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Abstract. We study the possibility of implementing a quantum switch and a
quantum memory using matter-wave lattice solitons and making them interact
with ‘effective’ potentials (barrier/well) corresponding to defects of the optical
lattice. In the case of interaction with an ‘effective’ potential barrier, the bright
lattice soliton experiences an abrupt transition from complete transmission to
complete reflection (quantum switch) for a critical height of the barrier. The
trapping of the soliton in an ‘effective’ potential well and its release on demand,
without losses, shows the feasibility of using the system as a quantum memory.
The inclusion of defects as a way of controlling the interactions between two
solitons is also reported.
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1. Introduction

Bose–Einstein condensates (BEC) in optical lattices have attracted during  recent years a lot
of attention both in the mean field regime (for recent reviews see for instance [1]) as well as in
the strongly correlated regime (for recent reviews see for instance [2]). One of the main reasons
for this activity burst is the high level of control achieved in the experiments of ultracold gases
in optical lattices which permits one to explore a broad range of fundamental phenomena.

In the mean field regime, huge interest has been devoted to nonlinear dynamics of matter-
waves in periodic media and specifically to matter-wave solitons. Matter-wave solitons are self-
stabilized coherent atomic structures that appear in nonlinear systems due to the balance between
the nonlinearity and the dispersive effects. The nature of the solitons supported by BEC is
determined by the character of the interactions: attractive (repulsive) nonlinearity supports
bright [3] (dark [4]) solitons. In the presence of an optical lattice, this scenario changes
completely due to the appearance of a band structure in the spectrum and the possibility of
having either bright or dark lattice solitons with either repulsive or attractive interactions arises.
Very recently, the first experimental demonstration of bright lattice solitons in repulsive
condensates was reported [5].

Since the first proposals of BEC lattice solitons [6], there has been an explosion of
contributions regarding generation, mobility and interactions of these novel types of matter-
wave solitons both in one-dimensional (1D) systems [7]–[9] and in higher dimensions [10]. The
interest is mainly centred on bright matter-wave lattice solitons due to their potential applications
in energy and information transport without losses. The fact that matter-wave solitons are massive
permits one to generate them at rest and to move them after an appropriate transfer of momentum.
Proposals to control the dynamics of bright gap solitons are mainly devoted either to manipulate
the optical lattice [11] or to modify the nonlinearity [12]. Nevertheless, a complete control on
the dynamics of bright matter-wave gap solitons also requires a profound knowledge of their
interactions with defects.

The interaction of solitons with local inhomogeneities is a subject that appears in the
literature in different contexts and has been studied in the framework of different nonlinear
equations (see for instance [13]). In particular, the nonlinear Schrödinger equation with point-
like defects either in the continuum regime [14] or in discrete systems [15] has deserved special
attention. Extended defects have also been addressed in this framework [16]. In nonlinear optics,
the coupled mode equations have been used to study collisions of moving Bragg solitons with
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finite size [17, 18] and point-like defects [19]. Very recently, interactions with defects in the
context of continuous matter-wave solitons have also been addressed [20, 21].

In this paper, we focus on bright lattice matter-wave solitons and propose different
possibilities to control their dynamics through interactions with defects of arbitrary
amplitude and width. Specifically we will show how to reverse the direction of movement
of the soliton (a complete bounce back) and how it can be stored and retrieved on demand.
In section 2, the physical system considered and the model used is introduced. In section 3,
we present the results concerning the interaction of solitons with an ‘effective’ potential barrier,
where the possibility of implementing a quantum switch arises. Next, in section 4 the results
regarding the interaction with an ‘effective’ potential well are shown and the potential use of
the system as a quantum memory is discussed. The possibility of controlling the interactions
between two lattice solitons by placing a defect at the interaction point is discussed in section 5.
We conclude in section 6.

2. Physical system

We consider a zero temperature 87Rb condensate confined in a 1D geometry and in the presence
of an optical lattice. The description of the system is performed within the 1D Gross–Pitaevskii
equation (GPE)

ih̄
dψ(x, t)

dt
=

(
− h̄2

2m
� + V(x) + g|ψ(x, t)|2

)
ψ(x, t), (1)

where g = 2h̄asωt, with as the s-wave scattering length and ωt the radial angular trapping
frequency, is the averaged 1D coupling constant. The external potential is given by:

V(x) = m

2
ωx

2x2 + V0 sin2
(πx

d

)
, (2)

which describes both the axial trapping potential, with angular frequency ωx, and the optical
lattice, with spatial period d = λ/2 sin (θ/2), λ being the wavelength of the lasers forming
the optical lattice and θ the angle between them. The depth of the optical lattice, V0, is
given in units of the lattice recoil energy Er = h̄2k2/2m where k = π/d is the lattice recoil
momentum.

The generation of the bright lattice soliton is performed as is reported in [8] using
parameters close to the experimental realizations [5]. The procedure is briefly summarized
as follows. The starting point is a 87Rb condensate (as = 5.8 nm, m = 1.45 × 10−25 Kg) of
N = 500 atoms in the presence of a magnetic trap with frequencies ωt = 715 × 2π Hz and
ωx = 14 × 2π Hz and an optical lattice with potential depth V0 = 1Er and period d = 397.5 nm.
The axial magnetic trap is suddenly turned off and an appropriate phase imprinting, corresponding
to phase jumps of π in adjacent sites, is performed [8]. After the phase imprinting, the
system evolves towards a negative mass self-maintained staggered soliton at rest centred at
x = 0, which contains approximately 35% of the initial atoms (N = 187) and extends circa
11 sites. The excess atoms are lost by radiation.
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The total energy of the generated bright lattice soliton can be calculated using the energy
functional of the GPE (1) that contains the total kinetic (ET

k ), interaction (Ei) and potential (Ep)
energies

E =
∫ [

h̄2

2m
|∇ψ(x)|2 +

g

2
|ψ(x)|4 + V(x)|ψ(x)|2

]
dx. (3)

As can be observed in the numerical solutions of the GPE, the density profile of the
bright lattice soliton inside each well is shifted with respect to the minimum of the optical
lattice. This shift has to be taken into account to properly calculate the energy. Considering a
Gaussian ansatz for a soliton at rest, centred at x = 0 and with amplitude A, ψ(x) = A exp (−(x −
x0)

2/2η2) cos (2πx/(λ′), with λ′ = 2d + δ and η the width [9], the energy functional reads

E = B

(
h̄2

m

[
1 + e−k′2η2

cos (2k′x0)

2η2
+ k′2

]
+

g|A|2
4
√

2

[
3 + e−2k′2η2

cos (4k′x0)

+ 4e− k′2η2

2 cos (2k′x0)
]

+ V0

[
1 + e−k′2η2

cos (2k′x0) − e−k2η2
cos (2kx0)

− 1
2e−k2−η2

cos (2k−x0) − 1
2e−k2

+η2
cos (2k+x0)

])
. (4)

where B = |A|2√πη/4, k′ = 2π/λ′ and k± = k′ ± k. We demand normalization of the wave
function ansatz and fixing N = 187, δ = 0.07 µm and x0 = 0, we obtain a minimum of equation
(4) corresponding to 1.31Er. Exact numerical integration of equation (3) gives a total energy of
1.35Er. This shows the high level of accuracy that the used variational method provides. Also,
a close agreement is found when we evaluate separately each term of equation (3) by using
the variational method [9] (exact integration): ET

k = 0.85Er(0.85Er), Ei = 0.12Er(0.13Er) and
Ep = 0.34Er(0.37Er).

By calculating the linear band spectrum of the system, we obtain an energy at the band edge
of 1.25Er. This value is in good agreement with the total energy obtained previously (equation (3))
without the nonlinear term. The linear band spectrum predicts an effective mass at the edge of
the first Brillouin zone corresponding to meff = −0.15m.

Once the lattice soliton is created, it is set into motion by applying an instantaneous transfer
of momentum at t = 0. It has to be large enough to overcome the Peierls–Nabarro (PN) barrier
[8, 22] but sufficiently small to assure that the soliton remains in the region of negative effective
mass, i.e., 0.009kh̄ < p < 0.2kh̄. The soliton starts to move opposite to the direction of the kick,
manifesting thus its negative effective mass. The concept of the effective mass is used through
the paper to give an intuitive explanation of the observed dynamics. Nevertheless, all the results
presented in what follows have been obtained, without any approximation, by direct integration
of equation (1).

At a certain distance xm of the initial position of the soliton (x = 0), the lattice potential
V(x) is modified in the following way


V0 sin2

(πx

d

)
+ Vm

(
1 − (x − xm)2

2σ2

)
if xm − l/2 � x � xm + l/2;

V0 sin2
(πx

d

)
otherwise.

(5)
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where Vm can be either positive or negative and σ = 6d for all the cases. For Vm < 0, the local
decrease of the lattice potential corresponds to an ‘effective’ potential barrier for the soliton due
to its negative effective mass while if Vm > 0, i.e. a local increase of the potential acts as an
‘effective’ well for the soliton. In the case of an effective barrier, xm is fixed to match exactly a
minimum of the optical lattice, while in the effective well case, xm corresponds to a maximum
of the optical lattice. We have checked that the results reported in the following do not depend
strongly on the specific shape of the defect by reproducing them with Gaussian and square
profiles also.

To analyse the interaction of the bright lattice soliton with the defect, it is crucial to know
the total energy of the soliton while it moves. The applied variational ansatz with the shift
in the periodicity is meaningful only in the static case and cannot be used to study soliton
dynamics, since the soliton is always chirped with respect to its centre [9]. Therefore, to study
dynamical behaviour one has to rely on numerical simulations. We have numerically calculated
the contributions to the total energy of the soliton as a function of time. Immediately after the
kick, the soliton expels atoms and its energy abruptly decreases becoming much smaller than the
energy that it would need to remain at rest at the edge of the first Brillouin zone. In the framework
of the linear band theory, this would correspond to displacing the particle from the edge of the
band of the first Brillouin zone by changing its quasimomentum. To illustrate the dynamics of
the system, we consider the case in which we give a kick of p = 0.1kh̄ to the generated soliton
at rest. At t = 0, just after the kick, the total energy of the soliton corresponds to its energy at rest
plus the contribution due to the transfer of momentum, i.e. E = 1.35Er + (0.1)2Er = 1.36Er.
At t = 1 ms, the soliton energy has decreased already to 0.96Er, the rest of the energy has been
taken by the expelled atoms. A steady state is reached for a soliton energy of E = 0.92Er. While
moving, some energy is devoted to cross the PN barrier (the soliton configuration changes its
shape from a configuration centred in one well of the optical lattice to a configuration centred
in one maximum and vice versa). This change of the shape of the soliton is reflected in the out
of phase oscillations of the kinetic energy with respect to the potential plus nonlinear energy in
such a way that the mean value of the energy remains constant.

3. ‘Effective’ potential barrier

We discuss first the interaction of a bright lattice soliton with an ‘effective’ potential barrier.
Scattering depends on the width of the defect l and the relevant energy scale, settled by the ratio
|Vm|/Ek, where Ek = 〈P〉2/2m is the fraction of the total kinetic energy ET

k devoted to move
the soliton, and 〈 〉 denotes the time average (before reaching the defect). The momentum P is
defined as

P(t) =
∫

−ih̄ψ∗(x, t)∇ψ(x, t) dx. (6)

The remaining kinetic energy is needed to keep the solitonic structure and cannot be used to
overcome the ‘effective’ potential barrier. We have checked that apart from the necessary change
in shape to overcome the PN barrier, the soliton keeps its overall shape when it reaches the defect.
This corroborates that there is no transfer between nonlinear energy and kinetic energy apart of
the one corresponding to the already discussed PN barrier.
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Figure 1. (a) Transmission coefficient, T , as a function of the amplitude of the
‘effective’potential barrier, |Vm|; (b) transmission coefficient, T , and (c) reflection
coefficient, R, as a function of time for different amplitude defects: |Vm| = 0
(solid line), |Vm| = 0.01Er (dashed line), |Vm| = 0.0115Er (dot-dashed line),
|Vm| = 0.0117Er (circles) and |Vm| = 0.018Er (dotted line). In all the plots, the
soliton kinetic energy is Ek = 0.01Er and the width of the defect l = 2d.

We distinguish two regimes of parameters: (i) when the amplitude of the ‘effective’potential
barrier is on the order of the kinetic energy of the soliton (|Vm| ∼ Ek) and (ii) when the amplitude
of the potential barrier is much larger than the kinetic energy of the soliton. In the former case,
the potential barrier acts as a quantum switch, i.e., either the entire soliton is transmitted or it is
completely reflected depending on the amplitude of the barrier (figure 1(a)). The transmission (T)
and reflection (R) coefficients are calculated by integrating over space (and time) the density
of the wavefunction in the region after and before the defect, respectively. Note that since
only approximately 35% of the initial atoms form a soliton and since there are also losses of
atoms during the kick, the merit figure for perfect transmission is well below 1 and corresponds
approximately to 0.27 (N = 135).

For a fixed width of the defect a drastic change of behaviour occurs for a given height of
the barrier |V c

m|. The wider the defect the lower the critical value of the height of the barrier
|V c

m|. The critical values, indicating the transition between complete transmission and complete
reflection for different potential widths are shown in figure 2(a) by solid black squares. Below
these values, depicted by a grey region in figure 2(a), complete transmission of the soliton occurs.
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Figure 2. (a) Reflection and transmission behaviour of a soliton interacting with
an effective potential barrier as a function of the potential width l (in d units)
and potential amplitude |Vm| (in Er units): the region of total transmission in
grey, and the region of total reflection in white. Inside the reflection region, bands
in which trapping and reflection occurs appear. Region of parameters for which
tunnelling and overbarrier reflection occur are also shown. The dashed line shows
the value of the kinetic energy of the soliton. (b) Density profiles of the trapped
structure that appears for |Vm| = 0.55Er (lower plot), |Vm| = 0.8Er (middle plot)
and |Vm| = 1.1Er (upper plot). In the three cases l = 8d.

As one approaches the critical value from below, the soliton experiences a time delay with respect
to free propagation (i.e., in the absence of the defect). This delay increases as one gets closer
to the critical point and eventually the time needed by the soliton to cross the barrier diverges
(see figure 3). Above the transition line, reflection of the entire soliton occurs after a storage
time inside the region of the barrier that also increases as one approaches the critical value.
To illustrate this behaviour, figure 1(b) and (c) show transmission and reflection coefficients as a
function of time for a barrier of fixed width l = 2d and different values of the amplitude. In the
situation shown in figure 1, the critical value is nearly equal to the kinetic energy of the soliton
but if the width of the barrier is reduced, this critical value can exceed the kinetic energy of
the soliton. In this case, the soliton tunnels through the barrier, i.e., transmission is obtained for
values of the amplitude of the barrier higher than the kinetic energy of the soliton (see figure
2(a)). On the other hand, for wider defects, a region of overbarrier reflection appears (figure
2(a)). There, the lattice soliton is completely reflected although it has a kinetic energy larger than
the height of the potential barrier. This region extends for a wide range of widths of the defect.
We have checked that overbarrier reflection occurs even in the limit when the width of the defect
is much larger than the size of the soliton.
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Figure 3. Transmission delay time as a function of |Vm| for a soliton with kinetic
energy Ek = 0.01Er crossing a defect of width l = d.

Figure 3 shows the delay time in transmission with respect to the absence of defect, td,
for l = d as a function of the height of the barrier, |Vm|, including the cases where tunnelling
occurs (|Vm| > 0.01Er).

Up to now we have described the transition from complete transmission to complete
reflection by fixing the width of the defect and varying the amplitude. It is worth noting that
a similar switching behaviour can be obtained by fixing the amplitude of the effective potential
and changing its width. This would correspond to horizontal lines in figure 2(a) crossing the
transition line (solid black squares) in the region where |Vm| is on the order of the kinetic energy
of the soliton. This observed abrupt transition from complete reflection to complete transmission
opens the possibility to use the system as a quantum switch. A similar switching behaviour has
been predicted for optical Bragg solitons described with the coupled mode equations [18].

Let us now focus on the regime where the amplitude of the barrier is much larger than
the kinetic energy of the soliton |Vm| 	 Ek, and the expected behaviour is complete reflection
of the soliton. Complete reflection indeed occurs but there are specific values of the ratio l/|Vm|
for which the soliton splits into two parts: a fraction of the initial soliton becomes trapped inside
the region of the barrier while the other part is reflected back keeping a solitonic structure.
Figure 2(a) shows the regions where the soliton split into two (trapping and reflection)
embedded in the complete reflection region. The fraction of atoms trapped inside the
defect has its origin on the atoms lost by radiation due to the repulsive force experienced
by the soliton when it reaches the potential barrier. These radiated atoms enter the
region of the barrier and for some specific ratios of the width and the height of the defect
the fraction of trapped atoms increases. These trapping regions appear as bands as shown in
figure 2(a). In each band, the trapped fraction exhibits different spatial distributions: for the first
(lowest) one, the structure is a single hump; in the second one a double hump structure appears,
and so on (see figure 2(b)).A noticeable feature of this trapped fraction is that the density maxima
of the structure are located at the positions of the maxima of the optical potential. Increasing the
amplitude of the barrier, the structure becomes more independent of the lattice periodicity.
The extension of the trapped structure is the same independently of the features of the barrier but
the number of trapped atoms differs for different widths of the barrier. The narrower the defect
is the larger the number of trapped atoms. This number changes also with |Vm| inside each band,
being maximum at the centre of the band. For all cases the number of atoms forming the reflected
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Figure 4. (a) Temporal evolution of the trapped fraction of the soliton interacting
with an ‘effective’ well of depth |Vm| = 0.018Er and width l = 8d after an
instantaneous transfer of momentum of p = 0.05kh̄ (solid line), p = 0.1kh̄

(dashed line), p = 0.17kh̄ (dotted line) and p = 0.2kh̄ (circles). (b) Contour
plot of the evolution in space and time of the lattice soliton with conditions
corresponding to the dashed line case in (a).

soliton is always larger than the trapped fraction. We have checked that these ‘resonance’ bands
do not correspond to bound states of the linear case. We have observed that this behaviour occurs
for all the accessible initial transfers of momentum that allow motion of the soliton.

4. ‘Effective’ potential well

Let us now turn to the interaction of a lattice soliton with an ‘effective’ potential well with
a depth of the order of its kinetic energy. For a fixed depth of the well, the soliton exhibits
different behaviours depending on its kinetic energy. For low kinetic energies, the soliton
gets bound with the defect and exhibits oscillations while for kinetic energies overcoming a
certain threshold, the soliton crosses the defect region. In the latter case, the only detectable
effect of the potential well is the speed-up of the soliton with respect to free propagation.
It is important to note that as the width of the defect increases, the range of velocities
for which transmission occurs decreases. To illustrate the described behaviour, figure 4(a)
shows the time evolution of the trapped fraction density, D, for different initial transfer of
momentum: p = 0.05kh̄ (solid line), p = 0.1kh̄ (dashed line), p = 0.17kh̄ (dotted line) and
p = 0.2kh̄ (circles) keeping fixed the depth (|Vm| = 0.018Er) and the width (l = 8d) of the well.
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Figure 5. Temporal evolution of the trapped fraction density of a lattice soliton
with Ek = 0.01Er interacting with an ‘effective’ well with (a) |Vm| = 0.018Er

and l = 4d (solid line), l = 8d (dashed line) and l = 12d (dotted line); (b) l = 4d

and |Vm| = 0.018Er (solid line), |Vm| = 0.03Er (dashed line) and |Vm| = 0.08Er

(dotted line).

The minima of the trapped fraction correspond to the turning points of the oscillating movement
of the soliton around the ‘effective’ well. The maxima indicates the times for which the soliton
is completely inside the well. As expected, the amplitude of the oscillations increases with an
increasing momentum transfer. If the amplitude of the oscillation is larger than the width of
the defect, the turning points are located outside the potential well, indicated by a lower value
of D. Figure 4(b) shows a contour plot of the evolution in space and time of a lattice soliton
with Ek = 0.01Er interacting with an ‘effective’ well of width l = 8d and depth |Vm| = 0.018Er

(dashed line case in figure 4(a)). The width of the ‘effective’ well is shown at the right-hand part
of the plot to illustrate that indeed the turning points are outside the defect.

By fixing Ek = 0.01Er, we explore now the dependence of the oscillations on l and |Vm|.
Figure 5(a) displays the temporal evolution of the trapped fraction, D, for |Vm| = 0.018Er and
different values of the width of the defect: l = 4d (solid line), l = 8d (dashed line) and l = 12d

(dotted line). The frequency of the oscillations gives an indication of the width of the defect,
decreasing as the width increases, while the amplitude remains approximately the same for all
widths. In figure 5(b) we fix l = 4d and display the trapped fraction, D, as a function of time for
|Vm| = 0.018Er (solid line), |Vm| = 0.03Er (dashed line) and |Vm| = 0.08Er (dotted line). By
inspection of figure 5(b), one can confirm that the frequency of the oscillations increases with
the depth of the potential while the amplitude of the oscillations decreases. This is due to the fact
that the soliton experiences a much larger attractive force as the depth of the defect increases
limiting the displacements around the central position of the well.
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Figure 6. Contour plot of the evolution in space and time of a collision between
two identical solitons initially placed at symmetrical positions with respect x = 0
and moving in opposite directions when an ‘effective’potential barrier with l = 2d

and (a) |Vm| = 0.012Er, (b) |Vm| = 0.2Er and (c) |Vm| = 0.5Er is placed at x = 0.

The trapping of the entire lattice soliton around the position of the defect opens possibilities
to use the system as a quantum memory because it provides the capacity of storage. Nevertheless,
in order to implement a memory, one should also be able to release the trapped structure after
a desirable time and with the minimum losses. We have checked that a soliton trapped in an
‘effective’ potential well can be released with a certain velocity keeping the totality of its initial
atoms if the defect amplitude is instantaneously set to zero. In fact the velocity of the lattice
soliton after releasing it will depend on the amplitude of the oscillations it was performing
while it was trapped. Specifically, the velocity of the structure, after releasing it, grows with the
amplitude of the oscillations. Moreover, choosing appropriately the time at which the release
takes place, one can choose the direction of the movement.

5. Control of the collisions

Now we investigate if the inclusion of a defect in the lattice helps to control the interactions
between two lattice solitons. It has been shown that collision of two identical lattice solitons
(moving with the same velocity and with the same average phase) merge into a soliton with
the same number of atoms as the initial ones [9]. The excess atoms are lost by radiation. If
an ‘effective’ potential barrier much narrower than the soliton’s dimensions is placed at the
crossing point, we find the following behaviours: (i) for |Vm| � Ek the merging behaviour is
maintained (figure 6(a)); (ii) for |Vm| 	 Ek, each soliton reflects back (figure 6(b)). Moreover,
for some values of |Vm|, in addition to the reflection, a fraction of atoms can be trapped in the
defect (figure 6(c)). The trapped fraction shows up the same features as in the single soliton
case (section 3). Modifying the features of the defect, different outcomes can be engineered. For
instance, when the width of the barrier is of the order of the dimensions of the initial solitons,
effects like the trapping of both solitons at the edges of the barrier can occur.
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6. Conclusions

Summarizing, we have found that bright matter-wave lattice solitons behave as ‘quantum’
particles when colliding with an ‘effective’ barrier/well, corresponding to a defect in the optical
lattice. Among the rich dynamics exhibited by the system, we would like to remark on two
effects. The first one corresponds to the interaction of a soliton with an ‘effective’ potential
barrier which permits the implementation of a quantum switch. In this case, a sharp transition
from complete reflection to complete transmission is present at a specific value of the height of
the barrier. Although this resembles the classical particle behaviour, the quantum nature of the
solitons is explicitly manifested in the appearance of overbarrier reflection and tunnelling. The
second effect we would like to stress appears when the defect acts as an ‘effective’ potential
well. We have shown that trapping of the entire soliton around the position of the defect and its
release on demand with a given velocity and direction of motion is possible. This fact indicates
the suitability of the system as a quantum memory. Finally, it has been also reported that the
presence of a defect in the lattice can help to control the interactions of two lattice solitons.
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