A constraint programming approach for polytopic simulation of ordinary differential equations - a collision detection application

Julien Alexandre dit Sandretto¹, Alexandre Chapoutot¹, Christophe Garion², Xavier Thirioux² and Ghiles Ziat²

> ¹ ENSTA Paris, Institut Polytechnique de Paris, 828 boulevard des Maréchaux, France {alexandre,chapoutot}@ensta.fr
> ² ISAE-SUPAERO, Université de Toulouse, France {garion,thirioux,ziat}@isae-supaero.fr

Keywords: Constraint programming, Abstract domains, ODEs

Introduction

Starting from a set of possible initial points, the solution of an ODE can be represented by a *reachable tube* describing the evolution of the system from this initial set. Abstract domains can be used to enclose the tube: boxes (cartesian product of intervals), zonotopes, ellipsoids, and nonconvex sets such as *Taylor models* (see [2] for a review of these abstract domains). The more accurate an abstract domain is, *i.e.* the smallest the difference between the hull of the abstraction and the abstracted set is, the more accurate the enclosure of the reachable tube will be. Polytope enclosure is a promising approach as it is more precise than the interval or zonotope abstract domains, but suffers from the expensiveness of its geometrical computation. Considering a polytope as an intersection of zonotopes and therefore benefiting from affine arithmetic is a possible solution to overcome the limitations (e.g. zonotope bundles [3], i.e., a set of zonotopes is used and therefore the intersection is not computed; or the intersection is computed when necessary [1]).

Reachable tubes as abstract trees

Considering a tube, a disjunction of predicates, $\mathcal{T} = (t_1 \wedge e_1) \vee (t_2 \wedge e_2) \cdots \vee (t_n \wedge e_n)$ where each e_i represents the set of values of solution functions within time frame t_i , it is to be understood as the following property: the solution is either in set e_1 during the time frame t_1 , or in set e_2 during the time frame t_2 , etc. Considering initial values given as a polytope \mathcal{P} , we decompose \mathcal{P} as the intersection of s zonotopes \mathcal{Z}_i . The reachable tube of the corresponding ODE is therefore described by the conjunction of s tubes $\mathcal{T}^1 \wedge \cdots \wedge \mathcal{T}^i \wedge \cdots \wedge \mathcal{T}^s$, each tube \mathcal{T}^i being obtained by the zonotopic simulation with initial value taken in \mathcal{Z}_i . This conjunction of disjunctions can be efficiently solved with constraint programming and polytopes as abstract domains. For obstacle avoidance or collision detection, a predicate (or several ones) of the form "and not in" is added to the previous formula.

Acknowledgement

This work was supported by the Defense Innovation Agency (AID) of the French Ministry of Defense.

References

- [1] JULIEN ALEXANDRE DIT SANDRETTO AND JIAN WAN, Reachability analysis of nonlinear ODEs using polytopic based validated Runge-Kutta, Reachability Problems, Springer, 2018.
- [2] MATTHIAS ALTHOFF, GORAN FREHSE, AND ANTOINE GIRARD, Set Propagation Techniques for Reachability Analysis, Annual Review of Control, Robotics, and Autonomous Systems, 4(1), 2021.
- [3] MATTHIAS ALTHOFF AND BRUCE H. KROGH, Zonotope bundles for the efficient computation of reachable sets, IEEE conference on decision and control and European control conference, 2011