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Abstract

A phenomenological damage modelling approach based on the stochastic process is proposed to
reproduce the strongly scattered fatigue data. In this work, a concrete beam under four-point bending
is computed using the finite element method. The stochastic damage evolution is modelled as a
random process and produced by the Monte-Carlo method. The virtual flexural fatigue life of the
quasi-brittle material is compared with experimental data and empirical estimation results. For
high-cycle fatigue problems, the efficient "jumping-cycle" algorithm is implemented to reduce the
computational cost. This modelling approach enables the simulation of the fatigue process with
probabilistic information in an extensive time interval.

In continuum damage mechanics (CDM)), fatigue is a phenomenon associated with a degeneration
of material integrity, e.g. a continuous material stiffness reduction. Numerically, it can be simulated
as an accumulation of damage process. Since the resistance of concrete material reduces drastically
after the initiation of macroscopic cracks, fatigue life can be approximated using damage models
as the number of cycles by which the material continuity vanishes. The fatigue scatter is an
interpretation of material heterogeneity and uncertain external influences. It can be reproduced by
treating the damage evolution as a stochastic process.

Inspired by the application of the stochastic process in molecular physics, the deterministic
damage evolution rate of the Lemaitre model is modified as a stochastic differential equation to
characterise the random damage increment. The implicit Euler scheme associated with Monte-
Carlo simulation is demonstrated as a practical approach to solve the stochastic integration problem.
The stochastic damage model is designed carefully to obey the thermodynamic principles and
the deterministic damage law. Particular efforts are addressed to determine suitable random
distributions, avoiding negative random damage increments in individual realisations, to have a
statistically unbiased mean. To adequately approximate the high-cycle fatigue damage with random
noise, the "jumping-cycle" algorithms with different extrapolation strategies are investigated.

As a highlight of this study, this damage model is further implemented in the simulation of
four-point flexural fatigue of concrete beam, solved by the finite element method. The numerically
reproduced fatigue data closely fit the published experimental results and the empirical solution,
both in the mean and standard deviation. Compared to the Gaussian white noise, the Weibull random
variable has broad applicability to simulate random fatigue damage and other physical processes.

Keywords Stochastic Process, Fatigue Damage, Finite Element Method, Monte-Carlo Simulation

il



iv




Zusammenfassung

Um die Streuung der Messdaten in der Materialermiidung zu beschreiben, wird basierend
auf Zufallsprozessen ein phenomenologische Modellierung vorgestellt.  Erprobt wird die
Modellierung an einem Betonbalken mit ebener Finite Element Diskretisierung, wobei die
stochastischen Ermiidungsgleichungen mit der Monte Carlo Methode gelost werden. Die
simulierten Ermiidungsprozesse unter Biegebeanspruchung des quasi-sproden Materials werden mit
experimentellen Daten und etablierten empirischen Gleichungen vergleichen. Um hochzyklische
Beanspruchungen zu behandeln, wird ein ,,jumping-cycle* Algorithmus angewendet, mit dem
die Rechenzeiten stark reduziert werden. Dieser Modellansatz ermdglicht die Simulation von
Ermiidungsprozessen mit probabilistischen Information in einem sehr langen Zeitintervall.

In der Kontinuums-Modellierung geht der Prozess der Materialermiidung mit einer Degeneration
der materiellen Integritdt einher, die sich z.B. in der Abnahme des elastischen Moduls
niederschldagt. Numerisch wird dies als ein kumulativer Schidigungsprozess modelliert. Weil der
Materialwiderstand von Beton nach der Entstehung makroskopischer Risse drastisch abnimmt, kann
die Ermiidungslebensdauer unter zyklischer Beanspruchung durch ein Schiadigungsmodell praktisch
sehr gut abgeschitzt werden, sobald das Auftreten makroskopischer Risse prognostiziert wird. Die
Streuung in experimentell ermittelten Ermiidungskurven kann durch die mikro-Heterogenitét der
Materialien und Unsicherheiten in weiteren externen Faktoren verstanden werden, mittels einer
Modellierung der Schidigungsentwicklung als stochastische Prozessgleichungen kann diese gut
reproduziert werden.

In Anlehnung an die Beschreibung stochastischer Prozesse in der theoretischen Physik
werden die Evolutionsgleichungen fiir die Schidigungsentwicklung des Lemaitre-Modells als
stochastische Differentialgleichungen dargestellt. Diese werden mittels impliziter Euler-Verfahren
und Monte-Carlo Methoden effizient gelost. Um die thermodynamische Konsistenz sicherzustellen,
insbesondere negative Inkremente der Schidigungsentwicklung zu vermeiden, und unverzerrte
statistische Mittel-werte zu erhalten, werden klassische Gaullsche Prozesse durch Weibull-
Verteilungen substituiert. Fiir hochzyklische Belastungen werden ,,jumping-cycle* Algorithmen
hinsichtlich der Extrapolations-strategien systematisch untersucht.

Am Beispiel eines Betontrigers unter Biegebeanspruchung wird das Ermiidungsverhalten
simuliert und mit experimentellen Ergebnissen aus der Literatur und empirischen Formeln
vergleichen. Der vorgeschlagene Modellierungsansatz zeigt eine gute Ubereinstimmung der
Mittelwerte und Standardabweichungen mit den publizierten Erkenntnissen. Wenngleich die hier
verwendete Weibull-Statistik im strengen mathematischen Sinne nicht konsistent sein sollte, hat sich
diese jedoch als physikalisch konsistent erwiesen, um streuende Ermiidungsschéadigung effizient zu
beschreiben.
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Chapter 1

Introduction

1.1 Motivation

The mechanical performance of concrete is significantly influenced by its components, e.g. the
size and type of aggregates, the mixing ratio between aggregates and the binder material, etc.
The level of heterogeneity of concrete material depends on the atomistic behaviour on the nano-
scale and the existing microstructure. By controlling the production process, one can produce
concrete with desired properties for civil engineering applications. An example is to add steel
fibre reinforcement into the binding material to improve the tensile and the shear performance
of concrete-made structures. Even though this is an undergoing process, the use of concrete in
engineering practices may lead to safety risks, e.g. the degradation of material stiffness. Therefore,
a systemic understanding of its mechanical performance from the reliability perspective is of great
importance.

Average curve

l\i1 (log) N

Figure 1.1: An S-N diagram with scattered fatigue data and statistical information [1]

One common type of failure in concrete is fatigue, which is a phenomenon of material stiffness
reduction under cyclic load. From the perspective of material continuity, it is an accumulative
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process of microcracks [2]. Fatigue appears in the applications such as high-way, railway bridges
and wind turbines, where the load repeats periodically. Once the macroscopic crack appears, the
service time of the concrete structure can be shortened drastically. Because classical material has
no self-repairing ability, the macro cracks can propagate quickly in the direction towards the highest
stress concentration till a catastrophic failure. Therefore, to predict the microcrack initiation in
terms of the location and elapsed time is the key for fatigue life estimation of concrete structures.
Due to the material heterogeneities at the micro and nanoscales, the uncertain external factors in
reality, e.g. random load, environmental fluctuation, experimental fatigue data, contain considerable
randomness. These factors lead to uncertain fatigue performance, which is often captured as fatigue
scatters (see fig. 1.1). Often the horizontal and vertical directions on the S-N diagram denote
the loading levels and the fatigue life. Statistically, it is possible to gain the probabilistic fatigue
information with a sufficient amount of data. The fitted empirical relation can be used as a reference
to analyse the structural reliability. However, the resistance of concrete under compression is
by nature much greater than under tension and shear. This phenomenon is named the unilateral
effect. The empirical S-N relation, which represents a particular laboratory configuration, can
be less reliable to predict fatigue life in reality. Meanwhile, fatigue data obtained by laboratory
tests can be rather expensive. For example, a high-cycle (106 cycles) fatigue test with traditional
facilities requires approximately three months experimental time. Due to the high cost and limit
of test approaches, multiple fatigue data up to the high-cycle regime is less available. Therefore,
fatigue behaviour beyond this number is still under investigation. Numerical simulations which have
contrasty faster speed than the real-time test, are helpful to analyse fatigue behaviours. Because
the loading condition of engineering structures is very complex or even random, a generalised
modelling approach focusing on the simulation of fatigue randomness with low computational cost
and good adaptivity to diverse structure and loading conditions is desired.

1.2 Literature overview

In literature, there are mainly two subdivisions in the field of deterministic fatigue modelling: the
non-progressive (empirical) approach which relies on a large amount of S-N data [3, 4]; the CDM
based progressive approach that studies the detailed material behaviour during the fatigue process
[5, 6]. The empirical model often provides a simple algebraic S-N relation based on regression
analysis of experimental data. However, its application on the multi-axial problem can be rather
difficult [7]. Though the progressive approach is computationally expensive, it can capture the
evolution of material state by temporal discretisation. The sophisticated coupling with complex
loading conditions and other physics can be simulated [8]. For rate-dependent CDM models [9], the
damage increment has to be evaluated on fine-discretised time steps. Its long-term evolution, e.g.
the high-cycle fatigue computation, can be numerically challenging. To reduce the computational
cost, several strategies are proposed in the literatures, such as jumping-cycle methods [10, 11], the
multi-temporal scale approach [12] and the model order reduction method [13, 14].

The modelling of fatigue uncertainties is, however, still under development. An overview of
the existing modelling approaches is presented in fig. 1.2. Empirical models are introduced using
Weibull distribution to describe the statistical behaviour of fatigue scatters [15, 16, 17]. Recently, the
frequency and mean-stress effects on fatigue uncertainties are considered by the literature [18, 19,
20, 21]. However, the algebraic expression becomes complex, with many model parameters having
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Figure 1.2: Overview of modelling approaches for random fatigue

no clear definition in classical mechanics. The lack of adaptivity barriers the application of these
empirical models. Besides the study [22] from the fracture mechanics, damage mechanics based
stochastic progressive approaches can be divided into two branches, i.e. the phenomenological
approach [23, 24, 25] and the micromechanics involved multi-scale methods [26, 27, 28, 29, 30].
In contrast, multi-scale models use the parallel-spring model and its variants with uncertain failure
criteria to describe the uncertain damage evolution at the micro-scale. These approaches have
two common weaknesses. First, the micro-damage evolution is almost identical to the cumulative
distribution function. Despite the spatial correlation [27] and sophisticated micro-elements [28,
29, 30] are introduced, the microstructural heterogeneity is still barely interpreted. Second, to
propose a proper transition between different scales, one relies on empirical functions. The idea of
modifying irreversible macroscopic damage evolution as a stochastic process is commonly taken by
phenomenological approaches. The key step is to represent the deterministic damage evolution rate
by a stochastic differential equation. Regardless of the drift term, the main difference of these works
is on the treatment of stochastic diffusion, where both proportional [23] and non-proportional [24]
diffusion are proposed. In the work [23] the deterministic Lemaitre damage law is directly adopted
by the modelling procedure, with the noise intensity suggested being proportional to the current
damage value. The advantage is that the original definition of the thermodynamic and dissipative
potentials in the CDM are maintained. The stochastic material macroscopic behaviour can be
obtained by the constitutive relations. However, this work provides only a general framework, and
the model applicability is not verified by numerical studies. In the works [31, 24], the damage
evolution rate is proposed as a stochastic Langevin equation using the Gaussian white noise. The
main goal is to investigate different approaches to solve the damage SDE. The indirect solution
corresponds to solving the equivalent Fokker-Plank equation and the direct solution is obtained
using the 1.5 order implicit scheme. However, in this study less attention is paid to the damage
evolution. The deterministic damage law is represented by an arbitrary third-order polynomial
function, and the damage evolution path is piece-wisely unreal due to negative increments. Another
study [25] assumes the initial damage state is random, and a zero-mean Markov process is added to
the deterministic Helmholtz free energy. The proposed stochastic damage evolution law contains
unique parameters and quantities that cannot benefit from deterministic studies. The common
weakness of the studies listed above is that the finite element solution of the proposed random
damage law is generally missing.
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1.3 Objective

The main goal of this study is to apply the stochastic damage evolution law on structural fatigue
problems solved by the finite element method. The reproduced virtual fatigue scatter is desired to
confirm with the experimental data statistically. With the help of modern computers, the simulation
procedure shall be finished in a reasonable time, providing a highly accurate probabilistic description
on the S-N diagram. This study follows the the phenomenological approach, such that the damage
evolution is simulated as a stochastic diffusive process. The drift term, which controls the mean
of the stochastic process, is assumed identical to the deterministic quasi-brittle damage law. The
stochastic diffusion, which determines the intensity of random noise, shall be carefully configured.
The challenge is to maintain the thermodynamic consistency while modelling the damage process.
This includes calibrating the random numbers to represent accurate experimental results, developing
efficient numerical schemes for high-cycle fatigue computation and generating sufficient Monte-
Carlo realisations.

This thesis is arranged by following chapters: In chapter 2, a brief introduction of the stochastic
process and the evaluation schemes is given. In chapter 3, the background of continuum damage
mechanics is reviewed. In chapter 4, a detailed literature survey is presented to compare the
determinist and stochastic modelling approaches of concrete damage behaviour. In chapter 5, a
systemic review on fatigue theories and simulation techniques is given. In chapter 6, the innovative
modelling approach of stochastic damage law is exposed, with investigations on the model parameter.
A in-depth discussion of the numerical scheme is given in chapter 7. Finally, in chapter 8 the finite
element simulation of the four-point flexural fatigue problem is presented.



Chapter 2

Stochastic Processes

Stochastic processes are classically used to simulate the random movement of particles, i.e. the
Brownian motion. Applications based on its remarkable statistical property are now extended to
interdisciplinary fields such as modelling of infectious diseases, quantitative financial analysis,
etc. This chapter provides a brief review of the stochastic process regarding to its mathematical
interpretation and numerical simulation method. For a comprehensive explanation of the theories,
one can refer to the following books [32, 33].

2.1 Probability and Stochastic Processes

Consider a probabilistic space (€2, .4, P), where 2 denotes the sample space, A is a set of events,
P is the probability measure function. For the time interval 7' € [0, 00), a stochastic process X is
a collection of time-dependent random variables denoted as

X ={X(t,w),t eT,w e Q}. (2.1)

Mathematically, it is a mapping defined as X : T x Q — S, where S is a measurable real number
space. Foreacht € T, X(,-) is a random variable, and for each w € 2, X(-, w) is a realisation or
a sample path of the stochastic process. X (¢, w) is often simplified as X (¢) under the condition of
having static 2. To evaluate the stochastic moments of X (¢), operators for the statistical mean [E(-)
and variance V(-) are needed. The statistical property of X (¢) at different time can be described by
the covariance as

Cov [X(t, )] = IE( [X() — E(X())] - [X(s) — E(X(5))] ) 2.2)

in which ¢, s are two different time instances in 7. The normalised covariance known as the
correlation is given by

Cov(t,s)

Cor [(t, S)] = \/V(X(l)) \/V(X(S)) .

(2.3)

2.1.1 Classification of Stochastic Process

Stochastic processes can be classified from many different perspectives. By analysing the stochastic
dependency to the random number, the stationariness of a stochastic process X (¢) is determined by

5



6 Chapter 2. Stochastic Processes

the probabilistic distribution during a specified time interval. X () is strictly stationary, if for any
time subset {t{,7,,--- ,1,} of T and for any arbitrary time increment §¢, the following two joint
cumulative distribution functions

Fitoiet, (X1,X2,+++ ,xp) 1= P{X(t1) < x1, X(t2) < X2, , X(ty) < X} 2.4)
and

Fryv8t,60+81, 0y +80 (X1, X2, 00+, Xp) 1= P{X(t1 +61) < x1, X(t2 + 1) < xp,+++, X(tn + 81) < xp}
(2.5)

equal to each other. In another word, the probabilistic distribution of a strictly stationary process

has to be fully identical for all # € T'. In contrast, the weakly stationary requires fixed stochastic

moments in terms of mean and variance. In this case, the covariance of multiple variables relates

to the time difference, namely

E(X(t)) = const.
V(X()) = f(0) = const. (2.6)
Cov(t,s) = f(s—1)

where f is a finite function that can be evaluated for all z,s € T. For unspecified random
distributions, the strictly stationary process is a subset of the weakly stationary process.

By analysing the conditional probability between the random numbers at different time, a
stochastic process is a Markov process if the following relation holds,

P (X(tns1)|X(t0)) = P (X(tas-)| X (1), X (12), ..., X(1y)) with {t1,02...1,} € T. (2.7

In other words, a process is Markovian, if its current state only depends on its state at the last
reference time. Stochastic processes with Markov property are widely implemented to simulate
memoryless physical phenomenons including randomness, e.g. the motion of a molecule.

2.1.2 Gaussian and Wiener Process

Gaussian process is a specific class of stochastic process in which the random variable follows
Gaussian distribution for all the time instances. A stochastic process X (z, w) is a Gaussian process,
if it satisfies the necessary and sufficient condition, that the finite linear combination Z in the form,

n
Z(w) =) a;X(tj.0), Yo €R, Vi; € T, (2.8)
i=1

is Gaussian. It means X (#;) has to be Gaussian for all #; € T'. The standard Wiener process W(t)
is a specified Gaussian process having the Markov property. Given an initial value W(ty) = 0,
a constant zero mean E(W(t)) is kept for all the time. Its variance increases by time, namely
V(W(l)) = t, where 7 is the nondimensionalized counterpart of . The covariance of a Wiener
process at two different time steps s and ¢ is given by

COV(W(S), W(t)) = min(s, ). (2.9)
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Figure 2.1: A demonstration of several Wiener
process realisations with the mean marked by a
bold line and 95% confident region filled by light
grey colour

For any §¢, the Wiener increment 6W = W(t + §t) — W(t) follows Gaussian, as the mean
E(W) = 0 and the variance V(§W) = 4t. Therefore, for {t1,t,...t,} € T the increment
{W(ty) — W(ty), W(tz) — W(tz),..., W(t,) — W(t,—1)} are independent from each other, which
yields to the Markovian criteria. The Wiener process sampled at any arbitrary time ¢, can be given
by the accumulation form

n

W(ta) =) 6Wi =) [W(t) = W(i-)]. (2.10)

i=1

As an example, several realisations of Wiener process in the period of ¢ € [0, 10] s are shown
in fig. 2.1. The 95% confidence interval increases sub-linearly along the time, while the mean is
expected to be zero. The probabilities that W(¢) is evaluated with positive and negative values are
theoretically equal. Therefore, a single trajectory can cross the mean without limitation, neither the
crossing time nor the number of total occurrences. It also means, W () is not a monotonic function.
Due to the random increment, W(¢) is nowhere differentiable. The classical Monte-Carlo (MC)
method needs many Wiener realisations to reproduce accurate statistical mean and variance.

2.2 Stochastic Calculus

Stochastic differential equations, in short form SDEs, have been originally introduced by Langevin
to describe the motion of small particles in differential forms. The velocity X(¢) of the particle is
assumed to have perturbations, and the acceleration is derived as an ordinary differential equation
(ODE), known as the Langevin function,

X
‘;—t =g, X)+h(@t,X) &, (2.11)

where g (7, X) represents a speed-dependent frictional force and /2(7, X) &N is the random molecular
force with £} representing the standard Gaussian white noise and /4 controlling the intensity of the
noise. By separating the time, eq. (2.11) can be rewritten as

dX = g(t,X) dt + h(t, X) dW,, (2.12)
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where d W; is the infinitesimal Wiener increment at £. A stochastic integral can be applied on the
two sides of eq. (2.12), namely

t t
X(@) = X(tp) + / g(s, X(s)) ds + / h(s, X(s)) dW;, (2.13)
to o

in which the first integral follows the classical Riemann rule,
t n
/ g(s, X)ds = lim Y g(ti, X;)At;., (2.14)

fo i=1

whereas the second one is calculated via the Ito integral as,
t n
/ h(s. X)dWy = lim Y h(t;, X)) (Ws — Wiy). (2.15)
to n—00 p—

Using another notation o d W;, the stochastic integral can be represented in the Stratonovich form,
namely

" h(t;, X;) + h(ti—1, Xi—
limZ ( ) + h(tiy 1)

7 (Wi = Wiz). (2.16)

t
/ ht,X)odW, =
to

i=1

Although both approaches are mathematically correct, there are many discussions regarding the
application of the Ito and Stratonovich integral in different situations. In general, Ito calculus
is mainly used in mathematical finance, where the SDE represents a continuous time limit of a
discrete-time problem [34]. The Stratonovich form is consistent with the Riemann integral and the
classical calculus chain rule. For both method, the guideline is to have smooth perturbations while
modelling physical processes because the intensity of the white noise has to be very small [32].

Ito and Stratonovich integral The fundamental difference between the two approaches is on the
integration point. Ito evaluates the diffusion at the last time step #;_; instead the current one #;. On
the stochastic integral problem of fot W,d W; the Ito setting causes a time-unsymmetrical integral
as

t n
/to W,d W, = tlggo;Wi_l(m — Wi—1)

L R - > 2.17
= Jim @(Wi —W,-_l)—;(wi—wi_o 17
_Wtz_th T—To

2 2

Stratonovich approach is similar to the trapezoidal rule such that the integral is on the averaged
function value at two time steps, e.g.

J— o - A f —_ ¢
odW; = tlgglo 2 7 Wi = W;21) 7

t n 2 2
W + Wi_ W2—Ww,
/W, + Vi —t (2.18)
to
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Unlike eq. (2.17) the solution given by eq. (2.18) is time-symmetric and identical to the classical
Riemann solution. However, the Ito integral cannot be judged as a worse approach, since the
consistency between stochastic and the Riemann integral is not required. To support this opinion
W; is neither a smooth nor a differentiable function. After a simple mathematical transformation
on the drift term, Ito and Stratonovich integrals are equivalent to each other, namely

dX =g, X)dt + h(t,X)dW,
(2.19)

1 9h
= (g(t,X) - Eﬁh(z,X)) dt +h(t,X) o dW,.

Usually, the drift can be determined by the physical laws. Ito integral allows the stochastic model to
be formulated straightforwardly by directly substituting the known information into the drift term.
The expectation of the SDE can be kept identical to the deterministic solution without modifying
the diffusion term [23, 22]. In the following chapter, the stochastic process is computed by the Ito
integral to simulate random damage evolution.

2.3 Numerical Approximation of SDEs

Depending on the expression of the drift and diffusion, some SDEs are algebraically solvable.
However, the drift and diffusion terms can be strongly non-linear in the reality that the model can
only be solved numerically. In the following context, numerical techniques for solving SDEs are
listed, including discussions on the convergence performance, stability issues, and the influence of
the random number generator.

2.3.1 Numerical Schemes

The Euler method and its variations are effective in solving ordinary differential equations. The
Euler-Maruyama method is specified for linear approximation of SDE problems. Consider the
eq. (2.12) with initial value X(0) = X, as an example. The standard (or explicit) Euler-Maruyama
scheme is given by

Xig1=Xi +g(t;, Xi)Atip1 + h(t;, X)) AW, 44, (2.20)
with
Aty = tig1 — 1, 2.21)
AWit1 = Wtiv1) — W(n).
To improve the accuracy an implicit scheme evaluating g and 4 on ¢; 4 is written by
Xiv1 = Xi + g1, Xiv)Aliv1 + h(lir, Xig) AWigy. (2.22)

According to the definition of the Wiener process, each AW, is a random variable obtained as

AW; = &AL, (2.23)
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Based on the Taylor expansion, the Milstein method takes the diffusion ratio to achieve a higher
convergence speed. The standard explicit scheme is written as

Xiq1=Xi + g1, X‘)Afz‘+1 + h(t;, Xi) AW, 1

(2.24)
+ h(tl,X) (A l+1 A‘[i+1).

The Milstein method delivers the same performance as the the explicit Euler-Maruyama if 4 is
independent of X . The strong error! convergence rate is order 0.5 for the explicit Euler-Maruyama
and order 1 for the Milstein method. Other high-order approaches such as the strong order 1.5 Taylor
method proposed by Kloeden and Platen [35] is implemented by Silberschmidt [24] on dynamic
mechanical problems in which X denotes the stochastic damage evolution. The scheme reads

Xit1=Xi +gAtiyy + hAW; 11 + h (A 21— ATigr)

2 9X;
aax 1( aa)f Ehzgxi) Al
+ (gaa;(l 5 g;hz) (AWit1Atip1 — AZiy1) o
—h (h g;i; + (8?)}(1,-) ) (3AW,+1 ATz‘+1) AW, 44,
in which AZ;, is an additional random variable,
AZ; = %Ati(AWi + AW; /V/3), (2.26)

with W, = £,/ At; generated independently from AW;. If the diffusion and drift term are strongly
non-linear functions of X the scheme above converges faster than the Milstein method. For better
accuracy, a Runge-Kutta based approach is implemented by Kloeden and Platen [36] in which
a function system have to be evaluated within each time iteration. Details about the high-order
numerical schemes for SDEs can be found in [32].

2.3.2 Strong and Weak Convergence

The numerical error of the SDE solution can be defined mathematically in terms of the strong and
weak errors. Let X; be the numerical solution of an SDE at time 7. If the corresponding analytical
solution X (¢) exists, the strong error is given by the expression

=E|X, — X(1)|, (2.27)

where | - | denotes the L norm. Since both X; and X (¢) are random variables, a statistical mean is
needed to measure the mean of the absolute error. On the contrary, the weak error is defined as the

error of mean, namely
M =E|X;| -E|X(@1)|. (2.28)

1see section 2.3.2
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Theoretically, both errors approach zero when the time step is infinitely small. Indeed, the error
converges in the order of p, if a constant C exists such that

e < CAt*. (2.29)

Often, the strong and weak convergence rates delivered by a numerical scheme are different.

Example In order to compare the methods listed in section 2.3.1, an exactly solvable SDE with
initial value X (0) = 0 is introduced in the form

dX = —sin(X)cos*(X)dt + cos*(X)d W,. (2.30)
The analytical solution of the above SDE reads
X () = arctan (W, + tan (X(0)) ) (2.31)

The time interval [0, 1] is discretised by different time step size and the numerical errors are evaluated
att = 1. For every single trajectory, each method uses the same Wiener process realisation W;. A
total of 10 realisations are generated to reduce the sampling error. A comparison of the performance
of the listed numerical methods on the strong error convergence is demonstrated in fig. 2.2.

For strongly non-linear diffusion and drift term in eq. (2.30), the accuracy is improved
significantly while using the high-order schemes, and the effect becomes dramatic with small
At. Particularly regarding the example problem, the strong convergence rates are assigned to Euler-
Maruyama, Milstein, and Taylor method with order 0.5, 1, and 1.5 respectively. This observation
corresponds to the literature [32]. Meanwhile, the implicit Euler-Maruyama method reaches a
similar convergence speed and a slightly better accuracy than the standard Milstein method. The
weak error convergence performance is illustrated in fig. 2.3 having noticeable difference compared
to the results in fig. 2.2. Both the explicit Euler-Maruyama and the Milstein methods show an
order 1 weak convergence rate, whereas the Taylor and the implicit Euler-Maruyama is order 2.
Compared to the explicit Euler-Maruyama method, the accuracy of the implicit scheme is improved
dramatically.

Although high-order schemes are numerically more accurate, the computational cost and
the complexity of applying the high-order Taylor expansion are not negligible. The derivative
computation can be rather expensive, especially when the explicit forms of the drift and diffusion
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are not available. Indeed, the imprecision of numerical differentiation can be accumulated at every
iteration step which finally enlarges the global error. Besides, high-order methods also rely on
extra random numbers, e.g. the AZ; term in eq. (2.26). It requires a large amount of preallocated
computational resources for both the generation and the storage of random variables. Therefore, the
implicit Euler-Maruyama method is a good solution, to have a balance between the computational
effort and the convergence performance.

2.3.3 Stability Issues

Classically, stability issues of a deterministic ODE are classified into two categories, the system
stability and numerical stability. Due to the random term, stability studies on SDEs are often
complicated. For a stable system, its output shall fluctuates under control, if a small perturbation
is introduced to the input. A quantitative definition is given by [32] that a stochastically stable
sequence has to be bounded by a positive real number €, at any time after initiation, namely

P {sup | X ()] < e} =1. (2.32)

t>1o
If X (¢) approaches zero surely in a long time, it is an asymptotic stable sequence. The mathematical

definition of the asymptotic stability is given by
P { lim |X(t)| = O} = 1. (2.33)
t—4o00
In contrast, a stochastic sequence has the mean-square stability if
P{ lim E|X?(t)| :0} = 1. (2.34)
t—>4o00

Numerical stability analysis on SDEs deals with a proper set of numerical parameters,
particularly, numerical solutions under different time discretisation. The initial value problem
while solving stiff ODEs is well known that explicit solvers with large time steps have difficulties
to converge to the real solution. Implicit schemes are designed to improve the convergence
performance, which is less sensitive to the time step size. However, the classical approach to
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analyse the numerical stability of SDE solvers has limitations. For demonstration, assume the
one-step iteration is obtained by a numerical scheme,

Xiv1 = f(At, AW, ---)X;, (2.35)

in which the dots denote the other variables. It is numerically stable if the following deterministic
expression exist, i.e.

Because of the random part, only the probability of the above relationship can be obtained, namely
P{f(At, AW, ---)| < 1}. (2.37)

Therefore, the numerical stability of an SDE solver in a deterministic sense is difficult to obtain.
Meanwhile, stability study on problem similar to eq. (2.11) is often complicated if the function is
non-linear and non-homogenous. In this case, the SDE may not be explicitly solvable using the
classical linearisation method [37]. As an example, consider the non-linear SDE given by

Cil—X = f(X,t,§). (2.38)

4

For any interesting value, X, the Jacobian 9 f ()? ) can vary significantly due to the strong randomness.
Therefore, eigenvalues-based stability analysis loses its effectiveness in this case. Recently, attention
has been drawn specifically to the stability study of non-linear SDEs, including jumps and delays,
because of the high value of these random models in the stock market [38] and machine learning
fields [39]. In the following context, the stability of linear SDEs and numerical stabilities are
reviewed.

Linear SDE stability A linear SDE including two constants A and u in the form
dX = AXdt + pXdWw;, (2.39)

with an explicit solution

X(t) = X(0) exp {(A — %;ﬁ) t+ th] : (2.40)

is often a good examples to explain the stability theory [40, 41]. The explicit solution is
asymptotically stable if

1
Re {/\ — 5“2% <0, (2.41)
while the mean square stability is satisfied by the following condition
1
Re {1} + 5“2 <0, (2.42)

where Re {-} denotes the real part of a complex number. For this specified problem, any combination
of parameters that ensures the mean squared stability automatically satisfies the asymptotic stability,
because

1 1
Re {A — 5;%} <Re{A} + 5“2' (2.43)

This conclusion can be proven graphically, as the mean square stability region is totally covered by
the asymptotic one (see fig. 2.4).
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4
3 [ -
. Figure 2.4: Comparison of stability regions using problem
< 2] eq. (2.39) as the example (AS: asymptotic stability region,
1 AS MS: mean square stability region)
MS
O—2 -1 0 1 2

Re {1}

Numerical stability According to the mathematical definition given by eqgs. (2.33) and (2.34) the
numerical asymptotic stability and mean-square stability are represented as

P % lim |X;| = 0} =1, (2.44)
I—>+o00
and
P % lim E|X?| = 0} =1, (2.45)
i—>+o00

where X(¢) is replaced by the numerical solution X;. Applying schemes listed in section 2.3.1
on eq. (2.39) the finite difference equations are obtained in form eq. (2.35). The explicit Euler-
Maruyama scheme has the following iteration

Xi—H = (1 + AtA + JYRY Af&‘)X,‘. (246)
Taking the conclusion to the first and second stochastic momentum, i.e. E |£;| = 0 and E }Sﬂ =1,

one has the expectation of the squared value as

E|X7 | = (1 + AtA> + At|u) E | X7|. (2.47)

In view of eq. (2.45) the numerical mean-square stability is guaranteed under the condition that
114+ AtAP> + At|u* < 1. (2.48)

By replacing AtA with p and |u|?At with g, the mean-square stability region can be plotted as
(14 p)?>+q < 1. Let V; denote 1 + At A + u~/ Atg;, eq. (2.46) is rewritten as a sequential product,

namely
n
Xi1 = (H V,-) Xo. (2:49)
i=1

For any Xy # 0 the logarithmic operation of the above equation gives

log(|1Xi41]) = Y log(|Vil) + log(|Xo)). (2.50)

i=0
Due to the non-bias approximation under a large amount of realisations, namely

iy 2izo log(Vil)

— Elog(|Vi]) =0, (2.51)
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the necessary and sufficient condition for asymptotic stability reads
Elog(|V;|) < 0. (2.52)

However, as stated in the study [42] the derivation of a deterministic asymptotic stability function
has considerable difficulties, since the integral

400 1 —x2
/ log(|1 + p £ /qx]) merx = Elog(|V;]), (2.53)

o0

requires the Meijer G-function operation. By applying the second-order Taylor expansion at |V;|
the following relationship yields

Elog(Vi]) < log(E[V;]), (2.54)

which indicates that E|V;|<1 is a sufficient condition for the numerical asymptotic stability. The
integration

+o00 1
2/0 (1—I—p:|:ﬁx)m

provides a deterministic expression to ensure the asymptotic stability, namely

2q
O<l+p+,/=2<1. (2.56)
T

Based on eqgs. (2.48) and (2.56) the mean-square and asymptotic stability region of explicit Euler-
Maruyama method is plotted in fig. 2.5. The mean-square stability region is smaller but not fully
covered by the asymptotic stability region.

2
e 2 dx = E|V;], (2.55)

8 ’—17
6 |
> 45 | Figure 2.5: Numerical stability regions while applying the
N S explicit Euler-Maruyama method on eq. (2.39)
: MS
-2 -1 0 1 2

The mean-square stability of the other numerical schemes listed in section 2.3.1 can be obtained
as follows:

e implicit Euler-Maruyama:
1+ |Atp? .

: 2.57
= AA]Z (2.57)

e Milstein method: .
114+ AtA)? + |Atp? +§|Am2|2 <1; (2.58)
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e Taylor scheme:
2 2 2 1 22 1 23
[T+ AtA]” 4+ [1 4+ AfA|7|Atp| + §|Atu |© + glAz,u |° < 1. (2.59)

According to the mean-square stability region illustrated in fig. 2.6, the implicit Euler-Maruyama
scheme shows its advantage in stabilising the numerical solution. The asymptotic stability is not
plotted here, since in most cases, mean-square stability is more strict. In conclusion, the stability
issue has to be concerned while solving SDEs. It is always necessary to check the combination of
the drift and diffusion with the time step size to avoid unrealistic results. Using implicit numerical
schemes with a relatively small time step is more likely to reach a stable solution.

8 8

8 MS MS MS

6 | 6F | 6| |
> 4 . > 4 . > 4+ n

20 | 20 | 2+ |

L | | O L | | O L | |
0—2 —1 0 1 2 -2 —1 0 1 2 -2 —1 0 1 2
p p p
(a) implicit Euler-Maruyama (b) Milstein (c) Taylor

Figure 2.6: Comparison of mean-square stability of three numerical schemes on problem eq. (2.39)

2.3.4 Low-Discrepancy Sampling

In the previous context, the stochastic processes are realised by the MC simulation using pseudo-
random numbers generated by the Mersenne-Twister (MT) algorithm. Although the random number
generation is numerically very fast, the classical MC method is well-known for its low convergence
rate in approximating the expectation. Depending on the sampling amount N the quadrature error of
classical MC sequence converges in the order of O(N ~%-°) without dependence on the dimension.
The quasi-random sequence improves the coverage in a d-dimensional hypercube to achieve a
faster convergence rate in the order of O(N~!(log N)¢~1) [43]. Therefore, much fewer random
numbers are required while using the quasi-Monte-Carlo (QMC) to produce the same precision.
As the method is designed for integration problem, the QMC is often very effective to accurately
approximate the stochastic moments. However, its efficiency reduces when the dimension of the
desired random number is very high [44]. In practice, the dimension is often limited by 150 [45].
Quasi-random sequences are deterministic in which the variables are correlated. Comparing
to the pseudo-randomness, the uniformity of quasi-random number is quantitatively very low,
named the low-discrepancy. The randomized-quasi-Monte-Carlo (RQMC) sequence is formed as
an unbiased estimator by introducing randomness carefully to each QMC variable. Since RQMC
points are rarely identical, the approximation error can be quantified while repeating the simulation.
Compared to the classical MC method, RQMC is considered a variance reduction approach [44].
For the RQMC simulation, different approaches such as the Sobol and Halton scrambled sequences
are frequently used. The characteristics of different random sequences in two dimensions are
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illustrated in fig. 2.7. The grid is less equally filled by the MC points, whereas the QMC shows
specific patterns due to the deterministic sequence. In contrast, the RQMC method improve the
coverage with less "pattern-effect".

MC QMC RQMC
1 :.-:-:F.'.J.!Q LT .\:.'.. 1 e 1 XA NI
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Figure 2.7: Comparison of two dimensional random number generated by MC, QMC using
unscrambled Sobol, RQMC with scrambled Halton

Recently, RQMC methods implemented in financial engineering to generate stochastic process
realisations. The studies [46, 47, 45] state that the main challenge is the limitation of the applicable
dimension, a quantity governed by the number of time discretisation. For demonstration, MC
and RQMC methods are tested on the generation of standard Wiener process. The simulation is
conducted in the time interval [0, 500]s with A7 = 1s using 10* trajectories repeated by 10> times.
Since E[W(t)] and S[W(t)] can be obtained explicitly, they are compared with their expectations
during the interval (see fig. 2.8). Although for all the methods, their sampling errors are accumulated

E 100 10_2 % M ‘.‘
S :
— -2 | 2= I
N S e 7E 103} :
L PO Halton S 71 i Halton
S - -~ Sobol 5 —e— Sobol
3 . |—MC _4T ~|=~MC

0 200 400 10 0 200 400

t t
(a) absolute error of mean (b) normalised absolute error of standard
deviation

Figure 2.8: Comparison of MC and RQMC on the generation of Wiener process

by the time, approximately 10? times less error in the statistical mean is achieved by the RQMC
methods. Moreover, according to fig. 2.8a, the scrambled Halton sequence produces a slightly more
accurate mean than the Sobol. In fig. 2.8b the MC sampling error in the standard deviation remains
constant, whereas the RQMC produces roughly 15 times smaller error at the beginning. During the
simulation, the error of RQMC increases and becomes less accurate than the MC after around 150
time steps. It demonstrates that the performance of RQMC methods in variance reduction is only
valid for low-dimensional problems. This observation matches with the outcome from the previous
study regarding the maximum practical dimension of the RQMC. In conclusion, particular attention
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needs to be drawn while applying the RQMC to sample stochastic processes. First, it is effective to
approximate the process expectation, though the dimension is high. Second, it is not suitable for
long-term simulation in which the variance has to be accurately approximated.

Compared to the one-dimensional Wiener process, the complexity of numerical integration
increases dramatically for real engineering applications. It is very challenging to develop robust
low-discrepancy sequences with guaranteed variance reduction performance for high-dimensional
integration problems. Although some recently developed methods, e.g. the Latin hypercube, show
less restriction on the maximum number of dimensions, its efficiency is unsure for a small sampling
amount [48, 49]. Due to simplicity and robustness, the classical MC is often the first choice for
engineering simulation [50, 51, 52].



Chapter 3

Continuum Damage Mechanics

For an overview of the CDM theory, section 3.1 introduces the macroscopic observation and the
microscopic mechanism of material damage. Section 3.2 describes the thermodynamics of damage
process. Section 4.1.3 demonstrates the derivation of the kinetic damage evolution law. The
theoretical background of CDM has been successively developed in the past few decades by the
works [53, 54, 55]. For further information, the reader may refer to the literature [2, 56].

3.1 Fundamental Aspect of Damage

Material damage is often a mechanical phenomenon determined by the debonding of microscopic
matter. Under external loading, material imperfections, such as the micro-cracks and voids, can
be enlarged by the micro-stress. This process is often associated with a progressive reduction
of the material stiffness, which finally triggers the global failure. For engineering materials, it
is usually difficult to characterise the micro-discontinuities in detail. Therefore, for continuous
media, a representative elementary volume (REV) at the mesoscale is introduced to average the
heterogeneous material properties. Depending on the material microstructure, the REV size varies
for metals (~ 0.1mm?) and plain concrete (~ 100mm?).

The concept of considering the damage as an effective surface density of micro-defects is
established by Kachanov [53]. Various of microscopic defects and imperfections, e.g., nucleation,
voids, cavities, are statistically averaged to a damage variable at a larger scale. On a plane defined by
apoint P and a normal vector 77 within a given RVE, the isotropic damage variable D is represented
by

p—1_4 (3.1)
-1-4 .

where A is the original cross-section area and A is after removing the defects using effective
configuration. For a uniaxial load with a magnitude of F, the uniaxial stress o is evaluated as

o= —, 3.2
1 (3.2)
for undamaged material. The effective stress ¢ is introduced then using an isotropic damage

variable, namely
o

1-D°

& = (3.3)

19
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Generalised to the multi-axial case, the effective stress tensor ¢ is derived by
6 =M:o, (3.4)

where o is the stress tensor, and M is the fourth-order damage effect tensor [2].

Strain equivalence principle The principle of strain equivalence is introduced to share the same
derivation of the constitutive law for virgin and damaged material given by

e, = F(o,---) = Clo virgin material, 3.5)
ge = F(6,---) =C'6 damaged material, '

where C and C denote the fourth-order elasticity tensor before and after damage, €, is the equivalent
strain. By applying the principle of strain equivalence, the elasticity modulus of the damaged
material £ can be derived from the original elastic modulus E as

E = E(1-D). (3.6)
The relationship between the damaged and undamaged elasticity tensor is given by
C=(I-D)C=M"C, (3.7)

where D) and I represent the damage tensor and identity matrix both in fourth-order.

Critical damage value In the context of material continuity, failure happens when the REV
overrides its countability of being a continuum volume [54]. Indeed, macroscopic defects occur
when the damage variable is over D.. After this point, the propagation of macroscopic defects
causes material instability. Due to the interpretation of D., CDM becomes particularly suitable for
studying the material behaviour during the initiation of macroscopic cracks.

Generally, the value of D, varies from 0.15 to 0.85 depending on different materials and loading
conditions. For monotonic load, D, ~ 0 and D, &~ 1 correspond to purely brittle and ductile
fracture, respectively. For ductile material, D, is often obtained as a damage value associated with
rupture and necking in the case of a monotonic test [S7, 25]. Whereas for fatigue test, D, is related
to the initiation of macroscopic cracks [58, 59].

3.2 Thermodynamics of Damaged Material

Material damage is an irreversible thermodynamic process associated with energy dissipation. This
concept is one of the core theory of CDM, which has been successfully implemented in the works
[58, 60, 2]. Based on thermodynamic principles, the state potential of a material can be written as
a function in which the relationship between state variables is performed. Through the derivation
of this function, an energy-based damage criterion can be obtained. According to the law of energy
conservation, for a closed (isolated) system, the applied external work W and the received heat Q
is transformed into the internal energy U and the kinetic energy K,, namely

U+K, =W+ 0, (3.8)
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where ( ° ) denotes the time derivative of each quantity. The Helmholtz free energy W, which
measures the effective work obtained by a closed thermodynamic system, is given by

v=U-TS§, (3.9)

where T is the absolution temperature, S is the system entropy. Comparing with the Clausius-
Duhem inequality, i.e.
0

S—=>0, 3.10
7 Z (3.10)

a relationship can be obtained as follows
OV < W —6K,. (3.11)

It means the maximum energy to be released from the system is bounded by the applied work.
The state of a thermodynamic system is described by a set of macroscopic variables. Consider the
Helmholtz free energy as a continuous scalar function, which is concave for 7" and convex for X,
namely

v =ylX,T7), (3.12)

where X denote all the remaining state variables of the system excluded from temperature. Following
the chain rule, the time derivative of W can be written as

U=__X+_-T. (3.13)
Combined with the inequality given by eq. (3.10), the dissipation rate ¢ is defined as
o=t - Km0k (Y 5)F =0 (3.14)
o ° X T - '
By the hypothesis of constant temperature eq. (3.14) yields to

. . ow ..
b=W-K,—=X>0. (3.15)
0X

The thermodynamic process is reversible if the condition ® = 0 can be satisfied. For example, the
frictionless rigid body kinetic motion, with which the external work is converted into the kinetic
energy without any loss, i.e. X = 0.

Constitutive relations The thermodynamic constraints demonstrated above are generalised for
any closed system. To study the mechanical behaviour of material damage, constitutive equations
that adhere to the thermodynamic principles have to be introduced at the REV level. Specifying the
general closed system to be a continuum deformable body B with surface 013, the internal energy
U and the kinetic energy K can be computed by the integral on the unit volume d V' as

U= /,oédV, (3.16)
B
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and
K:i/pwﬁdK (3.17)
B

where p, e and v denote the mass density, specific energy and the velocity, respectively. The applied
external mechanical power can be separated into two parts, which are the body force f on the unit
mass p d V and the surface traction ¢ on the unit area d.S, given by

IV=/pfde+/tmdS (3.18)
B B
The rate of received heat to the body is defined as
Q:/}dV—/qmd& (3.19)
B B

where r denotes the heat generation rate per unit volume, ¢ and n are the heat flux and unit normal
vector towards outside of the surface. The energy convention for a deformable body can be obtained
by substituting egs. (3.16) to (3.19) into eq. (3.8) as

/p(é—l—v-f))dV=/(pf-v+r)dV—|—/(t~v—q-n)dS,
B B

B

(3.20)
= /,of -v+r+div(ov —q)dV,
B
which can be further derived as
/[(pf + divo —p\})-v]dV+/(o :gradv —divg +r —pé)dV = 0. (3.21)
B B
By applying the Cauchy momentum equation,
p f +dive —pv =0, (3.22)
the first integral in eq. (3.21) can be cancelled, with which the function yields to
/(a:gradv—divq+r—pé)dV=O. (3.23)
B
For small deformations, the equation above in the local form can be derived as
pe =0 :e—divg +r, (3.24)

using the strain rate €. Let s denote the specific entropy. The entropy of body B is obtained as

S:/de (3.25)
B
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According to eqs. (3.10) and (3.19) the Clausius-Duhem inequality is given by

/p&dV—/LdV-i—/udSzO, (3.26)
T T
B B B
whereas its local form can be written as
. . q r
d (— ~L>o 3.27
ps + div T) T = ( )

Combining eq. (3.27) with eq. (3.24), one has the energy dissipation rate as follows

. : . grad T
p=0:6—p(Y+sT)—q- T >0, (3.28)

where Y denotes the local Helmholtz free energy per unit mass. Indeed, eq. (3.28) is the
thermodynamic governing equation which shall be satisfied for any process associated with
mechanical deformation. In case of isothermal deformation, eq. (3.28) is simplified as

p=0:6—py>0. (3.29)

State variables As a dissipative process, material state is described by the state variables and the
associated variables. Let ¥ be a function of all the state variables, as

v =v(0.8), (3.30)
where @ is a collection of the observable variables, namely 0 {6;|i = 1,--- ,n}, and B for the
internal (or invisible) variables, as g {B;|i = 1,--- ,n}. For any B;, B; is the associated variable
given by

Iy
B = — . 3.31
i a8, (3.31)

In the case of isothermal elastic damage, let the local Helmholtz free energy be a function of
elastic strain ¢ and isotropic damage D, namely V¥ (¢¢, D). Equation (3.29) can be rewritten as

oy ) oy .
= — 18— p—D > 0. 3.32
¢ (0 paee) S (3.32)
The equality holds under the following conditions,
D =0, (3.33)
and 5
o=p W’ (3.34)
de®

with which the constitutive equation for stress tensor is obtained. Since the inequality must be
satisfied for any elastic deformation dominated damage process, it requires
oY

—p@[) > 0. (3.35)
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0
Classically, the damage associated variable ¥ := —p—w is often considered as a thermodynamic

driving force of damage evolution, given by a positive quadratic function of elastic strain energy

per unit volume as

1
Y = Eee :C el (3.36)

Therefore, the damage evolution rate D has to be always non-negative, namely
D >0. (3.37)

For isothermal elasticity coupled damage with plasticity behaviour in the small deformation
scenario, ¥ can be separated into two parts as

V(e p. D) =y, D) + Y7 (&P), (3.38)

with damage and elastic deformation governed by /¢, and ¥ is a function responsible to plastic
deformation [61]. Here £” denotes the effective plastic strain, a scalar valued internal state variable,
obtained from plastic strain tensor rate é” as

t
1
&P =/ ,/§|ép:ép|dt. (3.39)
0

The time derivative of y is written as

e e . oYr.
Ve W W,

— : D 3.40
V=% ¢ Tap P e (3-40)
which introduces the effective stress as
ayP
0 = —p—0. 3.41
“ 9zp (341)

Assume that the total strain tensor & can be decomposed into the elastic part €¢ and the plastic part
e”. The cause of total energy dissipation is then separated by the elastic-damage ¢¢ and the plastic
deformation ¢#. Thus, eq. (3.29) can be rewritten as

dee aD -

$9>0 ¢P>0

e e. p'
¢ = (a—paw ):ée—paw D+a:é”—pa¥p§1’>0. (3.42)
g

To sufficiently satisfy the Clausius-Duhem inequality, the conditions, ¢¢ > 0 and ¢? > 0, have
to be fulfilled. Both the elastic and elastoplastic scenarios are reviewed above because they are
considered in previous studies on the modelling of concrete damage (see chapter 4).

Damage criterion For material modelling, the damage evolution rate given by eq. (3.37) should
always be satisfied to ensure thermodynamic consistency. To obtain a mathematical expression of
D, ascalar quantity F¢ is introduced to define the elastic domain. It is a function convex in ¥ with
dependency on further variables, i.e.

F?=Fiy,..-). (3.43)
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Let A denote the Lagrange multiplier. A Lagrange function can be given by
azp oy
BD oD’

The stationary solution of eq. (3.44), which indicates the maximum energy dissipation, is obtained
by solving the optimisation problem

L=p—D+AF¢ with —Y = p— (3.44)

AL : dF4
—=—-D+A— =0, 3.45
3y A%y (5.43)
with which the damage evolution is given by
dF4
D=A—u!. 3.46
37 (3.46)
Usually, A is replaced by a function ® depending on the increment of ¥ as
aFd
D= CID(Y)— (3.47)

The expression of D may vary from materials and loading configurations. Meanwhile, identification
of damage model parameters strongly relies on experimental data. Applications on different types
of damage problem, e.g. ductile fracture, brittle fatigue, can be reviewed from [58, 60, 61].

For elastic damage, Dis suggested by Lemaitre [57] to be proportional to Y - Y, namely

DxY-Y. (3.48)

In this case, the Lagrange multiplier is replaced directly by Y,and F? is proportional to Y 2. The
damage evolution for both loading and unloading situations has to satisfy the Karush-Kuhn-Tucker
(KKT) conditions given by

A>0

Fi<0 . (3.49)

AF? =0
It assumes that damage grows only during the loading phase, whereas it keeps constant for unloading
[2]. Since the strain energy release rate Y is a dominant variable to the damage and its propagation,
a threshold defined in terms of Y, i.e. Yp, is introduced to judge the initiation of damage growth.
Given eq. (3.36) for elastic damage, the expression of Yp is written as

1

where €9, is the minimum strain for damage growth. Combined with the Kuhn-Tucker conditions,
the thermodynamically consistent damage evolution can be delivered as
. foe)2EL if Y >¥p and ¥ >0
p = W)% it ¥'>Tp an 3.51)
0 otherwise.

In summary, material damage is a thermodynamic dissipative process. The damage variable D
is interpreted as an average of micro-defects in the REV bounded between 0 and 1. The damage
evolution rate D is restricted by the thermodynamic principles as a non-negative quantity. For
general solid material, damage evolution rate shall be related to the elastic energy release rate Y
[54, 60, 2]. Particularly for concrete damage, modelling approaches are reviewed in chapter 4.
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Chapter 4

Deterministic and Stochastic Damage
Constitutive Laws of Concrete

Modelling of material constitutive relation is the core of computational mechanics, as it defines the
fundamental internal strain and stress relation of the solid deformable body subjected to external
effects. Due to the strong heterogeneous microstructure, the complexity in constitutive modelling of
concrete is considerably high. In the past decades, multiple theories, e.g. classical elastic mechanics,
elastoplastic mechanics and fracture mechanics, have been continuously implemented on this topic.
However, the lack of a comprehensive description of the mechanical reaction of deformed concrete
still exists after an enormous amount of investigations into these theories. Due to the difficulties
in constitutive modelling, studies on concrete structures maintained at the empirical level until
the 1980s. After that, the concept of continuum damage mechanics has been planted in material
modelling. It brings new possibilities for refined analysis of the mechanical behaviour of concrete
structures.

Phenomenological approaches study the influence of damage on mechanical performance at
the macroscopic level using continuum mechanics. In contrast, mesoscopic approaches aim to
describe material textile architecture at a lower scale. These methods are often associated with
kinematic constrains and homogenisation techniques, such as using the micro-plane theory and
parallel strings. Comparing the completeness of reflecting the characteristics of material damage,
there are deterministic (or incomplete) and stochastic (with limited completeness) damage models
exposed by literature. Classical deterministic models are generally classified as the ones based on
macroscopic CDM theories [62, 61, 63, 64], and those using micro plane theory [65, 66, 67]. In
contrast, for stochastic damage modelling, the phenomenological approaches are proposed in [23,
25], whereas at the mesoscale parallel-spring models can be seen in [68, 27, 69]. This chapter
briefly reviews both deterministic and stochastic damage models of concrete material, which can
be applied on fatigue computation. Since mesoscale approaches are not the goal of this study, only
macroscopic models are involved in detailed discussion.

4.1 Deterministic CDM Models for Concrete

It is commonly agreed that a general CDM model exhibits the following three characteristics [62,
61, 63, 2]:

27
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1. athermodynamic potential is defined to establish the relation between state variables and the
corresponding conjugated thermodynamic force.

2. adissipation potential is clarified to govern the irreversible thermodynamic process.
3. a damage evolution law is proposed with a certain damage criteria.

For concrete material two main issues have been intensively discussed by literatures while formulate
their models, i.e. the damage evolution driving variable and the unilateral effect. Two resent studies
[70, 9] proceed a systemic study on the classification of CDM models by their driving variables
and selection of damage criteria. The study [70] agrees to relate damage to a measure of strain,
which are specified in literatures as total strains [63], elastic strains [62] and sliding strains [64],
etc. Regarding the damage criteria, CDM models are compared by [9] as strain controlled [62, 61],
stress controlled [71, 72] and damage conjugated thermodynamic force controlled [63, 64, 73]. As
an extension of these two studies, an overview of classical CDM models for concrete material is
presented in the following context to compare their modelling concept.

4.1.1 Brittle versus Plastic Damage

Compared to ductile materials, which perform significant plastic deformation before rupture, brittle
damage often occurs with negligible plasticity. Elastic strain conduced damage is assumed by
studies at the early stage as the main form of concrete failure [62, 74]. The unit volume Helmholtz
free energy of elastic damage is given by

oY = %C(l —D):e&°:¢e° 4.1)

in which the contribution of plastic deformation is fully omitted. In this framework, both elastic
strain [74, 62] and elastic strain energy release rate [75] are individually employed as the damage
driving variable to determine the damage evolution law and the damage criteria. For different
applications, it is debatable to derive the damage evolution law by an empirical function or by
a differential equation. Studies [74, 75] prefer to derive an explicit damage evolution function
f , which provides the damage value directly from the combination of state variable and material
parameters, i.e.

D= f(,B,). 4.2)

As an empirical formulation, it has considerable model brevity. Besides, function f is often
introduced with good smoothness, which is beneficial for finite element analysis to get convergence.
The simulated stiffness reduction of concrete within fewer loading cycles is similar to the
experimental observations. However, the ability to describe the loading history is missing. On
the contrary, an ODE is used by this study [62] to represent the rate-dependent damage evolution
as

D = §(e°, D;é°). (4.3)

Via integral on time, this formulation can capture the damage historical dependence, such as long-
range weak-strength cyclic load and random load. Meanwhile, brittle damage laws are further
improved by the studies [76, 77, 78, 79] to model anisotropic damage behaviour.
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Brittle damage law has a fundamental weakness because it neglects the non-linear plastic
deformation, which is significant for concrete under compression. Since the late 1980s, researchers
have introduced plasticity and its evolution rule into the constitutive damage relation. The free
energy equation given by eq. (3.38) proposed in [61] is a simplified damage plasticity with its
theoretical background established by Lemaitre [57]. The damage driving factor is the elastic strain
energy release rate only and the contribution of plastic deformation to the growth of microcrack is
neglected. However, these models which depends on brittle damage law and additive plasticity, as
argued by [80], are physically improper. To couple damage evolution with plastic flow, a local free
energy is considered in the study [80], namely

Y(e,D,q) = (1— D)y’ q), (4.4)

where ¢ represents all the necessary variables for plasticity, and ¥ is the undamaged potential
energy. The uncoupling of elastic and plastic potential function gives

Y(e.D.q) = (1—D) (V) (e°) + ¥p(q)). (4.5)

Thus, the damage conjugated thermodynamic force depends on both the elastic strain and the
plasticity governing variables as

Y = py°(ef.q) = p¥ ) (%) + p¥p(q). (4.6)

Since the strain-based damage criterion is only suitable for elastic damage, a damage threshold
in terms of Y is employed to overcome this weakness. This modelling approach is continuously
developed by [66, 81], which has been successfully applied in modern commercial FE-software for
concrete damage simulation.

Instead of the strain decomposition, a tensor @ is employed to contain all the non-linear response,
such as damage and plasticity, to be coupled with the total strain [63]. The free energy is then
proposed as

ov(e, w) = %/\(tre)2 + utr(e : €) + g%r(e, w) + a“tr(e)tr(e, w) + 2B%r(e, e, w), (4.7)

where A, are the Lame constants, o?, B¢, g% are other material constants relate to moduli
degradation and residual stress. In contrast, concrete damage is assigned to its inelastic strain,
namely the sliding strain ¢” [64]. The free energy is proposed as

1 1 1
oV = 5(1 —D)e:Ci:e+(1—D)e—€"):Cyr:(e—&") + EKZZ +oyee, (4.8)

in which C; and C, are components of the full elasticity tensor after decomposition, scalar z and
a are the isotropic hardening variable and kinematic hardening tensor, K and y are moduli for
isotropic and kinematic hardening. The above two models are tested on fatigue problem with 50
loading cycles, showing similar results, and comparable numerical efficiency [70].

The classical elastic-plastic damage theory is suitable to predict the material behaviours, such
as ductile failure and low-cycle fatigue in which plastic deformations are often observable at the
macroscopic level [2, 82]. However, the high-cycle fatigue (HCF), as a key design factor of
engineering concrete structures, is difficult to be modelled by the conventional yield surface theory
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[56]. The main difficulty is that the HCF loading strength is far smaller than the dominant yield
stress, with which the material state shall be macroscopically elastic. This conflict between the
model property and physical demands restricts the application of damage plasticity models on
concrete HCF problem. Alternatively, some multi-scale approaches are invented to overcome the
shortage of classical single scale models, by considering the localised plastic deformation at the
micro level, e.g. the two-scale damage model [54, 5].

Often the computational cost of the return mapping algorithm for damage plasticity is very
high, especially when multiple scales are involved. For the demand of fine space discretisation
and large-time-interval, structural analysis can be costly, such that the advantage of simulation
vanishes. In contrast, a generalised macroscopic rate-dependent brittle damage model, focusing on
the strength loss process with a proper damage criteria of loading and unloading, can be suitable for
concrete HCF simulation due to two main reasons. First, brittle damage and concrete HCF share
common features, e.g. mainly elastic strain is observed at the RVE level before the initiation of
macroscopic cracks. Second, compared to the two-scale models, the brittle damage model has fewer
internal variables, which is computationally cheaper with less complexity while implementing the
jumping-cycle algorithm.

4.1.2 Modelling of Unilateral Effect

Engineering brittle materials, such as concrete, ceramic, glass, exhibit considerably higher
compressive strength than tensile strength. In practice, brittle materials are often used under
heavy compressive load. The phenomenon of a general difference of material mechanical property
in correlation with the loading sign is named unilateral. Observations at the microscopic level show
that the macroscopic mechanical performance reduces when micro-cracks are opened by tension.
However, when the micro-cracks are closed by compression, they are nearly non-effective to the
material macroscopic behaviour. Due to the closure effect, the damage evolution rate under tension
is generally higher than under compression. This inequality from the prospective of physics can be
considered an anisotropic character, although the material is isotropic [83].

Theoretically, the unilateral effect shall be represented by a fourth-rank damage tensor. However,
the numerical difficulties are discussed in many references [56, 84, 85]. The model complexity
is also noticeable, despite a second-order damage tensor is implemented [86, 87, 88, 84]. In
comparison, the effort in implementation and computation can be significantly reduced by using
scalar damage variable. In order to simulate the micro-crack closure effect, it is commonly agreed by
the literature to assign unequal damage evolution for tension and compression. Different modelling
approaches specified for isotropic brittle damage including unilateral phenomenon are compared in
the following context.

Chow and Wei’s model [89] This approach considers two damage variables D ;) and D) with
which two new scalar variables D, and u,, shall be formed as follows,

b1 (1= D)1 = Dy — D)) —2DP, 4.9)
v 1— Dy — Dz ’ '

(4.10)
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Depending on the variable setting the explicit expressions of damaged Young’s modulus E, and
Poisson’s ratio vy, are given by

- E(I—Dw)2
E,(D,, = , 4.11
w(Dw, ) = avjy 201 W2 (4.11)
and 5
- vo—2(1 —v)uy — (1 —3v
B (Do ) = 2020 =Vt — My 4.12)

1 —3vpy +2(1 —v)u?
where E and v denote the undamaged material Young’s modulus and Poisson’s ratio respectively.
The second-order elastic tensor for damaged material in Voigt notation yields to

T 1 b, -, 0 0 0
B, 1 =By, 0 0 0
) 1| =5, —b, 1 0 0 0
-1 _ w w
CDup)=F= 5" 0 0 20+%,) 0 0 “@.13)
0 0 0 0 2147, 0
0 0 o 0 0 21+ 7y

The isotropic damage can be modelled by eq. (4.13), although the Young’s modulus and Poisson’s
ratio are influenced by damage in different intensity. For the unilateral effect a scalar parameter a,
is introduced as an efficiency factor to adjust the damage caused by tensile stress o and compressive
stress —o. Combing the contribution of two directions, an arbitrary active stress tensor o,.; 1S
obtained as

Ogct = (0) + ay(—0). (4.14)

The Macaulay brackets (o) denote the positive part of the quantity e, i.e. (o) = max (e,0).
Using this notation the tension and compression are separated without losing the thermodynamic
consistency and their differentiability with respect to the full stress tensor. The free energy for
brittle damage material using this method is given by

1 ~_
:OwW = Eo'act :C 1(Dw,,wa) - Ogct- (415)

The disadvantages of this method are pointed out as follows. First, the strongly coupling of the two
damage variables D) and D) raises computational costs. Second, extra efforts are needed for
determining the unilateral effect parameter.

Mazars model [61,75] The total damage is assumed as a linear combination of two scalar damage
variables, DT and D™, caused by tension and compression respectively. The expression of the
coupling is given by

D=oa*Dt+a D, (4.16)

where the parameters o™ and «~ are determined by the principle strains as

(X+ — 23: <8i> <8i> (4_ 17)
— (e1) + (e2) + (e3) .

=1
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and

o = i <_8i> (ei) (4 18)
— (e1) + (e2) + (e3) '

Although the value of D and D~ are obtained explicitly by empirical functions, the highlight of
this idea is to separate the damage from tension and compression.

Ladeveze and Lemaitre’s model [54, 90] The volumetric part is obtained from tensor
decomposition with respect to the full stress tensor. After that, a scalar closure parameter £ is
embedded to tune the damage evolution caused by compression. A special free energy for brittle
damage is then represented as

1+ [(0) (o)  (=o): <_")] i [(tm)z + <_tm>2],

2FE —p Y 1-wp | 2El1-D T 1 D

pYL = (4.19)

The strain-stress relationship is obtained by the first order derivative regarding to o, namely

Wy 1+v|[ (o) (—o) v [ (tra) (—tro’)
do  2E [1—D+1—hD]_ﬁ[1—D+1—hD]I’

eE=0p (4.20)

where I is the second order identity matrix. The inverse of the elastic tensor with isotropic damage
can be given by the second order derivative as

. Py, 1+v[ 1 (o) 1 (~0)
C!'= = — I
P62 T 2E [1—D|a|+l—hD |o|]

v 1 (tro) n 1 (tro) 11

2E|1=D |6| " 1—hD |0 ’

4.21)

The parameter % is theoretically bounded by [0, 1]. When # = 0 it means the material strength
is fully recovered under compression, or no damage caused by compressive load. For 7 = 1, the
closure effect is deactivated. It is recommended by the literature to reduce the contribution from
compression by assigning 4 &~ 0.2. The advantage of this method is also evident that no extra
damage variable is required.

Based on the pattern of brittle failure, literature agrees that tension caused damage is often
dominant, whereas the contribution from compression is negligible [63, 91, 56]. A frequently made
assumption is that stiffness recovers fully by crack-closure, namely 2 = 0. For example, the free
energy considered by Hiirkamp and Nackenhorst [82],

oYy = ﬁ [% + (—0o) : (—a)] + % [or To0— trza], (4.22)

assumes that the compression has no influence on damage. Similarly, using the deviatoric and

volumetric stress tensor, namely op and o, an effective stress is derived by Bhattacharyya et al.
[12] as

. 0p (om)
0—1_D+|:1_D—(—6H)]I, (4.23)
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in which the compressive volumetric stress is not assigned to damage. For particular loading
scenarios, e.g. the four-point bending, these models [82, 12] meet however some numerical
difficulties such as unrealistic stress concentration. In practice, the contact problem between the
specimen and the supports are often simplified as nodal displacement constrains. For short beams,
this configuration causes stress concentration in the finite elements near to the supports, rather than
at the bottom centre of the beam. To avoid the expensive computation of contact problem, while
obeying experimental observations, a new damage model for isotropic brittle material is needed.

4.1.3 A New Isotropic Brittle Damage Model

In view of [12] the free energy per unit volume for material elastic deformation can be written as a
contribution of the deviatoric and volumetric part as

K
oY = Geg e+ — [(tree)2 + (—trse)z}, (4.24)
—_— 2

deviatroic

volumetric

where €9, is the deviatoric strain tensor obtained via
eh = e’ —eyl, (4.25)
with the hydrostatic strain &9, given by

1
ey = gtr e°. (4.26)

The bulk and shear modulus are denoted by K and G, respectively. While assuming the fully
effective crack-closure [82], the free energy for isotropic brittle damage reads

K
p¥ =G (1 —D)%e% e + 5 [(1 — D) (tre€)” + (—tree)z] , (4.27)
where ¢ is a positive parameter with a value between [0, 1]. The introduction of this parameter

is used to adjust the damage contribution of the deviatoric part [92]. According to eqs. (3.34)
and (3.36), the stress tensor and the thermodynamic force are given by

0
o= ,08—1// =2G(1—-D)°ep + K((l —D)(tre)I— (—tre) I), (4.28)
€
and 5 K
Y = —p% =Go(1—D)'ep:ep+ 5 (tre)?. (4.29)
The damaged material elastic tensor is obtained by
-0 92 t —t
c=9 _ 0 g u—pyr+ |- T e, (4.30)
de de? |tre| tre|

88 D . . . .
where P = e is a fourth order projection matrix.
€
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Inspired by [2] the damage dissipative potential is defined as follows

S y\sitd
Fe = — —Yp, 431
s1—|—1<S> D (4.31)

in which s; and S are the material parameters, Yp is the damage threshold defined in terms of
energy release rate. The expression of Y is given by a linear function of damage as

Yp = SD + Ypo, (4.32)

in which Ypy is the initial damage threshold as a material constant. With this configuration the
damage surface f¢ can be written in the form

f?=F%= f(¥)-g(D) <0. (4.33)

The damage evolution can be obtained from the derivation of F¢ with respect to Y via the normality

law as

d
D= c1>(Y)ai (4.34)

Let the concave function ® defined by Y with material parameter s, as
oY) =(¥)". (4.35)

In view of eq. (3.47) the damage evolution law for brittle material is given by

. Y 51 A\S2

p={(1) (7). (4.36)
S

Equation (4.36) allows damage to increase only if Y is over the threshold under loading, whereas

during the unloading phase, damage remains constant, namely D =0. Using this assumption, D

is strictly restricted to be non-negative, which is consistent to its thermodynamic constrains.

4.2 Stochastic Damage Models

Experiments show that damage evolution at the macro-level have considerable randomness [10].
This natural property is less interpreted by deterministic damage models since statistically it
covers only the mean of material damage [23]. The stochastic modelling approach is developed
under the demand of reliability analysis for a comprehensive probabilistic description of the
damage process. Generally, microstructural heterogeneity and environmental fluctuation are
the main factors of uncertain damage evolution. In the CDM framework, efforts are made on
building phenomenological models, e.g. modelling of uncertain damage variable, introducing of
stochastic thermodynamic potentials [23, 93, 31, 25, 24, 94]. In contrast, micromechanics based
approaches relate the phenomenon of uncertain material damage to its root at the lower scale,
e.g. inhomogeneous microstructure. The parallel-spring model [68] and its variations [26, 27, 28]
are commonly used to simulate the material behaviour at the micro-scale in which the failure of
micro-elements follow a particular random distribution. The macro-scale behaviour is interpreted
by the statistics at the lower scale using the micro-macro transition.
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4.2.1 CDM Based Phenomenological Approaches

Woo and Li’s model [23] The idea is to modify the damage evolution rate as a stochastic
differential equation in the form

dD
—— =8 D®) +ht, D@) &', Vi =0, (4.37)
where {,—‘tN is Gaussian white noise, g and 4 are drift and diffusion depending on time and damage.
With initial value D () the solution of stochastic damage evolution is given by the time integral of
above equation from 7, to ¢ as

t n
D(t,w) = D(to)—i-/ gds-l—/ hdWw, (4.38)

o fo

which is a stochastic process. The mean of stochastic damage evolution has to be unbiased from
the deterministic one. Therefore, it is suggested to replace g by the deterministic damage evolution
rate D. The diffusion term is considered as proportional to the drift namely

h(t,D(t)) = ¢D, (4.39)

in which ¢ is a constant.

t
The Ito integral / dW is preferred by this model, since with this interpretation the drift
fo

coeflicient can be kept as identical to D. Indeed, solving eq. (4.38) numerically is a direct approach
to obtain the stochastic damage evolution. This approach is later on implemented by Silberschmidt
[24] to test the convergence performance of 1.5 Taylor scheme. Another one, the indirect method,
solves the corresponding Fokker-Planck equation [31]. It focuses on the development of damage
transition probability P (¢, D(t);ty, D(tp)), instead of individual trajectories of damage evolution.

Woo and Li’s model has advantages in the model generality and brevity. Since expressions
of the drift and diffusion term come directly from CDM, the mathematical scheme eq. (4.38) is
flexible to simulate different types of damage progress, such as brittle, ductile, fatigue, and creep
damage. The influence of uncertain material property and environmental variables on damage
evolution is assumed to be fully interpreted by the diffusion term together with the Gaussian random
variable. Thus, no extra effort is needed to modify the deterministic constitutive relation. The
procedure of assigning randomness to the material parameters and environmental factors can also
be avoided. This macroscopic model is numerically cheaper than the micro/mesoscopic approach
because modelling of microstructural heterogeneity is not required. A major issue of this model is
that the Gaussian random number cannot guarantee the positiveness of damage evolution rate. To
this particular problem, detailed discussion and possible solutions are provided in chapter 6.

Silberschmidt and Chaboche’s work [31, 24] The indirect approach for solving stochastic
damage evolution is presented in [31], where the goal is to investigate the relation between random
load and damage probability. The stochastic damage model is written as

dD

=g D)+ 1. (4.40)
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where ¢° is the model constant, g° is a function of stress and damage. The expression of g° is given
by a third-order polynomial as

g*(0, D) = —(a1 D> + a,D* + a3 D — a40), (4.41)

which has a similar role as the drift term in eq. (4.38). The equivalent Fokker-Planck equation of
the SDE eq. (4.40) is given by

of 0f
ot (g =5l <o @42)

in which the general stationary solution at 8f = 0 is obtained as

-1

+o00
f= |:/ exp(—2V/§s)dD] exp (—=2V/¢%), (4.43)
—0o0
with the expression of V' given by
1 P ; 1 ’
V = ZalD + gazD + §a3D —asoD. (4.44)

Although this study invests large effort to illustrate the output of eq. (4.43) with different
combinations of stress and damage value, the results are inconsistent with the reality. First, the
stationary solution eq. (4.40) is obtained after applying the natural boundary condition, i.e.

lim /(D) =0. (4.45)

This setting contradicts the fundamental definition of damage in which D is bounded between 0 and
1. Indeed, the transformation from eq. (4.42) to eq. (4.43) is restricted to a certain configuration
of the function. For example, the boundary condition eq. (4.45) can be applied on the variable
X(t, w) with its original definition assigned to the displacement of the molecule. Second, loading
fluctuations shall have observable influences on the damage growth, and the damage evolution rate
has to be time-dependent. These facts are ignored by this work. A polynomial based damage law
with stationary assumption of Fokker-Plank equation is convenient to obtain analytical expression
of damage probability. However, as commented by [31], it is more general to seek for numerical
non-stationary solution of eq. (4.42).

In another work [24], the SDE in eq. (4.40) is solved by the direct approach using the strong
Taylor 1.5 scheme eq. (2.25) to present the influence of noise intensity on the stochastic damage
evolution. The increase of damage uncertainty and the failure probability are positively correlated
to the noise intensity. In contrast, the damage mean is relatively less perturbed while changing
the noise configuration. Due to negative Gaussian random noise, damage evolution trajectories are
observed with local decreasing trend. This outcome cannot agree with thermodynamic principles.
However, the issue is neglected by this work without further discussion. Indeed, the two works [31,
24] share the common weakness that they emphasise on the investigation of numerical schemes,
whereas the model feasibility is not verified by structural analysis using the finite element analyses.
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Bhattcharya and Ellingwood’s model [25] In this model the evolution of Helmholtz free energy
is described as a stochastic process. For a representative time interval from 7o to 71, the random free
energy W at 7, is given by

. . " dw "dB
W(ty) = Y(t — dt —dt. 4.46
=)+ [Tt [ (4.46)
The second integral in eq. (4.46) assumes the free energy fluctuation as a zero-mean process
B(t,w). From the macroscopic point of view, it is an ensemble of stochastic contributions in
terms of microstructure heterogeneity and uncertain environmental factors. Based on eq. (4.46), a
stochastic damage evolution law is derived for uniaxial load as

dD 1o} é(D,t

4D _ O yp gy £20

dt Y Y

where 0 is the far-field stress and X ° denotes the free energy fluctuation per unit volume, namely

XO(t, w), (4.47)

——. The expression of X is given by the Langevin equation with positive constant n; and m, as

dVv
dXx°
dt

Indeed, by choosing a sufficient large value for m, the solution X °(z, ) is guaranteed to be zero-
mean and stationary named Ornstein-Uhlenbeck (OU) process, which is a member of Gaussian
process family. In practices it is approximated by simple white noise following the Gaussian

= Zmy X 4 e, (4.48)

m
distribution N (0, —;) Under this configuration eq. (4.47) can be written as
nmy

db = —%oé(D,t)dt _ —Vm;mlé(D,t)th, (4.49)
with its solution given by
t t
Dt o) = DO—/ (%oé(D,t)ds—/ —V”?/”“e'(/),z)dm. (4.50)
to o

This particular model has considerable similarity to the generalised one proposed by Woo and
Li [23]. The closed-forms of ductile, creep, and fatigue damage evolution are derived based on
eq. (4.46), followed by model validation studies. Investigations in this work are comprehensive
for each type of damage, including discussions on the evolution of random damage paths, statistics
of failure. The appearance of negative damage increment is also mentioned in this study. The
probability of having unrealistic damage increment is demonstrated to be positively correlated to
the time step size. Compared to the deterministic damage evolution, the mean of random damage
growth can be underestimated by the Ito integral, whereas the Stratonovich integral does not have
this problem. Random fatigue damage growth of ductile material are also illustrated, including
statistics of virtual S-N data up to 1 million loading cycles. Although the model parameters (e.g.
/ma/my) are calibrated, the simulated S-N data has a significant bias to the experimental one,
both in the mean and variance. Like the previously mentioned works, the essential step after
introducing a damage law, i.e. structural analysis based model verification, is also missing in this
study. Meanwhile, despite a closed-form stochastic damage evolution function can be derived from
this particular damage law, its applicability to multi-axial problems is not clear.
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4.2.2 Micromechanics Based Multi-Scale Approaches

Comparing to CDM based stochastic damage laws, microscopic modelling approaches share the
common two key steps: statistics and homogenisation of microscopic damage contributions. A
general statistical damage model for uniaxial tensile loading is established in [68], where the
material microstructure is simplified by parallel-string-element. The element size is fixed, which
originally contains N parallel springs, each having identical stiffness k. For perfectly brittle
material, each spring is assumed to break immediately and lose the functionality when its tensile
strength f; reaches the critical value f;X. The critical strength for each string is a random variable
(RV) to generate randomness in the number of broken springs which further induces element-wise
damage fluctuation. The microdamage occurrence is determined by the chosen random distribution
fiR. Using the Weibull distribution with shape and scale parameters « and u, damage evolution
versus strain in individual element at micro-scale has the explicit form

D(k,e) =1—exp |:— (@)a] , 4.51)

u

which is the Weibull cumulative distribution function (CDF). The macroscopic response is obtained
by the homogenisation process, which is identical to eq. (4.51). The major weakness of this model
is that the damage evolution is statistics-based. Thus it is not confirmed with the thermodynamic
principles. Meanwhile, the CDF shaped macroscopic damage evolution is not realistic for brittle
material.

A two-scale stochastic damage approach for brittle material is developed in [95, 26], where the
microfracture is driven by the Weibull CDF, and the micro-macro transition is approximated by the
simple bundle concept. The macroscopic damage at each Gauss point of the finite element mesh is
determined by the state of the corresponding parallel spring bundle, namely

N,

D=-"L
N;

(4.52)

where N, and N, are the numbers of rupture and total springs in a bundle, respectively. The bundle
volume is given by N;, which is assimilated with the REV in the CDM framework. The rupture of
every single spring for a given strain ¢ is considered as an individual occurrence of micro-defect,
which has a probability P,(e) given by the Weibull CDF as

E\Y
Pr(e) = 1 —exp [— (—) } . (4.53)
u
Under the assumption of strain equivalence, the expectation of N, is obtained by
E(N;) = Pr(e) Ny, (4.54)

with which the mean of macroscopic damage is deduced identical to eq. (4.53). In practices, N,
is random in each spring bundle, which simultaneously produces uncertain macroscopic damage
value at each Gauss point. The constitutive relation proposed in [75] is applied in the finite element
computation with modified macroscopic damage law. Certain numerical issues such as catastrophic
failure, convergence problem are discovered by this work. Increasing the model complexity can be
a solution, e.g. introducing neighbouring element effect and interaction between micro-defects.



4.2. Stochastic Damage Models 39

The study [27] assumes the failure strain ¢, of each spring is random with correlation to its
neighbours. A one-dimensional log-normal random field (RF) with correlation length /. is employed
to simulate the spatial dependence. Macroscopic experimental data is used to obtain the model
parameter at the micro-scale. This procedure is criticised by the work [69], due to the mixing
of problem scales. Refined models are developed to capture multiaxial non-elastic behaviour
of concrete, such as introducing the plastic deformable components into the spring bundle [69,
29]. Other models with higher complexity can be seen in [96, 30]. The four-element model,
including main elastic, fracture, friction and secondary elastic elements, is designed to simulate
the deteriorating hysteretic phenomenon of quasi-brittle materials. Indeed micromechanics based
model with such a degree of refinement are less applied to engineering problems, mainly due to the
high computational cost.

A summary of the stochastic damage models mentioned above can be seen in tables 4.1 and 4.2.
In order to quantify the macroscopic uncertainties, micromechanics based approaches have to
overcome two main challenges:

1. to properly configure macro/micro-scale models, such that the microscopic material
heterogeneity can be captured and the material macroscopic continuity is respected
simultaneously;

2. to propose a certain transition law between different scales, with which the statistics of
microstructural behaviour can be projected to the larger scale, and the macro-scale outputs
obey experimental results;

Generally, due to the high computational cost and model complexity, micromechanics
approaches have considerable difficulties in mass application. Based on the well-developed theory
of solid mechanics, a phenomenological approach focusing on the random reduction of material
stiffness is continuously discussed in the following chapters.



Table 4.1: Comparison of CDM based phenomenological stochastic damage models

work model uniqueness (+) / weakness (-)

(+) generalised framework with wide applicability;
(+) proposal of direct and indirect solution.

(-) less discussion on numerical implementation;
(-) possible negative damage evolution.

§D = g(D,1)dt + h(D,t) dW,, with g
Woo and Li [23] and & consistent to deterministic damage
law.

(+) Analytical solution of FPE.
(+) non-uniform damage evolution for principal and shear stress.
(-) idealised damage law (-) no structural analysis

Silberschmidt and 8§D = g*(o, D)dt + &* d W,, with drift g*
Chaboche [31] polynomial and ¢* constant diffusion.

(+) numerical investigation of strong Taylor 1.5 scheme

Silberschmidt [24] 8§D = g%(o, D)dt + ¢ d W, (-) missing structural analysis

8§D = g(D,t)dt + h(D,t)dW, (+) random damage law derived on the hypothesis of free energy
Bhattcharya and g =—-224(D,1) fluctuation;
Ellingwood [25] . (+) applied on ductile, creep and fatigue damage.

_ Jma/my .
h Y é(D.1) (-) lack of structural implementation.
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Chapter 5

Characteristics and Assessment of Brittle
Fatigue

In structural engineering, fatigue leads to the loss of material mechanical performance, which risks
the full functionality of the object. As a prior condition of fatigue assessment, it is necessary first
to understand the fatigue mechanism and its pattern. An overview of this topic is given in the first
section of this chapter, particularly regarding observations on the graphical interpretation of fatigue
data. After that, the empirical and progressive approaches for fatigue assessment are reviewed.

5.1 Fatigue Characteristics

Fatigue is a special type of damage associated with cyclical loading, which is observed with
progressive and permanent material stiffness reduction. It is initialised at the microlevel when an
irreversible micro-strain activates the crack tips. At this stage, fatigue is often a de-acceleration
process that the rate of micro-cracks evolution reduces with regard to the number of cycles. The
second stage of fatigue is characterised by the steady growth of micro-cracks in the REV. The
endurance of this stage is one of the significant factors to evaluate the material fatigue performance.
Depending on the loading condition and the structure geometry, micro-cracks accumulate faster at
some locations with intensive stress and strain concentration. Consequently, macroscopic cracks are
likely to be generated at these locations, where damage quickly reaches its critical value. In the third
stage, fatigue macro cracks propagate very fast and finally causes global failure. The fatigue life is
defined by the number of loading cycles with which the catastrophic failure happens. In practices,
it is the number cycle to observe macro cracks [97]. Generally, fatigue life can be extended while
reducing the external load. If the life cycle approaches infinity, the corresponding load level is
assigned to the fatigue limit. The Wohler curve, often known as the S-N diagram, is widely used for
the fatigue assessment of engineering instance. Through changing the quantity measured for load
levels, the diagram can be interpreted as stress-life or strain-life for different analysis purposes.

Though the material state at the last stage of fatigue is beyond the CDM theory, fatigue life
approximated by CDM based approach is significant for two reasons. First, fatigue life is dominated
by the two phases before the initiation of macro-cracks in which the material continuity is sufficiently
satisfied. Second, the crack location and the tip opening direction are predictable using damage
mechanics, with a proper modelling of material behaviour under cyclic load [2].

43
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Depending on the number of fatigue cycles, fatigue studies are generally categorised into three
areas, low-cycle (LCF), high-cycle (HCF) and super-high-cycle fatigue. A clear division of these
categories by the number of cycles is often controversial. For concrete material, a widely accepted
classification considering the different applied situation is summarised in table 5.1.

Table 5.1: Classification of fatigue regimes for concrete [98]

Low-cycle fatigue High-cycle fatigue Very-high-cycle fatigue
1 ~ 10? 103 ~ 104 10° ~ 108 107 ~ 108 > 10°
Earthquake Airport Highway Mass Rapid Transit
. . . structures
engineering pavement and railway (MRT) structures
bridges

Due to the strong material heterogeneity, the fatigue mechanism of plain concrete is complex,
having distinguishable differences in the low- and high-cycle regime. The main feature of low-cycle
fatigue is the formulation of distributed mortar cracks with continuous crack networks. In contrast,
steady development of bond cracks is often observable in high-cycle fatigue. The fatigue limit is
a quantity in terms of load commonly used in fatigue design. If the applied load is lower than the
fatigue limit, the material is considered unlimited fatigue life. Unlike metallic materials, a clear
fatigue limit of concrete is difficult to determine because plain concrete shows a limited life cycle
for almost any stress levels. A commonly used design criterion is to check the material safety
after 2 x 10 cycles of fatigue load [98, 99]. If the fatigue life exceeds this amount of cycles, the
applied load level is recorded as the fatigue limit. According to experimental studies on uniaxial
[100, 101] and flexural [16, 17] test, the fatigue life of plain concrete in both low- and high-cycle
cases can be improved significantly after adding fibre reinforcement into the volume. Through the
ductile deformation and bridging process of the reinforcement, the energy that usually causes crack
propagation in plain concrete can be intensively dissipated.

5.1.1 Testing Methods

Force and displacement controlled test are two standard approaches for fatigue experiment in which
the strain (or stress) amplitude are constantly kept. Unlike the monotonic test, fatigue load levels are
much lower than the material strength to observe the cyclic reaction. The displacement controlled
approach is often implemented for the low-cycle test, with which the specimen performs considerable
inelastic deformation. Specimens having special geometry, e.g. with notches, are generally tested
by this method. The force-controlled test is preferred for small deformable specimen subjected to
high-cycle fatigue load [97]. Although the strain/stress is constrained, the material reaction varies
by cycles due to the irreversible reduction of material stiffness. The fatigue life of concrete obtained
under the displacement controlled test is prolonged compared to the force-controlled experiment
[102].

Except for measuring the strain and stress relationship, fatigue damage can be detected by
modern non-destructive techniques, e.g. computed tomography (CT). Through monitoring the
periodically changed microstructural density, it is possible to quantify the stiffness response at the
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macro-level [103]. Innovative experimental techniques, e.g. based on acoustic or electromagnetic
resonance, are invented for high-cycle and very-high-cycle fatigue test. Fatigue data can be collected
up to 1019 cycles in practice [104]. With these approaches, specimens are stimulated at an ultrasonic
frequency close to 20 kHz, that the experimental time consumption can be reduced intensively. This
method is preferred for statistical studies because a large amount of fatigue data can be obtained
within a manageable laboratory time. Meanwhile, it has considerable flexibility for different stress
(or strain) constraints, loading ratio, frequency and amplitude. The applicability of this technique is
proven on a uniaxial test of alloy [105], concrete [102], three-point bending of composite material
[106] and large-scale beam from rail system [107]. Although the environmental factors are not fully
in effect within the shortened testing time, the influence of temperature, humidity and corrosion
are investigated using ultrasonic frequency test [104]. Since the testing frequency has considerable
difference to the real application, comparative studies are necessary to present their correlations and
possibly to reduce experimental errors.

Through distinguishing the loading directions, fatigue test is classified into compression/tension
and flexural test. Since brittle materials are mainly applied against massive compression, attentions
are emphasised on the compressive fatigue performance than pure tension [108]. Due to the
unilateral effect, fatigue of concrete material under reversing and multi-axial load is rather complex.
Very few experimental results are available in these areas. In contrast to the lack of laboratory
studies, fatigue models for unilateral and multiaxial load are well established for concrete materials
[77, 64, 8, 70].

The industrial standard of quality control, e.g. the DIN 50100-1978, recommends verifying
the uniaxial compressive fatigue strength using a cubic or cylinder-shaped concrete specimen.
The material compressive (or tensile) fatigue strength can be obtained by changing the monotonic
load to cyclic load. Besides the uniaxial performance, flexural strength is of particular interest
in designing bridges and concrete pavement. During flexural experiment concrete specimens are
mostly formed as beams placed on two supporting pins and subjected under two or single loading
pin(s). The beam’s cross-section is often a square with the side length ranging from 100 to 150
mm, and the length of the beam varies between 0.5 to 2.0 m. The flexural strength is a material
constant commonly expressed as modulus of rupture (MR) in terms of stress. Comparing to the
pure compression/tension test flexural test has the following characteristics. First, the material
reaction with this type of load is a combination of tension, compression and shearing. It exposes the
material overall mechanical performance required in real-life applications. Second, flexural fatigue
life is sensitive to the manufacturing/casting quality of the specimen. In contrast to uniaxial fatigue
data the flexural fatigue data include often higher randomness [109], which is of great interest
for statistical analyses. Experimental studies [110, 111, 112] report that compressive and flexural
strength of concrete material are strongly correlated. Therefore, it is possible to determine the
compressive strength using the flexural data as reference [113].

Before the fatigue test, the corresponding monotonic strength shall be determined in advance.
The maximum cyclic stress (or strain) is configured as a percentage of the monotonic strength using
the parameter load level L. By changing this value, one has a interval of loading levels for fatigue
test. In practice the maximum fatigue load is preferred to be 0.5 ~ 0.9 times of monotonic strength.
Using the Euler—Bernoulli beam theory the maximum flexural stress can be approximated by the
applied force and the specimen’s geometry. For example, the three- and four-point flexural tests
show in fig. 5.1 use a beam with the length of L and the side length of H. The squared cross section
of this beam Ay is given by H?2. The distance between the two supports is L and for four-point
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test the distance of the loading points is L;. A force F' is applied perpendicular to the beam via the
pin(s). Depending on the number of loading pins, the maximum flexural stress is calculated as

3FL
3p s
O = 2H 3 (5.1
and 3F(L L;)
4p _ s i
Y TE G-

for the three- and four-point flexural test respectively. The bending moment of the three-point test
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(a) three-point (b) four-point

Figure 5.1: Arrangement for a three- and four-point flexural test

has a triangle shape, which means the maximum flexural stress concentrates at the loading tip.
However, the four-point has a trapezoidal shaped moment line, with which the flexural tress is well
distributed between the loading points. This enables the four-point test to capture more realistic
material reaction. For concrete material, the four-point fatigue life is generally longer than the
three-point test [21]. However, the fatigue life of carbon-fibre composite material measured under
three-point is smaller than the four-point setup [114]. In contrast, for ceramic, the result is on the
opposite [115]. Besides the mean of fatigue life, the variation of flexural strength obtained by the
four-point test is commonly greater than in the three-point test [114].

5.1.2 Frequency Effect

The stress (or strain) rate is proportional to the loading frequency by neglecting the change of
material stiffness in one cycle. Based on the thermodynamics principles, mechanical energy is
converted from the experiment machine into the internal energy of the specimen during the fatigue
test. With the hypothesis of an isolated system, increasing the loading frequency for a given time
interval can induce an evident rise of the material temperature because extra external work is
applied. The correlation between the stress/strain ratio and the material temperature during fatigue
is highly complex, relying on real-time microscopic observations. For simplicity, fatigue damage
is modelled as an isothermal process in this study.

Generally, for low strength metallic materials, e.g. aluminium alloy, loading frequency is one
of the dominant factors to fatigue strength. Compared to the loading frequencies 10 ~ 75 Hz,
the fatigue life of aluminium alloy is dramatically extended under 20 kHz test [116, 117], as well
for the low carbon steel [118, 119]. However, frequency effect is very limited for high-strength
metallic materials, especially for low-temperature-tempered steel [120, 121] and Ti-6A1-4V [122].
A statistical study by [28] covering the very-high-cycle regime of high-strength steel shows the same
fatigue scatter band at 95 Hz and 20 kHz loading frequency.
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The frequency effect on concrete material varies to its composition and other loading parameters,
such as maximum cyclic stress. Studies on the frequency effect of plain concrete start in the 1930s
using the uniaxial compressive test, showing that the frequency effect between 4.5 Hz and 7.5
Hz is slight, whereas the fatigue life reduced intensively if the frequency is below 0.16 Hz [123].
Another study [124] at the frequencies from 1 Hz to 15 Hz shows that the effect is negligible when
the maximum cyclic stress is 0.75 times monotonic fracture strength, i.e. Lg; = 0.75. Further
investigations [125, 126] at 1, 10 and 200 Hz report no frequency effect when L; is less than
0.8. Once the factor is over 0.8, the frequency effect becomes however significant [127]. Fatigue
life of four types of concrete materials are studied at 4 Hz, 1 Hz, 1/4 Hz and 1/16 Hz by [20]
with Ly = 0.85. It shows that fatigue life and loading frequencies have a linear correlation on
the log-log scale for plain concrete. However, high-strength concrete materials, such as the steel
fibre reinforced concrete (SFRC) and the steel fiber reinforced self compacting concrete (SFRSCC),
exhibit longer fatigue life with less frequency effect. Similar observations are reported in [102]
using ultra-sonic-frequency test up to the very-high-cycle fatigue regime. A general description of
frequency effect at different load levels can be seen in [4] in which the effect is consistently observed
during the interval of L from 0.6 to 0.95.

In conclusion, the frequency effect generally exists for various engineering materials. Its
intensity depends on the combination of material static strength and the applied load level. For
both metallic and concrete materials, the frequency effect and the static strength have a negative
correlation, such that high-strength materials expose a more negligible frequency effect. For regular
plain concrete, the frequency effect is significant when the fatigue load is near the static strength. By
converting the fatigue life into the total duration of time, increasing the loading frequency induces
a shortening in the service time.

5.1.3 Loading Ratio Effect

Fatigue behaviour of concrete under different loading ratio R have noticeable differences [128, 129].
For force controlled test, the ratio is given by the maximum and minimum stress in a load cycle as

R = Smin/SmaXv (53)

with the sign of stress distinguished by compression and tension. The loading ratio has interaction
with the mean stress S given by

] Smax Smin
S = ;’ (5.4)
2
and the stress amplitude AS evaluated as
Smax - Srnin
AS = — (5.5)

For example, given Si,x and R > 0, i.e. for pure tension or compression, increasing R can enlarge
the mean stress, which leads to the reduction of fatigue life. An intuitive approach to assess the
correlation between S and AS is to use the constant-life diagram. The combinations of the two
variables introducing equal fatigue life under different loading ratios are demonstrated by contour
lines. Due to the lack of experimental data, these contour lines in the early age were assumed to
be linear, such as Goodman diagram. However, as argued in [130] there is no physical evidence
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supporting the Goodman hypothesis. Indeed, non-linear constant life diagrams are successfully
implemented in [131, 132, 133, 134] to predict fatigue life of fibre reinforced composite material.
An empirical model [131] for constant life assessment is proposed as

Sr— Smin Smax
s . (

ﬂ -
Smax Sf ) (Nf - 1)’ (56)

where S is the fracture strength either in monotonic tension or compression, ¢, f and y denote
parameters for a certain loading ratio and frequency, and Ny is the average of fatigue life. As
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illustrated in fig. 5.2 for a required life-cycle the good combinations of Ao and ¢ have to be within
the corresponding contour area. Because of the good readability, constant life diagrams are powerful
for fatigue design in terms of the loading ratio effect. However, it is only valid for certain loading
frequencies that are available on the diagram. The applicability of instances subjected to random
loading is not proven. To improve the quality of this diagram, a very fine discretisation on the load
levels with an extensive testing range is required. Meanwhile, the experiment settings have to cover
different loading ratios and testing frequencies for better applicability in the real-life.

Alternatively, if a large amount of fatigue data are available, the constant life diagram can be
presented as the statistical minimum of the fatigue life. The statistical mean and variance of the
S-N relation can be obtained using regression analysis on the fatigue scatters. Instead of the fatigue
mean, the lower/upper bonds of the fatigue confidence interval can be plotted on the constant life
diagram, to help the design of reliability. For the lack of experimental data, the empirical 95%
confidence interval is often used in practice. The minimum life cycles N?S are calculated through
an empirical relation to its average as

log,, N}S = log,o Ny —log,o N, (5.7)

where N, is a parameter obtained from experiment for a certain loading ratio and frequency.

5.2 Fatigue Life Assessment

S-N curve is a standard approach for fatigue life assessment. The horizontal direction represents
the fatigue life in cycles N ¢, and the vertical axis can be the value of maximum or mean of cyclic
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stress/strain, more often, load levels marked by L. Experimental fatigue data are observed with two
common characteristics. First, most materials show better resistance under lower loading amplitude
than the higher one. Second, fatigue data have strong uncertainties, such that fatigue life is often
random for every load levels. Under the assumption of a perfect experimental environment, namely
by neglecting the epistemic uncertainties, the uncertain empirical fatigue data is a phenomenological
representation of the material heterogeneity. The variation of mechanical performance caused by
random microstructure cannot be fully removed as a nature of concrete. Effort on the quality
control of the casting process, e.g. hardening time and environment, is possible to reduce the
variation. Besides the material uncertainties, the limited number of fatigue data and unpredictable
environmental factors, such as random load, increase fatigue life assessment difficulty in reality.

5.2.1 Empirical Approaches

Deterministic models To reduce the experimental cost, fatigue data are often obtained with sparse
load levels, such that only a few samples are available. Empirical approaches aim to provide an
analytical expression of the S-N relation based on the regression analysis of the experimental data.
The Wohler equation assumes, the fatigue stress S is correlated to the logarithmic fatigue life
log,o Ny by

S =alog,y Nr + B, (5.8)

where o and B are the parameters fitted from the fatigue data. This model with a simple equation is
very friendly to engineers for the design of fatigue. The major weaknesses are the lack of physical
interpretation of the two parameters and the missing capability to describe the effect of loading
frequency and the loading ratio. Since the S-N relation is modelled by an algebraic function with
almost no thermodynamic constraints, it is difficult to assign a proper physical quantity to both
parameters. The combination of the parameters is only valid for a certain fatigue load. Meanwhile,
this model cannot capture the correct non-linear S-N relationship when cyclic stress is near fracture
strength.
To include the load-ratio effect the model given by eq. (5.8) is modified in [135] as follows,

Smax
Sy

= 1—(1—R)Blog;, Ny, (5.9)

max

using the assumption, N = 1 when = Ly = 1. For concrete the value of f is obtained as

0.064 under compression [135] and recommend by [15] as 0.0690 for flexural fatigue. This model
is however only valid for R > 0, namely not for reverse loading [136]. To overcome this shortage
the following expression is proposed in [137],

Smax Smin

+ B
Sy Sy

o = log,y Nr, (5.10)
in which R is replaced by the incorporation between Sy, and Sy;,. In view of the modelling concept
the Suntherland model given by eq. (5.6) is a variation of eq. (5.9) with considerable similarity to
eq. (5.10), whose applicability is extended for R < 0.

An analytical S-N model concerning frequency effect is first introduced in [138]. As mentioned
in section 5.1.2, fatigue life can be influenced by the interaction of the load levels and loading
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frequencies. Two different expressions are assigned separately to high and low cycle fatigue of
concrete as

Smax

& =1-00662(1 ~ 0.556R) log,y Ny —0.0294log, T for HCF,
s

Smax

& =1.2-02R ~0.133(1 = 0.779R) log o Ny — 0.053(1 — 0.445R) log,, T, for LCF.
f

(5.11)
where 7" denotes the loading period. However, this model is argued in [136] having less evidence
about its applicability on reversal load. A further improvement is made by the study [136] in which
a loading rate coefficient C is introduced into eq. (5.9) as

SmaX
Sy

= Cs[1=(1=R)Blog,yNy]. (5.12)

with
Cy=ab 00l 4 ¢, (5.13)

where f, is the applied frequency, a, b and ¢ are the material parameters determined by experiments.
Under this setting C s and f, are positively correlated. The chance of loading frequency can be
reflected by the change in fatigue life. The applicability of this model is tested with a wide range of
frequencies from 1073 Hz to 30 Hz and loading ratio from —1 to 0.5.

Although the effects of stress reversal and loading frequencies are included, only the
deterministic S-N relationship is considered by the models listed above. There is a common
lack of description on the randomness of fatigue data. These models are sufficient for classical
fatigue design in which the safety factor is the designing object. Whereas for reliability design, The
development of probabilistic models is needed.

Probabilistic models The probabilistic models commonly agree that the material property and
external loading are subjected to uncertainties. Given the models [15, 19], the general approach
is to build a probability function of fatigue failure, which correlates the model parameters to the
material and testing parameters.

Statistically, with a certain configuration of fatigue load, the output of a deterministic model
is an approximation of the mean of fatigue life, namely E{N}, N7,--- N}} with i denoting the
sequence of data samples. Instead, by considering fatigue life as a random distribution, probabilistic
models are able to deliver further stochastic moments, such as the variance V {N fl N sz -« N }}
Random distribution functions, e.g. log-normal, Weibull, are involved in the statistical description of
fatigue data. However, as stated in [139] log-normal is not compatible with the material irreversible
reaction under fatigue loadings since its hazard function decreases with an increasing number of
cycles. Weibull is widely applied on distribution regression of concrete fatigue data obtained under
compression [20, 19], three- and four-point flexural test [21, 15, 17]. The common procedure of
developing probabilistic models is explained in the following context.

The fist step is to fit the fatigue data by a suitable random distribution. Let the cumulative
distribution function (CDF) Fy(t) denote the probability of failure at . The current reliability
R.(t) is given by

R.(t) =1— F;(1). (5.14)
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Normally, the reliability reduces in time with its expression given by

R.(t) = exp (— /Ot ha(r)dr) , (5.15)

in which &, denote the hazard function. The term h,(¢) - At is a conditional probability that the
object fails in the interval (z,7 + At) after surviving in (0, ¢), namely,

ha(t) - At = P (At|R.(1)) . (5.16)

This gives the expression of /,(¢) as

ha(t) = lim Re(t) = Re(t + A1) _ falt)

=0 AtR,(t) " R.(t)’ .17)

where f; is the probability density function (PDF). It is required to have a monotonic increasing
h, which can be suitable to the irreversible accumulation of microscopic damage during fatigue
process [15]. As a proof of the conclusion from [139], one may consider a log-normal fatigue life
with standard deviation o. The corresponding hazard function is written as

1 InN —InN
he(Nso) = Wde( Of)/F;V( ~ f), (5.18)

in which f dN and F afv denote the PDF and CDF of the standard normal distribution, respectively.
The monotonicity of eq. (5.18) cannot be always ensured under the influence of o, thus log-normal
distribution is avoided by the studies [16, 17, 15, 19, 21]. The PDF and CDF of the two parameter
Weibull distribution can be expressed as

=2 ) [ C))

d
" FI*(x) = 1—exp [— (g)a] , (5.20)

in which the u is the characteristic life (or scale parameter) and « is the shape parameter. Based on
eq. (5.17) the hazard function of Weibull distribution is obtained as

X

R (x) = (;)‘H , (5.21)

which is a monotonic increasing function Vx > 0. By replacing the variable x with N ¢ the Weibull
distribution is compatible to the expected fatigue behaviour. Generally, there are three methods to
determine the parameters « and u, the graphical method, the stochastic moment method and the
maximum likelihood method.

Graphical method Based on eq. (5.20) the reliability function in terms of fatigue cycles is
obtained as

Re(Ny) = 1 — FJ*(N ;) = exp [_ (%)a] . (5.22)
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The logarithmic operation on two sides of the equation above provides

InR, = — (&) . (5.23)
u

By repeating the operation on eq. (5.23), one has

1
In |:ln (R_):| =alnNy—alnu, (5.24)

e

which can be represented as a linear function

Y=aX+¢, (5.25)

with YV = In |:1n = ], X =InNy and { = —aInu. The distribution parameters can be read

from the plot of fatigue data, if a linear trend of & versus ) is observable. Once the Weibull
parameters are determined, the proposed distribution is an empirical approximation of the fatigue
life subjected under the corresponding load. For example the following table 5.2 collects a sequence
of fatigue data published in the study [17] for concrete under four-point flexural test. The

Table 5.2: Empirical reliability and failure probability obtained from experimental data

i R~ 1= sy Fy*=1-R, N
1 0.9231 0.0769 75,668
2 0.8462 0.1538 96,251
3 0.7692 0.2308 119,562
4 0.6923 0.3077 131,198
5 0.6154 0.3846 150,947
6 0.5385 0.4615 178,217
7 0.4615 0.5385 191,326
8 0.3846 0.6154 211,319
9 0.3077 0.6923 235,282
10 0.2308 0.7692 346,603
11 0.1538 0.8462 394,352
12 0.0769 0.9231 468,581

procedure starts by sorting the fatigue data in an increasing order in terms of N } The reliability is
approximated by the empirical survivor function, namely,

i
n+1

R.(i)~1— (5.26)
in which n denotes the number of samples. Applying the operations of egs. (5.22) to (5.25) on N }
and R., one has the result plotted in fig. 5.3. The variables X and ) are linearly correlated in the
plot, with parameters estimated as @« = 1.78 and { = —22.15. Therefore, the Weibull distribution
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with shape parameter 1.78 and scale parameter 2.48 x 10° is a good approximation of these fatigue
data.

Stochastic moments method With this method the Weibull parameters are correlated to the
stochastic moments in terms of mean and variance as

E(N}) =uTl (1 + l) : (5.27)
07

. 2 1\)\?
V(Ny) =u? [F (1 + &) — (F (1 + &)) } . (5.28)

It is possible to estimate the distribution parameters, once the statistical mean and variance is
available. Since both E(N j’}) and V(N J’}) have dependency on « and u, the algebraic equations
eq. (5.27) and eq. (5.28) have to be transformed in the following steps to separate the parameters.
A dimensionless quantity C, named as the coefficient of variation, is introduced to determine «. It
is the measure of variability of Weibull samples given by

() = ;((]]VVC)) _ [r (1 T 2) T (1 n é)] -1 (5.29)
f

As suggested in [15, 140] eq. (5.29) is equivalent to the reduced form

and

a = (Cy) 1. (5.30)

for the given concrete material. The data samples shown in table 5.2 have a statistical mean
IE(N}) = 2.16 x 10° and variance V(N}) = (1.24 x10°)? which gives C, = 0.57. By substituting
into eq. (5.30) and eq. (5.27) one has @ = 1.82 and u = 2.44 x 10°. This result shows considerable
similarity to the approximation made by the graphical method. It is mentioned in Oh [15] that the
parameter proposed in eq. (5.30) is only applicable for the stress level Ly = 0.8. However, the
data collected in table 5.2 is from experiment with Ly = 0.75 and the parameter approximation
is successful. The observation above verifies the applicability of stochastic moments method in
parameter analysis of Weibull distribution, particularly, for fatigue data obtained from foreign load
levels.

Maximum likelihood method  This method is suggested by the standardisation organisations
in prescriptions, €.g. DIN EN 843 and ASTM C1239 [141]. It seeks for a combination of shape
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and scale parameters that maximises the Weibull likelihood function of the experimental data.
This method has its advantage in the quality of estimate parameters, because maximum likelihood
estimation is statistically unbiased. The Weibull likelihood function is given by the joint density of
the data samples as

n . n Ni a—l Ni o
L alNy) = [ f3°WVE) = ]‘[% (j‘) exp [— (Yf) } (5.31)

i=1

whose maximum value has to be determined. The logarithmic operation is applied on eq. (5.31) to
linearise the problem as

n N a n .
Lin=InL(u,a|Ns) =nlna —nolnu — Z (—f) + (@ —1) ZlnN}. (5.32)
u
i=1

i=1

Since the logarithmic transformation has a monotonic increasing trend, the maximum of eq. (5.32)
and eq. (5.31) give equivalent result. The gradient of eq. (5.32) with respect to u# and « are given
by

0Ly, 1

1 z i\%
. :—na;+o¢§(Nf) T (5.33a)

8£1n n z N]lf N]lf “ i
- :&—nlnu—i;ln<7 exp | aln | —- +;1an. (5.33b)

The equilibrium points of eqgs. (5.33a) and (5.33b) therefore provide the best approximation of the
shape and scale parameters, namely o* and u#*. A mathematical transformation on eq. (5.33a) gives

R ax
u*:[;Z(N}) } _ (5.34)

i=1
Through substituting eq. (5.34) into eq. (5.33b) one has the expression for the solution of «* as

a* . —1
Lint (N} ) lf*Nf - Xn:ln(N}) . (5.35)
> i=1 (N}> i=1

A closed form solution of eq. (5.35) is however not available. Instead it can be solved by iterative
schemes, e.g. Newton-Raphson [140]. The shape and scale parameters using the maximum
likelihood method are obtained by the Matlab program as u = 2.46 x 10° and « = 1.96 for the
data in table 5.2.

As a short summary, the three methods presented in the previous context are generally applied
in fitting Weibull distribution to experimental fatigue data. The result of parameter estimation
is similar with differences in approximation quality. The maximum likelihood method has its
complexity in the implementation, whereas it shows better fitting performance than the others. The
graphical and stochastic moments methods are intuitive for demonstration purpose, although they
are less accurate.

*
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Once the distribution of fatigue data is confirmed, it is necessary to introduce the experimental
variables, e.g. stress level, frequency, loading ratios, into the probability of failure, ideally as

Nf Ol(S’fq’R"")
F}°(Ns; S, fg R,-++) = 1 —exp _(u(S 7R )) , (5.36)
) q» s

in which N is the primary variable, the secondary variables ¥ and « are written as functions of
loading parameters. For an explicit formulations of & and u particular regression analysis regarding
to the experimental variables are needed. Since the shape and scale parameter rely on large amount
of fatigue data under certain loading condition, which is often unavailable, regression study meets
considerable difficulties [20]. In the framework of eq. (5.36) two probabilistic fatigue models are
introduced in the following paragraphs.

The probabilistic model [15] is frequently used for four-point bending fatigue prediction. It
can be considered as a simplification of eq. (5.36) in which the Weibull scale parameter has only
dependency on the stress level. This model is developed on the deterministic assumption given by

Smax -
f

in which m and C are material parameters observed by fitting S-N curves. Since N s in deterministic
model represents the statistical mean of fatigue data, eq. (5.37) is substituted into eq. (5.24) to obtain
the following explicit relation,

U(Smax) = €xp M .C (Sma*)_m A exp (0'5;72) .C (Sma*)_m, (5.38)

Sy Sy

whereas the shape parameter « is reduced to a material constant. The validity of this model
for fatigue design is proven in [140, 16, 17] on concrete material with different volume density
(0.5%,1.0% and 1.5%) of steel fibre reinforcement.

Another model [19] is recently developed considering probabilistic influence of loading ratio
and frequency. This model is developed with two assumptions. First, the failure strength under
fatigue loading S, and static strength Sy, are not identical but correlated by the loading rate,

written by

. 2

Sta _ (54 (5.39)
Sfo So

where S and S, are the time derivative of fatigue and monotonic stress, ¢ is a material parameter.
Second, the probability of failure is a Weibull CDF function mainly depending on the static material

property as
St —Sp\*
Fi*(Ss) =1—exp [— (%) } : (5.40)

where k and A are the shape and scale constant, Sp is the fatigue limit in terms of static stress.
The idea is to explore an explicit expression of S 5, (Smax, f4, R, N r) which can be substituted into
eq. (5.40). The relationship between S, and S f, is obtained as

Sy —Sp=(Ss— SD)N[b+cln(1+fq)](1—R)
d 0

7 , (5.41)
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with material constant b and ¢, under the following three limits conditions

i, $10= 5o
11Q1—>ml Sr, =S85, (5.42)

Lim S5, =S4
By inserting eq. (5.41) into eq. (5.40) one has

S;—Sp

AN;[b-i—cln(H—fq)](l—R)

Fy°(Ns; Sy, fg» R, Sp, A k) =1—exp | — , (5.43)

with Sy derived from eq. (5.39) as

. s . s
So SO
S; = Smax | s | = Smax . 5.44
4 (2qu5) <2qumax(l—R)) -4

The model is initially validated by the study [19] on compressive fatigue of concrete. It shows a wide
compatibility for different stress ratios R = [0.1, 0.3] and loading frequencies f; = [4, 1, i, %] Hz
for specimens with/without fibre reinforcement. Further in the work [20] this model is compared
to the deterministic models shown by egs. (5.9), (5.11) and (5.12) particularly on the performance
of frequency effect description. The mean produced by the model eq. (5.43) has better agreement
than the others while fitting to the fatigue data with constant stress ratio R = 0.3. As proven by a
recent study [21] this model is feasible to predict four/three points flexural fatigue life of concrete
with variations in the reinforcement.

In conclusion, civil engineers can benefit from the empirical fatigue models because
they are simple to implement with explicit model formulations. The S-N relationship is
obtained straightforwardly, especially with the deterministic empirical models. After decades of
development, the model compatibility is improved, such that both the effect of varies frequency and
stress ratio can be described. Meanwhile, probabilistic empirical models are beneficial for fatigue
design, as the probability of failure is predictable by direct substitution of loading parameters into
the model. While fitting experimental fatigue data, the Weibull distributions are frequently used.
With an optimised shape and scale parameter, probabilistic models are able to capture fatigue
randomness of concrete in compressive and flexural loading situations. Since external load are
simplified as input parameters, it is challenging for empirical models to represent the influence of
loading history, such as random loading, change of stress range. The solution provided in [15] is to
simplify the random load by its historical mean, such that eq. (5.37) becomes to

C
E [(Smax/SF)™]

and the classical linear Miner’s rule is employed to accumulate the fatigue damage under varies of
loading levels, namely

E(Ny) =

(5.45)

max

D=>Y" (%E [(SmaX/Sf)’"]) . (5.46)

Ly=1 Ls
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Similarly, a generalised nine-parameter empirical model is exposed in the study [18], to capture
fatigue damage under any stress history. Although loading frequency is neglected by this model for
simplification purpose, the identification of model parameters requires considerable effort both in
the experimental and numerical study.

5.2.2 Progressive Approaches

Compared to empirical models, the progressive approach is CDM based. Fatigue is treated as a
damage process, which accumulates monotonically during cyclic load. Through studying damage
evolution in time! D(¢), fatigue life is the elapsed time when the critical damage value D, is
reached, namely,

D(t) = D.. (5.47)

For concrete, D, = 0.3 is employed to indicate the vanish of material continuity. Since eq. (5.47)
is not invertible, solution of fatigue life is often implicit. The relationship between D, and N is
interpreted in the study [54] with the hypothesis of having linear damage evolution.

Let function G(S, f;. R) denote the damage evolution rate D. The current damage is generally
calculated by the integration on time as

D(t) = D(to) + / G(S. f,. Rydx, (5.48)

to

where D(#y) is the initial damage value. Using the transformation from time to the cycle period one
has the approximated damage evolution per cycle

D

— = Ddt =G -T. (5.49)
oN 1cycle

The fatigue life is a quantity satisfies the following equation

D, 1 Ny
—dD = dN. 5.50
| grir= | (5.50)

Apparently, egs. (5.49) and (5.50) are only valid for constant evolution rate. In reality D is often time
dependent, and the damage process has to be solved numerically. To explain the implementation
procedure, an example of reproducing the S-N relation is presented as follows. Moreover, its
deterministic performance is compared to the empirical model [15] and the experimental data
provided in [17]. Since the empirical models have no geometry dependency, the following
comparative study focuses on the discussion of model parameters. An example of Structural
analysis is given in chapter 8.

Example: S-N curve reproduction Consider a simple brittle damage evolution law [2],

D= <Y _SYD> (Y), (5.51)

T Also possible in cycles, with the transition between time and period, i.e. t = N - T.



58 Chapter 5. Characteristics and Assessment of Brittle Fatigue

with material parameter S and 5. Damage threshold Yp is given by

1
ESZDE’
R T (5.52)

2E(1—-D)

for strain or stress constrained test respectively in which ¢p and op denote the corresponding
threshold. The angle brackets are subjected to satisfy the KKT conditions given by eq. (3.49). For
cyclic loading and unloading the damage evolution is regularised as follows:

e Damage increases only in the loading phase, i.e. Y > 0 if the material state is over its
threshold. Otherwise, the damage remains its last value;

e During the unloading phase, Y < 0, there is no damage evolution.

For an intuitive understanding of these conditions, the interval for effective damage evolution under
an arbitrary strain controlled load (R = 0.1, f; = 1 Hz, ey, = 0.01) is presented in fig. 5.4.
Special attentions are paid during the time discretisation, to capture the maximum and minimum
load. Besides, very small time steps are needed in practice. Normally, enlarging the damage
threshold causes the delay of damage growth, because the number of effective time steps involved
in the damage evolution is reduced by this action. This can further induce the change of fatigue life.
On S-N diagram the fatigue limit corresponds to the damage threshold.

1072

Figure 5.4: Effective damage growth during two cycles
with interval above damage threshold marked

e(t)

< damage growth
== damage threshold

0 0.5 1 1.5 2
t[s]

According to eq. (3.36), the time derivative of strain energy release rate is obtained as
Y = Eeé. (5.53)

Combining eqs. (5.51) and (5.53), an implicit function system for damage evolution is given by

Y, - Yo\’ /Y, —-%,
Dn+1_Dn:< n+1 D> < n+1 n>-Al,

S At

Yor1 =Yy = Ecpy1(eny1 — &n).

(5.54)

Having the states at n, the two unknown variables D, ;; and Y, 4+ can be solved by the Newton-
Raphson scheme. If the criteria D,4+; > D, is reached, the fatigue life can be converted from
the iterated time, namely n - Atz. Using the loading information from fig. 5.4, an virtual material
response within two cycles is obtained via solving eq. (5.54). The results in terms of damage



5.2. Fatigue Life Assessment 59

-108
0.3
g 30
g 73
3 o
_ 020 % E = 2L
= - &
Q N
o1f i g [ g °
: I 3 S 1
< <
i g =
] (=}
0 J ! - ! > . 0 L L L L J
0 0.5 1 L5 2 0 02 04 06 08 1
t [S] & .10—2
(a) damage evolution (b) strain-stress relationship

Figure 5.5: Material response within two loading cycles computed from eq. (5.54)

evolution and the ¢ — o relation are shown in figs. 5.5a and 5.5b respectively. To clearly illustrate
the loading-unloading behaviour different colours and line types are used. Comparing to empirical
models, these plots show the advantage of using the progressive approach in capturing the detailed
material response. Since damage evolution rate is dominated by parameters s and S, after calibration
it is possible to accurately predict the fatigue life.

The deterministic S-N relation [15] given by eq. (5.37) can be written as

Smax " _ m __ C
( S, ) = (Ls)" = N, (5.55)

in which C = 154.45 and m = 24.10 are suggested in [17] for the concrete material SFRSCCO005.
The function of parameters, m and C, is to control the slope and scale of the S-N curve. For the
calibration of s, consider the following expression

D. AD Ymax — YD \* [ AY
— ~ , (5.56)
Ny AN S AN

as an approximation of eq. (5.54). Since within each cycle Y;,.x is proportional to Syax, €q. (5.56)
can be derived as

(N7) ™ o (Sma) - (5.57)
Comparing to eq. (5.55) one has the approximation s ~ %m The influence of parameters s and
S on the appearance of reproduced S-N curve are demonstrated in fig. 5.6. The dashed curve is
the reference solution given by [17] using the model from Oh [15]. The virtual S-N relations are
produced with the damage law in eq. (5.51) using different parameters. In view of figs. 5.6a and 5.6b
the slope and scale of the simulated S-N curve can be modified by changing s and S respectively.
With calibrated material parameters the S-N relation reproduced by the progressive approach is
very close to the empirical result. An error comparison on five different load levels can be seen
in table 5.3, where the empirical result is published in [17] using eq. (5.37), and the progressive
result is reproduced using eq. (5.51) with s = 12.05and S = 4.87 x 103. At each loading level the
absolute error of the two approaches is considerably small.
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Figure 5.6: Appearance of reproduced S-N diagram by changing damage parameters

Table 5.3: Error comparison of simulated fatigue life at five different load levels using empirical
and progressive modelling approach

Ly: (%) 09 085 0.8 0.75 0.7

Empirical 2993 11869 51162 242351 1278082
Progressive 2993 11869 51163 242351 1278080
error 0 0 1.95x107° 0 1.56x107°

Example: frequency and mean-stress effect simulation Progressive approaches rely on the
numerical solution of damage evolution, which means fatigue characteristics such as the frequency
dependency, mean-stress effect can be generated by a proper modelling of the damage evolution
law. Consider the following damage evolution rate,

D= <Y _SYD> (). (5.58)

which is identical to eq. (5.51) if parameter s; = 1. For the case s; # 1 the incremental form of
eq. (5.58) given by

(5.59)

Dyy1— Dy _ Yot1 =Y\’ [ Vo1 — ¥ \™
At S At ’

which has dependency on A¢, namely, for a fixed number of discretization per loading cycle damage
evolution is frequency dependent. Since At is often much smaller than 1s, changing s; leads to
increase/reduce of damage evolution rate. Comparing to Dats; = 1an assumption can be made
as follows:

D(sy) > D(sy = 1) if 51> 1,

; . _ (5.60)
D(s;) < D(s;=1) if sy <.

By changing the parameter, s;, the frequency effect in term of fatigue life can be observed on the
virtual S-N diagram (see fig. 5.8). In this figure the S-N relation at four different frequencies are
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evaluated by s; = 0.7 and s; = 1.3 respectively. Taking the other parameters identical to eq. (5.51),
the simulation result of eq. (5.58) shows that fatigue life can be extended via increasing the loading
frequency. This outcome agrees with the assumption made in eq. (5.60), that increasing s; leads to
the rise of damage evolution rate, and the influence at a high loading level is significant.
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0.85

Figure 5.7: General frequency effect generated by
two samples of s in cooperating with uncalibrated
damage parameters
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To quantify the influence of s; on the simulated S-N relation under different loading frequencies,
model parameters at 10 Hz are calibrated to meet the reference data at the same configuration given
in [17]. In fig. 5.8a fatigue life at 20 Hz is slightly increased by 1.5 times comparing to 10
Hz. After changing frequency to 0.1 Hz, Ny can be reduced intensively up to 5 times. This
graphical representation is consistent with the experimental observation reviewed in section 5.1.2
about the loading frequency effect of concrete material. On the contrary, for the simulation s = 1.3
(see fig. 5.8b) it appears that reducing the loading frequency can extend the fatigue life. This
conflicts with the fatigue behaviour of brittle material in the general sense. Thus, the frequency
effect modelled by s; < 1 is considered. Indeed, a good approximation of s; depends on a large
amount of experimental data from different frequencies. Since s; has interaction with other damage
parameters, any trial of s; leads to a new calibration of S and s. This example also shows that the
progressive approach can potentially capture the frequency effect of fatigue damage.
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Figure 5.8: Frequency effect modelled by damage evolution with different s; after parameter
calibration
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To reproduce the mean-stress effect, different loading ratios are tested using model eq. (5.58)
with s; = 0.7 and S, s calibrated with reference data at 10 Hz and R = 0.1. S-N curves for R
from —1 to 0.8 are demonstrated in fig. 5.9a. The curves are very close to each other indicating
that the mean-stress effect in this range is minor. Results for a particular load level 0.7 is plotted in
fig. 5.9b. For pure compressive test (R > 0) with fixed Syax, increasing R is equivalent to enlarging
Smin- Thus, fatigue life is reduced when R approaches to 1. The reversed tension-compression
simulation with negative loading ratio up to R = —1 also show similar interaction between N s and
R. Comparing to the pure tension test, fatigue life can be extended under compression. However,
R = —1 is a special case with which fatigue life is reduced significantly. Since the S-N relation for
all R are almost linear in the log-log plot, it is possible to fit Ly and N ¢ in the following polynomial

InLy = piInNy + ps, (5.61)

in which p; and p, denote the linear model parameters.

Table 5.4: Parameter fitting of eq. (5.61)

R -1.0 -08 -06 -04 -02 0.1 0.2 0.4 0.6 0.8

pi(- —1072) 4136 4.145 4.145 4.145 4.144 4.143 4.143 4.142 4142 4.140
p2(- 1071 2.107 2283 2281 2276 2270 2258 2252 2239 2218 2.177
lle]|(- 107%)  8.380 5.614 5.446 5.587 5.906 6.176 6.289 6.500 6.550 7.156

Table 5.4 summarises the fitted parameters and the norm of residual for the loading ratios under
test. For a target N range from 103 to 10° one can obtain the approximated L; for each loading
ratio using eq. (5.61) in view of table 5.4. According to the Goodman diagram demonstrated in
fig. 5.2, the quantities in horizontal and vertical directions are transformed as follows,

S/Su = (Smax + Smin) /28y — LR = [ (5.62)
AS/Su := (Smax — Smin)/28u — 20R = ALy, '
with two new quantities Ly and A L, defined related to the loading level. By this definition, a similar
Goodman diagram regarding to the load level is plotted in fig. 5.10. A general conclusion can be

made for all the loading ratios under test, that reducing the loading level leads to an extension of
fatigue life.

Jumping-cycle algorithm The idea of this algorithm is from linearising the damage evolution,
with which the computational effort of high-cycle fatigue can be largely reduced [2]. Although
damage evolution in long term is generally non-linear, for a shorter period in HCF damage evolution
is often steady, and can be approximated by a linear function. With this assumption the cyclic damage
increment, namely AD /AN, is treated as a constant for certain cycles AN€. This improves the
computational efficiency, that material reaction within these cycles can be extrapolated, rather than
computed at each time steps. Due to this extrapolation procedure, the name "jumping-cycle" is given
to this algorithm. Often two basic quantities shall be determined by this algorithm, i.e. AD/AN
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Figure 5.9: Simulated fatigue life under different loading ratio with closure parameter 7 = 0.2
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and AN€. According to eq. (5.49), damage increments per cycle can be obtained by accumulating
its evolution at each time steps, namely

AD "
“Z~ Y Déu, (5.63)

where 7 is the number of time steps per cycle. The number of cycles under extrapolation is calculated
using the material parameter D, as

Dmax

. AD
K AN’
in which « determines the number of divisions of the whole damage process from zero to its
maximum value. For simplicity D, is set to be identical to the critical damage value D.. After
extrapolating AN€ cycles, AD/AN needs to be updated at the beginning of the next division.
Generalised to j-th division, eq. (5.64) is rewritten as

(5.64)

max

K

AD ) )
=ANS-[— ) , withl < <«k. (5.65)
J AN/,

Indeed, the initial damage value in the iteration given by eq. (5.54) is set as D,.x/k at the beginning
of each division. When the maximum damage value is reached, fatigue life is obtained by the
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summation, 1.e.

K
Ny =) AN;. (5.66)
j=1

A schematic demonstration of the jumping-cycle algorithm in two example divisions can be seen
in fig. 5.11a in which only the first cycle of full computation is needed for each division. Since the
computational cost of numerical extrapolation is almost negligible, the total time consumption of
HCEF simulation can be comparable with finishing « cycles of full computation. The error of fatigue
life and the cost of CPU time are introduced as

HNK _ N/%
W= (5.67)
Vi
and
o 1k
tohy = o2 (5.68)
tCPU

in which the quantities with a superscript K (k > «) are the references.

Taking again the benchmark problem, i.e. to reproduce the S-N curve in [17] using damage
law given by eq. (5.51). Considering & = 220 the relative cost of k = 200 is approximately 4
times higher than the case with k = 50 (see fig. 5.11b). The accuracy can also be improved while
increasing «, with frequently updated damage increments. Since the convergence of error and the
growth of cost have different speed, an optimised « is desired to balance the error and cost. An
example of x = 45 can be given by the cross of the two curves.

1r 71

—— error 7
—— computation 08 —e=. COSt o 0.8
----- extrapolation 5 Roe g
5 0.6 106 S
S 2 d z
= F 04 104 =
: . : e
AN 7T 0.2} 10.2
) O | | |
AD; 0 50 100 150 200
t K
(a) schematic representation (b) computational error/cost in normalised form

Figure 5.11: Procedure and performance of first order cycle-jumping algorithm

Second order jumping-cycle algorithm To improve the accuracy jumping-cycle algorithms
based on the second-order extrapolation can be seen in other works [142, 11]. Using Taylor series
a quadratic approximation of damage evolution becomes to

Dmax aD 1 2 82D
= AN¢ .| — — (AN [ —= :
= ang(G) g e (553) 569
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D 0°D
in which — and N2 are the first and second order derivative of damage with respect to the cycle.
To obtain the two quantities damage increments A D.; and A D, in two continues cycles ¢l and ¢2

have to be fully computed, namely

3D . ADcl + ADCZ
ON 2AN ’

(5.70)

and

02D _AD¢i —ADc,

N2~ (AN)?
The value of AN7 is thus obtained by solving the non-linear problem given by eq. (5.69). In
fig. 5.12 different algorithms are compared in terms of error and computational cost. The results
are normalised by the reference solution with k¥ = 400 using the second-order extrapolation.
Comparing to the first-order method, the second-order algorithm has doubled the cost, whereas the
error of fatigue life can be reduced up to 10 times. It means the second-order algorithm requires
fewer "jumps" and is able to reproduce more accurate fatigue data. This observation agrees with the
conclusion from the previous studies [142, 11] that the second-order jumping algorithm is suitable
in fatigue damage computation.

(5.71)
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To summarise this chapter, in the first section, fatigue characteristics of brittle material are
reviewed, such as frequency and mean-stress effect. Standard testing approaches of fatigue strength
under compression, tension and flexural load are also introduced. The second section aims to
explain the methods in fatigue life assessment, i.e. empirical and progressive approaches. The
empirical methods focus on proposing analytical S-N relations with less attention to the detailed
material mechanical reactions. With sophisticated algebraic expressions, empirical models are
able to simulate fatigue data, including frequency and loading-ratio effect. Due to the lack of
fatigue data, often deterministic S-N relationships are proposed in the early research. Recently
improved stochastic empirical models can provide fatigue data, including probabilistic descriptions.
Compared to empirical approaches, the progressive approach is CDM based, and the fatigue life
is computed from the damage evolution. This method has considerable flexibility to simulate the
frequency and mean-stress effect by modelling the progressive damage evolution. The jumping-
cycle algorithm is introduced to compute the HCF problem efficiently. Compared to the first-order
algorithm, the second-order extrapolation can improve the balance between error and computational
effort on fatigue computation. The possibility of reproducing fatigue scatters by modelling the
random damage evolution is introduced in the next chapter.
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Chapter 6

Innovative Phenomenological Stochastic
Damage Evolution

Based on the classical works [23, 24, 25], an innovative stochastic damage model for quasi-brittle
material is introduced in this chapter. The concept from the literature of modifying deterministic
damage evolution as a stochastic differential equation is kept. Special effort is paid on defining
proper random distributions. The goal is to solve the common issues in previous studies, such as
negative damage increment, conflicts with experimental results.

6.1 Modelling Concept

This innovative stochastic damage evolution model is developed within the framework of CDM.
The goal is to interpret the phenomenon of the uncertain material stiffness reduction instead of the
microstructural heterogeneity. The core of this concept is to extend the mathematical definition of
the damage variable as a projection on the time, Euclidean and probability space, namely,

D(t,x.&), DeTxR¥IxQ, (6.1)

where ¢ € T denote the variable in time, x € R? is the coordinate in n-dimensional Euclidean
space and & € 2 is the random variable in the probability space generated at . To maintain the
macroscopic continuity, D has to fulfil the requirement

0<D<D,. (6.2)

For the purpose of simplicity, only isotropic damage is considered by this model. Meanwhile,
except for the damage variable, all the other internal variables in CDM remain identical with their
original definitions.

Following the assumption of material continuity, the increment of stochastic damage evolution

in 8¢ can be obtained as y 3 y
dD =dD(t,x,&), dD > 0. (6.3)

The expression of d D is thus a stochastic differential equation, namely

dD = g(t,x)dt + h(t,x)dW,, dD >0 (6.4)

67
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in which g and & denote the drift and diffusion of stochastic damage increment respectively.
The variable d W, is a special stochastic increment, on which further discussion can be seen in
section 6.1.2. Comparing to the standard Wiener increment, the only difference is the random
number distribution. The time integral on eq. (6.4) gives the stochastic damage evolution as

D(t,x,0) = Do(x)+/ g(s, x) ds+/ h(s, x)dWs, (6.5)
0 0

where Dy(x) is the initial damage value at location x. The second integral is kept in the Ito way,
given by

t t
fo h(s, x)dW, = Altiglogh(s — AL X) (W — W,_a,). (6.6)
The statistical mean and variance of D (¢, x,&;) shall be obtained numerically as

E[D(t, x,0)] = ]E[Do(x) + /tg(s,x) ds + /th(s,x)dWs]
0 0
= Do(x) + ft g(s,x)ds + E [/t h(s, x) a’Ws:| (6.7)
0 0

! 1
— D,(x) + E[£] / hs. )3 ds.

and
V[ﬁ(r,x, 0=V [/t h(s,x) dWs} =VI[&] - ¢ -/t h(s,x)ds. (6.8)
0 0

A demonstration of stochastic damage evolution versus the deterministic one can be seen in fig. 6.1.
The uncertain fatigue damage evolution is interpreted as random process realisations.

10~ deterministic 104 stochastic
1r 1
0.8 - 0.8 |-
0.6 |- 0.6 |-
Q Q

0.4} 0.4}
0.2} 0.2}

0 | | | | | 0 | | | | |

0 1 2 3 4 5 0 1 2 3 4 5

N N

Figure 6.1: Schematic illustration of deterministic and stochastic damage evolution for 5 loading
cycles
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6.1.1 Drift and Diffusion of Stochastic Damage Model

According to eq. (2.11) the drift term in material damage modelling represents the instantaneous
change on the mean of damage growing speed, namely

g(t.x, D) = Jim éE[D (t + At,x, &) — D (t,x,&)|D (t, x, g,)] (6.9)

It has to be identical with the deterministic evolution rate [23]. In contrast, the diffusion term which
governs the intensity of random fluctuations in the material damaging process is defined as

ht.x, D) = lim éE[(ﬁ (t+ At.x.&) — D (t.x.6))|D (t. x. g,)]. (6.10)

The exact expression of the diffusion term can vary depending on the modelling purpose. It can be
directly proportional to the drift term, e.g. & = yg, with which eq. (6.5) becomes to

dD = g(t,x)(dt + ydW). (6.11)
Alternatively, it can be a constant ¢ to demonstrate the noise in the measure of damage, namely
dD = g(t,x)dt + tdW. (6.12)
Meanwhile, a polynomial superposition can be applied to mix the above two types of diffusion as
dD = g(t,x)dt + [(1 — p)g(t, x) + p] dW. (6.13)

where p is a constant to tune their combination.

6.1.2 Stochastic Increment for Damage Modelling

The Wiener increment d W based on the standard Gaussian random noise £ ~ N(0, 1) is mostly
used to formulate the stochastic differential equations. According to the property of Gaussian
distribution, d W can be any real numbers, i.e.

—00 <dW < +o0, & €R. (6.14)

By its thermodynamic constraints, d D has to be non-negative for traditional materials. It can
be thermodynamically inconsistent to apply classical Wiener increment in the damage evolution
process. One practical solution is to modify the Gaussian random number to satisfy the condition
dD > 0. Depending on the drift and diffusion, truncated Gaussian distribution and others, e.g.
Weibull, log-normal, can be applied. A stochastic increment, which is not evaluated using the
standard Gaussian noise, is denoted as d W given by

dW, = /51§, (6.15)
Combine eq. (6.15) with the general case of stochastic damage increment in eq. (6.4). The lower
bound for the random noise is obtained as

& >

—gT‘/E. (6.16)
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To maintain the mean of stochastic damage evolution to be identical to the deterministic growth,
the expectation of random noise have to be zero, i.e.

E[D(t,x,&)] = D;(x) & E[£] = 0. (6.17)

During the random noise generation, the two conditions given by eqs. (6.16) and (6.17) shall be
fulfilled. The procedure is as follows:

1. Generate positive random numbers £, from e.g. Weibull, log-normal with the expectation

given by
g8t
h

E[&] =+ : (6.18)

2. Obtain zero-mean &; by shifting £ with following expression
Vst
&=sﬁ—<+gh . (6.19)

Alternatively, if a non-negative random distribution N'* (i, v?) exists for all the random numbers
{X > 0|X ~ Nt} with mean and variance specified as u = 1 and v, & can be generated from

§~WNT=1) g}fg_t. (6.20)

The variance of & is a key parameter that strongly influences the probabilistic behaviour of D. To
fit with experimental data, it is convenient to tune the intensity of damage fluctuation by directly
working on v? rather than changing the diffusion. Via the parametric study in the following context,
the performance of the stochastic random damage model is exposed.

6.2 Parametric Study

In this section, three types of random contribution, i.e. proportional, non-proportional and mixed
diffusion, are presented to demonstrate their influences on the damage evolution. The stochastic
damage model is implemented on a simplified fatigue problem to understand the role of random
variables and other parameters (see section 5.2.2). Higher-dimensional structural analysis can be
seen in the next chapter.

6.2.1 Proportional Diffusion

With proportional diffusion the intensity of damage fluctuation is correlated to the mean [23, 25].
Hypothesis on this type of diffusion is straightforward, because experimental damage data are less
scattered when the value is low [22]. By rewriting eq. (6.11) in the incremental form, one has

~ Vét
AD = ,O)AE |1 , 6.21
gax)z(—r%E) 6.21)
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which gives the conditions of &; as
E[&] =0,
VAt (6.22)

£ > ——r.
14

According to eq. (6.20), for the case of proportional diffusion &; has to be generated from
v At

g~ NT=1) — (6.23)

with which a conclusion on eq. (6.21) can be made as
AD ~ AD -NT. (6.24)

Unlike the work [24] in which the standard Gaussian distribution is employed, a "filtering-algorithm"
is needed to reject the random numbers that cannot fulfil the second condition in eq. (6.22). The
expectation on the percentage of acceptable Gaussian random number in the total sampling amount

is given by
E(¢n%) =1— Fy (—g) , (6.25)

wn v,

in which Fy is the Gaussian cumulative distribution function for mean uy and variance vy. The
"zero-mean" constraint, however, cannot be guaranteed in this case, as the symmetry of Gaussian
distribution is alternated by the filtering process, and E[&;] is shifted to a positive number. This
further causes bias between the mean of stochastic damage evolution and its deterministic law. As
demonstrated in fig. 6.2 the statistical mean u(ﬁ) of 1000 example trajectories grows faster than the
deterministic damage. To solve this problem, two particular random distributions, i.e. the shifted
Weibull and log-normal, are designed, with which eq. (6.22) can be strictly satisfied during the
random number generation.

= (U
—D
0811 uOwe |
é” ] e Figure 6.2: Comparison of damage evolution for 5 loading
S 04f cycles, deterministic vs standard Gaussian with filtering
02
L TS B o

Designing process of A" (i, v?) Theoretically, both Weibull and log-normal are non-negative
distributions. The unknown Weibull scale and shape parameters, # and « for a desired mean p and
variance v? can be obtained by solving the function system,

wmur (141). |
= e+ (2]

(6.26)
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Similarly, to design a log-normal distribution, its parameters 71;,, and vlzog can be solve from

n = exp (mlog + vlzog) ,

p? = exp (2m10g + vlzog) (exp (vlzog) — 1) .

(6.27)
Taking N'* (1, 1) as example, the Weibull parameters are determined as ¥ = 1 and @ = 1, and
for the log-normal distribution with m,, ~ —0.3466, U120g ~ 0.6931. The probability density
function of the above two distributions are plotted in fig. 6.3. By generating damage noise from
the two distributions, the statistical mean of 1000 random damage trajectories is nearly identical
to the deterministic one (see fig. 6.4). The damage uncertainty is represented by the measure of
its standard deviation shown in fig. 6.5. The result produced by Weibull and log-normal noise
are almost identical, that the damage standard deviation is enlarged sub-linearly by time. This
observation agrees to the general behaviour of Wiener process, i.e. v/V[d W] = Vdt.

While increasing the desired variance of Nt from 1 to 10, there is a significant difference in the
quality between the generated Weibull and log-normal random numbers. To demonstrate this, let
the quality of the random number generation to be measured by the relative error €(,). The relative
error between the quantity (e) and its reference is computed by

€e) = (6.28)

(o) — ref.
ref. H '

After solving the Weibull and log-normal parameters for the desired variance v? = 10, the positive
random variables are obtained algebraically from the standard Gaussian noise as

El0e = €XP (M10e + ViogéN for log-normal,
{ : (o + Vs ) (6.29)

Ewp = u (—log(l — Fy (fg‘N)))é for Weibull.

Theoretically, for the same group of &y, the Weibull and log-normal random numbers can be
generated with identical mean and variance. However, for a considerable large amount of samples,
e.g. 100 seeds with 106 random numbers each, the variance of log-normal random number has
large difference to its designing target, namely A" (1, 10) (see fig. 6.6b). This phenomenon is
slightly visible for smaller variance N (1, 1), though €8 is generally larger than the other plotted
quantity. In contrast, the designed mean = 1 can be well kept for both Weibull and log-normal
random numbers without being dramatically influenced by changing the variance. This observation
indicates that it is difficult to generate a highly accurate log-normal random number with large
variance from standard Gaussian random noise.

Influence of sampling amount The number of MC samples is an important factor for the result
of random damage evolution, because it influences both the mean and variance. The common
agreement is that the statistical mean and variance of random damage trajectories converges by
increasing the number of MC realisations [24, 25]. To have a steady convergence plot, the statistical
result of damage evolution after 10 cycles from 100 batches with each 16384 trajectories (paths) is
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batch=1
0 (6.30)
100 Z v (Dpath 1_>16384) ref. standard deviation.
batch=1

During the test interval from 128 to 8192 paths, an apparent convergence of both the damage mean
and standard deviation using Weibull distribution can be seen in fig. 6.7. The relative error of the
statistical mean is near 10? times smaller than the standard deviation. In practices, a reasonable MC
sampling amount has to be determined by the actual demand to balance the computational cost and
accuracy.

Influence of jumping-cycle algorithm The jumping-cycle algorithm strongly influences the
stochastic damage evolution since the mean and standard deviation error can be enlarged during
the extrapolation process. The benchmark test takes Weibull distribution Nt (1, 1) to generates
103 paths during the damage interval of [0, 0.1] without extrapolation. In comparison, the first and
second-order jumping-cycle algorithm is implemented with « varies from 20 to 400. The target
is to investigate the applicability of the jumping cycle algorithms on stochastic fatigue damage
computation.

A narrow scattered damage band is observable from the benchmark result in fig. 6.8a, whereas
both jumping-cycle algorithms introduce large uncertainties. The scatter band of the second-order
algorithm is particularly wider than the others (see fig. 6.8b). Meanwhile, around 10% realisations
from the second-order algorithm have a significant bias to the benchmark result. This observation
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Figure 6.6: Quality of non-negative random number generated from Weibull and log-normal
distribution

exposes the numerical issue of the high order jumping-cycle algorithm. The solution of second-
order extrapolation in eq. (5.69) can be unstable with random damage law. Since the condition,
AD. < AD,.,, cannot be guaranteed for two sequential cyclic increments, the parabola

o 1, oo (82D _ (D D
i (ANF) = 5 (ANF)" (8]\7_2)] +ANj - (W)J - (6.31)

K

can be either convex or concave with respect to ANJ?. For the case of concave function, the solution
of AN can be considerable large or even a complex number. It is possible to avoid unreal solution
by averaging two sequential damage increments as

- D s AD + AD
AN¢ = ( ) / ( ot "2). (6.32)
K 2

However, it is difficult to set up a proper criteria to filter out the improper AN;. Indeed,
statistics on the elapsed cycles at the end of damage computation show that the high-order jumping
cycle algorithms have advantages to reproduce accurate damage mean. Figure 6.9 illustrates the
probability density of N at D(N) = 0.1 for three different simulations. The mean obtained by the
second-order method is close to the benchmark result, though its variance is large. The influences of
Kk on the statistical results of N are plotted in fig. 6.10 for the interval k € [20, 400]. Compared to the
benchmark result, the relative error produced by the first-order method converges distinctively with
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Figure 6.8: Stochastic fatigue damage evolution

respect to k. In contrast, the second-order algorithm exhibits a convergence problem. Concerning
the numerical stability, the classical first-order jumping-cycle algorithm is recommended for random
high-cycle fatigue computation.

1072
2 —
Ist (k = 100)
2nd (k = 100)
1.5F — benchmark
I . . . . ~
2 1 Figure 6.9: Statistics of N given D(N) = 0.1

0.5

0 | | | |
103 103.2 103A4 10346 103.8 104
N

Reproduction of stochastic S-N relation In the previous chapter, the S-N curve of concrete
material published in [17] can be accurately reproduced using the deterministic damage law. To
reach the goal of this study, the proposed model must reproduce the probabilistic S-N relation,
fitting both the fatigue mean and variance. As stated in the previous chapter, the fatigue life N ¢ of
reinforced concrete is assumed in [15] to follow the two-parameter Weibull distribution. The shape
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parameter « is given by

7T2
I 6.33
* 6(UlogN)2 ( )

and the scale parameter (characteristic life) u is defined as

0 5]

The parameter, 0y, v, is the estimation of the standard deviation of log;,(/N) at a specified loading
level, which has the value 0.9448 for SFRSCCO005 material. The material parameters C = 154.45
and m = 24.10 are kept identical to the deterministic model. For different load levels the Weibull
parameters can be seen in table 6.1. According to egs. (5.27) and (5.28) the expectation and standard

Table 6.1: Weibull parameters for five load levels obtained from SFRSCCO005 data [17]

o ‘Ls:(‘%‘é) 09 085 08 0.75 0.7

1.3577‘ u 2741 10872 46868 222010 1170810

deviation of the fatigue life are approximated by

W(N) =ul (1 + é) : (6.35)

V(N) = \/uz [F(l + 2) +T (1 + é)] (6.36)

respectively. The values of ;(N) and v(N) for different load levels are collected in Tab. (6.2), and
their correlation is plotted in fig. 6.11. To approach the empirical relation, the positive distribution
N (1, v?) and the jumping-cycle parameters must be calibrated carefully.

For proportional diffusion with the Weibull random number Nt (1, v?), the variance of the
damage variable after one full-cycle computation can be roughly described as

and

var[D23] = (WAD.)* T, (6.37)

cycle
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Table 6.2: Expectation and standard deviation of fatigue life for five different load levels using Oh
[15] model and Weibull parameters from Goel and Singh [17]

Ly: (=) 09 0.85 0.8 0.75 0.7
Smx [Pa] ~ 5.4e6  5.1e6  4.8¢6 4.5¢6 4.2¢6

W(Ny) 2993 11869 51162 242351 1278082
V(Ny) 2042.33 8099.03 34912.05 165372.84 872122.33
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Figure 6.11: Empirical relation between mean and standard deviation of fatigue life

where A D, is the average damage increment during the period of 7,.. For very high cycle fatigue, the
cyclic increment of damage is almost a constant for 100 cycles. v(D) has the value vA D, /1007,
if the full-cycle computation is applied in 100 sequential cycles. However, with the jumping cycle
algorithm, o(D) can reach 100vA D, /T, which is 10 times larger than the previous case. This
quantitative analysis provide a general guideline for tuning v.

Moreover, the jumping factor « significantly influences the fatigue uncertainty. As shown in
fig. 6.12 enlarging « leads to a distinctive reduction of the standard deviation of fatigue life. After
calibrating the random number and the jumping-cycle parameter, fatigue life computed via stochastic
damage evolution law is able to closely fit to the empirical results both in the mean and standard
deviation (see Fig. (6.13)). The probability density of the reproduced fatigue life is compared
to the experimental data (see fig. 6.14). For each loading levels, their probabilistic behaviour are
significantly similar to each other up to the high-cycle regime.

6.2.2 Other Types of Diffusion

Equation (6.13) is a general expression of the stochastic damage increment introduced with non-
proportional diffusion. If p = 0 it reduces to the proportional case given by eq. (6.11), whereas if
p = 1 the random damage noise is purely independent from the damage mean, namely identical
to eq. (6.12). The numerical study [24] is equivalent to p = 1 in which the standard Gaussian
white noise is implemented without the filtering process. This configuration is acceptable from
the perspective of damage measurement, as the measure of damage increment can either be
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Figure 6.12: Influence of jumping-cycle parameter on the relationship between mean and standard
deviation of fatigue life (plotted during calibration trial)
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Figure 6.13: Reproduction of random fatigue data using stochastic damage law (1D)

positive or negative. Besides, deterministic damage models are developed to generally fit the
average value of experimental data, without considering the random behaviour [143]. Towards this
specific issue, applying standard Wiener increments is necessary to simulate the noise in damage
measure. Numerical investigation using material state uncorrelated white noise is less meaningful
to understand the physical mechanism of uncertainty propagation in the damage process. This is
because the statistical behaviour of the standard Wiener process is plain with less interpretation
in solid mechanics. Due to the lack of data of measurement error, model validation can be very
challenging.

Numerically, it is also interesting to see the contribution of the non-proportional diffusion while
filtering out the negative damage increments. Take the following equation as an example

dD = g(t,x)dt + dW. (6.38)
A proper random number has to be generated as
& ~ (NT(1v?) —1) g(t.x)V AL, (6.39)

to satisfy E [D~(t)] = D(t) and dD > 0, Vz. Since g(z, x) is time dependent, the distribution of



6.2. Parametric Study 79

. ;).9 » Lg.SS s LgS
1 -10 5 -10 4 -10
08 — Simulation — Simulation — Simulation
) — Goel 2014 1.5 — Goel 2014 3 — Goel 2014
5 00 a A 2
& 0.4 = =
0.2 1
0 - - 0 I
0 0.5 1 0 1 2
Ny 104 Ny 10°
0.75 LO.7
4 1078 ) L o107 )
—— Simulation 0.8 —— Simulation
3 — Goel 2014 : — Goel 2014
55 5 00
~ =04
1 0.2
0 ‘ : 0
0 0.5 1 0 2 4
Ny 106 Ny 106

Figure 6.14: Probability density of fatigue life at 5 loading levels

&, varies in time. The standard deviation of d D has an algebraic expression given by
S[dD] = gAtv = ADv. (6.40)

It means the damage uncertainty is very sensitive to the time step size. By tuning At it is possible
to introduce an extra frequency effect besides the deterministic law. A demonstration can be seen
in fig. 6.15 that the random damage evolution is boosted dramatically via increasing the loading
frequency (see the amplitude of y-axle). This kind of frequency effect comes into conflict with
experiments, where fatigue life often get extended under higher frequency. Theoretically, the
parameter p can be calibrated to balance the effect of proportional and non-proportional diffusion.
Since the experimental data are difficult to obtain, further investigation on p is omitted.
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Figure 6.15: Random fatigue damage using non-proportional diffusion with frequency varies from
SHz to 20Hz

In practice, the random number generation in eq. (6.39) has certain difficulties because g(z, x)
is not explicit for the current time and has to be solved implicitly. The random number &, atz + 1
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can be generated based on the last drift g(¢, x), which is a good approximation of the current one
g(t + 1,x). It is necessary to implement a filtering algorithm to ensure the condition d D > 0.
However, this procedure raises again the bias between the damage mean and the deterministic law.
One possible solution is to compute the deterministic damage evolution in advance. After that &;
can be generated from the explicit g(¢ 4 1, x). However, this proposal is difficult to associate with
the jumping-cycle algorithm since the interval of fully-cycle computation is unique for individual
realisation.

In summary, an innovative phenomenological approach based on SDE for random damage
modelling is introduced in this chapter. The highlights are

1. Using a sufficiently configured SDE, the realisations of random damage evolution can be
statistically unbiased to its deterministic law.

2. The Gaussian white noise is replaced by particularly designed random numbers to satisfy the
thermodynamic constraints.

3. With the help of the jumping-cycle algorithm, the proposed stochastic damage law with
proportional diffusion is able to reproduce highly accurate fatigue data of brittle material up
to the HCF regime.

The previous section demonstrates that the Weibull random number is applicable for a wide range
of noise intensity, whereas the log-normal distribution is restricted to simulating small damage
randomness. The high-order jumping-cycle algorithms, which have good performance in the
deterministic computation, appear stability issues in random fatigue computation.

In contrast to the proportional diffusion, the non-proportional one and its variations can generate
an extra frequency effect in the numerical test. However, it is difficult to validate these models
because the corresponding experimental data are often not available.
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Numerical Implementation

The governing partial differential equations (PDEs) of a solid continuum body are often solved
numerically, e.g. using the finite element method. By discretising the object into a finite amount of
elements and introducing a time-stepping algorithm, the thermodynamic states can be approximated
using the evolution rules. For the random fatigue simulation of concrete, the integration of the
stochastic damage law in the classical finite element scheme is introduced.

7.1 Finite Element Formulation

Weak formulation According to chapter 3 the initial boundary value problem of a deformable
continuum body is governed by a set of PDEs. By neglecting the body force f, the Cauchy
momentum equation in eq. (3.22) for the static mechanical problem can be rewritten as

dive =0 inB. (7.1)

The Dirichlet and the Neumann boundary conditions £, for the displacement and surface traction
are given by

(7.2)
By multiplying an arbitrary test function » with eq. (7.1) and using integral over the body, one has

szdiva-ndV:O. (7.3)
B

Applying Gauss’s theorem on eq. (7.3) leads to the variational formulation of the boundary value
problem, i.e.

G:/G:VxndV—/a-n-ndS:O, (7.4)
B B =t

in which the operation V, (e) is performed as
1
Vile) = 3 [erad (o) + (grad (o))" (7.5)

81
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According to the principle of virtual work, eq. (7.4) yields to
G = SI/Vim - SI/I/CXt =0, (76)

which means the virtual work of internal and external forces, i.e. §Wi, and § W, have to be
equivalent to each other.

Linearisation The constitutive relation of damageable concrete material is often non-linear. In
order to approximate the body deformation under external forces, an iterative scheme, e.g. the
Newton-Raphson method, is required to solve the governing equations. For an infinitesimal
displacement increment Au the linearisation of the variational formulation based on the Taylor
expansion is given by

G(u+ Au) = G(u) + AG(u, Au) + O, (7.7)

in which AG(u, Au) is the linear increment of G regarding to u, i.e.
0G
AG(u, Au) = a—Au, (7.8)
u

and O denotes the higher order residual. In the case of displacement independent load, eq. (7.7)
can be derived as

G(u—i—Au):/a:VxndV—i—/Aa:VxndV—/t-ndS, (7.9)
B B B

using the increment of Cauchy stress tensor Ao. For the regime of small deformation the
linearisation of A is obtained via the material constitutive relation, namely

do
Ao = —-Ae =D:V,Au, (7.10)
de
where D is the tangent operator of the material constitutive relation in incremental form. Combining

eq. (7.10) with eq. (7.9) one has the linearised variational formulation as

G(u + Au) = /or :Ven dV —|—/(ID : ViAu) : Viy dV—/t-ndS. (7.11)
B B B

Discretisation Using the finite element method the continues body B is divided into n¢ elements
connected by nodes without overlapping. Let €27 denote the domain of each element. The original
body is approximated by the collection of all the elementary domains, i.e.

B~ Q=5 (7.12)
i=1

With the discretisation procedure the displacement field of the continuous problem is interpolated
in each individual element from the nodal displacement vector #° and the shape function matrix
N¢ as

u~ Nu’. (7.13)
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Similarly, the other quantities e.g. the displacement increment, the surface traction and the arbitrary
test function can be approximated as

Au ~ N°Au®

(7.14)

Figure 7.1: Transformation of 2D quadrilateral element between Cartesian and natural coordinates

For efficient finite element computation, the two-dimensional 4-node quadrilateral element (see
fig. 7.1) is further implemented in the next chapter. The shape functions that are compatible to this
type of element are given by

Nf =31-6(1-n)
Ny = (1 +6€)(1—n)
Ng=31+81+mn)
N§ = 3(1=§)(1 +n)
with £ and 7 denoting the natural (local) coordinates. As a example to demonstrate the discretisation

of the displacement field in Cartesian (global) coordinate, the matrix multiplication in eq. (7.13) is
performed as

; (7.15)

u(x)] [N 0 N O Nf 0 N 07|ub2 (7.16)
u(y)| 70 Nt O Nf O N¢ O NZ||ubs| ‘

N——
u(x,y) Ne
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in which ugf) and u(y°) are the nodal displacement in x and y directions respectively. To apply the
isoparametric concept it requires a transformation of the functions from the Cartesian to the natural
coordinates, e.g. u(x,y) — u(&€,7n). Based on the chain rule the transformation between the two
coordinates can be obtained by introducing the Jacobian matrix J, as

du ax 0y || om
bu | =|ox oy ||| (7.17)
an an  Jn dy

[

The quantities x and y in the equation above build the position vector of the material points which
are approximated as

B] ~ Ne[xProyPr xP2oyPe xPsoyPs P yP4]T (7.18)
—— xe

X

with (xP+, yP*) denoting the nodal Cartesian coordinates of node P,. To obtain the derivative of
the displacement field with regard to the global coordinates, the inverse of the Jacobian matrix,

J 71, is needed, namely
ou ou
[3_;} =J! [g} . (7.19)
ay on

Based on the coordinate transformation the infinitesimal surface in the global coordinate, d.S, can
be replaced by the determinant of the Jacobian and the local coordinates as

dS = dxdy = det(J)d&dn. (7.20)

For an arbitrary integral with respect to a function G the implementation of finite element
discretisation gives

/Q(x,y,z)dV A U /g(x,y,z) dQ° = U /Q(S, n) ty det(J) dS°, (7.21)
% i=1 ',

i=1 &
l

in which the third direction z is simplified by the element thickness #;, and S is the surface of the
discretised element in the local coordinate. Equation (7.21) has to be solved numerically, e.g. using
Gauss quadrature method in which G is evaluated at each Gauss point and further multiplied with
the corresponding weight factors w. For two dimensional finite element analyses, the numerical
integral is performed as

Ngp Ngp

+1 . .
|G 1y dgdn = YO wiw; GEL L) th. (7.22)

i=1j=1

The coordinate (éép, Uép) depends on the number of Gauss points in each direction n. Details about
the Gauss quadrature method can be reviewed in [144].
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Global iterative scheme Applying the finite element discretisation on eq. (7.11) gives

ne
G+ Au)y~ | Jn" /BTadQeuf+/BT:D:BdQe Aué — / Neéte dse | =0,
i=1 Q¢ Q¢ Q¢
(7.23)
in which B is the strain-displacement matrix obtained by the derivative of the shape functions with
respect to the global coordinate. Let K denote the global stiffness matrix with the expression

K:U [BT:]D:BdQe. (7.24)

i=1 Ge
Equation (7.23) is thus equivalent to the global problem
F™+ KAu— F* =0. (7.25)

Given the nodal force vector F X', the global Newton-Raphson scheme for the solution of eq. (7.25)
is demonstrated in algorithm 1. The algorithm starts from the initiation of the displacement vector
and the global stiffness matrix. During the iteration, the material states are updated by the last trial
values. It terminates when the difference between the internal and the external forces sufficient
small. The criteria is given by

_ ”r” : __ || ppint ext
€= TFo <tol with r =|F™—F%|, (7.26)

where € is the relative error between the residual and the external force, and o/ is the tolerance, a
sufficiently small positive number near to zero such as tol = 1075,

Algorithm 1 Global Newton-Raphson scheme

Initiation: nodal displacement vector u, global stiffness matrix K,

Compute F " and the residual r

Compute "Au = K~ 'r

Update "u = u + "Au, compute "K and "F™
Check convergence with € = "y,;eﬂl”

if € < rol then accept trial values from step 3

else go to step 1

AN A o e

7.2 Integration of Random Fatigue Damage

For fatigue computation, the amplitude of the surface traction is changing periodically. The
external force vector is refreshed at each time step and given as an input of the global Newton-
Raphson algorithm. The computation of the global stiffness matrix relies on the knowledge of the
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tangent operator, which further depends on the evaluation of internal variables at each integration
point. Since the tangent operator has non-linear behaviour beyond the elasticity region, an implicit
scheme for updating the internal variables must be integrated into the global scheme (at step 3 of
algorithm 1). The details about the integration of random damage evolution and jumping-cycle
algorithm are explained in the following contents.

Local implicit scheme Giving the material state at # = i and the external force vector F£}', at
t =1 + 1, a trial displacement "u;; as a global variable is imported to the local scheme. Due
to the application of Gaussian quadrature method at local level the trial strain tensor "&;4; can be
calculated at each Gauss point xg,(§', /) through

Yeit1(€. nl) = B(§L, n)) - ul. (7.27)

To implement the proposed isotropic brittle damage law in section 4.1.3 the strain tensor is
decomposed to the deviatoric and hydrostatic part using eqs. (4.25) and (4.26). After that the
initial quantities in terms of trial stress "0%5° and the thermodynamic force "Y;%=° can be obtained
using egs. (4.28) and (4.29). Substituting "Y53° and the initial guess "D¥3? = D; into the
dissipation function given by eq. (4.31), the damage evolution is activated at those integration

points where the following criteria is fulfilled, namely
FACYRL, "DE) > 0. (7.28)

Similar to the yield surface concept in the plasticity theory, eq. (7.28) indicates that the current trial
”Df 1 is out of the damage surface. A local corrector step (return mapping algorithm) is needed
such that after the correction the damage variable is back to the damage surface, 1.e.

Fi("YX ,, "D ) <o. (7.29)

Given the previous state of thermodynamic force Y;, the trial increment is calculated using the
forward difference as

"AYF = "YE, -V (7.30)
According to the damage evolution rate given in eq. (4.36), the trial damage increment is given by
tr Y-k ST Y.k —Y: 52
"ADF = Ar{ —H S 7.31
! S At (731

In view of egs. (6.21), (7.30) and (7.31) the stochastic damage increment for the case of proportional
diffusion is obtained as

AT r )/E r
“ADf = "ADf (1 + M_t) = fan (VEL ). (7.32)
with dependence on i+1. Following the designing process in section 6.2.1 suitable random
numbers §;4+1 can be generated for the integration points, where the damage evolution is activated.
Given the prior damage D; and "Y;, 1, the trial damage is obtained by solving the function system

tr

trDl[c_H - Di - fAD (trYilfHa Yz) =0,

P (7.33)
F (trYi+1’ trDi+1) — 0
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After that, the trial tangent operator is updated at each integration point using eq. (4.30). Together
with the strain-displacement matrix, the trial local stiffness is computed as

Ngp Ngp

K=Y BT €y nl) "DiEy nl) By nlywiw;n. 734

i=1j=1

The local iteration is finished at this point, followed by the assembling of the trial global stiffness
matrix "K and the convergence check at the global level. The interaction between the local and
global scheme is visualised in fig. 7.2, and the detailed numerical steps are reviewed in algorithm 2.

Prepare a new random seed S,

repare o new random seed ! R

----> Inputs: | FX,, F/™, SL .............. .

W g

f 1
f 1
1 1
1 1
1 ! i+1° !
1 1 1 1
1 1 1 1
. 1 r N 1 1
1 1 1 1
' 1 1 1
1 ! tr k ' !
Lo At Voo
. Ui L
1 1 ( ) 1 ]
' 1 1 1
1 ! tr ok ryk ! !
! ' CHIBPRS 6% ' '
L £i+1(5m) L
1 1 1 1
' ' g 1 1
D 2 &k Lo
. 1 % i+1 — 1 1
- & + L
' ' = -~ ' !
f 1 8 1 1
1 1 B || 1 :
1
Lo D ~ Lo
1 1 d <0 1 1
f 1 = Q 1 1
: ' false Z ' '
1 1
: : ha Y 1
1 1 1
' true Outputs: !
| J puts:
Lo true| | B,y |
' 1 rg ——< e <tol Fim :
! : it1 |
o :
1 ! !
1 1 !
1 ! 1
1 ! !
1 1
1
: 1

Figure 7.2: Interaction of local and global scheme in the finite element computation

Algorithm 2 Implicit scheme of finite element computation considering stochastic damage
increment

Input: F;,; external load ati + 1, &; 11 random noise, material states at # and material parameters
Output: D;,, material states ati + 1
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: initial guess for r 4 1

int (k i = = =
trFilil( ) — Fimt’ tru5§+1() =u;, trKik+10 — Kis trle+10 — Di;

: compute residual vector

r k _ twypk tu k ) .
rigi = K7 ui, — Figg
int (k) Fext
Fl, i+l

i k| /| Fi|) < 01 then
: return D; | = trle_H, K = trKikle; Il accept trial k and go for the next time step
celse k =k +1;

compute displacement increment vector

tr k _ tr k trpk .
Auiyy = "riiy/ Ky

update displacement vector

tr k _ tr k—1 tr k .
Ui = ‘uwiy + Aup g

get strain tensor
r ko w k.
€1 = B up,y;

compute the damage driving force

trY.k _ltrk .(C.trk

i+1= 5 Eitr- €ir1
check the damage criteria
Fd(trYilfH’ trle-i-l ;
if F¢ <0 then
go to line2; /I no damage evolution
else /1 local return mapping to the damage surface F¢ = 0

compute trial stochastic damage by solving eq. (7.33)
“Diyy (§i+1’ trYilfH);
update tangent operator using eq. (4.30)

rmk r Nk .
D4 (t Di+1> ’
update local stiffness matrix with eq. (7.34)

rpre (k) _ &) ( ok .
tKie+1 —Kie+1 (tDiJrl)’

Assemble of global stiffness matrix *K ik+1;
let k = k + 1 and go to line 2;
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Choose of different stochastic integrals The stochastic integrals are generally compared in
section 2.2. The fundamental difference between the Ito and Stratonovich integral is the integration
point 7; chosen form the time interval [t;_,t;]. Let 6, € [0, 1], and t; = (1 — 6;)t,—1 + 6.t;. The
Ito integral is equivalent to 6, = 0 whereas the Stratonovich integral is 6, = 0.5 [145]. One can
demonstrate the difference by rewriting eq. (6.5) in the incremental way. For the stochastic damage
evolution at a specified Gauss point, given the damage state 15,~ at t;, 15,-+1 is computed via the Ito
integral as } 5

Diy1 = D; + gi At + hi AW. (7.35)

Since the drift term is identical to the deterministic damage evolution rate g; is approximated using
the forward difference of Y as

. Yi\*' Y — Y\
g =D; =<§’> <+Z—;> = fe(Yig1, Vi) o by (7.36)

Equation (7.35) can be then written as
Dit1 = D; + fap (Yit1.Y). (7.37)

which is an implicit scheme depending on #; 4.
In contrast, according to the equivalence relation given in eq. (2.19), while applying the
Stratonovich integral on eq. (7.35) one has

. . 1 hipq — h; hiy1+ h;
Diy1 = D; i ———h; | A AW, 7.38
i+1 i+ 8i P AD + 2 ( )
oh
0D
in which the term /; 1 requires the knowledge of Y; 5 such as
Yigl\ [Yige = Yigr\?
h; it = . 7.39
i+1 X git1 < S > A7 (7.39)

This is incompatible with the classical return-mapping scheme because it is challenging to compute
the internal variables at #; 11, which depends on an unknown quantity at #; 5.

Alternatively, using the backward difference to evaluate ¥ can reduce the complexity. In this
case, eq. (7.35) is represented by the Ito integral as an explicit scheme, namely

Diy1 = Di+ fap (Yi.Yioy). (7.40)
To improve the accuracy the drift and diffusion terms can be evaluated at the right point #; ;; during
the subinterval [¢;,#;4+1]. Similarly, a fully implicit scheme using the Stratonovich integral can be
obtained by replacing g; with g; 4 in eq. (7.38) as

- ~ 1hivz1—h; hiv1 + h;
Dii 1 =D, i1 ——————h; At + —AW. 7.41
+1 + (g T3 TAD +1) + 5 (7.41)

However, by reviewing eqs. (7.38) and (7.41), it is difficult to guarantee the diffusion to be
proportional to its drift, regardless of the finite difference method. This observation is in accordance
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with the conclusion from previous studies [23, 22, 32]. For a concise iterative formula with
guaranteed numerical accuracy, the Ito integral and the implicit Euler method are implemented in
further numerical investigations. The scheme is expressed as

Diy1 = Di + gi+1Af + hi 1 AW, (7.42)
with 5 5
Yita Yign—Y;
hi X g; = . 7.43
+1 X &it1 < S > < A7 > (7.43)

Monte-Carlo loop For many scientific computing platforms, the Mersenne-Twister is often the
default algorithm to generate pseudo-random numbers. This algorithm allows the generation result
to be repeatable using the same random seed [146]. In practices, the random seed is created based
on the current time of the operating system (OS) to avoid repeatability. For the FE-analyse of m
MC samples, an independent seed value has to be assigned to individual computation. As shown
in fig. 7.2, a new random seed S, is prepared at the beginning of each MC iteration and taken by
the FE-scheme to generate the damage increment noise during the local iteration. After finishing
m-series of FE-computation, one has m realisations of the damage evolution at each integration
point.

Integration of the jumping-cycle algorithm After a full cycle of finite element computation the
cyclic damage increment is converted to the damage growth in time as

nAt
i—]l\)f =Y AD;, (7.44)
i=1

with n A, denoting the number of time steps per cycle. Depending on the value of A D;, % (N, xgp)
can vary at each integration point. Especially for the effect of damage concentration in structural
analysis, the extrapolation strategy has to be developed to have an unified number of jump for the
global iteration. Given a fixed demand of extrapolation in damage % the value of AN is determined
at the weakest Gauss point, where the highest cyclic damage increment is measured, namely

D, 8D .
AN = — / max W(N,xgp) . (7.45)

After an extrapolation procedure, if the highest damage value is below D., the damage field is
imported to the subsequent full-cycle FE computation. During the jumping-cycle scheme, the
extrapolated and the fully computed number of cycles are saved as temporary variables to calculate
the fatigue life. The iteration terminates when the critical damage value 0.3 is reached. The
corresponding number of cycles is recorded as the fatigue life N .

Ithe first order jumping-cycle algorithm is applied here to be consistent with the conclusion from section 6.2.1
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Finite Element Computation of Four-Point
Flexural Fatigue Problem

The stochastic damage evolution law for brittle material proposed in the previous chapter is
implemented on the four-point flexural fatigue problem of concrete beam structure solved by the
finite element method. This particular example is selected for two main reasons. First, mechanical
reaction under bending load has sufficient complexity. It contains compressive, tensive and shearing
deformation, which is desired for testing the proposed deterministic brittle damage model, especially
for the simulation of the unilateral effect. Second, flexural fatigue data are reported by many
laboratory studies [17, 21] on which statistical analysis can be applied to calibrate the random
damage model.

Compared to other studies [24, 25], this study aims to verify the model using structural
analysis. The classical finite element method is associated with the jumping-cycle algorithm to
efficiently reproduce HCF data. For multiple random damage realisations, the Monte-Carlo method
is implemented. The simulation is often computationally heavy, due to the demand on large time
interval and enormous samples. For high computational efficiency, the following numerical test
takes a two dimensional FE model. The experimental data in terms of fatigue life provided in [17]
has to be agreed by the reproduced virtual fatigue data both in the mean and variance.

8.1 Deterministic Computation

To be identical to the geometry of concrete specimen in [17], the beam demonstrated in fig. 8.1 has
alength L = 0.5 m and a cross-sectional area of A = 0.1 mx0.1 m. The distance between the two
supporting points at the bottom and the two loading points at the top are Ly = 0.45mand L; = 0.1
m respectively. The two concentrated loads are identical with the maximum amplitude Fy = —11.5
kN, the loading ratio R = 0.1 and the frequency f = 10 Hz. To reduce the complexity, this model
is simplified as a two-dimensional plane stress problem with the thickness of 7, = 0.1 m. As
an example, a 10x50 finite element mesh can be seen in fig. 8.2. The boundary condition of the
displacement constraints for the left and right supporting points are UL = UyL = 0 and UyR =0.
The material is a reinforced concrete with 0.5% steel-fibre (SFRSCCO005) with parameters collected
in table 8.1.

According to laboratory observations, the main failure form of the concrete beam under the
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flexural test is the tension failure. In contrast, the compressive failure at the loading and supporting
points are negligible. Indeed, the highest damage value shall appear at the bottom side, middle of
the two supporting points, where the macroscopic cracks get first initialised. For the numerical test,
fatigue life is determined by the damage at the weakest element averaged from the corresponding
integration points. Once the critical damage value is reached at this element, the current cycle is a
good approximation of the experimental fatigue life. Instead of introducing the simple displacement
constraints for the support pins, it is often more accurate to introduce contact mechanics to the FE
analysis of the four-point bending problem. This approach is avoided due to the high computational
cost of the contact problem.
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Figure 8.1: Geometry of the beam structure under four-point bending test
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Figure 8.2: 2D FE mesh discretised by 500 uniform four-node elements

Table 8.1: Calibrated material parameters of SFRSCCO005

E Ve S K S1 Yp D,
42GPa 0.2 1.51kPa®> 11.05 1 4.5kPa 0.3

Influences of constitutive parameters After applying the newly proposed brittle constitutive
relation in eq. (4.27) with a trial ¢ = 1, a contour plot of the extrapolated damage value on the
whole structure can be seen in fig. 8.3. Under this setting, both the deviatoric and the hydrostatic
stress affect the damage evolution. Due to the concentrated shear stress, the damage is localised at the
loading and supporting points, whereas it is minor at the bottom centre. An evident mesh-size effect
is also observable after comparing the two different meshes, showing that damage concentration
is stronger with finer mesh. For another trial test of ¢ = 0 the results are illustrated in fig. 8.4,
showing nearly no mesh dependency. In this case, only the hydrostatic stress in the tensile direction
is in charge of damage growth. Though the compressive hydrostatic stress at the top centre of the
beam is intensive, the damage is almost invisible at this location. This means the unilateral effect
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has been successfully simulated. As an outcome from these trials, to capture a realistic location
of crack initiation, a proper ¢ has to be determined to balance the contribution of deviatoric and
hydrostatic stress. Since it is difficult to classify the specimen as a short or long beam, the span of
L/H =5, ¢ = 0.21is used in the following tests to enable the shear conduced damage. Meanwhile,
the level of damage concentration at the bottom is governed by the parameter s in the damage law.
As can be read from fig. 8.5 the size of the weak area is dramatically reduced by s = 15. It means
more intensive concentration of damage in comparison to fig. 8.4 with s = 11.05.
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Figure 8.4: Damage field with ¢ =0
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Figure 8.5: Damage field with ¢ = 0, s = 15 on 20x100 mesh

Influences of time discretisation and jumping parameter The exact shape of the loading wave
is not given by the literature [17]. To understand the influence of time-step size on fatigue life, two
proposals, 1.e. saw-tooth and sinus-shaped loading waves (see fig. 8.6), are compared.

To capture the maximum and minimum value of the loading wave, the number of time
discretisation per cycle na; is configured as a multiple of the number 4 ranging from 40 to 1000.
According to fig. 8.7, for deterministic computation the time discretisation is a dominant factor in
comparison to k. Meanwhile, the sinus load shows better convergence speed than the saw-tooth like
load if the time step size reduces. In the following numerical test, the sinus load with n, = 400,
i.e. At = 2.5e —4s, is applied. For high cycle computation, the robust first-order jumping cycle
algorithm with ¥ = 100 is implemented after a full-cycle FE computation.
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Figure 8.6: Sinus and saw-tooth shaped loading wave with amplitude F, (identical to Ly = 1)
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Figure 8.7: Influence of time discretisation per cycle on fatigue life estimation

Reproduced S-N curve By taking the five load levels from 0.7 to 0.9, the amplitude of the
concentrated force is adjusted via Ly - Fjs for the corresponding levels. As illustrated in fig. 8.8
the computed fatigue life for each level is able to fit with the empirical relation. The relative error
is generally very low (smaller than 1%) for all the loading levels, which means the deterministic
model parameters are accurately calibrated.

8.2 Monte-Carlo Simulation

For each MC realisation, the proposed quasi-brittle damage law is computationally efficient because
plasticity is not involved in the local return mapping algorithm but only the damage surface. The
random damage law with proportional diffusion is mainly analysed in this section. The random
number generated from the positive distribution A/ (1, 1) is the first trial for FE analysis, which is
compared later to the results with different variances.

Effect of the jumping-cycle procedure and sampling amount The influence of the jumping-
cycle algorithm on random fatigue damage evolution in the concrete structure is analysed via 1000
realisations. As shown in fig. 8.9, the influence of « is far more significant on the standard deviation
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Figure 8.8: Deterministic results versus empirical S-N relation and experimental data

than on the fatigue mean. The setting k = 100 is necessary to guarantee a relative error smaller
than 1%. Moreover, the MC sampling amount N ? for structural analysis is also determined as
k = 100. The results are plotted in fig. 8.10. Compared to the statistical mean, the error of standard
deviation converges slow. A similar observation can be seen in fig. 6.7 from section 6.2.1. Since
k = 100 indicates the minimum number of full-cycle computation, for every single specimen with
400 discretisations per cycle, one needs to solve the global FE problem 4 x 10* times in total. The
cost on a single CPU core at SGHz is around 1700 seconds (&~ 30 minutes). The value N7 is set as
1000 to balance the cost and the estimation accuracy.
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Figure 8.9: Influence of k on 2D FE results in terms of the statistics on random fatigue life

Stochastic fatigue damage evolution Consider the material parameters in table 8.1 and the
settings for the numerical scheme namely A7 = 2.5 x 107* s, k = 100 and N? = 1000. The
mean of the damage field is illustrated in fig. 8.11. It is similar to the deterministic result. With
¢ = 0.2 the shear-induced damage at the loading and supporting points becomes minor, compared
to the damage at the bottom. For examples, the damage evolution of the element at the bottom
centre for the load level Ly = 0.7 up to 10° cycles is plotted in fig. 8.12a where the width of the
confident interval increases during the number of cycles. Particularly, the uncertainty in the number
of cycles increases sub-linearly versus the mean. This relation is plotted in fig. 8.12b. At the end
of damage evolution D = D, statistics on the fatigue life is shown in fig. 8.13. The probabilistic
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Figure 8.10: Influence of sampling amount on 2D FE results in terms of the statistics on random
fatigue life

density of the simulated fatigue life data is nearly symmetric (see fig. 8.13a) while taking the mean
w(Nys) = 1.17 x 10°. The probability of failure represented by the CDF of the generated data is
illustrated in fig. 8.13b. The uncertainty in the reproduced fatigue life based on A’ (1, 1) is much
smaller than the experimental data. One possible solution is to increase the noise intensity in the
random variable. In the following context, the results of Weibull and Gaussian random number
with different variances are presented. It shows the applicability and limitations of the two random
numbers in structural fatigue analysis.
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Figure 8.12: Damage evolution at Ly = 0.7 with probabilistic information

Weibull versus Gaussian random number The procedures for generating thermodynamically
consistent random numbers from a designed distribution are declared in section 6.2.1. While
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Figure 8.13: Statistics on fatigue life

preparing the random numbers, the Weibull distribution has to be shifted to zero mean, and the
Gaussian white noise requires a filtering procedure. In this test, a Weibull distribution with ten
times larger standard deviation, namely N/ * (1, 10?), is employed to demonstrate its performance in
comparison to the filtered Gaussian random noise. For good readability, random numbers generated
from different distributions are named as follows:

N(,1)-~/A1/3 GS;
N(0,10%) - VAt /3 GL;
St ~ (8'1)

[NT(1, 1) —1]-VAt/3  WBS;
[V*(1,10%) - 1]-VAt/3  WBL;

The short forms "GS", "GL", "WBS" and "WBL" correspond to the Gaussian (G) and Weibull
(WB) random number with small (S) and large (L) variance.
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Figure 8.14: Solution with the Gaussian random number

In view of figs. 8.14a, 8.14b, 8.15a and 8.15b, both the scatter band of damage evolution
and the propagation of uncertainty are very close. The reason is that the filtering procedure on
the Gaussian noise with small variance has minor effect. However, this effect becomes drastic
in figs. 8.14c and 8.14d because the evolution speed is significantly increased. In this case, the
mean of the accepted Gaussian random number is shifted from zero to positive. In contrast, the
Weibull distribution is able to maintain the damage evolution rate by its mean while increasing the
uncertainty (see figs. 8.15c and 8.15d).

Continue this comparison on the five load levels. The results using Gaussian random variable
with two different variance configurations can be seen infig. 8.16a. With the GS variables, the
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Figure 8.15: Solution with the Weibull random number
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Figure 8.16: Comparison of statistics on the fatigue life computed from five loading levels using
the Weibull and Gaussian random number

computed fatigue life agrees with the empirical result in the mean for all the levels. However, the bias
in the vertical direction shows that the standard deviation of the simulation is approximately thirty
times smaller than the experiment. It is expected to close this gap by increasing the randomness
in the damage evolution, e.g. using random noise with larger variance. However, the variance
of fatigue life with the GL random number can only be slightly improved, whereas its mean is
significantly shifted. This outcome is consistent to the results shown in figs. 8.14b and 8.14d.

On the contrary, increasing the Weibull random number variance is able to continuously enlarge
the fatigue uncertainty without introducing obvious bias in the fatigue mean (see fig. 8.16b).
Indeed, the Weibull distribution, WBXL, with an extra-large (XL) variance v = 207 is further
implemented. Compared to the WBL, WBXL introduces approximately doubled standard deviation
in the fatigue life. Theoretically, it is possible to meet the empirical relation by further enlarging the
Weibull variance. In practice, it is difficult to converge to the empirical data, possibly due to two
reasons. First, generating accurate Pseudo random variables with a small mean, e.g. © = 1, and a
large variance, is difficult for modern computers [147]. Second, it is a variance reducing procedure
to obtain the element-wise damage value by averaging the solution at the integration points [148].
The results can be improved by obtaining the fatigue life at the weakest Gauss point. Nevertheless,
the empirical relation can be inaccurate due to poorly estimated parameters, as for each load level,
only 13 experimental results are given [17].
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Reproduction of the P-S-N diagram As stated in the introduction, it is desired to reproduce
the fatigue diagram, including probabilistic information, for reliability analyses. With sufficient
fatigue samples, the estimated probabilistic density function f(Ny, L) can be obtained for each
load levels. Numerically, by refining the number of loading levels from 5 to 1000 in the interval
Ly = [0.7,0.9], and applying uniform discretisation of the variable Ny = [3 x 10%,2 x 10], it
is possible to have the approximated value of f(Ny, L) as gridded data. After implementing the
classical bilinear interpolation, the S-N relation with probabilistic information is illustrated as a
P-S-N diagram in fig. 8.17a. The fatigue mean and the 95% confident interval for each load levels
are plotted in lines. Figure 8.17b is a visualisation of the three-dimensional P-S-N surface. For
example, the projection at northeast is the approximated probability density of loading level while
taking Ny = 10 as the designing target.
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Figure 8.17: Reproduced probabilistic S-N relation
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Conclusion and Remarks

In this work, a stochastic process inspired phenomenological approach is developed to simulate the
uncertain damage evolution during the material fatigue process. In the framework of continuum
damage mechanics, the deterministic damage evolution is modified as a stochastic differential
equation. Many numerical investigations show that the proposed model can reproduce highly
accurate virtual fatigue data for concrete structure up to the high-cycle regime. Compared to
previous researches, the highlights of this study are:

e The model applicability is verified on the four-point flexural fatigue problem via finite element
analysis.

e Particular attention is paid to evaluating random damage increments to ensure the consistency
of thermodynamic principles. Through generating random variables from a uniquely designed
positive distribution, the solution is statistically unbiased to the deterministic evolution law.

Since the accumulation of brittle damage has a significant role in the fatigue failure of concrete
material, a deterministic quasi-brittle damage law is newly developed with the main purpose to
capture the unilateral effect. While designing this model, a large number of modelling concepts
are reviewed. The controlling factor of damage evolution is assigned to the damage conjugated
thermodynamic force, i.e. the elastic energy release rate, neither the stress nor the strain. This study
uses a specific parameter to adjust the contribution of the deviatoric and hydrostatic components
in the damage driving thermodynamic force, without introducing extra damage variables or using
high-order damage tensors. For the specified flexural problem, damage under shear and compression
is largely reduced to represent the main damage form of the concrete beam in reality.

Several modelling approaches of damage uncertainty from literature are compared in this study.
The phenomenological approach, which considers the damage evolution as a stochastic process, is
CDM consistent. However, approaches based on micro-mechanics and statistics have difficulties to
describe the transition between different scales. Another common weakness of these models is that
they assume the macroscopic damage evolution law to be a cumulative distribution function, which
is far from laboratory observations.

The empirical fatigue models are often used to describe the deterministic S-N relation with which
fatigue life is derived as an explicit function of the external load. Besides, advanced models are
developed to fit the distribution parameters of the empirical fatigue life. The empirical approaches
in general have remarkable model simplicity. However, the description of the fundamental
mechanism of uncertain fatigue damage evolution is often missing. The progressive approach,
which models damage evolution by the physical law, has considerable flexibility in capturing the
fatigue phenomenons, such as the frequency and loading ratio effect. Compared to the empirical
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models, the progressive approach can produce similar deterministic S-N relation once the material
parameters are adequately calibrated. Meanwhile, high-cycle fatigue computation can benefit from
jumping-cycle algorithms. By comparing the difference of damage increments in two subsequent
cycles, the second-order method shows a better balance between cost and accuracy.

The parameter study of the random damage model on a one dimensional problem shows that
the classical Wiener process is not suitable for stochastic damage evolution. Indeed, the random
increment has to be composed from coloured noises such as Weibull and truncated Gaussian.
The statistical mean of the random damage paths can accurately approximate the deterministic
solution, and the expansion of damage variance is sub-linear in time. The uncertainty in damage
and fatigue life can be significantly enlarged while using the first-order jumping-cycle algorithm.
In contrast, the high-order algorithm has convergence problem to extrapolate reasonable damage
evolution samples. With calibrated parameters, the fatigue scatters reproduced from the simplified
problem can fit closely to the experimental data. For other types of stochastic diffusions, e.g.
non-proportional and its variations, their distributions are time-dependent and have correlation to
the current drift value. The non-proportional diffusion cannot guarantee the mean of damage noise
to be zero. However, it can introduce an extra frequency effect in the damage evolution.

The finite element solution on the four-point flexural fatigue problem is a systematic
demonstration of the model capability both in the deterministic and stochastic computation. The
accurately reproduced deterministic fatigue data indicates that the estimation of flexural fatigue life
based on the damage value in the weakest finite element is applicable for brittle material. For the
stochastic simulation, the main difficulty is to reproduced the fatigue variance. While using the
Gaussian random number, a filtering process is needed, which shifts the fatigue evolution away
from its deterministic low. This effect becomes evident with large noise variance. The Weibull
random number, which is not designed to evaluate stochastic process by the mathematical definition,
exhibits good simulation results.

Usually, it is difficult to approximate the fatigue life for a specified stress level on which the
experimental data is not available. This study provides a new phenomenological approach in
the CDM framework to predict the random fatigue behaviour. Based on the robust finite element
method and limited fatigue samples, it is possible to obtain a wide range of S-N relation with accurate
probabilistic descriptions. The framework of modifying deterministic evolution laws as a stochastic
processes is very general because the material parameters can be directly adopted from classical
solid mechanics. This modelling approach can be planted in advanced finite element methods to
simulate complicated material behaviours including ductile, creep and large deformations. Since
the reproduced fatigue data contain detailed information of the damage evolution and the simulation
is considerably cheaper than traditional fatigue experiment, this study is helpful to data-driven
modelling approaches, which rely on large amount of high-quality training data. In the future,
it can be compared to the homogenised macroscopic solution from mesoscale approaches. Also,
numerical simulation considering spatial correlation between random damage increments might be
interesting. Since the classical MC method is computationally heavy, a multi-level MC method
applied in the spatial and temporal domain can possibly reduce the cost.
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In continuum damage mechanics, fatigue is a phenomenon associa-
ted with a continuous material stiffness reduction. Numerically, it can
be simulated as an accumulation of damage process. Since the
resistance of concrete material reduces drastically after the initiation
of macroscopic cracks, fatigue life can be approximated using
damage models as the number of cycles by which the material conti-
nuity vanishes. The fatigue scatter is an interpretation of material
heterogeneity and uncertain external influences. It can be repro-
duced by treating the damage evolution as a stochastic process.

Inspired by the application of the stochastic process in molecular
physics, the deterministic damage evolution rate of the Lemaitre
model is modified as a stochastic differential equation to characteri-
se the random damage increment. The implicit Euler scheme asso-
ciated with Monte-Carlo simulation is demonstrated as a practical
approach to solve the stochastic integration problem. The stochastic
damage model is designed carefully to obey the thermodynamic
principles and the deterministic damage law. Particular efforts are
addressed to determine suitable random distributions, avoiding
negative random damage increments in individual realisations, to
have a statistically unbiased mean. To adequately approximate the
high-cycle fatigue damage with random noise, the "jumping-cycle"
algorithms with different extrapolation strategies are investigated.

This damage model is further implemented in the simulation of
four-point flexural fatigue of concrete beam, solved by the finite
element method. The numerically reproduced fatigue data closely fit
the published experimental results and the empirical solution, both
in the mean and standard deviation. Compared to the Gaussian
white noise, the Weibull random variable has broad applicability to
simulate random fatigue damage and other physical processes.
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