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The twistor space of a hypercomplex or a hyperkähler manifold M is a complex manifold Z equipped with a
holomorphic submersion π : Z → P1 and an antiholomorphic involution σ covering the antipodal map. The
manifoldM is then recovered as (a component of) the Kodaira moduli space of σ-invariant sections of π with
normal bundle splitting as

⊕
O(1).

In [3] the first author observed that, if dimM = 4, then we also obtain a hypercomplex or pseudo-
hyperkähler structure on a subset of the Douady space consisting of σ-invariant curves of degree d, d > 1,
which are cohomologically stable, i.e. satisfy h1(N

C/Z(−2)) = 0.
In [5] C. Peternell and the first author showed that in the case of curves of genus 0 in P3\P1 (i.e. in the

twistor space of the flatR4) this pseudo-hyperkähler structure can be obtained as a pseudo-hyperkähler quo-
tient of a flat space by a non-reductive Lie group. Even in that case, however,wehad beenunable to determine
the signature of the metric for d > 3.

In this work we investigate the pseudo-hyperkähler geometry of higher degree P1’s embedded in the
twistor space of an arbitrary 4-dimensional hyperkähler manifold. First of all, if such a P1 of degree d is
to satisfy reality conditions, then d must be odd. This has been proved in [5, Prop. 5.9], but it also follows
from the observation that a rational map ϕ : P1 → P1 of degree d can commute with the antipodal map
only for odd d. With this restriction, let us denote by M

d
the subset of the Douady space consisting of σ-

invariant cohomologically stable P1 ⊂ Z of degree d. M
d
is hypercomplex, resp. pseudo-hyperkähler, if M is

hypercomplex, resp. hyperkähler. We remark that in this situation “cohomologically stable" is equivalent to
N
C/Z ≃ OP1 (2d − 1) ⊕ OP1 (2d − 1).
Our main result is:

Theorem A. Let M be a 4-dimensional hyperkähler manifold. Suppose that d ∈ N is odd and M
d
is nonempty.

Then:

(i) the signature of the pseudo-hyperkähler metric on M
d
is (2d + 2, 2d − 2);

(ii) there exists a natural submersion ρ : M
d
→ RP2d−2

and an open dense subset U of M
d
such

each fibre of ρ|
U
has a natural d-hypercomplex¹ structure.
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Part (ii) holds also if M is only hypercomplex. The subset U consists of C such that the restricted vertical
tangent bundle (Ker dπ)|

C
is isomorphic to OP1 (d) ⊕ OP1 (d).

The structure of the paper is as follows. In the next section we recall facts about the geometry of degree d
curves (of arbitrary arithmetic genus) in Z. We also interpret the OP1 (2)-valued symplectic form on the fibres
of

the twistor space of such curves directly in terms of the normal bundles of curves (as long as they are
local complete intersections). In §2 we define and study the map ρ without any reality assumptions. These
are imposed in §3,whereweprove TheoremA. Finally,wediscuss in detail the case of degree d P1’s embedded
in the twistor space of an ALE or ALF gravitational instanton of type A

k
. In the ALE case we can actually view

M
d
as an open subset of the real locus of the Hilbert scheme of degree d rational curves on a singular Fano

3-fold - a hypersurface in a weighted projective 4-space (cf. Remark 4.2).
Acknowledgement. Thisworkwas carried outwhile both authorsweremembers of, and the second author

was fully funded by the DFG Priority Programme 2026 “Geometry at infinity" (Grant BI 1747/1-1), the support
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1 Geometry of Douady spaces of curves in a twistor space
Let Z be a complex 3-dimensional manifold with a holomorphic submersion π : Z → P1. We write O

Z
(i) for

π

*OP1 (i) and F(i) for F⊗O
Z

(i) for any sheaf F on Z. We denote by T
F
the vertical tangent bundle Ker dπ of Z.

From the exact sequence
0 −→ T

F
−→ TZ −→ π

*
TP1 −→ 0,

we conclude that K
Z
≃ Λ

2
T

*
F

(−2). In particular, anO(2)-valued symplectic form ω along the fibres of π, i.e. a
trivialisation of Λ2

T

*
F

(2), can be viewed as a nowhere vanishing section of K
Z

(4).
We now consider the subset X

d
of the Douady space of 1-dimensional compact subspaces of Z consisting

of subschemes C such that π|
C

: C → P1 is flat of degree d. In particular, each such C is pure-dimensional
and Cohen-Macaulay. We denote by X(i)

d

, i = 0, 1, 2, the subset of X
d
consisting of C, the normal sheaf N

C/Z
of which satisfies h1(N(−i)) = 0. We summarize the main properties of X(i)

d

as follows:

Proposition 1.1. In each statement below suppose that the corresponding X

(i)
d

, i = 0, 1, 2, is nonempty.

(i) X

(0)
d

a smooth 4d-dimensional manifold with a canonical isomorphism
T
C
X

(0)
d

≃ H

0(C,N
C/Z) for each C.

(ii) X

(1)
d

is equipped with a natural integrable 2-Kronecker structure, i.e. a holomorphic vector bundle E, E
C

=
H

0(C,N
C/Z(−1)), and a bundle map α : E ⊗ C2 → TX

(1)
d

such that α(E ⊗ v) is an integrable rank 2d
distribution for any nonzero v ∈ C2

.

(iii) X

(2)
d

is a C-hypercomplex manifold, i.e. the map α is an isomorphism everywhere. Consequently X

(2)
d

is

equipped with a holomorphic Obata connection, i.e. a torsion-free holomorphic connection with holonomy

in GL(d,C) ≃ GL(E).
(iv) If Z is also equipped with anO(2)-valued symplectic form along the fibres of π, then X

(2)
d

is aC-hyperkähler
manifold, i.e. it has a nowhere degenerateC-valued symmetric bilinear form g, such that the corresponding

holomorphic Levi-Civita connection coincides with the Obata connection.

Proof. Part (i) is easy in the case when Z is quasiprojective. It follows then from the fact that codimension 2
Cohen-Macualay subspaces are locally unobstructed [9, §2.8]. In the general case we have to proceed differ-
ently. We consider the relative Hilbert scheme Z[d]

π
of d points along the fibres of π. It is a smoooth (2d + 1)-

dimensional manifold with a holomorphic submersion π[d] : Z[d]
π

→ P1, and the same argument as in [5,
Prop. 3.1] shows that X

d
is isomorphic to the Douady space of sections of π[d]. Furthermore, [5, Lemma 3.2]
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remains true, so that the normal bundle N
s
of a section s corresponding to a curve C is isomorphic to π*NC/Z .

Hence, if H1(C,N
C/Z) = 0, then h1(N

s
) = 0, and this means that the Douady space of sections is smooth at s.

This proves (i).
Parts (ii)-(iv) have been proved in [3, 4].

In the case when the curve C is a local complete intersection (lci), we can say more:

Proposition 1.2. (i) If C ∈ X(0)
d

, resp. C ∈ X(1)
d

, is lci, then there is a canonical isomorphism

T

*
C
X

(0)
d

≃ H

1(C,N
C/Z ⊗ K

Z
), resp. E

*
C
≃ H

1(C,N
C/Z ⊗ K

Z
(1)).

(ii) If C ∈ X(2)
d

is lci, then there are additional canonical isomorphisms

E
C
≃ H

1(C,N
C/Z(−3)), E

*
C
≃ H

0(C,N
C/Z ⊗ K

Z
(3)).

Proof. Write N for the locally free sheaf N
C/Z . The adjunction formula holds for lci subschemes [15, Ch. 6,

Thm. 4.9], and hence:
K
C
≃ K

Z
|
C

⊗ Λ

2
N . (1.1)

Consequently:
T

*
C
X

(0)
d

≃ H

0(C, N)* ≃ H

1(C, K
C
⊗ N

*) ≃ H

1(C, K
Z
⊗ N).

The second isomorphism in (i) follows completely analogously, given that E
C
≃ H

0(C, N(−1)).
For (ii) observe that we have a short exact sequence

0 −→ N(−3) −→ N(−2) ⊕ N(−2) −→ N(−1) −→ 0,

fromwhich the first isomorphism follows immediately, since N(−2) has trivial cohomology. Since N* ⊗ K
C

(2)
also has trivial cohomology, the same argument, using the exact sequence

0 −→ N

* ⊗ K
C

(1) −→
(
N

* ⊗ K
C

(2)
)⊕2 −→ N

* ⊗ K
C

(3) −→ 0

and (1.1), shows the second isomorphism.

It follows that a nowhere vanishing section ω of Λ2
T

*
F

(2) ≃ K
Z

(4) defines an isomorphism

E
C
≃ H

0(C,N
C/Z(−1)) ·ω−→ H

0(C,N
C/Z ⊗ K

Z
(3)) ≃ E

*
C

(1.2)

for any lci curve C ∈ X(2)
d

. Write ω[d] for the corresponding nondegenerate bilinear form on E given by (s, t) 7→
(sω)(t).

Remark 1.3. This construction of a symplectic form on E is due to Nash [14], who showed that the hyperkähler
structure on a moduli space of framed Euclidean SU(2)-monopoles can be obtained this way.

Let ζ ∈ P1. For a C ∈ X(2)
d

, sections ofN
C/Z(−1) can be identified with the tangent space to C

ζ
= C ∩ π−1(ζ ) in

the Hilbert scheme of d points in the fibre π−1(ζ ). Formula (1.2) implies that ω[d] coincides with the induced
symplectic form [1] on the Hilbert scheme of points (this is obvious on the subset where C

ζ
consists of distinct

points, and hence, by continuity, everywhere).
Therefore (cf. [3]) the symplectic form ω

[d] induces a C-hyperkähler structure on X(2)
d

, and a pseudo-
hyperkähler structure on the σ-invariant subset of X(2)

d

, if Z is equipped with an antiholomorphic involution
σ covering the antipodal map.

Following Nash [14], we are going to give another proof of the skew-symmetry of ω[d], since the argument
will be helpful when proving Theorem A(i).

Proposition 1.4. ω[d]
is skew-symmetric.
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Proof. We can express ω[d] as the composition of the natural skew-symmetric map

H

0(C, N(−1)) × H0(C, N(−1))→H

0(
C, (Λ2

N)(−2)
)

with
H

0(
C, (Λ2

N)(−2)
)
≃ H

0(C, K*
Z

(−2) ⊗ K
C

) ·(ωλ)−→ H

1(C, K
C

) ≃ C,

where λ ∈ H1(C,O
C

(−2)) is the pullback of the extension class of

0 → OP1 (−3) → OP1 (−2) ⊕ OP1 (−2) → OP1 (−1) → 0. 2

2 Rational curves
Let π : Z → P1 be as in the previous section. We denote by X

d,0 the component of X
d
consisting of smooth

rational curves C ≃ P1, and write X(i)
d,0 = X

(i)
d

∩ X
d,0, i = 0, 1, 2. We remark that C ∈ X

(2)
d,0 if and only if its

normal bundle is isomorphic to OP1 (2d − 1) ⊕ OP1 (2d − 1).
For a C ∈ X

d,0, let RC, resp. BC, be the ramification divisor, resp. the branch divisor, of π|
C
. These are

0-dimensional subschemes of P1 and we obtain a holomorphic map

ρ : X
d,0 −→ P2d−2, C 7→ B

C
. (2.1)

2.1 Covers of P1 and their parametrisations

In order to understand the map ρ, we make a brief detour. The map ρ can be viewed abstractly as associating
to a degree cover π : C → P1 its branch divisor B

C
. On the other hand,we can also parameterise C, f : P1 → C,

and obtain a degree d rational map ϕ = π ◦ f . Let Rat
d
denote the space of degree d rational maps P1 → P1.

The quotient of Rat
d
by PGL(2,C) can be viewed as the moduli space of abstract degree d covers of P1, but

since the action of PGL(2,C) has fixed points, this quotient is not manifold.
On the other hand, we can associate to ϕ its branch divisor. Classical Hurwitz conditions [12] imply that,

given an effective divisor B of degree 2d − 2 on P1, there exist, up to automorphisms, only finitely many
rational maps ϕ : P1 → P1 of degree d with branch divisor B.

Let ϕ ∈ Rat
d
and consider the induced sequence

0 −→ TP1 dϕ−→ ϕ

*
TP1 −→ F

ϕ
−→ 0, (2.2)

where F
ϕ
is supported on the ramification divisor of ϕ. The space of global sections of the middle term is

naturally isomorphic to T
ϕ

Rat
d
, while global sections of TP1 correspond to infinitesimal automorphisms of

P1. Thus we can identify global sections of F
ϕ
with deformations of the branch divisor B of ϕ, i.e. locally on

Rat
d
we have a natural isomorphism H

0(P1,F
ϕ

) ≃ TP2d−2.

2.2 The geometry of the map ρ

With these preparations, we can prove:

Proposition 2.1. The map ρ is a submersion on an open subset of X

(0)
d,0 where h

1(T
F
|
C

) = 0. This open subset
contains X

(2)
d,0.

Proof. Let C ∈ X(0)
d,0. We have an analogue of (2.2):

0 −→ TC

dπ−→ π

*
TP1 −→ F −→ 0. (2.3)
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The sheaf F is supported on the ramification divisor R
C
and is isomorphic to F

ϕ
for any parameterisation of

C. Owing to the above discussion we have a natural isomorphism T
B
C

P2d−2 ≃ H

0(C,F).
We also have the following two short exact sequences:

0 −→ TC −→ TZ|
C
−→N

C/Z −→ 0, (2.4)

0 −→ T
F
−→ TZ

dπ−→ π

*
TP1 −→ 0, (2.5)

where T
F
is the vertical tangent bundle.

Observe that the composition
TZ|

C

dπ−→ π

*
TP1 −→ F

factors through N
C/Z, and we obtain the following short exact sequence of sheaves on C:

0 −→ T
F
|
C
−→ N

C/Z −→ F −→ 0. (2.6)

The induced map H0(C, N
C/Z) → H

0(C,F) is dρ|
C
, and the first statement follows. If C ∈ X

(2)
d,2, then

N
C/Z ≃ OP1 (2d − 1)⊕2. Sequence (2.4) implies then that the direct summands of TX|

C
have degree at most

2d − 1. Sequence (2.5), restricted to C, implies now that the direct summands of T
F
|
C
have degree at most

2d − 1.
Since c1(T

F
|
C

) = 2d, it follows that the direct summands of T
F
|
C
have positive degree.

We now consider the structure of the fibres of ρ. As discussed in §2.1, the connected components of ρ−1(B)
correspond to PGL(2,C)-orbits of rationalmapswithbranchdivisorB. Let usfix sucha rationalmapϕ : P1 →
P1, and suppose that there exists a C0 ∈ X(0)

d,0 with a parameterisation f0 : P1 → C0 such that π ◦ f0 = ϕ. Then
the connected component X

ϕ
of ρ−1(B) containing C is isomorphic to the space of embeddings f : P1 → Z

such that π ◦ f = ϕ. Let ϕ*
Z denote the fibred product

ϕ

*
Z = {(t, z) ∈ P1 × Z ; ϕ(t) = π(z)}, (2.7)

and ϕ̃ : ϕ*
Z → Z the projection on the second coordinate.

We conclude that X
ϕ
is isomorphic to the open subset of the Kodairamoduli space of sections s of ϕ*

Z →
P1 such that ϕ̃ ◦ s is an isomorphism.

The tangent space to X
ϕ
at C is canonically isomorphic to H0(C, T

F
|
C

) (on the open subset where
h

1(T
F
|
C

) = 0).

Remark 2.2. Let s : P1 → Z be a section of π with normal bundle isomorphic to O(1) ⊕ O(1). Then s ◦ ϕ is
a section of ϕ*

Z with normal bundle O(d) ⊕ O(d). Hence ϕ*
Z has a (2d + 2)-dimensional smooth family of

sectionswith this normal bundle. A generic element of this familywillmap to an embeddedP1 in Z. Sequence
(2.6) implies then that the normal bundle N of this P1 satisfies h1(N(−1)) = 0. Consequently, each fibre of ρ
contains elements of X(1)

d,0.

Example 2.3. Let Z be the twistor space of the flat R4, i.e. the total space of OP1 (1) ⊕ OP1 (1). Equivalently
Z = P3\P1, where P1 = {[z0, z1, 0, 0]}. The map π : Z → P1 is then the projection onto the last two co-
ordinates. Let C be a degree d rational curve in Z, parameterized by [f0(u, v), . . . , f3(u, v)], where f

i
(u, v)

are homogeneous polynomials of degree d, i = 0, . . . , 3. The normal bundle of C is then the cokernel of
Df : OP1 (1) ⊕ OP1 (1) → OP1 (d)⊕4, where Df is the Jacobian matrix of (f0, . . . , f3) [8]. The sheaf F is the cok-
ernel of Dϕ : OP1 (1) ⊕ OP1 (1) → OP1 (d) ⊕ OP1 (d) ≃ T

F
|
C
where ϕ = (f2, f3), and T

F
= {(a, b, 0, 0) ∈ TZ}. If

N
C/Z ≃ OP1 (2d − 1) ⊕ OP1 (2d − 1), then we have an exact sequence

0 → OP1 (1) ⊕ OP1 (1) Df−→ OP1 (d)⊕4 (α1 ,α2)−→ OP1 (2d − 1) ⊕ OP1 (2d − 1) → 0,

where α1 and α2 are 2 × 2 matrices of degree d − 1 homogeneous polynomials in u, v. If we write ϕ = (f2, f3)
and ψ = (f0, f1), then the exactness of the above sequence implies α1Dψ + α2Dϕ = 0. The sequence (2.6) is
then

0 −→ OP1 (d) ⊕ OP1 (d) α1−→ OP1 (2d − 1) ⊕ OP1 (2d − 1) −→ F −→ 0.

The connected component X
ϕ
of ρ−1(B) is an open subset of C2d+2 consisting of pairs (f0(u, v), f1(u, v)) of

homogeneous polynomials of degree d such that [f0, f1, f2, f3] is an embedding.
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3 Real manifolds
We now suppose, in addition, that Z is equipped with an antiholomorphic involution σ covering the antipo-
dal map on P1. We denote by M(i)

d

, i = 0, 1, 2, the σ-invariant part of the corresponding X(i)
d

, and by M(i)
d,0

the σ-invariant part of X(i)
d,0. The manifolds M(1)

d

and M(2)
d

are equipped with the real versions of the geome-
try stated in Proposition 1.1, i.e. an integrable quaternionic 2-Kronecker structure in the case of M(1)

d

, and a
hypercomplex or pseudo-hyperkähler structure on M(2)

d

. In the case of rational curves we have the following
restriction on d:

Lemma 3.1. [5, Prop. 5.9] Let C be a connected projective curve of arithmetic genus 0 equipped with a flat

projection π : C → P1
of degree d. If C admits an antiholomorphic involution covering the antipodal map on

P1
, then d is odd. 2

We assume, therefore, that d is odd. The restriction of (2.1) to M(0)
d,0 yields a smooth map

ρ : M(0)
d,0 −→ RP2d−2. (3.1)

The connected components of its fibres correspond to SO(3)-orbits of rational maps ϕ : P1 → P1 of degree
d which commute with the antipodal map (up to automorphisms). We recall the notion of a d-hypercomplex
manifold [2, 6, 7]:

Definition 3.2. Let d ∈ N be odd. An almost d-hypercomplex structure on a smooth manifold M is given by
an isomorphism T

C
M ≃ E ⊗ Cd+1, where E is a quaternionic vector bundle. Moreover, this isomorphism is

required to intertwine the complex conjugation on TCM and the tensor product of the quaternionic structure
on E and the standard quaternionic structure on Cd+1.

An almost d-hypercomplex structure is integrable, i.e. a d-hypercomplex structure, if, for each Borel sub-
group B

ζ
⊂ SL(2,C), ζ ∈ P1, the subbundle E⊗ K

ζ
is involutive, where K

ζ
is the direct sum of all, except the

lowest, weight subspaces of Cd+1 for the standard irreducible representation of SL(2,C).

As discussed in [2], this is the natural geometry on the space of sections of a holomorphic submersion π :
Z → P1, the normal bundle of which splits as

⊕
O(d).

Proposition 3.3. The fibres of the map ρ restricted to the open subset of M(0)
d,0 where TF |C ≃ OP1 (d) ⊕ OP1 (d)

have a natural d-hypercomplex structure.

Proof. LetM
ϕ
be a connected component of a fibre of ρ determined by a rational map ϕ : P1 → P1 of degree

d, commutingwith the antipodalmap. The arguments of the previous section imply thatM
ϕ
is an open subset

of the σ-invariant part of the Kodaira moduli space of sections of ϕ*
Z. As observed in the previous section,

the normal bundle of such a section corresponding to C in the open subset of the statement is isomorphic to
T
F
|
C
≃ OP1 (d) ⊕ OP1 (d).

3.1 Signature of the metric

Suppose now that Z is also equipped with an O(2)-valued symplectic 2-form along fibres of π, which is com-
patible with the real structure. Then the manifold M(2)

d,0 has a natural pseudo-hyperkähler metric g. We shall
now use the description of the induced symplectic form ω

[d] on the bundle of E over M(2)
d,0, given in §1, to

determine the signature of the metric. A real tangent vector in TM(2)
d,0 ≃ E⊗C2 can be written as x = (e, −je),

where j is the quaternionic structure of E, and the metric is then (cf., e.g., [11, (3.103)])

g(x, x) = −2ω[d](e, je). (3.2)

Let now C ∈ M(2)
d,0. We fix a parametrisation r : P1 → C such that σ ◦ r = r ◦ σ (where σ : P1 → P1 denotes

the antipodal map) and consider its composition with π|
C
. This is a degree d rational map, commuting with
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the antipodal map. Without loss of generality we can assume that neither 0 nor ∞ is mapped to ∞. We can
thenwrite this rationalmap as p(t)/q(t), where p and q are relatively prime degree d polynomials in the affine
coordinate t on P1.

Since C ∈ M(2)
d,0, its normal bundle N is isomorphic to OP1 (2d − 1) ⊕ OP1 (2d − 1). Then N(−1) ≃ OP1 (d −

1) ⊕ OP1 (d − 1), and the isomorphism

E
C
⊗C2 ≃ H

0(C, N(−1)) ⊗C2 −→ H

0(C, N) ≃ T
C
M

(2)
d,0

can be written as

H

0(P1,O(d − 1) ⊕ O(d − 1)) ⊗C2 ∋
(

(f1, g1), (f2, g2)
)
7−→ (pf1 + qg1, pf2 + qg2).

We can also assume that the quaternionic structure of E
C
is the standard one on H0(P1,O(d − 1) ⊕O(d − 1)),

i.e.
j

(
f (t), g(t)

)
= td−1

(
−g(−1/ t̄ ), f (−1/ t̄ )

)
.

We now unravel the description of ω[d], given in the proof of Proposition 1.4.
Let (f

i
, g

i
) ∈ H

0(C, N(−1)), i = 1, 2, be two sections, consisting of pairs of polynomials of degree d − 1.
Then f1g2−g1f2 ∈ H0(

C, (Λ2
N)(−2)

)
, whichwe view (usingω ∈ H0(C, K

Z
(4)|

C
)) as a section of H0(C, K

C
(2)).

The corresponding meromorphic 1-form is (f1g2 − g1f2)(q2(t))−1
dt, and it has poles bounded by 2(q(t)). The

extension class in H1(P1,OP1 (−2)) can be viewed as the Laurent tail ζ −1 · ∞, and its pullback is then

d∑
i=1

(
linear term of q(t)/p(t) at t = t

i

)
· t
i
,

where t
i
are the zeros of q (since ζ = p(t)/q(t)). The pairing of H0(C, K

C
(2)) and H1(C,O(−2)) is given by the

residue map
d∑
i=1

Res
t=t

i

q(t)
p(t) (f1g2 − g1f2)(q2(t))−1

dt =
d∑
i=1

Res
t=t

i

f1g2 − g1f2
p(t)q(t) dt.

Let us write, for a polynomial of degree k,

τ(f )(t) = (−t)k f
(
−1/ t̄

)
.

The square of this map is Id if k is even, and −Id if k is odd. The fact that p/q commutes with the antipodal
map means that p = −τ(q).

Let γ be a simple contour inC separating the roots from q from the roots of τ(q) = −p. It follows from the
above and from (3.2) that the metric on T

C
M

(2)
d,0 is equal to

∥x∥2 =
∥∥((f , g), −j(f , g)

)∥∥2 = 1
πi

∮
γ

fτ(f ) + gτ(g)
qτ(q) dt. (3.3)

We want to determine the signature of the right-hand side on pairs (f , g) of polynomials of degree d − 1.
Owing to the continuity, it is enough to compute the signature for one particular q, say q(t) = td. Then τ(q) = 1
(since d is odd) and the right-hand side is the middle degree term of 2fτ(f ) + 2gτ(g), i.e.:

2
d−1∑
i=0

(−1)d−1−i|f
i
|2 + 2

d−1∑
i=0

(−1)d−1−i|g
i
|2.

Therefore the signature of the metric g is (2d + 2, 2d − 2).
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4 Example: gravitational instantons of type Ak

Consider an ALE or an ALF gravitational instantonM of type A
k
. We recall, after Hitchin [10], its construction

using twistormethods. The twistor space ofM has a singularmodel givenas ahypersurface Z̄ in the total space
of a vector bundle over TP1. If ζ is the affine coordinate on P1 and η is the corresponding fibre coordinate
on TP1, we denote by Lc, c ∈ C, the line bundle on TP1 with transition function exp(−cη/ζ ) from ζ ≠ ∞ to
ζ ≠ 0. Then Z̄ is given by

{(x, y, z) ∈ Lc(k) ⊕ L

−c(k) ⊕ OP1 (2) ; xy =
k∏
i=1

(z − a
i
(ζ ))}

where c is real and a
i
are quadratic polynomials satisfying reality conditions. M is then the space of real

sections of π : Z̄ → P1 obtained by choosing an arbitrary real section z(ζ ) = (x2 + ix3) + 2x1ζ − (x2 − ix3)ζ 2

of OP1 (2), and dividing the set of all zeros of z(ζ ) − a
i
(ζ ), i = 1, . . . , k, into two subsets ∆1, ∆2, interchanged

by the antipodal map. This can be done consistently as shown in [10]. The sections of π : Z̄ → P1 are then

x(ζ ) = Aec(x1−(x2−ix3)ζ ) ∏
ζ
i
∈∆1

(ζ − ζ
i
), y(ζ ) = Be−c(x1−(x2−ix3)ζ ) ∏

ζ
i
∈∆2

(ζ − ζ
i
), (4.1)

over ζ ≠ ∞.
The nonzero scalars A, B are determined up to a circle action, which yields an isometric S1-action onM.
We remark that resolving the singularities of Z̄ is not necessary for computing M and its metric.
We now discuss the geometry of real (i.e. σ-invariant) P1’s of degree d, d - odd, in Z̄.
Let ϕ = p(t)/q(t) be a rational map of degree d, commuting with the antipodal map, and assume for

simplicity that t = ∞ is not a pole of ϕ.
The function ϕ can be viewed as the transition function for the bundle OP1 (d) from U0 = {q ≠ 0} to

U1 = {p ≠ 0}. A section ofOP1 (kd) is then represented by b/qk onU0 and b/pk onU1, where b is a polynomial
of degree kd. Let z = b/q2 be a section ofOP1 (2d) and write b = b0p+b1q. We get a section of the line bundle
L

c

ϕ

with transition function exp(cz/ϕ) by setting

(s0, s1) =
(

exp(−cb0/q), exp(cb1/p)
)

in U0 and U1 respectively. If we now consider the fibred product ϕ*
Z̄, as in §2.2, then its sections, and hence

the fibre of the map ρ : M(2)
d,0 → RP2d−2, are obtained in the same way as for d = 1: choose an arbitrary real

section z(t) = b(t)/q(t)2 of OP1 (2d), divide the zeros of all z(t) − a
i
(ϕ(t)) into two sets, and obtain x(t), y(t)

as in (4.1), replacing the exponential factors by
(

exp(−cb0/q) over q(t) ≠ 0 and by exp(cb1/p) over p(t) ≠ 0.
The space of real sections of ϕ*

Z̄ with normal bundle O(d) ⊕O(d) is nonempty owing to Remark 2.2, and is a
d-hypercomplex analogue of the original gravitational instanton, as introduced in [7, §3.1.2].

A generic section s of ϕ*
Z̄ will yield an embedded P1 in Z̄, and hence, by varying ϕ, we obtain a 4d-

dimensional space of embedded real P1’s of degree d in Z̄.
We claim that, for generic c and a

i
, i = 1, . . . , k, the normal bundle of a generic such curve is O(2d −

1)⊕O(2d−1), i.e.M(2)
d,0 is nonempty (and hence of dimension 4d). Indeed, were this not the case, the normal

bundle of every degree d rational curve (flat over P1) in the twistor space of
(
R4\{0}

)
/Z

k
would also be

different from O(2d − 1) ⊕ O(2d − 1). This twistor space Z0 is the quotient by Z
k
of the total space W of

O(1) ⊕ O(1) with the zero section removed. In particular a generic degree d rational curve in W descends to
a rational curve of degree d curve in Z0 with isomorphic normal bundle. Since W is an open subset of P3,
a generic degree d P1 in W has normal bundle isomorphic to O(2d − 1) ⊕ O(2d − 1) [8]. This contradiction
proves our claim.

We can say more in the case c = 0, i.e. when Z is the twistor space of an ALE manifold.
The fibred productϕ*

Z̄ is then a hypersurface in the total space of the vector bundle E
d

= O(kd)⊕O(kd)⊕
O(2d).

If s is a section of ϕ*
Z̄, given by homogeneous polynomials x(u, v), y(u, v), z(u, v) of degrees kd, kd, and

2d, then its normal bundle fits into a short exact sequence

0 −→ N
s/ϕ*

Z̄

j−→ E
d
−→ O(2kd) −→ 0, (4.2)
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since N
s/E

d

≃ E
d
. The projection E

d
−→ O(2kd) is given by[

y, x, −
∑
i

∏
j≠i

(z − a
j
)
]
T

,

from which one can compute N
s/ϕ*

Z̄

.
The original twistor space Z̄ is a hypersurface in the total space of the bundle E1. We can view the curve

C given by ϕ and s as being embedded in E1. Its normal bundle fits then into a short exact sequence (cf. Ex.
2.3):

0 −→ O(1) ⊕ O(1) Ψ−→ O(kd)⊕2 ⊕ O(2d) ⊕ O(d)⊕2 −→ N
C/E1 −→ 0, (4.3)

where Ψ is the Jacobi matrix of [x(u, v), y(u, v), z(u, v), p(u, v), q(u, v)]T . We can extend (4.2) and (4.3) to a
commutative diagram:

0 0

N
s/ϕ*

Z̄

⊕ O(d)⊕2
N
C/Z̄ 0

0 O(1) ⊕ O(1) E
d
⊕ O(d)⊕2

N
C/E1 0

O(2kd) O(2kd)

0 0

ν

j⊕Id

Ψ

λ

It is now the matter of (a complicated) linear algebra to compute the map λ from Ψ and from the vertical
projection E

d
→ O(2kd). Assuming that N

s/ϕ*
Z̄

≃ O(d) ⊕ O(d), λ will be a 4 × 2 matrix of degree d − 1
polynomials in u, v, the coefficients of which depend on the polynomials x, y, z, p, q. The map ν can then
be computed from λ, and the condition that N

C/Z̄ ≃ O(2d − 1) ⊕ O(2d − 1) can be written as a determinant
of a matrix given by coefficients of λ. The polynomials x and y depend (up to scale) algebraically on z, p, q
and, hence, X(2)

d,0, and its real part M(2)
d,0, are described by this algebraic relation between the coefficients of

arbitrary polynomials z, p, q of degrees 2d, d, d.

Remark 4.1. In principle, once the maps λ and ν are determined, the pseudo-hyperkähler metric onM(2)
d,0 can

be computed using the method of the previous section.

Remark 4.2. We should like to point out that in the ALE case, the singular model Z̄ compactifies to a hyper-
surface in the weighted projective space P = P(1, 1, 2, k, k). For more details on this compactification see
[13]. Since the degree of the hypersurface is 2k, the adjunction formula implies that its canonical sheaf is
isomorphic to OP(2k − 1 − 1 − 2 − k − k) ≃ OP(−4), and hence the compactification of Z̄ is Fano.
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