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1
University of Brest, Lab-STICC, Robex team

20 avenue Le Gorgeu, 29200 Brest, France

damien.masse@univ-brest.fr

Keywords: Matrix Exponentiation, Di↵erential Inclusion, Guaran-

teed Integration.

Introduction

On Rn
, we consider the di↵erential inclusion problem defined as:

ẋ = f(x, u) where u 2 [u] (1)

where f is di↵erentiable and u can take any value in a box [u] at any
time. From a set of initial states (at t = 0), our goal is to get an

overapproximation of the possible states at time t.

Contribution

On [0, t], we can express f as:

f(x, u) = C + A(x� xm) + �(x, t) (2)

where C is an vector of intervals, A is a matrix of intervals and �(x, t) 2
[�] where � is a zero-centered box.

In this case, if x(0) = x0, the solution of the di↵erential equation

(for a given �) is:

x(t) = xm+etA(x0�xm)+

Z t

0
e(t�⌧)Ad⌧C+

Z t

0
e(t�⌧)A�(x(⌧), ⌧)d⌧ (3)



(A) Pendulum with perturbation (B) Van der Pol oscillator

Figure 1: Solutions of two di↵erential inclusion. (A) A pendulum with

uncertainties. (B) A Van der Pol oscillator. We represent sets as

intersections of parallepipeds.

Following previous works on exponentiation of interval matrices[1],

we compute precise and safe overapproximations of etA and
R t
0 e

(t�⌧)Ad⌧
using Taylor developments as well as scaling and squaring techniques.

We show that bounding
R t
0 e

(t�⌧)A�(x(⌧), ⌧)d⌧ can be done by bound-

ing I(A, t) =
R t
0 |e

⌧A|d⌧ (which |V | being the component-wise absolute

value of V ). This is done by computing [K] such that e⌧A 2 Id + ⌧ [K]

and bounding I(A, t) from the components of [K].

Fig 1 graphically shows the evolution of the solutions for a few

classical examples. We compared our approach with CAPD [2] on a

Van der Pol oscillator with a small perturbation:

(ẋ; ẏ) = (y + [�10
�4, 10�4

]; (1� x2) ⇤ y � x+ [�10
�4, 10�4

])

Fig 2 gives the enclosing boxes for t = 1, for CAPD and our approach.

The precision depends heavily on the number of time steps, but these

results indicate the interest of our approach.



Initial state Our approach CAPD (CW method)

(2;0) [1.507982, 1.508306] [1.508005, 1.508283]
⇥[�0.780351,�0.780088] ⇥[�0.780311,�0.780126]

(2;3) [2.300337, 2.300655] [2.300371, 2.300625]
⇥[�0.479899,�0.479744] ⇥[�0.479863,�0.479778]

Figure 2: Comparaison of our approach and CAPD on a simple exam-

ple.
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