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Abstract—Autofocus techniques for synthetic aperture radar
(SAR) can improve the image quality substantially. Their high
computational complexity imposes a challenge when employing
them in runtime-critical implementations. This paper presents an
autofocus implementation for stripmap SAR specially optimized
for parallel architectures like GPUs. Thorough evaluation using
real SAR data shows that the tunable parameters of the algorithm
allow to counterbalance runtime and achieved image quality.

Index Terms—backprojection, autofocus, SAR, GPU, CUDA

I. INTRODUCTION

Synthic Apeture Radar (SAR) data processing is a com-
putationally expensive task. While frequency-domain based
algorithms like the Range-Doppler-Alogrothm (RDA) or the
Wavenumber-Domain-Algorithm (WKA) have a compara-
tively low complexity of O(N2logN), their requirement
of straight flight paths makes them inappropriate for small
airborne platforms. Time-domain based techniques like the
Global-Backprojection-Algorithm (GBP) on the other hand
can handle arbitrary trajectories, including excessive swaying
[1], but have a complexity of O(N3).

While the GBP can handle arbitrary trajectories, even small
errors in the acquired position (in the dimension of one
wavelength) can lead to severe errors in the generated image.
Especially for small airborne platforms, the required accuracy
in position tracking is a challenge. This gives rise to the
idea of SAR autofocus algorithms, which correct small errors
in position tracking to increase the image sharpness. The
most common autofocus for time-domain backprojection was
proposed by Duersch and Long [2]. They propose to use
a coordinate-descent optimization to find a phase correction
factor for every pulse. The algorithm is computationally very
expensive, needing more than three times the computational
costs of the backprojection algorithm.

Fahnemann, et al. [3] showed, that the autofocus algorithm
by Duersch and Long is very well suited for the application
of FPGAs and proposed hardware-related optimizations for
an efficient parallel execution, termed Parallel Autofocus Op-
timization (PAFO).

To offer a high-quality live preview of the acquired SAR
data, the image formation must be processed in real time.
Because of the high data rate and very low compressibility
of raw SAR data and the limited downlink bandwidth, live
ground-based processing is often not possible. Instead, the

image formation has to be done on-board. The resulting
image can then be compressed by lossless or lossy image
compression algorithms and sent to the ground station. The use
of energy efficient and small processing platforms like FPGAs
and embedded GPUs make real-time SAR data processing
possible even on small airborne platforms with very stringent
requirements on energy and payload size.

In this paper, the optimized parallel SAR autofocus al-
gorithm (PAFO) by Fahneman et al. is implemented on an
embedded GPU. The implementation features high image
quality together with low processing runtime. Combined with
the small form factor and the low energy requirements of an
embedded GPU, the use on a small airborne platform for live
image formation is feasible. Additionally, the implementation
can be used to swiftly evaluate different parameters and
optimizations in the context of a prospective FPGA imple-
mentation.

This paper is organized as follows. In section II a short
overview of the GPB and PAFO algorithm is given. Section III
describes the GPU implementation of the aforementioned
algorithms, which is then evaluated in section IV. A summary
of the findings is given in section V.

A. Related work

Due to the inherent parallel nature of SAR image formation,
the use of GPUs for this task has found widespread applica-
tion. Fasih et al. [4] achieved a 60× improvement compared to
a CPU implementation on SAR backprojection using GPUs.
Benson et al. [5] used a cluster of multiple GPUs to reach
further performance gains. Both used NVIDIA Tesla GPUs,
whose high power consumption (> 200 W) is forbidding on
small airborne platforms.

The use of embedded GPUs for SAR imaging was ex-
plored by Fatica et al. [6]. Their implementation is based
on frequency-domain algorithms and does not include an
autofocus technique.

The impact of using either single or double precision on
power consumption and image quality was studied by Portillo
et al. [7]. They found the single precision variant to be more
energy efficient with little impact on image quality.
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II. PARALLEL AUTOFOCUS (PAFO) ALGORITHM

The captured data of a standard strip-map SAR scenario
consists of M antenna positions. At each position, a radar
pulse is transmitted, and the received echo is stored as a series
of N discrete range-bins1, yielding a data set D ∈ CM×N
with elements dm,n. The final SAR image G ∈ CU×V with
elements gu,v is then assembled using the backprojection
formula

gu,v =

M−1∑
m=0

dm,ñ · ei2k∆r (1)

where ∆r is the 3-D-space distance from the mth antenna
position to the ground position of pixel (u, v). Additionally, a
constant wavenumber k = 2πfc/c (with carrier frequency fc

and wave propagation speed c) is required to maintain phase
coherent summation.

As denoted by the index ñ, the range-bin samples are
interpolated using the fractional range-bin index

ñ = (∆r − r0)/δr (2)

Here, r0 denotes the distance to the first range-bin (n = 0)
and δr is the size of a single range-bin.

A. Backprojection Autofocus [2]

Imprecise measurement of the antenna position leads to
erroneous ∆r’s, which then lead to a defocused image. As
shown in [2], for small error magnitudes the effect can be
modeled using a pulse-dependent phase error. Using a vector
of phase corrections ~Φ ∈ [0, 2π)

M with elements φm, each
sample can be phase corrected. A focused image can then be
obtained using

gu,v(~Φ) =

M−1∑
m=0

(
dm,ñ · eiφm

)
· ei2k∆r (3)

It is the autofocus algorithm’s task to find the vector ~Φopt

which leads to the sharpest image. For this, a sharpness metric
S : R→ R is used to define a cost function

C(~Φ) = −
U−1∑
u=0

V−1∑
v=0

S
(∣∣∣gu,v(~Φ)

∣∣∣) (4)

as the negative sum of S, applied to all pixel magnitudes
in the output image. The autofocus problem can therefore be
formulated as the M -dimensional optimization problem

~Φopt = arg min
~Φ∈[0,2π)M

C(~Φ) (5)

In [2], a coordinate-descent approach is suggested to solve
this problem. Starting with ~Φ′0 = ~0, φ0 is varied to minimize
the cost function, while keeping the other elements constant.
~Φ′0 is then updated with the found value, and the process is

1For other radar systems, like FMCW, a preprocessing step is necessary to
transform the data to a pulse equivalent

being repeated to find the value of φ1, etc. This yields the first
iteration result ~Φ′1. Depending on the required image quality,
this vector can either be used as the final correction factor ~Φ,
or as an initial guess for another iteration of the algorithm.

B. Optimization for parallel architectures [3]

As presented in [3], several properties of the presented
algorithm can be exploited to reach an efficient implementation
on massively parallel architectures like FPGAs or GPUs.

1) Exploiting linear characteristics of the backprojection:
The backprojection is a linear operation, it is therefore irrele-
vant if a phase correction is applied before the backprojection
to the raw data, or afterwards to the pulse’s contribution to
every pixel.

Using the notation Gm for the backprojection of a single
pulse only, the focused image thus can be written as

G(~Φ) =

M−1∑
m=0

Gm · eiφm (6)

Hence, the resulting image G(~Φ|φm=ξ) and, more impor-
tantly, the cost function C(~Φ|φm = ξ) for a candidate phase
value φm = ξ can quickly be calculated using

G(~Φ|φm=ξ) = G(~Φ|φm=0) + Gm ·
(
eiξ − 1

)
(7)

Assuming sufficient memory to store the partially focused
image G(~Φ′) and the current single-pulse image Gm, eval-
uation of the cost function for a candidate phase value can
therefore be realized without performing a full backprojection
of the image, reducing the number of required backprojections
largely.

2) Quadratic interpolation-based minimum search: Differ-
ent optimization algorithms can be used to find the optimal
value for φm in each step of the autofocus algorithm. In [3]
a quadratic interpolation-based minimum search is suggested,
which allows parallel evaluation of different candidate values.
This is well-suited to the inherently parallel architecture of
FPGAs and can also be exploited on GPUs.

Analysis showed, that the impact of varying a single value
φm of ~Φ on the cost function C(~Φ) is similar to a sinusoidal
shape, especially when using S : x 7→ x2 or S : x 7→ x4.
In the vicinity of the minimum, a sinusoidal shape may be
approximated by a parabola. This gives rise to the idea of
using quadratic interpolation to find the minimum.

The parallel minimum search works as follows. In a first
step, the cost function C is sampled at Ŝ equidistant points. All
points can be evaluated in parallel. The found minimum value
is then used to construct a narrower set of Ŝ sampling points
around the minimum. This process is repeated R̂ times. After
the last iteration, the minimum index ξ0 and its two neighbours
ξ−1 and ξ1, together with the values yi = C(~Φ′|φm= ξi) for
i ∈ {−1, 0, 1} are used to construct a parabola. The whole
process is visualized in Fig. 1. Exploiting the constant spacing
of the sample points ∆ξ = ξ0−ξ−1 = ξ1−ξ0 and normalizing
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Fig. 1: Parabola fitted on an sinusoid, using R̂ = 2 rounds of
Ŝ = 8 samples [3].

the parabola offset to zero with ỹi = yi − y0, the sought
minimum can be found at

φm = ξmin = ξ0 +
∆ξ

2
−∆ξ · ỹ1

ỹ−1 + ỹ1
(8)

III. GPU IMPLEMENTATION

The autofocus algorithm proposed in this paper was imple-
mented on a Jetson AGX Xavier developer kit [8]. It features
a Volta-generation GPU with 512 CUDA cores running at
1.5 GHz, as well as 8 ARMv8 CPU cores. On the Xavier
platform, the CPU and GPU share the same physical memory,
which allows for zero-copy data sharing between GPU and
CPU. The software was targeting CUDA 10.0 and was running
on the default Ubuntu Linux with kernel 4.9.

The implementation is organized around three memory
buffers, each capable of storing a single image at full resolu-
tion U×V . One buffer is used for the partially focused image
G and two buffers Ĝm and Ĝm+1 for the current and next
single pulse projections, respectively. The use of two buffers
for the single pulses makes it possible to start the projection
of the next pulse, before the processing of the current one is
finished. This yields a higher GPU occupancy, at the cost of
higher memory requirements.

As shown in Fig. 2 three kernels (special functions executed
on the GPU) are used for the backprojection (GBP), the
evaluation of the cost function and the update of the partially
focused image G. The determination of the Ŝ sampling points
and the quadratic interpolation are performed on the CPU,
because these tasks do not benefit from parallel processing.

TABLE I: Found optimal processing granularity used for the
processing kernels

Kernel Pixels/Thread Threads/Block
Initial GBP 2× 2 16× 16
Single Pulse GBP 2× 2 4× 4
Evaluate Cost Function 1× 1 1× 32
Update Image 2× 2 8× 8

The GPU kernels are executed using many threads in
parallel, organized in a 2D grid, which naturally fits the
two dimensional structure of the images. The used optimal
granularity is shown in Table I. For the backprojection and the
image update every thread processes an image tile of 2 × 2
pixels instead of a single pixel. For image sizes not divisible
by the thread count, a hardware feature of the GPU is used to
discard out-of-bound writes.

The cost function kernel evaluates all Ŝ sampling points
iteratively. Similar to the proposed FPGA architecture [3], this
saves memory bandwidth, as the values for gu,v and ĝu,v have
to be loaded only once. The iterative processing makes the
kernel runtime dependent on Ŝ. This is different to the FPGA
architecture concept, where an increase of Ŝ can be handled
with more parallel hardware blocks, increasing the chip area,
but not the runtime.

The calculated per-pixel cost values are summed up in a
tree-like reduction scheme using the CUB library [9]. The final
reduction step is then performed on the CPU, using Kahan
summation to avoid floating point errors. This technique uses
a separate running compensation to reduce precision loss when
small numbers are added together in a large sum [10].

IV. EVALUATION

The described architecture was evaluated using an in-house
dataset captured using an ultra-wideband FMCW sensor in a
laboratory demonstrator setup [11]. To simulate the effects of
an unstable flight path and/or errors in position tracking, the
recorded path is distorted using a high-frequency sine function.
The scene, as shown in Fig. 3, can be classified as municipal
and features multiple houses as well as a strong corner reflector
near the center of the scene. Image quality was measured using
peak signal-to-noise ratio (PSNR) defined as

MSE =
1

U · V

U−1∑
u=0

V−1∑
v=0

(|gu,v| − |hu,v|)2 (9)

PSNR (dB) = 10 · log10

(
max(|hu,v|)2

MSE

)
(10)

for the image G compared to a reference image H.
Algorithm run time was measured using CUDA events,

which implement performance counters directly on the GPU.
All runtimes are averaged over 10 runs. The used dataset
consists of 742 range lines with 1404 range bins each and
was projected to an 512× 512 px2 image. The power budget
of the Jetson AGX Xavier board was set to 15 W.

A. Impact of floating point precision on image quality

The GPU can operate on floating point numbers with either
single, double or half precision. The impact on performance
and image quality is shown in Table II. The choice of data
width not only impacts the time needed for the actual arith-
metic operations, but also the required memory bandwidth,
which explains the more than twofold increase from float to
double. Half precision arithmetic has a very limited range,
which must be taken into account to avoid overflows.



Initial GBP
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Next Single Pulse GBP
Dm+1 → Ĝm+1

R̂×

M×

Fig. 2: Flow chart of the proposed autofocus architecture,
showing the parts executed on the GPU and CPU .

Using single precision has, compared to double precision,
very little impact on image quality (PSNR > 75 dB). This is in
line with the findings of Portillo et al. [7]. The runtime is cut
more than tenfold. Analysis of the double precision code with
the NVIDIA Visual Profiler showed, that the implementation
fails to reach a high GPU occupancy in this case. If a
higher image quality is desired, only the summation reduction
can be executed using double precision. This increases the

TABLE II: Effect of floating point precision on the image
quality in different parts of the algorithm. The all-double
version was used as a reference. Results for Ŝ = 8 and R̂ = 2.

Algorithm part
GBP Storage Reduction PSNR (dB) Runtime (ms)

double double double ∞ 10 087.36
float float double 81.33 2808.10
float float float 76.90 607.40
float half float 73.65 510.50

(a) before autofocus processing (b) after autofocus processing

Fig. 3: Image results of an in-house dataset [11] R̂ = 3, Ŝ =
12. An artificial high-frequency path deviation was added to
the image to simulate an unstable flight path.
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Fig. 4: Resulting image quality for different sampling param-
eters Ŝ and R̂.

PSNR to 81 dB, but also leads to a prolonged runtime. The
opposite effect can be achieved by using half precision for
the intermediate results G and Ĝm; this version shows a
slightly lower PSNR (74 dB) accompanied by a slightly shorter
runtime. Using half precision arithmetic in other cases leads
to overflows.

B. Impact of algorithm parameters Ŝ and R̂

The number of samples evaluated per round Ŝ and the num-
ber of sampling rounds R̂ are the main tuning parameters of
the algorithm. As shown in Figs. 4, 5 and 6, these parameters
can be used to counterbalance runtime and achieved image
quality. The reference image used for the PSNR comparison
was generated using Ŝ = 12, R̂ = 3. All computations were
done using single precision numbers.

The image quality is linearly correlated with the iteration
number, matching the simulations of Fahnemann et al. [3].
As expected, configurations leading to the same number of
effective samples, like Ŝ = 64, R̂ = 1 and Ŝ = 8, R̂ = 2
result in about the same image quality, but differ in runtime,
since the latter only evaluates 2× Ŝ = 16 samples.

Unlike in the FPGA architecture concept [3], an increase
of Ŝ does increase the runtime nearly linearly because the
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Fig. 5: Algorithm runtime for different sampling parameters
Ŝ and R̂.

samples are evaluated iteratively. In the FPGA concept all
samples can be evaluated in parallel using dedicated hardware
blocks, therefore an increase in Ŝ does only increase the
required hardware elements and not the runtime. For R̂ = 1,
at Ŝ = 20 the runtime increases abruptly. This can be
attributed to increasing register pressure and/or shared memory
requirements.

The Pareto frontier in Fig. 6 shows that for the most
useful quality section of 60 dB to 80 dB PSNR the optimal
runtime can be achieved using R̂ = 2. If an image quality of
55 dB PSNR is sufficient, a faster processing can be reached
using only a single sampling round.

V. CONCLUSION

This paper presents an efficient parallel SAR autofocus
implementation on a GPU based on the FPGA architecture
concept by Fahnemann et al. [3]. The algorithm exposes
tunable parameters to counterbalance desired runtime and
image quality. Thorough evaluation of the implementation
using real SAR data was carried out, showing the intended
scaling behavior.

The GPU implementation additionally serves as a work-
ing prototype for a prospective FPGA implementation and
allows quick exploration of algorithm changes and parameter
choices.
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