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Zusammenfassung
In dieser Arbeit wird das Phänomen der Flexoelektrizität in Nanomaterialien und Nanostruk-
turen mittels Molekulardynamikmodellen und Kontinuumsmodellen untersucht. Flexoelek-
trizität ist ein elektromechanisches Phänomen, das die Kopplung zwischen elektrischer Pola-
risation und Dehnungsgradient in einem Material beschreibt. Dank des Dehnungsgradienten-
Terms weist die Flexoelektrizität eine universelle Existenz und ein größenabhängiges Ver-
halten auf, was eine starke elektromechanische Kopplung auf der Mikro- und Nanoskala
ermöglicht, was zu einer idealen Anwendung in Mikro- und Nanogeräten, wie z. B. Nano-
generator, führt. Es ist jedoch schwierig, die intrinsischen flexoelektrischen Koeffizienten ei-
nes Materials zu messen oder abzuschätzen, da sie durch den piezoelektrischen Effekt gestört
werden, der die Kopplung zwischen elektrischer Polarisation und Dehnung darstellt. Darüber
hinaus kann das Standard-Kontinuumsmodell, wie z. B. das Finite-Elemente-Modell, die
Flexoelektrizität aufgrund der Kontinuitätsanforderung höherer Ordnung (C1-Kontinuität),
die durch den Dehnungsgradiententerm auferlegt wird, nicht berücksichtigen, was die Ent-
wicklung spezieller Kontinuumsansätze für die Designführung von flexoelektrischen Bautei-
len erfordert. Diese Schwierigkeiten begrenzen unser Verständnis und die mögliche techni-
sche Nutzung der Flexoelektrizität.
Im Rahmen der Molekulardynamik entwickelt diese Arbeit ein Kern-Schale- und Ladungs-
Dipol-Modell zur Extraktion der flexoelektrischen Koeffizienten eines traditionellen elek-
tromechanischen Materials (BaTiO3) bzw. neu entstandener zweidimensionaler (2D) Ma-
terialien (insgesamt 21 Materialien). Speziell entwickelte mechanische Belastungssche-
mata werden innerhalb des Kern-Schale- und des Ladungs-Dipol-Modells eingesetzt,
um die Störung durch die Piezoelektrizität zu eliminieren, was eine direkte Messung
der flexoelektrischen Reaktion der Materialien ermöglicht. Die Ergebnisse der Kern-
Schale-Modelle zeigen, dass der Größen-/Oberflächeneffekt den longitudinalen und scher-
bezogenen flexoelektrischen Koeffizienten der BaTiO3-Nanostrukturen signifikant beein-
flusst. Für zweidimensionale Materialien extrahierte das Ladungs-Dipol-Modell ihre Biege-
Flexoelektrizitätskoeffizienten und identifizierte ihre Einflussfaktoren. Es wird beobachtet,
dass Übergangsmetall-Dichalcogenid-Monolagen die höchsten flexoelektrischen Koeffizien-
ten unter den untersuchten 2D-Materialien besitzen.
In dieser Arbeit werden auch Kontinuumsmodelle zur Charakterisierung der Flexoelektri-
zität in Kontinuums-Festkörperstrukturen, wie z. B. flexoelektrischen Verbundwerkstoffen,
entwickelt. Ein 2D Meshless-Modell und ein 3D nichtlineares gemischtes Finite-Elemente-
Modell verwenden Formfunktionen höherer Ordnung und zusätzliche Freiheitsgrade, um die
C1-Kontinuitätsanforderung der Flexoelektrizität zu erfüllen. Beide Modelle zeigen, dass
Strukturkonfigurationen und Materialeigenschaften das elektromechanische Verhalten der
flexoelektrischen Verbundwerkstoffe beeinflussen. Das 3D-nichtlineare gemischte Finite-
Elemente-Modell zeigte zusätzlich die Wesentlichkeit der geometrischen Nichtlinearität für
eine präzise Darstellung der Flexoelektrizität durch Kontinuumsmodelle.

Stichworte: Flexoelektrizität, Molekulardynamik, Core-shell-Modell, Charge-dipole-
Modell, Meshless-Methode, Gemischte Formulierung, Bariumtitanat, 2D-Materialien,
Komposite
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Abstract
This work explores the phenomenon of flexoelectricity in nanomaterials and nanostructures
by molecular dynamics models and continuum models. Flexoelectricity is an electromechan-
ical phenomenon describing the coupling between electric polarization and strain gradient in
a material. Thanks to the strain gradient term, flexoelectricity exhibits an universal existence
and size-dependent behavior, enabling strong electromechanical coupling at micro/nano-
scale, leading to ideal application in micro/nano-devices, such as Nanogenerator. However,
it is difficult to measure or estimate the intrinsic flexoelectric coefficients of a material due to
the interference from the piezoelectric effect, representing the coupling between electric po-
larization and strain. Additionally, the standard continuum model, such as the finite element
model, cannot accommodate flexoelectricity due to the higher-order continuity requirement
(C1 continuity) imposed by the strain gradient term, requiring the development of novel con-
tinuum approaches for the design guidance of flexoelectric devices. These difficulties limit
our understanding and potential engineering utilization of flexoelectricity.
In the framework of molecular dynamics, this work develops a core-shell and charge-dipole
model for extracting flexoelectric coefficients of a traditional electromechanical material
(BaTiO3) and newly emerged two-dimensional (2D) materials (in total 21 materials), respec-
tively. Specially designed mechanical loading schemes are employed within the core-shell
and charge-dipole model to eliminate the interference from piezoelectricity, enabling direct
measurement of the materials’ flexoelectric response. The core-shell models’ results show
that the size/surface effect significantly influences the longitudinal and shear flexoelectric
coefficient of the BaTiO3 nanostructures. For two-dimensional materials, the charge-dipole
model extracted their bending flexoelectric coefficients and identified their contributors. It
observes that transition metal dichalcogenide monolayers possess the highest flexoelectric
coefficients among the studied 2D materials.
This work also develops continuum models to characterize flexoelectricity in continuum
solid structures, such as flexoelectric composite. A 2D Meshless model and a 3D nonlinear
mixed finite element model employ higher-order shape function and extra degrees of
freedom to fulfill the C1 continuity requirement of flexoelectricity. Both models show that
structure configurations and material properties influence the electromechanical behavior
of flexoelectric composites. Besides, the 3D nonlinear mixed finite element model demon-
strated the essentialness of the geometrical nonlinearity for an accurate representation of
flexoelectricity by continuum models.

Keywords: Flexoelectricity, Molecular dynamics, Core-shell model, Charge-dipole model,
Meshless method, Mixed formulation, Barium Titanate, 2D materials, Composite.
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Chapter 1

Introduction

1.1 Motivation

A surgeon attaches paper-like nanofilms onto a patient’s heart, and these nanofilms gener-
ate enough electrical energy from the patient’s cardiac motion to power the patient’s cardiac
pacemaker. Sounds like science fiction? Not really. Researchers have successfully imple-
mented this type of self-powered biomedical implants in animal trials, see AZIMI ET AL.
(2021); LI ET AL. (2010). The “magic” behind these self-powered biomedical implants is
a physical phenomenon called electromechanical coupling. It describes the conversion be-
tween electrical energy and mechanical energy that enables electrically controlled mechani-
cal actuation or electrical generation by applying a mechanical load. Along with the biomed-
ical applications, electromechanical coupling is also widely applied in energy harvester, see
LIN ET AL. (2008); WANG ET AL. (2007); WANG & SONG (2006); PARK ET AL. (2014), na-
noelectronics, see WASER ET AL. (2003); LU & LIEBER (2010); COMPANO ET AL. (2000),
nanosensors, see HUANG ET AL. (2008); MEGRICHE ET AL. (1999); IHN & CHANG (2004)
and nanorobots, see MALLOUK & SEN (2009); REQUICHA (2003); SANCHEZ & PUMERA

(2009). Most of these applications utilizing electromechanical coupling rely on an elec-
tromechanical interaction called piezoelectricity, which describes the coupling between elec-
tric polarization and strain. For instance, ZnO piezoelectric nanowires generate over 1 Volt
open-circuit voltage from the mechanical strain induced by compressing the nanowires, see
HU ET AL. (2011). However, piezoelectricity exists only in materials with an non-center
symmetric crystal structure like ZnO, see IKEDA (1996). A recently discovered electrome-
chanical interaction called flexoelectricity describes the relationship between the electric po-
larization and strain gradient, which exists theoretically in all material groups, see YUDIN

& TAGANTSEV (2013b). Furthermore, the involvement of strain gradient in flexoelectricity
suggests a size-dependent behavior of the flexoelectricity, enabling a strong electromechan-
ical coupling from a high strain gradient at a small-length scale, see MAJDOUB ET AL.
(2008). Preliminary studies demonstrated that the energy conversion from flexoelectricity is
much higher than that of piezoelectricity at a small-length scale, see HU ET AL. (2014); AB-
DOLLAHI ET AL. (2019). These advantages of flexoelectricity are desirable for small-scale
electromechanical applications, such as nanogenerators or nanosensors.
Researchers mainly focus on three approaches to induce a strong electromechanical cou-

5
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pling from flexoelectricity in small-scale applications: utilizing size-effect, using materials
with high flexoelectric coefficient, and engineering high strain gradient by structure pat-
terning/composition. For instance, an experimental study uses scanning probe microscopy
(SPM) to apply 1 µN force onto ultrathin Barium titanate oxide (BaTiO3) films inducing
a highly irregular stress field over several nanometers resulting in a strong flexoelectric re-
sponse, see LU ET AL. (2012). Various studies measure and estimate the flexoelectric coef-
ficients of the traditional ferroelectric materials: ceramics, single crystal, and polycrystal, to
find a suitable candidate for flexoelectric applications, see HUANG ET AL. (2011); KWON

ET AL. (2014); SHU ET AL. (2017b); ZUBKO ET AL. (2007). Engineering high strain gradi-
ent through structure pattern/composition have also shown significant enhancement of flex-
oelectric response, see ZHANG ET AL. (2014); KARTHIK ET AL. (2013). However, many
questions/difficulties around flexoelectricity remain unsolved, such as the underlying mech-
anism of the size-dependent behavior of flexoelectricity is unexplored due to the difficul-
ties in the experimental setup and simulation size limitation, see MAJDOUB ET AL. (2008);
MARANGANTI & SHARMA (2009). Meanwhile, the newly emerged 2D nanomaterials have
also shown great potential in flexoelectric application due to their flexibility and high po-
larizability, but their flexoelectric coefficients and contributing factors are still unknown,
see JIANG ET AL. (2013c). Furthermore, the lack of a continuum model for characterizing
flexoelectric composite hinders the optimization of flexoelectric devices through structure
patterning/composition. Addressing these open issues will help advance the development of
flexoelectric devices in engineering applications. The motivation of this work is to solve the
stated open issues. The following section discusses the existing studies on flexoelectricity
and the origins of the open issues.

1.2 Background and the state of the art
This section presents a compact literature study on flexoelectricity regarding its underlying
mechanism, material candidate, and continuum model. The main focus here is on the afore-
mentioned aspects of flexoelectricity in traditional electromechanical materials and newly
emerged 2D materials, presenting a fraction of research on flexoelectricity. For a compre-
hensive overview of flexoelectricity, please refer to the review papers, see WANG ET AL.
(2019); YUDIN & TAGANTSEV (2013a); JIANG ET AL. (2013c).

1.2.1 Mechanism and material candidates of flexoelectricity
Early studies on flexoelectricity exploring its underlying mechanism or searching for suit-
able material candidates mainly focus on the traditional electromechanical materials, such as
BaTiO3 or periclase (MgO), which possess high electric polarizability due to the active oxy-
gen atoms. For example, study shows unexpected large bending flexoelectric coefficients
of BaTiO3 and Pb(Mg1/3Nb2/3)O3, where their magnitudes of electromechanical response
from flexoelectricity surpass that of the piezoelectric effect, see MA & CROSS (2001, 2006);
FU ET AL. (2006). Meanwhile, a study found that the flexoelectric coefficients of oxide
materials linearly scale with their relative electric permittivity, see YUDIN & TAGANTSEV

(2013a), which depends on the temperature, see MARANGANTI & SHARMA (2009). This
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temperature dependency is further confirmed in a charge transfer molecular dynamics (MD)
model studying Barium and Strontium titanate (BST), see MBARKI ET AL. (2014). Stud-
ies also show that oxide materials doped with extrinsic elements improve their flexoelectric
coefficients significantly, see LI ET AL. (2014); HUANG ET AL. (2017); JIN ET AL. (2021).
Comprehensive Density Functional Theory (DFT) simulations report the flexoelectric coeffi-
cients of various oxide and semiconductor materials, see MARANGANTI & SHARMA (2009).
Although researchers have conducted various studies on flexoelectricity in oxide materials,
the size-dependent behavior of flexoelectricity in oxide materials such as BaTiO3 remains
unresolved due to the limited simulation size of DFT and difficulties in an experimental
setup, see JIANG ET AL. (2013c). Meanwhile, the size-dependent behavior of flexoelectric-
ity is the key aspect that makes flexoelectricity extremely attractive for small-length scale
devices, so understanding its mechanism is essential.
In recent years, the number of studies on flexoelectricity in 2D materials has increased with
the rising interest in the newly emerged 2D materials due to the desire to miniaturize sen-
sors and actuators to the micro and nanoscales. The majority of these studies employed
mechanically induced curvatures in 2D materials to activate flexoelectricity. For instance,
a study shows a linear relationship between the induced electric dipole moment and bend-
ing curvature in graphene using DFT calculations, see KALININ & MEUNIER (2008). A
theoretical analysis of flexoelectricity in carbon nanostructures (nanotubes, fullerenes, and
nanocones) further proves the dependency of the flexoelectric dipole moments on local cur-
vature, see KVASHNIN ET AL. (2015). Researchers have also successfully induced flexo-
electric response in Boron Nitride and transition metal dichalcogenide monolayers (TMDCs)
by indentation and bending, see AHMADPOOR & SHARMA (2015a); ROY ET AL. (2021);
DOU ET AL. (2020). Besides, a study provided evidence that monolayer MoS2 exhibits an
out-of-plane bending flexoelectric response using the piezoresponse force microscopy, see
BRENNAN ET AL. (2017). An alternative to activate flexoelectricity in 2D materials is struc-
tural modification. For example, studies introduced defects into graphene sheets to generate
strain gradients under a tensile load, thus induces flexoelectric response and electric polariza-
tion, see CHANDRATRE & SHARMA (2012); KUNDALWAL ET AL. (2017); JAVVAJI ET AL.
(2018). The presented studies primarily focused on the overall electromechanical response
of the studied 2D materials and left the flexoelectric coefficients of these 2D materials un-
resolved. They suggested that the main issue in calculating or measuring the flexoelectric
coefficients of 2D materials is that it has been challenging to isolate the relative contribu-
tions of piezoelectricity and flexoelectricity to the resulting polarization, see JIANG ET AL.
(2013c). As a result, most 2D materials’ intrinsic flexoelectric properties remain unresolved,
and the mechanisms controlling the intrinsic flexoelectric properties of different 2D materials
are also unresolved.

1.2.2 Continuum modeling of flexoelectricity

The difficulty in developing a continuum model for flexoelectricity lies in the existing higher-
order strain gradient term in the governing equation of flexoelectricity. The strain gradi-
ent term requires C1 continuity, which the traditional finite element method does not pro-
vide. Researchers proposed two approaches to overcome this obstacle: (a) utilizing meth-
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ods equipped with a global higher-order shape function. For instance, a Meshfree model
equipped with a smooth shape function studies the flexoelectric responses of a dielectric
cantilever beam and truncated pyramid, see ABDOLLAHI ET AL. (2014, 2015). This model
further suggested that the simplified analytical model is unable to accurately characterize
flexoelectricity in multi-dimensional geometries. Another Meshfree model investigates the
influence of the surface flexoelectric effect and finite deformation on a flexoelectric device’s
overall electromechanical response, see ZHUANG ET AL. (2019b). Similar to the Mesh-
less model, Isogeometric Analysis (IGA) employs the NURBS or B-splines basis function to
handle theC1 continuity requirement. For instance, a study developed an IGA model and ap-
plied the level-set technique to optimize the topology of a flexoelectric structure to enhance
its electromechanical response, see GHASEMI ET AL. (2017). Another IGA model consider-
ing the material nonlinearity investigated the influence of the electric field acting on a droplet
on its deformation pattern., see THAI ET AL. (2018); (b) utilizing extra degrees of freedom
to enforce the C1 continuity. For example, a 2D mixed finite element model equipped with
the Lagrange multiplier achieved the C1 continuity and characterized a flexoelectric device’s
electromechanical behavior, see MAO ET AL. (2016). Another study extends this mixed fi-
nite element model to 3D, see DENG ET AL. (2017) and develops a topology optimization
scheme for flexoelectric structures within the mixed finite element framework, see NAN-
THAKUMAR ET AL. (2017). However, the continuum models presented here primarily focus
on single-phase flexoelectric structures. Meanwhile, several studies suggest that flexoelec-
tric composites can induce a stronger electromechanical response through flexoelectricity
than a single-phase flexoelectric structure, see ZHANG ET AL. (2016); WAN ET AL. (2017);
RAY (2018), and this enhancement requires further investigation by extending the existing
continuum models.

1.3 How this work approaches the identified issues
To address the identified issues on flexoelectricity, this work undertakes the following tasks

• To understand the mechanism of the size-dependent behavior of flexoelectricity in
BaTiO3;

• To estimate the flexoelectric coefficients of 2D materials and identify their contributing
factors;

• To develop continuum models of flexoelectricity for the design guidance of flexoelec-
tric composites.

The author has chosen the atomistic modeling approach for addressing the first two
tasks. More specifically, this work develops molecular dynamics models to explore the
size-dependent behavior of flexoelectricity in BaTiO3, and to extract the flexoelectric
coefficients of the newly emerged 2D materials (graphene allotropes, nitrides, graphene
analog group-IV elements, and transition metal dichalcogenide monolayers (TMDCs)).
Atomistic approaches, such as the molecular dynamics model, describe a system with
discrete atoms or particles governed by Newton’s second law of motion, and they have
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demonstrated extensive accuracy and correctness in studying piezoelectricity with respect
to experimental results, see BRISCOE ET AL. (2013); ZHANG ET AL. (2019); MOMENI

ET AL. (2012). Several studies have also obtained accurate results for flexoelectricity in
oxide materials using the same MD models for piezoelectricity, see MBARKI ET AL. (2014);
MAJDOUB ET AL. (2008). Meanwhile, the atomistic approach enables the researcher to
apply controlled complex boundary conditions to the nanostructures, which is advantageous
for studying flexoelectricity since it requires a deformation-induced strain gradient field.
Compare to another atomistic approach called DFT based on quantum mechanics, the
molecular dynamics is advantageous in simulation size. DFT allows less than 1000 atoms
in a simulation, limiting the study of the size/surface effect of flexoelectricity, see HONG

ET AL. (2010). Furthermore, experimental studies on flexoelectricity in 2D materials
suggested that it has been challenging to isolate the relative contributions of piezoelectricity
and flexoelectricity to the resulting polarization. The MD approach can efficiently eliminate
the contribution of piezoelectricity by specially designed deformation schemes. It worth
noting here that the accuracy of the MD models highly relies on the chosen interatomic
potentials. This work develops two continuum models to address the third task. A 2D
linear Meshless model coupled with the level-set technique explores flexoelectricity in
flexoelectric composites. Besides, a 3D nonlinear mixed finite element model incorporated
the geometric nonlinearity and strain gradient elasticity investigates flexoelectricity in 3D
composite structures under static and dynamic loading conditions. The following section
presents the structure of this work.

1.4 Structure of this work
The structure of this work: chapter 2 investigates the size effect of flexoelectricity in BaTiO3,
followed by chapter 3 examines the flexoelectric effect in newly emerged 2D materials and
extracts their bending flexoelectric coefficients. Subsequently, in chapter 4, a 2D Meshless
model and a 3D nonlinear mixed finite element model are developed to investigate flexoelec-
tricity in composite structures considering the geometric nonlinearity and dynamic effect.
Finally, chapter 5 presents the conclusions and outlook.
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Chapter 2

Size Effect of Flexoelectricity

This chapter investigates the size-dependent behavior of flexoelectricity in Barium titanate
oxide (BaTiO3) and its mechanical property. BaTiO3 is a ferroelectric material with numer-
ous industrial applications due to its outstanding piezoelectric, flexoelectric and electrical
hysteresis properties, see SETTER ET AL. (2006). For instance, studies found that it retains
electric polarization without the presence of an electric field, see MA & CROSS (2001);
BERLINCOURT & JAFFE (1958). It is also possible to control the strain in BaTiO3 by apply-
ing an external electric field, see WU ET AL. (2014b). Besides, the polarization in BaTiO3

can be altered by a sufficiently strong electric field, see SANG ET AL. (2008). These advan-
tageous electromechanical properties enable BaTiO3 to be a potential candidate as the next
generation advanced material.
Flexoelectricity is an electromechanical phenomenon describing the linear relationship be-
tween the electric polarization and strain gradient, see YUDIN & TAGANTSEV (2013a). Dur-
ing the past decade, flexoelectricity received wide attention due to its strong electromechan-
ical effects at the micro-and nanoscale, see JIANG ET AL. (2013c); YUDIN & TAGANTSEV

(2013a); ZUBKO ET AL. (2013a). However, the questions about the range of the flexoelectric
coefficient of a material, contributors to a materials’ flexoelectric response, and size depen-
dence behavior of flexoelectricity are open to solve. Several studies attempted to answer
the first two open questions. For example, experimental findings show an unexpected large
bending flexoelectric response of BaTiO3 and Pb(Mg1/3Nb2/3)O3 comparing to the theoreti-
cal studies by density functional theory (DFT), see MA & CROSS (2001, 2006); FU ET AL.
(2006). This difference between the experiment measurement and theoretical estimation
by DFT correlates with the operational temperature of the experiment (ambient temperature
condition) and DFT (absolute zero temperature), see MARANGANTI & SHARMA (2009); XU

ET AL. (2013). Meanwhile, various studies measure or estimate the flexoelectric coefficients
of ceramics, single crystals, and polycrystals to find a suitable candidate for flexoelectric ap-
plications, see HUANG ET AL. (2011); KWON ET AL. (2014); SHU ET AL. (2017b); ZUBKO

ET AL. (2007). It worth noting here that the existing studies on the range of the flexoelectric
coefficients of these materials show a significant discrepancy among each other, see WANG

ET AL. (2019) Other findings suggest that the flexoelectric response of a material signifi-

The content of this chapter is partially published in author’s paper (DOI: 10.1016/j.physb.2018.01.031)
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cantly influenced by temperature, see MARANGANTI & SHARMA (2009); MBARKI ET AL.
(2014), and loading frequency, see SHU ET AL. (2017a). However, the size-dependency of
flexoelectricity reminds unexplored and unsolved due to the difficulty in modeling by DFT
and experimental setup, see HONG ET AL. (2010).
In this chapter, a core-shell molecular dynamics model explores the size-dependent behavior
of flexoelectricity in BaTiO3, the parameters used in the core-shell model are from quantum
mechanics approaches, such as DFT, see COHEN & KRAKAUER (1992); ZHONG ET AL.
(1994); VIELMA & SCHNEIDER (2013); PILANIA & RAMPRASAD (2010), so that the core-
shell model inherits the high level of accuracy as the quantum mechanics approach. Mean-
while, the core-shell model allows a large atomic structure that can not be achieved using
a quantum mechanics approach, see HONG ET AL. (2010). In the literature, the core-shell
model has been successfully applied for Periclase to investigate its spontaneous polarization,
see CHATZOPOULOS ET AL. (2016) and numerous oxide materials to study their electrical,
mechanical properties, see MACHADO ET AL. (2010); MATSUI (1998); TILOCCA ET AL.
(2006); TINTE ET AL. (2004). Another model called the reactive force field (ReaxFF) poten-
tial model depending on the self-consistent charge optimization also investigated the phase
transition and polarization of BaTiO3, see GODDARD III ET AL. (2002). Comparing to the
ReaxFF potential model, the core-shell model is advantageous in terms of computational
efficiency and accurate estimation of the phase transition of BaTiO3, which will be demon-
strated in the section 2.2
This chapter is structured as follows: section 2.1 presents the details of the core-shell model
for BaTiO3, and the validation of the core-shell model in terms of the phase transition tem-
peratures of BaTiO3 is shown in section 2.2. Following by the studies on the size-dependent
behavior of flexoelectricity in BaTiO3 and its mechanical properties in section 2.3.

2.1 Core-Shell Model
The adiabatic core-shell model is first proposed in MITCHELL & FINCHAM (1993) to study
the melting process of NaCl, see WANG ET AL. (2008), superionic conduction in CaF2,
see LINDAN & GILLAN (1993), and the properties of MgO under the condition of high
temperature (above 1500 K) and high pressure (100 GPa), see FINCHAM ET AL. (1994).
The core-shell model is also extensively used for ferroelectric oxide materials thanks to its
competency in estimating the dipolar polarization, see TINTE ET AL. (2004); CHEN ET AL.
(2009); TINTE & STACHIOTTI (2001). These studies demonstrate that the applied core-shell
models are advantageous in considering the dynamics of oxygen atoms in ferroelectric oxide
materials.
In the core-shell model, each atom consists of a positively charged core and a negatively
charged shell. The splitting of an atom into a core and a shell will induce polarization under
perturbations. The total inter-atomic potential energy of a system represented by the core-
shell model has three contributors. Namely, the long-range Coulombic potential (ECoulombic)
to describe the electrostatic interaction among cores and shells of different atoms; Short-
range Buckingham potential (EBuckingham) to describe the interactions between shells; An-
harmonic bond spring potential (ESpring) to define the interactions between the core and shell
of the same atom. Figure 2.1 shows a schematic illustration of the interactions between two
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Figure 2.1. Schematic illustration of the interactions between particles.

atoms i and j.
The Coulombic energy between atoms i and j is

ECoulombic
ij =

qiqj
4πεrij

, (2.1)

where i, j are the indices of any two particles (either a core or a shell), q is the charge
carried by the particle, rij is the distance between the particle i and j. ε is the dielectric
constant. The long-range Coulombic interactions between the shell and core of the same
atom are excluded to avoid the divergence in the equation (2.1). The mathematical form of
the short-range Buckingham potential is

EBuckingham
ij = Ae−rij/ρ̄ − C

r6
ij

, (2.2)

where A, ρ̄ and C are numerical constants. The bond spring potential has the form

ESpring
ij =

1

2
K2r

2
ij +

1

24
K4r

4
ij, (2.3)

whereK2 andK4 are constants. The numerical parameters for BaTiO3 used in equation (2.1)
to (2.3) are listed in the table 2.1. The studies on the size-dependent flexoelectricity and me-
chanical properties of BaTiO3 were performed with an open-source MD code called Large
scale Atomic/Molecular Massive Parallel Simulator (LAMMPS) developed in PLIMPTON

(1995a). In the following section 2.2, the adopted core-shell model and the chosen param-
eters in the table 2.1 validate with the experimental and numerical studies in terms of the
phase transition temperatures and spontaneous polarizations of BaTiO3.

2.2 Validation of the Core-shell model
It found that BaTiO3 undergoes phase transition: Rhombohedral (R)→Orthorhombic (O)→
Tetragonal (T)→ Cubic (C), as the temperature increases, and the spontaneous polarizations
of BaTiO3 correlates with the phase transition process, see LEMANOV ET AL. (1996). Here
validates the core-shell model by reproducing this phase transition process and the correlated
spontaneous polarizations of BaTiO3. The phase transition process can be quantified by the
varying lattice parameters of BaTiO3 with the changing temperature and the calculation of
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Table 2.1. Core-Shell model parameters from VIELMA & SCHNEIDER (2013).
Charges are in unit of electrons, energies in unit of eV, and length in
unit of Å.

Atom Core charge Shell charge K2 K4

Ba 5.042 -2.870 298.51 0.0
Ti 4.616 -1.544 306.14 500.0
O 0.970 -2.718 36.93 5000.0
Short-range A ρ̄ C
Ba-O 7149.81 0.3019 0.0
Ti-O 7200.27 0.2303 0.0
O-O 3719.60 0.3408 597.17

the spontaneous polarization in a given direction α follows the equation (2.4) as proposed in
CHEN & CALLAWAY (1992):

Pα =
e

Ω

∑
k

[Zku
α
k + YkW

α
k ] , (2.4)

where Pα is the polarization in α direction, e represents the positive elementary charge, Ω
is the unit cell volume, k is the total number of atoms in a unit cell, Z is core charge, u is
the core displacement, Y is the shell charge, W is the relative displacement between core
and shell. As polarization only makes sense when defined as a neutral stoichiometric unit,
so for the BaO-terminated unit cell, the sum of Ba ions and O ions is divided by 8 and 2,
respectively, as suggested in ZHONG ET AL. (1994).
The validation study carries out in LAMMPS and simulation details as following, the initial
configuration of the BaTiO3 system has N ×N ×N unit cells. N is the number of primitive
cells in one direction of the Cartesian coordinate system. The unit cell is a BaO-terminated
primitive cell constructed in the rhombohedral phase. The system first equilibrates for 10000
steps at 80 K, followed by a simulation run of 450000 steps. During the simulation run, the
system is heated from 80 K to 450 K at a constant rate. The atmospheric pressure of 1 bar
applies on the system. The relaxation time for the thermostat and barostat is 0.1 ps. The
shells have a mass of 2 atomic units, which ensures the natural vibrational frequency of an
an-harmonic spring well above the whole domain’s frequency. This enables the shells to
react with the electrostatic environment. The time step is set to 0.4 fs to record the atom
trajectories. The interaction cut-off distance is 16 Å. Ewald summation sets the accuracy
of 1 × 10−6 for calculating the long-range Coulombic interaction in the K-space. Periodic
boundary conditions are imposed in all directions (unless otherwise stated) to remove surface
effect while studying the phase transition of BaTiO3. The primitive cell’s lattice constants
are obtained by analyzing the simulation box size and shape during the heating period. Fig-
ure 2.2 presents the temperature-dependent lattice parameters of primitive cells extracted
from the systems with different size. Systems with 7×7×7, 10×10×10, 13×13×13 and
15×15×15 primitive cells have 3430, 10000, 21970 and 33750 atoms, respectively.
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Figure 2.2. Temperature versus lattice parameters (Å) of different size BaTiO3 sys-
tems.

Figure 2.2 shows the variation of the lattice parameters with temperature for systems of dif-
ferent sizes. The increase in temperature changes the lattice parameters, which corresponds
to the changes in the crystal structure. From the simulation results (figure 2.2), the phase
transition sequence of Rhombohedral (R) → Orthorhombic (O) → Tetragonal (T) → Cu-
bic (C) is correctly captured. The numerical value of lattice parameters shows significant
perturbations for the system consist of 7 × 7 × 7 cells. These perturbations originate from
the unstable oscillations of atoms under the thermal and pressure constraints. The varia-
tion of lattice parameters shown in figure 2.2(b) ∼ (d) demonstrates that the thermal and
pressure-induced perturbations can be sufficiently relaxed with the increase in system size.
The transition temperatures with respect to the system size is shown in figure 2.3 and sug-
gests that a system with a total number of atoms larger than 10000 is required to achieve a
stable and correct estimation of the phase transition of BaTiO3. The transition temperatures
obtained from the MD simulations compared with DFT and experimental results are shown
in the table 2.2. The prediction from the core-shell model with parameters from the table
2.1 produces the transition temperatures in agreement with the experimental data for R→ O
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Table 2.2. BaTiO3 transition temperature (K) comparison by different methods.
Rhombohedral (R) → Orthorhombic (O) → Tetragonal (T) → Cubic
(C).

Study R→ O O→ T T→ C
This study (parameters from table 2.1.) 180 267 353
This study (parameters from SEPLIARSKY ET AL. (2005)) 190 225 346
Anisotropic (see, TINTE ET AL. (1999)) 80 120 180
ReaxFF (see, GODDARD III ET AL. (2002)) 197 237 290
Experiment (see, LEMANOV ET AL. (1996)) 183 279 393

Figure 2.3. Size-dependent phase transition temperatures (K) of BaTiO3 systems.

and O→ T phase changes. A difference of 40 K is found for the transition temperature of
T→ C between the MD and the experiment result. Nevertheless, the present study’s predic-
tions have a better agreement with experiment values compared to other MD or DFT studies,
which validates the effectiveness of the developed MD approach. As the lattice parameters
vary with the temperature (shown in figure 2.2), it also alters the barycenter of all positively
and all negatively charged particles, which results in a non-zero relative distance between
the average center of the positively and negatively charged particles thus induces a non-zero
dipole moment in the system. Additionally, for ferroelectric material, the electronic polariz-
ability contributes to the overall polarization. The total spontaneous polarization Pα in the
direction α is calculated with the equation (2.4) and the obtained results are shown in the
figure 2.4 with respect to temperature.

Figure 2.4 presents the three components of the absolute averaged spontaneous polarization.
As expected, the spontaneous polarizations show a temperature-dependent behavior, which
is explained by the calculation procedure. As demonstrated by the equation (2.4), the polar-
ization is calculated with the location of each particle and its charge. The lattice parameters
dominate the location of each particle. Meanwhile, figure 2.2 clearly shown that the lattice
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Figure 2.4. Temperature versus averaged absolute spontaneous polarization
(C/m2) of different size BaTiO3 systems.

parameters are influenced by the temperature, suggesting that the system’s spontaneous po-
larization also subjects to the temperature. The calculated absolute spontaneous polarization
for phase R, O and T are 0.155, 0.176 and 0.195 C/M2, respectively. These values fall
within the ranges of experimental measurements 0.13 to 0.19, 0.14 to 0.25 and 0.17 to 0.27
C/M2 for R, O and T phase, respectively, see KWEI ET AL. (1993); SHIRANE & TAKEDA

(1952), which further proves the effectiveness of the developed MD model. In the following
section 2.3, the flexoelectric and mechanical properties of BaTiO3 are further examined by
the developed MD model.
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2.3 Flexoelectrical and mechanical properties of Barium ti-
tanate oxide

2.3.1 Flexoelectrical property
The induced polarization in a dielectric material (such as BaTiO3) by an inhomogeneous
strain is

Pα = dαβγεβγ + µαβγδ
∂εβγ
∂xδ

, (2.5)

where dαβγ is the piezoelectric coefficient, εβγ is the strain, µαβγδ is the flexoelectric coef-
ficient and ∂εβγ

∂xδ
is the strain gradient, see YUDIN & TAGANTSEV (2013a). Indices α, β, γ

and δ represent the directional components of the coordinate system. To extract the flexo-
electric coefficient from the equation (2.5), one should eliminate the interference from the
piezoelectric effect. Deformation schemes are developed within the developed MD model to
fulfill this criterion for extracting the flexoelectric coefficient independently from the piezo-
electric effect. Further details are given in the following subsections. Based on the crystal
symmetry, only three flexoelectric coefficients exist for cubic perovskites, see SHU ET AL.
(2011a). For isotropic materials, such as BaTiO3, these three coefficients further reduce to
two coefficients (longitudinal and shear). To extract these two flexoelectric coefficients of
BaTiO3 with the consideration of size dependency, BaTiO3 systems with N × N × 14 unit
cells are constructed, N × N represents the total number of unit cells in the cross-section
(X-Y plane). The geometrical details of the BaO-terminated unit cell are from KWEI ET AL.
(1993). The values of N are 1, 3, 5, 9, 10, 12 and 16, which correspond 140, 812, 4942,
6188, 7574, 10766 and 18830 total number of atoms in the BaTiO3 systems, respectively.
All BaTiO3 systems are set continuously periodic in the Z-direction and set free of move-
ment in X and Y directions. Under the given boundary conditions, the atoms on the system
surface have different energy state comparing to the internal atoms. It will result a surface
effect that is strongly dependent on the number of exterior atoms available on the surface. By
varying the cross-section size N × N , the free surface atom ratios changes. Additionally, a
fully periodic system is also constructed to simulate the bulk flexoelectric effect of BaTiO3.

Longitudinal flexoelectricity

To extract the longitudinal flexoelectric coefficient, a sinusoidal deformation applies to the
BaTiO3 systems, see HONG ET AL. (2010). The deformation function gives as

ulong(z) =
εmaxh

2π
sin(

2πz

h
), (2.6)

with εmax is the given maximum strain, h is the height of the BaTiO3 system in the longitu-
dinal direction.
The corresponding strain and strain gradient in the longitudinal direction of the BaTiO3

system are

εzz(z) = εmax cos(
2πz

h
) and

∂εzz(z)

∂z
= −2π

h
εmax sin(

2πz

h
). (2.7)
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To eliminate the interference of the piezoelectric effect, the cells at position z = h/4 of
the BaTiO3 system are selected for extracting longitudinal flexoelectric coefficient. At this
position, the strain in the BaTiO3 system is zero (εzz(z = h/4) = 0) and the strain gradient
is maximum. This is clearly visualized in figure 2.5. With the elimination of the piezoelectric
effect at this location, the longitudinal flexoelectric coefficient (µzzzz) is

µzzzz =
Pz

∂εzz(z)
∂z

∣∣
z=h/4

, (2.8)

where Pz is the Z direction (longitudinal direction) polarization at position z = h/4.
To maintain the imposed deformation, the position of all Barium atom cores are fixed at the
location according to the equation (2.6) during the relaxation and energy minimization step.
After minimization, the total polarization of the selected cells (position z = h/4) derives
from the equation (2.4). The given εmax varies between 0 to 0.02 Å−1. Figure 2.6(a) shows
the polarization versus εmax of all BaTiO3 systems. It shows a linear relationship between
the polarization and strain εmax, which indicates a linear relationship between the polariza-
tion and strain gradient 2π

h
εmax in the BaTiO3 systems, since 2π

h
is a constant. The obtained

polarizations are then averaged and substituted with the given strain gradient 2π
h
εmax into

the equation (2.8), the size-dependent longitudinal flexoelectric coefficients are calculated
and presented in the figure 2.6(b). Clearly, the longitudinal flexoelectric coefficient shows a
strong dependency on the system size. It can be explained by the ratio between the number
of surface atoms and the total number of atoms in a system. The higher surface atom ra-
tio results in more substantial atom mobility and a larger relative displacement between the
positive charge center and negative charge center of the surface unit cells, which leads to a
stronger polarization of the surface cells. Figure 2.7 shows the cell by cell polarization of the
systems with N = 3, 5, 8, and it indicates a higher polarizations of surface cells (especially
the corner cells) compared to the inner cells. It also found that the bulk longitudinal flex-
oelectric coefficient calculated from the MD model agrees well with the DFT calculations
in MARANGANTI & SHARMA (2009); HONG ET AL. (2010), which further validates the
effectiveness of the applied simulation scheme.

Shear flexoelectricity

To extract the shear flexoelectric coefficient, a similar deformation pattern (figure 2.5(c)) is
chosen

ushear(x) = −εmax cos(
2πz

h
), (2.9)

with εmax is the given maximum strain.
The corresponding strain and strain gradient in the system:

εxz(z) =
2π

h
εmax sin(

2πz

h
) and

∂εxz(z)

∂z
= εmax

(
2π

h

)2

cos(
2πz

h
). (2.10)

As demonstrated by the figure 2.5(d), the strain is zero at the location of z = h/2, which
eliminates the piezoelectric effect and the flexoelectric effect is maximum. The calculation
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Figure 2.5. Schematic illustration of (a) deformed supercell structure according to
the equation (2.6); (b) Deformation (equation (2.6)), strain and strain
gradient (equation (2.7)) profile, h/4 position indicated by the dash line;
(c) deformed supercell structure according to the equation (2.9); (d) De-
formation (equation (2.9)), strain and strain gradient (equation (2.10))
profile, h/2 position indicated by the dash line.

(a) Polarization vs maximum strain εmax

Bulk

(b) Longitudinal flexoelectric coefficient (nC/m)

Figure 2.6. Plot of (a) polarization vs applied maximum strain εmax (b) size-
dependent longitudinal flexoelectric coefficient. The bulk flexoelectric
coefficients are from systems with total atom number equals 30000,
the yellow and green triangle shows the DFT calculation result of
MARANGANTI & SHARMA (2009) (0.15 nC/m) and HONG ET AL.
(2010) (0.36 nC/m), respectively. The MD calculated bulk longitudi-
nal flexoelectric coefficient is 0.201 nC/m.



2.3. FLEXOELECTRICAL AND MECHANICAL PROPERTIES OF BARIUM TITANATE OXIDE 21

(a) N = 3 (b) N = 5

-0.15

-0.1

-0.05

0

0.05

(c) N = 8

Figure 2.7. Cell by cell (at z = h/4 section) polarization (calculated by the equa-
tion (2.8)) of different system sizes demonstrate the surface cells have
higher polarization compare to the inner cells due to the higher mobility
of surface atoms.

of the shear flexoelectric coefficient follows

µxzxz =
Px

∂εxz(z)
∂z

∣∣
z=h/2

. (2.11)

The identical approach applied for extracting the longitudinal flexoelectric coefficient has
been employed to calculate the shear flexoelectric coefficient. Figure 2.8(a) shows a linear
relationship between the polarization and the adopted εmax, which indicates a linear rela-
tionship between the polarization and strain gradient εmax

(
2π
h

)2, since
(

2π
h

)2 is a constant.
The size-dependent shear flexoelectric coefficient is shown in the figure 2.8. Contrast to
the longitudinal flexoelectric coefficient (figure 2.6(b)), the shear flexoelectric coefficient in-
creases with the cross-section size and converges to the bulk shear flexoelectric coefficient,
see XU ET AL. (2013). The explanation of this behavior: in contrast to the calculation of
the longitudinal flexoelectric coefficient (the Z-direction polarization Pz is required by equa-
tion (2.8)), the calculation of the shear flexoelectric coefficient requires the polarization Px
of X-direction by equation (2.11). Due to the applied vacuum boundary condition in the X
and Y directions, the atoms have more freedom of movement in the X-direction compared
to the Z-direction (periodic boundary condition applied). During minimization, for system
with a smaller cross-section (in the X-Y plane), the surface atoms in the system can easily
find a lower energy state in the transverse (X-Y) directions, which returns a lower transverse
polarization of the surface cells. As the cross-section of the system increases, the transverse
inter-atomic force strengthens, which forces the surface atoms to stay in a higher energy
state, hence a higher transverse polarization (Px) of the surface unit cells.

2.3.2 Mechanical property
This subsection investigates the influence of the surface effect on the mechanical property of
BaTiO3. For this propose, BaTiO3 nanostructure (see figure 2.9(a)) with size of N×N×35
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(a) Polarization vs maximum strain εmax (b) Shear flexoelectric coefficient (nC/m)

Figure 2.8. Plot of (a) polarization vs applied strain εmax (b) size-dependent shear
flexoelectric coefficient. The bulk flexoelectric coefficient indicated by
the light green triangle shows the DFT calculation result (1.5 nC/m) of
XU ET AL. (2013).

unit cells are constructed. The N×N represents the total number of unit cells of the cross-
section in the X-Y plane. The value of N ranges from 3, 4, 6, 8, 12 to 16, which yields dif-
ferent surface atom ratios of the BaTiO3 systems. The BaTiO3 unit cell is a BaO-terminated
cubic cell, the lattice length of the unit cell is 4.01 Å. For each BaTiO3 system, it initially
equilibrates at 415 K for 10 ps with traction free boundary condition. Hereafter, the quasi-
static tensile load applies to the system in two steps: first a ramped displacement applies to
the top boundary atoms and follows by the energy minimization and equilibration procedures
of the entire structure. Loop these two steps until the desired strain is achieved (schematic
illustration of the loading procedure see figure 2.9(b)). At each loading step, the resulted
stress is calculated from the equation (2.12) as suggested in ZHOU (2003). During the simu-
lation, vacuum boundary condition applies in the transverse directions (X-Y plane), and the
bottom atoms remain fixed.

σαβ =
1

Ω

[
1

2

∑
i

∑
ij

fαijr
β
ij −

∑
i

miv̄
α
i v̄

β
i

]
, (2.12)

where Ω is the system volume, mi is the mass of the ith particle, v̄αi is the velocity of the ith

particle in α direction, fij is the inter-particle force between particle i and j.
Figure 2.10 presents the size-dependent stress-strain diagram for the BaTiO3 systems and the
comparison of their Young’s modulus with the experimental result. The Young’s modulus
calculates from the tangent of the stress-strain diagrams. As shown in figure 2.10(b), the
derived Young’s modulus of BaTiO3 systems strongly correlate to the surface atom ratio.
It is explained by the different mobility between the surface and inner atoms. The surface
atoms are less constrained compare to the inner atoms. A higher surface atom ratio results
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(a) Nanostructure (b) Schematic illustration of the loading procedure

Figure 2.9. Schematic illustration of (a) BaTiO3 nanostructure and (b) loading pro-
cedure for extracting Young’s modulus of BaTiO3 nanostructure.

in higher surface energy, thus higher stress. This enhanced stress contribution from the
surface atoms leads to an overall enhancement of the Young’s modulus. It is also found
that the surface effect diminishes, when the BaTiO3 system has a transverse diameter larger
than 6.4 nm, which agrees with the reported value, see SHAHRAKI ET AL. (2014), and the
Young’s modulus of BaTiO3 nanostructures converge to an experimental result shown in
CHENG ET AL. (1996).

(a) Size-dependent stress-strain diagram (b) Influence of the surface effect on Young’s modulus

Figure 2.10. Illustration of (a) size-dependent stress-strain diagram and (b) influence
of the surface effect on Young’s modulus of BaTiO3 nanostructures.
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2.4 Conclusion
This chapter presented a core-shell molecular dynamics model to study the size-dependent
behavior of flexoelectricity in BaTiO3 nanostructures. The core-shell model reproduced the
phase transition of BaTiO3 validating its correctness. Specially designed deformation pat-
terns apply to the BaTiO3 nanostructures inducing flexoelectric effect without the interfer-
ence of the piezoelectric effect enabling direct estimation of the flexoelectric coefficients of
the BaTiO3 nanostructures. The results show that the surface effect significantly influences
the longitudinal and shear flexoelectric coefficient of the BaTiO3 nanostructures. Namely,
the longitudinal flexoelectric coefficients decrease with the surface atom ratios of the BaTiO3

nanostructures, while the shear flexoelectric coefficients show an opposite trend. The follow-
ing chapter studies flexoelectricity in the newly emerged 2D materials.



Chapter 3

Flexoelectricity in two-dimensional
materials

Atomically thin two-dimensional (2D) materials have a variety of unique physical proper-
ties that made them attractive for many different applications (sensor, actuator, energy har-
vester), see POP ET AL. (2012); GHOSH ET AL. (2010); FEI & YANG (2014); YU ET AL.
(2017); WANG ET AL. (2012); HANAKATA ET AL. (2016); ANDREW ET AL. (2012); JAV-
VAJI ET AL. (2016); KIM ET AL. (2015); SUN ET AL. (2016); MAS-BALLESTÉ ET AL.
(2011). An emerging area of interest for 2D materials is the electromechanical coupling due
to the desire to miniaturize sensors and actuators to the micro and nanoscales. The most
widely studied electromechanical coupling mechanism is piezoelectricity, which has also in-
vestigated for 2D materials, including graphene, hexagonal boron nitride (h-BN), transition
metal dichalcogenides (TMDCs), and many others, see WANG ET AL. (2015); SONG ET AL.
(2017); ZHENG ET AL. (2017); ZELISKO ET AL. (2014); BLONSKY ET AL. (2015); KUN-
DALWAL ET AL. (2017); CHANDRATRE & SHARMA (2012); DUERLOO & REED (2013);
ZHANG (2017); ZHOU ET AL. (2016); JAVVAJI ET AL. (2018); WU ET AL. (2014a); DUER-
LOO ET AL. (2012). The majority of these works have focused on the in-plane electrome-
chanical properties.
In contrast to the extensive studies on piezoelectricity in 2D materials, only a few prelim-
inary studies on flexoelectricity in 2D materials have recently been carried out using the
density functional theory (DFT) calculation, see KALININ & MEUNIER (2008), theoretical
analyses, see KVASHNIN ET AL. (2015); CHANDRATRE & SHARMA (2012); KUNDALWAL

ET AL. (2017) or experiment, see BRENNAN ET AL. (2017). However, one key issue in
calculating or measuring the flexoelectric coefficients of 2D materials is that it has been
difficult to isolate the relative contributions of piezoelectricity and flexoelectricity to the re-
sulting polarization, see BRENNAN ET AL. (2017). As a result, the intrinsic flexoelectric
properties of 2D materials remain unresolved, and the mechanisms controlling the intrin-
sic flexoelectric properties of different 2D materials are also unresolved. In this chapter, a
charge-dipole (CD) molecular dynamics model is developed to calculate the intrinsic bend-

The content of this chapter is partially published in author’s paper (DOI: 10.1103/PhysRevB.99.054105;
10.1103/PhysRevMaterials.3.125402)
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(a) (b)

(c) (d) (e)
AB AB

AB AB
M X

Y
Figure 3.1. Top and side view of the studied materials: (a) Graphene allotropes AB,

A = B = Carbon; (b) Nitrides AB, A = Nitrogen, B = Boron, Aluminium
or Gallium; (c) graphene analogues of group-IV elements AB, A = B =
Silicon, Germanium, Tin; (d) transition metal dichalcogenides AB2,A =
Molybdenum, Tungsten or Chromium, B = Sulfur; (e) Janus transition
metal dichalcogenides MXY, M = Molybdenum or Tungsten; X= Sulfur
or Selenium, Y = Selenium or Tellurium. For (a)-(c), h refers to the
buckling height, while in (d) -(e) h1 and h2 refer to intralayer distances.

ing flexoelectric coefficients of the five different 2D material groups shown in figure 3.1:
graphene allotropes (C1, C2, C3), nitrides (BN,AlN,GaN), graphene analogues of group-IV
elements (Si, Ge, Sn), transition metal dichalcogenides (TMDCs) (MoS2, WS2, CrS2) and
Janus TMDCs (MoSSe, MoSTe, MoSeTe, WSSe, WSTe, WSeTe). The calculation method,
procedure and result are presented in the following sections 3.1 to 3.3.

3.1 Charge-dipole model

3.1.1 Charge-dipole formulation
The charge-dipole potential model was first proposed in OLSON & SUNDBERG (1978). It
assumes that atom i in a system associates with a net point charge qi and a dipole moment
pi. And it further develops to overcome the numerical divergence under point charge ap-
proximation, see MAYER (2007, 2005). Following the work of MAYER (2007, 2005), the
total electrostatic energy (ECD) for a N atoms system is

ECD = Eshort-range + Eq-q + Eq-p + Ep-p + Eext, (3.1)
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where Eshort-range represents the short range potential; the charge-to-charge (Eq-q), charge-to-
dipole (Eq-p) and dipole-to-dipole (Ep-p) potential functions complete the long range interac-
tions. Along with internal interactions, there may exist an external energy, which represents
as Eext. Eq-q consists of (i) energy required to create a charge qi on atom i in position ri with
an assumption that other atoms are at infinite distance, (ii) energy required to bring atom i in
the neighborhood of other atoms and (iii) energy contribution that accounts the interaction
between its nucleus and electrons (electron affinity). Eq-q expresses as

Eq-q =
1

2

N∑
i=1

qiT
q−q
ii qi +

1

2

N∑
i=1

N∑
j=1,i 6=j

qiT
q−q
ij qj +

N∑
i=1

qiχi, (3.2)

where qi is the net charge on atom i, T q−q is the charge-charge interaction coefficient. χi is
the electron affinity of atom i. Eq-p is the interaction between the dipole of each atom and
charge associated with each other atom, including the self-interactions, which is

Eq-p = −
N∑
i=1

qiT
q−p
ii pi −

N∑
i=1

N∑
j=1,i 6=j

qiT
q−p
ij pj, (3.3)

where Tq−p defines as the negative spatial gradient over T q−q (Tq−p
ij = −∇T q−qij ). The

product Tq−p
ij pj is the electric potential produced at location ri by dipole pj . The energy for

dipole-to-dipole interaction consists of self interaction and interactions with other dipoles.
Ep-p expresses as

Ep-p = −1

2

N∑
i=1

piT
p-p
ii pi −

1

2

N∑
i=1

N∑
j=1,i 6=j

piT
p-p
ij pj, (3.4)

where Tp-p
ij = −∇⊗∇T q−qij . Product of Tp-p

ij and pj is the electric field induced by the dipole
j on dipole i.
T q−qij is the Coulombic interaction between atomic charges qi and qj separated by a distance
rij , which is

T q−qij =
1

4πε0

1

rij
, (3.5)

where ε0 is the dielectric permittivity of vacuum. From the equation (3.5), T q−q involves the
1/rij term, which diverges for a point charge approximation when rij tends to zero. In order
to overcome this, rij is normalized with erf

(
rij/(
√

2R)
)
. T q−qij modifies as

T q−qij =
1

4πε0

erf
(

rij√
2R

)
rij

, (3.6)

where R is equal to
√
R2
A,i +R2

B,j/
√

2, where RA,i represents the width of Gaussian distri-
bution for atom index i with type A. RB,j represents the Gaussian distributed charge width
for atom type B and with index j. When r tends to zero (energy term belongs to the same
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atom), neglecting the higher order terms in the expansion of the error function, the equa-
tion (3.6) reduces to

T q−qii =
1

4πε0

√
2

π

1

R
. (3.7)

The normalization approximates the interaction between two point charges as an interaction
between two Gaussian distributed charges. It is identical to the electrostatic interactions
between the electronic clouds of any two atoms. For a detailed mathematical understanding
of T q−p, T p−p and charge-dipole potential, the reader is referred to MAYER (2005, 2007),
and references therein.
With the interatomic potential, the equation of motion for atom i derives from the Lagrangian
approach. The equation of motion for atom i is

mir̈i = −∂E
short-range

∂ri
− ∂Eq-q

∂ri
− ∂Eq-p

∂ri
− ∂Ep-p

∂ri
, (3.8)

where the first-order derivatives of the short-range term were derived and implemented in re-
cent versions of the open-source MD code called Large scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS), see PLIMPTON (1995b). The charge and dipole related force
contributions are derived and incorporated as additional forces to the atoms. The present
study utilizes the ‘addforce’ command in the LAMMPS package to include the addi-
tional force. The mathematical expressions for the potential energy derivatives are presented
in Appendix A.
The charge and dipole moment of each atom estimated from the governing equations ob-
tained in the Lagrangian approach. The governing equation for the atomic charge qi is

N∑
j=1,i 6=j

T q−qij qj −
N∑

j=1,i 6=j

Tq−p
ij pj + T q−qii qi −Tq−p

ii pi + χi = 0. (3.9)

The governing equation for the atomic dipole moment pi is

N∑
j=1,i 6=j

Tq−p
ij qj +

N∑
j=1,i 6=j

Tp−p
ij pj + Tq−p

ii qi + Tp−p
ii pi = 0. (3.10)

Equation (3.8) defines each atom’s dynamics under various forces that originated from the
interatomic potential. The unknown charge and dipole moment of each atom obtained by
solving the equation (3.9) and (3.10). Rearranging these equations into a matrix-vector form[

T q−q T q−p

T q−p T p−p

] [
q
p

]
=

[
−χ
0

]
. (3.11)

From the equation (3.11), the charge and dipole moment are known for the given atomic con-
figuration. Using the charge and dipole moment data, force terms ∂Eq-q

∂ri
, ∂E

q-p

∂ri
and ∂Ep-p

∂ri
in the

equation (3.8) are calculated using the expressions given in the Appendix A. Equation (3.8)
is time integrated using the Velocity-Verlet algorithm, see SWOPE ET AL. (1982). The time
integration of the equation (3.8) updates the atomic configuration at one time instant, and for
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the updated configuration the charge-dipole matrix-vector system is solved. For the atomic
configuration at time instant t, the charge and dipole moment data of time step t−∆t is used.
∆t represent the time interval between two successive time instances.
Based on the known dipole moment of each atom, the polarization for the unit cell is de-
fined as the sum of dipole moments of atoms present in that unit cell divided by the unit cell
volume. The polarization of the mth unit cell (Pm) is

Pm =
1

Vm

(
n∑
i=1

pi

)
, (3.12)

where n is the number of basis atoms present in unit cell m, Vm is the unit cell volume, and
the total polarization is the average among all unit cells in the system.

3.1.2 Estimation of charge-dipole potential parameter R
In the previous subsection 3.1.1, a parameter R is introduced to avoid the divergence of the
equation (3.6). The estimation procedure of R as following
Consider the equation (3.10) for dipole moments, which rewrites as

Tp−p
ii pi −

N∑
j,i6=j

Tp−p
ij pj =

N∑
j,i6=j

Tq−p
ij qj + Eext(ri). (3.13)

This represents that the dipole moment of an atom are defined by three different parts: elec-
tric field at position ri due to neighboring (i) dipoles pj (left hand side second term in the
equation (3.13)); (ii) charges qj (right hand side first term in equation (3.13)) and (iii) from
the externally applied electric fields. The diagonal coefficient Tp−p

ii is known as the inverse
of atomic polarizability (ᾱ). The mathematical expression for Tp−p

ii is given under the CD
potential approximations, see MAYER (2007, 2005):

Tp−p
ii =

1

4πε0

√
2

3
√
πR3

=
1

ᾱi
, (3.14)

where ε0 is the dielectric permitivity of vacuum. The CD parameter R is related to the
polarizability ᾱ. For an N atoms system, the equation (3.13) modifies into a matrix-vector
system, which is

Āp = E, (3.15)

where

Ā =


ᾱ−1

1 Tp−p
12 · · · Tp−p

1N

Tp−p
21 ᾱ−1

2 · · · Tp−p
2N

· · · · · ·
Tp−p
N1 Tp−p

N2 · · · ᾱ−1
N

 , (3.16)

and p, E represent the vector of dipole moments and the associated external electric field of
each atom, respectively. In order to estimate the atom polarizability ᾱ thus the parameter R,
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one assumes that the dipoles are experiencing a uniform electric field (E) (which includes
both external fields and charge related fields), see SILBERSTEIN (1917); THOLE (1981).
Additionally, the total dipole moment (ptotal) of the atomic system is

ptotal = ᾱtotalE, (3.17)

where ᾱtotal is the total polarizability of the atomic system, which expresses as

ᾱtotal =
N∑
i

N∑
j

Bij, (3.18)

where Bij is the components of the matrix A−1. Equation (3.18) represents that, in order
to estimate R, ᾱtotal has to be known. The total polarizability ᾱtotal is calculated from the
changes in electronic wave functions in DFT. We used the function polar in Gaussian soft-
ware, developed in FRISCH ET AL. (2016), to estimate ᾱtotal, where details about computing
polarizability in DFT calculations elaborated in OLSEN & JØRGENSEN (1985); SEKINO &
BARTLETT (1986).
To estimate the R values for all 2D material systems: graphene allotropes, nitrides, graphene
analogues of group-IV elements, transition metal dichalcogenides (TMDCs) and Janus
TMDCs, DFT simulations are performed for different sized samples of each material system.
The isotropic polarizability values from DFT (ᾱDFTtotal ) for these systems are noted. With the
given atomic configuration of each sample and a variational range of R (less than the given
bond length), the total polarizability is calculated (ᾱCALtotal ) from the equation (3.18). The R
values are estimated, when ᾱCALtotal = ᾱDFTtotal for different sized samples and these R values
are averaged as the overall R value for a given material system. The calculated total polariz-
ability (ᾱDFTtotal ) from DFT, the estimated (ᾱCALtotal ) from the equation (3.18), the parameter R
and lattice parameters of each material system are tabulated in the table 3.1 and table 3.2.

3.1.3 Validation of the charge-dipole model
In this section, the CD model and the derived material parameters in the section 3.1.2 are
validated by calculating the piezoelectric coefficients of BN, MoS2 and Janus TMDCs and
comparing them with the results in literature, see DROTH ET AL. (2016); BLONSKY ET AL.
(2015); DONG ET AL. (2017). The piezoelectric coefficients of these materials are estimated
by subjecting the material samples with dimensions 80 Å × 80 Å to a tensile loading in the
X-direction as shown in the figure 3.2. The lattice parameters of these materials are listed
in the table 3.1 and table 3.2. The initial configurations are flat for all material samples,
hereafter the samples are subjected to a relaxation process through energy minimization to
stabilize material structures. For BN and MoS2, the samples remain flat (see figure 3.2(a)),
whereas the structures of Janus TMDCs are bent (see figure 3.2(b)), which is due to the spon-
taneous curling effect, see XIONG ET AL. (2018); WANG ET AL. (2018a). This spontaneous
curling effect arises from the structural asymmetry between the M-X and M-Y layers, re-
sulting in stretching in the Y layer and compression in the X layer. The minimized samples
then subject to tensile load and the samples are deformed until the desired in-plane strain
εxx is achieved. During this loading procedure, the atomic charge qi and dipole moments pi
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Table 3.1. Calculation details for each material. The unit cell dimensions a, b, c
and h are given in Å. The bonding interactions are modeled using dif-
ferent types of ’short-range potentials’. αDFT

total is the polarizbility esti-
mates from DFT and αCAL

total is calculated using the equation (3.18) in
Å3. The RA and RB (in Å units) are the CD potential parameters for
atom types A and B in the given unit cell.

Material a b c h short-range potential αDFTtotal αCALtotal RA RB

C1 2.46a 4.26a 3.5b 0.0 AIREBOc 2.49 2.78 0.64 0.64
C2 4.87a 8.84a 3.5 0.0 AIREBOc 2.46 2.72 0.64 0.64
C3 5.70a 7.56a 3.5 0.0 AIREBOc 2.45 2.77 0.64 0.64
BN 2.50d 2.50d 3.33d 0.0 Tersoffe 2.85 2.84 0.76 0.35
AlN 3.13f 3.13f 3.39f 0.0 Tersofff 19.79 19.97 1.04 0.48
GaN 3.21g 3.21g 3.63g 0.0 Tersoffh 15.80 16.38 1.05 0.48
Si 3.82i 6.62i 2.41j 0.44i Tersoffk 20.62 20.92 1.37 1.37
Ge 3.97i 6.87i 3.20l 0.65i Tersoffm 13.43 13.14 1.27 1.27
Sn 4.67n 8.09n 3.30o 0.89n Tersoffo 15.25 15.86 1.52 1.52
MoS2 3.16p 3.16p 12.29q 1.58 SWr 12.32 12.35 0.69 1.04
WS2 3.18s 3.18s 12.16s 1.56 SWt 15.36 15.38 0.70 1.09
CrS2 3.04q 3.04q 14.41q 1.45 SWt 10.86 10.87 0.75 1.00

aReference ENYASHIN & IVANOVSKII (2011)
bReference ISHIGAMI ET AL. (2007)
cReference BRENNER ET AL. (2002)
dReference VERMA ET AL. (2007)
eReference ABADI ET AL. (2018)
fReference ZHAO ET AL. (2016)
gReference ONEN ET AL. (2016)
hReference NORD ET AL. (2003)
iReference DIMOULAS (2015)
jReference PADILHA & PONTES (2015)
kReference STILLINGER & WEBER (1985)
lReference DÁVILA & LE LAY (2016)

mReference MAHDIZADEH & AKHLAMADI (2017)
nReference CHEN ET AL. (2016)
oReference SAXENA ET AL. (2016)
pReference STEWART & SPEAROT (2013)
qReference JIANG ET AL. (2016)
rReference JIANG ET AL. (2013a)
sReference WANG ET AL. (2018b)
tReference JIANG & ZHOU (2017)
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Table 3.2. Total polarizability estimated by DFT (αDFT in Å
3
) and the estimation

from the present CD model (αCal. in Å
3
), see ZHUANG ET AL. (2019a).

Atomic polarizability (Ri in Å) and lattice parameters (a,b are the lat-
tice constants, l1 and l2 are the bond lengths for M-X and M-Y in Å, re-
spectively) for the Janus TMDCs. For simplicity, in this study the Janus
TMDCs are denoted as MXY with M = Mo and W; X,Y = S,Se and
Te; X represents the chalcogenide atom with a smaller atomic number
while Y represents the chalcogenide atom with a larger atomic number.

Material a,b l1 l2 short-range potential αDFTtotal αCALtotal RM RX RY

MoS2 3.160a 2.420b 2.420b SWb 12.320 12.350 0.69 1.04 1.04
MoSSe 3.288a 2.416a 2.530a SWb 13.456 13.450 0.84 1.14 1.06
MoSTe 3.343a 2.432a 2.715a SWb 15.590 15.593 1.0 1.16 1.02
MoSeTe 3.412a 2.552a 2.717a SWb 16.768 16.769 1.04 1.12 1.05
WSSe 3.232a 2.421a 2.538a SWb 16.824 16.822 0.94 1.18 1.08
WSTe 3.344a 2.438a 2.720a SWb 19.489 19.489 1.08 1.18 1.08
WSeTe 3.413a 2.559a 2.722a SWb 21.225 21.224 1.08 1.24 1.08

aReference HU ET AL. (2018)
bReference JIANG (2019)

are derived and noted from the CD model for each atom in each sample. Accordingly, the
total polarizations P of the samples are calculated by the equation (3.12) and the in-plane
strains εxx are calculated by εxx = lx−lxmin

lxmin
, where lx and lxmin are the deformed length and

minimized length of the samples in the X-direction. The polarization (Px) - strain (εxx) di-
agrams of all samples are shown in the figure 3.3 and the diagrams of Janus TMDCs are
shifted to have zero initial polarization by subtracting the polarization caused by the initial
spontaneous curling effect, see XIONG ET AL. (2018); WANG ET AL. (2018a). Linear rela-
tions are observed between the polarization Px and given strain εxx in figure 3.3. The slope
of the linear relation yields the in-plane piezoelectric coefficient (dxxx or d11) of the samples.
Table 3.3 indicates that the calculated piezoelectric coefficients are in good agreement with
the reported DFT and experimental values from DROTH ET AL. (2016); BLONSKY ET AL.
(2015); DONG ET AL. (2017), which validates the effectiveness of the CD model and the
derived material parameters in the section 3.1.2.

Table 3.3. Piezoelectric coefficients (×10−10 C/m) from the CD model estimation
and literature.

Material BN MoS2 MoSSe MoSeTe MoSTe WSSe WSeTe WSTe
Calculated 0.986 3.95 4.099 4.676 4.733 3.144 3.209 3.327
Reported 1.35 a 3.56 b 3.74a 4.35a 4.53a 2.57a 3.34a 3.48a

aReference DROTH ET AL. (2016)
bReference BLONSKY ET AL. (2015)
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Figure 3.2. Loading scheme for estimating piezoelectric coefficient.
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terial systems.
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3.2 Simulation method for extracting flexoelectric coeffi-
cients of 2D materials

In this section, a simulation method is proposed for extracting the flexoelectric coefficient
of the interested 2D materials. As demonstrated in the equation (2.5), the measurement of
the flexoelectric coefficient of a material is under the influence of the piezoelectric effect.
Here the proposed simulation method employs a designed mechanical deformation pattern
to eliminate the piezoelectric effect’s contribution to the overall polarization, thus allowing
a direct measurement of the flexoelectric coefficients.

3.2.1 Deformation pattern

The designed mechanical deformation pattern has the form

uz = K
x2

2
, (3.19)

where x represents the atom coordinate in the X-direction, K represents the inverse of cur-
vature (strain gradient) of the bending plane, and the prescribed mechanical deformation
shown in the figure 3.4. In the MD models, the designed deformation pattern is applied to
the material systems, which have identical dimension of 80×80 Å and the employed lattice
parameters, short-range potentials are listed in the table 3.1 and table 3.2. Once the bending
deformation is prescribed, the edge region atoms are held fixed while the interior atoms are
allowed to relax to energy minimizing positions using the conjugate-gradient algorithm, af-
ter which the point charge qi and dipole moments pi are found from the CD model for each
atom.
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Figure 3.4. Schematic illustration of the geometry and loading condition for 2D
material system. (a) flat system (graphene allotropes, nitrides, graphene
analogues of group-IV elements and TMDC monolayers); (b) curled
system (Janus TMDCs).
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From the MD simulations, here establishes the relationship between polarization and strain
gradient as follows. The strain gradient from the equation (3.19) is

∂εxz
∂x

=
1

2

∂2uz
∂x2

=
1

2
K, (3.20)

where εxz is the strain in the X-direction from the applied deformation in the Z-direction.
Substituting the equation (3.20) into the equation (2.4) and assuming that the imposed me-
chanical deformation in the equation (3.19) removes the piezoelectric contribution, thus
obtains

Pz =
1

2
µzxzxK, (3.21)

where µzxzx is the out-of-plane or bending flexoelectric coefficient and Pz is the out-of-plane
polarization. The next subsection verifies the assumption of the removal of the piezoelectric
contribution through the prescribed mechanical deformation pattern.

3.2.2 Validation the assumption in the deformation pattern
This subsection validates the assumption that the proposed bending scheme in the section
3.2.1 eliminates the piezoelectric contribution to the total polarization, enabling direct mea-
surement of the intrinsic flexoelectric coefficients of the different 2D material groups. The
applied deformation (using the equation (3.19)) results in strain (εxz) and strain gradient
(∂εxz
∂x

) along the XZ-direction, and a polarization along the Z-direction, where the MoS2 is
used here as a representative example for the validation process. The local atomic strain
calculation for each atom i using the local deformation gradient F which involves the initial
and deformed atomic coordinates, see BELYTSCHKO ET AL. (2013). The local atomic strain
tensor for the atom i (εi) is

εi =
1

2

[
(Fi)

T Fi − I
]
, (3.22)

where I is the identity matrix.
Figure 3.5(a) represents the atomic configuration of MoS2 system colored with the XZ
component of strain εxz, which is calculated from the equation (3.22) at a given curva-
ture (K = 0.1 nm−1). The variation of strain εxz along the X-direction is plotted in the
figure 3.5(b), where the strain was found by dividing the atomic system into several equal
width bins and averaging the strain in each bin. A linear variation in εxz is observed from
the figure 3.5(b). It demonstrates that the induced deformation is symmetric, and the re-
sulting polarization due to strain cancels out. Therefore, the total strain εxz is zero (sum
over all the bins), which eliminates the piezoelectric contribution to the polarization in the
equation (2.4) and supports the assumption made in obtaining the equation (3.21), i.e., that
for the prescribed bending deformation, the out-of-plane polarization is only dependent on
the strain gradient. Furthermore, symmetry analysis on the piezoelectric tensor shows that
dzxz is zero for a point group symmetry associated with the 2D material sets, see DE JONG

ET AL. (2015). The mechanical bending deformation leads strictly to zero out the out-of-
plane piezoelectric contribution to the total polarization. However, it is important to note
that an in-plane polarization is generated due to the out-of-plane bending. Furthermore,
the in-plane polarization from the out-of-plane bending may receive a contribution from the
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in-plane piezoelectricity. The further discussions of the in-plane polarization are in the sec-
tion 3.3.4 and section 3.3.6.
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Figure 3.5. (a) Atomic configuration colored with strain εxz in X-direction for
MoS2 sheet when strain gradient K = 0.01 Å

−1
; the large spheres rep-

resent Mo atoms and small spheres represent S atoms. (b) Bin-wise
distribution of strain εxz along X axis, circles represent the calculated
average strain εxz at location x and the solid line is linear fitting to the
calculated data.

3.3 Flexoelectric coefficient of 2D materials
The simulation procedure described previously in the section 3.2 is applied here to extract
the flexoelectric coefficients of four groups of 2D materials: graphene allotropes (C1, C2,
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and C3), nitrides (BN, AlN, and GaN), graphene analogs of group-IV elements (Si, Ge, and
Sn) and TMDC monolayers (MoS2, WS2 and CrS2). C1 corresponds to pristine graphene,
while C2 and C3 represent graphene with Stone-Wales defects, which replace some hexagons
with pentagons and heptagons with different periodicity, respectively, see ENYASHIN &
IVANOVSKII (2011). BN, AlN, and GaN are nitrogen-based hexagonal monolayers with
boron, aluminum, and gallium. Silicene (Si), Germanene (Ge), and Stanene (Sn) are the
group-IV 2D graphene analogs. However, the vertical distance between the atoms or buck-
ling height (h) in the unit cell is non-zero when compared to the graphene allotropes and
nitride material groups (see figure 3.1(a) and (c)). The TMDCs possess three sub-layers or
intra-layers where element ’X’ (center layer) forms bonds with two S atoms in the top and
bottom layers. The layers are vertically separated by the intralayer heights h1 and h2, as
shown in the figure 3.1(d). The figure 3.1(e) shows the geometrical configuration of Janus
TMDCs, an uneven bond length (h1 6= h2) exist between the upper ’M-Y’ and lower bond
’M-X’.
Here the applied inverse of curvatureK has the range from 0 to 0.1 nm−1 and the induced to-
tal polarizations of the material system at each K is calculated from the equation (3.12). The
polarization-K diagrams of several material systems are shown in the figure 3.6. For the case
of Janus TMDCs (figure 3.6(b)), a effective strain gradientKeff = ∂εxz/∂x derived from the
slope of the bin-wise strain distribution of the Janus TMDCs (similar as in the figure 3.5(b))
between εxz and the X-coordinate of each bin is used. The current value ofKeff differs from
1
2
K (from the equation (3.19)) by about 15%. Theoretically, the numerical value of Keff

should be equal to 1
2
K under the imposed bending deformation. For example, in the case of

conventional TMDCs (MoS2, WS2 and CrS2), the effective strain gradient is equal to half
of the given value of K under the same bending deformation, see ZHUANG ET AL. (2019a).
However, the observed difference in Janus TMDCs is due to the spontaneous curling effect,
see XIONG ET AL. (2018); WANG ET AL. (2018a), which arises from the structural asymme-
try between the M-X and M-Y layers, resulting in stretching in the Y layer and compression
in the X layer. To account for the spontaneous deformation, the effective strain gradient
Keff is used to calculate the flexoelectric coefficient of Janus TMDCs. The flexoelectric
coefficients of the 2D materials without Janus TMDCs are derived from the equation (3.21)
and the equation Pz = µzxzxKeff is used for extracting flexoelectric coefficients of the Janus
TMDCs. Figure 3.7 presents the flexoelectric coefficients of the interested 2D materials. The
comparison is divided into two sub-figures due to the significant range difference between
the value of Janus TMDCs and the remained 2D materials. The following sections 3.3.1 to
3.3.5 explain the underlying mechanism of the induced flexoelectricity in each 2D material
group.

3.3.1 Mechanisms of inducing polarization in 2D materials

As shown in the figure 3.7 that 2D materials exhibit different flexoelectric constants. This
subsection analysis the mechanisms governing the flexoelectric constants for the 2D materi-
als. The analysis depends on understanding, within the framework of the utilized CD model,
the various contributions to the dipole moments induced from the prescribed bending defor-
mation. Specifically, the dipole moment pi on atom i depends on its polarizability and the
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presence of a local electric field, which consists of three parts: the electric field at position ri
due to neighboring (i) dipoles pj; (ii) charges qj and (iii) from the externally applied electric
fields Eext. Because the only external stimulus is the prescribed bending deformation thus
Eext = 0 and the governing equation for the dipole moments (equation (3.13)) becomes

Tp−p
ii pi −

N∑
j,i6=j

Tp−p
ij pj =

N∑
j,i6=j

Tq−p
ij qj. (3.23)

where Tp−p
ij and Tq−p

ij are the polarizability tensors. These two tensors represent dipole-
dipole and charge-dipole interactions, respectively, which can also be interpreted as account-
ing for σ−σ and σ−π electron interactions, respectively, see MAYER (2007, 2005); ROBERT

& DANNEAU (2014), and can be written as in MAYER (2005):

Tq−p
ij =

1

4πε0

rij
r3
ij

≈ 1

4πε0

rij
r3
ij

[
erf
(

rij√
2R

)
−
√

2

π

rij
R

exp
(
−
r2
ij

2R2

)]
, (3.24)

Tp−p
ij =

1

4πε0

3rij ⊗ rij − r2
ijI

r5
ij

[
erf
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rij√
2R

)
−
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2

π

rij
R

exp
(
−
r2
ij

2R2
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− 1

4πε0

√
2

π

rij ⊗ rij
r2
ij

1

R3
exp

(
−
r2
ij

2R2

)
.

(3.25)

From equations (3.24) and (3.25), the inter-atomic distance (rij) and parameter R (factor
related to polarizability as shown in the section 3.1.2) are identified as the important factors
in defining the dipole moment of atoms via the polarizability tensors. The following sections
3.3.2 to 3.3.5 adopt this analysis scheme.

3.3.2 Flat 2D Monolayers
Here considers the simplest 2D structures, flat graphene and BN mono-layer. To aid the
analysis, the equation (3.23) is rewritten including only the pi,z component (as in the equation
(3.21)), which is

T p−p
ii,zzpi,z = Ep

i,z + Eq
i,z, (3.26)

where Ep
i,z =

∑N
j,i6=j{T

p−p
ij,xzpj,x + T p−p

ij,yzpj,y + T p−p
ij,zzpj,z} and Eq

i,z =
∑N

j,i6=j T
q−p,z
ij qj are the

electric fields on atom i due to neighboring dipoles, charges and associated polarizability
components.
For the undeformed graphene sheet, the out of plane dipole moment pi,z is zero due to the
monolayer’s flat nature. However, once graphene is bent, the π − σ interactions increase,
leading to a non-zero pi,z. Specifically, for deformed graphene with bending curvature
K = 0.02 nm−1, the measured contributions of Ep

i,z and Eq
i,z to the total electric field on

atom i are 93.45% and 6.55%, respectively. As graphene is bent further, these contributions
change to 93.27% and 6.73%, respectively, when K = 0.1 nm−1. The increased importance
of Eq

i,z with increasing bending implies rising importance of π − σ interactions on the total
electric field induced dipole moment on the atom i. It can also be interpreted through pyra-
midalization see, SURYA ET AL. (2012); DUMITRICĂ ET AL. (2002); NIKIFOROV ET AL.
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(2014), in which sp2 bonding converts to sp3 bonding. In this process, each carbon atom’s
valence electrons develop bonding interactions with neighboring atoms due to the bond bend-
ing involved symmetry reduction, which allows mixing between π and σ electrons, leading
to π− σ interactions, see GLEITER (1987). This interaction modifies the charge state of the
carbon atom and the locally generated electric fields, which is captured by the CD model in
the form of the charge-induced electric fields Eq

z . Overall, these increased π−σ interactions
result in the flexoelectric coefficient for graphene being found as µgr = 0.00286 nC/m, which
is found from the linear fitting of the polarization as a function of the bending curvature in
the figure 3.6.
In the case of BN, the contribution of Eq

z also increases from 1.86% to 1.99% when bending
curvature K increases from 0.02 to 0.1 nm−1, though the overall contribution of Eq

z to the
total electric field is smaller than for graphene. This suggests that the π − σ interactions in
BN are weaker than in graphene, which may be related to the difference in the tendency of
pyramidalization between B and N atoms. Specifically, B atoms prefer the sp2 hybridiza-
tion while N atoms are more likely to achieve sp3 hybridization or pyramidalization, see
HERNÁNDEZ ET AL. (1998, 1999). Thus, even though the polarizability of BN is similar to
graphene (see αCALtotal values in table 3.1), the flexoelectric constant of BN of 0.00026 nC/m
is ten times smaller than graphene due to the smaller Eq

z contribution in BN.
The graphene allotropes C2 and C3 show similar flexoelectric coefficients to defect-free
monolayer graphene (C1), as shown in the figure 3.7. Though C2 and C3 contain different
arrangements of defects, the sp2 hybridization is unchanged, which induces nearly equal
charges and dipole moments for atoms in C2 and C3 under deformation. As a result, the
flexoelectric coefficients are nearly constant for this material group. In the nitride group,
AlN and GaN are found to have larger flexoelectric constants than BN as shown in figure 3.7,
though still significantly smaller than graphene. This is due to a corresponding increase in the
contribution of Eq

z , from 1.99% for BN to 2.25% for AlN to 6.85% for GaN for a curvature
of 0.1 nm−1.

3.3.3 Buckled 2D Monolayers

Figure 3.6(a) shows that the induced polarization for flat 2D materials is much smaller than
is seen in silicene. From a structural point of view, silicene and graphene differ in that the
atomic polarizability of silicene is larger and exists in a buckled configuration compared
to graphene (see h values in table 3.1). Therefore, additional simulations are performed
to examine both of these factors’ effects on the induced polarization in silicene. Initially, a
bending test is conducted for silicene in which the buckling height remains zero to understand
the effect of buckling on the polarization. To do so, the simulation imposed the bending
deformation on silicene without allowing any subsequent relaxation of the atomic positions.
The variation of polarization for flat silicene and silicene is plotted in figure 3.8. From
the numerical fitting, the flexoelectric coefficients for flat silicene µsi-flat and silicene µsi are
identified as 0.00634 and 0.00728 nC/m, respectively. Noting that the graphene flexoelectric
coefficient is µgr = 0.00286 nC/m, the ratio of µsi-flat/µgr is 2.217, which is close to the ratio
of their atomic polarizability parameters (Rsi/Rgr = 2.141 from the table 3.1). From this, it
is clear that the atomic polarizability increases the induced polarization and thus flexoelectric
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constants. The ratio of µsi/µgr is 2.545, which is about 15% higher than 2.217. Therefore,
this increase in polarization of about 15% between silicene and flat silicene can be ascribed
to the buckled structure of silicene.

0
1
2
3

0 0.02 0.04 0.06 0.08

flat silicene

silicene

Figure 3.8. Polarization Pz versus applied inverse of curvature K for silicene and
flat silicene.

Further understanding is drawn from the contributions of the electric fields from dipole-
dipole and charge-dipole interactions. The contributions from Ep,z

i and Eq,z
i to the total elec-

tric field are estimated for flat silicene and silicene when the bending curvature is 0.008 Å−1.
The numerical values for flat silicene are 91.89 and 8.10%, respectively, similar to that of
graphene. Therefore, the increased dipole moment and flexoelectric coefficient for the flat
silicene is primarily due to its larger atomic polarizability (Rsi/Rgr = 2.141) compared to
graphene.
For buckled silicene, the contributions from Ep

i,z and Eq
i,z to the total electric field are 76.89

and 23.10%, respectively. Comparing to flat silicene, there is an increase inEq
i,z and decrease

in Ep
i,z for silicene. Thus, the CD model predicts that π − σ interactions are dramatically

enhanced in buckled silicene as compared to flat silicene, which is in agreement with re-
cent DFT studies, see PODSIADŁY-PASZKOWSKA & KRAWIEC (2017), who found that it
is easier to achieve sp3 bonding in buckled silicene. Such changes in hybridization (pyra-
midalization) lead to significant charge modulations and induce large dipole moments. The
difference in the numerical contribution of Eq

z to the total electric field in flat vs. buckled
silicene of 15% is identical to the observed difference in magnitude of the flexoelectric co-
efficients. It demonstrates that buckling in the atomic structure of 2D materials can induce
increased polarization, and thus flexoelectric constants.
Germanene and stanene also have flexoelectric constants larger than graphene and BN as
shown in figure 3.7, though lower than silicene. This is due to a combination of lower
polarizability of these materials as compared to silicene (see αCALtotal values in table 3.1), and
due to reducedEq

z contributions of 20.91% and 18.45%, respectively, indicating weaker π−σ
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Figure 3.9. (a) Undeformed, and (b) Deformed atomic configuration of MoS2 sheet.
Red-colored atoms are used to explain the changes in bond length.
Dashed lines represent the Mo layer and dash-dotted lines indicate the
S layers. Atoms X and Y in (a) possess bond lengths of 2.42 Å with
neighbor sulfur atoms. The bond length between atoms Y-A and Y-D
is 2.42 Å and 2.41 Å, respectively. Atom Y has bond length of 2.26 Å
with atoms B and C. The bond length between atoms Y-E and Y-F is
2.76 Å. Only left portion of the atomic system was shown here.

interactions in these buckled structures as compared to silicene.

3.3.4 Transition metal dichalcogenide monolayers
As shown in figure 3.6, the polarization under bending is significantly higher in MoS2 than
the other 2D materials. It found, for MoS2, the contributions from the dipole and charge-
induced electric fields in the z−direction are 15.23% and 84.76%, respectively, where the
contribution of Eq

z is significantly higher than for the previously discussed 2D materials.
Here elaborates that the mechanism enabling the large polarization and large flexoelectric
constant in MoS2, is different from the other 2D materials. As shown in figure 3.9(a), MoS2

is a tri-layer 2D material in which each central Mo atom bonds with the S atoms in the layers
above and below. The thickness of this sheet defines as the sum of the vertical separation
between these layers. The imposed bending deformation causes the top and bottom S layers
to deform differently with respect to the central Mo atom. For the initial (flat) configuration
in the figure 3.9(a), the central Mo atoms, labeled as X and Y, are located 2.42 Å away from
both the neighboring top and bottom layer S atoms. This initial atomic configuration also
induces non-zero dipole moments to each atom since the z−component of rij is non-zero.
An equal and opposite dipole moment is observed for the top and bottom S atoms due to the
equidistant separation with the central Mo atoms, whereas no dipole moment is found on the
Mo atoms due to symmetry.
However, after bending, there are significant bond length changes, as shown in the fig-
ure 3.9(b). The bond lengths between atom X and its nearest S atom neighbors are un-
changed even after deformation; the bond lengths Y-A and Y-D are measured as 2.42 and
2.41 Å. In contrast, significant changes in bond length result for other nearest S neighbors,
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where a compression in the Y-B and Y-C bond lengths is identified (2.42 to 2.26 Å) in fig-
ure 3.9(b), and where elongation of the Y-E and Y-F bond lengths (2.42 to 2.75 Å) is seen.
The identified differences in bond lengths break the symmetry seen in the undeformed MoS2

in figure 3.9(a), which leads to non-zero dipole moments, and increases the Eq
z contribution

to the total electric field as compared to buckled silicene.
Interestingly, the polarizability of silicene is significantly larger than MoS2, i.e. RMoS2/Rsi is
about 0.5, according to the table 3.1. This indicates that MoS2 has a significantly higher po-
larization and flexoelectric constant than buckled silicene for other reasons, starting with the
enhanced π−σ interactions. Furthermore, a recent DFT study on the bonding characteristics
and charge transfer in MoS2 found that the S atoms share their electrons with the Mo atoms,
which results in the transfer of electrons back to the Mo atoms, see PIKE ET AL. (2017).
This charge transfer, coupled with the bond length asymmetry due to bending, results in a
large Eq

z and large dipole moments.
The flexoelectric coefficients for other TMDC group members are smaller than MoS2 as
shown in figure 3.7, where the flexoelectric coefficient of WS2 is 3 times smaller than MoS2,
and where CrS2 has an even smaller value. It’s found that the bond length asymmetry be-
tween the layers after bending is highest for MoS2 and decreases for WS2 and CrS2, and also
that the local difference in radius of curvature for MoS2, WS2 and CrS2 materials is 49%,
40%, and 26%, respectively, both of which lead to a decreasing contribution of Eq

z for WS2

and CrS2. A DFT study also found a smaller Born effective charge for WS2 compared to
MoS2, which supports the observation of lower Eq

z for WS2 compared to MoS2, see PIKE

ET AL. (2017).
An interesting observation from figure 3.7 is that the flexoelectric constants of graphene
(C1) and CrS2 are nearly equal. Though CrS2 exhibits higher atomic polarizability and
bond length asymmetry, the final dipolar polarization is similar to graphene. This is because
there is a relatively low asymmetry in dipole moment between S atoms in the top and bot-
tom layers in CrS2, which results in the cancellation of the induced polarization, leading to
a flexoelectric constant that is similar to graphene. However, for WS2 and MoS2, the in-
creased asymmetry between layers avoids the dipole moment cancellation to achieve larger
flexoelectric coefficients.
As observed that MoS2 has an intrinsic bending flexoelectric constant of 0.032 nC/m. This
value is about ten times larger than found in graphene and about 3-5 times larger than seen
in the buckled monolayers. Here compares flexoelectric constant of MoS2 with the result
extracted from the recent experimental study on the electromechanical properties of MoS2

reported in BRENNAN ET AL. (2017). In that work, the out-of-plane piezoelectric coefficient
(d) of MoS2 using piezoresponse force microscopy was measured to be 1.03 pm/V. That
work also established a relationship between the flexoelectric constant (µ) and piezoelectric
(d) coefficient under the assumption of small length scales and linear electric field as

µ = d Eels
h

2
, (3.27)

where Eels is the elastic modulus of MoS2 and h is the monolayer thickness of MoS2. With
Eels = 270 GPa and h = 0.65 nm, µ is about 0.091 nC/m, which is significantly higher than
our calculated value of 0.032 nC/m. This difference is due to the usage of elastic modulus
in the equation (3.27), where the bending modulus usage is more appropriate. The bending
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Table 3.4. In-plane piezoelectric coefficients dyyy ( ×10−10 C/m) for Janus
TMDCs using proposed CD model in comparison to previous DFT re-
sults (dDFT

yyy ). µzyzy (nC/m) are the bending flexoelectric constants while
l2 − l1 (Å) is the initial asymmetry for Janus TMDCs.

Material dyyy dDFT
yyy l2 − l1 µzyzy

MoS2 3.95 3.56 0.0 0.032
MoSSe 4.099 3.74a 0.114 0.117
MoSeTe 4.676 4.35a 0.165 0.120
MoSTe 4.733 4.53a 0.283 0.125
WSSe 3.144 2.57a 0.117 0.089
WSeTe 3.209 3.34a 0.163 0.092
WSTe 3.327 3.48a 0.282 0.114

modulus of MoS2 was previously found to be about 9.61 eV or 65.01 GPa, see JIANG ET AL.
(2013b). Using this bending modulus, the flexoelectric coefficient from the equation (3.27)
with bending modulus gives a value of 0.021 nC/m. This value is close compared to the cal-
culated value of 0.032 nC/m from this work and demonstrates that the flexoelectric constant
for MoS2 estimated using the atomistic CD model is in good agreement with experimental
measurement.

3.3.5 Janus transition metal dichalcogenide monolayers
Figure 3.7(b) indicates that the flexoelectric coefficients of Janus TMDCs are significant
higher (up to 5 times) then the traditional TMDCs. This subsection first investigates the
enhancement of the flexoelectric coefficients of Janus TMDCs comparing to the traditional
TMDCs. For the comparison, MoS2 and MoSSe are chosen from the TMDCs and Janus
TMDCs group, respectively. Later, the difference among the Janus TMDCs in terms of the
flexoelectric coefficient is studied.

Flexoelectric effect in MoS2 and MoSSe

The major difference between TMDCs and Janus TMDCs is the structure configuration
(symmetry versus asymmetry). Here investigates the impact of the structural configura-
tion on the flexoelectric effect. MoS2 is chosen as a representative TMDC that does not
have structural asymmetry (MXX), while MoSSe is chosen as a representative Janus TMDC
which does have structural asymmetry (MXY). To aid in the analysis of the resulting flexo-
electric constants, it notes from previous section 3.3.1 that the dipole moment p of an atom
depends primarily on three factors: the effective atomic polarizability (R), the charge in-
duced electric field (Eq

z), and the dipole induced electric field (Ep
z). And the focus is, as

shown previously in the equation (2.4), on the the out-of-plane (Z-direction) dipole moment
pz and associated polarization Pz.
The bond length between atoms A-B and A-C in figure 3.10(a) is equal to 2.42 Å (lMo−S) for
unbent MoS2. Because the A-B and A-C bond lengths are the same, there is no initial struc-
tural asymmetry for MoS2, and the bonds induce equal and opposite electric fields, which
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Figure 3.10. Atomic configurations of (a) undeformed MoS2, (b) deformed MoS2 at
Keff = 0.05 nm−1, (c) undeformed MoSSe and (d) deformed MoSSe
at Keff = 0.05 nm−1.

cause the total dipole moment, and thus total polarization of each MoS2 unit cell to be zero.
However, significant changes in the bond lengths are observed in the deformed state (fig-
ure 3.10(b)) for a curvature of Keff = 0.05 nm−1. Bond A-B is stretched from 2.42 to 2.56 Å
while bond A-C is compressed from 2.42 to 2.23 Å. This difference in bond lengths breaks
the electric field symmetry and increases the total dipole moment. At Keff = 0.05 nm−1, the
total electric field difference ∆(Ep

z +Eq
z) with respect to the initial (undeformed) configura-

tion is 53.06 V/Å, which increases the total polarization from 0 to 0.0016 C/m2. The changes
to Eq

z and Ep
z at Keff = 0.05 nm−1 are 45.6 and 7.4 V/Å, respectively. The significant contri-

bution of Eq
z implies the increasing importance of π−σ interactions in generating the dipole

moment pz. The π − σ interactions originate from the coupling between valence electrons
and bonding electrons, see GLEITER (1987), which are also interpreted as pyramidalization,
see SURYA ET AL. (2012); DUMITRICĂ ET AL. (2002); NIKIFOROV ET AL. (2014). Fur-
thermore, a recent DFT study reported that electron transfer from the p orbitals of S atoms
to the dz2 orbital of Mo atoms, see PIKE ET AL. (2017). This electron transfer modifies the
charges on the Mo and S atoms, which generates local charge induced electric fields, which
are captured through Eq

z within the current CD model. Further changes in the bond length
between Mo and S atoms enhance the π − σ coupling, see HUANG ET AL. (2018), resulting
in large Eq

z and Pz. The variation of total polarization with the effective strain gradient for
MoS2 is given in figure 3.6(b), where the slope represents the flexoelectric constant for MoS2

(µMoS2), which is found to be 0.032 nC/m.

In contrast to MoS2, the Janus TMDC MoSSe has a structural asymmetry in the undeformed
configuration between the Mo-S and Mo-Se atomic layers. Specifically, the A-B (lMo−Se)
bond length in figure 3.10(c) is equal to 2.53 Å, while the A-C bond length (lMo−S) is
2.416 Å. The bending deformation of MoSSe to a curvature of Keff = 0.05 nm−1 stretches
lMo−Se(l2) from 2.53 to 2.72 Å and shrinks lMo−S(l1) from 2.416 to 2.20 Å. The initial bond
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length asymmetry in MoSSe is further increased due to the given deformation and helps to
produce larger dipole moments pz, compared to MoS2. The dipole moment pz is also related
to the polarizability of the atomic system, where the polarizability of MoSSe (αMoSSe) is 1.09
times larger than that of MoS2 (αMoS2) as shown in the table 3.2, which shows the important
effect of structural asymmetry for the Janus TMDCs.
Besides, the initial bond length asymmetry in unbent MoSSe induces an intrinsic electric
field, which is not present in MoS2, as shown in recent DFT simulations, see JIN ET AL.
(2018). That work also reported the non-overlapping of out-of-plane wavefunctions for elec-
trons and holes due to this electric field, which implies a weak bonding between the electron-
hole pair, and which reduces the bandgap by pushing the d orbitals of the metal atom closer
to the Fermi level, see ER ET AL. (2018). The d orbital shifting may enhance the charge
transfer process through π − σ coupling, which represents an easy transfer of charges from
the S or Se atom to the Mo atom. This phenomenon is reflected in our CD model as the cal-
culated charge on Mo (atom A in figure 3.10(d)) in MoSSe is 0.733e, which is significantly
larger than for Mo in MoS2 (atom A in figure 3.10(b)), which is 0.282e, and as such the
charge acquired by the Mo atom in MoSSe is 2.6 times higher than in MoS2.
For a curvature of Keff=0.05 nm−1, the charge transfer-induced change of Eq

z in MoSSe
is 117.6 V/Å, which is exactly 2.6 times higher than the field induced in MoS2, and which
reflects stronger π−σ coupling in MoSSe. Furthermore, the value of Ep

z is higher in MoSSe
(38.4 V/Å) than in MoS2 (7.4 V/Å), which represents a stronger dipole interaction (σ − σ
coupling) in MoSSe than MoS2. Recent studies on the electronic properties of strained Janus
TMDCs suggest an increased coupling between the p orbitals of S/Se atoms with the in-
plane bonding orbitals dx2−y2 and dxy of Mo atom as a function of changes in bond angle,
see HUANG ET AL. (2018). In MoSSe, the angle B-A-C in figure 3.10 varies from 81.1◦ to
74.2◦ between the initial and deformed states (Keff = 0.05 nm−1), while for MoS2, angle
variations are 81.93◦ to 78.66◦ for the initial and deformed states. The reduction in bond
angles between MoSSe and MoS2 may increase the contribution of Ep

z in MoSSe.
Overall, Eq

z is higher than Ep
z in MoSSe, which represents that π − σ coupling is dominant

over σ − σ coupling. DFT simulations have shown that coupling between dz2 and p orbitals
(π−σ coupling) is stronger than the coupling between p and dx2−y2 and dxy (σ−σ coupling)
orbitals in Janus TMDCs, see HUANG ET AL. (2018); ER ET AL. (2018). The total electric
field increment ∆(Ep−z+Eq−z) in MoSSe is 156.07 V/Å at a curvature ofKeff = 0.05 nm−1,
which is 2.94 times higher than in MoS2 at the same curvature. The increased polarizability
and electric field increases the total dipole moment of MoSSe to 3.24 times higher than in
MoS2. The flexoelectric constant for MoSSe (µMoSSe) is found to be 0.117 nC/m, which is
3.6 times higher than flexoelectric coefficient of MoS2, which is consistent with the larger
polarizability of MoSSe. The polarizability is directly related to the dielectric constant (ε)
of the material, see PAN ET AL. (2016). For instance, α of MoSSe and MoS2 are 13.45 and
12.35 Å

3
, respectively, as shown in the table 3.2. The DFT calculated values for ε for these

materials are 8.67 and 8.05, see JIN ET AL. (2018). Thus, the increased flexoelectric constant
for MoSSe over MoS2 is in agreement with the fact that felxeoelectric effect scales with the
material dielectric constant, see YUDIN & TAGANTSEV (2013b); ZUBKO ET AL. (2013b).
As previously shown in table 3.4, the in-plane piezoelectric coefficient for MoSSe is com-
parable with that of MoS2. However, the out-of-plane flexoelectric coefficient is 3.6 times
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higher than MoS2 (Table 3.4), which implies that there are relative benefits to bending flex-
oelectricity as compared to the in-plane piezoelectricity when comparing Janus TMDCs to
standard TMDCs. In order to understand this further, here also compares the change in total
electric field and asymmetry in bond length between in-plane tensile deformation and out-of-
plane bending deformation for MoSSe for the same strain energy density, which is defined
as the sum of atomic stress times the atomic strain over the volume of the deformed system.
The change in Eq

z and Ep
z for bending deformation were previously noted as 117.6 and 38.4

V/Å for a curvature of Keff = 0.05 nm−1, while for tensile deformation the values are 11.9
and 18.7 V/Å, respectively. This shows that the induced electric fields are higher in bending
than in tension, which generates high dipole moments. It is also observed that the difference
in bond length (l2 − l1) for bending is higher than in tension for the same unit cell compared
in tension and bending. This reflects the larger bond length asymmetry induced in bending,
which supports the charge transfer and enhanced π − σ coupling based electric fields.
To further compare the resulting electromechanical coupling between standard TMDCs and
Janus TMDCs, the author computed the electrical energy density for atomic configurations
at the same strain energy density for MoSSe and MoS2. The electrical energy density is
defined as the sum of the dot product between the induced polarization and the electric
field over the volume. The atomic configuration of MoSSe at Keff=0.05 nm−1 gives an
electrical energy density of 2.6 × 109 J/m3 and a strain energy density of 1.13 × 109 J/m3.
By selecting an atomic configuration for MoS2 under bending deformation with the same
strain energy density results in an electrical energy density that is about 39% of the MoSSe
electrical energy density. The electrical energy density under the tensile deformation of
MoSSe is about 84% of the electrical energy density for MoSSe under bending. These
results show that the higher values of electric fields and large dipole moments under bending
deformation point to the advantage of bending as compared to stretching in generating strong
electromechanical coupling in Janus TMDCs.

Flexoelectric effect among Janus TMDCs

From the previous subsection 3.3.5, it is clear that the asymmetry in bond lengths between
layers of MXY induce large dipole moments through the increase in induced electric fields.
Table 3.4 lists the out-of-plane bending flexoelectric coefficients of the Janus TMDCs along
with the initial bond length difference l2− l1 in figure 3.10, from which a positive correlation
is identified for both the MoXY and WXY Janus TMDCs. it’s noted that the out-of-plane
piezoelectric coefficients also show a similar dependence on bond length asymmetry, see
DONG ET AL. (2017). Here mechanistically examines this correlation further using the elec-
tric fields due to charge-dipole (Eq

z ) and dipole-dipole (Ep
z ) interactions from the CD model.

Under the prescribed bending scheme, the increase in the total electric fieldEq
z+Ep

z increases
with strain gradient Keff for every Janus TMDC. However, the relative contribution from
Eq
z or Ep

z to Eq
z+Ep

Z varies between elements of the Janus TMDCs group. In the MoXY
group for a strain gradient of Keff = 0.1 nm−1, the contribution from the charge-dipole
interaction induced electric field Eq

z in MoS2, MoSSe, MoSeTe, and MoSTe to the increase
in the total electric field (Eq

z+Ep
z ) is 84.76%, 75.48%, 70.33% and 56.29%, respectively. The

contribution from the dipole-dipole interaction induced electric fieldEp
z to the increase in the

total electric field (Eq
z+Ep

z ) is then 15.24%, 24.52%, 29.67% and 43.71% in MoS2, MoSSe,
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MoSeTe, and MoSTe, respectively.
The bending deformation further develops a coupling among the induced dipole moments
via the σ − σ interactions, which raises the contribution of Ep

z . For example in MoSTe, at
Keff = 0.01 nm−1, Eq

z and Ep
z are 56.82 (V/Å) and 33.99 (V/Å), respectively. When Keff

is increased to 0.05 nm−1, these values increase to 280.5 (V/Å) and 216.99 (V/Å). The
enhanced dipole-dipole interaction Ep

z is due to the reduction in bond angle via the increased
bond length asymmetry due to bending. The decrease in bond angle (B-A-C in figure 3.10)
between initial and deformed states (Keff = 0.05 nm−1) is 6.9◦ for MoSSe and 7.4◦ for
MoSTe. The difference in Ep

z for atom A in MoSSe is 0.38 V/Å and for atom A in MoSTe is
0.53 V/Å (not shown in figure 3.10). This further confirms that the increased reduction in the
bond angle helps in increasing the dipolar interactions (σ−σ coupling), which are measured
in the form of Ep

z . Note that atoms A, B, and C are selected at exactly the same unit cell
locations in MoSSe and MoSTe. The cumulative effect of bond angle reduction within the
unit cell and across the unit cell in the given atomic system makes the contribution of Ep

z

significant. The total effect of increased electric fields and polarizability helps in inducing
high polarization and thus high flexoelectric coefficient for MoSTe over other Janus TMDCs.
A similar trend is found in the WXY group in table 3.4, where high charge transfer and higher
bond angle reduction in WSTe compared to other elements in WXY group. This makes the
flexoelectric coefficient of WSTe higher than WSSe and WSeTe.
Table. 3.4 also shows that the MoXY group exhibits higher out-of-plane bending flexoelec-
tric coefficients than the WXY group. For example, MoSTe and WSTe have the highest flex-
oelectric coefficients in their groups, where the flexoelectric coefficient of MoSTe is about
1.09 times larger than WSTe. At Keff = 0.05 nm−1, the total electric field change in MoSTe
is 1.4 times larger than that of WSTe while the polarizability of MoSTe is 0.79 times that of
WSTe. Though the polarizability of MoSTe is lower than WSTe, the larger induced electric
fields result in the flexoelectric constant of MoSTe being slightly larger than that of WSTe.

Bending against the initial spontaneous curvature

In the previous section 3.3.5, the bending-induced flexoelectric responses of MXY materials
are obtained while applying the out-of-plane bending toward their initial curling direction
(towards S in the case of MoSTe). Here the bending deformation is applied against the initial
curling direction (towards Te in the case of MoSTe) to study the effect of bending direction
on the induced polarization. A identical simulation procedure described in section 3.2 is
adopted except for inserting a minus sign in the equation (3.19) to indicate that the applied
deformation is opposite to the initial curling direction.
Figure 3.11 shows the variation of Pz withKeff . The dashed line atKeff = Kflat represents
the MoSTe sheet’s flattening from the initial spontaneously curved state. The notable feature
of figure 3.11 is that the total polarization Pz increases up to Kflat and decreases afterwards.
This is due to an increase in bond length between Mo and S atoms, which reduces the charge
transfer when Keff is larger than Kflat, which is seen in the form of decreasing Eq

z . Specif-
ically, the charge on an Mo atom at Kflat and 1.4×Kflat are 0.55e and 0.43e, respectively,
which leads to a reduction in Eq

z . A simultaneous decrease in Ep
z is also observed due to an

increase in the angle B-A-C, which increases from about 3.96◦ from Kflat to 1.4 × Kflat.
While the slope of the polarization Pz variation with Keff is similar to the flexoelectric co-
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Figure 3.11. Polarization Pz versus the effective strain gradientKeff for MoSTe and
WSTe when bending against their initial spontaneous curvature.

efficient obtained in the case of bending towards the spontaneous curling direction, more
energy is required to deform towards the Te layer in MoSTe as compared to the S layer in
MoSTe. As a result, bending towards the S layer in MoSTe is a better choice for energy
conversion. A similar observation is found in the case of WSTe.

3.3.6 In-plane flexoelectric polarization
The applied deformation in section 3.2.1 yields out-of-plane polarization Pz and in-plane
polarizations(Px and Py). The previous section 3.3.2 to 3.3.5 focus on the out-of-plane po-
larization Pz accordingly the out-of-plane flexoelectric coefficients of 2D materials. Here
investigates the in-plane flexoelectric polarization of the 2D materials (Graphene, BN, Sil-
icene and MoS2). The variation of in-plane polarization Px and Py show a quadratic depen-
dence with bending curvature K as shown in figure 3.12, which is similar to earlier reports
for BN, see MELE & KRÁL (2002); SAI & MELE (2003); NAKHMANSON ET AL. (2003).
The fitting lines for the quadratic dependence between bending curvature K and the in-plane
polarization Px and Py are governed by

Py = dyzxεzx + µyxzx
∂εzx
∂x

= a0,y +
1

2
a1,yK +

1

4
a2,yK

2 , (3.28)

Px = dxzxεzx + µxxzx
∂εzx
∂x

= a0,x +
1

2
a1,xK +

1

4
a2,xK

2 , (3.29)

where a1,x and a1,y have units of C/m, which are those of flexoelectric constants, while a0

and a2 have units of C/m2 and C, respectively. Taking a1 as the flexoelectric coefficient,
the numerical values for Graphene, BN, Silicene, and MoS2 are tabulated in table 3.5 along
with the bending flexoelectric coefficients. It’s noted that because the imposed mechanical
bending generates the out-of-plane flexoelectric constants only generate a constant strain in
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Table 3.5. Flexoelectric coefficients (µzxzx, µyxzx(a1,y), µxxzx(a1,x)) given in
nC/m. a0 has unit of C/m2, while a2 has unit of C.

Material µzxzx a1,y(µyxzx) a1,x(µxxzx) a0,y a0,x a2,y a2,x

Graphene 0.00286 1.53E-7 5.18E-6 -7.40E-7 -1.61E-8 -1.72E-4 1.97E-4
Silicene-flat 0.00634 1.04E-5 1.91E-5 1.69E-5 5.35E-8 -0.00180 0.00072
BN 0.00026 0.00146 3.06E-5 -5.76E-6 3.04E-7 0.26296 -1.96E-4
Silicene 0.00728 0.0027 2.94E-5 -6.43E-5 8.03E-7 -0.0164 0.00152
MoS2 0.03194 0.00962 0.00164 -0.00039 0.00060 -4.5484 -0.0512

the X-direction from applied deformation in the Z-direction, the in-plane polarization that is
generated also results in contributions to the in-plane piezoelectricity.
The in-plane flexoelectric constants for the 2D materials are calculated and summarized in
table 3.5. Here focus on the in-plane flexoelectric constant for MoS2 as they are larger than
the out-of-plane constants for the other 2D materials. From the figure 3.12 and figure 3.6, it’s
observed that the polarization Py is about an order of magnitude higher than Pz for MoS2,
whereas the electric field Eq

y is less than Eq
z for MoS2 (Eq

z/E
q
y = 7). This is because of

cancellations in the induced dipole moments in calculating the polarization. Specifically,
the dipole moments py have the same sign for all S atoms, whereas pz has a different sign
for the top and bottom planes of S atoms, which induces cancellation of polarization in the
Z-direction making Pz smaller than Py. Thus, while Py is higher than Pz, the flexoelectric
coefficient µyxzx is less than µzxzx due to its correlation with Eq. Overall, the enhanced
π−σ interactions and bond length asymmetry also leads to strong in-plane electromechanical
coupling and an in-plane flexoelectric constant of µyxzx = 0.00962 nC/m.

0 0.02 0.04 0.06 0.08 0.1

0

2

4

6

0 0.02 0.04 0.06 0.08 0.1

×10 -6

0

1

2

3

4

5

6

0 0.02 0.04 0.06 0.08 0.1
-10

-8

-6

-4

-2

0

2

0 0.02 0.04 0.06 0.08 0.1

×10 -4

0

2

4

6

8

0 2 4 6 8

×10 -4

0

5

10

15
Graphene C1
BN
Silicene
MoS2

0 2 4

×10 -4

0

5

10

15
Graphene C1
BN
Silicene
MoS2

(a) (b)

Figure 3.12. The variation of polarization (a) Px and (b) Py with bending curvature
(K) for Graphene, BN, Silicene and MoS2. The inset in (a) and (b)
represent the polarization variation for materials other than MoS2.

From table 3.5, the in-plane flexoelectric coefficients (µyxzx and µxxzx) are significantly
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smaller than the out-of-plane coefficient (µzxzx) of graphene under bending deformation.
The corresponding in-plane polarizations Px and Py are also lower than the out of plane
polarization Pz. This implies that the in-plane π − σ interactions for graphene generate
relatively small in-plane dipole moments. A symmetry analysis can be used to show that
µyxzx and µxxzx are zero, see SHU ET AL. (2011b), which implies that the graphene system
is isotropic, see AHMADPOOR & SHARMA (2015b). Similarly, lower in-plane flexoelectric
coefficients are observed for flat silicene (see table 3.5).
In the case of anisotropic BN, the in-plane coefficient (µyxzx) is nearly 5 times larger than
the out-of-plane coefficient (µzxzx), as shown in table 3.5, while figure 3.12(b) and figure
3.6 show that the polarization Py is higher than Pz. Besides, the charge-dipole coupling
induced electric field Eq

y is greater than Eq
z , and that the ratio of Eq

y/E
q
z is about 4.6, which

is similar to the ratio between the in-plane and out-of-plane flexoelectric coefficients. First-
principles calculations for a corrugated BN sheet provide significant in-plane polarization,
see NAUMOV ET AL. (2009), which is related to π and σ chemical bond shifts due to the out-
of-plane atomic displacements. The minimal difference in out-of-plane displacements of the
B and N atoms leads to relatively small out-of-plane dipole moments and also suggests that
in-plane π− σ interactions are stronger, which makes µyxzx is higher than µzxzx, see WIRTZ

ET AL. (2003); MOON & HWANG (2004).
The flexoelectric coefficient µzxzx is higher than µyxzx for the buckled silicene. The corre-
sponding polarization Pz is greater than Py, as observed from the figure 3.6 and 3.12(b), and
the out-of-plane electric field is larger than the in-plane electric fields, which implies that the
out-of-plane π − σ coupling is stronger than in-plane. It is also noted that the atomic buck-
ling in silicene significantly enhances the in-plane flexoelectric coefficient compared to flat
silicene (see values of µyxzx for silicene and silicene-flat materials in the table 3.5). Because
the buckling height of silicene is significantly larger than seen in BN, larger dipole moments
and larger in-plane and out-of-plane flexoelectric constants are predicted for buckled silicene
as compared to BN.
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Figure 3.13. Bin-wise distribution of dipole (a) px and (b) py along X axis for BN at
a curvature of K = 0.08 nm−1.

In BN, silicene and MoS2, it is observed from the figure 3.12 for BN that the in-plane polar-
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ization Py is higher than the in-plane polarization Px. In the present study, the X-direction
is considered the armchair configuration. At the same time, the Y-direction represents the
zigzag configuration, which means that polarization in the zigzag direction is higher than in
the armchair direction, which was previously observed for BN, see NAUMOV ET AL. (2009).
To further confirm this, the atomic system is rotated to change the X-direction to zigzag and
the Y-direction to the armchair and repeated the bending test. There is no change in polariza-
tion of Pz and the corresponding flexoelectric coefficients. When coming to in-plane dipole,
it’s found px (zigzag) is higher than py (armchair) shown in figure 3.13. It’s also observed
that px is linear and py is parabolic, which is also the same form for the strain fields that were
observed in the armchair and zigzag directions. This implies that the local atomic configu-
ration strongly impacts the deformation, and thus the induced polarization, which was also
observed in silicene and MoS2. The observation of anisotropic in-plane polarization due to
bending is similar to the earlier findings reviewed in AHMADPOOR & SHARMA (2015b).
It’s found that monatomic unit cells, such as graphene and flat silicene, do not exhibit spatial
variations in the out-of-plane displacements due to bending, whereas MoS2, buckled silicene,
and BN do exhibit, to varying degrees, spatial variations in the out-of-plane displacements
due to bending. As a result, the in-plane charge-dipole interactions are week for graphene
and flat silicene, resulting in low in-plane flexoelectric constants. In contrast, MoS2 exhibits
significant structural asymmetry under bending, which enhances the in-plane π−σ coupling,
with a similar effect seen in buckled silicene. While BN does not show some spatial variation
in the out-of-plane displacements, the out-of-plane displacements are relatively small, and
as such, the in-plane flexoelectric constants are smaller than buckled silicene and MoS2.

3.4 Conclusion
This chapter presented a charge-dipole molecular dynamics model to study flexoelec-
tricity in newly emerged 2D materials including graphene allotropes (C1, C2, C3), ni-
trides (BN,AlN,GaN), graphene analogues of group-IV elements (Si, Ge, Sn), transition
metal dichalcogenides (TMDCs) (MoS2, WS2, CrS2) and Janus TMDCs (MoSSe, MoSTe,
MoSeTe, WSSe, WSTe, WSeTe). A specially designed bending deformation applies to the
2D materials nanosheets to extract their bending flexoelectric coefficients while eliminat-
ing the interference from piezoelectricity. In doing so, the charge-dipole model analyzed
the mechanisms underpinning the calculated flexoelectric coefficients by interpreting them
through the electric fields generated from the dipole-dipole (σ − σ bonding) and the charge-
dipole (π−σ bonding) interactions. While the charge-dipole interactions increase with bend-
ing curvature, their relative weakness in the flat monolayers (graphene, h-BN) leads to lower
flexoelectric coefficients for these materials. In contrast, it is found that buckling height,
which occurs in the monolayer group-IV elements, leads to more than 10% increases in flex-
oelectric coefficients. Additionally, due to significantly enhanced charge transfer coupled
with structural asymmetry, the TMDCs have the largest flexoelectric coefficients, including
the flexoelectric coefficient of MoS2 ten times larger than that of graphene. Furthermore,
a particular group of TMDCs called Janus TMDCs to have flexoelectric coefficients that
are several times larger than traditional TMDCs, such as MoS2. The mechanism underly-
ing this was the bond length asymmetry for the Janus TMDCs between the M-X and M-Y
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atoms. This bond length asymmetry leads to stronger σ − σ interactions with increasing
initial asymmetry, along with stronger π − σ interactions due to increased charge transfer,
which combine to result in increased polarization for Janus TMDCs. So far in this work,
flexoelectricity has been studied using discrete models. In the following chapter, continuum
models are developed for the design guidance of flexoelectric composites.
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Chapter 4

Continuum Modeling of Flexoelectric
Composites

Continuum models for flexoelectricity need to fulfill the high-order continuity requirement
(C1 continuity) due to the strain gradient coupling term in the governing equation of flex-
oelectricity. Two continuum approaches are capable of accommodating this C1 continuity.
The first approach uses global higher order shape functions, as in the Meshless method or
Isogeometric analysis (IGA). For instance, a Meshless model is developed to investigate the
flexoelectric responses of a dielectric cantilever beam and truncated pyramid, see ABDOL-
LAHI ET AL. (2014, 2015). Later, the effect of material nonlinearity on flexoelectricity is also
studied by another Meshless model and an IGA model, see ZHUANG ET AL. (2019b); THAI

ET AL. (2018). The second approach to account for C1 continuity by introducing additional
degrees of freedom. For example, a 2D mixed finite element model includes the Lagrange
multiplier to achieve C1 continuity, and the model is used to characterize the electromechan-
ical behavior of flexoelectric devices., see MAO ET AL. (2016). Later, researchers extended
this model to 3D and developed a topology optimization scheme for flexoelectricity within
its framework, see DENG ET AL. (2017); NANTHAKUMAR ET AL. (2017). So far, the ex-
isting continuum models for flexoelectricity in the literature mainly focus on the behavior of
single-phase flexoelectric materials, while the behavior of multiphase flexoelectric materials
(e.g., flexoelectric composites) remains unexplored.
Composite materials have demonstrated their advantages against single-phase materials in
various applications, such as electrical and thermal devices, see GIBSON (2010); KONG

ET AL. (2013); KALAMKAROV ET AL. (2009), sensors, see LI ET AL. (2008); GIBSON

ET AL. (2007); RATNA & KARGER-KOCSIS (2008), energy harvesters, see PARK ET AL.
(2008); SODANO ET AL. (2004); COOK-CHENNAULT ET AL. (2008), and electromagnetic
devices, see CHUNG (2001); GEETHA ET AL. (2009); WANG & JING (2005). Meanwhile,
several studies have shown that flexoelectric composites can induce a stronger electrome-
chanical response than that of a single-phase flexoelectric material, see ZHANG ET AL.
(2016); WAN ET AL. (2017); RAY (2018). To further investigate this enhancement and
the underlying mechanism of flexoelectricity in composites. This chapter developed two

The content of this chapter is partially published in author’s paper (DOI: 10.3390/en12020271)
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continuum models to investigate flexoelectricity in composite structures. First, a 2D linear
Meshless model couples with the level-set technique to characterize linear flexoelectricity in
composite structures in section 4.1, followed by section 4.2 presenting a 3D nonlinear mixed
finite element model (NMFEM) for 3D flexoelectric composites with the consideration of
static and dynamic loading conditions.

4.1 Meshless model for flexoelectric composites

4.1.1 Theory of linear flexoelectricity

Based on the derivation in MAJDOUB ET AL. (2008, 2009), the enthalpy density H of a
dielectric solid including piezoelectric and flexoelectric effect follows

H(εij, Ei, εjk,l, Ei,j) =
1

2
Cijklεijεkl − diklEiεkl + (d̄ijklEi,jεkl + f̄ijklEiεjk,l)−

1

2
κijEiEj ,

(4.1)
where Ei = −θ,i is the electric field; θ being the electric potential; ε is the mechanical
strain; C is the fourth-order elastic moduli; d is the third-order tensor of piezoelectricity;
f̄ and d̄ are the fourth-order direct and converse flexoelectric tensor, respectively; k is the
second-order dielectric tensor. Study shows that one material tensor µijkl = d̄iljk − f̄ijkl is
sufficient to describe the overall flexoelectric coefficient, see SHARMA ET AL. (2010). The
equation (4.1) rewrites as

H(εij, Ei, εjk,l, Ei,j) =
1

2
Cijklεijεkl − diklEiεkl − µijklEiεjk,l −

1

2
κijEiEj . (4.2)

The strain and electric displacement from piezoelectricity are

σ̂ij =
∂H
∂εij

; D̂i = − ∂H
∂Ei

. (4.3)

Due to the presence of flexoelectricity, the higher-order stress and electric displacement read

σ̄ijk =
∂H
∂εij,k

; D̄ij = − ∂H
∂Ei,j

. (4.4)

The physical stress and electric displacement are

σij = σ̂ij − σ̄ijk,k = Cijklεkl − dkijEk + µlijkEl,k ;

Di = D̂i − D̄ij,j = diklεkl + κijEj + µijklεjk,l .
(4.5)

The essential and natural electric boundary conditions are

θ = θ̄ on Γθ ;

Dini = −w on ΓD ;

Γθ ∪ ΓD = ∂Ω and Γθ ∩ ΓD = ∅ ,
(4.6)
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where θ̄ and w are the applied electric potential and surface charge density, ∂Ω represents the
boundary of the domain, ni is the unit normal to the boundary ∂Ω. The mechanical boundary
conditions are given as

u = ū on Γu ;

tk = t̄k on Γt ;

Γu ∪ Γt = ∂Ω and Γu ∩ Γt = ∅ ,
(4.7)

where ū and t̄k represent mechanical displacement and traction. The remain boundary con-
ditions (normal derivation of displacement and higher-order tractions) resulted from strain
gradient have been set to zero under the assumptions of homogeneous natural boundary con-
ditions.
Rewrite the equation (4.3) and (4.4) as

∂H = σ̂ij∂εij ;

∂H = σ̄ijk∂εij,k ;

∂H = −D̂i∂Ei ,

(4.8)

and integrate them over the domain Ω gives

H =
1

2

∫
Ω

(
σ̂ijεij + σ̄ijkεij,k − D̂iEi

)
dΩ , (4.9)

whereH is the total electrical enthalpy.
The external work done by the mechanical and electrical forces on the surface is

Wext =

∫
Γt

t̄iuidS −
∫

ΓD

wθdS . (4.10)

Finally, the weak form of mechanical and electrical equilibrium derived from the Hamilton
principle for static problem yields

0 =

∫
Ω

(
σ̂ijδεij + σ̄ijkδεij,k − D̂iδEi

)
dΩ−

∫
Γt

t̄iδuidS −
∫

ΓD

wδθdS . (4.11)

Substitute the equations (4.3), (4.4) and (4.5) into the equation (4.11) yields the final weak
form of the governing equation of linear flexoelectricity:∫

Ω

(Cijklδεijεkl − dkijEkδεij − µlijkElδεij,k − κijδEiEj − diklδEiεkl − µijklδEiεjk,l) dΩ

−
∫

Γt

t̄iδuidS −
∫

ΓD

wδθdS = 0 .

(4.12)

The unknowns (e.g. displacement and electric potential) in the equation (4.12) are approxi-
mated by the Moving Least Square approximation (MLS). The details of MLS are given in
the following section 4.1.2.
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Support nodes

Center node

(a) Schematic illustration of MLS approximation

1

1

-1

Level-set function

Derivation

(b) Level-set function and its derivation cross the
interface

Figure 4.1. (a) Schematic illustration of the MLS approximation, and (b) Level-set
function and its derivation cross the interface.

4.1.2 Moving least square approximation

The MLS approximation within the Element-Free Galerkin scheme is first introduced in BE-
LYTSCHKO ET AL. (1994, 1995). It approximates the unknowns by the neighboring nodes in
its support domain (figure 4.1(a)). To study the flexoelectricity in composite materials, the
level-set technique is integrated into the standard MLS scheme to describe the weak discon-
tinuity between the inclusions and matrix of composite materials. The level-set technique
adds extra enrichments to the nodes, which locate on both sides of the interfaces between the
inclusions and matrix. The extra enrichments are modeled by a level-set function based on
the absolute sign distance function Ψ̄(x). The schematic illustration of the level-set function
and its derivation cross the interface is shown in the figure 4.1(b). The local approximation
of the displacement u and electric potential θ considering the enrichments are

u(x) =
N∑
i=1

Ni(x)ui +
M∑
i=j

Nj(x)Ψ̄(x)uj ;

θ(x) =
N∑
i=1

Ni(x)θi +
M∑
i=j

Nj(x)Ψ̄(x)θj ,

(4.13)

where N(x) are the shape functions at position x, u and θ are the nodal displacements and
electric potential, N and M are the number of support and enriched nodes, respectively. The
shape function Ni(x) associates with node i and a point x reads

Ni(x) = p̄T (x) [A(x)]−1 w̄ (x− xi) p̄(xi) , (4.14)

where p̄(x) is the complete polynomial order:

p̄T (x) =
[
1 x y x2 xy y2

]
. (4.15)
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The quartic spline weight function w̄ ensures a second-order continuity inside an element,
and achieves C1 continuity between elements, see NGUYEN ET AL. (2008).

w̄(r) =

{
1− 6r2 + 8r3 − 3r4 if r ≤ 1
0 if r > 1

, (4.16)

with

r =
‖ xi − x ‖

ds
, (4.17)

ds is the predefined search radius of the support domain and ds sets to 3 times of the nodal
spacing to avoid a singular moment matrixA(x). The moment matrixA(x) has the form

A(x) =
N∑
i=1

w̄(x− xi)p̄(xi)p̄
T (xi) . (4.18)

The enrichment function Ψ̄(x) has the form, see SUKUMAR ET AL. (2001):

Ψ̄(x) = abs(ψ̄(x)); ψ̄(x) = min
i=1,2,...,nc

{
‖ x− xic ‖ −ric

}
, (4.19)

where nc is the total number of inclusions inside the domain, xic is the center coordinate
of the i-th circular inclusion, ric is the radius of the i-th circular inclusion. For simplicity,
the approximations are written in a simplified form (e.g uh = Nuu

estd +NuΨ̄u
eenr). The

derivatives of the unknowns u and θ (in equation (4.13)) contain the standard derivation for
non-enriched nodes (ustd, θstd) and the derivation for enriched nodes (uenr, θenr ):

∂uh = ∂Nuu
estd + ∂NuΨ̄u

eenr +Nu∂Ψ̄ueenr ;

∂∂uh = ∂∂Nuu
estd + ∂∂NuΨ̄u

eenr +Nu∂∂Ψ̄ueenr + 2∂Nu∂Ψ̄ueenr ;

∂θh = ∂Nθθ
estd + ∂NθΨ̄θ

eenr +Nθ∂Ψ̄θeenr ,

(4.20)

with

Bu = ∂Nu =

[ ∂
∂x

0 ∂
∂y

0 ∂
∂y

∂
∂x

]
; (4.21)

Bθ = ∂Nθ =
[
∂
∂x

∂
∂y

]
; (4.22)

Hu = ∂∂Nu =

[
∂2

∂x2
0 ∂2

∂x∂y
∂2

∂x∂y
0 ∂2

∂y2

0 ∂2

∂x∂y
∂2

∂x2
0 ∂2

∂y2
∂2

∂x∂y

]
; (4.23)

Benr
u = ∂NuΨ̄ +Nu∂Ψ̄ ; (4.24)

Benr
θ = ∂NθΨ̄ +Nθ∂Ψ̄ ; (4.25)

Henr
u = ∂∂NuΨ̄ +Nu∂∂Ψ̄ + 2∂Nu∂Ψ̄ . (4.26)
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The details ofBenr
u ,Benr

θ ,Henr
u are listed in the Appendix B. Substitute the equations (4.20)

∼ (4.26) into the equation (4.12), the matrix form of the equilibrium yields[
Kuu Kuθ

KT
uθ Kθθ

]
·
[
u
θ

]
=

[
fu
fθ

]
, (4.27)

with
Kuu =

∑
i

∫
Ωe

(Bu +Benr
u )C(Bu +Benr

u )TdΩe ; (4.28)

Kuθ =
∑
i

∫
Ωe

(
(Bu +Benr

u )e(Bθ +Benr
θ )T + (Hu +Henr

u )µT (Bθ +Benr
θ )T

)
dΩe ;

(4.29)

Kθθ = −
∑
i

∫
Ωe

(Bθ +Benr
θ )κ(Bθ +Benr

θ )TdΩe ; (4.30)

fu =
∑
i

∫
Γte

NT
u tΓdΓte ; (4.31)

fθ = −
∑
i

∫
ΓDe

NT
θ wdΓDe . (4.32)

The employed shape function does not preserve the Kronecker-Delta property, the developed
model uses the Lagrange multiplier method to impose mechanical and electrical boundary
conditions. The material property matrices (in Voigt notation) C, κ, e, µ have the form

C =
Eels

(1 + ν)(1− 2ν)

1− ν ν 0
ν 1− ν 0
0 0 (1

2
− ν)

 ; (4.33)

κ =

[
k11 0
0 k33

]
; (4.34)

dT =

[
0 0 d15

d31 d33 0

]
; (4.35)

µ =

[
µ11 µ12 0 0 0 µ44

0 0 µ44 µ12 µ11 0

]
. (4.36)

4.1.3 Numerical results and discussion
In this section, the developed model validates with benchmark problems: (a) the flexoelec-
tric response of a cantilever beam under mechanical and electrical loading conditions and
(b) flexoelectric response in a mechanically-compressed truncated pyramid. Note that these
problems are free from material discontinuity. The obtained results are validated with an ex-
isting study, see ABDOLLAHI ET AL. (2014). Subsequently, the model coupled with material
discontinuity and local enrichments investigates the flexoelectric response in the composite
structures.
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Table 4.1. Material parameters.

Name Symbol Value
Poisson ratio ν 0.37
Young’s modulus Eels 100 GPa
Piezoelectric constant d31 - 4.4 nC/m2

flexoelectric constant µ12 1 µC/m
dielectric constant κ11; κ33 11 nC/V m; 12.48 nC/V m
electric susceptibility χ̄ 1408

Cantilever beam

Figure 4.2(a) and 4.2(b) show the simulation setups for an open circuit cantilever beam un-
der mechanical loading condition and a close circuit cantilever beam under electrical loading
condition, respectively. The length to thickness ratio L/h of the cantilever beam is 20. Ta-
ble 4.1 reports the material parameters, see GHASEMI ET AL. (2017).

(c)

F

(a) (b)

Figure 4.2. Schematic illustration of the cantilever beam under (a) mechanical load,
(b) electrical load, and (c) MLS discretization with the red solid points
representing the nodes.

Mechanical loading For the case of a cantilever beam under mechanical loading condi-
tion, a point load F = 100µN applies to the upper-right edge of the cantilever beam (figure
4.2(a)). Zero electric potential applies on the right edge. Electromechanical coupling gener-
ates the electrical energy under point-load deformation. The conversion ratio from mechan-
ical to electrical energy (k̄2

eff ) is

k̄2
eff =

Welec

Wmech

=

∫
E · κ · E∫
ε : C : ε

. (4.37)

The present model assumes that the transversal piezoelectric (d = d31) and flexoelectric
(µ = µ12) components are the only non-zero terms in the equations (4.35) and (4.36) for
simplicity. The Poisson effect is also ignored. The results of this simplified model will be
validated with the analytical solution derived in MAJDOUB ET AL. (2008). The analytical
solution for keff is

k̄eff =
χ̄

1 + χ̄

√
κ

Eels
(d2 + 12

(µ
h

)2

) , (4.38)
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(a) Size-dependent effective piezoelectric con-
stant

(b) Electic potential (V)

Figure 4.3. Calculation result: (a) size dependent effective piezoelectric constant,
and (b) electric potential profile for the 2D fully coupled cantilever
beam.

where the normalized piezoelectric constant is

d′ =
k̄eff
k̄piezo

, (4.39)

with k̄piezo obtained by neglecting flexoelectric effect in the equation (4.37).
Figure 4.3(a) plots the comparison between the present model and the analytical solution,
where h′ = −dh/µ is the normalized beam thickness in the open circuit mechanical load-
ing case. The variation between the normalized piezoelectric constant d′ and the normal-
ized thickness h′ from the present model agrees with the analytical solution from the equa-
tion (4.39). It proves that the present model correctly estimates the electromechanical cou-
pling behavior in a non-piezoelectric beam under bending deformation. The flexoelectricity
dominates the conversion between the mechanical and electric energy due to the low piezo-
electric constant of the material (refer to table 4.1). Figure 4.3(b) shows the generated electric
potential profile of the open circuit cantilever beam.

Electrical loading Here investigates the electromechanical coupling of a cantilever beam
(figure 4.2(b)) under pure electric loading condition, serving as an actuator. The setup
enforces an electrical loading of −20V on the bottom edge of the cantilever beam (fig-
ure 4.2(b)), and grounds the top edge. There is no external mechanical loading on the can-
tilever beam. The left side of the cantilever beam is mechanically fixed. Figure 4.4 displays
the induced displacement and electric potential profiles. The electric field across the beam in
the Y-direction is shown in figure 4.5. Figure 4.5 indicates opposite electric field gradients
near the top and bottom of the cantilever beam due to converse flexoelectricity, resulting in
deformation of the cantilever beam. The displacement and electric potential profiles of the
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(a) Displacement in X and Y direction(m) (b) Electic potential (V)

Figure 4.4. Calculation result of a cantilever beam under electric loading condition:
(a) beam displacement, and (b) electric potential profile.
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Figure 4.5. The electric field profile cross the beam in the Y-direction at mid-length
of the beam.

cantilever beam are in good agreement with an existing study based on an IGA analysis, see
GHASEMI ET AL. (2017).

Compressed truncated pyramid

This section further investigates the flexoelectric response of a mechanically compressed
truncated pyramid (figure 4.6). The top edge of the pyramid is grounded, and a uniform
force of −6 µN applies to it. The bottom edge length of the pyramid is 2250 µm, and the
top edge length is 750 µm. The height h of the pyramid is 750 µm. The remaining material
parameters are listed in the table 4.1. Due to the difference in the top (a1) and bottom (a2)
edge lengths of the truncated pyramid, the applied uniform force F leads to different strains
at the top and bottom edges of the truncated pyramid, which results in a strain gradient in
the vertical direction (Y-direction). Figure 4.7 shows the resulted strain in the YY-direction
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F

a2

a1

(a) (b)

h

Figure 4.6. Schematic illustration of (a) truncated pyramid and its boundary condi-
tions, and (b) MLS discretization with the red solid points representing
the nodes.

(a) Strain profile in YY-direction (b) Electic potential (V)

Figure 4.7. Calculation result of the compressed truncated pyramid: (a) strain pro-
file in the Y-direction, and (b) electric field profile.

and the induced electric potential profiles. The resulting strain and electric potential agree
well with a previous report in terms of numerical value and contour, see GHASEMI ET AL.
(2017).

Flexoelectricity in composite

This section demonstrates the possibility of inducing electric polarization in composite sys-
tems without the piezoelectric effect. A non-piezoelectric composite system consists of an
embedding matrix (square shape) and an inclusion (circular shape) is shown in the figure 4.8.
The edge length of the square domain is L = 10 µm with the center inclusion has a radius
r1 = 1.5 µm. The bottom edge of the matrix is grounded and a compressive force applies
to its top edge. The dielectric constant of the inclusion is 10% as that of the matrix. It as-
sumes that Young’s modulus of the matrix material (Emat) is lower than that of the inclusion
material (Einc). Three different Young’s modulus ratios ( Einc

Emat
= 10, 100, 1000) are used to
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(a) (b)
F

Figure 4.8. Schematic illustration of (a) square domain with center inclusion and
the boundary conditions, and (b) MLS discretization with the red solid
points representing the nodes and blue asterisks representing the en-
riched nodes.

investigate its influence on the energy transfer ratio between mechanical energy and electri-
cal energy. The remaining parameters (table 4.1) for both components are identical. Here
assumes that under a mechanical load, electrical polarization will arise in the composite from
flexoelectricity due to the local strain gradients near the inclusion boundary.

Figure 4.9 presents the strain and electric potential profile of the mechanically compressed
composite. As assumed, the non-uniform strain field near the inclusion boundary generates
a strong strain gradient field. Figure 4.10 plots the strain gradient profiles εyy,y and εxx,x
along the horizontal and vertical centerlines of the square domain. In both directions, a high
strain gradient is seen near the inclusion boundary due to the different material toughness
(Young’s modulus) of the matrix and the inclusion. Since the piezoelectric coefficients of
the matrix and the inclusion are set to zero, the induced electrical potential rises only from
flexoelectricity. More specifically, the linear relationship between the electrical potential
and the strain gradient described by flexoelectricity is responsible for the strong electrical
potential near the inclusion boundary, where strong strain gradient fields locate, as seen from
figure 4.9(b).
Studies on composites indicated that the volume ratio of the inclusions has a significant im-
pact on the overall properties of the composites, see HE ET AL. (2016); ZHANG ET AL.
(2016); WAN ET AL. (2017); RAY (2018). To further investigate the effect of the varying
volume ratio on the flexoelectric response in composites, here conducts simulations with dif-
ferent inclusion area ratios (in 2D) under the same loading condition. The area ratio of the
inclusions varies from 0.5∼ 2.5%. The area ratio is defined as the total area of the inclusions
divides the area of square domain. For each area ratio, simulations with varying location of
inclusions are conducted to avoid uncertainty, hereafter, the averaged result (energy conver-
sion ratio calculated from equation (4.37)) from all simulations is taken for further analysis.
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Note that, to insert multiple inclusions, the radius of the inclusion decreases to 0.4 µm. Fig-
ure 4.11(a) shows the electric potential of a domain with 10 randomly-distributed inclusions.
It shows that the non-uniform strain fields near the inclusion boundary induce high electric
potential. Furthermore, enhanced electric potentials are noted in the region between nearby
inclusions. It corresponds to the interaction of the non-uniform strain fields around the neigh-
boring inclusions. Figure 4.11(b) plots the energy conversion ratio versus the inclusion area
ratio. It shows that the energy conversion ratio increases with the inclusion area ratio. It is
explained by the rising strain irregularity (higher strain gradient) inside the composite with
the increasing inclusion area ratio, thus a stronger flexoelectric response. Figure 4.11(b) also
indicates that composites with an identical inclusion area ratio but a higher Einc

Emat
induce a

stronger mechanical to electrical energy conversion. It suggests that a softer matrix material
enhances the electromechanical response of flexoelectric composites.

(a) Strain profile in YY direction (b) Induced electric potential (V)

Figure 4.9. Calculation result of the square composite under compression: (a) strain
profile in the YY direction, and (b) induced electric potential.
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Figure 4.10. Strain gradient profiles along the horizontal center line (εyy,y) and ver-
tical center line (εxx,x).

(a) Electric potential profile with ten inclusions (area
ratio = 5.0%)

(b) Energy conversion ratio calculated by equa-
tion (4.37) vs inclusion area ratio

Figure 4.11. Calculation result of a compressed square composite with randomly dis-
tributed inclusions: (a) electric potential profile, and (b) energy conver-
sion ratio.

4.2 Mixed finite element model for flexoelectric composites

In the previous section 4.1, a Meshless model was developed to study flexoelectricity in 2D
structures assuming small strains and static loading conditions. In this section, a 3D nonlin-
ear mixed finite element model (NMFEM) considering geometric nonlinearity, strain gradi-
ent elasticity, static and dynamic loading conditions is developed to study flexoelectricity in
3D structures.
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4.2.1 Mixed finite element formulation for the nonlinear flexoelectricity

This section presents the mixed finite element formulation considering geometric nonlinear-
ity of flexoelectricity. The formulation adopts the Saint Venant−Kirchhoff material model.
Hence the internal strain energy density of a flexoelectric structure follows, see SHEN & HU

(2010),

Uflexo =
1

2
S : G+

1

2
τ̃

...η̃ − 1

2
D · E , (4.40)

where S is the second Piola-Kirchhoff stress tensor, G is the second-order Green-Lagrange
strain tensor, τ̃ is the third order double stress tensor and η̃ is the gradient of the Green-
Lagrange strain tensor in terms of the displacement gradient ψ, where the second-order
tensor ψ = ∇u. D is the first order electric displacement vector, E is the first order electric
field vector. The total potential energy Π of a flexoelectric structure, including the boundary
conditions and the Lagrange multipliers for ensuring C1 continuity is

Π =

∫
Ω

UflexodΩ−
∫

Γu

u · t dΓu −
∫

Ω

u · b dΩ

+

∫
Γθ

θq dΓθ +

∫
Ω

λ : (ψ −∇u)dΩ

, (4.41)

where u and θ are mechanical displacement and electric potential, respectively. t is the
surface traction, b is the body force and q is the surface charge density. λ is the Lagrange
multiplier to enforce the kinematic constraint between gradient of displacement and ψ. The
Neumann boundary for the mechanical displacement and electric potential denote as Γu and
Γθ, respectively. The first variation of the total potential energy Π gives

δΠ =

∫
Ω

S : δGdΩ +

∫
Ω

τ̃
...δη̃dΩ−

∫
Ω

D · δEdΩ

−
∫

Γu

δu · tdΓu −
∫

Ω

δu · bdΩ +

∫
Γθ

δθ q dΓθ

+

∫
Ω

λ : (δψ −∇δu)dΩ +

∫
Ω

(ψ −∇u) : δλdΩ = 0

. (4.42)

All components in the equation (4.42) are linearized as follows

L[δΠ] = δΠ̄ + DδΠ ·∆u
= δΠ̄ + ∆(δΠ) ,

(4.43)

where L is the linearization operator. Here presents the details of the linearization procedure
of the components in the equation (4.42):

L

[∫
Ω

S : δGdΩ

]
=

∫
Ω

S̄ : δḠdΩ +

∫
Ω

∆(S : δG)dΩ , (4.44)
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Displacement

Electric 
potential

Displacement 
gradient

Lagranian 
multiplier

Displacement

Figure 4.12. Schematic illustration of the H27 element, this element has 27 nodes in-
cludes 8 corner nodes equipped with displacement u (blue rectangles),
electric potential θ (red triangles), displacement gradient ψ (red trian-
gles) and Lagrange multiplier λ (red triangles) DOFs; the remain 19
nodes (blue rectangles) only hold displacement u DOFs.

∫
Ω

∆(S : δG)dΩ =

∫
Ω

S : ∆(δG)dΩ +

∫
Ω

δG : ∆SdΩ

=

∫
Ω

S : ∆(δG)dΩ +

∫
Ω

δG : C : ∆GdΩ−
∫

Ω

δG : d ·∆EdΩ

=

∫
Ω

S : [(∇0δu)T (∇0(∆u))]dΩ +

∫
Ω

δG : C : ∆GdΩ

−
∫

Ω

δG : d ·∆EdΩ

,

(4.45)

where,

G =
1

2
(ui,j + uj,i + uk,iuk,j) ,

δG =
1

2
(δui,j + δuj,i + δuk,iuk,j + uk,iδuk,j) ,

∆δG =
1

2
(δuk,i∆uk,j + ∆uk,iδuk,j) ,

S = C : G− d · E ,

∆S = C : ∆G− d ·∆E ;

(4.46)

L

[∫
Ω

τ̃
...δη̃dΩ

]
=

∫
Ω

¯̃τ
...δ¯̃ηdΩ +

∫
Ω

∆(τ̃
...δη̃)dΩ , (4.47)
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∫
Ω

∆(τ̃
...δη̃)dΩ =

∫
Ω

τ̃
...∆(δη̃)dΩ +

∫
Ω

δη̃
...∆τ̃dΩ

=

∫
Ω

τ̃
...∆(δη̃)dΩ−

∫
Ω

δη̃
...µ ·∆EdΩ + δη̃

...g
...∆η̃dΩ

=

∫
Ω

τ̃
...[(δψ)(∇0∆ψ) + (∆ψ)(∇0δψ)]dΩ

−
∫

Ω

δη̃
...µ ·∆EdΩ

∫
Ω

+δη̃
...g

...∆η̃dΩ

, (4.48)

where,

η̃ =
1

2
(ψij,k + ψji,k + ψmjψmi,k + ψmj,kψmi) ,

δη̃ =
1

2
(δψij,k + δψji,k + δψmjψmi,k + ψmjδψmi,k + δψmj,kψmi + ψmj,kδψmi) ,

∆δη̃ =
1

2
(δψmj∆ψmi,k + ∆ψmjδψmi,k + δψmj,k∆ψmi + ∆ψmj,kδψmi) ,

= δψmj∆ψmi,k + ∆ψmjδψmi,k ,

τ̃ = −µ · E + g
...η̃ ;

(4.49)

L

[∫
Ω

D · δEdΩ

]
=

∫
Ω

D̄ · δĒdΩ +

∫
Ω

∆(D · δE)dΩ , (4.50)∫
Ω

∆(D · δE)dΩ =

∫
Ω

D ·∆δEdΩ +

∫
Ω

∆D · δEdΩ

=

∫
Ω

δE · d : ∆GdΩ +

∫
Ω

δE · µ...∆η̃dΩ +

∫
Ω

δE · κ ·∆EdΩ

, (4.51)

where,

D = d : G+ µ
...η̃ + κ · E ,

∆D = d : ∆G+ µ
...∆η̃ + κ ·∆E ,

Ei = −θ,i ,
δEi = −δθ,i ,

∆δEi = 0 ;

(4.52)

L

[∫
Ω

λ : (δψ −∇δu)dΩ

]
=

∫
Ω

λ̄ : (δψ̄ −∇δū)dΩ+∫
Ω

∆λ : (δψ −∇δu)dΩ

; (4.53)

L

[∫
Ω

(ψ −∇u) : δλdΩ

]
=

∫
Ω

(ψ̄ −∇ū) : δλ̄dΩ+∫
Ω

(∆ψ −∇∆u) : δλddΩ

. (4.54)
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The algebraic form of equations (4.44),(4.47),(4.50),(4.53) and (4.54) are written as follows

L

[∫
Ω

S : δGdΩ

]
= δu

(∫
Ω

BT R̂dΩ

)
+ δu

(∫
Ω

HT
1 RH1dΩ

)
∆u

+ δu

(∫
Ω

BTC BdΩ

)
∆u+ δu

(∫
Ω

BTd BθdΩ

)
∆θ

; (4.55)

L

[∫
Ω

τ̃
...δη̃dΩ

]
= δψ

(∫
Ω

HT
DR̂DdΩ

)
+ δψ

(∫
Ω

N lTRT
DH2dΩ

)
∆ψ

+ δψ

(∫
Ω

HT
Dµ

TBθdΩ

)
∆θ + δψ

(∫
Ω

HT
2 RDN

ldΩ

)
∆ψ

+ δψ

(∫
Ω

HT
DgHDdΩ

)
∆ψ

; (4.56)

L

[∫
Ω

D · δEdΩ

]
= −δθ

∫
Ω

BT
θ D̂dΩ − δθ

(∫
Ω

BT
θ dBdΩ

)
∆u

− δθ
(∫

Ω

BT
θµHDdΩ

)
∆ψ + δθ

(∫
Ω

BT
θ κBθdΩ

)
∆θ

; (4.57)

L

[∫
Ω

λ : (δψ −∇δu)dΩ

]
= δψ

∫
Ω

N lT λ̄dΩ− δu
∫

Ω

BT
ψuλ̄dΩ+

δψ

(∫
Ω

N lTN ldΩ

)
∆λ− δu

(∫
Ω

BT
ψuN

ldΩ

)
∆λ

;

(4.58)

L

[∫
Ω

(ψ −∇u) : δλdΩ

]
= δλ

∫
Ω

N lT ψ̄dΩ− δλ
∫

Ω

N lT∇ūdΩ

+ δλ

(∫
Ω

N lTN ldΩ

)
∆ψ + δλ

(∫
Ω

N lTBψudΩ

)
∆u

.

(4.59)

The final algebraic form of the equation (4.43) can be written in a matrix form as

K∆U = Fext − Fint . (4.60)

In the matrix form, only the mechanical Newmann boundary condition is imposed
Kuu 0 Kuθ Kuλ

0 Kψψ Kψθ Kψλ

Kθu Kθψ Kθθ 0
Kλu Kλψ 0 0




∆u
∆ψ
∆θ
∆λ

 =


F uext

0
0
0

−

F uint
Fψint
F θint
F λint

 , (4.61)
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where

Kuu =

∫
Ω

BTCBdΩ +

∫
Ω

HT
1 RH1dΩ ,

Kψψ =

∫
Ω

N lTRT
DH2dΩ +

∫
Ω

HT
2 RDN

ldΩ +

∫
Ω

HT
DgHDdΩ ,

Kθθ = −
∫

Ω

BT
θ κBθdΩ ,

Kψθ =

∫
Ω

HT
Dµ

TBθdΩ = KT
θψ ,

Kuθ =

∫
Ω

BTdBθdΩ = KT
θu ,

Kuλ =

∫
Ω

BT
ψuN

ldΩ = KT
λu ,

Kψλ =

∫
Ω

N lTN ldΩ = KT
λψ ,

F uext =

∫
Γ

tNdΓ ,

F uint =

∫
Ω

BT R̂dΩ +

∫
Ω

Bψu
T λ̄dΩ ,

Fψint =

∫
Ω

HT
DR̂DdΩ +

∫
Ω

N lT λ̄dΩ ,

F θint =

∫
Ω

N lT λ̄dΩ ,

F λint =

∫
Ω

N lT ψ̄dΩ−
∫

Ω

N lT∇ūdΩ .

(4.62)

The details of the components in the equation (4.62) are presented in the Appendix C. The
material matrices C, d, κ, µ and g correspond to the elastic stiffness matrix, piezoelectric
coupling matrix, dielectric permittivity matrix, flexoelectric coefficient matrix and tangent
non-local elastic tensor, respectively. In this study, the NMFEM develops a H27 element
(figure 4.12) for discretization. This element has in total 233 degrees-of-freedom (DOFs),
including 3 displacement DOFs (u) in each node, 9 Lagrange multiplier DOFs (λ) per corner
node (8 corner nodes), 9 displacement gradient DOFs (ψ) per corner node and 1 electric po-
tential DOF (θ) per corner node. The developed NMFEM utilizes a quadratic shape function
for interpolating the displacement DOFs. Linear shape function is employed to interpolate
the Lagrange multiplier DOFs, displacement gradient DOFs, and electric potential DOF. For
the numerical integration, 27 Gaussian points per element are used to obtain the stiffness
matrix and residual vector.

4.2.2 Numerical results and discussion
In this section, the developed NMFEM first validates with an analytical model. Subsequently,
the NMFEM investigates the influence of the geometric nonlinearity on flexoelectricity and
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the underlying mechanism of flexoelectricity in composite structures under the influence of
different material properties and structure configurations between the inclusions and matrix.
The subsequent subsection proposes a cantilever flexoelectric composite beam for energy
harvester application and the last subsection presents a topology optimization study for flex-
oelectricity in cylinder/cone-shaped devices.

Model validation

r2
r1

V

u2
u1 X

Y

r

(a) Schematic illustration of the analytical set-up (b) Mesh configuration of a quarter of the struc-
ture as in the analytical set-up

Figure 4.13. (a) Schematic illustration of the analytical set-up, the inner surface sub-
jects to a displacement load u1 = 0.045 µm and the displacement load
u2 = 0.05 µm is applied to the outer surface; The outer surface also
subjects to electric potential equals to 1V whereas the inner surface is
grounded. The inner radius r1 = 10µm and outer radius r2 = 20µm;
(b) The mesh configuration of a quarter of the structure as in the analyt-
ical set-up.

In this subsection, the developed NMFEM validates with an analytical solution presented
in MAO ET AL. (2016). The analytical model’s set-up is illustrated in figure 4.13(a). As
shown in figure 4.13(a), a hollow cylinder subjects to a deformation load and a electric
potential difference. The hollow cylinder’s inner surface subjects to a radial displacement
of u1 = 0.045 µm and zero electric potential (grounded). The outer surface subjects to a
radial displacement of u2 = 0.05 µm and the electrical potential of 1V. The hollow cylinder
has an inner radius r1 = 10 µm and outer radius r2 = 20 µm. Literature studies, see MAO

ET AL. (2016); DENG ET AL. (2017), presented the analytical solution for the displacement
and electric potential of this problem as follows

ur(r) = C1r +
C2

r
+ C3I1(

r

l0
) + C4K1(

r

l0
) , (4.63)
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and

θ(r) = C5lnr + C6 +
f

κ

(
∂ur(r)

r
+
ur(r)

r

)
, (4.64)

where constants C1 to C6 are determined by the given boundary condition. f = µ11 + 2µ12.
The I1 and K1 are the first-order modified Bessel functions of the first and second kind. The
r represents the location, where the displacement and electric potential are calculated. The
length scale l0 of this problem derives from

l20 = l2 +
f 2

(λ+ µ)κ
, (4.65)

where λ and µ are the first and second Lamé-constant, respectively.
With the following boundary conditions:

ur(r = r1) = u1; ur(r = r2) = u2;

ψ(r = r1) = 0 V; ψ(r = r2) = 1 V;

τ̃(r = r1) = τ̃(r = r2) = 0 ,

(4.66)

and the material parameters in table 4.2, the constants C1 to C6 from the equation (4.63)
and equation (4.64) are determined as 0.0018069, 0.28063 µm2, -6.7032 × 10−8 µm, -
0.267117µm, 4.0166 V and 33.8698 V, respectively.
Due to the center-symmetrical set-up in the analytical model, it is sufficient to only construct
a quarter of the hollow cylinder structure (the upper right quarter in figure 4.13(a)) with the
NMFEM to replicate the analytical problem. This simplification imposes extra boundary
conditions in the NMFEM on surfaces A and B, as shown in figure 4.13(b). The loading
conditions and material constants are identical to the analytical setup.

Table 4.2. Material parameters.

Name Symbol Value
Poisson ratio ν 0.3
Young’s modulus E 139 GPa
Piezoelectric constant e31 0 nC/m2

flexoelectric constant µ12; µ11 1 µC/m
dielectric constant κ11; κ33 1 nC/V m
electric susceptibility χ 1408
length scale l 2 µm

Figure 4.14 shows the radial displacement profile and electric potential profile from the
NMFEM. For validation, the values of radial displacement and electric potential along the
marked line in the figure 4.13(b) are extracted and compared with the analytical solution
(equation (4.63) and equation (4.64)). The comparison shown in the figure 4.15 demonstrates
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(a) displacement profile (m) (b) electric potential profile (V)

Figure 4.14. (a) radius displacement (m) distribution profile, and (b) electric poten-
tial (V) profile from the NMFEM model with strain gradient elasticity.

an excellent agreement between the NMFEM and the analytical solution, which validates the
proposed NMFEM. It’s also worth noting that the NMFEM captures the non-linear voltage
profile (shown in figure 4.15(b)) caused by the consideration of the strain gradient elastic-
ity in the equation (4.48). Existing study shows that the significance of the strain gradient
elasticity on the behavior of an electromechanical structure at a small length scale, where
the flexoelectric effect is predominant, see MAO ET AL. (2016). The NMFEM successfully
predicts the electromechanical response of the analytical setup under the influence of strain
gradient elasticity.

Nonlinear flexoelectricity under static and dynamic loading conditions

Nonlinear flexoelectricity under static loading condition Here studies the influence of
the geometric nonlinearity on flexoelectricity under static loading condition. The geometric
nonlinearity is due to the consideration of higher-order terms in the Green-Lagrange strain
tensor G (equation (4.46)), which is ignored in the linear model. Here employs cantilever
beams (figure 4.16) under bending load to investigate the influence of geometric nonlinearity
on flexoelectricity. The cantilever beams subject to a line load at their free end. Their
left-ends are mechanically fixed, and the right-ends are grounded to mimic an open circuit
setup. And the beams have an aspect ratio of 100 × 10 × 10. Two sets of beam depths
(d = 10 µm and d = 5 µm) are adopted for both linear and nonlinear cases. The applied
material constants are listed in table 4.2. A ramp loading scheme for 30 loading steps with
an incremental line load F = 30 N/m is applied. The Newton-Raphson method obtains the
converged solution by minimizing the residual in each loading step. The maximum output
voltage and the beam displacement for each loading step are noted.
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Figure 4.15. Comparison between the analytical solution and NMFEM. (a) displace-
ment comparison, the insertion is the relative error of displacement be-
tween the NMFEM result and analytical solution in the unit of 10−10 m;
(b) electric potential comparison, the insertion is the relative error of
electric potential between the NMFEM result and analytical solution in
the unit of 10−2 Volt.

Figure 4.16. Schematic illustration of a cantilever beam and its boundary conditions.
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The maximum output voltages and displacements of the cantilever beams at each load step
are plotted in figure 4.17. The subplots in figure 4.17 indicate that the linear model agrees
with the nonlinear model only for the first few loading steps. After that, the discrepancies
between the linear and nonlinear models increase with the loading step. For instance, at step
30, the discrepancy between the linear model and nonlinear model in terms of the maximum
displacement and output voltage of the beam with depth d = 5 µm reaches 2.61 × 10−5/ −
1.1 × 10−5 = 237% and 44.1/29.5 = 149%, respectively, which suggests that the linear
model severely overestimated the electromechanical response of the flexoelectric cantilever
beam compared to the nonlinear model. A nonlinear Meshless model for flexoelectricity
also reported the same discrepancy due to the geometric nonlinearity, see ZHUANG ET AL.
(2020). Furthermore, figure 4.17 also observes a size-dependent effect. Namely, at each
loading step, the discrepancy in terms of displacement and electrical potential between the
linear and nonlinear models of the beam with height d = 5 µm is always larger than that
of the beam with height d = 10 µm. For instance, at step 30, the maximum displacement
discrepancy between the linear model and nonlinear model of the beam with depth d = 5 µm
(figure 4.17(a)) is about 2.37/1.66 = 1.5 times higher than that of the 10 µm deep beam
(figure 4.17(c)). Similar trend (at step 30, 1.49/1.27 = 1.16) is also observed in the electric
voltage output plot (figure 4.17(b) vs figure 4.17(d)). This size-dependent behavior suggests
that the flexoelectric effect is more vulnerable to the geometric nonlinearity at a smaller
length scale. Considering this behavior, it is necessary to employ the nonlinear model for
analyzing any given flexoelectric structure at the nanoscale or even at the microscale.

Figure 4.18 shows the electric voltage distribution in the deformed beam with depth d = 5
µm at loading step 1, 15 and 30. It demonstrates that the proposed NMFEM captures the full
nonlinear region with excellent stability.

Nonlinear flexoelectricity under dynamic loading condition Here further investigates
the influence of the geometric nonlinearity on flexoelectricity under dynamic loading
conditions. For this purpose, the mass and acceleration terms are included in the equation
(4.60) to accommodate the dynamic behavior.

Mü+Cu̇+K∆U = F − Fint , (4.67)

where the consistent mass matrix and matrix C have the form:

M =

∫
Ω

N tρNdΩ and C = αM + βKuu , (4.68)

and ρ = 6000 kg/m3 is the material density, α and β are constants of proportionality, which
are as described in DENG ET AL. (2014); CLOUGH ET AL. (1977). The ü and u̇ are nodal
accelerations and velocities, respectively. The excitation force F = f sin(ω t), and f in-
dicates nodal excitation amplitude and ω is the excitation frequency. The time-dependent
nonlinear equations are solved by the Newmark-Beta method, see NEWMARK (1959).
Here chooses a cantilever slab to study the influence of the geometric nonlinearity on flexo-
electricity under dynamic loading condition. The insertion in figure 4.19 shows that the slab
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(a) maximum displacement vs loading step (beam
depth d = 5 µm)

(b) maximum output voltage vs loading step (beam
depth d = 5 µm)

(c) maximum displacement vs loading step (beam
depth d = 10 µm)

(d) maximum output voltage vs loading step (beam
depth d = 10 µm)

Figure 4.17. Maximum displacement and output voltage of the cantilever beams
from the linear and nonlinear model. (a) and (b) show the maximum
displacement and output voltage of a cantilever beam with depth d =
5 µm, respectively; (c) and (d) show the maximum displacement and
output voltage of a cantilever beam with depth d = 10 µm, respectively.
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(a) step 1

(b) step 15

(c) step 30

Figure 4.18. Electric potential profile of the deformed beam with depth d = 5 µm at
(a) step 1; (b) step 15; (c) step 30.
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is fixed at the left end, and a line load applies on the right end. The dimension of the slab is
100 × 10 × 1 with the depth of the slab equals 1 µm. The material constants are the same as
in table 4.2. A sinusoidal loading function imposes on the free edge of the slab, which has
the form: F = f sin(ω t), where f is the loading amplitude, ω is the excitation frequency in
the unit of rad/s and t is the time in s. The linear and nonlinear models’ loading amplitude
ranges from 0.002 N/m to 0.01 N/m and from 0.002 N/m to 0.05 N/m, respectively. The slab
subjects to 30 loading cycles, which has loading amplitude equals to each cycle’s maximum
or minimum and the excitation frequencies range between 250000 Hz and 600000 Hz.
Figure 4.19 presents the maximum output voltage versus the given loading frequency under
different loading amplitudes for both linear and nonlinear models. As shown by the solid
lines in the figure 4.19, the linear model determines the maximum output voltage response to
be localized and symmetric to the natural frequency and reaches its maximum when the load-
ing frequency equals the nature resonant frequency of the slab. Figure 4.19 also shows that
the symmetric voltage response is independent of the excitation amplitudes (f = 0.002 N/m,
f = 0.005 N/m and f = 0.01 N/m). Another linear analytical model proposed in DENG ET AL.
(2014) studies flexoelectric effect under dynamic loading condition also reported that the
voltage response remains symmetric regardless of the excitation amplitude. In contrast to
the linear model, the maximum output voltage response from the nonlinear model tends to
behave more asymmetrically as the excitation amplitude increases. The nonlinear effect is
negligible for small excitation amplitudes (f= 0.002 N/m and f = 0.005 N/m), which yields
the same voltage response profile as the linear model. As the excitation amplitude increases
(from f = 0.005 N/m to f = 0.05 N/m), the asymmetrical behavior of the voltage response
rises. The asymmetric voltage response of the nonlinear model indicates the structural soft-
ening of the cantilever slab via the consideration of higher-order terms in the equation (4.46).
It indicates that the profile of the output voltage versus excitation frequency depends on the
force amplitude. Besides, if the flexoelectric structure subjects to higher force amplitudes
such that the structure is geometrically nonlinear, then the response bandwidth is broader
than it at lower force amplitudes.
Figure 4.20 shows the maximum voltage response of the cantilever slab with different damp-
ing ratios ξ = 0.01, 0.15, and 0.3 under the same sinusoidal loading condition, which has a
force amplitude f = 0.05 N/m. The voltage output decreases with the increase of damping
ratio, which is expected since the damping effect diminishes the dynamic response of the
structure.

Flexoelectricity in composite material

This subsection first explores the mechanism of flexoelectricity in a composite with a single
inclusion inside the matrix (shown in figure 4.21(a)). Follows by the investigation of flexo-
electricity in composites with different setups in terms of varying volume ratios and material
parameters of the inclusions.

Mechanisum of flexoelectricity in composite material Figure 4.21(a) shows the setup
for studying the mechanism of flexoelectricity in a composite, consisting of a square matrix
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Figure 4.19. Maximum output voltage versus loading frequency under different load-
ing amplitudes, ranging from f = 0.002 N/m to f = 0.01 N/m and from
f = 0.002 N/m to f = 0.05 N/m for linear and nonlinear model, respec-
tively. The dot plots present the results from the nonlinear model. The
solid lines present the results from the linear model. The schematic il-
lustration of the cantilever slab with its boundary conditions are also
presented.
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Figure 4.20. Maximum output voltage versus loading frequency under loading am-
plitude f = 0.05 N/m for nonlinear model with different structural damp-
ing ratios: ξ = 0.01, ξ = 0.15 and ξ = 0.30.
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material M1 and an inclusion M2 located at the center. The height of the matrix is 10 µm,
and the inclusion radius is 2 µm. The upper surface of the matrix M1 subjects to a com-
pression force with a magnitude of 1 µN, whereas its lower surface is fixed and grounded
(zero electric potential). The material constants of M1 are taken from table 4.2 with the
flexoelectric coefficients set to zero serving as a conductive material, which is the standard
procedure in practice for composite energy harvester, see CIOFANI & MENCIASSI (2012);
GULLAPALLI ET AL. (2010). The Young’s modulus of M2 is four times higher than that of
M1, and other material constants of M2 are taken from the table 4.2. Figure 4.21(b) shows
the composite material’s mesh configuration with a total of 3644 H27 elements, including
428 H27 elements for the inclusion M2.

M1
M2

Force

Lr

X
Y

(a) schematic illustration of the composite with a sin-
gle inclusion

(b) mesh configuration

Figure 4.21. (a) Schematic illustration of the composite with a single inclusion lo-
cated in the center of the matrix. The matrix denotes as M1 and the
inclusion as M2, and (b) Mesh configuration of the composite material.

As shown in figure 4.22(a), under compression, the difference in Young’s modulus between
the matrix M1 and inclusion M2 results an non-uniform strain (εxy) profile inside the com-
posite material, especially near the interface region between the matrix and inclusion. Due
to a significant range difference in strain and electric potential value, figure 4.22 presents the
contour plots for inclusion and matrix separately for a clear representation. The non-uniform
strain distribution (figure 4.22(a)) of the inclusion indicates the existence of strain gradient in
the X and Y-direction, which induces electric potential through flexoelectricity. The electric
potential distribution in the figure 4.22(b) confirms the existence of flexoelectric response
in the composite. To further investigate the composite’s flexoelectric response, the electric
potential along the centerline in the Y-direction is presented in the figure 4.23. It shows a
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(a) strain εxy distribution of the matrix M1 (left) and inclusion M2 (right)

(b) electric potential distribution of the matrix M1 (left) and inclusion M2 (right)

Figure 4.22. (a) strain εxy distribution of the matrix M1 and inclusion M2, and (b)
electric potential (V) of the matrix M1 and inclusion M2

significant difference between the matrix and inclusion in terms of electric potential distribu-
tion, as the matrix sets to be non-flexoelectric. The flexoelectric inclusion produces electric
potential due to the non-uniform strain field, while the matrix serves only as a conductive ma-
terial. Figure 4.23 shows that the highest electric potential locates near the interface region,
where the strain gradient is maximum. It also indicates that the electric potential generated
by the inclusion permeates into the matrix domain with a significant decrease in magnitude.
The non-symmetric electric potential distribution in the Y-direction across the domain shown
in figure 4.23 is due to the applied electric boundary condition (zero electric potential on the
lower surface as shown in figure 4.21(a)).

The presented composite model with a single inclusion demonstrates the underlying mech-
anism of flexoelectricity in composite material. The magnitude of the generated electric
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Figure 4.23. Electric potential profile along the centerline of the composite in the
Y-direction.

potential decreases rapidly in the matrix as the distance from the inclusion increases, sug-
gesting that the inclusion needs to be placed close to the electrode (generally locates on the
surface) in an energy harvester device for obtaining the maximum electric potential.

Flexoelectricity in composite with multiple inclusions This subsection further explores
the influence of the setups of composite in terms of inclusion volume ratio Vratio and relative
Young’s modulus Erel on the overall electromechanical behavior of the composites. Vratio

equals the volume of inclusions Vinc over the total volume Vtot. Erel is the ratio between the
Young’s modulus of inclusion Einc and the matrix Emat. For this purpose, here constructs
composites with Vinc and Erel ranging from 1%, 3%, 5%, 7%, 10% to 15% and from 2,
3 to 4, respectively. The remaining material parameters and the boundary conditions are
identical to the model in the previous subsection. The schematic illustration of a setup is
shown in figure 4.24(a). It indicates that the geometrical configuration of a setup with a fixed
Vratio and Erel can vary with the size and location of each individual inclusion since only
the total volume of inclusions is controlled with Vratio, this imposes an uncertainty in the
setup. To further investigate this topological uncertainty, here constructs ten examples with
the same setup of Vratio = 5% and Erel = 3 but different inclusion locations and dimensions
(radius). All ten examples subject to the same boundary conditions as shown in the figure
4.24(a) with force F = 1 µN. To quantify this topological uncertainty, here employs the well
known effective electromechanical coupling factor k̄eff as the reference measurement, see
MAJDOUB ET AL. (2008). The definition of k̄eff is

k̄2
eff =

∫
E · κ · EdΩ∫
ε : C : εdΩ

, (4.69)

where E is the electric field vector, κ is the second order dielectric tensor, ε is the strain
tensor and C is the elastic constant matrix.
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M1

Force
M2 L

X
Y

(a) schematic illustration of composite with multiple
inclusions

(b) mesh configuration

Figure 4.24. (a) Schematic illustration of a composite with multiple inclusions. The
matrix denotes as M1 (light blue) and the inclusions as M2 (dark blue),
and (b) Mesh configuration of the composite.

Figure 4.25 shows the convergence study of the ten samples in terms of the effective
electromechanical coupling factor k̄cieff (the superscript c denotes convergence). The con-
verged value of Kci

eff of the i-th sample is k̄c1eff = k̄1
eff ; k̄c2eff =

(
k̄c1eff + k̄2

eff

)
/2; . . . ;

k̄cieff =
(
k̄c1eff + k̄c2eff + · · ·+ k̄ieff

)
/i, where k̄ieff is the calculated effective electromechani-

cal coupling factor from the equation (4.69) of the i-th sample. Figure 4.25 demonstrates that
minimum five samples are required to achieve convergence for the given setup Vratio = 5%
and Erel = 3. Considering this, at least five samples are constructed for each setup to ensure
convergence, and the averaged value of the effective electromechanical coupling factors k̄eff
of each setup is taken for further analysis. Figure 4.26 shows the normalized effective elec-
tromechanical coupling factor Kn

eff (the superscript n denotes normalized) of each setup.
The values Kn

effs derive from an normalization procedure against the effective electrome-
chanical coupling factor k̄eff of a reference setup Vratio = 1% and Erel = 2. Figure 4.26
reveals two trends: (a) the increase of inclusion volume ratio results in higher electromechan-
ical coupling of the flexoelectric composites. It is explained by the increase of non-uniform
strain fields due to the randomly located inclusions, enabling a stronger flexoelectric effect.
Figure 4.27(a) demonstrates the highly irregular strain field due to the inclusions, especially
near the interface regions. Additionally, it observes a linkage effect, which represents an
enhancement of the electric potential between an inclusion and its neighboring inclusions;
(b) softer matrix material generates a stronger electromechanical coupling. It is clear that for
a fixed inclusion volume ratio, the setup with a higher Erel results in a higher normalized ef-
fective electromechanical coupling factor k̄eff . For instance, at 15% inclusion volume ratio,
the setup withErel = 4 shows 30 % enhancement in the normalized effective electromechan-
ical coupling factor k̄eff compared to the setup with Erel = 2. Under the identical loading
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condition, the larger structural deformation of a softer matrix contributes to the enhancement
of strain gradient, thus leads to a stronger electromechanical coupling from flexoelectricity.
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Figure 4.25. Convergence study of a setup Vratio = 5% and Erel = 3 with ten
samples.
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Figure 4.26. The normalized effective electromechanical coupling factor Kn
eff for

different setup of Vratio and Erel values.

A composite flexoelectric device

The previous subsection reveals two essential phenomena of flexoelectricity in composite
structure: (1) high electric potential generated near the interface between the inclusions and
matrix; (2) softer matrix material results in a stronger flexoelectric coupling. Here utilizes
these phenomena to design a new composite flexoelectric device, as shown in the figure
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(a) strain εxy profile (b) electric potential profile

Figure 4.27. (a) strain εxy plot of a composite with multiple inclusions, and (b) the
induced electrical potential distribution of a composite with multiple
inclusions.

4.28(a). It is well established that a cantilever beam under bending serves perfectly as a
flexoelectric device thanks to the bending induced non-linear distributed strain field. Thus
the linear strain gradient for flexoelectric coupling across the beam in the bending direction,
see ABDOLLAHI ET AL. (2014); GHASEMI ET AL. (2017). Under an identical bending load,
a cantilever beam constructed by a softer material, such as a polymer, undergoes a larger
deformation and induces a higher strain gradient field than a cantilever beam been built from
a stiffer material, such as Barium titanate oxide (BTO) or Barium strontium titanate (BST),
see CHU & SALEM (2012); MA & CROSS (2006, 2002). However, the electromechanical
coupling via the flexoelectric effect in the polymer cantilever beam is minimal due to the
low flexoelectric coefficient of the polymer, see CHU & SALEM (2012); LIU ET AL. (2017).
On the other hand, materials such as BTO and BST have extremely high flexoelectric coef-
ficients (almost 1000 times higher than that of polymer) but also more than 100 times stiffer
than polymer, see MA & CROSS (2006, 2002); HE ET AL. (2018). Furthermore, a study
shows that the BTO / BTS material is susceptible to brittle fracture under large deformation,
limiting its application in flexible flexoelectric devices, see WANG ET AL. (2004). To utilize
the flexibility of the polymer and high flexoelectric coefficients of the BTO / BTS, the pro-
posed composite device in figure 4.28(a) combines the polymer material with BTO / BST
to serve as a flexible flexoelectric energy harvester. The main structure of the composite
beam constructs with the polymer to ensure structural flexibility. Besides, the last subsection
demonstrated that a softer matrix material leads to a more substantial flexoelectric effect.
The BTO/BST inclusions serve as generators inducing strong flexoelectric response thanks
to their high flexoelectric coefficients. Due to the short distance between the electrodes and
inclusions in the proposed flexoelectric composite device, the high electric potential gener-
ated near the inclusion (proved in the previous subsection 4.2.2) can be directly harvested by
the electrodes.
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Y Electrode +

Electrode -
(a) schematic illustration of the composite flexoelec-
tric device

(b) mesh configuration of the composite flexoelectric
device

Figure 4.28. (a) Schematic illustration of the composite flexoelectric device, the de-
vice subjects to a line load F at its free end. The darker blue circles
represent the inclusions. The red bar represents the positive electrode,
and the blue bar is the negative electrode, and (b) Mesh configuration
of the composite flexoelectric device.

(a) electric potential

(b) electric potential

Figure 4.29. (a) Electric potential distribution from the pure polymer beam, and (b)
Electric potential distribution from the proposed composite flexoelectric
device.

To validate the effectiveness of the proposed flexoelectric device, here compares the gener-
ated electric potential of the proposed flexoelectric device to a flexoelectric cantilever beam
constructed purely from polymer. For the proposed flexoelectric device, the inclusions’ prop-
erties are listed in table 4.2 and the polymer matrix is 100 times softer than the inclusion and
has a flexoelectric coefficient equals 1/1000 as that of the inclusion. The remaining material
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parameters are identical to the inclusions. Both structures have a dimension of 50 µm × 10
µm × 1 µm and subject to a line load F = 0.01 N/m. The mesh configuration of the flexo-
electric device is shown in figure 4.28(b). Figure 4.29 shows the generated electric potential
from the pure polymer beam and the proposed composite flexoelectric device. It reveals that
the pure polymer beam has a uniform distributed electric potential field with a maximum
magnitude of 0.44 V, whereas the composite beam yields a maximum electric potential of
0.92 V, which is more than twice that of the polymer beam. This significant enhancement of
the electric potential in the composite beam originates from the inclusions, as shown in fig-
ure 4.29(b). It also shows that the composite beam’s flexibility decreases by about 20 % due
to BTO / BST inclusions strengthening the structure. Nevertheless, the proposed composite
device is more efficient than the device constructed by the pure polymer material and offers
a relative high flexibility.
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Figure 4.30. (a) Schematic illustration of a cone structure and its boundary condi-
tions, its left side (outer diameter is d1) is fixed and connected to the
ground; on the right side, a line load applies to the top edge of the
outer circle (outer diameter d2). The insertion is an image of BN cone,
see KVASHNIN ET AL. (2018), and (b) Maximum output voltage ver-
sus loading step for cone structures with different diameter ratios under
identical incremental load for 20 steps.

Truncated cone shaped flexoelectric device

Truncated cone structures exhibit intrinsic flexoelectric coupling effect under both bending
and axial loading condition thanks to their varying cross-sections, see DENG (2017); LU

ET AL. (2016). Furthermore, experimental studies discovered that truncated cone nanostruc-
tures (such as carbon nanocone or Boron nitride (BN) nanocone shown in figure 4.30(a))
exist in nature, which can serve directly as a flexoelectric device, see KVASHNIN ET AL.
(2018); NAESS ET AL. (2009). This subsection studies the flexoelectric effect in truncated
cone structures under bending. For this purpose, here constructs cone structures as shown in
figure 4.30(a), and they are mechanically fixed and grounded on the left side. A ramp loading
scheme for 20 loading steps with an incremental semi-circle line load F = 10 N/m is applied
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(a) d2
d1 = 0.5

(b) d2
d1 = 1

(c) d2
d1 = 2

Figure 4.31. Electric potential distribution of the deformed cone structures with
d2
d1 = 0.5, 1 and 2 at step 20.

on the right side. The length of the cones is 100 µm, and their thickness is 1 µm. Their
material parameters are listed in table 4.2. Here also explores the influence of the diameter
ratio (Dr = d2

d1
) between the left end outer diameter d1 and right end the outer diameter d2

on the maximum output voltage of cone structures under identical bending load. For each
diameter ratio, the cone structure’s volume remains 1650 µm3. Figure 4.30(b) shows the
maximum output voltage versus loading step for cone structures with diameter ratio ranging
from Dr = 0.5 to Dr = 2. It demonstrates that the maximum output voltage increases with
decreasing diameter ratio of cone structures. This behavior is understood through the geo-
metrical configuration. As the diameter ratio Dr < 1, the cross-section near the fixed end
(left end) is larger than the cross-section on the right end, which stiffens the cone structure.
In contrast, as the diameter ratio Dr > 1, the cross-section near the fixed end is smaller than
the cross-section on the right end, making the cone structure more flexible. For instance, as
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the diameter ratio Dr = 0.5, the cone structure’s displacement is low, and the resulted strain
remains in the linear range throughout the 20 loading steps (indicated by the straight line of
the output voltage). However, cone structure with the diameter ratio Dr = 2, the displace-
ment is higher, such that the cone structure enters the nonlinear range after a few loading
steps. The observed ratio-dependent behavior suggests that one should utilize a truncated
cone with a larger diameter ratio of Dr to induce a stronger flexoelectric coupling effect.
Figure 4.31 shows the electric potential distribution of the deformed cone structures with
different diameter ratios Dr = 0.5, 1, and 2 at load step 20.

4.3 Conclusion
This chapter presented two continuum models to investigate flexoelectricity in composite
structures. The first model is a 2D Meshless model coupled with the level-set technique
studies flexoelectricity in composites under the assumption of small strain. The higher-order
shape function of the Meshless model fulfills the requirement of C1 continuity imposed by
the strain gradient term in the governing equation of flexoelectricity, and the level-set tech-
nique supervises the material discontinuity between the inclusion and matrix of the compos-
ites. The Meshless model is validated with several benchmark problems of flexoelectricity
in single-phase material. Hereafter, the model studies flexoelectricity in two-phase compos-
ites. The results show that the non-uniform strain fields near the inclusion boundary induce
electric potential through flexoelectricity, and the intensity of the flexoelectric effect mainly
depends on the area ratio between the inclusions and the matrix. Namely, the higher the
inclusion area ratio, the stronger the flexoelectric effect. The Meshless model also found that
a softer matrix material leads to a stronger flexoelectric effect in composites. The second
model is a 3D nonlinear mixed finite element model (NMFEM) studies flexoelectricity in
composite structures under large deformation conditions. The NMFEM includes displace-
ment gradients and Lagrange multipliers as additional degrees of freedom to accommodate
the C1 continuity required by the governing equation of flexoelectricity. The geometric
nonlinearity and strain gradient elasticity are also incorporated into the model to accurately
capture the electromechanical behavior of flexoelectric structures. The results show that
geometric nonlinearity and strain gradient elasticity significantly influence the overall elec-
tromechanical response of flexoelectric structures under static and dynamic loading condi-
tions. Specifically, the NMFEM with geometric nonlinearity significantly overestimates the
intensity of the flexoelectric effect under static loading conditions and predicts an incomplete
electromechanical response under dynamic loading conditions. Regarding the flexoelectric-
ity in composites, the NMFEM arrived at the same conclusions as the Meshless model, i.e., a
higher volume ratio of inclusions and a softer matrix material lead to a stronger flexoelectric
effect in composites.
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Chapter 5

Conclusions and Future Perspectives

This work developed molecular dynamics models to investigate the underlying mechanism of
flexoelectricity in various 2D and 3D nanomaterials. Additionally, continuum models were
established to characterize flexoelectricity in solid continuum structures, such as flexoelectric
composites. The conclusions of this work can be summarized as follows.

• A core-shell molecular dynamics model studies the size-dependent flexoelectric coef-
ficient of BaTiO3 nanostructures. The core-shell model is validated with experimental
studies as it accurately reproduces the phase transition process of BaTiO3. The longitu-
dinal and shear flexoelectric coefficients of BaTiO3 nanostructures are evaluated using
the core-shell model with specially designed deformation schemes. The results show
that the surface effect significantly influences the longitudinal and shear flexoelectric
coefficients of the BaTiO3 nanostructures. Namely, the longitudinal flexoelectric coef-
ficients decrease with the surface atom ratios of the BaTiO3 nanostructures, while the
shear flexoelectric coefficients show an opposite trend.

• A charge-dipole molecular dynamics model studies the bending flexoelectric coef-
ficients of five groups of 2D materials: graphene allotropes (C1, C2, C3), nitrides
(BN,AlN,GaN), graphene analogues of group-IV elements (Si, Ge, Sn), transition
metal dichalcogenides (TMDCs) (MoS2, WS2, CrS2) and Janus TMDCs (MoSSe,
MoSTe, MoSeTe, WSSe, WSTe, WSeTe). A proposed bending deformation scheme
enables direct estimation of the flexoelectric coefficients of the 2D materials by elimi-
nating the piezoelectric contribution to the polarization. In doing so, the charge-dipole
model analyzed the mechanisms underpinning the calculated flexoelectric coefficients
by interpreting them through the electric fields generated from the dipole-dipole (σ−σ
bonding) and charge-dipole (π − σ bonding) interactions. While the charge-dipole
interactions increase with bending curvature, their relative weakness in the flat mono-
layers (graphene, BN) leads to lower flexoelectric coefficients for these materials. In
contrast, it is found that buckling height, which occurs in the monolayer group-IV el-
ements, leads to more than 10% increases in flexoelectric coefficients. Additionally,
due to the significantly enhanced charge transfer coupled with structural asymmetry,
the TMDCs have the largest flexoelectric coefficients, including the flexoelectric coef-
ficient of MoS2 ten times larger than that of graphene. Furthermore, a particular group
of TMDCs called Janus TMDCs to have flexoelectric coefficients that are several times

93
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larger than that of the traditional TMDCs, such as MoS2. The mechanism underlying
this was the bond length asymmetry of the Janus TMDCs between the M-X and M-Y
atoms. This bond length asymmetry leads to stronger σ−σ interactions with increasing
initial asymmetry, along with stronger π − σ interactions due to the increased charge
transfer, which combine to result in increased polarization for Janus TMDCs.

• Two continuum models explore flexoelectricity in composite structures. The first
model is a 2D Meshless model coupled with the level-set technique studies flexo-
electricity in composites under the assumption of small strain. The higher-order shape
function of the Meshless model fulfills the requirement of C1 continuity imposed by
the strain gradient term in the governing equation of flexoelectricity, and the level-set
technique supervises the material discontinuity between the inclusion and matrix of
the composites. The Meshless model is validated with several benchmark problems of
flexoelectricity in single-phase material. Hereafter, the model studies flexoelectricity
in two-phase composites. The results show that the non-uniform strain fields near the
inclusion boundary induce electric potential through flexoelectricity, and the intensity
of the flexoelectric effect mainly depends on the area ratio between the inclusions and
the matrix. Namely, the higher the inclusion area ratio, the stronger the flexoelectric
effect. The Meshless model also found that a softer matrix material leads to a stronger
flexoelectric effect in composites. The second model is a 3D nonlinear mixed finite
element model (NMFEM) studies flexoelectricity in continuum structures under large
deformation conditions. The NMFEM includes displacement gradients and Lagrange
multipliers as additional degrees of freedom to accommodate the C1 continuity re-
quired by the governing equation of flexoelectricity. The geometric nonlinearity and
strain gradient elasticity are also incorporated into the model to accurately capture the
electromechanical behavior of flexoelectric structures. The results show that geomet-
ric nonlinearity and strain gradient elasticity significantly influence the overall elec-
tromechanical response of flexoelectric structures under static and dynamic loading
conditions. Specifically, the NMFEM with geometric nonlinearity significantly over-
estimates the intensity of the flexoelectric effect under static loading conditions and
predicts an incomplete electromechanical response under dynamic loading conditions.
Regarding the flexoelectricity in composites, the NMFEM arrived at the same con-
clusions as the Meshless model, i.e., a higher volume ratio of inclusions and a softer
matrix material lead to a stronger flexoelectric effect in composites.

Flexoelectricity is in its early stages for engineering applications. There are many potential
areas to explore, for instance,

• To continue the search for 2D materials with high flexoelectric coefficients by the
presented charge-dipole molecular dynamics model;

• To develop a topology optimization scheme for flexoelectric structures within the
framework of the presented nonlinear mixed finite element model;

• To develop a fully homogenized MD-FEM model for flexoelectricity.
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Substituting equation (A.7), equation (A.5) is written as
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The derivative of the dyadic product between position vectors in equation (A.9) can be writ-
ten as
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Appendix C

Matrix form of the components in
equation (4.62)

B =


NI,x 0 0

0 NI,y 0
0 0 NI,z

NI,y NI,x 0
0 NI,z NI,y

NI,z 0 NI,x

+AH1; (C.1)

A =



∂uIx
∂x

0 0
∂uIy
∂x

0 0 ∂uIz
∂x

0 0

0 ∂uIx
∂y

0 0
∂uIy
∂y

0 0 ∂uIz
∂y

0

0 0 ∂uIx
∂z

0 0
∂uIy
∂z

0 0 ∂uIz
∂z

∂uIx
∂y

∂uIx
∂x

0
∂uIy
∂y

∂uIy
∂x

0 ∂uIz
∂y

∂uIz
∂x

0

0 ∂uIx
∂z

∂uIx
∂y

0
∂uIy
∂z

∂uIy
∂y

0 ∂uIz
∂z

∂uIz
∂y

∂uIx
∂z

0 ∂uIx
∂x

∂uIy
∂z

0
∂uIy
∂x

∂uIz
∂z

0 ∂uIz
∂x


; (C.2)

H1 =



NI,x 0 0
NI,y 0 0
NI,z 0 0

0 NI,x 0
0 NI,y 0
0 NI,z 0
0 0 NI,x

0 0 NI,y

0 0 NI,z


; (C.3)

HD = Hu +ADH2; (C.4)
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Hu =



NI,x 0 0 0 0 0 0 0 0
NI,y 0 0 0 0 0 0 0 0
NI,z 0 0 0 0 0 0 0 0

0 0 0 0 NI,x 0 0 0 0
0 0 0 0 NI,y 0 0 0 0
0 0 0 0 NI,z 0 0 0 0
0 0 0 0 0 0 0 0 NI,x

0 0 0 0 0 0 0 0 NI,y

0 0 0 0 0 0 0 0 NI,z

0 NI,x 0 NI,x 0 0 0 0 0
0 NI,y 0 NI,y 0 0 0 0 0
0 NI,z 0 NI,z 0 0 0 0 0
0 0 NI,x 0 0 0 NI,x 0 0
0 0 NI,y 0 0 0 NI,y 0 0
0 0 NI,z 0 0 0 NI,z 0 0
0 0 0 0 0 NI,x 0 NI,x 0
0 0 0 0 0 NI,y 0 NI,y 0
0 0 0 0 0 NI,z 0 NI,z 0



; (C.5)

AD =



ψ11 0 0 0 0 0 0 0 0 ψ21 0 0 0 0 0 0 0 0 ψ31 0 0 0 0 0 0 0 0
0 ψ11 0 0 0 0 0 0 0 0 ψ21 0 0 0 0 0 0 0 0 ψ31 0 0 0 0 0 0 0
0 0 ψ11 0 0 0 0 0 0 0 0 ψ21 0 0 0 0 0 0 0 0 ψ31 0 0 0 0 0 0
0 0 0 ψ12 0 0 0 0 0 0 0 0 ψ22 0 0 0 0 0 0 0 0 ψ32 0 0 0 0 0
0 0 0 0 ψ12 0 0 0 0 0 0 0 0 ψ22 0 0 0 0 0 0 0 0 ψ32 0 0 0 0
0 0 0 0 0 ψ12 0 0 0 0 0 0 0 0 ψ22 0 0 0 0 0 0 0 0 ψ32 0 0 0
0 0 0 0 0 0 ψ13 0 0 0 0 0 0 0 0 ψ23 0 0 0 0 0 0 0 0 ψ33 0 0
0 0 0 0 0 0 0 ψ13 0 0 0 0 0 0 0 0 ψ23 0 0 0 0 0 0 0 0 ψ33 0
0 0 0 0 0 0 0 0 ψ13 0 0 0 0 0 0 0 0 ψ23 0 0 0 0 0 0 0 0 ψ33

ψ12 0 0 ψ11 0 0 0 0 0 ψ22 0 0 ψ21 0 0 0 0 0 ψ32 0 0 ψ31 0 0 0 0 0
0 ψ12 0 0 ψ11 0 0 0 0 0 ψ22 0 0 ψ21 0 0 0 0 0 ψ32 0 0 ψ31 0 0 0 0
0 0 ψ12 0 0 ψ11 0 0 0 0 0 ψ22 0 0 ψ21 0 0 0 0 0 ψ32 0 0 ψ31 0 0 0
ψ13 0 0 0 0 0 ψ11 0 0 ψ23 0 0 0 0 0 ψ21 0 0 ψ33 0 0 0 0 0 ψ31 0 0
0 ψ13 0 0 0 0 0 ψ11 0 0 ψ23 0 0 0 0 0 ψ21 0 0 ψ33 0 0 0 0 0 ψ31 0
0 0 ψ13 0 0 0 0 0 ψ11 0 0 ψ23 0 0 0 0 0 ψ21 0 0 ψ33 0 0 0 0 0 ψ31

0 0 0 ψ13 0 0 ψ12 0 0 0 0 0 ψ23 0 0 ψ22 0 0 0 0 0 ψ33 0 0 ψ32 0 0
0 0 0 0 ψ13 0 0 ψ12 0 0 0 0 0 ψ23 0 0 ψ22 0 0 0 0 0 ψ33 0 0 ψ32 0
0 0 0 0 0 ψ13 0 0 ψ12 0 0 0 0 0 ψ23 0 0 ψ22 0 0 0 0 0 ψ33 0 0 ψ32



;

(C.6)
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H2 =



NI,x 0 0 0 0 0 0 0 0
NI,y 0 0 0 0 0 0 0 0
NI,z 0 0 0 0 0 0 0 0

0 0 0 NI,x 0 0 0 0 0
0 0 0 NI,y 0 0 0 0 0
0 0 0 NI,z 0 0 0 0 0
0 0 0 0 0 0 NI,x 0 0
0 0 0 0 0 0 NI,y 0 0
0 0 0 0 0 0 NI,z 0 0
0 NI,x 0 0 0 0 0 0 0
0 NI,y 0 0 0 0 0 0 0
0 NI,z 0 0 0 0 0 0 0
0 0 0 0 NI,x 0 0 0 0
0 0 0 0 NI,y 0 0 0 0
0 0 0 0 NI,z 0 0 0 0
0 0 0 0 0 0 0 NI,x 0
0 0 0 0 0 0 0 NI,y 0
0 0 0 0 0 0 0 NI,z 0
0 0 NI,x 0 0 0 0 0 0
0 0 NI,y 0 0 0 0 0 0
0 0 NI,z 0 0 0 0 0 0
0 0 0 0 0 NI,x 0 0 0
0 0 0 0 0 NI,y 0 0 0
0 0 0 0 0 NI,z 0 0 0
0 0 0 0 0 0 0 0 NI,x

0 0 0 0 0 0 0 0 NI,y

0 0 0 0 0 0 0 0 NI,z



; (C.7)

R =



S11 S12 S13 0 0 0 0 0 0
S12 S22 S23 0 0 0 0 0 0
S13 S32 S33 0 0 0 0 0 0
0 0 0 S11 S12 S13 0 0 0
0 0 0 S12 S22 S23 0 0 0
0 0 0 S11 S23 S33 0 0 0
0 0 0 0 0 0 S11 S12 S13

0 0 0 0 0 0 S21 S22 S23

0 0 0 0 0 0 S13 S23 S33


; (C.8)

R̂ =
[
S11 S22 S33 S12 S23 S13

]T
; (C.9)
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RD =



τ̃111 0 0 τ̃211 0 0 τ̃311 0 0
τ̃112 0 0 τ̃212 0 0 τ̃312 0 0
τ̃113 0 0 τ̃213 0 0 τ̃313 0 0
τ̃211 0 0 τ̃221 0 0 τ̃321 0 0
τ̃212 0 0 τ̃222 0 0 τ̃322 0 0
τ̃213 0 0 τ̃223 0 0 τ̃323 0 0
τ̃311 0 0 τ̃321 0 0 τ̃331 0 0
τ̃312 0 0 τ̃322 0 0 τ̃332 0 0
τ̃313 0 0 τ̃323 0 0 τ̃333 0 0
0 τ̃111 0 0 τ̃211 0 0 τ̃311 0
0 τ̃112 0 0 τ̃212 0 0 τ̃312 0
0 τ̃113 0 0 τ̃213 0 0 τ̃313 0
0 τ̃211 0 0 τ̃221 0 0 τ̃321 0
0 τ̃212 0 0 τ̃222 0 0 τ̃322 0
0 τ̃213 0 0 τ̃223 0 0 τ̃323 0
0 τ̃311 0 0 τ̃321 0 0 τ̃331 0
0 τ̃312 0 0 τ̃322 0 0 τ̃332 0
0 τ̃313 0 0 τ̃323 0 0 τ̃333 0
0 0 τ̃111 0 0 τ̃211 0 0 τ̃311

0 0 τ̃112 0 0 τ̃212 0 0 τ̃312

0 0 τ̃113 0 0 τ̃213 0 0 τ̃313

0 0 τ̃211 0 0 τ̃221 0 0 τ̃321

0 0 τ̃212 0 0 τ̃222 0 0 τ̃322

0 0 τ̃213 0 0 τ̃223 0 0 τ̃323

0 0 τ̃311 0 0 τ̃321 0 0 τ̃331

0 0 τ̃312 0 0 τ̃322 0 0 τ̃332

0 0 τ̃313 0 0 τ̃323 0 0 τ̃333



; (C.10)

R̂D =
[τ̃111 τ̃112 τ̃113 τ̃221 τ̃222 τ̃223 τ̃331 τ̃332 τ̃333

τ̃211 τ̃212 τ̃213 τ̃311 τ̃312 τ̃313 τ̃321 τ̃322 τ̃323]T
; (C.11)

D̂ =

 D1

D2

D3

 ; (C.12)

Bφ = [NI,x, NI,y, NI,y]
T ; (C.13)

Bψu =



NI,x 0 0
0 NI,x 0
0 0 NI,x

NI,y 0 0
0 NI,y 0
0 0 NI,y

NI,z 0 0
0 NI,z 0
0 0 NI,z


. (C.14)
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Material constants:

C =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1− 2ν 0 0
0 0 0 0 1− 2ν 0
0 0 0 0 0 1− 2ν

 , (C.15)

κ =

 κ11 0 0
0 κ11 0
0 0 κ33

 , (C.16)

e ==


0 0 e31

0 0 e31

0 0 e33

0 e15 0
e15 0 0
0 0 0

 , (C.17)

µ =

 µ11 µ12 µ12 0 0 0 0 0 0 0 0 µ44 0 0 0 0 µ44 0
0 0 0 0 0 µ44 µ12 µ11 µ12 0 0 0 0 0 0 µ44 0 0
0 0 0 0 µ44 0 0 0 0 µ44 0 0 µ12 µ12 µ11 0 0 0

 ,

(C.18)

g = l2

 C 0 0
0 C 0
0 0 C

 . (C.19)
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bond length between atoms Y-E and Y-F is 2.76 Å. Only left portion of the
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polarizability (Ri in Å) and lattice parameters (a,b are the lattice constants, l1
and l2 are the bond lengths for M-X and M-Y in Å, respectively) for the Janus
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