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Abstract. We analyse the crossing of a quantum critical point based on exact
results for the transverse XY model. In dependence of the change rate of the
driving field, the evolution of the ground state is studied while the transverse
magnetic field is tuned through the critical point with a linear ramping. The
excitation probability is obtained exactly and is compared to previous studies and
to the Landau–Zener formula, a long time solution for non-adiabatic transitions
in two-level systems. The exact time dependence of the excitations density in the
system allows us to identify the adiabatic and diabatic regions during the sweep
and to study the mesoscopic fluctuations of the excitations. The effect of white-
noise is investigated, where the critical point transmutes into a non-Hermitian
‘degenerate region’. Besides an overall increase of the excitations during and at
the end of the sweep, the most destructive effect of the noise is the decay of the
state purity that is enhanced by the passage through the degenerate region.
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1. Introduction

Adiabatic passages are a fascinating and important tool in modern physics, since they allow us
to manipulate quantum states in a controlled manner via tunable parameters of a physical model
system. Their potential impact ranges from setting current standards by means of adiabatically
pumping charge through a quantum dot [1]–[4] to the access to ground states of e.g. non-
integrable Hamiltonians via adiabatically connecting to it from an integrable Hamiltonian [5].
Since modern methods in quantum optics allow fabrication of a wide class of lattice Hamiltonians
with systems of atoms loaded into a suitably engineered optical trap, these techniques have
become experimentally accessible nowadays. We here will discuss the latter application of a
possibly adiabatic transit of a ground state with an explicit time-dependent Hamiltonian and
‘slowly’ varying parameters, which in the recent literature has also been termed adiabatic
quantum computation (AQC) [5]. The efficiency of this procedure is compromised by size effects
and by the presence of noise, the arch-enemy of all quantum information tasks.

The closing of the gap in the spectrum of excitations with growing system size gives a limit
to the rate the parameters may be changed in order to have a sufficiently high fidelity with the
ground state of the final Hamiltonian. In other words, the gap rules the time of computation.
An intriguing question is then, what happens if a quantum critical point [6] is crossed during
the passage. In the dynamic scenario presented here, the vanishing gap makes the notion of
slow change rates obsolete, and strictly speaking no adiabatic passage exists across a quantum
critical point. In the laboratory we have to deal with finite systems and as a consequence the gap,
though scaling down to zero somehow with the system size, will nevertheless be finite. Then, the
question arises how the fidelity of the ground state and/or the time of computation scales with
the system size. This question is relevant for deciding whether AQC may be successful or not.
It has been addressed for the one-dimensional transverse Ising and the anisotropic Heisenberg-
chain [7] in numerically solving the Heisenberg equation; the excitation probability has been
calculated perturbatively taking into account a finite number of multiparticle excitations. The
authors concluded that the adiabatic timescale for the Ising model in a transverse field scales
polynomially with the system size. Besides a complete treatment of many-particle excitations this
work did not take into consideration the crucial role fluctuations of the average excitation number
play in particular for small system size. The previous question is also related to the Kibble–Zurek
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theory, where critical scaling laws have been employed to obtain predictions for the density of
defects after the crossing of a real phase transition [8]–[10]. Its predictions have been tested for
the one-dimensional transverse Ising model in [11], where the kink density has been calculated
numerically and good qualitative agreement with the Kibble–Zurek scenario has been reported
up to little quantitative discrepancy. By means of simple scaling arguments the density of created
excitations as function of the sweeping rate has been evaluated for models belonging to different
universality classes [12]. Using the exact solution for the transverse Ising model [13]–[16], the
kink density at vanishing magnetic field has been calculated in [17], and numerical discrepancies
with [11] have been noted, where the time-dependent Bogoliubov approach has been applied
and excitation probabilities in the long time limit are obtained from a mapping to Landau–Zener
(LZ) tunnelling.

How the presence of the noise affects this scenario is a rather unexplored, though very
important, topic. In experimental set-ups one has to struggle with the influence of environmental
degrees of freedom. This transforms the avoided criticality of the finite system into a region of
non-Hermitian degeneracy [18] extending over a finite interval in control parameter space. This
means that the system passes through a gapless phase within a finite time window. Moreover,
besides the inverse of the spectral gap that sets a lower bound on the sweeping period, the noise
introduces a second timescale: the dephasing time, that on the contrary sets an upper bound.
These competing timescales give rise to nontrivial effects, which are largely ignored in the
recent literature on AQC [19]–[21] notwithstanding their importance for a realistic analysis of
AQC protocols.

A prominent and simple class of models with quantum critical point are the one-dimensional
XY models in transverse magnetic field [6, 13]. In this work, we trace the exact evolution of the
model during a sweep in order to study the robustness of the adiabatic passage against size effects
with and without the presence of noise in the driving field. The paper is organized as follows: in
section 2 we present the model Hamiltonian together with a sketch of its exact solution of the
dynamics and we briefly review the Kibble–Zurek scenario for a quantum phase transition in
section 3. In section 4, the results for the excitation probability and its mean square fluctuations
during the sweep are presented and discussed. In section 5, we analyse the case of a noisy driving
field. Conclusions out of our findings are drawn in section 6.

2. The model and its exact solution

The model Hamiltonian under consideration throughout this work is the one-dimensional
spin-1/2 XY model in transverse magnetic field, an archetype model exhibiting a quantum
phase transition [6] for which an exact solution exists [13]–[16]

H = −

 L∑

j=1

(1 + γ)Sx
j S

x
j+1 + (1 − γ)S

y

j S
y

j+1


 − h(t)

L∑
j=1

Sz
j . (1)

From here on, for sake of simplicity the unit of energy, h̄ and the lattice spacing are set to one.
In the above equation γ is the in-plane anisotropy coefficient, the magnetic field h(t) is the time-
dependent tunable parameter and the boundary conditions are periodic. The model undergoes a
quantum phase transition at hc = 1 separating a paramagnetic (h > hc) from a broken symmetry
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phase, where 〈Sx〉 �= 0. Details about the exact solution and the derivation of the exact time
evolution are found in [13], and the main steps are outlined in the appendix. The canonical
transformations (A.1), (A.2), (A.4) and (A.7) completely decouple the Hamiltonian into a direct
sum H = ⊕|k|Hk of four-dimensional Hamiltonians Hk acting nontrivially only in the Hilbert
space {|0〉k,−k, |k, −k〉; |k〉, |−k〉}, where, due to the parity symmetry, it further decouples into
Hk = Hodd

k
⊕ H even

k . Whereas in the odd-occupation Hilbert space the Hamiltonian is already
diagonal, Hodd

k = − cos φk112, in the even-occupation Hilbert space and basis {|0〉, |k, −k〉} one
obtains

H even
k = − cos φk112 + akσ

z + bkσ
y, (2)

where φk = 2πk/(L − 1), ak = cos φk + h(t), bk = γ sin φk, and σα are the Pauli matrices. From
now on we will focus on the nontrivial even part of the Hamiltonian and for sake of simplicity
the superscript ‘even’ will be dropped. The eigenvalues are

Ek = ±�k = ±
√

a2
k + b2

k (3)

with ak and bk as defined above, and the ground state is

|GSk〉 =
(−iβk

αk

)
=:

(−iβk + αkf
†
k f

†
−k

) |0〉k,−k, (4)

where

αk = �k + ak√
2�k(�k + ak)

, βk = bk√
2�k(�k + ak)

,

and the fermionic operators f
†
l are defined in equation (A.7). The ground state of the whole

chain, which later on will be the initial state, is the tensor product

|GS〉 =
⊗∏
|k|

|GSk〉, ρ
t=0 =

⊗∏
|k|

|GSk〉〈GSk| ,

since we will start in the phase where the parity symmetry is not broken. As a consequence,
〈Sx〉 = 0 during the time evolution.

In terms of single mode operators the Hamiltonian can be written as

H =
∑

k

�k

(
η

†
kηk − 1

2

)
, (5)

where the relation between the fermionic operators ηk and fk reads

ηk = βkfk + iαkf
†
−k.

It is worth noticing that the diagonalization is not giving the time evolution, since
[∂tH, H] �= 0. The time evolution operator is given by

U(t) := T exp

{
−i

∫ t

0
dτH(τ)

}
(6)
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with T the time ordering operator, and we have to deal with the Schrödinger equation

i∂tU = HU; U =
⊗∏
|k|

U(k), (7)

for the time evolution operator U instead. An exact solution does exist for several time
dependences [13, 22, 23]. In the simplest case of linear sweep h(t) = h0 + (h1 − h0)t/T the
long time physics exhibits the LZ tunnelling scenario [22, 24]; for details of the exact time
evolution we refer to the appendix.

The fidelity of an adiabatic passage process is the overlap of the wavefunction at time t

and the ground state |GS(t)〉 of H(t) at the same time. The latter would be the wavefunction
for adiabatically driven magnetic field. The overlap integral 〈GS(t)|U(t)|GS(0)〉 is thus a rough
measure for the efficiency of the adiabatic passage. Another way to check the adiabaticity of a
sweeping process is to evaluate the average number of excitations in the system after the sweep,
i.e. the expectation value of

∑
k η

†
kηk on the state U(t)|GS(0)〉. The passage is fully adiabatic if

no excitations are produced at the end of the drive.

3. Kibble–Zurek scenario

The density of excitations crossing a phase transition can be foreseen according to the Kibble–
Zurek scenario [8]–[10]. Before entering the bulk of our work, we shall give a short summary
of results from the recent paper by Zurek, Dorner and Zoller (ZDZ) [11], who extended the
Kibble–Zurek scenario to quantum critical phenomena. Let us assume a linear sweep of the field
in a period T between h0 and h1:

h(t) = h0 − vht, vh ≡ h0 − h1

T
.

We define the distance from the critical point, ε(t) = h(t) − hc. From the dispersion relation,
equation (3), it follows that in the thermodynamic limit the gap in the excitation spectrum is


 = |h − hc|,
while in a finite chain with L spins at h = hc the gap takes the finite minimum value


L = 2πγ

L
+ O

(
L−2

)
.


 (or 
L) sets the energy scale and the relaxation time is

τ = τ0



= τ0

|ε(t)| ,

where τ0 is an appropriate coefficient of proportionality. The divergence of τ is the hallmark
of the critical slowing down in the usual phase transition. One can also define a healing length:
ξ = cτ, where c = lim

k→π

∂�k

∂k
|h=1 = γ is the spin wave velocity, and a density of excitations ν = 1/ξ.
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According to ZDZ, when approaching the critical point, the dynamics of the system ideally
should change from adiabatic to frozen behaviour at time t̂. Since ε(t) changes on a timescale
ε(t)/ε̇(t) the crossover between an adiabatic and a sudden region should occur when5

τ(t̂) = ε( t̂ )

ε̇( t̂ )
= t̂ ⇒ t̂2 = τ0/vh.

When crossing the critical point at velocity vh, the healing length at t̂ is ξ̂ = ct̂ and the excitations
density after the sweep would be ν ∝ √

vh. Studying the time dependence of different quantities
in the system we will directly probe this scenario.

4. Effect of mesoscopic fluctuations on the ZDZ-scaling law

After a sweep from h(0) to h(t) the density of excitations at time t in the system is given by the
expectation value

ν = 1

L
〈GS|U†(t)

∑
k

η
†
kηkU(t)|GS〉

= 2

L

∑
k>0

{
α2

k − (
α2

k − β2
k

) |αk(t)|2 − 2αkβkIm
[
α∗

k(t)β(t)
]}

≡ 1

L

∑
k �=0

νk, (8)

where η† (η) is the single mode creation (annihilation) operator as defined below equation (5) and

U(t)|GS〉 ≡ ∏⊗
|k| [ − iβk(t) + αk(t)f

†
k f

†
−k]|0〉k,−k.6 At γ = 1 and h(T ) = 0 we have

∑
k η

†
kηk =

1
2

∑
i(1 − σx

i σ
x
i+1), so that ν coincides with the kink density in the system at the end of the

sweep [17].
Figure 1 shows the excitation spectrum for different velocities. For a finite chain of

L = 2N + 1 sites the lowest energy mode is φN−1 = π(N − 1)/N, this means that, for instance,
at vh = 0.01 the sweep can be considered adiabatic up to L � 65. Looking at figure 1 one
can compare the exact result and the LZ formula Pk = exp [−2πγ2 sin2(φk)

vh
] that reproduces

surprisingly well the exact solution for final field hf = 0 even for rather high vh. This confirms
that the physics of the process is ruled by the LZ tunnelling [17]. One can also observe that for
sufficiently low sweeping rate the excitation density just after the transition point (h = 0.9) is
the same as found at h = 0.

An adiabatic and a sudden region can be distinguished: when the system enters the sudden
region the number of excitations rapidly increases up to some maximum value. Afterwards,
an oscillatory behaviour of the excitation density is observed. Thus, a sensitive (though not
unique) possibility to identify the sudden region is the time derivative of the excitation density
dν

dt
= −vh

dν

dh
. Using this method the sudden region can be depicted as the grey shaded regions in

figure 2. At fixed vh, the number of excitations clearly depends on the density of states (DOS)

5 Here the time set-off is chosen such that the critical point is reached at t = 0.
6 It is worth noticing that the k = 0 mode can only be singly occupied or empty. Its occupation corresponded to the
odd sector, and therefore the k = 0 mode must be excluded.
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13π /16 7π /8 15π /16 π
φ

k

0

0.2
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0.6

0.8

1.0

ν k

υ
h
 = 0.010

υ
h
 = 0.050

υ
h
 = 0.500

υ
h
 = 1.000

Figure 1. Single mode excitation density versus φk for γ = 1 at different quench
rates (from bottom to top: vh = 0.01, 0.05, 0.50, 1.00) and different final fields
hf = 0 (solid lines) and hf = 0.9 (dashed). Dotted lines represent the predictions
from the LZ formula. Vertical lines point out the values of {φk} for L = 129.

0
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0.006
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0.01

ν

0 0.2 0.4 0.6 0.8 1.0
h(t)

0

0.001
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L = 51
L = 101
L = 201
L = 401

1 LZ mode

3 LZ modes

6 LZ modes

0.6 0.7 0.8 0.9 1.0 1.1 1.2
h(t)

0

0.001

0.002

dν|dt

dν|dt

0

0.002

0.004

0.006

L = 101
L = 201
L = 401

0

0.01
υh = 0.05

υh = 0.02

υh = 0.01

Figure 2. Left upper panel: density of excitations versus h(t) = h0–vht for
different chain lengths (from bottom to top: L = 51, 101, 201, 401) at vh = 0.01
and γ = 1. Dotted lines represent the prediction from the LZ formula and a finite
number of modes. Left bottom panel: time derivative of the excitation density. The
shaded region points out the ‘sudden interval’ in the sweep. Right panel: dν/dt

versus h(t) for γ = 1 and increasing sweeping velocities vh (from bottom to top).
The shaded areas point out the sudden regions that broaden with increasing vh.

between the ground state energy and the ‘sweeping energy’ εv := vh. In particular only few
modes contribute to the total excitation density and their number is related to the minimum gap

L = 2πγ/L and to the DOS (upper left panel of figure 2). When the sweeping velocity increases
the sudden region broadens (figure 2, right panel). The Kibble–Zurek scenario predicts the width
of this region to be proportional to the squareroot of the sweeping velocity: 
ĥ ∝ vht̂ = √

τ0vh.
Already a much less detailed quantity reveals similar insight and allows comparison with [7];
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Figure 3. Left panel: pE for different quench rates vh, for γ = 1 and L = 101.
Full lines represent the total pE , and the dashed lines represent the probabilities
to excite the first mode only. Right panel: scaling of 
ĥ versus vh as N increases
on a log–log plot.

0.001 0.01 0.1 1

υh

0.001
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ν
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f(x) = 0.11 x
1/2
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N = 1001
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1/2

Figure 4. Left panel: excitation density versus vh at γ = 1. The full circles
represent the extrapolated N → ∞ values and the dashed line is the best fit of
those points. Right panel: the same as in the left panel, but with γ = 0.1.

namely the total excitation probability

pE = 1 − |〈GS(t)|U(t)|GS(0)〉|2. (9)

Like ν, it exhibits a maximum just after the crossing of critical point (see figure 3). We define

ĥ ≡ hc − hmax, where hmax is the value of the field where pE reaches its maximum. The value
of 
ĥ evaluated in this way depends on L due to the L-dependence of the gap. It is only
the extrapolation of 
ĥ to L → ∞ that clearly displays the Kibble–Zurek square root behaviour√

τ0vh as can be seen from the log–log plot in figure 3.
In order to verify the ZDZ-scaling law of the excitation density, we plot ν as function

of the sweep velocity vh in figure 4. The data extrapolated to the thermodynamic limit agrees
well with the expected scaling law ν ∝ √

vh independently of γ . In particular for the Ising
model we find ν = 0.11(4)

√
vh, while previous analytical studies based of a LZ [17] and

perturbative [12] approximated approaches overestimated it. With decreasing γ , the minimum
gap decreases linearly in γ while the DOS increases as 1/γ . The combined effect results in an
overall enhancement of the number of excitations in the system and in the thermodynamic limit
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Figure 5. Extrapolation of the density of excitations to the thermodynamic limit
for γ = 1. Symbols: ν(vh, L); dashed lines: regression lines.
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υh
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1.0

10
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ν

Figure 6. Single mode contribution to the excitation density for L = 401 and
γ = 1. Bold line: total excitation density; thin lines: contribution of the first 6
modes from the lowest (in energy) to the highest (from top to bottom).

the density of excitations increases as ∼1/γ . This is well verified by comparison of the curves
in figure 4 for γ = 1 (left panel) and γ = 0.1 (right panel).

One can wonder whether the ZDZ scaling ν ∝ √
vh is a pure many-body effect or determined

already by the first excited state alone. In order to answer this question it is important first to
observe in figure 5 the extrapolation of ν for 1/L → 0. The thermodynamic limit is reached with
a perfect linear behaviour in 1/L as expected by the constant value 1

2γ
of the DOS at low energy.7

However, this scaling holds only for large enough values of vhL. To be precise, a sufficiently large
number of excited states must be taken into account in order to get the correct thermodynamic
limit of ν. Even though the first excited state certainly gives the main contribution to the overall
excitation density at low sweep velocities, figure 6 shows that all the levels between the lowest
excited state up to the sweeping energy εv = vh are necessary for the ZDZ-scaling to show up.

7 The DOS in the low energy limit at h = 1 reads δε→0 ∼ 1
2γ

+ 4γ2−3
64γ5 ε2.
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100 1000 10000 1e+05
L

0.01

0.1

1.0

δ ν
/ν

Figure 7. Relative fluctuations of the excitation density versus L in the Ising
model γ = 1 and sweeping velocity vh = 0.05. The largest lattice size is L =
102 401.

At fixed vh and in the limit L → ∞ the number of levels in this interval is ∼ 1
2γ

(vh − 2πγ/L).
So, we conclude the effect to be essentially due to many-body physics rather than to a simple
level crossing.

The last important issue of this section is to examine how the mesoscopic (finite) dimension
of the spin chain affects the ZDZ- scaling behaviour and eventually the adiabatic passage through
a quantum phase transition. In fact, two competing effects arise when chains of finite length L

are considered:

1. on the one hand, finite L means finite gap 
L at h = hc and the fidelity of the adiabatic
passage is bounded by the ZDZ-scaling law;

2. on the other hand, finite L also implies large mesoscopic fluctuations of the excitation
number produced during the sweep, i.e. the average quantities can lose their importance in
favour of higher moments.

To address this question, we evaluated the mean square fluctuations δ2
ν of the average density of

excitations ν

δ2
ν ≡ 1

L2
〈GS|U†(t)

∑
kk′

η
†
kηkη

†
k′ηk′U(t)|GS〉 − ν2

= 1

L2

∑
k

νk(1 − νk). (10)

The relative fluctuations δν/ν are plotted in figure 7 for the quantum Ising model, i.e. γ = 1,
and a moderate sweeping velocity. The striking feature that emerges from this analysis is the
high sensitivity of the relative fluctuation to the size of the system. Even for rather large lattice
size (L = 401) the relative weight of δν is as large as 18% and rapidly increase up to 80% for
L = 101. When the rate of the passage is given, small lattice size implies few excitations on
average, but also very large fluctuations in their number and thus a lack of information about the
final state.

Let us remark that the ZDZ-scaling emerges correctly only in the thermodynamic limit where
the relative fluctuations are strongly suppressed. Thus, even if the dynamics of the model (1)
is governed by the LZ tunnelling of non-interacting particles, the ZDZ-scaling is the proper
signature of the quantum critical point crossed during the sweep rather than the result of single
particle tunnelling processes.
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Figure 8. Imaginary part of Lk eigenvalues versus h for γ = 1, k=0.99 π, and
�=0.15. The dashed lines represent the noiseless spectrum for the same values
of the parameters.

5. Robustness of the adiabatic passage in the presence of noise

A real experimental set-up is subject to noise, another source that may corrupt the adiabatic
passage fidelity. Here, we examine the case of a noisy driving field, hξ(t) = h(t) + ξ(t)/2,
where ξ(t) is a stochastic field. The simplest choice of a white spectrum for ξ(t) (i.e. 〈ξ(t)〉 = 0
and 〈ξ(t)ξ(0)〉 = �δ(t)) will be enough for understanding the main features due to noise and
decoherence. The effect of the noise is that a diagonal stochastic term enters the Hamiltonian
(2), leading to

H
ξ

k = −cos φk112 +

[
ak +

ξ(t)

2

]
σz + bkσ

y. (11)

In order to study the dynamics of such a system one has to deal with the density matrix formalism
and to solve the Lindblad equation [25]

ρ̇k(t) = −i[H even
k , ρk(t)] − �[σz, [σz, ρk(t)]], (12)

that can be rewritten as


̇ρk = Lk 
ρk, (13)

where 
ρk is the Bloch vector defined by ρk = 1
2(11 + 
ρk · 
σ). The Lindbladian here takes the form

Lk =

 −� −2ak 2bk

2ak −� 0
−2bk 0 0


 . (14)

The stochastic noise induces a non-Hermitian perturbation to the original Hamiltonian (1).
The presence of such kind of perturbations can radically modify the physics of the unperturbed
(Hermitian) system, in particular when the latter has degeneracy or quasi-degeneracy points,
as is the case here: degeneracy or quasi-degeneracy points typically evolve into branch-points
of non-Hermitian degeneracies [18]. Indeed, two eigenvalues (and the two eigenvectors) of the
fermionic system (11) merge in a finite interval of h, as compared with a single point without
noise. This is seen in figure 8 where the imaginary part of eigenvalues of the Lindbladian Lk

versus the field h are plotted.
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Figure 9. Kink density versus vh for γ = 1, L = 401, and different values of
the dissipative coupling: from bottom to top, � = 0, 10−6, 10−5, 10−4, 10−3,
10−2, 10−1.

Analysis of the noisy case admits to answer two fundamental questions.

1. Is it still possible to discriminate the adiabatic from a sudden regime in the presence of
noise?

2. How robust is the KZ mechanism with respect to noise?

Solving (numerically) equation (13) we evaluate the kink density (excitation density) of the
system using equation (8). It is shown in figure 9 for the Ising model (γ = 1) after a sweep of
the field from h0 = 10 to hf = 0. The excitation density of the system increases considerably
with the noise strength � up to the saturation value 1/2 (the maximum number of kinks is L/2).
Besides this, there are two new and striking features:

(i) the considerable noise instability of the adiabatic approximation even if � is orders of
magnitude smaller than the excitation gap;

(ii) the non-monotonic behaviour of the excitation density with the quench rate vh.

In order to understand this somehow counterintuitive behaviour, all relevant timescales for the
adiabatic passage need to be taken into account: the relaxation time τ = 1/
, which is the
only relevant scale in the noiseless case, and the decoherence time τϕ [in the white-noise case
τϕ = 1/(2�)]. Both timescales have to be compared with the sweeping time T = (h0 − hf)/vh.
In order to faithfully drag a quantum state by the drive, the sweeping rate has to be much slower
than the gap of the system, vh � 
, but, on the other hand, it has to be much faster than the
dephasing rate, vh � �. Then, the condition for the success of the adiabatic passage is that
� � vh � 
.

This is nicely seen from the excitation probability as a function of � (figure 10, left panel)
and explains the observed non-monotonicity. The same feature is resolved in terms of modes φk

in the right panel of the same figure. When � is of the order of vh or even larger, most of the
modes lose their quantum coherence during the sweep irrespective of the velocity. Eventually,
the excitation density of each mode saturates to the value 1/2. The relevance of the appearing of
the decoherence time compromises the distinction between the adiabatic and the sudden region.

New Journal of Physics 9 (2007) 134 (http://www.njp.org/)

http://www.njp.org/


13 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

1e–07 1e–06 1e–05 1e–04 1e–03 1e–02 1e–01 1e+00

Γ

0

0.1

0.2

0.3

0.4

0.5

ν

V
el

oc
ity

υ h

G
ap

∆ L

0 π/4 π/2 3π/4 π
φ

k

0

0.25

0.5

0.75

1.0

ν k

Figure 10. Left panel: kink density versus � for vh = 0.001, γ = 1 and L = 401.
Right panel: single mode excitation density versus φk for different values of the
ratio �/vh = 0.1, 1, 10 (from bottom to top, respectively).

0 1 2 3 4 5
υ

h
t

0

0.2

0.4

0.6

0.8

1.0

P
ur

ity

υ
h

/ Γ = 10 
υ

h
/ Γ = 50

υ
h

/ Γ = 100
υ

h
/ Γ = 500

h
=

h c

Figure 11. Purity of the state, Tr ρ2, during the sweep from h(0) = 5 to h(T) = 0
for different values of vh and �; L = 101. The curves depend only on the ratio
vh/�.

The noise progressively degrades the state of the system into a mixed one. This shows up in
figure 11 looking at the behaviour of the purity defined as Tr ρ2, that we find to depend solely on
the velocity-to-noise ratio vh/�. The rate of degradation of the state during the sweep is constant
only far from the critical point and this is particularly evident in the case of low velocity-to-noise
ratio (full line) where the state mixes up almost completely before reaching h(tc) = hc. For large
enough values of vh/�, approaching the critical point the mixing rate of the state increase as
shown by the flex-point in the purity close to hc. This puts clear emphasis on the various facets
of noise: besides the mere relaxation–excitation process the main effect consists in decoherence,
i.e. mixing of the density matrix. The latter effect has been discarded in a previous work on this
subject [19]. We conclude that the (quasi-)degeneracy point not only gives a limit to the rate
the parameters of the Hamiltonian may change, but more importantly, it amplifies the effect of
decoherence.

6. Conclusions

We have analysed the dynamical crossing of a quantum phase transition analytically for an ideal
clean system and numerically in the presence of white-noise. Our focus was to determine the
robustness of the adiabatic passage through a quasi degeneracy point of a many-body system
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when one considers the effects of finite sweeping period, mesoscopic fluctuations and stochastic
forces.

We found a surprisingly high predictive power of the LZ formula for the final excitation
density, when several modes are taken into account. Its validity exceeds significantly the validity
range attributed to it in [17] when the number of LZ modes to be taken into consideration are
determined by the DOS and the characteristic energy scale of the sweep. This number diverges
in the thermodynamic limit and it is only in this limit that the ZDZ-scaling [11] manifests. In
this sense, this scaling is essentially due to collective many-particle physics rather than to the LZ
tunnelling of few two-level systems. In addition, huge fluctuations around the average excitation
density dominate the state during the sweep, in particular for not too large systems. This shows
that the physics of the transition is not entirely captured by the excitation average and its square
root ZDZ-scaling. The implication of this fact deserves further analysis in order to understand
its implications for AQC. In fact, large fluctuations in the average number of excitations implies
a loss of information on the final state of an AQC process.

The presence of noise corrupts the success of a possible adiabatic passage for low sweeping
velocities due to the opening of a non-Hermitian degeneracy leading to a ‘critical region’ rather
than just a singular point. The same phenomenon appears also in the presence of just an avoided
level crossing or a quasi-degeneracy of the spectrum. This leads to an all-over increase of the
average excitation density, but it is shown that the most devastating effect of the noise on the
transfer fidelity across a non-Hermitian degeneracy region is the decay of the state purity that
is emphasized by the passage through the degeneracy. Therefore, one has to consider a second
timescale besides 1/
: the dephasing time. These two timescales are the upper and lower bounds
for the sweeping rate. Thus there exists an optimal velocity for each noise level that minimizes
the fidelity loss.

Finally let us comment on different kinds of noise couplings that could be of interest for
future studies. In fact, one can wonder how the present conclusions may change if the stochastic
variables couple with Sx(y), breaking the symmetry of the system. Even though the noise coupling
we considered preserves the partity symmetry of the Hamiltonian (but not the time reversal one),
it causes both relaxation (for h �= hc) and decoherence. In this sense, it provides a complete
phenomenology. Moreover, the main feature we find, namely the enhancement of the mixing up
rate of the state, should be independent of the kind of noise coupling. In this respect, it would be
interesting to study coloured noise that can strongly modify the dephasing time.
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Appendix A. Exact diagonalization of the XY model in transverse field

In order to diagonalize the one-dimensional XY model in transverse magnetic field (1) we follow
[13]–[15] and perform the substitution

a
†
j := Sx

j + iSy

j , (A.1)
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nj := a
†
jaj = 1

2 + Sz
j . (A.2)

The resulting (hard-core bosonic) Hamiltonian becomes

H = −1

2


L=2N+1∑

j=1

(
a

†
jaj+1 + h.c.

)
+ γ

(
a

†
ja

†
j+1 + h.c.

) − h(t)

L=2N+1∑
j=1

nj +
1

2
Lh(t). (A.3)

Here we restricted ourselves to an odd number of sites L = 2N + 1 with integer N. Though this
is not crucial for the exact diagonalization of the Hamiltonian, this becomes equivalent to the
restriction to an odd total number of particles—and hence no boundary phase—when starting
from a fully polarized state at very large magnetic field.

The Jordan–Wigner transformation

c
†
j := a

†
jexp

(
iπ

j−1∑
l=1

nj

)
, (A.4)

c
†
jcj = a

†
jaj = nj (A.5)

further transmutes the Hamiltonian into fermionic form

H = −1

2


L=2N+1∑

j=1

(
c

†
jcj+1 + h.c.

)
+ γ

(
c

†
jc

†
j+1 + h.c.

) − h(t)

L=2N+1∑
j=1

nj +
1

2
Lh(t). (A.6)

Subsequent Fourier transformation

f
†
k := 1√

L

∑
l

exp (−ikl)c†
l (A.7)

completely decouples the Hamiltonian, so that H = ⊕|k|Hk, where Hk acts in the four-
dimensional Hilbert space {|0〉k,−k, |k, −k〉; |k〉, |−k〉}. Due to the parity symmetry, it further
decouples into Hk = Hodd

k
⊕H even

k . Where Hodd
k = − cos φk112, while in the even-occupation

Hilbert space and basis {|0〉, |k, −k〉} one obtains

H even
k =

(
h(t) −iγ sin φk

iγ sin φk −(2 cos φk + h(t))

)

= − cos φk112 +

(
cos φk + h(t) −iγ sin φk

iγ sin φk −(cos φk + h(t))

)

≡ − cos φk112 +

(
ak −ibk

ibk −ak

)
. (A.8)

Expressed in Pauli matrices this is

H even
k = − cos φk112 + akσ

z + bkσ
y .

The eigenvalues and the ground state of the nontrivial second part are given by equations (3) and
(4), respectively.
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Appendix B. Exact time evolution of the XY model in transverse field

The Heisenberg equation (7) for the time evolution operator has been solved in [13] to obtain
the exact time evolution of correlation functions of the model. Using the notation

U(k) =
(

U
(k)
11 U

(k)
12

U
(k)
21 U

(k)
22

)

we obtain the following set of differential equations

iÜ(k)
11 = (

ȧk − i�2
k

)
U

(k)
11 , (B.1)

iÜ(k)
22 = (−ȧk − i�2

k

)
U

(k)
22 . (B.2)

From these equations and the initial conditions one concludes U
(k)
22 = U

(k)∗
11 and U

(k)
21 = −U

(k)∗
12

and the missing amplitudes are extracted as

U
(k)
12 = 1

bk

(
U̇

(k)
22 − iakU

(k)
22

)
, (B.3)

U
(k)
21 = 1

bk

(
−U̇

(k)
11 − iakU

(k)
11

)
. (B.4)

The differential equation (B.1) is exactly solvable if ak is polynomial in t [23] and even for
particular cases of transcendental dependence of t [13]. For the simplest case h(t) = h0 − vht,
with vh = (h0 − h1)/T , the solution is

U
(k)
11 = e−(i/2)vht2−(h0+cos φk)t

[
C1H

[
iγ2 cos 2φk − 1

4vh

, − 1 + i√
2vh

(h(t) + cos φk)

]

+ C2F

[
iγ2 cos 2φk − 1

8vh

,
1

2
, i2vh(h(t) + cos φk))

2

]]
,

U
(k)
22 = e−(i/2)vht2−(h0+cos φk)t

[
C1H

[
iγ2 cos 2φk − 1

4vh

− 1, − 1 + i√
2vh

(h(t) + cos φk)

]

+ C2F

[
iγ2 cos 2φk − 1

8vh

− 1

2
,

1

2
, i2vh(h(t) + cos φk)

2

]]
.

In our notation F [x, y, z] is the confluent hypergeometric function and has the series expansion

F [x, y, z] =
∞∑

k=0

(x)k

(y)k

zk

k!

with (a)k := a(a + 1) · · · (a + k) the Pochhammer symbol. Its pole structure is that of the gamma
function �(y) such that F [x, y, z] = �[y]F̃ [x, y, z] with the entire function F̃ [x, y, z]. The
generalized Hermite polynomials Hν[z] =: H[ν, z] are expressed in terms of the confluent
hypergeometric function

H[ν, z] = 2ν
√

π

[
F [−ν/2, 1/2, z2]

�[(1 − ν)/2]
− F [(1 − ν)/2, 3/2, z2]

�[−ν/2]

]
.

At integer values of ν, this function coincides with the Hermite polynomials.
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