
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 194.95.157.145

This content was downloaded on 05/04/2017 at 12:15

Please note that terms and conditions apply.

Three-tangle for mixtures of generalized GHZ and generalized W states

View the table of contents for this issue, or go to the journal homepage for more

2008 New J. Phys. 10 043014

(http://iopscience.iop.org/1367-2630/10/4/043014)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

The invariant-comb approach and its relation to the balancedness of multipartite entangled states

Andreas Osterloh and Jens Siewert

Quantifying entanglement resources

Christopher Eltschka and Jens Siewert

Three-Tangle for High-Rank Mixed States

He Shu-Juan, Wang Xiao-Hong, Fei Shao-Ming et al.

Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of

continuous variable systems

Gerardo Adesso and Fabrizio Illuminati

Entanglement in continuous-variable systems: recent advances and current perspectives

Gerardo Adesso and Fabrizio Illuminati

Efficient creation of multipartite entanglement in flux qubits

J Ferber and F

K Wilhelm
Separability criteria for genuine multiparticle entanglement

Otfried Gühne and Michael Seevinck

Entanglement dynamics of three-qubit states in local many-sided noisy channels

Michael Siomau

Multipartite entanglement in spin chains

Otfried Gühne, Géza Tóth and Hans J Briegel

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/10/4
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1367-2630/12/7/075025
http://iopscience.iop.org/article/10.1088/1751-8113/47/42/424005
http://iopscience.iop.org/article/10.1088/0253-6102/55/2/12
http://iopscience.iop.org/article/10.1088/1367-2630/8/1/015
http://iopscience.iop.org/article/10.1088/1367-2630/8/1/015
http://iopscience.iop.org/article/10.1088/1751-8113/40/28/S01
http://iopscience.iop.org/article/10.1088/0957-4484/21/27/274015
http://iopscience.iop.org/article/10.1088/1367-2630/12/5/053002
http://iopscience.iop.org/article/10.1088/0953-4075/45/3/035501
http://iopscience.iop.org/article/10.1088/1367-2630/7/1/229


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Three-tangle for mixtures of generalized GHZ
and generalized W states

C Eltschka 1,4, A Osterloh 2, J Siewert 1 and A Uhlmann 3

1 Institut für Theoretische Physik, Universität Regensburg,
D-93040 Regensburg, Germany
2 Institut für Theoretische Physik, Leibniz Universität Hannover,
D-30167 Hannover, Germany
3 Institut für Theoretische Physik, Universität Leipzig,
D-04109 Leipzig, Germany
E-mail: christopher.eltschka@physik.uni-regensburg.de

New Journal of Physics 10 (2008) 043014 (10pp)
Received 28 November 2007
Published 10 April 2008
Online athttp://www.njp.org/
doi:10.1088/1367-2630/10/4/043014

Abstract. We give a complete solution for the three-tangle of mixed three-
qubit states composed of a generalized Greenberger–Horne–Zeilinger (GHZ)
state, a|000〉 + b|111〉, and a generalized W state,c|001〉 + d|010〉 + f |100〉.
Using the methods introduced by Lohmayeret al (2006 Phys. Rev. Lett.
97 260502), we provide explicit expressions for the mixed-state three-
tangle and the corresponding optimal decompositions for this more general
case. Moreover, as a special case, we obtain a general solution for a
family of states consisting of a generalized GHZ state and an orthogonal
product state.

4 Author to whom any correspondence should be addressed.

New Journal of Physics 10 (2008) 043014
1367-2630/08/043014+10$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:christopher.eltschka@physik.uni-regensburg.de
http://www.njp.org/


2

Contents

1. Introduction 2
2. Notation and formulation of the problem 3
3. The generic case 4
4. Special cases 7
5. Conclusion 9
Acknowledgments 9
References 9

1. Introduction

The occurrence of entanglement in multipartite systems is one of the most important and
distinctive features in quantum theory [1, 2]. With the ever-increasing number of applications
of entanglement, its quantification has become one of the foremost topics in contemporary
quantum information research. Nowadays multipartite entangled states of up to eight trapped
photons can be generated in a controlled way [3, 4] awaiting quantitative and qualitative
analysis, e.g. for quantum information processing. But also in the field of condensed matter
physics, the study of entanglement has gathered interest in the context of quantum many-
body phenomena and there is strong evidence that multipartite entanglement plays an important
role [5]. However, these conclusions are of qualitative nature and are based on the presence of
what is called the residual entanglement [6, 7]. Its decomposition into the various multipartite
entanglement classes is still missing, and it is not even clear whether such a fragmentation is
possible.

A key aspect of this problem is that only the entanglement of pure and mixed states
of two qubits is well understood [8]–[12], but to date there is no generally accepted theory
for classification and quantification of entanglement in multipartite qubit systems. For three-
qubit systems, numerous interesting results have been found [6], [13]–[23]. A complete
characterization in terms of stochastic local operations and classical communication of three-
qubit entanglement has been achieved only for pure states [6, 14]. It leads to a schematic
characterization for mixed states [18]. A crucial concept for this is the so-called three-tangle,
a polynomial invariant for three-qubit states that quantifies the three-partite entanglement
contained in a pure three-qubit state (the three-tangle is equal to the modulus of the
hyperdeterminant [24, 25]). It is the first milestone towards a systematic approach to describing
multipartite entanglement. However, even for the simplest case of rank-2 mixed states, no
general expression is known for its three-tangle. Note that rank-2 mixed states occur naturally
when one qubit is traced out in a pure multipartite entangled state. An important example is
three-qubit mixed states that emerge from various classes of genuinely entangled pure four-
qubit states [26].

Recently, Lohmayeret al [22] have provided an analytic quantification of the three-tangle
for a representative family of rank-2 three-qubit states, namely for mixtures of a symmetric
GHZ state and an orthogonal symmetric W state. But the family of states analyzed there does
not cover all possible mixed states relevant for a study of the three-tangle in certain important
four-qubit states, e.g. the cluster states. In this paper, we achieve this goal by showing that the
methods of [22, 27] can be extended to rank-2 mixtures of a generalized GHZ state and an
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orthogonal generalized W state. This generalized family of states includes admixtures of a wide
class of complete product states or factorized states containing bipartite entanglement, with the
generalized GHZ state. In the latter case, the exact convex roof can be extended to the entire
Bloch ball, and the result shows a striking similarity to the concurrence of mixtures between a
two-qubit entangled state and an orthogonal product state.

Since the set of states for which we provide analytical solutions crosses all classes of
mixtures between a generalized GHZ state and an orthogonal state of zero three-tangle, as well
as certain cases of non-orthogonal mixtures, it can also be useful as an extensive ‘test ground’ for
any forthcoming proposal of a general expression for the mixed-state three tangle. Furthermore,
it provides the tools for a systematic investigation of extended monogamy relations.

This paper is organized as follows: in section2, we introduce some basic terminology and
give a precise formulation of the problem whose general solution we outline in section3. In
section4, we discuss special cases of this solution, in particular we find the three-tangle for
rank-2 mixtures of generalized GHZ states and certain orthogonal product states.

2. Notation and formulation of the problem

Consider the state|ψ〉 in a three-qubit Hilbert space|ψ〉 ∈HA ⊗HB ⊗HC. Its coefficients with
respect to a basis of product states (the ‘computational basis’) areψ jkl = 〈 jkl |ψ〉, j, k, l ∈

{0,1}. An important measure for the entanglement in pure three-qubit states is the three-
tangle (or residual tangle) introduced in [6]. The three-tangle of|ψ〉 is a so-called polynomial
invariant [28, 29] and can be written in terms of the coefficientsψi jk as

τ3(ψ)= 4|d1 − 2d2 + 4d3|, (1)

d1 = ψ2
000ψ

2
111+ψ2

001ψ
2
110+ψ2

010ψ
2
101+ψ2

100ψ
2
011,

d2 = ψ000ψ111ψ011ψ100+ψ000ψ111ψ101ψ010+ψ000ψ111ψ110ψ001

+ψ011ψ100ψ101ψ010+ψ011ψ100ψ110ψ001+ψ101ψ010ψ110ψ001,

d3 = ψ000ψ110ψ101ψ011+ψ111ψ001ψ010ψ100.

The three-tangle of a mixed state

ρ =

∑
j

p jπ j , π j =
|φ j 〉〈φ j |

〈φ j |φ j 〉
(2)

can be defined as convex-roof extension [30] of the pure state three-tangle,

τ3(ρ)= min
decompositions

∑
j

p j τ3(π j ). (3)

A given decomposition{qk, πk : ρ =
∑

k qkπk} with τ3(ρ)=
∑

k qkτ3(πk) is calledoptimal. We
note thatτ3(ρ) is a convex function on the convex (and compact) set� of density matricesρ.

In this paper, we determine three-tangle and optimal decompositions for the family of
mixed three-qubit states

ρ(p)= p|gGHZa,b〉〈gGHZa,b| + (1− p)|gWc,d, f 〉〈gWc,d, f | (4)

composed of a generalized GHZ state

|gGHZa,b〉 = a|000〉 + b|111〉, |a|
2 + |b|

2
= 1 (5)
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and a generalized W state

|gWc,d, f 〉 = c|001〉 + d|010〉 + f |100〉, |c|2 + |d|
2 + | f |

2
= 1. (6)

We note thatτ3(gWc,d, f )= 0 andτ gGHZ
3 := τ3(gGHZa,b)= 4|a2b2

|. For the symmetric GHZ and

W states (a = b = 1/
√

2 andc = d = f = 1/
√

3) the problem and results of [22] are recovered.

3. The generic case

In this section, it is assumed that none of the coefficients is zero, i.e.a,b, c,d, f 6= 0. The
opposite case corresponds to either a rank-2 mixture of a generalized GHZ and a biseparable
state, or to a mixture of a generalized W and a completely factorized state. This will be studied
in the next section.

In the following, we will apply the methods developed in [22, 27]. There, it was shown that
in order to find the convex roof of an entanglement measure for rank-2 mixed states, it is useful
to study the pure states that are superpositions of the eigenstates ofρ

|p, ϕ〉 =
√

p|gGHZa,b〉 −
√

1− p eiϕ
|gWc,d, f 〉. (7)

The three-tangle of these states is

τ3(p, ϕ)= 4|p2a2b2
− 4

√
p(1− p)3 e3iϕbcd f|. (8)

The phases of the coefficients in|gGHZa,b〉 and|gWc,d, f 〉 merely produce different offsets for
the relative phaseϕ in the expression for the three-tangle, equation (8). Therefore, it suffices to
consider the case where all coefficients are positive real numbers.

In the following, it will be beneficial to introduce the definition

s =
4cd f

a2b
> 0. (9)

If we factor out the three-tangleτ gGHZ
3 of the generalized GHZ state, the three-tangle of the

superposition (7) can be written as

τ3(p, ϕ)= τ
gGHZ
3

∣∣∣p2
−

√
p(1− p)3 e3iϕs

∣∣∣ . (10)

Sinceτ gGHZ
3 is just a constant factor, the behaviour of this function ofp andϕ is completely

determined by the value of the parameters.
As a first step, we identify thezero-simplexcontaining all mixed statesρ(p) with

τ3(ρ(p))= 0. Its corner states are obtained as the zeros of equation (10). One obvious solution
is p = 0, which corresponds to a pure generalized W state. Therefore, in the calculation of the
other solutions we can assumep> 0 and the zeros are determined by√

p3 =

√
(1− p)3e3iϕs. (11)

Sincep ands are real and positive, this implies5

ϕ = n
2π

3
, n ∈ N. (12)

5 Note that the 2π/3-periodicity is due to the fact that this relative phase is induced by the local transformation
diag{exp(i2π/3),1} on each qubit.
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For p, we then get the solution

p0 =
s2/3

1 +s2/3
=

3
√

16c2d2 f 2

3
√

a4b2 + 3
√

16c2d2 f 2
. (13)

This means that in addition to the state|gWc,d, f 〉 the three-tangle vanishes for|p0,n · 2π/3〉,
n = 0,1 and 2. All mixed states whose density matrices are convex combinations of those
four states have zero three-tangle. On the Bloch sphere with gGHZ and gW at its poles, this
corresponds to a simplex with those four states at the corners. Allρ(p) with p< p0 are inside
this set, and thereforeτ3(ρ(p))= 0 for 06 p6 p0.

In order to determine the mixed three-tangle ofρ(p) for p> p0, we note that for any
fixed p, τ3(p, ϕ) takes a minimum atϕ0 = 0 which due to the symmetry ofτ3 is repeated at
ϕ1 = 2π/3 andϕ2 = 4π/3. Consequently, for any value ofp the stateρ(p) can be decomposed
into the three states|p, ϕi 〉, i = 0,1 and 2. Therefore, the characteristic curveτ3(p,0) is an
upper bound toτ3(ρ(p)). Moreover it is known to give the correct values for the three-tangle at
p = p0 (at the top face of the zero simplex) andp = 1 (ρ(1)= |gGHZa,b〉〈gGHZa,b|). However,
if there is a range of values whereτ3(p,0) is a concave function, there are decompositions for
ρ(p) with a lower average three-tangle [22]. Therefore, it is important to examine where the
functionτ3(p,0) is concave forp> p0.

For ϕ = 0 andp> p0, the term inside the absolute value bars in (10) is real and positive,
and the characteristic curveτ3(p,0) is equal to

t (p) = τ
gGHZ
3 ·

(
p2

−

√
p(1− p)3s

)
. (14)

Concavity oft (p) is indicated by a negative sign of its second derivative

t ′′(p) = τ
gGHZ
3

(
2−

8p2
− 4p− 1

4p
√

p(1− p)
s

)
. (15)

The limit p → 1 (p = 1− ε) in (15) gives

t ′′(1− ε) = −
3τ gGHZ

3 s

4
√
ε

+ 2τ gGHZ
3 + O(ε1/2), (16)

that is,t (p) is concave close top = 1. On the other hand, for smallp

t ′′(p)=
τ

gGHZ
3 s

4p3/2
+ O(p−1/2). (17)

That is, close top = 0 we find thatt (p) is convex (note that due to the absolute value,τ3(p,0)
is actually concave close top = 0). Due to continuity, there must be at least one zero oft ′′(p)
in between. Moreover, we note that the third derivative

t ′′′(p)=
−3τ gGHZ

3 s

8p2
√

p(1− p)3
6 0 (18)

is negative for all values ofp. Thus t ′′(p) is strictly monotonic and has precisely one zero,
implying thatt (p) is convex before and concave after that point. As the mixed state three-tangle
is convex, the characteristic curve needs to be convexified where it is concave in the interval
[ p0,1]. Since the concavity extends up top = 1, corresponding to the state|gGHZa,b〉, that
state has to be part of the optimal decomposition [27] in this interval.
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The symmetry and the results in [22] suggest that a good ansatz for the optimal
decomposition is

ρ(p)= α|gGHZa,b〉〈gGHZa,b| +
1−α

3

2∑
k=0

∣∣∣∣p1, k ·
2π

3

〉〈
p1, k ·

2π

3

∣∣∣∣ , (19)

wherep1 is chosen such that the mixed-state three-tangle becomes minimal. The value ofα is
fixed byp and p1:

α =
p− p1

1− p1
. (20)

The average three-tangle for this decomposition is (p> p0)

τ conv
3 (p, p1) =

p− p1

1− p1
· τ

gGHZ
3 +

1− p

1− p1
· t (p1). (21)

This describes a linear interpolation betweenτ3(p1,0) andτ gGHZ
3 . Note that forp< p1, (19)

ceases to be a valid decomposition becauseα becomes negative.
To find the minimum inp1 for givenp, we look for the zeros of the derivative∂τ conv

3 /∂p1.
The resulting equation has the solution

pnoabs
1 =

1

2
+

1

2
√

1 +s2
. (22)

Note that fors> 2
√

2 we getpnoabs
1 < p0. In that case the minimum is reached at the border

p1 = p0 of the considered interval [p0,1], and therefore

p1 = max

{
p0,

1

2
+

1

2
√

1 +s2

}
. (23)

Putting it all together, we present the central result of this paper

τ3(ρ(p)) =

0, for 06 p6 p0,

τ3(p,0), for p06 p6 p1,

τ conv
3 (p, p1), for p16 p6 1,

(24)

where p0 is given by (13), p1 by (23), τ3(p,0) by (8) and τ conv
3 (p, p1) by (21). The

corresponding optimal decompositions are

ρ(p)=


p

p0
ρ1(p0)+

p0 − p

p0
πgW, for 06 p6 p0,

ρ1(p), for p06 p6 p1,
1− p

1− p1
ρ1(p1)+

p− p1

1− p1
πgGHZ, for p16 p6 1,

(25)

where

ρ1(p)=
1

3

2∑
k=0

∣∣∣∣p, k ·
2π

3

〉〈
p, k ·

2π

3

∣∣∣∣ (26)

andπ j as defined in (2).
The curve (24) is convex, and for allp andϕ: τ3(ρ(p))6 τ3(p, ϕ). Therefore it is a lower

bound to the three-tangle ofρ(p). On the other hand, for eachp we have given an explicit
decomposition realizing this lower bound. Thus, it also represents an upper bound and hence
coincides with the three-tangle ofρ(p).
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4. Special cases

In this section, we will discuss various special cases of our general solution (24).
First, we briefly demonstrate that the results for the symmetric GHZ state and the

symmetric W state in [22] are reproduced. Indeed, the general behavior described in section3
(i.e. analytic properties of the three-tangle, optimal decompositions) matches that found in [22],
so we only have to check the values ofp0 andp1. In the symmetric case, we havea = b = 1/

√
2

andc = d = f = 1/
√

3, resulting in

s =
27/2

33/2
. (27)

Inserting this in (13) and (23) leads to

p0 =
27/3/3

1 + 27/3/3
=

4 3
√

2

3 + 4 3
√

2
, (28)

p1 =
1

2
+

1

2
√

1 + 27/33
=

1

2
+

3

2

√
3

155
, (29)

as found in [22].
Next, we consider the limiting cases where at least one of the coefficients is 0. Those

require extra care as the calculations above have been done under the assumption of non-
vanishing coefficients. However, since we are dealing with continuous functions, one should
expect that the results still apply, although possibly in a degenerate form.

The first case we consider is when the generalized GHZ state degenerates into a pure three-
party product state. This corresponds to the limits → ∞. However, note that at the same time
τ

gGHZ
3 → 0 such that (10) remains regular. This can be seen by looking at the explicit form (8).

It is clear that in this caseτ3(ρ(p))= 0 for all p.
There are two non-equivalent ways to achieve this. One possibility isb = 0 which

reduces the generalized GHZ state to|000〉. In this case, the three-tangle (8) vanishes for all
superpositions (7), and therefore also all mixed states anywhere inside the Bloch sphere have
vanishing three-tangle.

The other way to gets → ∞ is a = 0 where the generalized GHZ state is reduced to
|111〉. While ρ(p) as a mixture of product and gW state again has no three-tangle, unlike in
the caseb = 0 the three-tangle does not vanish everywhere on the Bloch sphere. Equation (8)
reduces to

τ3(p, ϕ)= 16
√

p(1− p)3 cd f, (30)

which is independent ofϕ and is concave for allp ∈ [0,1]. Thus, the zero simplex degenerates
into azero axis. As long ascd f > 0, outside this axis the three-tangle never vanishes. If both
a = 0 andcd f = 0, the three-tangle is zero everywhere inside the Bloch sphere.

The opposite limiting case iss = 0, that is, when at least one of the coefficientsc, d or f
vanishes. Note that for the three-tangle it doesnot matter whether only one of them vanishes,
resulting in a product of a single-qubit state with a generalized Bell state, or two of them,
resulting in a product of three single-qubit states: in all cases (10) reduces to

τ3(p, ϕ) = τ
gGHZ
3 · p2, (31)
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Figure 1. Three-tangle fors = 7> 2
√

2 (a) ands = 2.3< 2
√

2 (b). In both cases
τ

gGHZ
3 = 0.0396. The solid line is the minimal pure state tangle,τ3(p,0) (10).

The short-dashed line ist (p) (14). The dotted vertical lines show the positions
of p0 (13), pnoabs

1 (22) and p1 (23), and the thick dashed line gives the resulting
mixed three-tangleτ3(ρ(p)) (24). In addition, the first figure shows with a dotted
line the curve which would result from usingpnoabs

1 instead ofp1 in (21).

which is convex for allp ∈ [0,1]; indeed, (13) and (23) yield p0 = 0 and p1 = 1 at s = 0.
Consequently,

τ3(ρ(p))= τ
gGHZ
3 · p2, (32)

for all p. Even more,τ3(ρ)= τ
gGHZ
3 p2 for any mixed stateρ inside the Bloch sphere with

〈gGHZa,b|ρ|gGHZa,b〉 = p. We would like to point out that this result is reminiscent of the
situation both for two-qubit superpositions [31] and for two-qubit mixtures of an arbitrary
entangled state and an orthogonal product state.
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5. Conclusion

In this paper, we have given explicit expressions for the three-tangle of mixturesρ(p) according
to (4) of arbitrary generalized GHZ and orthogonal generalized W states, including the limiting
cases where those states are reduced to product states. We have found that the qualitative
pattern described in [22] for mixtures of symmetric GHZ and W states is more general. Up
to a certain valuep0 given by (13), the mixed three-tangle vanishes. The optimal decomposition
for those states consists of the pure states (7) for which the three-tangle is zero. One is always
the generalized W state at the bottom of the Bloch sphere; the other three form an equilateral
horizontal triangle at the height ofp0.

For p> p0, theremayfollow a region up to some valuep1 given by equation (23), where
the mixed state three-tangle follows the minimal pure state three-tangle (10) with the same
value forp (which for positive real coefficients is achieved atϕ = 0). In this region, the optimal
decomposition consists of the three states with this property, which form a horizontal equilateral
triangle with corners on the Bloch sphere andρ(p) in the center. Ats> 2

√
2, p1 andp0 coincide

and fors exceeding this threshold, the region with ‘leaves’ of constant three-tangle in the convex
roof (cf [22], figure1) is absent. This can be viewed as contraction of this middle region into a
single point.

For p> p1, the three-tangle grows linearly up to its maximum value atp = 1. The optimal
decomposition in this case consists of the three pure superposition states forp = p1 with
minimal three-tangle and the generalized GHZ state. That is, the convex roof in the Bloch
sphere is affine for an entire simplex whose corners are given by the four pure states that form the
optimal decomposition. Moreover, we have demonstrated how the results of this work connect to
the findings for the special case of mixtures of a symmetric GHZ and a symmetric W state [22].

In principle, the scheme of three regions forp values as outlined above holds also in the
limiting cases when some of the coefficients in the states vanish, except that in this situation
the ‘outer regions’ may shrink away. A common feature of these limits is aϕ-independent
characteristic curve. If the generalized GHZ state degenerates into a product state,τ3(ρ(p))= 0
for all p. On the other hand, fors = 0 (i.e. at least one of the coefficients in the generalized W
states vanishes), both ‘outer’ affine regions disappear and the whole range ofp is covered by the
‘middle region’ with a strictly convex characteristic curve. This case corresponds to a mixture
of a generalized GHZ state and an orthogonal product state and the exact convex roof of the
three-tangle is obtained for the entire Bloch ball.
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