
Testing interval arithmetic libraries

Nathalie Revol1, Luis Benet Fernández2, Luca Ferranti3

and Sergei Zhilin4

1 INRIA - LIP UMR 5668, ENS Lyon, University Lyon 1, Inria, CNRS - France
Nathalie.Revol@inria.fr (presenting author)

2 Instituto de Ciencias F́ısicas, Universidad Nacional Autónoma de México
benet@icf.unam.mx

3 University of Vaasa, Vaasa, Finland
luca.ferranti@uwasa.fi

4 CSort LLC, Barnaul, Russia

szhilin@gmail.com

Keywords: Interval Arithmetic, Library, Test, Unit Test

Testing interval arithmetic libraries: why

Interval arithmetic is used to get guarantees on numerical results. In-
deed, it provides an anclosure of the sought result. However, the user
must trust the library implementing interval arithmetic that is em-
ployed to solve the given problem. What guarantees that this library
is correct? Formal proof is a desirable approach, and in particular it is
available within the CoqInterval library [1]. Another, complementary,
approach consists in testing the library: it covers aspects that are usu-
ally not covered by formal proof, such as the specifics of the language,
compiler (with the notable exception of CompCert [2]) or hardware.

Unit tests

In what follows, only unit tests will be considered, and tests that are
complete applications will not be discussed, see [3] for a first step in
this direction. Unit tests target only one function of the library at
a time; typically, they consist of a list of test cases, that is, of input
values along with the expected output values: one checks whether the



function returns the expected output values for each input arguments.
If this is the case, the function passes the test.

Testing interval arithmetic libraries: how

The goal of this talk is to discuss the di↵erent aspects that unit tests
should cover, and how to devise corresponding test cases, with a spe-
cific focus on compliance with the IEEE 1788-2015 standard for interval
arithmetic [4]. The ultimate goal would be to create a collection of test
cases for each function required or recommended by this standard, and
to share them. We emphasize that this collection should be easy to
use for libraries written in di↵erent programming languages, such as
MPFI [5] written in C, libieee1788 [6] written in C++, JInterval [7]
written in Java, Intlab [8] available in MatLab, Octave/interval [9]
written in Octave or JuliaIntervals/IntervalArithmetic.jl [10] written
in Julia. We will survey two approaches in this direction, namely JIn-
terval [11] and ITF-1788 [12], and discuss their limitations. An even
more desirable goal would be to design a generator of test cases, we
will discuss this point as well.

References

[1] E. Martin-Dorel and G. Melquiond, Proving tight bounds on
univariate expressions with elementary functions in Coq, Journal
of Automated Reasoning 57(3), pp. 187–217 (2016).
https://coqinterval.gitlabpages.inria.fr

[2] X. Leroy et al., CompCert-a formally verified optimizing com-

piler, in ERTS 2016: Embedded Real Time Software and Systems,
8th European Congress.
https://compcert.org

[3] X. Tang, Z. Ferguson, T. Schneider, D. Zorin, S. Kamil,
D. Panozzo, A Cross-Platform Benchmark for Interval Compu-

tation Libraries, arXiv 2021. https://arxiv.org/abs/2110.06215



[4] IEEE: Institute of Electrical and Electronic Engineers,
1788-2015 - IEEE Standard for Interval Arithmetic.

[5] N. Revol and F. Rouillier, Motivations for an Arbitrary Pre-

cision Interval Arithmetic and the MPFI Library, Reliable Com-
puting 11(4), pp. 275–290 (2005).
https://gitlab.inria.fr/mpfi/mpfi

[6] M. Nehmeier, libieeep1788: A C++ Implementation of the IEEE

interval standard P1788, in 2014 IEEE Conference on Norbert
Wiener in the 21st Century (21CW), pp. 1–6.
https://github.com/nehmeier/libieeep1788

[7] D.Y. Nadezhin and S.I. Zhilin, JInterval Library: Principles,

Development, and Perspectives, Reliable Computing 19(3), pp.
229–247 (2013).
https://github.com/jinterval/jinterval/

[8] S.M. Rump, INTLAB - INTerval LABoratory, in Developments
in Reliable Computing, Tibor Csendes (ed), pp. 77–104. Kluwer
Academic Publishers (1999).
https://www.tuhh.de/ti3/rump/intlab/

[9] O. Heimlich, Interval arithmetic in GNU Octave, in SWIM 2016,
9th Summer Workshop on Interval Methods, Lyon, France.
https://octave.sourceforge.io/interval/index.html

[10] D.P. Sanders and L. Benet Fernández, JuliaIntervals/-

IntervalArithmetic.jl: v0.20.5, Zenodo, DOI 10.5281/zenodo.6337817
https://github.com/JuliaIntervals/ValidatedNumerics.jl

[11] P1788 Test Launcher (based on JInterval Library).
https://github.com/jinterval/jinterval/tree/master/p1788-launcher-java

[12] M. Kiesner, M. Nehmeier, and J. Wolff von Guden-
berg, ITF1788: An Interval Testframework for IEEE 1788, Re-
port no 495, Dpt Computer Science, University of Würzburg (2015).
https://github.com/oheim/ITF1788


