked pump phase, a stabilised
frequency-dependent squeezed state is generated. Subsection 4.5.2 deals with the
effective pump threshold, which additionally helps to understand the concept of the
detuned squeezer.
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FIGURE 4.8: a) Polarisation modes in the OPO separated by frequency distance ∆
of the s- and p-polarised modes. b) Plot of the detuning ∆ depending on the
polarisation degeneracy temperature TPD of the small fraction of the PPKTP crystal.

4.5.1 Stabilising the detuned OPO

The OPO is in a detuned resonance condition when frequency-degenerated signal/idler
sideband pairs do not see a resonant cavity. Multiple options are possible to lock
the OPO in such a resonance condition detuned by ∆. For instance, the OPO can
be locked on the resonance of an ancilla laser field frequency-shifted by ∆. Another
option for locking is to use modulation sidebands located at ±∆ with respect to the
cavity frequency. Then, the Pound-Drever-Hall (PDH) error signal of the sideband
can be taken. However, we apply a different approach in our publication [P2]. We
exploit the effect of polarisation non-degeneracy in the cavity to detune the OPO
because it is simple to realise and tune.

Since the down-conversion process takes place only in the s-polarisation, the
cavity lock can be independently conducted with the orthogonal p-polarisation
mode. In general, mainly due to the birefringent non-linear periodically-poled
potassium titanyl phosphate (PPKTP) crystal, the OPO is non-degenerated for both
polarisation contributions. The frequency distance is measured by detecting both
modes on a polarisation selective detector in transmission of the OPO. The detector
consists of a polarising beam splitter (PBS) followed by two photodiodes in the output
ports.24 When the OPO is ramped, both modes are monitored, as shown in Fig. 4.8a).
The measured time between the two modes can be transformed into the frequency
distance ∆ by using the known free spectral range as a reference. The detuning
is interpreted as the degree of polarisation non-degeneracy in the cavity. In the
measurement in Fig. 4.8a), the frequency distance is relatively large and in the order
of half the free spectral range. Note that the frequency distance can be either positive
for a blue-detuned p-polarisation or negative for a red-detuned p-polarisation.

The OPO is locked on resonance for the p-polarisation. In general, the cavity
phase for the s-polarisation and, thus, the detuning can be arbitrary. However, the
detuning ∆ is easily changed by increasing the optical path length in the birefringent
wedged crystal or by the temperature TPD.25 The frequency distance ∆ is measured for
different temperatures TPD to characterise the effect of polarisation non-degeneracy.

Figure 4.8b) shows the temperature sensitivity of the detuning in the OPO. Here,
the frequency distance ∆ is plotted over the temperature of the small fraction of
the crystal TPD. For a temperature of roughly TPD = 31.6 °C, the OPO becomes
polarisation-degenerate. Then, the OPO behaves as a resonant squeezer, even though

24This detector is not depicted in Fig. 3 in [P2]
25For detailed explanations, see again Subsec. 2.4.1 and Fig. 2.10b).
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it is locked with the wrong polarisation mode. Of course, these exact values are
only reproducible for a fixed crystal alignment position. Displacing the crystal will
immediately change the polarisation non-degeneracy due to changing optical lengths
in the birefringent crystal. In [P2], the detuning ∆ was once adjusted before the
tomographic acquisition was done.

4.5.2 The effective pump threshold

In the OPO, the pump threshold is the specific power where the round-trip losses are
equal to the non-linear gain induced by the pump. For powers above the threshold,
the OPO starts to lase and produces a bright squeezed state [Jin+06]. In this section,
we discuss how the dynamics of the OPO change concerning the pump threshold
when it is operated in a detuned resonance condition. The pump threshold is an
important parameter to better understand the features of the frequency-dependent
squeezed state generated by the detuned OPO.

First, we consider the situation in a resonant OPO. When a pump photon is con-
verted into frequency-degenerate signal and an idler photons, the optical properties of
the cavity define how long they circulate in the cavity before leaving. If the coupling
strength threshold is exceeded, the OPO generates a bright field at the frequency
of the signal/idler field. The squeezing effect is maximal for degenerate signal and
idler pairs being resonant in the OPO (see Eq. (2.86)) or for non-degenerate signal
and idler pairs being resonant at higher free spectral ranges (see squeezing spectrum
from Fig. 4.6). Off-resonant frequency non-degenerate signal/idler pairs create a less
squeezed state. Notwithstanding, the smaller squeezing is not due to more optical
loss. Moreover, the cavity provides less power build-up for these frequencies away
from resonance (see again Fig. 4.2a)), which can be interpreted as an effectively higher
pump threshold.26 Analogous considerations can be conducted for the detuned OPO.

In a detuned OPO, frequency-degenerated signal/idler pairs experience a lesser
build-up due to the cavity amplitude transfer function, as indicated in Fig. 4.2d). This
situation resembles non-degenerate pairs in a resonant OPO. That is why the pump
threshold in a detuned OPO is larger compared to a resonant OPO.

For a resonant OPO, the pump threshold is defined according to Eq. (2.96). From
the measurements presented in Fig. 4.6 we get a pump threshold of Pthr = 1.62 W.
This power can also be expressed in units of coupling strengths, see Eq. (2.89), which
is done in the following.

Figure 4.9 shows simulated noise variances depending on the coupling strength.
We distinguish between a resonant and detuned OPO by ∆ = −2π × 3.6 MHz. For
the resonant OPO the lasing threshold is observed at |g0

thr| = κ = 2π × 3.2 MHz.
We also determine that for the detuned OPO the lasing threshold shifts to
|g∆

thr| = 2π × 4.8 MHz. The plot is created by using Eq. (7) in [P2] with the following
parameters: ω = 0, η = 92.8 %, δψ = 15 mrad, κ = 2π × 3.2 MHz. The two readout
angles are chosen as ψ1 = ψ0 and ψ2 = ψ0 + π/2 to find the correct projection axis of
squeezing and anti-squeezing.27 Note that the minima of both squeezing curves (blue
and orange traces) reach the same level of −10 dB. Hence, with the detuned OPO,
the same squeezing levels can be reached as with the resonant one. The drawback
is that more pump power is required in the detuned case. The benefit is that the
generated state exhibits frequency-dependent squeezing.

26Nevertheless, the state’s purity for non-degenerate signal/idler pairs is usually larger because less
squeezed states are less prone to the optical loss occurring, e.g. inside the cavity. The purity will
be subject of Subsec. 5.1.2.

27This is basically a matrix diagonalisation made for each measurement frequency.
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FIGURE 4.9: Maximal squeezed and anti-squeezed variances V+ = σ̃22(ψω) and
V− = σ̃11(ψω) plotted over the coupling strength |g| relative to shot noise. The
resonant case with ∆ = 0 is visualised by the blue and turquoise traces. Here,
the threshold coupling strength is |g0

thr| = κ = 2π × 3.2 MHz. For the detuned
OPO with ∆ = −2π × 3.6 MHz, the threshold coupling strength increases to
|g∆

thr| = 2π × 4.8 MHz. The vertical dashed line indicates the coupling strength of
|g| = 2π × 2.3 MHz for which the measurements are taken in [P2].

Furthermore, the diagonalisation of the covariance matrix given by Eqs. (4) and
(5) in [P2] is discussed next. Equation (5) in [P2] calculates the angle ψ0 needed
to diagonalise the covariance matrix σ. Here, ψ0 always rotates σ onto the closest
quadrature axis. For instance, for a squeezed state rotated by 40°, we find ψ0 = −40°.
However, a squeezed state rotated by 55° has ψ0 = 35°. In Eq. (5) in [P2] this effect
can be seen by looking at the denominator. If the absolute of the detuning is larger
than the linewidth of the cavity (|∆| > κ),28 the argument of the arctangent in Eq. (5)
in [P2] flips its sign for increasing coupling strengths g. Apparently, Eq. (5) in [P2]
works only for (|∆| ≤ κ). A more general formulation of ψ0 avoiding the sign flip can
be written as

ψ0 =
1
2

arccos

 σ11 − σ22√
(σ11 − σ22)2 + 4σ2

12

 . (4.5)

For creating the graphs in Fig. 4.9, this corrected and more general definition of ψ0 is
used.

4.6 Discussion and conclusion

This chapter closes with a discussion and conclusion on the detuned OPO. The
discussion is split into a technical part mentioning challenges not presented in [P2]. In
particular, it will point out suggestions for future setup improvements. Then, we dive
deeper into implementing the frequency-dependent squeezed state in quantum opto-
mechanical experiments. For CQNC, an inversely-input squeezed state is required
to cancel quantum back-action noise. This section pinpoints that the frequency-
dependent squeezed state generated by the detuned OPO does not fully match the
needed inversely-input squeezed state.

28In [P2], this relation is expressed in ∆̃ = |∆|/κ.



4.6. Discussion and conclusion 95

Reconstructing the Wigner function at multiple frequencies requires measuring
millions of data points. The whole measurement procedure to create the Wigner
functions shown in [Wig] is limited by the data storage time and roughly takes one
hour. During that time, the detuned OPO runs in a steady condition generating a
stable squeezed state. Nevertheless, the adjusted detuning ∆ is not actively locked.
Moreover, it is prone to any temperature changes, similar to our non-degenerate
optical parametric oscillator (NDOPO), which will be subject to the next Chapter 5.
Also, Subsec. 5.4.2 will elaborate on temperature stability. Temperature drifts in the
crystal of the detuned OPO affect the detuning ∆. Our observations indicate that the
detuning is not perfectly constant. During the measurements, we estimated a drift of
roughly ±100 kHz. However, in the future, I recommend studying the temperature
dependence of the detuning in detail, especially since it is also relevant for our CQNC
experiment [Ste19; Sch+22].

To reconstruct the frequency-dependent Wigner functions, quantum tomography
was used. In our approach, each histogram’s detection phase is rather ramped than
locked. Consequently, a fundamental error occurs, which depends on the definition
of the phase bin sizes δθ. In our measurements, it was either 0.5° or 1°. Reducing the
size also reduces the number of data points corresponding to the particular histogram.
Thus, defining the bin size is always a trade-off between angular resolution and
smoothness (number of data points) of the histograms.

Detuning an OPO enables the generation of a special quantum state. We have
seen in Subsec. 4.5.2 that for a constant pump power, detuning the OPO will decrease
the amount of generated squeezing. However, a different resonance condition does
not influence the state’s purity.29 To generate a frequency-dependent squeezed
state exhibiting squeezing values of up to 10 dB, the coupling strength of the down-
conversion process must be increased. This can happen using more pump power
or a higher-reflective input coupler to reduce the pump threshold (see Eq. (2.89)).30

Another option is to use a cavity design that is doubly resonant for the fundamental
and the harmonic field, as in [Vah+16]. In the following we discuss the potential
applicability of a tailored squeezed state generated by the detuned OPO.

The reconstructed quantum state under investigation exhibits a frequency-
dependent squeezing factor and angle. In CQNC, an inversely-input squeezed
state is required to cancel the effect of the quantum back-action noise arising in an
opto-mechanical system [TC10; Wim16; Ste19]. One example of an opto-mechanical
system is a gravitational wave detector consisting of a Michelson interferometer
with suspended optics. For a Michelson interferometer with arm cavities having
bandwidths of 2γ, the required inversely-input squeezed state has a squeezing
factor31

R(Ω) = arcsinh
(
K
2

)
, (4.6)

and a squeezing angle

φ(Ω) = −1
2

arccot
(
K
2

)
, (4.7)

with Kimble factor
K(Ω) ∝

1
Ω2(γ2 + Ω2)

. (4.8)

29This is only true if the OPO cavity is lossless. With losses, the state generated by a detuned OPO is
even purer since it is less prone to optical losses because of its smaller squeezing factor.

30A higher-reflective input coupler will decrease also the escape efficiency.
31Expressions taken from [Kim+01], Eq. (18) and Eq. (31).
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The frequency-dependent squeezed state generated by the detuned OPO needs
to match with Eq. (4.6) and Eq. (4.7) to apply it as an inversely-input squeezed state.
The matching is a non-trivial task since both the required squeezing angle and factor
follow different mathematical functions. The squeezing angle of the state generated
by the detuned OPO is according to Eq. (6) in [P2]

θ(Ω) = −1
2

arctan
(

2κ∆
∆2 − κ2 − g2

)
+

1
2

arctan
(

2κ∆
∆2 − κ2 − g2 −ω2

)
. (4.9)

For the squeezing factor, the equation becomes much more cumbersome and is
not printed here.32 If the detuned squeezer is considered as an effective negative-
mass oscillator for CQNC, the next step seems to be a numeric optimisation of the
parameters to best meet the requirements for R(ω) and φ(ω). For instance, the
parameters could be tuned only for a specific frequency band of interest. I have
already conducted simulations showing a noise improvement in the context of CQNC
if the detuned OPO is used as an effective negative-mass oscillator.

In conclusion, the detuned OPO is a simple way to generate a tailored quantum
state exhibiting frequency-dependent squeezing. An orthogonally polarised addi-
tional light field locks the cavity. An arbitrary detuning is adjusted by slightly chang-
ing the crystal’s temperature. Advantageously, the required temperature change
is small, so the coupling strength is effectively not deteriorated. The generated
frequency-dependent squeezed state is detected with a homodyne detector with a
ramped detection angle. Taking many measurements allows us to reconstruct the
state’s Wigner functions at selected Fourier frequencies by applying quantum to-
mography. These reconstructions reveal that the state exhibits frequency-dependent
squeezing. Additionally, different squeezing spectra, with each having a constant
detection angle, are measured (Fig. 4 in [P2]). These spectra match the results from
the quantum tomographic reconstruction. They show similar features as former pub-
lications demonstrating frequency-dependent squeezing [Che+05; Oel+16b; Zha+20;
Yap+20; McC+20; Süd+20]. The detuned OPO turned out to be an exciting system
worth continuing to study in the future, especially for systems limited by quantum
back-action noise [Mag+20; Yu+20].

32The squeezing factor is obtained from σ11 with optimised detection angle ψω .



97

Chapter 5

Reconstruction of two-mode
squeezed bipartite states

Many optical experiments use specific quantum states tailored to their needs. Some
experiments use these states to reduce quantum noise, while others benefit from
quantum entanglement, applicable, e.g. for quantum information. It is always rele-
vant to ascertain the condition of the used quantum state to a high degree of accuracy.
The goal of quantum state reconstruction is to find the full set of parameters describing
a quantum state. The reconstruction of a quantum state can be arbitrarily difficult.
Single-mode Gaussian1 squeezed states, e.g., can be characterised by only a few
parameters as the squeezing angle and factor. However, for Gaussian multi-mode
squeezed states, the number of parameters drastically increases.

Compound systems can be divided into subsystems, and any subsystems can
be combined into a composite system. In general, this statement is true for classical
systems, e.g. for the solar system, including the planets and the sun as the subsystems.
In quantum mechanics, the properties of composite systems can be completely differ-
ent, e.g. when they exhibit quantum entanglement. However, local operations, e.g.
state manipulations or measurements, can be performed for subsystems of composite
systems [Aud07]. The simplest composite system is a bipartite system consisting of
two subsystems. For instance, two simultaneously created, entangled photons form a
bipartite system. Bipartite quantum states play a major role in quantum information
theory, where the special features of these states are utilised.

This chapter deals with the reconstruction of bipartite states, studied in our pub-
lication [P3]. Section 5.1 starts with an introduction to bipartite states and their
applications in quantum technologies. The section is dedicated to better understand-
ing these kinds of states and relating them to polarisation two-mode squeezing.
Section 5.2 reprints the publication [P3]. Section 5.3 again takes up the used detection
schemes and expands [P3] with more details. It explains two ways of detecting
two-mode squeezing: the conventionally used dual homodyne detection method
and our polarisation-sensitive single homodyne detection. Next, the experimental
generation of bipartite states with a two-mode squeezer will be considered in Sec. 5.4.
In particular, more details are given on the stability of the non-degenerate optical
parametric oscillator (NDOPO). Section 5.5 provides more information on preparing
the polarisation-sensitive homodyne detector. It gives some missing data acquisition
and statistical analysis information and shows all cross-sections of the reconstructed
Wigner function. Finally, this chapter closes with a conclusion and a discussion.

1In this chapter, we assume the state to be reconstructed as Gaussian, which is fully described by its
covariance matrix.
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5.1 Introduction

This section is devoted to bipartite states, which gained increasing importance in
quantum optics. For instance, gravitational wave detectors or experiments related to
quantum communication call for bipartite states. Subsection 5.1.1 gives an overview
of different physics applications where bipartite states are employed. We take a closer
look at the character of quantum optical bipartite states in Subsec. 5.1.2. We will
define them and introduce some characteristics as quantum entanglement. Bipartite
states are found in the regime of small photon numbers or for continuous waves. We
will focus on the latter class and, in particular, discuss the two-mode squeezed state
as an example of bipartite states.

5.1.1 Quantum technologies for entangled bipartite states

According to their name, quantum technologies use quantum effects – but what
does this mean exactly? The properties of quantum mechanics, such as quantum
entanglement or quantum tunnelling, form the basis for all applications in the field
of quantum technologies [RV14]. Here, we want to focus on the manifold demand for
entangled bipartite states.

Bipartite states are interesting for the detection of gravitational waves. Seven years
after the first detection of gravitational waves [Abb+16a], gravitational wave detectors
call for higher sensitivities than ever before. The standard quantum limit classically
limits the sensitivity. However, it can be surpassed by using methods relying on
quantum mechanics [GLM04]. For instance, single-mode squeezed states of light
can be used to beat the standard quantum limit. However, producing the required
frequency-dependent squeezed state to achieve perfect quantum noise cancellation
is technically difficult. Another solution to surpass the standard quantum limit is
the use of entangled bipartite states of light. By harnessing their mutual quantum
correlations, the required frequency-dependent squeezed state can be produced
[Ma+17; Süd+20].

Quantum entanglement also plays a role in quantum communication, particularly
because of its non-locality [GT07; Zou21]. Quantum communication demands secure
ways of exchanging information and therefore aims for channels protected against
eavesdropping. One popular application is quantum key distribution [Sca+09]. Here,
information is exchanged between two connected parties via a quantum channel
and a classical channel. The quantum channel produces a secret quantum key, only
shared by the two parties. It is required to encrypt and decrypt messages. Quantum
key distribution can be performed with discrete variables [Lia+17], but also with
continuous variables [Jou+13; Zha+19].

A particular way of quantum communication is quantum teleportation. Here,
instead of physical objects as seen in science fiction, quantum information is teleported.
Quantum teleportation works with discrete variables [Ben+93] and continuous vari-
ables [BK98; YAF04]. For instance, two entangled and spatially separated particles are
required in quantum teleportation with discrete variables. Then, the state of a third
particle can be instantly teleported from the first to the second particle, by including
it to the entanglement.2

Bipartite entangled states are successfully used in quantum imaging [Tre+02].
By using quantum entanglement, the goal is to beat the limits of imaging resolu-
tion achievable with classical optics [KF00]. Quantum imaging is a growing field
exhibiting many different methods. The resolution of an image can be improved,

2The third particle’s state is not cloned but destroyed as shown in the no-cloning theorem in [WZ82].
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e.g. by entangled states called NOON states3 for differential interference contrast
microscopy [OOT13]. In quantum lithography, the so-called quantum super resolution
can be obtained from two-photon interferences [DCS01]. These examples represent a
range of different applications for entangled bipartite states.

5.1.2 Deciphering the covariance matrix of bipartite states

This subsection is devoted to understanding continuous variable bipartite states, also
called two-mode states. In this chapter, all considered bipartite states are Gaussian,4

allowing us to fully describe their quantum noise with the covariance matrix. With
few simple definitions, these states can be well explained and categorised. For
instance, we can distinguish between pure and mixed states. An important property
of bipartite states is their entanglement or separability. This subsection is not intended
to include the full theory of bipartite states5 but rather summarises the properties
and features most relevant to this thesis.

As already mentioned in Subsec. 2.2.2, two-mode quantum states are described
by four canonical quadrature operators, which we call X = {Xs

1, Xs
2, Xp

1 , Xp
2 } in the

following. Compared to the single-mode quantum states, the parameter space has
doubled. Now, it is four-dimensional, which makes bipartite states harder to visualise,
e.g. by using the Wigner function from Eq. (2.32).6 The covariance matrix from
Eq. (2.30) now has a size of 4× 4 containing the full information about the state’s
quantum noise. It provides the pureness of a state, the separability and entanglement
character.

The covariance matrix gives insight into the pureness of the state. The presented
minimum uncertainty states from Subsec. 2.2.3 are examples of pure states [NC12].
In Subsec. 2.2.3, we also have seen that optical loss can be understood as mixing these
states with vacuum noise. Thus, states affected by optical loss are not pure anymore
and are called mixed states. Analytically, pure and mixed states are distinguished by
considering the determinant of the covariance matrix σ [ARL14]:

det(σ) =

{
1 =⇒ pure

> 1 =⇒ mixed.
(5.1)

With the determinant, the purity µ of an N-mode Gaussian state can be calculated by
[ARL14]

µ =
1√

det σ
. (5.2)

For any N-mode vacuum state with covariance matrix σ, we find µ = 1. For instance,
a single-mode squeezed state with initial squeezing of 10 dB (20 dB) suffering 10 %
optical loss will turn into a mixed state with purity µ = 0.76 (0.32). In comparison, a
two-mode squeezed state with initial squeezing of 10 dB (20 dB) suffering 10 % optical
loss will have a purity of µ = 0.58 (0.10). Both squeezed states have squeezing factors
of 7.2 dB (9.6 dB). We see that two-mode squeezed states are more prone to optical
losses regarding their purity.

3NOON states are entangled states with a superposition of N particles in one mode and zero in the
other and vice versa. NOON states, whose name was first used in [LKD02], can be created, e.g.
from Hong-Ou-Mandel interference of two photons on a beam splitter [HOM87].

4We also assume our two-mode squeezed states as Gaussian. This is only an approximation because
non-Gaussian phase noise will always be present.

5A good theoretical overview is given in [ARL14].
6The Wigner function of a bipartite state is usually visualised by projections onto two-dimensional

subspaces, as will be done in Fig. 5 in [P3] and in Subsec. 5.5.3.
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Entanglement and separability are fundamental concepts in quantum information
theory. A state is entangled if it is impossible to describe the correlations between the
canonical operators in classical terms. If possible, we call the state separable. Thus,
entanglement is synonymous with the lack of separability [Wat18].

The concepts of entanglement and separability can be connected to the covariance
matrix σ. Analysing the covariance matrix of a two-mode squeezed state, given
in Eq. (2.48), discloses that the four individual quadratures have enhanced noise
compared to a vacuum state. However, a proper combination of quadratures leads to a
noise reduction, which is called two-mode squeezing. These combinations are defined
in Chapter 2 in Eqs. (2.46a)–(2.47b). In principle, the pair (XΣ,XΛ) can be measured
with arbitrary precision at the same time7 which demonstrates the Einstein-Podolsky-
Rosen (EPR) paradox [EPR35; Ou+92]. Experimentally, var (XΣ) and var (XΛ) can be
either measured directly or obtained from a reconstructed covariance matrix.8

With the variances var (XΣ) and var (XΛ), two famous criteria can be investigated.
First, the Duan criterion for inseparability states that a inseparable state with EPR
operators XΣ and XΛ fulfils [Dua+00]

var(XΣ) + var(XΛ) < 2. (5.3)

Accordingly, if the inequality is not fulfilled and the left-hand side goes below 2,
this is a sufficient condition for an inseparable state. Hence, the state is found to be
entangled.9 Quantum entanglement is also analysed with the Reid criterium, which
can be seen as an inferred Heisenberg uncertainty relation. If the inequality [Rei89]

var(XΣ)× var(XΛ) < 1 (5.4)

is fulfilled, this shows that XΣ and XΛ are EPR operators demonstrating the EPR
paradox. Here we should emphasise again that a Gaussian (bipartite) EPR entangled
state is also called a two-mode squeezed state to pinpoint the presence of quantum
correlations in the two modes [HSS10]. The two-mode squeezed vacuum state is the
quantum optical representative for bipartite continuous-variable entanglement [BL05;
AMN08].

The paper [P3] is reprinted in the next section.

5.2 [P3]: Reconstructing Gaussian bipartite states with a sin-
gle polarization-sensitive homodyne detector

This subsection reprints the following publication, which was accepted on 27 July
2022 and published on 31 August 2022 in Optics Express. The author contributions
and a short abstract can be found on Page iii.
[P3] J. Junker, D. Wilken, D. Steinmeyer, and M. Heurs. “Reconstructing Gaussian
bipartite states with a single polarization-sensitive homodyne detector”. In: Opt.
Express 30.19 (Sept. 2022), pp. 33860–33868. DOI: 10.1364/OE.465186

7Without loss of generality.
8This can be done by using Eq. (2) in [P3].
9For a maximally entangled state, the left-hand side is zero.

https://doi.org/10.1364/OE.465186
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Abstract: We present a novel method to fully estimate Gaussian bipartite polarization states
using only a single homodyne detector. Our approach is based on [Phys. Rev. Lett. 102, 020502
(2009)], but circumvents additional optics, and thereby losses, in the signal path. We provide
an intuitive explanation of our scheme without needing to define auxiliary modes. With six
independent measurements, we fully reconstruct the state’s covariance matrix. We validate our
method by comparing it to a conventional dual-homodyne measurement scheme.
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1. Introduction

Bipartite Gaussian states increasingly gain importance as a reliable resource for numerous
quantum technologies. The need for continuous-wave bipartite (entangled) states reaches
from gravitational wave metrology [1,2] over quantum communication [3] including quantum
teleportation [4,5] to quantum imaging [6,7]. For a full state characterization, the covariance
matrix of the bipartite state needs to be measured. It contains the complete entanglement
information and, therefore, allows to determine the quality of the state.

To reconstruct the covariance matrix of a bipartite Gaussian state, usually a homodyne
measurement is performed. The measurement process destroys the optical quantum state and,
in return, provides information needed to reconstruct the covariance matrix of the state. Any
quantum decoherence arising before (e.g., due to lossy optics) or during the detection process
(e.g., due to non-unitary detection efficiency) will degrade the reconstruction fidelity and should
be avoided.

We consider Gaussian two-mode squeezed states where for specific combinations of quadratures
the noise is reduced below the classical limit. Traditionally, these states are detected with a
dual-homodyne scheme, which effectively measures both modes individually before the signals
are electrically combined [8–11]. However, the full covariance matrix can also be obtained
by using only a single homodyne detector (HD) [12,13]. The method demonstrated in [14]
requires the measurement of additionally defined modes which need to be detected in a series of
different measurements. In [14] the detection scheme itself inherently introduces decoherence.
The two-mode squeezed state needs to pass through up to three additional optical components,
introducing optical loss, even though on a small scale, degrading the bipartite state’s quality
before its detection.

In this letter, we present an advanced single-homodyne detection scheme to reconstruct the
full covariance matrix of a two-mode squeezed state generated by a polarization-non-degenerate
optical parametric oscillator (NDOPO). To measure variances of different combinations of
quadratures, our technique requires six measurements with differently polarized local oscillators.
We provide an intuitive explanation of our scheme. Compared to [14], the state under consideration
does not pass three additional optics, typically introducing an optical loss of about 0.5 %. Thus,
our state deteriorates less on the way to the detection, avoiding decoherence. While this effect is
small for currently achieved polarization bipartite states, it becomes relevant once two-mode

#465186 https://doi.org/10.1364/OE.465186
Journal © 2022 Received 25 May 2022; revised 3 Jul 2022; accepted 27 Jul 2022; published 31 Aug 2022
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squeezing levels reach performance of the current single-mode squeezers [15]. In addition, we
were able to reduce the number of required optical components. With our measurement, we show
that the estimated two-mode squeezed state fulfills the Duan criterion [16] and the Reid criterion
[17] demonstrating the Einstein-Podolsky-Rosen (EPR) paradox. To confirm our method, we
compare our results to a measurement with a conventional dual-homodyne scheme.

2. Theoretical background

We consider bipartite two-mode squeezed Gaussian states with s- and p-polarized non-degenerate
modes as and ap. The state is described by a set of canonical operators X = (xs

1, xs
2, xp

1, xp
2), with

amplitude quadratures xj
1 = (aj + a†j ) and phase quadratures xj

2 = i(aj − a†j ) with j = {s, p}. An
arbitrary quadrature operator measured in a reference system rotated by α can be written as
xj
α = xj

1 cosα + xj
2 sinα.

Gaussian states are fully characterized by their first and second moments [18]. The first
moments d are defined as dk = ⟨Xk⟩ and vanish for undisplaced states, e.g. for squeezed vacuum.
The second moments are represented in the covariance matrix σ and contain the full information
about the (quantum) noise and the entanglement. The covariance matrix is a real symmetric
positive matrix defined as

𝝈 =

����������

var 𝑥s1 cov 𝑥s1, 𝑥
s
2 cov 𝑥s1, 𝑥

p
1 cov 𝑥s1, 𝑥

p
2

cov 𝑥s2, 𝑥
s
1 var 𝑥s2 cov 𝑥s2, 𝑥

p
1 cov 𝑥s2, 𝑥

p
2

cov 𝑥p1, 𝑥
s
1 cov 𝑥p1, 𝑥

s
2 var 𝑥p1 cov 𝑥p1, 𝑥

p
2

cov 𝑥p2, 𝑥
s
1 cov 𝑥p2, 𝑥

s
2 cov 𝑥p2, 𝑥

p
1 var 𝑥p2

����������
. (1)

For a coherent state all covariances (the off-diagonal elements) vanish and the covariance
matrix has a diagonal form with σ = diag(1, 1, 1, 1). For a polarization two-mode squeezed state
the covariance matrix is not diagonal due to correlations between the quadratures. Instead of
squeezing, an amplified noise will be visible when looking only at variances of single quadratures.
However, we measure squeezing in the combined quadrature variances, e.g. var (xs

1 ± xp
1) and

var (xs
2 ± xp

2). These combined variances are connected via the identity

var xi ± xj = var xi + var xj ± 2 cov xi, xj (2)

to the covariance matrix with σi,k = cov xi, xj. The covariance matrix of any N-mode Gaussian
state can be visualized by the Wigner function [19] defined as in [20]

W(X) = 1
πN

√︁
det(σ)

e−(X−d)⊤σ−1(X−d). (3)

3. Reconstruction method

Homodyne detection is a standard technique to quantify the noise of a quantum state. In a
balanced homodyne detection, see Fig. 1, the signal mode a is sent onto a 50/50 beam splitter
where it interferes with a strong local oscillator (LO). The two output fields of the beam splitter
are detected on two individual photodiodes. The photocurrents are subtracted and converted
into a voltage ∆u that is monitored on a spectrum analyzer. The part of mode a to be measured
is selected by the specific mode characteristics of the LO b (such as spatial mode shape and
polarization), as only the projection of a onto b interferes with b and is amplified by b to detectable
powers. Changes in the local oscillator’s characteristics thus lead to detecting different parts of
mode a. This is an important insight towards understanding the detection scheme. Considering
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single-mode fields, the detection phase determines the measured readout quadrature, e.g., phase
or amplitude quadrature.
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Fig. 1. Basic setup of our single HD reconstruction method. The LO is transmitted by a
half-wave and a quarter-wave plate and experiences a phase shift ϕ. Then, the orthogonal
polarization contributions of the LO bs and bp interfere with the corresponding fields of
the signal as and ab on a 50/50 beam splitter. The powers are measured on a HD where the
difference voltage ∆u is sent to a spectrum analyzer to quantify its variance. BS: 50/50 beam
splitter, LO: local oscillator, HD: homodyne detector

For a polarization non-degenerate two-mode field, the readout quadrature combination can be
determined by changing the magnitude and phase of the s-pol and p-polarization component
of the LO, namely by adjusting its polarization. We now need to find the local oscillator’s
polarization states required to gain full knowledge of the covariance matrix described in (1).
With a purely s-polarized LO b = (bs, 0), the detection scheme is only sensitive to the s-polarized
part of the signal beam. A LO with s- and p- polarization components b = (bs, bs) measures
different linear combinations of the two modes as and ap, depending on the phase difference of
the LO modes bs and bp. In this sense, the single HD can also be interpreted as two independent
HD detectors separated in polarization, sharing the same photodiodes.

As we will show in the following, six measurements with the below polarization states of the
LO are sufficient to reconstruct the covariance matrix.

linear p: blp = (0, b) for var xp
φ

(4a)

linear s: bls = (b, 0) for var xs
φ

(4b)

diagonal + π/4 : blr = b/
√

2 (1, 1) for var (xp
φ + xs

φ) (4c)

diagonal − π/4 : bll = b/
√

2 (−1, 1) for var (xp
φ − xs

φ) (4d)

left circular: bcl = b/
√

2 (1, i) for var (xp
φ − xs

φ+π/2)
(4e)

right circular: bcr = b/
√

2 (1,−i) for var (xp
φ + xs

φ+π/2). (4f)

For the calculation, we decompose the field operators a and b in a constant and a fluctuating
term: a =

⟨︁
a
⟩︁
+ δa and b =

⟨︁
b
⟩︁
+ δb. Since the LO is much more intense than the signal with⟨︁

b⟩ ≫
⟨︁
a⟩ we neglect ⟨a⟩ terms as well as all higher-order δ2 terms. Finally, we compute the

variance of the difference voltage var ∆u of the homodyne detection that is later monitored by a
spectrum analyzer.

First, we consider the case when the LO is in a linear s- or p-polarized state, see Eqs. (4a, 4b).
For a p-polarized LO we find var ∆u = var xp

φ , and for an s-polarized LO, var ∆u = var xs
φ . For

the specific phases ϕ = 0 and ϕ = π/2, we obtain the four main diagonal elements σi,i of the
covariance matrix. When we set the local oscillators phase to ϕ = π/4 and again measure var ∆u,
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we can compute the σ1,2 = σ2,1 and σ3,4 = σ4,3 entries of the covariance matrix by using our
already reconstructed main diagonal entries of the covariance matrix and the identity [21]

var xj
φ=π/4 =

1
2
(︁
var xj

1 + var xj
2 + 2 cov xj

1, xj
2
)︁
. (5)

Following this procedure, the first six independent entries (in (1) in red dotted) of the covariance
matrix can be obtained.

Second, we prepare the LO in a ±π/4 linearly rotated polarization state, see Eqs. (4c, 4d). We
measure the sum (difference) of amplitude or phase quadratures of both contributing modes,
which is given by var ∆u = var xp

φ ± xs
φ. This is an elegant method to directly detect the sum

(difference) of the same quadrature of modes with orthogonal polarizations. Now, the detector
simultaneously detects the s- and p-polarized contributions and thus directly adds the quadratures.
We can compute the σ1,3 = σ3,1 and the σ2,4 = σ4,2 entries by taking the main diagonal entries
of the covariance matrix and (2). This procedure results in two more independent entries of the
covariance matrix (in (1) in green solid).

Third and lastly, we prepare the LO in a right (left) circular polarized state, see Eqs. (4e,
4f). Now, mixing between quadratures and polarization modes occurs, which can be seen by
var ∆u = var (xp

φ ± xs
φ+π/2). To compute the missing σ1,4 = σ4,1 and σ2,3 = σ3,2 entries, we

again use the main diagonal elements from the first part and the identity from (2). This way, the
last two independent entries (in (1) in blue dashed) are obtained, leading to a fully reconstructed
covariance matrix.

4. Experimental setup

The measured two-mode squeezed state is generated by a polarization non-degenerate optical
parametric oscillator (NDOPO) as shown in Fig. 2. The NDOPO is similar to the (OPO)
presented in [22]. It consists of an input/output mirror with power reflectivity of Rin = 0.95 and
three highly-reflective mirrors for the fundamental wavelength 1064 nm. The cavity is kept on
resonance for 1064 nm by applying the Pound-Drever-Hall technique (not shown in Fig. 2). We
measured the cavity linewidth to be 1.7 MHz. The optical round-trip length of the cavity is
1.522 m, which leads to a free spectral range of 197.0 MHz.
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Fig. 2. Experimental setup consisting of generation and detection stage. We either detect the
two-mode squeezed state with a single HD (bottom box) or, using the flipping mirror Mflip,
with a dual HD. NDOPO: non-degenerate optical parametric oscillator, PD: photo detector,
M: mirror, PBS: polarizing beam splitter, BS: 50/50 beam splitter, LO: local oscillator, HD:
homodyne detector.
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The core element of the NDOPO is a 1 mm × 2 mm × 10 mm (PPKTP) crystal for the non-
linear type II down-conversion process, see Fig. 2. The optimal phase-matching condition for the
down-conversion process is ensured by temperature controlling the larger left (8 mm) part of
the crystal to TDC = 30◦c. Since the birefringent crystal is wedged, we can roughly adjust the
degeneracy point of the two polarization resonances by carefully shifting it perpendicularly to the
cavity beam axis and thus changing the optical path length inside the crystal. Fine-tuning of the
degree of degeneracy can be achieved by changing the temperature TPD ≈ TDC of the right (2 mm)
part of the crystal by less than ±1◦c. We inject 650 mW of 532 nm pump light in a single-pass
configuration. The pump phase can be locked to a seed field by detecting its de-amplification on
the photodiode PD as in [23]. Also shown in Fig. 2 is the detection scheme for the two-mode
squeezed state. To reconstruct the covariance matrix we can either use the conventional dual
homodyne scheme or measure the state with our approach based on a single HD.

5. Reconstruction results

In this section, we explain how we have taken the measurements and present and discuss our
reconstructed covariance matrices. We can employ the conventional dual-homodyne approach by
using the flipping mirror Mflip in Fig. 2. In this case, the s- and p-polarization contributions of
the signal are split by a polarising beam splitter (PBS) and are detected by the two individual
homodyne detectors HD1 and HD2. With mirrors clamped onto piezoelectric elements, we can
change the two detection phases, respectively. By combining the voltages from both homodyne
detectors for different phases ϕ1 and ϕ2 of the s-polarized LO1 and the p-polarized LO2, the
covariance matrix can be reconstructed [8,11].

To utilize the single HD approach, we send the signal beam directly onto the HD. Here, the
signal interferes with the LO, whose particular polarization state is prepared with a half-wave
and a quarter wave-plate. We use the six differently polarized local oscillator fields to take
our measurements as explained in Section 3. The polarization states are generated by using
motorized pre-calibrated rotation mounts for the two waveplates. By tuning the piezoelectric
element (PZT), we change the relative phase ϕ between the local oscillator and the two-mode
squeezed state (signal), as depicted in Fig. 2. The difference voltage ∆u of the HD is measured
with a spectrum analyzer [Keysight, N9020A MXA], and the trace is plotted in Fig. 3. We
have taken the measurements over a zero span at 197 MHz, which is the first free spectral range
frequency of the NDOPO. The measurements are normalized to shot noise and the electronic
dark noise (which was roughly 15 dB below the shot noise) is subtracted. Each colored trace
shows the signal’s noise for a specific polarization state of the LO. For a purely s- or p-polarized
LO, we observe the thermal noise characteristic of the state. The marginal dependence on the
phase ϕ is probably due to a remaining mismatch between polarization bases of signal and local
oscillator. For the other four polarizations we observed a squeezed noise of −6.7(2) dB and an
anti-squeezed noise of 12.8(2) dB. Here, we took up to six data points for each required variance.
Thus, we average over the measurement time of 0.8 s, to get a higher precision for the entries in
the covariance matrix.

When using the dual-homodyne scheme to analyze the two-mode squeezed state, we obtain
measurements similar to those as shown in Fig. 3. We measured the s-pol and p-polarization
thermal states by using only one of the two homodyne detectors. If we monitor the combined
signal behind an electronic adder [Mini-Circuits, ZFSC-2-5-S+], we obtain variances of different
quadrature combinations. For each measurement, we locked the detection phase of one HD (e.g.
ϕ1 on HD1) and ramped the other detection phase (ϕ2). Following this procedure, we can also
reconstruct the full covariance matrix of the same two-mode squeezed state.

The reconstructed covariance matrices for the single HD and dual HD schemes are shown
in Fig. 4. The entries are average values calculated over the full measurement time. We found
both covariance matrices exhibiting well-matching entries within the statistical measurement
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Fig. 3. Zero-span measurements taken with the single homodyne detector for six different
polarization states of the local oscillator at 197 MHz, normalized on shot noise. We observe
a squeezed level of −6.7 dB and an anti-squeezing level of 12.8 dB. Resolution bandwidth:
200 kHz, video bandwidth: 100 kHz.

uncertainties. For the main-diagonal entries, the standard deviation is at most 0.2, according
to our statistics from taking several data points per trace. The uncertainty for the off-diagonal
entries in the covariance matrix (CM) is up to a factor of 4 larger because they were indirectly
obtained. In the following, we elaborate on the potential origins dominating the measurement
uncertainties.
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Fig. 4. Comparison of the reconstructed covariance matrices obtained from measurements
with the single homodyne detector (left) and the dual homodyne detector (right) approach.
We observe nearly identical results for both approaches.

Since our single-homodyne measurements work with a polarization-sensitive local oscillator,
they require reliable polarization optics. The beam splitter should have an equal splitting ratio
of 50/50 for both polarizations for a precise reconstruction. Usually, this can be realized with
the appropriate coating and careful alignment of the angle of incidence. In our experiment
we could achieve Rs ≈ Rp ≈ 50% with a precision of ±0.5%. Another important factor is the
polarization accuracy of the LO and how well it matches the signal’s polarization basis. The
motorized rotations mounts [Thorlabs, ELL14] have an adjustment precision of ±0.3% to tune
the ellipticity and rotation angle of the LO. The polarization was monitored by a polarimeter
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[Thorlabs, PAX1000IR1]. However, these mentioned experimental uncertainties do not dominate
the errors in the covariance matrix.

For the single-homodyne detection, the polarization state of the two-mode squeezed state is
highly important when it interferes with the local oscillator at the beam splitter. Ideally, the
two-mode squeezed state is diagonally linearly polarized. However, the polarization state changes
due to any polarization non-degeneracy effects. One origin could be an asymmetric propagation
phase for s- and p-polarization arising from mirror reflections, which is a static effect. Additionally,
a slightly fluctuating resonance condition of the NDOPO for s- and p-polarization could also
dynamically change their phase relation (the polarization state) but also their magnitudes (the
squeezing degree). In our setup, this might be the case, most likely due to small temperature
fluctuations in the crystal. This effect which originates from the NDOPO source and not from
the detection scheme, dominates the uncertainties in the covariance matrices.

The comparison of both covariance matrices in Fig. 4 indicates that the state obtained by the
dual HD method is slightly more squeezed. The main differences between the two detection setups
are that, firstly, the propagation efficiencies for the three beam paths (to single HD vs. reflected
at the PBS vs. transmitted at the PBS) are slightly different. Secondly, we measured slightly
different visibilities (VIS) for the three homodyne detectors (VIS1HD = 99%, VIS2HD,s = 98%,
VIS2HD,p = 99%). However, these differences do not explain why the state detected with the dual
HD method is slightly more squeezed. A better explanation is that the two-mode squeezed state
becomes slightly elliptical polarized when it travels to the detector, as explained in the previous
paragraph. A non-degrading elliptical polarized two-mode squeezed state is only a problem
when using the single HD method.

We visualize the covariance matrix obtained from the single HD method in Fig. 5 by plotting
the Wigner functions using Eq. (3) with N = 1. The Wigner functions W(xs

1, xp
1) and W(xs

2, xp
2)

show squeezed states representing anti-correlated quadratures xs
1, xp

1 and correlated quadratures
xs

2, xp
2. These two Wigner functions are squeezed by a factor of 0.20 and 0.21, respectively.

We observe thermal states for W(xs
1, xs

2) and W(xp
2, xp

1). Due to the strong similarity of the two
covariance matrices, the Wigner functions for the dual HD case look nearly identical and are
omitted here.
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Fig. 5. Gaussian Wigner functions for different combinations of the four quadrature modes
xp
1, xp

2, xs
1 and xs

2. The distributions are plotted by using Eq. (1) and the reconstructed
covariance matrix from our measurements with a single HD from Fig. 4.

To complete, we investigate our reconstructed two-mode squeezed state on inseparability
and entanglement when we measure with a single HD. With our single HD approach, we
can test these criteria directly, since we directly measure the required variances, see Sec-
tion 3. We find a value of 0.42 ± 0.02 for the left hand side of the equation for the Duan
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criterion var (xs
1 + xp

1) + var (xs
2 − xp

2)<2 [16], falling a factor of roughly 4.8 below this crite-
rion. The criterion from Reid can be seen as an inferred Heisenberg uncertainty relation with
var (xs

1 + xp
1) × var (xs

2 − xp
2)<1 [17]. Using our reconstructed covariance matrix, the left hand

side reads 0.044 ± 0.003, surpassing the Reid criterion by a factor of roughly 23, which clearly
demonstrates the EPR paradox.

6. Discussion and conclusion

Finally, we discuss the drawbacks and the advantages of using our demonstrated single HD
approach. The technical drawback of the single HD reconstruction method is its susceptibility to
polarization inaccuracies. This applies for the beam splitter, which has to be equally reflective
for s- and p-polarization, but also the matching of the polarization bases of LO and signal.
Moreover, our scheme is sensitive to the actual phase delay between both fields, which potentially
explains the slightly reduced squeezing values for the single HD measurements compared to those
measured with the dual HD. However, our demonstrated method has some advantages compared
to [14]. With the motorized rotation mounts, our measurements can be taken very fast. The most
significant benefit is that we do not send the state under estimation through components other
than the beam splitter, as this would introduce additional and unwanted decoherence. Typically,
these losses are in the order of 0.5% for three optical components in transmission. They are small
with respect to the total losses shown here. However, with increasing performance these losses
become a more significant contribution to the loss budget - [15] showed a total loss of 2.5 % in a
single-mode setup.

We have demonstrated a full Gaussian state estimation of a two-mode squeezed state by
measurements with a single homodyne detector. Our detection scheme is similar to the method
demonstrated in [14]. We use six different polarization states of the local oscillator, with each
one measuring a particular combination of variances. These measurements allow us to fully
reconstruct the covariance matrix of the two-mode squeezed state. The advantage of our method
compared to [14] is that the state under estimation deteriorates less on the way to the homodyne
detector because we avoid the transmission through of optical components (two waveplates and a
polarising beam splitter), thereby retaining more coherence. To confirm our method, we compare
our results to a measurement taken with a conventional dual-homodyne scheme. Our presented
approach is an intuitive, low-loss alternative for characterizing bipartite polarization states.
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5.3 Detection of two-mode squeezing

Before we illuminate how two-mode squeezed states are generated, we first discuss
how they can be detected. The special feature of our two-mode squeezing is that
the two modes of interest are distinguishable due to their orthogonal polarisations.
A conventional (single-mode) homodyne detector, as described in Subsec. 2.2.4,
cannot fully characterise the two-mode squeezed state. It can only measure either
the s-polarisation or the p-polarisation contribution of the signal field. Thus, a more
advanced detection scheme is required. This section discusses two possible detection
schemes suitable for detecting two-mode squeezed states.

First, Subsec. 5.3.1 deals with the conventional dual homodyne detector. As
the name suggests, it consists of two individual homodyne detectors. Here, each
detector measures one orthogonal mode and the signal of both detectors is combined
electronically. Second, Subsec. 5.3.2 complements the detection method used in
[P3], namely the polarisation-sensitive single homodyne detection. This approach
measures the two modes simultaneously by choosing specifically polarised local
oscillators instead of splitting them. This subsection, in particular, discusses how the
local oscillator is theoretically described and expounds the Eqs. (4a)–(4f) in [P3].

5.3.1 Dual balanced homodyne detection

The setup of the (balanced) dual homodyne detection scheme is shown in Fig. 5.1.
First, the signal field a = (as, ap) is split by a polarising beam splitter (PBS) into the
orthogonal polarisation contributions as and ap. Then, as and ap are independently
sent onto two conventional balanced homodyne detectors with individual local oscil-
lators bs and bp. These homodyne detectors can be treated independently and each
behaves as described in Subsec. 2.2.4. Depending on the relative phases φs and φp,
arbitrary quadratures δXs

φs
δXp

φp
can be observed in the difference photocurrents ∆is

and ∆ip, analogously to Eq. (2.61). These photocurrents are converted into voltages
∆us and ∆up by the transimpedance amplifiers. Finally, the two voltages ∆us and
∆up are added (Σu = ∆us + ∆up) or subtracted (∆u = ∆us − ∆up) and monitored on
a spectrum analyser. They read as

Σu = ∆us + ∆up ∝ 2αsβ0,s cos(φs) + β0,sδXs
φs

+ 2αpβ0,p cos(φp) + β0,pδXp
φp

, (5.5)

∆u = ∆us − ∆up ∝ 2αsβ0,s cos(φs) + β0,sδXp
φs

− 2αpβ0,p cos(φp)− β0,pδXp
φp

. (5.6)

The phases φs and φp can be obtained from the DC terms. The variances are

var (Σu) ∝ β2
0,s〈|δXs

φs
|2〉+ β2

0,p〈|δXp
φp
|2〉, (5.7)

var (∆u) ∝ β2
0,s〈|δXs

φs
|2〉 − β2

0,p〈|δXp
φp
|2〉. (5.8)

The local oscillators’ powers need to be equal (β2
0,s = β2

0,p), to achieve proper combi-
nations of variances. Up to this point, we have assumed that both photodetectors
are equal. However, it can be challenging in an experiment to create two perfectly
identical photodetectors, particularly over a large frequency band up to the gigahertz
regime.
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FIGURE 5.1: Schematic of a (balanced) dual homodyne detection scheme. The signal
field a is split by a polarisation beam splitter (PBS) into the orthogonal polarisation
contributions as and ap. They are individually detected on balanced homodyne
detectors HD1 and HD2 leading to differential photocurrents ∆is and ∆ip. Tran-
simpedance amplifiers (TIAs) convert the currents into voltages ∆us and ∆up that
are added or subtracted to be monitored on a spectrum analyser. BS: 50/50 beam
splitter.

For the experiment, we used two in-house manufactured homodyne detectors.10

Before using them for the actual detection, a noise characterisation was performed,
which can be seen in Fig. 5.2.

The dark noise (turquoise graph for HD1 and orange for HD2) and the shot noise
(blue for HD1 and red for HD2) are plotted in Fig. 5.2a). The shot noise measurement
was taken with a local oscillator power of 9.5 mW for each of the two homodyne
detectors. Hence, all four photodiodes each detected 4.75 mW of power. The mea-
surement shows that the noise traces are similar for both homodyne detectors. Both
detectors behave nearly equally at low frequencies up to 500 MHz. However, at
higher frequencies, the dark and shot noise traces differ by up to 5 dB. It turned out
that the dark noise level depends mainly on the high-frequency shielding and the
mechanical forces of the connectors, potentially causing parasitic capacities. It was
impossible to equalise the detectors’ traces over the whole frequency band. However,
at the desired measurement frequency of 200 MHz (indicated by the dashed vertical
line in the figure), both detectors seem to work equally. At this frequency, the dark
and shot noise traces indicate that the electrical transimpedance gains are equal.
Contrarily, e.g. at 2 GHz the traces differ.

Figure 5.2b) shows the distance between dark noise and shot noise, which is
called the dark noise clearance. Here, we also identify an equal clearance at most
frequencies for the two homodyne detectors. In particular, at the measurement
frequency of 200 MHz the two detectors show the same behaviour. In conclusion, the
two homodyne detectors are suitable to take measurements at 200 MHz.

This subsection closes with a brief review on Fig. 5.1. Why do the calculations
not consider that vacuum fluctuations couple into the detection scheme at the PBS?
The PBS transmits vacuum fluctuations in p-polarisation and reflects those in s-
polarisation. Hence, these fluctuations at the output ports are orthogonally polarised
to the signal fields as and ap and do not interfere with the local oscillators.

5.3.2 Polarisation-sensitive single homodyne detection

This subsection is devoted to giving some additional remarks to the reconstruction
method described in Sec. 3 in [P3]. As long as we do not discriminate between the

10Labelled as e-GHzHDv8.2-1 and e-GHzHDv8.2-2.
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FIGURE 5.2: a) Shot noise (SN) and dark noise (DN) traces measured with the two
homodyne detectors HD1 and HD2. At the measurement frequency of 200 MHz (in-
dicated by the dashed line), the two detectors show equal behaviour. b) Clearance
between shot noise and dark noise of the two homodyne detectors. At 200 MHz, a
clearance of roughly 14 dB was measured. Resolution bandwidth: 510 kHz, video
bandwidth: 470 Hz.

two orthogonally polarised modes, we can treat two-mode squeezing as single-mode
squeezing. This scenario can also be realised by a homodyne detector. The two-mode
squeezed state is 45° linearly polarised. We can detect squeezing with a local oscillator
having the same linearly 45° polarisation. Generally, the local oscillator can have
arbitrary polarisation states, which all measure particular variances.11

The required local oscillators’ polarisations (according to Eqs. (4a)–(4f) in [P3]) are
created by using two waveplates. For the theoretical description, the Jones calculus is
used [Fow89]. In this formalism, polarised light is represented by a 2-dimensional
vector and optical elements by 2× 2 matrices. Here, I use the nomenclature from Fig. 1
in [P3]. The complex vector b̃ = (b̃s, b̃p) describes the local oscillator, with entries
representing the s- and p-polarisation. Its polarisation is adjusted with a half-wave

11A similar idea of using one homodyne detector to measure frequency non-degenerated squeezed
states was applied in [Süd+20]. There, a bichromatic balanced homodyne detection scheme is
employed.
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plate (HWP) and a quarter wave-plate (QWP) given by the Jones matrices12

HWP(θ) =
(

cos(2θ) − sin(2θ)
− sin(2θ) cos(2θ)

)
, (5.9)

QWP(θ) =
(

i cos2(θ) + sin2(θ) (i− 1) sin(θ) cos(θ)
(i− 1) sin(θ) cos(θ) i cos2(θ) + sin2(θ)

)
. (5.10)

After the transmission of the waveplates, the local oscillator is

b =

(
bs
bp

)
= QWP(θ1)×HWP(θ2)×

(
b̃s

b̃p

)
. (5.11)

Depending on θ1 and θ2, the waveplates can arbitrarily polarise the local oscillator b.
In particular, we can achieve the six required polarisations states from Fig. 1 in [P3].13

The signal14 is described by the complex vector a = (as, ap). It interferes with
the local oscillator on a polarisation-insensitive 50/50 beam splitter.15 Before the
interference, the local oscillator collects a polarisation-independent phase φ. Thus,
the interfering fields on the beam splitter are

the local oscillator
(

bs
bp

)
eiφ (5.12)

and the signal
(

as
ap

)
. (5.13)

At the beamsplitter, orthogonal polarisation contributions do not interfere with
each other. Hence, up to the detection, s-polarisation and p-polarisation fields can be
treated independently.16 Then, the difference current from the homodyne detector
reads17

∆i ∝
1
2

(
|bseiφ + as|2 + |bpeiφ + ap|2 − |bseiφ − as|2 − |bpeiφ − ap|2

)
. (5.14)

As an example, the simple case of using a linear s-polarised local oscillator with
b = (bs, bp) = (b, 0) is considered. To solve Eq. (5.14), we use the linearisations from
Eq. (2.23). We again neglect higher-order terms going with δ2 and find

∆i ∝ 2αsβs cos(φ) + βsδXφ,as + αsδX−φ,bs + αpδX−φ,bp . (5.15)

With fulfilled homodyne conditions from Eqs. (2.59) and (2.60),18 Eq. (5.15) simplifies
to

∆i ∝ 2αsβs cos(φ) + βsδXφ,as , (5.16)

which is the equivalent result as in Eq. (2.61) for the single-mode detection scheme.
The difference current can be calculated for each of the six input polarisation

states depending on the phase φ as shown in Table 5.1. The difference current is

12Jones matrices for different polarisation optics can be found in [TG13], Table 4.1.
13In the publication [P3], these states are labelled as blp, bls, blr, bll, bcl and bcr. They are all normalised

and have an amplitude of |b| = b.
14In [P3], the signal is a two-mode squeezed state.
15This beam splitter has a power reflectivity of R = 50 % for both polarisations.
16However, the powers will add up at the detection.
17Again, we use the asymmetric beamsplitter convention as in Subsec. 2.2.4.
18This means that the local oscillator’s amplitude is much stronger than the signal’s amplitude and

that the local oscillator’s fluctuations are sufficiently low.
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distributed into a DC mean term (middle column) and an AC fluctuations term (right
column). The phase information φ can be obtained from the DC terms.

TABLE 5.1: Difference currents ∆i of the polarisation-sensitive homodyne detector
calculated by Eq. (5.14).

field operator ∆i DC (mean) ∆i AC (fluctuations)

blp = (0, b) 2αpβ cos(φ) 2β δXp
φ

bls = (b, 0) 2αsβ cos(φ) 2β δXs
φ

blr = b/
√

2 (1, 1)
√

2β(αp + αs) cos(φ)
√

2β(δXp
φ + δXs

φ)

bll = b/
√

2 (−1, 1)
√

2β(αp − αs) cos(φ)
√

2β(δXp
φ − δXs

φ)

bcl = b/
√

2 (1, i)
√

2β(αs cos(φ)− αp sin(φ))
√

2β
(

δXs
φ + δXp

φ+π/2

)
bcr = b/

√
2 (1,−i)

√
2β(αs cos(φ) + αp sin(φ))

√
2β
(

δXs
φ − δXp

φ+π/2

)
For the Gaussian state reconstruction presented in [P3], we need the variances

of the individual quadrature operators and the combinations from the AC currents.
They are all given in Table 5.1. The variances are obtained from normalised spectra
measurements. The shot noise normalisation is done by repeating the measurement
without a signal.

This section dealt with the electric fields involved in the polarisation-sensitive
homodyne detection scheme. It presented the detected difference currents for the
six different local oscillator polarisation states. It can be seen as a supplementary for
Sec. 3 in [P3]. The next Section 5.4 dives more into the experiment and explains how
bipartite states are generated with a two-mode squeezer.

5.4 Bipartite states generated with a two-mode squeezer

Two-mode squeezed states are bipartite states and can be generated by different
methods. One prominent method is to use two single-mode squeezed states and
interfere them on a 50/50 beam splitter [Fur+98; Bow+03a; Bow+03b; DiG+07; YBF07].
With this approach, a two-mode squeezing level of about 10 dB was achieved [EHS13].
Other approaches make use of the correlations of sidebands in single-mode squeezing.
Quantum entanglement can be created by separating the quantum sidebands of a
single spatial mode into two separate spatial beams. The separation is realised, e.g. by
using unbalanced Mach-Zehnder interferometers [HR02; Zha03; Hun+05], or optical
cavities [HSS10]. However, the most straightforward method to generate two-mode
squeezing is the usage of an NDOPO which is also called a two-mode squeezer
[Ou+92]. Many experiments use linear cavities [Lau+05; Vil+05; Su+07; Zho+15] as
NDOPOs reaching up to 8.4 dB of two-mode squeezing [Zho+15]. These works use
the dual homodyne detection scheme to detect the two-mode squeezed state.

This section deals with the generation of two-mode squeezed states with an
NDOPO19 and their characterisations. First, Subsec. 5.4.1 focuses on the initial char-
acterisation of the squeezer including a squeezing slope and a squeezing spectrum.
Squeezing is measured by using a single polarisation-sensitive homodyne detector.
This characterisation helps to understand the limitations of squeezing generation and
detection. We found out that the used two-mode squeezer has stability problems in

19Subsection 2.4.2 instructs how the NDOPO is set up.
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operation mode. Hence, we discuss determined problems and limitations regarding
the stability in Subsec. 5.4.2.

5.4.1 First characterisation of the two-mode squeezer

Once the polarisation-sensitive homodyne detector was set up, the first character-
isation of the two-mode squeezer was done. Using a local oscillator that is +π/4
linearly polarised, squeezing and anti-squeezing are detected, see Eq. (4c) in [P3]. I
prepared a two-mode quantum state exhibiting squeezing in the amplitude quadra-
ture V+ = 〈|δXs

1 + δXp
1 |2〉 by locking the seed to de-amplification. Consequently,

anti-squeezing was visible in the phase quadrature V− = 〈|δXs
2 + δXp

2 |2〉. By chang-
ing the pump power, I observed the variances for different non-linear interaction
strengths. Such a squeezing slope is seen in Fig. 5.3a). The measurement data is fitted
by Eq. (2.96).20 The fitting parameters are the pump threshold Pth = 1.25 W, the total
efficiency η = 85.9 % and the phase noise ∆φ = 48 mrad.

The pump threshold was independently determined in a second measurement.
Here, the two-mode periodically-poled potassium titanyl phosphate (PPKTP) crystal
was pumped without the cavity with infrared light.21 Then, the non-linear efficiency
is determined to ENL = Pgreen/P2

IR ≈ 5.5× 10−4 W−1, by using different fundamen-
tal PIR and generated green Pgreen powers. The pump threshold is obtained from
Pth = (Tin + δx)2/(4ENL) = 1.23 W [Ste19], where Tin = 5 % is the power transmis-
sion of the input coupler and δx ≈ 0.2 % the intra-cavity loss.

The detection efficiency is assumed as 97 %,22 the propagation efficiency is es-
timated to ηprop = 99 %. The homodyne efficiency was measured to be ηvis = 99 %
for both polarisations. The escape efficiency differed for both polarisations with
ηesc,s = 96.5 % and ηesc,p = 96 %. These escape efficiencies correspond to the cav-
ity linewidths of roughly δω = 1.7 MHz neglecting the down-conversion process.
For this consideration, I assumed an equal total efficiency for both polarisations
(η = ηs = ηp). Note that this is only a simplification. I established the equation for
the total efficiency by

η ≡ ηs = ηesc,s ηprop ηvis ηqe ηx,s = 85.9 %, (5.17)
η ≡ ηp= ηesc,p ηprop ηvis ηqe ηx,p = 85.9 %. (5.18)

It turned out that two undetermined loss channels of ηx,s = 93.6 % and ηx,p = 94.1 %
need to be assumed. The missing loss channels will be discussed at the end of this
subsection.

Squeezing is also observed in the frequency domain. I chose a pump power of
roughly 500 mW to measure a squeezing spectrum at 197 MHz, which is the first free
spectral range frequency of the NDOPO. The spectrum is displayed in Fig. 5.3b).
It shows squeezing in the amplitude quadrature (blue trace) and anti-squeezing
in the phase quadrature (red trace). Taking the average of 20 single traces has a
strong smoothening effect, as shown by the orange and turquoise traces. In the
spectrum, a maximum anti-squeezing of 12.3 dB and a maximal squeezing of 7.3 dB
were measured.

20Due to technical limitations in the pump power availability, the largest applied power was 695 mW.
Further, for simplicity, we assumed equal losses for both polarisations, such that the two-mode
squeezing can be treated like single-mode squeezing.

21Meaning the second harmonic generation (SHG) process was driven in the crystal.
22Justified as a rough average of the quantum efficiency obtained in [P1] and in [P2].
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FIGURE 5.3: a) Two-mode squeezing was measured with a single homo-
dyne detector for different pump powers. The parameters Pth = 1.25 W,
η = 85.9 % and ∆φ = 48 mrad are fitting parameters from using Eq. (2.96).
b) The spectrum was measured with a pump power of roughly 500 mW
(vertical dashed line in the top plot) and shows squeezing in the ampli-
tude quadrature V+ = 〈|δXs

1 + δXp
1 |2〉 = −7.3 dB (blue trace single measure-

ment, turquoise with 20 averages) and anti-squeezing in the phase quadrature
V− = 〈|δXs

2 + δXp
2 |2〉 = 12.3 dB (red trace single measurement, orange with 20 av-

erages). Resolution bandwidth 200 kHz, video bandwidth 100 Hz. All traces are
normalised to shot noise, and the electronic dark noise is subtracted.
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Previous experiments in our group already utilised two-mode squeezers. One
experiment reached locked squeezing values of 0.4 dB and 0.5 dB of anti-squeezing
[Wim16]. Another experiment showed a locked squeezing level of 1.24 dB and anti-
squeezing level of 2.03 dB (free running: 2.3 dB of squeezing, and 3.7 dB of anti-
squeezing) [Ste19]. The reasons for this thesis’s improved squeezing are many and
related to better efficiencies. For instance, the escape efficiency ηesc increased from
93 % to 96 %, the quantum efficiency ηqe from 80 % (estimated) to 97 %, and the total
efficiency η from 59 % to 86 % (old values taken from [Ste19]).

The best squeezing value measured in the squeezing slope in Fig. 5.3a) is around
−6.4 dB, while −7.3 dB are measured in the spectrum in Fig. 5.3b). One assumption
for causing this difference is that the squeezing slope measurement was taken when
the NDOPO had a non-ideal cavity resonance condition, see Subsec. 5.4.2. The full
slope measurement takes tens of minutes, and the crystal temperature needs to be
manually optimised for each pump power again. This procedure can be prone to
errors. For instance, the thermal equilibrium could not be reached for each pump
power leading to a drifting and thus non-ideal resonance condition. Additionally,
the unknown loss channels ηx,s = 93.6 % and ηx,p = 94.1 %, which are included in
Eqs. (5.17) and (5.18), can cause trouble.

I suggest repeating the analysis of the individual loss channels in the future
and remeasuring the squeezing slope with care. For the scope of [P3], this was not
progressed because the priority was set on the novel detection scheme.

This subsection has shown that our NDOPO produces a two-mode squeezed
state that exhibits a decent amount of squeezing. The quantum state can be recon-
structed using the method from [P3]. The next subsection focuses on the experimental
challenge of a barely stable cavity resonance.

5.4.2 Stability problems

We have observed that the squeezing and anti-squeezing levels are not constant on a
timescale of minutes after optimisation. The reason for this degradation is a changing
polarisation degeneracy point in the NDOPO induced by small temperature drifts in
the crystal.

The PPKTP crystal inside the NDOPO is temperature controlled to roughly 30 °C,
as explained in Subsec. 2.4.1. Figure 2.10 shows that both crystal sides are kept on
independent temperatures TPD and TDC by two Peltier elements. Because the negative
temperature coefficient thermistor (NTC) sensors are placed in the oven,23 the temper-
atures are not directly measured at the crystal. Depending on the current resistances
of the NTC, more or less current will flow to heat the Peltier elements. In general,
the temperature of the crystal will be a little lower than the copper parts because
heat dissipates to the environment. If the environment changes thermodynamically,
e.g. due to a rise in the room temperature, the dissipation channels become less
effective. The crystal increases its temperature before reaching thermal equilibrium
again. Consequently, the polarisation degeneracy point can change despite constant
temperature control loops.

The green pump light absorbed by the crystal has the largest influence on the
heat dissipation of the crystal. I observed that the spectral distance between s- and p-
polarisation modes changed by multiple linewidths (δω ≈ 1.7 MHz), when increasing
the pump from zero to hundreds of milliwatt. For an ideally constant pump power,
the point of degeneracy should not change. However, the low-frequency pump power

23See again Fig. 2.11.
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fluctuations are causing the temperature drift. They are the reason for the change in
polarisation degeneracy.

The changing resonance condition has two effects which cause the two-mode
squeezing to degrade. Since the NDOPO is actively locked only on the resonance
condition for the s-polarisation, the p-polarisation sees a detuned cavity. The detuning
reduces the effective squeezing interaction strength because the p-polarisation is no
longer resonant in the cavity.24 Secondly, due to the temperature drift, the phase of
the p-polarised field exiting the cavity is not constant, corresponding to a fluctuating
output polarisation. The s- and p-polarised field are separately detected in a dual
homodyne detector. There, a fluctuating output polarisation is not a problem because
the detection angles’ locks compensate for these fluctuations. However, our single
homodyne detector is prone to the signal’s polarisation fluctuations, as it is inherently
polarisation-sensitive.

Despite the temperature drift, the two-mode squeezed state remained constant
over the few seconds of the measurement. However, the temperature drifts are the
largest limitation in demonstrating a more accurate reconstruction of the two-mode
squeezed state using a single homodyne detector. Ideas for improving on that are
discussed in Sec. 5.6.

5.5 From the measurement to the reconstruction of the Wigner
function

The Wigner function cannot be measured directly but results from individual mea-
surements that are post-processed and combined. The polarisation accuracy of the
local oscillator is crucial for our proposed approach since this is the reference field
for the detection. First, Subsec. 5.5.1 answers how the local oscillator is precisely
adjusted. Once the required polarisation states are found, the data is taken in a
series of automatic measurements, which will be the subject of Subsec. 5.5.2. This
subsection also includes remarks on the statistical data analysis. It closes with a plot
of all cross-sections of the reconstructed Wigner function in Subsec. 5.5.3.

5.5.1 Preparing the polarisation-sensitive homodyne detector

The local oscillator’s polarisation state defines the detection’s polarisation basis. Ide-
ally, this basis matches the two-mode squeezed state’s polarisation basis at the 50/50
beam splitter. Only then are the orthogonal s- and p-polarisation contributions decou-
pled and can be treated independently. Relying on accurate polarisation properties
can cause problems, as we have already seen in Subsec. 3.4.3.

I use a polarimeter [Thorlabs, PAX1000IR1] to monitor the polarisation bases for
the homodyne detection. The polarimeter senses a beam reflected on a high-reflective
flipping mirror after the 50/50 beam splitter (not shown in Fig. 1 and 2 of [P3]).
The polarisation basis of the polarimeter serves as a reference. The waveplates can
arbitrarily modify the polarisation basis of the local oscillator, as seen in Subsec. 5.3.2.
Hence, only the polarisation of a (classical) 45° linearly polarised beam transmitted
by the NDOPO cavity needs to be adjusted. This beam’s polarisation is determined
by the NDOPO geometry and polarisation properties itself. Thus to prevent any
polarisation misalignments, the cavity should be set up with care according to the
explanations from Subsec. 2.4.2.

24This effect is similar as in the case of the detuned OPO visualised in the quantum sideband picture
in Fig. 4.2.
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For the measurements required for the reconstruction, we need six accurately
defined polarisation states of the local oscillator. Our half-wave and quarter wave-
plates are mounted on electronic rotation mounts [Thorlabs, ELL14] that are controlled
by a MATLAB [Mat] script. Once the pairs of angles (θi

HWP, θi
QWP), i ∈ {1, 2, 3, 4, 5, 6}

for the six polarisations are found, we can reproduce the local oscillators polarisations
state on demand. Hence, all six measurements can be taken automatically in one
measurement and also in a short acquisition time.

The six angle pairs are automatically found by another MATLAB script, calibrating
the waveplates. The script behaves similarly to a conventional auto-alignment tool.
For each of the six polarisation states of the local oscillator, two target values are
defined: the polarisation ellipticity and the polarisation rotation angle. In each
iteration, the current values for the ellipticity and the rotation angle are compared to
the target values. If the ellipticity error is larger, the quarter waveplate is rotated into
the direction where the ellipticity error is reduced.25 If the error for the rotation angle
is larger, the half waveplate is rotated into the direction where this error is reduced.
The step size is continuously reduced to converge to a steady solution. The algorithm
stops when a given accuracy for the ellipticity and the rotation angle is reached.

5.5.2 Data acquisition and statistical data analysis

A MATLAB script triggers the data acquisition on a computer for the measurements
with a single homodyne detector. The computer is interfaced with a spectrum analyser
[Keysight, N9020A MXA] and to the two electronic rotation mounts [Thorlabs, ELL14],
where the waveplates are mounted. First, the waveplates are calibrated as described
in the last two paragraphs of Subsec. 5.5.1. Then, the six required polarisation
states can be instantaneously generated, initiated by the MATLAB script. For each
polarisation state of the local oscillator, a zero-span spectrum was measured at a
frequency of 197 MHz. The resolution bandwidth was set to 200 kHz and the video
bandwidth was 100 Hz.26

For the measurements with the dual homodyne detection scheme, all six measure-
ments are started manually. The spectrum analyser’s configurations are the same as
for measuring with the single homodyne detector.

The statistical data analysis is performed with another MATLAB script. During
the measurements shown in Fig. 1 of [P3], the detection phase (only a single detection
phase for the dual homodyne detection) is ramped, and variances are measured. To
extract the required variances given in Eqs. (4a)–(4f) in [P3], the data is smoothed and
searched for minimal and maximal values. With the knowledge of the time stamps of
these extrema variances, the detection phase is attributed to all other times. Then, the
noise can be determined for a local oscillator phase of π/4, needed when applying
Eqs. (5) in [P3].

5.5.3 Cross-sections of the Wigner function

The reconstructed Wigner function represents the two-mode squeezed state depend-
ing on the four quadratures. For a better visualisation of the covariance matrix, the
Wigner function is partially plotted by two-dimensional cross-sections. In Fig. 5.4,
each picture corresponds to an entry in the left covariance matrix from Fig. 4 in
[P3]. All pictures are plotted using Eq. (2.32) with N = 1. The four variances on the
diagonal define the projected widths of all other Wigner distributions. Moreover, the

25The sign is found by trial and error.
26In [P3], the video bandwidth was wrongly stated as 100 kHz.
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FIGURE 5.4: Cross-sections of the Wigner function obtained from measurements with
a single homodyne detector for pairwise quadratures. The right upper plots are
symmetric to the left bottom plots. They are plotted by using the left covariance
matrix from Fig. 4 in [P3] and Eq. (2.32) with N = 1. The widths of the distributions
are given by the four variances and the correlation by the covariances.

covariances show the pairwise correlations of quadrature combinations. Four Wigner
distributions have shapes of squeezed ellipses. For the positive cov(xs

2, xp
2 ) = 9.2, the

ellipse is distributed along the identity line xp
2 = xs

2. Intuitively spoken, this means
that when measuring a positive value for xp

2 , it is also likely that the value for xs
2 is also

positive. In contrast, when the covariance is negative, as for cov(xs
1, xp

1 ) = −9.2, a pos-
itive value in xp

1 tends to imply a negative value for xs
1. The other four distributions

show nearly symmetric thermal states.
Thermal states have a larger uncertainty than vacuum or coherent states [BL04].

The reason for the increased width is that classical or thermal noise is added [SSL17].
Perfect thermal states obey var x1 = var x2. The blurry states in Fig. 5.4 are slightly
asymmetric and show nearly ideal thermal states. Another way to create thermal
states is by using a phase-insensitive amplifier.27

This section presented supplemental information regarding the data acquisition
and analysis for [P3]. It explained how the local oscillator’s polarisation states are
created using motorised waveplates. Further, it visualised the full reconstructed
covariance matrix in a 4× 4 plot showing different cross-sections of the Wigner
function. The next section closes this chapter with a discussion and conclusion.

27For a phase space picture, see, e.g. Fig. 5 of [Mar+14].
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5.6 Discussion and conclusion

In our publication [P3], we reconstructed the covariance matrix of a two-mode
squeezed state. The state shows quantum entanglement, which can be studied by the
Reid criterium from Eq. (5.4) [Rei89]. From the covariance matrix, we can also infer
the inseparability of the state by using the Duan criterium from Eq. (5.3) [Dua+00].28

The bipartite two-mode squeezed state generated by our NDOPO is also characterised
by the purity, as defined in Eq. (5.2). When detecting the two-mode squeezed state
with the single homodyne detector, we find µ1HD = 0.26. For the dual homodyne
detection, we find µ2HD = 0.31. These purity values might correspond to the fact that
the state detected with a single homodyne detector experiences slightly more optical
loss degrading the purity more.

Our reconstructed covariance matrix has relatively large uncertainties compared
to other experiments that reconstructed bipartite states [Lau+05; D’A+09; Ste+13].
This should not be misinterpreted by assigning the uncertainties directly to the
method of using only a polarisation-sensitive homodyne detector to reconstruct the
state. The large uncertainties originate from the fluctuating polarisation of the output
two-mode squeezed state, as explained in Subsec. 5.4.2. Thus, the locking stability
of the NDOPO is the limitation for our obtained accuracy in the covariance matrix.
However, the instability problem can be tackled by two approaches in the future.

First, we need to eliminate the temperature changes affecting the non-linear
crystal. In operation mode, the temperature drifts originate from power fluctuations
of the pump field. A power stabilisation for the green pump will create a much
more stable thermal environment and equilibrium once the desired pump power is
selected.29 In our experiments, there are some potential approaches to stabilise the
pump power using different actuators. As an actuator, we could use, e.g. a Mach-
Zehnder interferometer [MV20], an acousto-optic modulator (AOM) [JOW17], the
current of the laser diode30 or even the resonance point in the SHG cavity could be
possible.

The second option to tackle the drifting polarisation degeneracy is to actively
control it. Here, the task is to optically generate an error signal that can be fed back
to the oven temperature of the crystal. The error signal can be generated, e.g. with a
polarisation-sensitive homodyne lock [HC80; Heu+09], as shown in Fig. 5.5. From
the right, the counter-propagating locking field, which is 45° linearly polarised, is
coupled into the NDOPO. The reflected field is sent to a 50/50 beam splitter where it
is equally distributed. One fraction is detected behind an s-polarisation filter on a
photodiode to create the Pound-Drever-Hall (PDH) error signal to lock the NDOPO.
With this control loop, the NDOPO is kept resonant for the s-polarisation field. The
other fraction is sent through a quarter waveplate on a PBS to let both polarisation
contributions interfere. The two output fields are then measured with a homodyne
detector to generate the error signal.

The error signal for the polarisation degeneracy lock is investigated, as seen in
Fig. 5.6. First, the polarisation degeneracy was ramped by changing the temperature
of the small part of the crystal (a schematic of the crystal is shown in Fig. 2.10). The
temperature is proportional to the voltage shown by the blue trace in Fig. 5.6. During
the temperature change, the homodyne detector monitored the error signal shown
by the red trace, which looks like a typical PDH error signal. This can be explained

28The verification of these two criteria is done in the last paragraph of Sec. 5 in [P3].
29A power stabilisation for the pump was also realised in [MV18], to reach co-resonance for the pump

and the fundamental field in a doubly resonant OPO.
30To already stabilise the fundamental power.
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FIGURE 5.5: Setup of the polarisation degeneracy lock, including the seed field
propagating from the left (orange arrow) and the locking field from the right
(red arrow). The NDOPO is kept on resonance by detecting the s-polarisation
contribution of the locking field for the PDH lock (red dashed arrow). The error
signal for the polarisation degeneracy lock is obtained on the homodyne detector
(HD) from self-interference of the 45° linearly polarised locking field at the PBS
(red dotted arrow).

by the 12 MHz phase modulation of the locking field. The two small error signals
are created by the beat of the resonant phase modulation sidebands with the input
seed. The measurements from Fig. 5.6 show that an active lock for the polarisation
degeneracy in the NDOPO seems possible.

The suggested lock was not fully realised due to technical difficulties at the
time of writing. Optimally, the lock uses a servo, which is interfaced with the
temperature controller. Slowly changing the current heating the Peltier element
would be beneficial to conveniently resolve the error signal. Additionally, a variable
gain and offset would be beneficial, making debugging simpler and locking less
complicated. Then, the locking bandwidth can be analysed, which will be strongly
limited by the heat flow from the Peltier element to the crystal, which is measured to
happen at sub-hertz frequencies. Using a digital loop could simplify the realisation
of the lock. An optimised oven design with shorter heat flows and better thermal
shielding potentially improves the control bandwidth.

In conclusion, I recommend continuing to develop a lock for the polarisation
degeneracy when working with two-mode squeezers31 in the future.32 Stabilising the
pump power would help to minimise the temperature drifts in the first place.

Once the NDOPO generates a more stable two-mode squeezed state, we can
reconstruct the covariance matrix with higher accuracy using only a single homodyne
detector. Then, the statistical errors are presumably reduced, and longer measurement
durations with more data points are realisable.33 In particular, more data points are
relevant when applying quantum tomography to reconstruct the squeezed state, as
done in [P2].

A two-mode squeezed state can be generated by various methods as mentioned in
Sec. 5.4. During the work with two-mode squeezed states, another potential method
evolved. It seems conceivable to use two single-mode squeezed states, but instead of
interfering them on a 50/50 beam splitter, they are superimposed on a PBS. Then a

31These can be normal two-mode squeezers or all-optical effective negative-mass oscillators used for
coherent quantum noise cancellation (CQNC) [Ste19].

32The suggested lock is only one option. Another possibility to generate an error signal for the
p-polarisation resonance is to use modulation techniques [Dre+83].

33More data points require longer storage times to process the data.
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FIGURE 5.6: Error signal of the polarisation degeneracy lock for a two-mode squeezer.
The blue trace shows the ramped temperature of the small part of the oven, which
changes the polarisation degeneracy in the NDOPO. The red trace depicts the error
signal measured at the homodyne detector.

polarisation two-mode squeezed state should be created at the output ports of the
PBS. It seems to be interesting to elaborate on this idea in the future.

The measured squeezing and anti-squeezing from Fig. 5.3 can be used to calculate
the coupling strength for the down-conversion process gDC. Taking the obtained
parameters of the linewidth δω = 1.7 MHz and the threshold power of 1.25 W, the
coupling strength only depends on the used green pump power P and reads as34

gDC =
2π × 1.7 MHz

2

√
P

1.25 W
= 2π × 240 kHz

√
P

100 mW
. (5.19)

For the all-optical cascaded CQNC we aim for gDC = 2π × 250 kHz [Sch+22].
This value can be reached with the new two-mode squeezer for a pump power
of only P = 108 mW, according to Eq. (5.19). The old two-mode squeezer re-
quired P = 137 mW of pump power to reach the same coupling strength of
gDC = 2π × 250 kHz [Ste19].

In conclusion, entangled Gaussian bipartite states can be used in numerous appli-
cations. They reach from gravitational wave detectors, over quantum communication,
to quantum imaging. The bipartite state is also called a two-mode squeezed state
indicating quantum correlations in the two spatial modes. Usually, the covariance
matrix is determined to characterise these two-mode squeezed states. It exhibits the
full information about the quantum noise distributions. In particular, the covariance
matrix discloses the degree of entanglement and the purity of the investigated state.

Conventionally, the two-mode squeezed states are detected by dual homodyne
detection schemes, where each of the two homodyne detectors measures the quadra-
tures of a single mode. The quadrature combinations are obtained by electronically
adding or subtracting the signals from the homodyne detectors. Our publication
[P3] demonstrated that a polarisation-sensitive single homodyne detector takes all
measurements needed to reconstruct the covariance matrix. We use six different
polarisation states of the local oscillator, each measuring a particular combination of
variances. The advantage of our method compared to [D’A+05; D’A+09] is that the
state under estimation deteriorates less on the way to the homodyne detector. This

34Compare with Eq. (4.75) from [Ste19].
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is because we avoid the transmission through optical components (two waveplates
and a PBS), thereby retaining more coherence. Our intuitive method does not require
to define new auxiliary modes [D’A+05; D’A+09]. Compared to the conventional
dual homodyne detection method, we are not dependent on two equal homodyne
detectors, which might be technically difficult at high frequencies in the hundreds
of megahertz regime. The reconstructed state fulfils the criteria from Reid [Rei89]
and Duan [Dua+00], clearly showing its inseparability and quantum entanglement
character.

The generated two-mode squeezed state has a reduced squeezed uncertainty
of up to −7.3 dB, which is a squeezing improvement of around 5 dB compared to
previous experiments in our working group [Wim16; Ste19]. Finally, the derived
down-conversion coupling strength gDC fulfils the requirements for the all-optical
cascaded CQNC experiment for a pump power of roughly 108 mW. For the future, I
recommend optimising the temperature stability of the PPKTP crystal in the NDOPO
to reach a more stable polarisation non-degeneracy.
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Chapter 6

Discussion

This chapter discusses the findings of this thesis first from a technical perspective.
It starts with a list of new developments and improvements compared to former
experiments. Then, this chapter links the previous Chapters 3, 4 and 5. In particular,
the discussion includes insights gained from working with these experiments. Also,
relevant suggestions for future investigations and potential improvements are given.

Throughout this thesis, the squeezer (optical parametric oscillator (OPO) or non-
degenerate optical parametric oscillator (NDOPO)) forms the heart of our experi-
ments. At the time when the thesis was started, the maximum measured squeezing
in our group was only a few decibels [Den16; Wim16]. The progress in the last years
led to significant improvements in the squeezers. They can be ascribed to reducing
optical losses and developing new control architectures.

Compared to the former, the new squeezers consist of a full set of new optical
components. These are better polished and coated optics, i.e. cavity mirrors and
periodically-poled potassium titanyl phosphate (PPKTP) crystals. Thus, the intra-
cavity loss was reduced to roughly 0.2 %. The new experiments are conducted in a
cleaner laboratory environment. Consequently, they are less exposed to dust particles,
distributing on mirrors and causing optical loss. One significant milestone was
the substitution of the old homodyne detector with a new one with high-quantum
efficiency (> 96 %). This innovation reduced the loss because of inefficient detection
by more than 15 %. In the scope of this thesis, a new second harmonic generation
(SHG) cavity design was created. Since it is roughly 1.5 times more efficient than
the old SHG [Den16], more pump power is available for the OPO. Thus, I could
decrease the finesse of the OPO by reducing the input/output coupler’s reflectivity.
This is beneficial because a lower reflectivity improves the cavity escape efficiency
(see Eqs. (2.11) and (2.87)).

In this thesis, new methods were developed when working with the squeezers.
Here, I want to list the four most relevant changes. First, the old squeezer was only
stable when the PPKTP crystal was inserted [Den16; Wim16; Ste19]. This old design
was adopted in [P1]. I changed the optical design of the squeezer such that it is stable
even without the crystal, which significantly helps to align the cavity. Second, in
[P2] and [P3], I placed a wedged crystal in an oven where two temperatures can be
controlled. Previously, a rectangular-shaped crystal was used in a single-temperature
oven. With the wedged crystal, adjusting the polarisation phase degeneracy was
possible, increasing the performance of the NDOPO from roughly 2 dB to 7 dB of
squeezing compared to [Ste19]. Third, instead of using the front beam as the seed
[Den16], I only operate with a seed coupling via a high-reflective mirror into the
squeezer. Thus, it is ensured that the seed coming from the squeezer represents the
pure eigenmode of the cavity, which can then be used to optimise the contrast of
the homodyne detection. Fourth, one change in the locking topology significantly
enlarged the signal-to-noise ratio of the error signal. In the previous designs, the
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squeezers were locked with an error signal obtained by the locking beam reflected
from a high-reflective cavity mirror [Ste19]. In the new topology, I instead used the
beam exiting the squeezer at the input/output mirror, which has a higher power
leading to a better resolvable error signal.

It turned out that the squeezer used in [P1] has serious problems with phase
noise which is mainly caused by two contributions. First, due to the rectangular
crystal geometry, coupling can occur between co- and counter-propagating cavity
modes. Depending on the coupling dynamics, the error signal suffers and the locking
point of the squeezer can change, which created phase noise. Second, the intra-cavity
modulation is used to imprint a phase modulation on the locking field to generate an
error signal created phase noise. For the new iteration of the squeezers, these two
details are modified. In [P2] and in [P3], a wedged crystal is installed, and the locking
field is externally modulated. In particular, the OPO from [P2] benefits from this
change. For this squeezer, the amount of phase noise is reduced from ∆φ = 30 mrad
to ∆φ = 15 mrad (see Subsecs. 3.3.2 and 4.4.1).

Nevertheless, phase noise is still a problem in our squeezers. In principle, phase
noise values of 1.7 mrad [Vah+16] or 1.3 mrad [Oel+16a] can be achieved. To reduce
phase noise in future experiments, I recommend a detailed investigation of channels
where phase noise couples. These involve, e.g. the locking stability of OPO and SHG
cavities or phase noise occurring due to control sidebands of seed and local oscillator.
A reduced phase noise would increase the squeezing level and brings us closer to the
current squeezing record of 15 dB [Vah+16].

Another problem in our setups is potential noise from scattered light, originating
mainly from three different fields. The squeezed state’s amplitude consists only of
the seed field, which co-propagates in the OPO. However, fractions of the counter-
propagating locking field are reflected at the crystal surfaces and scatter into the
co-propagating squeezing mode. Also, the seed itself and the local oscillator field
are reflected at the homodyne detector and scatter in the counter-propagating mode
of the OPO. Hence, three fields interfere, which distorts the set point of the cavity
length control.

The squeezers used in the experiments [Vah+16; Oel+16a] exhibit two major
differences to our setups. First, they do not require a locking field at the fundamental
wavelength but rather control the cavity length with the green pump field. This is
possible because their squeezers are resonant for both the infrared fundamental and
the green pump light. Additionally, they use a coherent, frequency-shifted seed to
lock the squeezing ellipse [Vah+06; Che+07]. For future work, I suggest implementing
the mentioned two features to reduce phase noise, potentially caused by cavity length
noise and noisy locked squeezing and detection angles. At the time of writing, the
setup of a doubly resonant OPO cavity has already begun in our laboratories.

The experiments from [P2] and [P3] fully reconstruct the quantum state by using
homodyne measurements. The main difference between the two approaches is that
the reconstruction from [P3] assumes a Gaussian state. Thus, the full covariance
matrix can be obtained by taking only a few measurements. Contrarily, in [P2], we
applied quantum tomography, an imaging method that reconstructs the state as it
is. Hence, this more elaborate reconstruction method can reveal any non-Gaussian
quantum behaviour.
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Chapter 7

Conclusion

In this conclusion, the main findings from this thesis are brought into a broader
scientific context. The aim of this thesis was to develop different quantum systems
generating tailored squeezed states and demonstrate their respective applicability.
Here, the question is answered how the collected knowledge from this thesis is
applicable in quantum optics.

In conclusion, this thesis developed novel quantum optical methods employing
different, tailored non-classical light sources. It gives relevant theoretical descriptions
for understanding these quantum systems. The quantum states are stably controlled,
detected with least decoherence on different homodyne detector schemes and char-
acterised resulting in the degree of squeezing or potential quantum entanglement.
Each considered quantum system has specific features. This thesis explored high-
frequency squeezed states for high-precision spectroscopy, frequency-dependent
squeezed states from a detuned squeezer, and the reconstruction of a two-mode
squeezed state. The publications [P1], [P2] and [P3] show that the results are of
interest to the scientific community in the fields calling for particular squeezed states.

[P1] High-precision cavity spectroscopy using high-frequency squeezed light

In high-precision spectroscopy, the measurement sensitivity is often limited by techni-
cal noise at low frequencies, e.g. from the electronics. If technical noise is sufficiently
reduced or circumvented, quantum shot noise will be visible and act as a fundamen-
tally classical limitation. Shot noise can be passed with squeezed states of light. Even
though squeezing was already implemented decades ago [PCK92], non-classical light
is a rather unexplored topic for spectroscopy.

In publication [P1], a high-frequency phase modulated and amplitude quadrature
squeezed state is generated to improve the sensitivity of measuring low-frequency
phase signals. To be limited by shot noise, we shift our signal to larger measurement
frequencies using a modulation technique. We demonstrated that sub-shot-noise
signals at 100 Hz and 200 kHz are resolved in a reduced noise floor, squeezed by
6 dB. Recent publications showed the potential of using quantum correlations for
microscopy [TG+20] and spectroscopy [Whi+17; And+20; MT22].

[P2] Frequency-dependent squeezing from a detuned squeezer

One of the most prominent examples of squeezed states’ application in high-precision
metrology is gravitational wave detectors. These instruments have been achieving
unprecedented sensitivities near the standard quantum limit of interferometry, which
can be beaten by non-classical methods. For instance, a state with a frequency-
dependent squeezing angle can be utilised, realised by a conventional squeezer and
reflected on filter cavities having low linewidths of hundreds of hertz.
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The publication [P2] shows that a detuned optical parametric oscillator (OPO)
produces a quantum state exhibiting frequency-dependent squeezing. Our generated
state is reconstructed by quantum tomography. It rotates over megahertz frequencies
and has a rotation angle of 39° and a maximal squeezing degree of 5.5 dB. Generating
a squeezed state rotating over hundreds of hertz requires a long and lossless de-
tuned OPO, which is technically challenging to realise. However, using our detuned
squeezer approach (instead of the resonant squeezer) could potentially serve as a
phase-rotation correction mechanism in addition to the filter cavities.

In opto-mechanical force measurements, coherent quantum noise cancellation
(CQNC) is one way to beat the standard quantum limit [TC10; Wim+14; Sch+22]. Here,
a particularly frequency-dependent squeezed state is required to cancel quantum
back-action noise. This particular state can be generated by an effective negative-mass
oscillator. The oscillator can be realised by a complicated combination of a two-mode
squeezer and a coupled cavity [Ste19; Sch+22]. Instead, a detuned OPO could be an
approximate but simple and promising approach to realise an effective negative-mass
oscillator to cancel quantum back-action noise. First simulations show that e.g. the
parameters could be numerically optimised, cancelling quantum noise only in a
specific frequency band of interest.

[P3] Reconstructing Gaussian bipartite states with a single polarization-sensitive
homodyne detector

Two-mode squeezed states require careful generation and handling since they are
even more fragile than single-mode squeezed states. Asymmetries in the two modes
cause degradations of the bipartite state. However, these states are required in many
applications. For instance, they are considered to be applied in gravitational wave
detectors [Ma+17; Yap+20; Süd+20] to beat the standard quantum limit. Two-mode
squeezing relates to continuous-variable entanglement, a fundamental resource for
numerous tasks. They ranges from quantum teleportation [BK98], continuous vari-
able quantum computing [YAF04; Men+06], quantum imaging [Tre+02], quantum
cryptography [Gis+02] and communication [GT07] or for measurements of biolog-
ical samples [Tay+13]. Furthermore, they form a resource for fundamental tests of
quantum mechanics, such as the Einstein-Podolsky-Rosen paradox [EPR35; Ou+92;
Rei+09].

Publication [P3] deals with two-mode squeezed states generated by a non-
degenerate optical parametric oscillator. It shows that the covariance matrix of a
7 dB squeezed state can be fully determined by taking measurements with a single
polarisation-sensitive homodyne detector. This detection scheme does not require
two equal homodyne detectors and will simplify the characterisations needed for the
experiments mentioned above. Moreover, it introduces less loss than a previously
demonstrated approach using a single homodyne detector [D’A+05; D’A+09].

With quantum states, violations of the Bell inequalities [AGR82; Wei+98] or tests
of local hidden-variable theories [Cla+69; FC72] are shown. The implications of
quantum physics are more relevant than ever. For instance, quantum physics is
discussed in the context of machine learning [Sch+20; KZ20]. The actuality is also
underlined by the award of this year’s Nobel prize in physics to Aspect, Clauser
and Zeilinger, for experiments with entangled photons, establishing the violation of Bell
inequalities and pioneering quantum information science [N22]. The fundamental methods
and concepts developed in this thesis can be applied to modern experiments using
non-classical quantum states.
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