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Abstract

With increasing automation and the continuous development of machine learning, modern
algorithms are now used in almost all areas to improve and simplify workflows. Recommen-
dation Systems (RS) are one group of these algorithms. They enable automated suggestions
of items based on the interests of the user. In this work, we will focus on the investiga-
tion of biases in recommendation systems for news. News Recommendation Systems (NRS)
provide a way to suggest targeted news to users according to their needs. As news is the
primary source of information, it is imperative that it is presented fairly and free from bias.
Thus, in addition to good recommendations for the user, novelty and diversity should be
ensured by the NRS. For this purpose, several experiments are conducted with the MIND
dataset, which has collected 1,000,000 users’ data on MSN. This work gives an overview
of the different biases in the feedback loop of news recommendation systems. In particu-
lar, data and model biases are examined and related to other user biases. The research
should enable a template for bias modeling. All tests are presented in a Github repository
https://github.com/LaKin314/Investigating_biases_in_News_Rec.
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1 Introduction

Recommendation Systems (RS) are a major sub-field of artificial intelligence on the inter-
net. For example, websites like Amazon are trying to learn the interests of their users and
suggest targeted products to increase sales. Spotify tries to suggest new songs using popular
songs, and Netflix identifies similar movies for users. Another big area is news recommen-
dations. Reading news on the internet is increasingly becoming the primary medium and
is slowly replacing traditional sources such as television or newspapers. An empirical study
by Eurostat [30] gives evidence for this. Filistrucchi [31] also shows in his paper that in
Italy, for example, traditional newspapers offer online formats, which leads to a decline in
the newspaper medium. Newspapers like the New York Times1 make their content avail-
able and sites like Google2 or MSN3 aggregate articles from different providers. It allows
providers to track and profile their users [18]. The data is then used to learn the interests of
users. However, pure interest cannot be extracted from a user’s previous behavior. This is
because users have a distorted perception of the information, the so-called cognitive biases.
This means, for example, that a user looks at a news item because it looks appealing to
him and not because he is interested in the topic [129]. Another example is the change of
interest of a user. Previously interesting news may be less interesting at a later time [79].
These biases are implicitly picked up during data collection. Biases must be considered in
the data collection or modeled by the underlying model. Otherwise, the NRS learns based
on skewed data, leading to worse or unfair recommendations. As NRS in particular focuses
on informing, it is important that news are diverse [48, 15] and new [95] despite tailored
interests.
The subject matter of this paper is roughly divided into two parts.
First of all, it is about the study of biases. On the user side, we speak of cognitive biases.
They influence people’s decisions. Therefore, this topic is strongly influenced by psycholog-
ical aspects such as subjective perception [63]. The topic is mainly researched through user
studies in psychology, especially marketing psychology (e.g. [89, 29]).
In contrast, biases in data and models are a topic of computer science, especially data re-
search. Thus, this research is distinct from psychological user bias. Data biases also arise
from users and are manifested in data (e.g. [78]). This changes the way models deal with
the data. It leads to misconceptions and losses in the performance of models [21]. There-

1www.nytimes.com
2www.news.google.com
3www.msn.com/de-de/nachrichten
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1 Introduction

fore, research is being conducted to describe these biases, detect them and eliminate them
through debiasing methods [20, 103].
Current research already provides some overviews of bias in machine learning [79] and
RS [21]. The topic of fairness is addressed in many papers [73, 5, 16, 33]. These pri-
marily focus on specific biases. For example, Ma and Dong [73] provides a way to mitigate
the popularity bias generated by conformance and the resulting unfairness for providers.
Qi et al. [94] also propose a way of enabling provider fairness. However, this is not always
verifiable. News aggregators like Google News are private companies and do not make their
models publicly available for viewing. This reinforces the desire for fairness. Since the rec-
ommendations of NRS directly impact users and their view of society, ethical aspects also
play a role. These are highlighted by Milano et al. [82].
Starting with our work, we define mathematically what a NRS is, which stages it has and
which different forms exist. To get a basic understanding of NRS, we explain the differences
in the architectures of content-based and collaborative RS. In addition, the most important
basics for the neural networks behind it are explained. All potential biases are listed and
explained once to get an overall view. These are divided into the three stages of NRS. After
explaining the basics, we conduct experiments to identify potential biases between data-
model and model-user. In this work, we use the MIND dataset by Wu et al. [126] and the
Recommenders4 library from Microsoft. MIND is a collection of user actions on the news
site MSN5 with 1,000,000 user entries. This data is examined for data bias. Neural News
Recommendation with Multi-Head Self-Attention (NRMS) [120] is used mostly, but other
models are also briefly presented and compared. It creates news and user embeddings using
multi-head self-attention to learn contextual information. Embedded candidates are then
compared with the user embedding, which results in a click prediction. We use it for the
investigation of possible model biases.
Since experiments are based on the collected data from MIND, some statistics are presented
on the data, which helps to interpret the results better. The list of biases combines current
research and review papers for general RS and cognitive biases. These are explained again
in the following section. In addition, our work aims to clarify to what extent the size of
the user history affects the model’s performance. To do this, we look at different sizes of
user histories and check whether these users have the same chance of getting good recom-
mendations. We call this issue history-length unfairness. It provides a generalization of the
extreme form of the user-based cold-start problem [42], which describes the reduction in
performance for users without history. Although the experiments are limited to data and
model biases, we discuss potential user biases in detail and draw connections to data biases.
Finally, a list of all biases experimented with and discussed will be presented in our work.
In summary, this work aims to clarify the extent and in what form biases can occur in NRS.

4www.github.com/Microsoft/Recommenders
5https://www.msn.com/en-us
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Unlike other research, we present a comprehensive checklist of the potential user, data,
and model biases. To illustrate this, we will test the theoretical findings using the MIND
database provided by Microsoft. This provides insight into the problem of bias with implicit
feedback.
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2 Related Works

2.1 Biases Investigation

Originally, bias research comes from pure psychology and refers to the cognitive biases of
human [19]. Therefore it often serves as a basis for research in other fields. For example,
Caverni et al. [19] provides an introduction to the psychological side of the issue. A fre-
quently cited article by Haselton et al. [44] provides an overview of various cognitive biases.
In addition, a very detailed list of cognitive biases and psychological effects is provided [66].
This is illustrated and can be viewed in Figure A.1.
More research is being done in other areas. For example, the extent to which cognitive
biases change clinical decisions in medicine is being researched frequently [101, 116, 85, 87].
Saposnik et al. [101], for example, addresses the problems of anchoring and the framing
effect. It causes physicians to be fixed on the first symptoms they see, leading to wrong
diagnoses and patient treatments. This shows a strong interest in the topic of medicine.
Other fields such as marketing and economics also greatly interest this topic. For example,
Otuteye and Siddiquee [89] and Dowling et al. [29] explain how investment decisions are
influenced by bias. Guiso et al. [41] are dedicated to the very popularising topic of cultural
bias in business. It shows unfairness towards other cultures.
In machine learning, the work of Mehrabi et al. [79] offers an excellent insight into the topic.
They describe the feedback loop of user interactions, data, and algorithms and list different
biases at each level. It gives an additional idea of biases according to data and model.
In this master thesis, we refer to many biases of the paper, such as longitudinal data fal-
lacy [13] or exposure bias [68]. Many kinds of research directly address specific biases.
Heckman [47] examines the need for random sampling and defines the resulting selection
bias. Li and Vasconcelos [62] provides a framework called REPAIR that addresses forms of
representation bias. Arazo et al. [10] discusses confirmation bias in semi-supervised learning.
Specifically for recommender systems and news recommendation systems, research is some-
what more advanced. Here, too, a survey paper provides a good basic structure for our
research. The paper by Chen et al. [21] deals with biases in recommendation systems and
shows some debiasing methods, following the structure of the three stages in NRS and di-
vide their work accordingly. They also describe the feedback loop amplification and possible
performance losses with debiasing methods. Among other things, data, selection on rating
[78, 90], exposure [68, 67], position [90, 25] and popularity bias [73] are described. Ma and
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2 Related Works

Dong [73] draw a link between popularity bias and conformity bias. They speak of confor-
mity in selecting items in terms of popularity, which entails a stronger unfairness towards
providers of the items. Thus, in their definition, conformity bias is not limited to explicit
feedback, contrary to the definition of Krishnan et al. [61] which show that conformity
exists concerning rating systems. They also refer to it as social influence bias.
Mansoury et al. [77] uses a graph-based method to reduce exposure bias to care for provider
fairness referring to their earlier paper [4] on multi-sided exposure bias. The method is done
post-processing and can be used in addition to an existing RS. It takes recommendations
of specific length and resizes them, ending up with fewer but refined recommendations.
The results increase fairness via mitigating exposure bias, but on a loss of accuracy. In
a different paper, they also show that there is an amplification of these biases due to the
feedback-loop [75]
Olteanu et al. [88] provide a list of biases for social data datasets such as Facebook1. They
show how biases occur and provide a framework for detecting these in a theoretical way.
Ovaisi et al. [90] describes the position and selection bias for implicit feedback and is able
to mitigate the issue using a "Learning-To-Rank System" with a relevancy score. Wu et al.
[121] also use a debias model to minimize position bias. They use a generative adversarial
network[37] for this purpose. It consists of a bias-aware and an unbiased models, which
generates random positions for items. The user representation, which is learned with the
help of a transformer model [111], is improved with adversarial learning.
To reduce selection bias Liu et al. [71] use the successful contrastive learning [22, 50] method
to learn debiased representations. These are learned by self-supervised learning.
Ji et al. [54] have a look at whether loyal users benefit from better recommendations. To
do this, they define loyalty in three ways: number of accumulated interactions, active time,
and recency. The results show that the opposite is the case and that recency is the most
important factor for good recommendations.
Since most News Recommendation Systems use message titles and other textual information
to predict interest, Alam et al. [7] check news for potential biases in sentiment and stance.
To do this, they use a Transformer BERT classifier [111, 28] for classification. They show a
slight tendency towards negativity on sentiment. For the stance sentiment, they looked at
the opinion on refugee policy. Showing a small tendency to stance against it.
Qi et al. [94] show that there is a provider unfairness in news models. They present a so-
lution in which unbiased representations are learned using adversarial learning Goodfellow
et al. [38]. It uses a content model to learn news representations and back-propagates the
adversarial loss. On the other side, a provider discriminator is trained to decide whether
the content is fair or not. It is trained on the back-propagated discrimination loss.
Finally, Heitz et al. [48] tested the impact of a diversity-aware NRS on users utilizing a
user study. They built three groups of users using a news app. Depending on the group,

1www.facebook.com
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they received news based on optimal accuracy, optimal diversity, and chronology. The users
were ranked before and after the tests according to political leanings. The results show that
users with diversity-optimized news deviate more from their usual interests and thus become
politically depolarised.

2.2 News Recommendations Systems

News Recommendation Systems are now based on modern machine-learning approaches and
are improving with research successes in this field. Many models have moved from classical
collaborative filter models to hybrid model architectures. These make use of content infor-
mation or knowledge graphs. Many models leverage success in Natural Language Processing
and use embedding such as Word2Vec [80] and GloVe [92] to encode news [120, 113, 118].
These allow similar news to be displayed close together in the embedding space. The latest
models with pre-trained Transformer [28] models with Attention [111] offer the best perfor-
mance. These enable additional contextual information to be captured among the messages.
Currently, the model of Wu et al. [124] achieves the best results on the leaderboard2 of the
MIND [126] dataset. It uses a transformer structure with additive attention.
Other models like NRMS [120] use encoders for news and users. Pre-trained word embed-
dings are used as the basis for the news encoder. Only the title of a news item is used as
information. They use multi-head self-attention and additive word attention to store special
aspects in the representations. Candidates are then compared with the user representation.
Unlike NRMS, NAML [118] also uses information from the category and body of the article.
These are also initialized with a word or category embedding. A CNN filter is applied to the
embeddings on the next layer and again provided with an attention layer. A Dense layer
is used for the categories. The result is a weighted sum of the representations. The user is
represented analogously to NRMS. For this, the previously clicked news is used as the basis
for the user representation.
LSTUR [9] uses the classic RNN structure with long-short-term memory GRU [23] for the
user encoder. The user history serves as input and is represented in this way. The individ-
ual news encodings are concatenations of topic, sub-topic, and news title embeddings. The
latter are learned using word embeddings and reinforced by word attention.
NPA [119] uses personalised attention for user and news encoding. In contrast to non-
personalized attention, attention weighting depends on the user’s interests. The rest of the
architecture is similar to NAML using word embedding and a CNN layer.
DNK [113] offers an approach via knowledge graphs. Entities are used that are linked to
each other. These are embedded and filtered with a CNN layer.
Most models are based on deep architectures. This can be seen in the overviews of Raza
and Ding [96] and Amir et al. [8]. The work of Raza and Ding [96] is dedicated to the broad

2see https://msnews.github.io/
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picture of NR, listing current challenges, metrics used, and datasets. Amir et al. [8] refers
only to the deep News Recommendation Systems. Most investigated models are time-aware,
use the news content for predictions, and have a CNN or RNN architecture. They show that
the research on offline systems is clearly in the foreground. Only one cited paper on online
systems by Wu et al. [123] is proposed in their survey. This reinforces the work of Wu et al.
[126]. The MIND dataset provides the largest free dataset with implicit feedback to date. In
their paper, they present the most important statistics and show the performance of current
models on the data.
Other architectures address specific issues and adapt their architecture accordingly. Since
many polarising topics are widely read, some providers take advantage of this. They create
fake news. Patankar et al. [91] try to counteract this problem with a bias-aware model.
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3 Foundations

This chapter serves as the basis for the entire thesis. We start with the definition of a recom-
mendation system and continue with basic to state-of-the-art machine learning methods for
recommendation tasks. The second part presents a definition of bias and a general overview
in NRS.

3.1 News Recommendation

3.1.1 Recommendation Systems

A recommendation or recommender system is an (automatic) tool that is used to provide
items to users. This task is mostly bound to a specific field, like news recommendations or
product suggestions. The major goal of a good recommendation system is to recognize the
interests of a user and match these interests to suitable items.
Formally, the recommendation task is to learn a function

f : U× I −→ R, (3.1)

where U is the set of users, I is the set of items and R is the feedback of a user. In
practice, users and items are represented by their characteristics. For users, this can be
previous preferences, personal attributes, or access timestamps. Items can be, for instance,
represented with textual information or timestamps[21].
There are two different types of feedback. Rating-based feedback is called explicit feedback.
It lets users the opportunity to provide a rating of an item. In this case, the recommendation
system uses this feedback to predict items for the user. An example of explicit feedback is
the five-stars rating system by Amazon1. This means R = {1, 2, 3, 4, 5}.
An implicit feedback is only bound to two classes (i.e. R = {0, 1}). It reflects the user’s
disliking (0) or liking (1) for an item. Examples of implicit feedback are purchases on
shopping sites, website visits in search engines, or clicks on news articles.
Even if there are theoretically only these two types of feedback, recommendation systems
may use both. For instance, Amazon can predict user interests by rating and purchasing
behaviors. This is sometimes referred to as hybrid feedback [6].

1www.amazon.com
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3.1.2 Machine Learning in Recommendation Systems

There are a lot of approaches to learning good recommendation systems. For different
subfields, different approaches may apply. This chapter will introduce these approaches
in a top-down manner, starting with the recommendation system approaches and ending
with the machine learning foundations used. Before getting into touch with the different
architectures, Westart with an objective that allows finding a good recommendation system
for arbitrary uses.
Overall, a (parameterized) recommendation system fW is called optimal in its parameters
W if it minimizes the true risk :

min
W

L(fW ) = min
W

E(u,i,r)∼p∗[err(f(u, i), r)], (3.2)

where (u, i, r) ∼ p∗(u, i, r) denotes that u,i, and r are sampled from the underlying data
distribution and err(f(u, i), r) is a metric measuring the distance between the actual rating
of r and the predicted rating f(u, i).
Since there is no real way to learn from the ideal underlying distribution, we instead use the
empirical risk, which estimates the true risk using a training set D:

L̂(fW ) =
1

|D|
∑

(u,i,r)∈D

err(f(u, i), r) (3.3)

This estimate is unbiased for an i.i.d. and large enough training set (i.e. E[L̂(fW )] = L(fW ))
[21, 46].
In the upcoming section, we follow the structure of the book Recommender Systems: An
Introduction by Jannach et al. [53] to give an overview of the different architectures in
recommendation systems.

3.1.2.1 Collaborative Recommendation Systems

The collaborative recommendation system is characterized by its usage of behavioral data.
On the one hand, it uses data collected from previous interactions with the system. On the
other hand, it uses data from users with similar interests. The main goal of a collaborative
recommender system is to represent the similarity of user interests in a good way.
The result of a collaborative recommender system can be item suggestions with a certain
probability that the user likes it or the top-K most promising items.

Collaborative Filtering

An example of this technique is collaborative filtering. Consider only two users, user A and
user B. User A has been given implicit feedback (like clicking or purchasing) to the items
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{i1, i2, i3}. User B has been given implicit feedback to {i1, i2}. The recommendation system
now tries to give a good recommendation to user B. Since user A and user B have a high
overlap ({i1, i2}) in their items of interest, it is convenient that the recommendation system
suggests i3 to user B.
So the main idea is to filter the most promising items for multiple users with high conformity
in their interests. A traditional approach for finding a similar user is to use the unsuper-
vised user-based K-nearest-neighbors classifier. It treats the given feedback for each item
as a vector in a |I|-dimensional space. After quantifying the users’ proximity, the classifier
chooses a prediction close to the most similar user. This approach is a simple introduction
to this type of method. However, most feedback data is too big to be compared in a matrix
with the shape |U| × |I|. A similar approach is item-based filtering. Instead of using user
vectors to identify a similarity, it uses an item vector with different user feedback.
These two classifiers are categorized as memory-based classifiers. This is because they di-
rectly use the data saved in the memory to predict feedback. Another classifier is the
model-based classifier. Instead of using the whole data, it is trained before usage. This is
usually done in a supervised manner. The classifier then predicts with the learned model.
Traditional model-based approaches are Matrix factorization/latent vector models which we
want to discuss before getting in touch with more state-of-the-art approaches. Note that
these approaches are used in collaborative recommendations and all types of recommenda-
tion systems (e.g., content-based and knowledge-based).

Matrix Factorization/Latent Vector Models

The term of matrix factorization encodes a bunch of techniques to create a latent space of
vectors for the original input. The main goal is to focus on the most important features of
the data. Thus the latent space has (primarily) less dimension than the original space. The
reason is that strongly correlated attributes are combined in a sense. Similar to collaborative
filtering, recommendations are made by comparing the similarity of an item to a user vector.
In these approaches, the user vector is generated by some matrix factorization.
There are many traditional techniques to calculate a latent space of essential factors like
single value decomposition [27] or principal component analysis (PCA) [2]. Both techniques
are already known for a long time in mathematics and create a lower dimensional space
of factors. With the rise of neural networks, a more modern solution for the factoriza-
tion problem is using an autoencoder. Autoencoder started as a tool to apply PCA [60].
Now there are powerful tools in which autoencoders play a significant role, like variational
autoencoders [58].
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Figure 3.1: A multi-layer autoencoder (Image by Chervinskiwe- Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45555552)

Autoencoder

An autoencoder is a specific type of neural network (see Figure 3.1). As mentioned in the
previous section, its purpose is to learn an input’s hidden/latent representation (referred to
as code). It is an unsupervised approach thus, it needs no labels for ground truth information.
However, it is trained like a supervised neural network with labels equal to the input. Thus
it is also referred to as a self-supervised model. The architecture has two basic components
- the encoder and the decoder. The encoder is a function e : X → Z, where X is the input
space and Z is the latent space. Note that the size of the latent space can be chosen and
is usually set |Z| ≤ |X| (called bottleneck). The decoder is a function d : Z → X′, where
X′ is the reconstruction of X. The simplest version of an autoencoder uses only one layer
(shallow), but there can be advantages like exponentially less needed training data and less
computational afford for deeper autoencoders [36]. The objective to train an autoencoder
model is

min
U,W

L(dW (eU (x)), x),
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where U and W are the parameters of the encoder/decoder, and L is a loss function to
quantify the distance between the prediction and the actual input.
Usually, the loss function is some function like the (empirically) least-squares L(dW (eU (x)), x) =
1
n

∑n
i=1 ||(xi − dW (eU (xi)))||22 for x1, .., xn ∈ X and the steepest descent optimizer.

There are more collaborative recommendation approaches like the probabilistic recommen-
dation system.
We continue with the content-based models.

3.1.3 Content-based Recommendation Systems

Even if collaborative filtering is reasonable, it lacks semantic information. It only uses the
behavioral information of the community. When there is no community or only a small one,
the model is not able to infer good recommendations.
Thus content-based recommendation systems are built on the contextual information of an
item. It is convenient to use attributes like a news title in news recommendations or a
book genre in book recommendations. The main idea is to use this information, encode
them in some sense and match user profiles to new items. In the upcoming section, we will
focus on the problem of content representations and especially on text/word representations.

Content Representation

In most cases, attributes about the recommended items are saved. These attributes of an
item are referred to as features. Considering news recommendations, this could be a table
with information about the category, the keywords, or the author of a news article. With
this information or features, it is possible tocreate a preference profile for each user and
match interesting items.
The basic idea for such a profile is saving the information to another table. Each feature
then contains a list of liked values. An item will be recommended if the feature values have
a significant overlap. However, this brings problems, especially with textual features like
keywords, genres, or titles. For instance, each word would be equally important. Another
problem is ambiguities and synonyms in words. To ensure a better representation of textual
features, we want to present some options for this task. To do so, we will come back to the
example of keywords in a news article.
Usually, we want to have numerical and not textual data. But most of the contextual data
is in text form. To get a numerical representation of a text, we may introduce methods to
create a vector representation of a word. There is a basic approach called one-hot encoding.
A numerical text representation yields an n-dimensional vector where n is the number of all
possible words. Thus each dimension represents a word. If the word is at this dimension, it
has a 1(hot) as value and otherwise a 0. The representation gives us a way to calculate with
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words, like representing a sentence with the sum of its one-hot encoded words. Note that
these vectors are very sparse, and no contextual information is stored. A variation of this
representation is the TF-IDF encoding [24]. Instead of using only boolean values on the
encoding, it scales them according to the word’s relevance. The relevance (and therefore the
scaling) is calculated with the term frequency and the inverse document frequency. The term
frequency is the ratio of term (word) occurrences to a document’s total number of words.
A higher term frequency means a higher relevance. The inverse document frequency is the
inverted number of term occurrences in all documents. Note that it is counted only once
per document. A higher document frequency means lower relevance. Thus it gets inverted.
Overall, to create a better encoding, there are multiple pre-processing steps to consider, like
adding stop words, stemming, lemmatization and normalization.
In the following section, we will mostly follow the structure of the book Representation
Learning for Natural Language Processing [70] and Hands-on Question Answering Systems
with BERT: Applications in Neural Networks and Natural Language Processing [99].

3.1.3.1 Distributed Word Representation

There are more advanced encoding options to catch the syntax of a sentence and the relat-
edness between words. Word2Vec [80] and GloVe [92] create word embeddings that are used
widely in NLP tasks, including recommendation systems with content-based information.
They are powerful because similar/related words are close to each other in the embedding
space. This means a recommendation model using word embedding may be able to suggest
titles similar to the title the user liked earlier.
These types of methods are called distributed word representations.

Word2Vec

Word2Vec [80] is a tool introduced by Google. There are two different models to create
an embedding for each word in a dictionary, continuous-bag-of-words and skip-grams (see
Figure 3.2).
Continous-bag-of-words (short: CBOW) embeddings are trained on the task to predict a
center word in a surrounded context called context window. This ensures that embeddings
learn a similarity between words. Mathematically, CBOW does predict the probability

P (wi|wj:|i−j|≤l,i ̸=j) = softmax(M(
∑

j:|i−j|≤l,i ̸=j

wj)), (3.4)

where wk is the kth word, l is the context window size which denotes the number of words
left and right to the center word, and M is the weight matrix.
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Figure 3.2: A comparison between CBOW and Skip-Gram representation (image taken from
Mikolov et al. [81]

Example: "Alice1 has2 a3 big4 __5 with6 a7 huge8 garden9"

With l = 2 and i = 5 the model would try to predict P (wi|"a", "big", "with", "a").

Attention Models

There is still a major shortcoming with distributed word representation: they are context-
independent. This means that sequential inputs are not seen as a big picture but as little
independent pieces.
In 2014, Bahdanau et al. [12] redesigned traditional Sequence-to-Sequence learning with
RNN-based encoder-decoder architecture via context-based weighting, namely attention.
The output can relate to the importance of specific inputs. In the original paper, a context
vector ci is calculated for each target yi for a sequence {x1, ..., xn}. Each ci is then computed
via

ci =

T∑
k=1

αi,khk, (3.5)

where hj ∈ {h1, ..., hn} are so-called annotations, being the output of the encoder for an
input x = {x1, ..., xn} of an RNN and αi,k the attention weights. So the encoded input is
weighted by attention.
The attention weights must be trained in the process and should be probabilities. Since the
relation is initially unknown, some feedforward network f is trained to find optimal αi,k.
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This leads to the formula

αi,k = softmax(ei,k) =
exp(ei,k)∑T
j=1 exp(ei,j)

(3.6)

where

ei,k = f(si−1, hk).

The function f is called the alignment model and is trained to learn the relation between
the last hidden state (decoder output) of a RNN si−1 and the annotation hk. With this
probabilistic modeling, a context vector ci is the expected annotation with a certainty of
αi,k [12]. The original paper is limited to RNN/BiRNN and sequential data in general.
Later, a general approach to attention was proposed with transformer attention [111]. Also,
there are different alignment score functions [111, 72].

3.2 Biases in Recommendation Systems

3.2.1 Statistical Bias

Although there are many different types of biases, they all refer to one general definition:

A (statistical) bias is a systematic tendency towards or against someone or some-
thing, which causes a gap between statistical results and the truth.

Mathematically, a bias is a difference between your expected estimate and the truth:

bias(θ̂) = E(θ̂)− θ, (3.7)

where θ̂ is the estimator and θ is the true value. A (point) estimator/statistic is a function
that predicts a certain quantity of interest. This can be a descriptive statistical value, a
vector of weights for a machine learning model, or a function/function estimator. Therefore,
an estimator takes n independent and identically distributed data points x1, x2, ..., xn and
estimates

θ̂ = f(x1, ..., xn). (3.8)

It is to be observed that an estimator with bias(θ̂) = 0 is called unbiased estimator [36].

3.2.1.1 Cognitive Bias

In psychology, the term cognitive bias indicates a misinterpretation of human perceptions
that causes distorted conclusions. Often, this refers to self-delusion in the process of
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thoughts [114]. Since recommendation systems interact with users, many cognitive biases
are present in the collected behavioral data. There is a large number of psychological effects
causing biases. John Manoogian designed an overview (see Appendix Figure A.1). In this
overview, the different effects are categorized into four different groups. The first group
lists every effect related to the human memory process. For instance, the negativity bias
is caused by the effect that we remember bad events more intensely than good things. In
rating-based (explicit-feedback) recommendation systems, this may overall generate a more
negative rating.
The second group is all effects related to the tendency to act fast. An example of these
effects is the less-is-better effect. It states that low-value options are chosen more often than
high-value options [52]. The other two groups are the effects of an overdose of information
and, on the other hand, not enough meaningful information. An easily understandable ex-
ample of an overdose of information is that flashy and bizarre information shown is better
memorable than common information. This effect is noted as bizarreness-effect [11].
However, when the human brain is fed less information, it tends to fill in meaning with
prior knowledge. For instance, we tend to believe people with high authority more than
people with less authority (authority bias) [83]. Note that each effect may be part of mul-
tiple groups. Also, definitions of effects and biases can overlap. There are more than this
categorization options, like dividing the biases into conscious and unconscious biases.

3.2.1.2 Inductive Bias

Another term of bias is introduced when speaking about machine learning, the inductive bias.
An inductive bias is caused by the assumptions made when choosing a model. Most modern
algorithms, especially neural networks, have to make some assumptions when learning to
generalize an unknown function and distribution of data. These assumptions might be the
type of neural network architecture or the number of parameters needed to fit the data.
It shows that not every bias is harmful and needs to take care of [84].

Finding biases and debiasing is a big topic in recommendation systems. There are many
different types of bias. However, not every bias is as relevant as others in news recommen-
dations.
This section will give an overview of the different biases. Firstly, it is shown more generally
on recommendation systems and in the particular case of news recommendations. We will
follow the survey paper by Chen et al. [21] and Mehrabi et al. [79] in terms of terminology
and definitions. In general, there are three stages in which biases can occur. The first stage
is the collection of user data. On the recommendation task, these data represent the user
behaviors on the system, like click histories or given ratings. The second stage is the process
of learning a recommendation model with the data collected. And the final step is to serve
new recommendations to the user by the trained model. This sequence of steps is executed
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repeatedly. This is called the Feedback loop (see the left side of Figure 3.3).

Figure 3.3: Stages of the recommendation task (left) and according to biases (right). Taken
from Chen et al. [21]

3.2.2 User-to-Data Bias

The User-to-Data biases are closest to the cognitive biases mentioned before. Users interact
with the recommender system and then choose/click/rate an item. This item is then added
to the learning data.

3.2.2.1 Selection Bias

Generally, the selection bias occurs when the data is not sampled randomly. In the environ-
ment of a user making explicit feedback, this feedback might not be random. This happens
since users are willing to rate an item they particularly like or dislike [78, 21].
Another problem is that a recommender system only shows a specific number of items, even
if there are more recommended items. It forces the user to choose an item that prevents a
random selection. Observe that this bias is related to a positional bias [90].

3.2.2.2 Position Bias

When showing items to the user, they can not be presented equally. However, items in a
higher position are more likely to be clicked by a user. It causes a positional bias since the
position is not generally related to the relevance of an item [26].

3.2.2.3 Context Bias

Recently, the term context bias was introduced by Zheng et al. [129] It describes the con-
textual relation between multiple items and their attributes. An attribute might be the
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position, the modality, or the title of the item.
As an example, let us consider two news items. The first one is an article positioned higher
than the second one. However, the second one is a video with a flashy title. In this context,
it is hard to imagine which news is more likely to be clicked, even with the knowledge of a
potential positional bias and modality bias. This is what context bias captures.

3.2.2.4 Exposure Bias

The exposure bias results from ambiguity between unobserved and unliked items by the user.
Considering the case of implicit feedback, the recommendation system cannot distinguish
between an unclicked and a not seen item. Again, this is related to a positional bias since
lower positions are more likely to be unseen.
Exposure bias is also called previous model bias in some literature [68, 67]. This is because
the last recommendation models and their policies generate the exposed items.

3.2.2.5 Conformity Bias

Conformity bias is caused by the influence of society and groups on the individual. There-
fore, users may not interact with an item due to their preferences but to a conformity
propensity. [73]
Conformity bias is more relevant in explicit feedback systems since visible feedback from
other users affects user opinions.
It is also referred to as social bias in research. [79]

3.2.2.6 Behavioral Bias

The behavioral bias generally describes the effect that people tend to act differently in
different situations. For instance, writing an e-mail to a friend might be less formal than an
e-mail to an employer. [88]

3.2.2.7 Temporal Bias

A temporal bias is the tendency of changes in behaviors over time. Since society is constantly
changing and systems may change, the usage of a system is affected by it. This causes a
trend of worse generalization when the system is not updated. [88]

3.2.2.8 Anchoring Effect

The anchoring effect is a cognitive bias due to an influential reference point called anchor.
People tend to support their thoughts to this point even if there is no relation.
A referenced anchor can be numerical and non-numerical. [128]
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A typical example of the anchoring effect comes from the manipulation of customers in
marketing. Products are marked with an old price and a new, reduced price (e.g. 6.99€ to
2.99€). The old price is an anchor which is supposed to suggest a good deal on the product.
Customers are more likely to buy this product because of the old price.

3.2.2.9 Framing Effect

When context, like a piece of information, is proposed in a certain way, it is called a frame.
The framing effect is the shift of the perceived impact of information according to the frame.
There are two types of framing, loss and gain framing. The loss frame is a view from the bad
side of information, whereas the gain frame is viewed from the good side of information. [109]
The framing effect and the non-numerical anchoring effect are close. This is because a frame
can be viewed as an anchor.
For instance, there was a train accident with 1000 people and four injured people due to a
crash. A newsletter is writing an article about that crash. A loss framing for the title of this
article would be "Four people got injured at a train accident," whereas "Almost no injuries
at a train accident" would be a gain framing.

3.2.2.10 Weber-Fechner Law

The Weber-Fechner law describes the relative sensual perception of humans. It states that
the human perception of an increasing number of visual impressions is different. Linear
growth of visual impressions is received as a logarithmic increase instead [97].

3.2.2.11 Semmelweis Reflex and Conservatism

The Semmelweis reflex describes the effect that new information is more likely rejected if
they conflict with old information, norms, or paradigms. It is a cognitive bias produced by
the overestimation of the own beliefs. [51] Therefore it is closely related to conservatism and
the egocentric bias [102]. The term "reflex" comes from the impulse to directly disagree on
this conflicting new information.
A famous example is Galileo Galilei proposed his controversial observations to the church,
which did not believe his studies that the earth was not the center of the universe.

3.2.2.12 Attributional Bias

An attributional bias is the systematic fallacy when evaluating the behaviors of oneself or
others. There are some well-known subgroups of attributional biases.
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Group Attribution Error/Stereotyping is the fallacy that a certain group has the
same attribution or opinion. On the other hand, it is a fallacy that a certain group member
is representative of the whole group in terms of attribution. [74]
Ultimate attribution error is the tendency to underestimate situational and overestimate
personal factors in terms of someone’s behaviors outside of a group. This lead to an over-
negative view of a person outside a group and an over-positive view of a person inside a
group. For example, this group can be gender, race, or profession. [49]

3.2.2.13 Automation Bias

An automation bias is the tendency of humans to underestimate their beliefs and decision
power and overestimate the correctness of decisions made by machines. This causes humans
to prefer a decision by a device to a decision made by themselves. [35]

3.2.2.14 Reactive Devaluation

Reactive devaluation is the tendency to devalue a recommendation made by someone or
something that the person dislikes or that is an antagonist.
An example was proposed by Ross and Stillinger [98] in 1991. They asked pedestrians
from the US if they would agree that a general bilateral reduction of nuclear arms would
be desirable for Russia and the US. 90% agreed when the questioner added the information
that the proposal came from the president of the US. 80% agreed when the questioner added
the information that the proposal came from a group of experts. And only 44% agreed when
the questioner added the information that the proposal came from Michael Gorbachev, the
former leader of the Soviet Union.

3.2.2.15 Historical Bias

Finally, a bias is referred to as historical bias. It describes an intrinsic bias due to the world
as it is. To evaluate a historical bias, it is required to have a retrospective on the world and
how it was and now is.
As an example: According to Player et al. [93] there are only 5% of women in the top 500
CEOs of the world in 2018. In 2018, searching for CEO would have led to only a fraction
of women shown. This is because there is a historical bias against women. However, this
effect enhances the thinking that it is more likely that a man can be a CEO than a woman.
Later, Google changed the number of images shown to be fairer. [108]
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3.2.3 Data-Model Bias

In this section, we present the biases in picking up data for the algorithmic part of the
model.

3.2.3.1 Measurement Bias

Measurement biases are a group of biases. They occur in different types of measurements
mostly due to wrong choice or usage of measurements. Suresh and Guttag [108] stated
three measurement problems that result in biased data.

1. Different groups in data are measured in a different frequency. For example,
let us say one group of participants in a study is much more often monitored. This
led to an increasing failure in this group. In a feedback loop, this leads to even more
monitoring. [14]

2. Different groups may have a different quality in their measurement. This is
often the effect of systematic discrimination.

3. Labels and features may be designed in an oversimplified way. This led to
an inaccurate and biased view.

In the often criticized COMPAS model [108, 79, 57] for classifying criminality, the "riski-
ness" attribute has a significant measurement bias.
In COMPAS, the riskiness of a person is measured by the times this person or their close
contacts has been arrested. This is a biased measurement since afro-Americans are discrim-
inated against in a way that they get arrested much more frequently.

3.2.3.2 Omitted Variable Bias

An omitted variable bias occurs when the used model omits certain important variables for
inferring a prediction. This can be featured in data sets that ignored or did not consider
external factors.
Internal omitted variable: An image classifier is limited to a certain input size. Therefore
images have to be compressed. This leads to an information loss. This is closely related to
an inductive bias.
External omitted variable: A classifier tries to predict a person’s pregnancy probability.
However, the training data set has no attribute "gender".

3.2.3.3 Aggregation Bias

When making a wrong conclusion about an individual seeing the whole population, it is
called an aggregation bias. This may occur when the model has not connected certain
conditions to make a prediction.
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In medical tools, there are shown that some diseases have different types of symptoms in
different types of subgroups like gender. Therefore it might be hard for a single model to
predict a disease for the whole population but for a specific subgroup. [108, 107]
There are multiple subcategories of the aggregation bias like the Simpson-paradox [104] and
the Modifiable Areal Unit Problem (MAUP).
When a total random sample of some population is divided into sub-sample and the sub-
samples unexpectedly tend to be correlated, it is called Simpson-paradox [117].
MAUP is a bias when aggregating point data with different boundaries, which then leads to
a different perception and inference [34] (see Figure 3.4).

Figure 3.4: Modifiable Areal Unit Problem. Scaling of boundaries changes the perception
of the dots (from https://gisgeography.com/maup-modifiable-areal-unit-
problem).

3.2.3.4 Sampling/Representation Bias

A sampling bias is the problem of non-random sampling inside subgroups. This leads to an
unrepresentative population and worse generalization when dealing with new data.

3.2.3.5 Longitudinal Data Fallacy

The Longitudinal data fallacy is a temporal, statistical bias that occurs when the data is
collected as cross-sectional. Still, predictions are made like it is a longitudinal study. This is
often because longitudinal studies are much more time intensive. Fallacies happen because
the same cohorts tend to be biased in some sense, but cohorts from different points in
time are unbiased. A study cross-sectional study has only a single point of time where the
data is collected. In contrast, a longitudinal study has multiple points where the data is
collected. Barbosa et al. [13] proposed an example of user behavior data on Reddit2. They
hypothesized that the length of comments on Reddit would decrease over time using a cross-

2www.reddit.com
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sectional study. The study strengthened their belief. However, using the actual longitudinal
data shows a different trend.

3.2.3.6 Linking Bias

The linking bias is fixed to network attributes. It occurs when connections or node attributes
are misleading and not representative.

3.2.3.7 Redundancy Ambiguity

Redundant data is identical or close to similar data in the overall data set. Usually, redun-
dant data will be removed in the data cleaning process, but it is not always desired. Consider
the example of someone making a post on Facebook multiple times. If it was posted acci-
dentally, the redundant ones should be dropped from the data set. When someone wants to
state something numerous times, this information would be more important to them, and
the data should be kept. This lead to ambiguity and a potential bias on the importance of
information.

3.2.4 Model/Learning Bias

The second stage where biases occur is the learning stage. In this stage, the model makes
assumptions about the data, which causes an inductive bias mentioned before (see subsub-
section 3.2.1.2).

3.2.5 Resulting/Serving Bias

In the final step, the model produces recommendations which are the model’s results. These
results are served to the users, which then completes the circle of the feedback loop. This
introduces biases in the served recommendations.

3.2.5.1 Popularity Bias

Even though popularity bias is mentioned in the section of serving biases, it is a problem
that originated in data and in the algorithm used to train the model. In recommendation
systems, data is often long-tailed (e.g., see ) in terms of the population of items. This means
a few things appear as recommendations very often for the users, and the majority of items
are not as popular and appear lesser [4].
Another prevalent example of this phenomenon is that the 10% of the wealthiest people
on earth own about 85% of the global household wealth. This results in another common
fact that the richer people get even richer. [110] The same applies to the recommendation
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task: The most popular recommendations are recommended even more in the feedback loop,
which is empirically proven by Abdollahpouri et al. [5].

3.2.5.2 Stance/Sentiment Bias

The sentiment bias is a specific bias in the field of NLP and news recommendation. It is the
tendency for recommendation models, including language models, to have a more negative
sentiment. Similarly, the stance bias indicates a tendency to certain viewpoints. Both effects
lead to reduced diversity in the proposed information. [7]

3.2.5.3 Cold Start Problem

A well-known issue in recommendation tasks is the cold-start problem. The problem occurs
with new users. The user has no interaction/rating behavior when first interacting with the
system. The underlying model cannot match promising items for the user, and the prediction
is more likely to be unsuited. Overall, these new users may get worse recommendations.
This is a problem in collaborative filtering and content-based recommendations. [42, 112]

3.2.5.4 Unfairness

The last thing to mention is unfairness. It might be the most well-known bias. It describes
systematic discrimination against someone or something. In recommendation systems, this
might be users with certain characteristics like gender or race or news coming from a par-
ticular website.

3.2.6 Feedback Loop/Bias Amplification

When information is first proposed to users, they interact with the system and pick items
from impressions they like. The system then picks this information up and improves its rec-
ommendation on the following proposed items. This is called a feedback loop in recommen-
dation tasks (see Figure 3.3). This feedback loop produces the problem of bias amplification.
It means that certain biases getting more present when the feedback loop is repeated over
and over again.
For instance, Mansoury et al. show in their paper on bias amplification that there is an
amplified popularity bias and a trend of reduced diversity in each feedback loop. [76]

3.2.6.1 Emergent Bias

A big problem seen in examples like Microsoft chatbot Tay [55] is the Emergent bias. It
is caused by the biased society interacting with the model repeatedly. Tay was a chatbot
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launched in 2016 on Twitter3. After only 24 hours of interactions with the community, it
got racist and posted conspiracy theories and other delicate topics. Microsoft then decided
to shut it down.
This was due to the emergent bias caused by interacting with groups of people sharing these
opinions. The tendency is limited to models with feedback loops. It creates a window for
attacks that contaminate the model.
There are two types of emergent bias for different kinds of models. An online model that
still learns about the process of new interactions might learn this biased information. For
an offline model exclusively trained on collected data, there is also a problem of emergent
bias. Tay searched the internet for information when it interacted with people. For specific
suggestive questions, it replicated opinions from the searched website. This caused a bias
without actually learning what it was writing. [55]

3Social media platform : www.Twitter.com
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In this chapter, we want to talk about the experimental setup. There are some limitations
in the dataset, used models, and bias analysis for this work.

4.1 The MIND-Dataset

In this work, we focus on MIND, which was proposed by the team of Microsoft and Tsinghua
University. MIND is an acronym for Microsoft News Dataset. It is an aggregation of user
click behaviors on the Microsoft News platform1. An example of a user impression is shown
in Figure 4.1.
Wu et al. [126] have collected data for 1 million users on the platform, randomly sampled
from the total population. These users have a history of at least 5 click interactions between
the 12. October and the 22. November 2019. The collected behaviors are due to implicit
feedback and therefore do not have a form of rating across the news. The first 4 weeks of
collecting data are used as the training data. The fifth week is for the validation set and the
last is for the test set. There are three different sizes made available for the dataset. The
MIND-large is the original dataset, containing all 1 million users and their behaviors. For
test purposes, the MIND-small and MIND-demo were proposed.

Figure 4.1: Microsoft news homepage from 10. November 2022.

1https://www.msn.com/de-de
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Due to a reduced computation time, the experiments are limited to MIND-small dataset,
which contains 50,000 users and their behaviors. These users are randomly sampled from the
original dataset. The data contains 156,965 impressions indicating clicked and not clicked
news.

4.1.1 Structure of MIND

A news article is characterized by a News ID, a Category, Subcategory, Title, Abstract, URL
and a dictionary of Title Entities and Abstract Entities. A description of the columns can
be found seen in Table 4.1. The Abstract and Title Entities are referenced to the WikiData2

knowlegde graph (see Table B.1. Note that MIND does not have any information about the
actual body but the URL to the news article.
The rows of behavioral data are mainly attributed to an impression proposed to a user and
the user’s history. To indicate whether a candidate in an impression is clicked or not, the
authors concatenated a 1 for a click and a 0 for no click. Additionally, the timestamp of the
impression is recorded. In summary, an Impression is characterized by a unique Impression
ID, an User ID, a Time, a History, and Impressions. Short descriptions can be viewed in
Table 4.2.

Column Description
News ID Unique identifier of the news entry
Category Main topic of the news e.g. sports

Subcategory Sub topic of the news e.g. soccer
Title Header shown to the user

Abstract Small description of the news
URL Site link to the news

Title Entities Key words of the title
Abstract Entities Key words of the abstract

Table 4.1: Column description of the news.

Column Description
Impression ID Unique identifier of the impression

User ID User identified by his unique ID who the impression was shown to
Time Timestamp when the impression was shown

History List of news which were clicked by the user in the past

Impressions Choice of news which were shown to the user
with concatenated 0 or 1 for not clicked/clicked news

Table 4.2: Column description of the behaviors.

2https://www.wikidata.org/wiki/Wikidata:Main_Page
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4.1.2 MIND Statistics

In this subsection, we want to give an overview of some descriptive statistics according to
MIND news and behaviors. Since most of the tests are running on the small dataset, we
will present the statistics of the training set of the small dataset. A short description of the
large dataset can be viewed in Table B.2. Most of the shown distributions and statistics
represent the large dataset very well.
The small MIND is only splitted into a training and a validation set. A test set is not
proposed. Both, the validation and training sets contain a total of 50,000 users. The
training set contains about 68% of the total behaviors and the other about 32% in the
validation set.

4.1.2.1 News Statistics

The news file contains 51, 282 different news in the training set and 42, 416 in the validation
set. Briefly, we present statistics on each piece of information about the news.

News Categories

Each news is categorized into one of 173 topics/categories manually set by the author of the
news article. The absolute frequencies of each category can be viewed in Figure 4.2. The
major share of news categories is news with about 30.76% and sports with about 28.3%.
The next highest category in terms of frequency is the finance category with about 6% of
share.
Each of the categories has multiple subcategories. The frequency and the top subcategories
are presented in Table B.3.

News Titles

News titles are different in their syntax and semantics. However, it is hard to measure
the semantics of a text. There are some ways proposed in the experimental part where we
classify the sentiment of each news. It shows that there is a tendency for more negative
than positive news in terms of sentiment. In the semantic view, we give an overview of the
lengths of news titles.
The title lengths are in a form of a gaussian distribution (see Figure 4.3). Its values are
around the mean of 66.25 according to characters and 10.77 according to words in the title.
The standard deviation for characters is 19.22 and 3.29 for words. That means, about 95%
of all titles have between 4 and 17 words in them and 27 to 104 characters, assuming a
gaussian distribution.

3In the large dataset is a total of 20 categories
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Figure 4.2: Frequencies of each category in the news dataset.
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Figure 4.3: Histogram/KDE plot of each title lengths according to characters (left) and
words (right).

4.1.2.2 Behaviors Statistics

In the behaviors dataset are impressions and histories of 50, 000 users randomly sampled
from the total dataset. The history of a user is always the same but the impressions change.
The total number of impressions in the dataset is 156, 964. Since the data is collected over
a time period of five weeks, there is no necessity in investigating the time stamps. So we
focus on the histories and the impressions.

Histories

A user’s history is a list of clicked news articles in the past. They are represented by their
News ID. Since there are a lot of different users in terms of their activity, the sizes of
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Figure 4.4: Long-tail histogram of the history length of each user.

the histories vary a lot. The histogram of the lengths is long-tailed. This can be seen in
Figure 4.4. Most users have a history with four, five, or six news. The median is 11 news,
meaning that 50% of all user histories have a size lower or equal to 11. 90% of users have a
history size less than 42 and 99% a size less than 116. Note that the total counts sum up to
50, 000. So each history only counts once.

Impressions

Impressions are the recommendations by the RS to the user that the user interacted with. A
news article represented by its ID is noted as clicked or not. A news article in the impression
is called candidate. There is always at least one candidate clicked in an impression.
The number of candidates varies on each impression. The absolute frequencies are long-
tailed, and smaller impressions occur much more than bigger impressions (see the left graph
of Figure 4.5). 50% of the data has an impression size of less or equal to 24 candidates. The
average click rate on an impression is about 0.109. It is measured as

CR(D) =
1

|D|
∑
i∈D

|{c : (c ∈ i) and (c is clicked)}|
|i|

,

where D is the dataset of behaviors, i = {c1, .., c|i|} ∈ D are the impressions and cj for
j ∈ {1, ..., |i|} is a candidate with a click-indication.
Overall, 72.56 of the impressions have only one clicked candidate. Less than 1.5% of the
impressions have a higher click count than 5 candidates(see the right graph of Figure 4.5).
A truncated table is presented in Figure B.1.
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Figure 4.5: Histogram of impression sizes (left) and clicked candidates per impression(right).

4.2 Microsoft Recommenders

In this work, we use Microsoft Recommenders to load implementations of modern NRS.
Microsoft Recommenders is an open-source library to get in touch with RS. The library
contains five subsections of utilities: Recommender algorithms, Datasets, Evaluation, Utils
and Hyperparameter tuning4. Recommender algorithms implement different recommenda-
tion models but are not limited to news recommendations. These contain traditional models
like the TF-IDF approach and modern embedding-based and deep model approaches. The
Datasets subsection proposes an interface for loading datasets like MIND or MovieLENS.
The Evaluation section offers metrics and evaluation techniques to quantify the results of a
recommendation model. Hyperparameter tuning gives some aid in automatic optimization
in terms of hyperparameters. Utils has some valuable tools for the usage of the data. We
mainly use methods in Recommender algorithms, evaluation, datasets, and evaluation. Hy-
perparameter tuning is not a part of this work. When using the recommendation models,
we stick to the recommended hyperparameters.

4.2.1 Recommender Algorithms

The experimental part starts with an overview of performances on MIND using models from
the Recommenders library. We will introduce the used models in this section to understand
these methods. A table of used hyperparameters can be viewed in Table C.1. All model-
related metrics are plotted with WandB [115].

NRMS

NRMS is an acronym and stands for Neural News Recommendation with Multi-Head Self-
Attention. It was introduced by Wu et al. [120] in 2019 .

4see https://microsoft-recommenders.readthedocs.io/en/latest/
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NRMS is a content-based recommendation model. It has a neural architecture with two
encoders (see Figure 4.6) to identify contextual similarities in and between news using multi-
head attention.
The news encoder is producing word embeddings ei for each word in a news title. It then
uses a multi-head self-attention layer to learn contextual connections of the word. The
output is denoted as hwi and concatenates all heads. Afterward, another layer of additive
word attention is used to select the most important words in a news title. The words are
representations learned in the second layer. The output of the news encoder is a weighted
sum of these representations.
The user encoder acts analogously. Users are represented as the history of their clicked news
titles. The news encoder embeds each news title in the history. Again, the embedded news
is fed into a multi-head attention layer to learn contextual relatedness between this news.
Afterward, the additive news attention weights news in history by importance. The dot
product of embedded candidate news and the user representation measures the prediction
of a news click.
The main tests in this work are exemplified with NRMS. This is because it has an easy-to-
understand structure and yet high performance. For instance, in the paper by [121], it can
outperform other models like DNK, NAML and NPA.

Figure 4.6: Framework of NRMS using a News Encoder (right) and a User Encoder (left)
with multi-head attention. Image originates from Neural News Recommendation
with Multi-Head Self-Attention [120].

All used models use a news encoder and a user encoder with an attention mechanism to
learn the latent representation of the information.
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4.2.2 Metrics

To evaluate the performance of recommendation models, we want to briefly introduce the
used metrics in Recommenders.

Group Area-under-Curve

Area-under-Curve (AUC) is a function that quantifies the rate of True Positive and False
Positive prediction. The True Positive Rate (also called Sensitivity) is defined as

TPR =
TP

TP + FN
(4.1)

and the False Positive Rate (also referred to as 1−Specificity) is defined as

FPR =
FP

FP + TN
, (4.2)

where TP is the number of correct positive recommendations, FN is the number of incorrect
negative recommendations, FP is the number of incorrect positive recommendations, and
TN is the number of correct negative recommendations. Both rates are bound to the inter-
val of [0, 1]. Usually, a positive or negative recommendation is made due to a threshold (e.g.,
p(click|user, news) > 0.5 ⇒ positive recommendation and p(click|user, news) ≤ 0.5 ⇒ neg-
ative recommendation). To identify a good threshold, for each threshold, a point is plotted
with its False Positive Rate on the x-axis and True Positive Rate on the y-axis. When con-
necting these points, the result is called a ROC curve. AUC calculates the area under
the ROC curve.
Note that a good threshold has a TPR close to 1 and an FPR close to 0. It is the trade-
off between both rates. AUC gives a summarized performance of the used classification
model. [39]
There is a weakness for AUC, especially in personalized RS like NRS. Usually, a RS rec-
ommends the top K items in terms of click probability p(click|user, news). But not every
group has similar probabilities. Thus the probabilities can not be calculated all at once.
Group AUC calculates the ROC AUC for each group by a weighted sum. [56] In
this work, it is convenient to group by user impressions. Thus the group AUC is calculated
as

GAUC =
1

|Impressions|
∑

i∈Impression

AUC(labelsi, predictionsi). (4.3)
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nDCG@K

The normalized discounted cumulative gain is a metric to quantify the relevance of ranked
recommended items.
The discounted cumulative gain is defined as

DCG@K =
K∑
i

2reli − 1

log2(i+ 1)
(4.4)

where

reli =

{
1 : i’th item was clicked
0 : else

referring to the definition of Burges et al. [17]. To achieve a consistent cumulative relevance
for each recommendation, the sum is normalized by the ideal discounted cumulative gain
(iDCG). This is the DCG@K of the by relevance sorted recommendations. This ensures a
maximal outcome. So nDCG@K is calculated as

nDCG@K =
DCG@K

iDCG@K
. (4.5)

It is bound to 0 ≤ nDCG@K ≤ 1.
In our experiments, we use the popular nDCG@5 and nDCG@10 metrics.

Mean MRR

Like in GAUC, Mean Mean Reciprocal Rank is the slight variation of MRR that calculates
the user impressions MRR and then averages over these results.
The Mean Reciprocal Rank for an impression is calculated as

MRR =
1

|I|

|∑
i∈I

I| 1

rank(i)
(4.6)

where rank(i) is the i-th news actual relevant proposed news ordered by click probability.
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5.1 Model Performance Overview

We evaluated five modern news recommendation models to give an overview of modern
approaches and their performance. These models are NRMS, LSTUR, NAML, NPA and
DNK. All these models are trained for 10 epochs on the small dataset of MIND. For a faster
and more consistent result, the batch size is set to 32. All models are optimized using an
ADAM optimizer [59]. The list of relevant hyperparameters can be viewed in Table C.1.
The table also indicates the structure of the models.

Results

After training for ten epochs on the small MIND dataset, NAML shows the best results in
all four metrics (see Table 5.1). Each model’s loss improves on each step (see Figure C.1).
Except for DNK, all models produce similar results on the metrics. The results of group
AUC lay in an interval of 0.6293-0.642. The results of Mean-MRR are in an interval of
0.2856-0.3029. The results of nDCG@K are in an interval of 0.3116-0.3352 for K = 5

and 0.3807-0.3975 for K = 10. DNK underperforms with with a Group AUC of 0.5762., a
Mean-MRR of 0.1925, a nDCG@5 of 0.1879 and a nDCG@10 of 0.2626. The progression
of the results can be viewed in Figure C.1 to Figure C.5.

Name Group AUC Mean MRR ndcg@10 ndcg@5
DNK 0.5762 0.1925 0.2626 0.1879
NPA 0.6328 0.2874 0.3832 0.3165
NRMS 0.6293 0.2856 0.381 0.3116
NAML 0.6563 0.3029 0.3975 0.3352
LSTUR 0.6326 0.291 0.3807 0.3157

Table 5.1: Final metrics after 10 epochs of training on small MIND. Top performances are
highlighted. NAML is showing off the best performance.
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5.2 Investigating Biases

To follow the structure of the foundation’s section, we divide the investigation of the biases
into three parts, user-data, data-model, and model-user biases. Since our data is from
MIND and relies on implicit feedback, not every bias mentioned in the foundations can be
investigated in this part.
A complete list of all investigated biases can be seen in Table 5.2. A brief description, the
type of feedback, whether there is a connection to other biases, the type of measurement, and
the research basis with debiasing methods, if available, are presented. Biases that need to
be shown by a user study are mentioned and discussed but beyond this paper’s experimental
scope.

5.2.1 User-Data Bias

5.2.1.1 Position Bias/Selection Bias

Selection bias and positional bias are closely related to implicit feedback. In both scenarios,
we evaluate if users pick items shown earlier in the impressions.
For a user u there is no positional bias if

(pu(nk)) ≈
1

|Iu|
(5.1)

where pu(nk) is the probability that the kth news in an impression is clicked, Iu is the
proposed impression, and {n1, ..., n|i|} ∈ I. The probability that a user picks news from a
specific position is completely random or uniform. Otherwise, the data is positional biased.
To evaluate (5.1), we slightly changed the equation. Instead of calculating the bias for a
user, the general bias for all users is calculated. Since the number of news per impression
differs, impressions with less than 5 items are skipped. There is also an assumption that
each position’s relevance is equal. The data is collected with unknown RS. However, there
will be some relevant scores for the candidates.

Results

Figure 5.1 shows that the number of clicks per position decreases strongly. More than 4%
of all clicks are items in the first position. Higher positions are less clicked.
The graph shows the clicked positions in an unweighted manner. This means positions are
treated equally for every impression. But news clicked in a large impression should be more
relevant than news clicked in a small impression. Therefore we introduce an exponential
decay function to weigh the clicks. The weights are calculated via

f(x) = 1− e−
x+6
15 ∈ [0, 1] (5.2)
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Bias Description Feedback/
in MIND

Related
to

Measurability
in Research Debias

Inductive Bias Model assumptions influence results Both / ✓ - Model; [45] -

Selection Bias User rating is not random Explicit/ x Negativity bias;
Anchoring;

User study;
Data;

[78, 47]
[78] [71, 103]

First match Bias
(Selection bias) Potential interesting news are not seen Implicit / ✓ Exposure bias; User study;

Data - -

Position Bias Higher positioned news are favoured by users Both / ✓
Weber-

Fechner-Law; Data; [90, 25]
[26, 68] [20, 121]

Context Bias Interests are blurred by context/modality ind./ x Framing; User study;
Data [129] [129]

Exposure Bias Ambiguity between not clicked and
not liked news ind. / n.i. First match bias; User study; [68] [127, 77]

Conformity Bias User interests are manipulated;
Skewed rating distribution Explicit* / x

Anchoring;
Framing;

Reactive Devaluation

User study;
(Data;) [61, 73] [73, 69]

Behavioral Bias User interests differ for different situations ind. / n.i. Conformity bias; User study; [29, 88] -

Temporal Bias User interests change over time ind. / n.i. - User study;
Data; [88] -

Anchoring/
Framing Interests are manipulated by reference points Explicit* / x - User study; [128] -

Semmelweis Reflex/
Conservatism New information are more likely to be denied ind. / n.i. - User study; [51, 102] -

Attributional Bias
Fallacy that individuals have

same interests as other individuals
due to the same grouping

ind. / n.i. Discrimination
unfairness; Model; [74, 49] -

Automation Bias Proposed news are chosen
because of trust to the machine ind. / n.i. - User-study; [35] -

Reactive Devaluation
News are not clicked because of bad experiences

with some entity like
provider, users, author

Explicit* / n.i. Personal experience;
Unfairness; User-study; [98] -

Measurement Bias Modelled measurement are chosen or used wrong ind. / x Inductive Bias; Model; [14, 108] -

Omitted Variable Bias Variables that not taken into account
when collecting data or used by model Both / ✓ Inductive bias; Data;

Model; [47] -

Aggregation Bias Fallacy about individuals due to wrong conditioning ind. / n.i. Attributional bias; Model; [107, 108] -
Sampling/

Representation bias
Unrepresentative population on

sampling inside subgroups Both / n.i. - Data; [62, 47]
[108] -

Longitudinal data fallacy Fallacies due to cross-sectional study
instead of longitudinal study ind. / n.i. Data; [13] -

Redundancy Ambiguity Multiple same user interactions can be
treated as very important or redundant Both* / x - Data; [88] -

Popularity Bias News are even more presented
as their population suggests Both/✓ Unfairness; Data;Model; [4, 73, 5] [3]

Stance/Sentiment Bias Reduced diversity due to
overpopulation of negative or positive news ind. / ✓ - Data;Model; [7, 65] [122]

Recency Recent interests are more relevant ind. / ✓ Temporal bias; Modell;
Data; [54] [86]

Cold Start Problem New users get worse recommendations ind. / ✓ Unfairness; Model; [42, 112]
[64] [64, 40]

Interests blurring
(History length unfairness)

Worse recommendations
for users with large news history ind./ ✓ Unfairness; Model; - -

Unfairness Recommendation system systematically
prefers/discriminates certain entities ind. / ✓ - Model; [73, 5]

[16, 33]
[94, 125]

[77]

Emergent Bias
Model learns a certain

preferential treatment/discrimination interacting
with users in the feedback loop

Both1 n.i. Unfairness; Model; [55, 32] -

Table 5.2: Overview for potential biases in news recommendation systems and the experi-
ment. Feedback can be implicit, explicit, both, or feedback-independent (ind.).
Comment-based feedback is noted with a star (*). Measurability shows at which
stage the bias can be measured. Debias gives methods that mitigate the prob-
lems.

where x is the length of an impression. The regularized graph (Figure 5.2b) can be seen
in comparison to the naive approach (Figure 5.2a) in Figure 5.2. The exponential decay
counting reduces the gap between higher and lower positions. Both graphs show a positional
bias assuming no differences in relevance. Using a Kolmogorov–Smirnov test to identify if the
data is uniformly distributed, the result shows there is no chance that the data is uniformly
distributed. The visual and calculated results show a positional bias.
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Figure 5.1: Percentages of each clicked position in MIND small. Impressions with less than
5 elements are shrunk.
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Figure 5.2: Comparison of simple counting and exponential decay counting up to the mean
of impression lengths 37.

5.2.1.2 Sentimental Bias

The data is classified by a pre-trained binary Destillbert [100] model to evaluate the potential
of a sentimental bias. For each news in the dataset, the model predicts a negative or a positive
sentiment. If the model is uncertain about a sentiment with a certainty of less than 0.5, the
news is classified as neutral. A neutral sentiment will not be part of the evaluation.
The overall news sentiment proposed is slightly negative (see Figure 5.3). Thus there are
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about 41.84% of positive and 58.16% of negative classified sentiments in the news dataset.
This means a factor of about 1.39 more negative than positive news.
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Figure 5.3: Overall sentiment in news dataset of MIND small

A sentimental bias is evaluated due to a potential user bias tending to pick a particular
sentiment more likely and the over sentiment of impressions proposed to the user. The
average user sentiment is calculated by

sentu =
1

|Hu|
∑

nk∈Hu

sent(nk) (5.3)

where Hu is the history of the user with news entries {n1, ..., n|Hu| ∈ Hu and

sent(nk) =

{
1 : nk has a positive sentiment
−1 : nk has a negative sentiment

The average impression sentiment for a user is calculated by

sentIu =
1

|Iu|
∑
i∈Iu

∑
nk∈i

sent(nk)

|i|
(5.4)

where are Iu are the impressions proposed to the user and {n1, ..., n|i|} = i ∈ Iu are the
news in impression i.
The sentimental bias is then the absolute deviation of (5.2) and (5.3)

sb = sentu − sentIu . (5.5)
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Figure 5.4: Histogram/KDE-plot of the point-wise deviations of behavior and impression
sentiments

The data is unbiased regarding sentiment if sb ≈ 0.

Results

Behaviors and impressions are averaged for each user. Both sentiments are, on average, more
negative than positive (see Table 5.3 and Figure 5.5). The sentiment of the user behaviors
is, on average, 17.13% positive and 73.15% negative. This factor is 4.27 more negative than
positive news clicked by users in the past. The impressions proposed to the users have an
average sentiment of 18.13% positive and 77.45% negative. In comparison, it is slightly
higher negativity in the sentiment. The impressions sentiment has a mean of about −0.16

but less standard deviation than the behaviors sentiment. Therefore it is closer to neutral
sentiment.
The point-wise deviation of each user’s history to its impression proposed can be viewed in
Figure 5.4. The deviation is the difference between the user’s behavior and the proposed
impression by the model. A negative deviation means that the behavior is more negative
and a positive deviation means that the behavior is more positive in terms of sentiment.
The deviation is bound to the interval [−2, 2].
The sentiment bias is equal to the mean, which is

sb = −0.11. (5.6)

Thus the system proposed more positive news to the user than the user used to
click.
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Avg. positive Avg. negative Mean Stand. Dev.
Behavior sentiment 8565/50000 (17.13%) 36573/50000 (73.15%) -0.271557 0.397828

Impression sentiment 9063/50000 (18.13%) 38725/50000 (77.45%) -0.159119 0.240844

Table 5.3: Comparison of the behavior sentiment and the impression sentiment.
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Figure 5.5: Comparison of impression and behavior sentiment

5.2.2 Model-User Bias

5.2.2.1 Popularity Bias
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Figure 5.6: Top 30 news in terms of occurrences in impressions.

To evaluate a popularity bias in MIND, we looked at the frequencies of suggested news. To
give evidence, the frequencies are compared with the frequency distribution of the histories,
which can be seen as the relevance of news.
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Title Category Subcategory Show Ratio
Black Friday Deals You

Can Start Shopping Today lifestyle shop-holiday 14.677%

Rep. Tim Ryan endorses
Biden in Democratic primary news elections-2020-us 12.259%

Celebrity plastic
surgery transformations entertainment entertainment-celebrity 12.172%

50 amazing gifts for
every type of person and budget lifestyle shop-holidays 11.915%

Charles Rogers, former Michigan
State football, Detroit Lions star,

dead at 38
sports football_nfl 11.668%

Table 5.4: Top most presented news in impressions.

Results

To give an overview, there are 20288 different news shown to the users in MIND small.
The ratio of new news is about 0.13. The most shown news is shown 23037 times (see
Figure 5.6) whereas 11471/20288 news (56.5%) are shown less or equal 10 times. The data
is longtailed, and a small number of articles is presented very often.
Comparing these results to users’ behaviors, there is an over popularity in lifestyle and
especially in shop-holiday subcategories.

5.2.2.2 History Length Unfairness

The hypothesis is that users with different histories get different recommendations in history
length unfairness. In this unfairness bias, we used an NRMS model pre-trained for 5 epochs
on the training set and a modified training set. The tests are set up for five user groups:
users with 1, 10, 25, 50, and 100 history entries. The reason for stopping at a history
size of 100 is that there are not enough users with more than 100 entries. In the small
dataset are only about 6.1% of histories greater than 100 and only 2.2% greater than 150.
Otherwise, there would be an underrepresentation. To achieve this pre-setting, the training
set is modified for every user group in the training set to hold at least the number of history
entries investigated. For instance, the user group with a history length of 50 is trained on
the training set with users of at least 50 behaviors. The history is then shrunk to the exact
number of entries to have an exact comparison. Thus only the top recent entries are used.
Every user group has its trained NRMS-model. For evaluation, the metrics Group AUC,
nDCG@5,10, and Mean MRR are used. For consistency purposes, the model is trained
on three seeds, and the results are averaged over the single results of a seed. This also
ensures reproducibility. MIND only proposes a training and validation set. The models are
evaluated on a custom test set to assess the generalization better. The test set is randomly
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5.2 Investigating Biases

sampled from unseen data in the large dataset of MIND.
Note that a hyperparameter for history size had to be set before training the models. It
ensures that the model can pay attention to this number of entries.

Results

To see the differences between the influence of users with different history sizes, see the figures
and table below. Except for nDCG@5, the best results are on a History size of |H| = 10 or
|H| = 25. The results for the training with a modified version of the training set are much
closer together than with training on the basic training set. Only the nDCG@5 evaluation
is slightly better on the modified training set in terms of training and the evaluation on the
test set afterward. A visualization of nDCG@10 can be seen in Figure 5.7.

Metric |H| = 1 |H| = 10 |H| = 25 |H| = 50 |H| = 100

Mean MRR 0.2705
0.2462

0.3072
0.2476

0.3078
0.2462

0.2747
0.244

0.2524
0.2418

Group AUC 0.6113
0.5526

0.6506
0.5574

0.6506
0.5538

0.6138
0.5499

0.5852
0.5495

nDCG@5 0.2935
0.2621

0.3362
0.2618

0.3376
0.2589

0.2992
0.2568

0.2744
0.256

nDCG@10 0.3608
0.3222

0.4012
0.3236

0.4011
0.3223

0.3646
0.3205

0.339
0.319

Mean MRR (Test) 0.2698
0.2467

0.3055
0.2481

0.3058
0.2469

0.2739
0.2446

0.2516
0.2423

Group AUC (Test) 0.6111
0.5522

0.651
0.5568

0.6505
0.5533

0.6133
0.5493

0.5839
0.5487

nDCG@5 (Test) 0.2926
0.263

0.3342
0.263

0.3355
0.2601

0.2984
0.2579

0.2735
0.257

nDCG@10 (Test) 0.3598
0.3231

0.3997
0.3246

0.399
0.3234

0.3635
0.3212

0.3377
0.3199

Table 5.5: Table of the performance on different history sizes. Compare the standard training
set (upper value) and the modified training set (lower value). The top results are
underlined.
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Figure 5.7: Performance in nDCG@10 for different history sizes comparing the standard and
modified training set.

(a) Standard training set (b) Modified training set

Figure 5.8: Comparison of Group AUC

(a) Standard training set (b) Modified training set

Figure 5.9: Comparison of Mean MRR

5.2.3 Recency Bias

The recency bias in news recommendations is the tendency for more recent news to have
more impact on the recommendations. Thus recent news in user behaviors has a stronger
correlation to user interests. This test was originally a continuation of the tests for history

46



5.2 Investigating Biases

(a) Standard training set (b) Modified training set

Figure 5.10: Comparison of nDCG@5

(a) Standard training set (b) Modified training set

Figure 5.11: Comparison of nDCG@10

length unfairness. To evaluate this bias, we looked at the attention weights after the 5
epochs of training. Using NRMS as a model, there are three types of attention. Here, we
focus on the attention of news in users’ history. This is related to the history size since
attention is fixed. A recency bias is present if there is a tendency for attention weights to
get higher over time.

Results

Usually, we deal with multi-head attention. Therefore we took the sum over all heads

ak(u) =
h∑
i

ahi

, where h ∈ H is the hth head in H and k ∈ Bu is the kth news in the History of a user u.

The results show that attention weights for news in user behaviors tend to decrease. There
is no real monotony. The most recent values are about 2x as important as the oldest ones.
These results remain consistent for different sizes of histories.

5.2.4 Potential User and Explicit Feedback Biases

Context bias. Since no modalities such as video or image content are specified in MIND,
a context bias is not detectable in this work. However, verification in news recommendation

47



5 Experiments

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Attention weight

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

Hi
st

or
y 

en
try

Figure 5.12: Attention weights for each entry in the user history (here with 100 entries).
Higher entry means more recent.

systems with given modalities is quite possible. Context bias is closely related to the framing
effect. Both describe a shift in perception due to the context of an environment.
Conformity bias is also not measurable. Conformity biases are based on the evaluations
of other users. This can be found in explicit feedback. Other sources of conformity can also
be comments. Many news providers allow users to comment on the news they read. This
influence, however, also refers only to explicit feedback. The opinion and ratings of other
users can be seen as an anchor. Therefore, conformity bias is closely related to anchoring
and framing. The counterpart to conformity is reactive devaluation. Instead of pursuing
similar interests, the opposite is done on principle.
Behavioural and temporal biases are difficult to measure for news without a user study
and are also not assessed. However, new interests can be found in the data. As we have seen,
more recent news is more relevant than older news. The recency bias is a direct subproduct
of the temporal bias.
Semmelweis reflex and conservatism. The Semmelweis reflex and conservatism are ef-
fects that tend to make users reject new information. Modeling this behavior is of particular
importance for news recommendations. For example, new information in a news item could
lead users to not click on news items, rate them less favorably, or comment negatively.
Attributional bias. Attributional bias is a threat to performance, especially in collabora-
tive filtering. Since users are matched with similar users, it can lead to a false conclusion of
similar interests.
Measurement and omitted variable bias are a subcategory of inductive biases. Since
only clicks were collected in MIND, measurement errors are unlikely. With the use of NRMS
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in our experiment, we have a restriction on the user’s history. Omitted variables on the model
side (internal) are the time and the body that can be accessed via URL. External omitted
variables are none on the old MSN page. However, when data is collected again on the
current MSN page, variables such as user comments and ratings could be included for addi-
tional user information. However, it is more challenging to maintain the anonymity of the
users, as this information is public. Aggregation biases are difficult to measure because they
arise from incorrect model conditioning. Explainable models or methods of interpretability
are necessary for this.
Representation bias and longitudinal data fallacy. Due to time constraints, the check
for a sampling bias was not carried out. The data from MIND were collected over six weeks
and is therefore influenced by the current state of the world during this time. For example,
the most commonly suggested message was an overview of Black Friday deals. This event
is annual and therefore very unrepresentative for the whole year. So a longitudinal study
is potentially more useful to get a more accurate picture. A longitudinal data fallacy is
therefore also possible and related to this. To get a good assessment of this fallacy, however,
the data would have to be collected again as a longitudinal study.
Redundancy ambiguities are not a problem in MIND, as there is simply no redundant
data. Other and especially comment-based datasets may contain this problem. For example,
multiple viewing or multiple commenting can be interpreted as particularly relevant news
or as a mishap.
Unfairness. There is already a lot of research on unfairness, including unbiasing. We have
seen that there is an unjustified frequency of marketing lifestyle news. Other tests could
include assessing whether there is provider unfairness of the model as studied by Qi et al.
[94].
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6.1 Performance Tests

Contrary to expectations, in the performance test, NAML performed better than NRMS.
The expectation that NRMS is the best performer is due to the better results in, for example,
[121, 126]. The reason for our results may be the restriction to a single run. For time reasons,
we did not take an average of several runs. The result could not be representative.

6.2 Investigating and Discussion of Biases

In our experiments, we were able to see some potential biases in the data and model. In this
chapter, we want to discuss these findings, referring to our intuitions and results by other
researchers. The experiments are limited to MIND, which has collected data from implicit
feedback. An overview is shown in the Table 5.2. It shows all biases we experimented with,
potential biases, and biases for further investigation.
For a positional bias, the tests show that there is a strong tendency of users to pick
news that are positioned higher in the impression than lower (see Figure 5.2). Although,
there is no measurement for relevance in the proposed items. The data in MIND is cap-
tured from an already existing news recommendation system. According to the authors
of the MIND-paper [126], the underlying system uses state-of-the-art approaches for news
recommendations. These include embeddings for news and users, time awareness, and per-
sonalization. The actual model is hidden from the public. So the predictions, which give a
measurement of certainty for a proposed item, are not accessible. We introduced the weight
function to give more credit to picking a particular position from a bigger impression (see
Equation 5.2). This function is only for intuition. There is no mathematical derivation for
it. It is a function of exponential decay clipped to [0, 1]. A picked item at position k should
be more relevant if picked from many items. However, there has to be a saturation limit.
Users may tend to have a sensory overload. This is also closely related to cognitive biases
like the Weber-Fechner law (see 3.2.2.9). It states that the human perception of a countable
stimulus is logarithmic. So it suggests that this effect occurs in news recommendations.
Using this information to build a weight function and assume an equivalent relevance for
every position, the data is positional biased. There are two major problems with it. User
behaviors may have less relevant news, and models learn from this information. Also, there
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is unfairness in the news. When clicking news in lower positions is more likely, there has to
be a fair chance for news to get shown in these positions. There is a relation to a user-sided
selection bias. Especially users looking for a certain source may only interact with the first
matching item. In MIND, about 72.56% of impressions only have one clicked news (see right
graph of Figure 4.5). More than 90% have less than 3 clicks. This means higher-positioned
items have a better chance of being clicked.
Figure 5.3 shows a tendency for more negative than positive news. A pre-trained BERT
model classified this. To the best of our knowledge, there is no researched reason for this
tendency for negativity. Looking at the sentiment in the user behaviors, there is an average
of 73.15% of news sentiments. The mean of the average sentiment is at about −0.272. So the
users tend to click more negative news. This is supported by Soroka [105], who has shown a
negativity bias in news attention. Later, it was shown that there is a stronger psychological
effect of negative news by Soroka et al. [106]. These results might affect the overall news
sentiment. MIND data is collected from an intact feedback loop. Because users are more
willing to click negative views, news providers might also produce more negative news. This
systematic negativity bias would produce an unequal distribution of positive and negative
news.
The impression sentiment shows a very different distribution of average sentiments. Fig-
ure 5.5b shows a left-skewed normal distribution with a mean at about −0.16. The average
sentiment of impressions is 0.112 for the behaviors. Also, the spread of average sentiments
is less. The results differ from those proposed by Alam et al. [7]. In this work, we showed
that the impressions proposed to the users are, on average, more positive than the user
behaviors. Even though there are more negative sentiments overall. The news recommen-
dation system makes impressions. These results may not be unusual to follow an underlying
normal distribution with less extreme values close to the edge. The users’ behaviors have
much more values close to the extreme. Many users have very negative interests and a view
of very positive news in terms of sentiment. The extremes are not modeled well by the un-
derlying model. The data has sentimental bias and proposes on average, more positive
impressions.
We trained a model on different history sizes in the history length unfairness experiment.
The results showed differences in performances. The intuitional hypothesis was that a more
extensive user history leads to better recommendations. The reason is that there is more
information about a user. However, the hypothesis is rejected. The best performances are
achieved with a user’s history length of 10-25. Even users with only a single item in
their history performed better on all metrics than users with 100 items in their history. The
interests seem be blurred due to to much news entries in the history. Many researchers
like Lika et al. [64] show that recommendation tasks have cold-start problems. It means
new users get worse recommendations. In our experiments, users with only 1 item in the
history are cold-start users. The recommendation system is not able to generalize the in-
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terests. This explains the worse performance. On the other hand, users with a big history
length have the worst performance and get outperformed by users with 10-25 entries. This
is contrary to the recommended size of 50 history entries in most of the modelsTable C.1.
To the best of our knowledge, there is no researched reason for this. Looking at the atten-
tion weights proposed in the recency bias section (see Figure 5.12), the attention is nearly
monotonically decreasing over time. So later viewed news are more relevant than earlier
ones. These results are supported by the research of Ji et al. [54]. They show that active
users get better recommendations. This is because of a temporal bias in users’ preferences.
User preferences change over time, so recommendation systems must model this behavior.
We see a recency bias for our attention-based model. It gives a potential explanation
for the problem with large user behaviors. Older news seems to blur the interests of
users. It leads to worse recommendations. The sweet spot for the best amount of user
behaviors seems to lie between 10 and 25 entries.
Technically, there is a popularity bias in the dataset. Some news are shown very often in
users’ impressions (see Table 5.4), but more than 56% of news are shown less or equal to 10
times. The most shown news is 23.037 times shown to users, which means it was shown in
14.677% of all impressions. It is hard to find an explanation for these extreme frequencies.
Taking a look at the title gives an intuition of the reason. The most popular news is titled
"Black Friday Deals You Can Start Shopping Today". This suggests that the popularity
bias is systematic. It is a sort of advertisement and might be explicitly set inside an impres-
sion. This would mean no popularity bias in the recommendation model but a systematic
unfairness by the provider.

6.3 Limitations of the work

This work has some limitations in the experiments. MIND is a collection with implicit
feedback from users. This means that interests are only encoded binary, interested and not
interested in news. In contrast, explicit feedback is more diverse and gives more gradation
in terms of user interests. In this work, we focus only on implicit feedback. A big reason for
this is that there are only way smaller datasets with ratings. This changes the investigation
of biases, as well. Biases like anchoring effect, reactive devaluation, and conformity bias are
more applicable to explicit feedback. Furthermore, the model biases are only evaluated on
NRMS. NRMS has a good performance and uses a modern but simple approach to provide
content-based recommendations. There is big research in news recommendation systems
with plenty of new models every year. We picked this one to show how to evaluate these
different biases in news recommendations.
Another limitation is the consideration of only two of the three stages of biases in the
feedback loop. User biases are mainly cognitive biases. These are psychological effects that
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6 Discussion

change users’ opinions on news items. To quantify cognitive biases in news recommendation
systems, we must conduct user studies that are very human and time resource expensive.
However, user biases end up in data, and some data biases can be supplied to user biases.
This can be a temporal bias causing the model to favor more recent news or a negativity bias
causing an overall more negative sentiment. Knowing these biases and giving a complete
overview of them is necessary.
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7 Future works

The limitations of this work already give an intuition of future works on bias investigation
in news recommendation. Since MIND gives only implicit feedback, more experiments on
explicit feedback are possible. There are datasets like Bing News1 and NewsReel2 for explicit
feedback evaluation. The dimension of these datasets is way smaller than MIND. This makes
it harder to train models. Therefore, current research focuses on different recommendation
models like movie recommendation with MovieLens [43]. Currently, news recommendation
with feedback lacks a large-scale dataset. There is research with sufficient datasets like
BING news, but it is not released to the public by Microsoft.
There are some potential biases in explicit feedback. User-sided selection bias is shown for
rating-based collaborative filters by Marlin et al. [78]. Again, the showcase of their work
is limited to Yahoo, Netflix, and MovieLens data. Another bias to investigate in explicit
feedback is the anchoring effect. Proposing different scales of ratings has a different effect
on the users. For instance, since the collection of MIND, MSN3 has changed its news page
to allow users to like or dislike news with a binary rating system. But ratings on news
providers are still uncommon.
The anchoring effect is, in another sense, closely related to the conformity bias. The scale
of rating is a provider-based anchoring. At the same time, different user ratings can be seen
as user-based anchoring. It is the same as conformity bias, which influences different user
opinions. For these types of biases, a user study would be appropriate. Further investiga-
tion could be done on reactive devaluation. Feedback data can be collected to see if you
systematically devaluate certain use providers or news topics.

1https://github.com/hwwang55/DKN/tree/master/data/news
2https://www.newsreelchallenge.org/dataset/
3https://www.msn.com/de-de/nachrichten
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8 Conclusion

In this master thesis, we investigated the different biases occurring in NRS. The first step
was to look at the current state of research to identify challenges, gaps, and existing research
on biases. In this way, a large list of different biases could be identified. This research comes
mainly from psychology and general recommendation systems. The biases were divided into
three stages, i.e., user, data, and model. For our experimental work, the MIND dataset
was used, in which data was collected from 1,000,000 users who accessed MSN news. The
experimental work is carried out based on this data. It shows an insight into bias for implicit
feedback, which is much more common in news recommendations than explicit feedback.
Moreover, the experiment was limited to data and model biases. To give a more general
overview a table in which all possible biases are provided.
To get an overview of current models, the models NRMS, DNK, NAML, LSTUR, and NPA
were trained and tested for their performance at the beginning of the experiment. The
results of the performance tests showed that the tested models all performed similarly until
DNK. This achieved the worst results. NAML achieved the best result in all the metrics
tested. In the main experiment, we have seen a bias in data and model and potential biases
for users. Showing, there is a position bias in the displaying of news. News displayed higher
up is potentially clicked more often than news displayed further back. The clicks were
weighted with an exponential decay function that depended on the impression size. The
bias could only be shown assuming that the news items displayed are equally relevant. The
average sentiment of the user history and impression was compared for the sentiment bias.
The results show that users prefer negative news more than positive news. The compared
values provided similar results. Nevertheless, a negative sentiment bias could be shown.
The system suggests more positive than negative news than the user history of news. We
also saw that a possible popularity bias exists. Since many over-popularised news items are
advertisements, it seems reasonable to assume that they are systematically inserted. In the
test with different user history lengths, the most extensive histories of 50 and 100 performed
significantly worse than those of 10 and 25. Upon further investigation, we showed that
the model emphasizes more current interests. They become blurred as the size of the user
history increases. At the other extreme, the model cannot perform well on new news using
a single news item in history.
The results in this and other works show the need for investigations on biases. Many biases
are based on users’ perceptions, causing skewed data. Also, models still struggle to deal
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8 Conclusion

with these issues leading to popularity and recency biases. Our table with the list of biases
shall serve as a checklist for upcoming research for data collection and model creation.
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A Appendix: Foundations

Figure A.1: Categorized cognitive biases (design: John Manoogian III[1])
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B Appendix: Experimental Setup

Keys Description
Label The WikiData1 knowledge graph entity name
Type The WikiData type of entity

WikidataId The WikiData ID
Confidence The confidence of the entity linking

OccuranceOffsets The entity offset in the text according to characters
SurfaceForms The actual entity names

Table B.1: Keys and their description in the entities of the MIND dataset (Modified from
MSNews)

|News| 161,013
|Different categories| 20

|Entities| 3,299,687
Average title len. 11.52
Average body len. 585.05

Average abstract len. 43
|Users| 1,000,000

|Impressions| 15,777,377
|Clicks in behaviors| 24,155,470

Table B.2: Statistics for the MIND-large (taken from the original paper by Wu et al. [120])
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B Appendix: Experimental Setup

Category Number of subcategories Most frequent subcategory
News 33 NewsUS
Sports 31 Football_NFL
Finance 32 FinanceNews

Food and Drink 16 NewsTrends
Lifestyle 47 LifestyleBuzz
Travel 14 NewsTrends
Video 14 News

Weather 2 WeatherTopStories
Health 20 Medical
Autos 24 AutosNews
TV 10 TVNews

Music 11 MusicNews
Movies 7 MovieNews

Entertainment 15 News
Kids 5 Animals

Middle East 1 MiddleEast-Top-Stories
North America 1 NorthAmerica-Video

Table B.3: Categories with their Subcategory count

#Candidates clicked Count

1 113887 (72.56%)

2 25571 (16.29%)

3 9263 (5.9%)

4 3975 (2.53%)

5 1957 (1.25%)

Figure B.1: Number and percentage of clicked news in impressions
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C Appendix: Experiments

Figure C.1: Log loss for 10 epochs of training
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C Appendix: Experiments

Parameter/Model NRMS [120] LSTUR [9] NAML [118] NPA [119] DKN [113]
History size 50 50 50 50 50

Word emb. dimension 300 300 300 300 100
Entity emb. size - - - - 100
Context emb. size - - - - 100
User emb. size 50 50 50 100 100
Vert emb. size - 100 100 - -

Subvert emb. size - 100 100 - -
Max. title length (in words) 30 30 30 10 -
Max. body length (in words) - - 50 - -
Attention layer dimension 200 200 200 200 200

Table C.1: Model hyperparameters referring to the proposed hyperparameters in the corre-
sponding papers.

Figure C.2: Group AUC for 10 epochs of training

Figure C.3: Mean MRR for 10 epochs of training
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Figure C.4: nDCG@5 for 10 epochs of training

Figure C.5: nDCG@10 for 10 epochs of training

1 21 41 61 81 101 121 141 161 181 201 221 241 261
Position in Impression

0

1

2

3

4

5

6

7

Pe
rc

en
ta

ge
 (%

) o
f c

lic
ks

Figure C.6: Percentages of each clicked position in MIND small.
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