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We are currently in the midst of a second quantum revolution.
The first quantum revolution gave us new rules that govern

physical reality.
The second quantum revolution will take these rules and use them

to develop new technologies.

— Dowling and Milburn [1]
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ABSTRACT

Harnessing the quantum nature of donor atoms in silicon may
pave the way for a quantum revolution in the modern digital in-
formation era. The idea to combine the exceptional spin coher-
ence properties of donor electron spins in silicon with the prospect
of exploiting technology prevalent in the semiconductor industry
is very appealing. This thesis provides a quantitative limit for
the spin coherence times of phosphorus donor-bound electrons in
silicon, which is a fundamental parameter for spin-based quan-
tum computation. To this end, the spin-lattice relaxation time in
28Si:P is measured with the highest degree of precision to date for
unprecedentedly low temperatures. The measurements yield ex-
tremely long spin-lattice relaxation times exceeding twenty hours,
which is orders of magnitude larger than originally determined.
These long spin-relaxation times confirm the latent potential for
devices based on spin manipulation donor electrons in silicon. For
very low temperatures and high magnetic fields, the impact of
the bosonic phonon distribution on the spin-relaxation time is ob-
served for the very first time and with high accuracy which was
predicted by theory more than 60 years ago.
Furthermore, a new method of measuring the bandgap using donor
electrons based on optical spectroscopy of the D0X transition is
presented. This new method can be used to locally detect the lat-
tice temperature via the Si bandgap with exceptional accuracy
and excellent temporal resolution. With the help of this method,
measurements of the bandgap temperature dependence are per-
formed with 7 × 10−10 relative precision. Although the precise
measurements verify the theoretical T 4 limit of the bandgap en-
ergy shift with high certainty, a discrepancy of the absolute shift
questions the existing theory of electron-phonon coupling in semi-
conductors in the low temperature limit. Additional time-resolved
experiments facilitate the use of this new method as a precise local
thermometer to be used in 28Si:P based devices.

keywords: Laser spectroscopy, spin dynamics, semiconduc-
tors, spintronics
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KURZZUSAMMENFASSUNG

Die Ausnutzung der Quanteneigenschaften von Donatoratomen in
Silizium ist ein möglicher Weg, die moderne Ära der Digitalisierung
zu revolutionieren. Der Ansatz, die außerordentlichen Kohärenz-
zeiten von Donatorspins in Silizium mit der Verwendung von ex-
istierender Technologie in der Halbleiterindustrie zu kombinieren
ist hierbei sehr vielversprechend. Diese Arbeit setzt einen quanti-
tativen Grenzwert für die Spinkohärenzzeiten von Phosphordona-
tor Elektronen fest, welcher einen fundamentalen Parameter für
spinbasierte Quantenberechnung darstellt. Um den intrinsischen
Grenzwert zu bestimmen, wird die Spin-Gitter-Relaxationszeit mit
der größten bis heute erreichten Präzision im Bereich sehr tiefer
Temperaturen gemessen. Die resultierenden Relaxationszeiten sind
länger als 20 Std. und überschreiten Größenordnungen des ursprüng-
lich gefundenen Grenzwertes, was einen Beweis für das noch unange-
tastete Potenzial für Spinmanipulation von Donatoratomen in Siliz-
ium liefert. Für sehr geringe Temperaturen und hohe Magnetfelder
wird zum ersten Mal der vor 60 Jahren theoretisch vorhergesagte
Einfluss der bosonischen Phononenverteilung auf die Spinrelaxation-
szeit beobachtet.
Weiterhin wird in dieser Arbeit eine neue, schnelle und präzise

Methode präsentiert, um die lokale Gittertemperatur von Siliz-
iumspin Geräten zu messen, welche auf der Detektion der Band-
lücke basiert. Mithilfe dieser Methode wird die Verschiebung der
Band-lücke mit einer relativen Präzision von 7× 10−10 gemessen.
Die Messungen verifizieren die theoretisch vorhergesagte T 4 Ab-
hängigkeit der Verschiebung. Allerdings stellt der Absolutwert der
Verschiebung die existierende Theorie der Phononen-Elektronen-
Wechselwirkung für Halbleiter bei geringen Temperaturen infrage.
Weitere zeitaufgelöste Messungen motivieren die Verwendung dieser
neuen Methode als präzises lokales Thermometer für 28Si:P Spin
basierte Geräte.
schlüsselwörter: Laserspektroskopie, Spindynamik, Halbleiter,

Spintronik
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INTRODUCTION AND CONTEXT





1
MOTIVATION

Quantum objects are vanishingly tiny compared to things we see
every day, but they continue to amaze us with unintuitive behavior
that seems unpredictable. Although research should be sufficiently
motivated by curiosity, it is also possible to gain an advantage in
our lives by utilizing systems that exhibit these fascinating and
unique quantum properties. The prospect of improving our lives
with quantum technology has continued to drive the funding of
projects around the world in recent years.
Many problems are very difficult to solve with a classical com-

puter. One such popular problem is the efficient prime factoriza-
tion of large numbers. Shor’s quantum algorithm provides means
to solve data encryption problems by factoring large numbers using
a quantum computer. Quantum computers excel at this task, and
even modestly sized quantum computers outperform the largest su-
percomputers that exist today. Another challenge is the simulation
of quantum systems such as large molecules that make up life as
we know it. Not surprisingly, quantum computers excel at simu-
lating quantum systems, and therefore they are bound to become
a very useful tool to solve problems in physics, nanotechnology,
chemistry, biology, and pharmacology. With the development of
quantum computers being a comparably young research field, the
possible applications of quantum computing will likely exceed the
scope imaginable as of now, and more interesting fields based on
quantum technology will emerge in the years to come.
The quantum bit (qubit) is the evolution of the classical bit from

two discrete states, on and off, to a continuum of states that exist
inside a vector space. Reproducible manipulation of the state of n
qubits means accurately controlling a quantum state in a vector
space of 2n complex dimensions. This task proved to be very chal-
lenging due to the fragility of quantum states (especially entangled
states) compared to discrete bits. While we can scale the size of
a classical bit, e.g. a transistor, to make it more robust, this is

3
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usually not possible for a quantum bit because the increase in size
increases the likelihood of decoherence and therefore degrades the
quality of the qubit. Ironically, it is also not possible to shrink a
classical transistor to an arbitrary size because the latent quantum
properties of matter begin to emerge.
Modern computers can rely on a high bit count and an efficient

infrastructure to compensate for the quantum mechanical minia-
turization limit. If we compare the transistor (bit) count of sev-
eral billion in modern processing units to a painstakingly designed
state-of-the-art quantum computer which only has about a hun-
dred qubits, each working sub-optimally, it becomes obvious that
there is still a lot of research to do. We, as physicists, are left with
the challenging task of finding more suitable materials and under-
standing their unique quirks as well as evaluating them according
to benchmarks such as fidelity and coherence times, so that we may
ultimately improve that number. It should be remarked that the
number of qubits is not directly a measure of quantum computer
performance. The way qubits interact and keep in a well-defined
state massively influences the ability of a quantum computer to
solve modern day problems. As a result, different physical imple-
mentations of qubits will lead to a largely different result, even by
using the same amount of qubits. The next chapter will discuss
some of the most popular qubit implementations, including silicon
donor spin qubits.



2
SP IN QUBITS

A qubit is a quantum mechanical two-level system whose state can
be initialized, coherently controlled, and measured with system-
dependent fidelity. Research efforts focus on physical implementa-
tions and materials that offer the best prospects for large-scale in-
tegration. Although solid-state implementations of quantum com-
puters somewhat lack behind trapped ions, infrared photons, or
superconducting qubits currently, semiconductor spin qubits offer
a lot of advantages if some of the technical problems can be over-
come [2]. The field of semiconductor qubits itself includes a variety
of systems, materials, and setups. Any useful implementation of a
qubit system will impose challenging requirements on the manufac-
turing process and require a suitable environment that is challeng-
ing to maintain. Hard to maintain millikelvin temperatures, very
high vacuums, and very little electromagnetic disturbance are only
some prime examples. Even if the ambient conditions are met and
measurement and manipulation of the quantum state of a qubit
become possible, the interaction between many qubits is a large
hurdle that many implementations cannot overcome. Probably the
most quoted source of criteria for a good qubit architecture is au-
thored by DiVincenzo [3]. The DiVincenzo criteria are briefly sum-
marized below.

scalability The number of well-characterized qubits that can
be combined in a single platform. Well-characterized means
that, despite a high number of qubits, an accurate physical
description including a differential equation for each qubit
exists, which completely describes the state of the qubit and
the interaction with other qubits.

initialization The quantum state of the whole system needs
to be initialized into a well-defined state, such as the ground
state, before performing further operations. This is similar to
initializing a classical register with a certain number in order

5
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Figure 1: The intensity on the screen in a double-slit experiment. This
figure illustrates how spatial coherence (γ = 1) results in observ-
able interference. Partially coherent light (γ = 0.3) produces only
a reduced contrast in the interference fringes, and incoherent light
(γ = 0.0) has no observable fringes at all.

to, e.g., compute the sum with a different register. The effi-
cient initialization is of utmost importance for quantum error
correction, because it requires the qubits to be initialized into
the original state many times over.

coherence The coherence time for a quantum state is the pe-
riod over which there is no mixing with other states and the
state remains pure. There exists a principal mechanism in
quantum mechanics that, after the decoherence of a state,
classical behavior emerges. The result of the double-slit ex-
periment in Fig. 1 illustrates how interference is lost by de-
coherence.

universal set of quantum gates Similar to a classical
computer, there are sets of fundamental logical operations
that can be chained to perform any possible operation in
state space. The difference from a classical computer is that
the operations are continuous transformations within a cer-
tain time where the strength can be tuned, e.g., by the in-
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Type of qubit T2 Error (%)
Infrared photon 0.1ms 0.016
Trapped Ion 15 s 0.48
Trapped Neutral Atom 3 s 5
Liquid molecule nuclear spins 2 s 0.01
e− spin in GaAs quantum dot 3 µs 5
e− spins bound to 28Si:P 0.6 s 5
29Si nuclear spins in 28Si 25 s 5
NV centre in diamond 2ms 2
Superconducting circuit 4 µs 0.7

Table 1: Demonstrated performance of various qubits according to Ref.
[4]. The error represents the deviation from 100% fidelity.

tensity of laser light or a microwave field. In this sense, quan-
tum gate operations are tunable interactions between differ-
ent qubits that need to be accurately implemented for the
quantum algorithm to succeed.

qubit-specific measurement capability It should be
possible to perform measurements on every individual qubit
in the system independently. The quantum efficiency of these
measurements determines how much information is lost dur-
ing each measurement and is an important benchmark for
the performance of a quantum computing platform.

Several qubit platforms are being researched extensively, and
each has benefits and downsides. Table 1 lists some examples in-
cluding the corresponding coherence times T2 and error rates, which
are direct complements of the fidelity. It should be noted that the
values in Tab. 1 are not fundamentally limited, but depend on en-
gineering and environmental parameters and are likely to change
in the future as technology improves.
Phosphorus impurities embedded in enriched 28Si host material,

in particular, fulfill all the DiVincenzo criteria above [2] and thus
are a promising platform for quantum computation. Their coher-
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ence times are comparable to those of trapped ions, but unlike
trapped ions, solid-state spin qubits do not require an ultra-high
vacuum environment. 28Si:P spin qubits are close to their maxi-
mum coherence time already at around 4K [5] which is far above
the operating temperature of superconducting qubits on the order
of ≈ 10mK. The main downside of silicon spin qubits is the lack of
a convenient infrastructure to address and manipulate individual
qubits like waveguides and junctions connecting superconducting
qubits. However, it is not unreasonable to assume that this tech-
nological challenge can be overcome with extensive research [6].

2.1 silicon impurities for quantum technologies

Semiconductivity in silicon is a collective, macroscopic phenomenon
that depends on the density and type of the dopants and the tem-
perature. However, through increased miniaturization of nanoscale
devices, the quantum behavior of single dopants becomes more
and more apparent. Many recent approaches commonly aim to
harness the quantum nature of spins in silicon which arise from
the electronic structure of single dopants [2, 7, 8]. On the smallest
scale, single dopants are suggested for use in quantum computing
in order to encode quantum information into the nuclear spin of
a phosphorus atom in 28Si:P [9]. More recently, single defects in
Si have been investigated using optical methods [7] and their spin
state is manipulated efficiently. Even the infrastructure for quan-
tum technologies based on optical manipulation of defect spins in
Si is advancing at a rapid rate [8]. On a slightly larger scale, there
are several approaches based on coupling small ensembles of donors
to the microwave field of superconducting resonators in order to
encode quantum information into donors [10–14]. In this thesis, an
ensemble of 28Si:P donors is used, and their spin state is manipu-
lated by resonant laser absorption.
The 31P donor atoms of phosphorus in silicon possess an addi-

tional valence electron compared to the Si host atoms. Changes in
the electric field around the substitutional site as a result of the dif-
ferent number of valence electrons between the impurity and host
atoms are screened by the neighboring valence electrons of the host
atoms and electrons. The screening effect reduces the binding en-
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ergy of the outermost electrons and the binding potential becomes
comparable to a Coulomb potential [15]. Accordingly, the wave-
functions are, in good approximation, comparable to those of the
hydrogen atom. The weak binding potential of the electron in this
artificial atom is low enough to allow a significant amount of car-
riers to escape into the neighboring energy bands even at room
temperature.
Since the binding energy of the electron for the shallow im-

purity is low, it is easily excited into one of the higher energy
states at elevated temperatures and it becomes impossible to ob-
serve any quantum properties. However, at cryogenic temperatures
below 20K, the electron is frozen in the ground state and quan-
tum behavior emerges, which can be detected using fluorescence
or resonant microwave excitation methods. In one of the first ex-
periments, Fletcher et al. were able to determine the hyperfine
splitting of the electron-donor system in the ground state at liq-
uid helium temperatures [16]. Not long after, Luttinger and Kohn
developed the effective mass theory for impurity states in silicon
[17] to accurately predict the value of the hyperfine splitting. The
fine structure splitting of the phosphorus-bound electron was also
measured in more detail a few years later [18]. All existing exper-
iments confirm that the phosphorus atom in silicon possesses a
weakly bound electron (45meV) in a 1s-like orbital with a Bohr ra-
dius of r = 4π h̄2ϵ0ϵr/(mee

2) ≈ 2 nm. The weakly bound electron,
labeled as D0, has a donor bound exciton transition D0 → D0X
that is used in this thesis to manipulate the donors via resonant
laser absorption.





3
2 8 S i :P OPTICAL SPECTROSCOPY

The fascinating results of magnetic resonance experiments on doped
Si and the emergence of laser technology were followed by several
optical absorption experiments on donors in Si. However, optical
spectroscopy with natSi:P was mainly restricted to determining the
fine structure of donors and donor-bound excitons in high magnetic
fields where the splittings become larger than the optical linewidths
of donor-bound exciton transitions [19]. The linewidths of optical
band-to-band transitions are limited by the residual impurity con-
centration and the natural isotopic composition of silicon (Tab. 2)
and therefore largely depend on the quality of the material used
in the experiments. The increasing purity of available silicon ma-
terial soon caused the isotopic composition to become a limiting
factor for the optical linewidths. The increase in linewidth due to
the random isotopic distribution was accurately described by M.
Cardona [20], who is on the forefront of research on isotope ef-
fects in the solid-state. The purest solid-state material ever refined
originated in the context of the Avogadro project, which aimed
to create a sphere consisting of exactly1 6.022 14 × 1023/28 sili-
con atoms [21]. As a result of the Avogadro project, ultra-pure en-
riched 28Si material became available which allowed measuring the
isotopic broadening of the near-infrared electronic transitions [22].
The result is a remarkable ensemble linewidth of 30MHz for the
bound exciton transition. Different samples made available by the

1 They achieved a final relative uncertainty in the atom number of 2× 10−8

Isotope 28Si 29Si 30Si
Concentration (%) 92.2 4.7 3.1

Table 2: The natural abundance of the stable isotopes of silicon.

11
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Name 28Si % Phosphorus (cm−3) Boron (cm−3)
nat 92.23 5× 1014 3× 1013

c 99.92 5× 1014 3× 1013

b 99.983 2× 1013 2× 1014

a 99.991 2× 1012 5× 1013

3.3.1 99.991 2× 1014 1× 1014

3.3.6 99.991 7× 1014 1× 1014

3.3.7 99.991 7× 1014 1× 1014

3.3.9 99.991 1× 1015 1× 1014

3.1.6 99.995 1.2× 1015 5× 1013

avo 99.995 5× 1011 1× 1013

Table 3: A listing of different bulk samples and their respective impurity
concentrations measured by Thewalt’s group and in this work (3.1.6).
The silicon material was enriched and refined throughout the Avo-
gadro project. The Leibniz-Institut für Kristallzüchtung kindly pro-
vided doped Avogadro Si material in bulk samples for experiments.

Avogadro project (listed in Tab. 3) all were produced by the IKZ
after receiving inquiries from M. L. W. Thewalt and M. Cardona
and all the initial measurements on these samples were performed
by Thewalt’s group. In a landmark experiment, they determined
a very long coherence time of the ionized phosphorus nuclear spin
exceeding 30 minutes at room temperature in a 28Si sample [23].
This result was achieved by optically addressing and ionizing the
nuclear spin ensemble using the neutral donor-bound exciton tran-
sitions.
Although much work on nuclei in 28Si:P has been done by the

same group, information on electron spin relaxation was still lack-
ing up to this date. The latest published experiments on phos-
phorus donor electron spin relaxation date back more than half a
century ago with ambiguous results, particularly for temperature
and magnetic field dependence [18, 24]. The task in question is to
provide experimental proof of the mechanisms involved in the relax-
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ation of the donor electron spins in 28Si:P using optical absorption
spectroscopy of the bound exciton transition.

3.1 temperature dependence of the bandgap

Device performance can be highly influenced by temperature, which
is made evident, e.g., by the strong temperature dependence of
the spin relaxation times. Using external temperature sensors may
lead to undesired systematic errors in the measured device temper-
ature. Especially fast changes in temperature are hard to detect
because of the delayed temperature response. The bandgap of sil-
icon has a distinct temperature dependence that can be used to
measure the lattice temperature locally within the sample. Measur-
ing the bandgap directly by optical band-to-band absorption does
not yield a sufficient relative precision for determining the temper-
ature in the regime below 20K. Fortunately, there exists a method
to measure the bandgap in 28Si:P using optical spectroscopy of the
bound electrons [25] which can be used to directly measure the
lattice temperature. The temperature dependence of the bandgap
can be measured via this method with a high degree of precision by
utilizing the energetically narrow donor-bound exciton transition.
This thesis aims to precisely quantify the temperature dependence
of the bandgap using the donor-bound exciton transition in 28Si:P
and use the measured information for directly determining of the
time-dependent local lattice temperature. To this end, a setup is
presented that allows all-optical, and contactless measurements of
the lattice temperature with exceptional temporal resolution. The
setup is used to verify the temperature dependence in the low-
temperature limit with much higher precision and lower tempera-
tures compared to existing measurements in Ref. [25].





Part II

THEORY AND MODELS





4
S IL ICON

Silicon crystallizes in the diamond structure (Fig. 2), which con-
sists of two interpenetrating face-centered cubic lattices displaced
along the diagonal by a

4 where a ≈ 0.543 nm is the lattice spacing
between the atoms. The diamond structure and the strong covalent
atomic bonds make silicon a very hard and brittle material. Bulk
silicon has an opaque appearance due to its bandgap that causes
absorption of light in the visible region. Silicon can form two dif-
ferent oxides SiO and SiO2 where the former is less commonly
found and the latter is commonly known in its crystalline form as
quartz, the native oxide of silicon. SiO2 layers naturally form with
a thickness of a few nanometers within hours of exposure of Si
to oxygen [26]. Silicon is favored in semiconductor manufacturing,
mainly because the SiO2 oxide layer is chemically very inert and
highly insulating. Surface passivation is a crucial part in creating
a plethora of complex devices based on metal oxide-semiconductor
technology, e.g., CPUs and power electronics. This fact, combined
with its large natural abundance, makes silicon the workhorse of
the semiconductor industry.

4.1 energy band structure

In order to understand the interaction of Si with visible and in-
frared light, it is necessary to study the energy band states of
the electrons involved in the bonding of the atoms. The energy of
electrons generally depends on their crystal momentum, which is
derived from the Bloch equations [15]. Calculating the energies of
electrons using the Bloch formalism in complex crystals like Si can
be done only numerically in general. Figure 3 shows the result of
such numerical calculations for the case of silicon. The structure of
the Si valence bands is very similar to that of other semiconductors
such as GaAs and Ge, with the exception that the bands degen-

17
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Figure 2: The silicon crystals form in a diamond structure. From Ref.
[15].

Figure 3: Band structure of silicon. From Ref. [15].
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Figure 4: A simplified sketch of different possible electron-hole recom-
bination mechanisms in silicon.

erate at the Γ′
25 maximum point in the Brillouin zone because of

the lack of spin-orbit coupling. Like all semiconductors, Si has a
bandgap between the valence band and the conduction band. The
conduction band minimum is displaced from the Brillouin zone cen-
ter Γ, located at 0.85X [27]. The proximity to the X point makes
silicon an indirect semiconductor.

4.2 transitions across the bandgap

The indirect nature of the Si bandgap causes electrons in transi-
tion from the conduction band to the valence band to experience
a change in momentum. There are several possible momentum-
conserving electron-hole recombination mechanisms, which are sket-
ched in Fig. 4. Because momentum is conserved, it needs to be
transferred to either another electron, a phonon, or some type of
dislocation within the lattice. Photons carry only very little mo-
mentum, and therefore radiative transitions in Si must be phonon
assisted leading to radiative lifetimes that are much longer than
those in direct semiconductors. Radiative transitions occurring with-
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out the assistance of phonons are also possible, but only if the
electron is captured in a defect state, e.g., a shallow phosphorus
donor. The difference in momentum for so called zero-phonon tran-
sitions is absorbed by a defect and the energy difference is compen-
sated almost completely by the photon. Phonon-assisted radiative
transitions can occur at several energy offsets, where the phonon
momentum matches the difference in electron momentum. Phonon-
assisted transitions experience an additional frequency broadening
caused by the phonon energy dispersion and the finite lifetime of
phonons [28]. This broadening is very relevant for optical absorp-
tion experiments, making zero-phonon transitions a much preferred
alternative.
Defect-assisted recombination can occur with deep defects un-

der the emission of a phonon, where the momentum difference is
absorbed by the defect state. This mechanism is called Shockley-
Read-Hall recombination. Lastly, an important non-radiative inter-
band transition mechanism is the Auger recombination, where the
electron and hole recombine and transfer the excess energy and mo-
mentum to a secondary electron which is raised to the conduction
band. The secondary electron usually relaxes in small energy steps,
generating many acoustic phonons during the process. This mecha-
nism is dominant at either high free carrier densities or for localized
electronic states such as the phosphorus donor-bound exciton state.
Decay via the Auger mechanism results in many phonons gener-
ated from the excess energy of the carrier, which in turn results
in an increased temperature. This temperature change impacts the
bandgap of silicon, which is demonstrated by precise measurements
of the bandgap in this thesis.

4.3 temperature dependence of the bandgap

Arguably the most prominent feature of silicon is the conveniently
sized energy gap. With a value of ≈ 1.12 eV at 300K, the gap is
large enough to sufficiently suppress thermal generation of carriers
and still small enough to absorb visible light, making silicon an
ideal semiconductor for transistor and light-sensing applications.
The size of the bandgap can be tuned within a certain range, as it
increases for T → 0 to about 1.17 eV. There are several approaches



4.3 temperature dependence of the bandgap 21

0 100 200 300
Temperature (K)

1.12

1.13

1.14

1.15

1.16

1.17

1.18

En
er

gy
(e

V
)

Experiment
Varshni

100 101 102

Temperature (K)

10−6

10−4

10−2

100

102

En
er

gy
sh

ift
(m

eV
)

∝ T 4

101

103

105

107

Fr
eq

ue
nc

y
(G

H
z)

Figure 5: Temperature dependence of the Si bandgap. The data is from
Ref. [30].

to quantitatively describe this temperature dependence, the most
common being the phenomenological Varshni relation [29]

Eg(T ) = E0 −
αT 2

β + T
, (1)

where E0 ≈ 1.17K, α ≈ 7 × 10−4 eVK−1, and β ≈ 1100K are
empirical parameters that depend on the material. Figure 5 shows
a comparison of the experimental data with Eq. 1. The Varshni re-
lation fits the data well, but it has no theoretical foundation. The
formula predicts a quadratic temperature dependence for T → 0
where theory requires a T 4 dependence [25]. However, the Varshni
relation is widely used despite the availability of more accurate the-
oretical alternatives derived from Bose-Einstein statistical factors
[30].
The temperature dependence of the bandgap can be decomposed

into two components, one due to the lattice contraction and the
other due to the electron-phonon interaction [30]. A T 4 dependence
for low temperatures can be derived from the latter using the vol-
ume deformation potential in combination with the Grüneisen pa-
rameters that describe the change in the frequencies of phonons



22 silicon

ω(q⃗, r) depending on the volume of the sample V for a quasi-
harmonic potential. A small uniform expansion of the crystal by
δV shifts the energy of the electronic band extremum En(q⃗) by an
amount

δEn(q⃗) = an(q⃗)
δV

V
, (2)

where an(q⃗) is the volume deformation potential of the energy level
En(q⃗) in the n-th band at the point q⃗ in the momentum space [15].
In practice, there are very few experimental techniques that can

directly measure the volume deformation potential. In order to indi-
rectly measure the volume deformation with optical experiments,
the energy differences between two bands are determined in de-
pendence on hydrostatic pressure, which induces a volume change
according to

p = −B
δV

V
− ∂

∂V

∑
q⃗,r

1
2 h̄ωr(q⃗)− h̄

∑
q⃗,r

∂ωr(q⃗)

∂V

1
exp h̄ωr(q⃗)

kBT − 1
. (3)

Here, p is the hydrostatic pressure, B is the bulk modulus, and
r = 3r′N with N being the number of atoms in the crystal and r′

the number of atoms in the unit cell [31]. Equation 3 contains the
partial derivative of the frequency with the volume. For a harmonic
potential, the frequencies of the phonon modes are independent of
the volume ∂ωr(q⃗)

∂V = 0 meaning the sample volume only depends
on the pressure p. For a quasi-harmonic potential, the Grüneisen
parameters are defined as

γr(q⃗) = − V

ωr(q⃗)

∂ωr(q⃗)

∂V
. (4)

The values for the Grüneisen parameters for Si generally depend
on the phonon branch and momentum, but are mostly very close
to unity [15]. Seeing that the electron-phonon interaction depends
on the Grüneisen parameters, it is possible to approximate the
deformation energy using experimental values of γr.
Simplifying Eq. 3 is possible in the low temperature limit by

using the Debye approximation for the phonon density of states.
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Within the Debye model, the phonon frequencies are approximated
by a linear dispersion1 ωr(q⃗) ≈ qνr where νr is the speed of sound.
The sum of the phonon modes can be approximated by an integral
that includes the phonon density of states2 for each phonon branch
Dr(q) =

V
2π2

q2

νr
[31]. Here, the volume dependency of the phonon

energy in the distributional term of Eq. 3 is neglected because
δV ∂ h̄ωr

∂V ≪ kBT holds within the first-order approximation.
Within the Debye limit, subtracting the temperature dependent

part and using an averaged Grüneisen parameter for all phonon
branches γr(q⃗) → γ̄, as well as an isotropic constant deformation
potential an(q⃗) → ā, Eq. 2 becomes [32]

δE(T )− δE(T = 0) = 9āγ̄
BV0

h̄ωD

(
T

ΘD

)4

×
∫ ΘD/T

0
dx

x3

expx− 1 . (5)

Here, V0 is the volume of the unit cell, ΘD = h̄ωD/kB is the Debye
temperature, and ωD = ν(6π2N/V )1/3 is the Debye frequency.
The ratio ΘD/T is very large for temperatures far below the De-

bye temperature, and the integral approaches the constant π4/15
resulting in a simple T 4 power law for the temperature depen-
dence of the bandgap. Using approximate experimental values for
the deformation potential of ā ≈ −30 eV [33] and the Debye tem-
perature ΘD ≈ 645K, V0 = (0.543 nm)3, γ̄ ≈ 1 as well as the
bulk modulus B ≈ 100GPa, the temperature dependence becomes
E(T )−E(0) ≈ −1 eV(T/ΘD)4. There exists only one experimen-
tal value of the prefactor ≈ −250 eV, which is more than two orders
of magnitude larger [25] than the given estimate. Another more so-
phisticated calculation is shown in Ref. [32] that concludes with
a prefactor roughly sixty times smaller than the experimentally
determined value. A substantial part of this thesis is dedicated
to confirming the T 4 limit of the bandgap at temperatures even
lower than those in Ref. [25] and to measure the prefactor with
greater precision using the bound exciton transitions of the donors
in 28Si:P.

1 This approximation is ideal for the acoustic phonon branches.
2 This is also called the “large crystal approximation”.





5
DONOR BOUND ELECTRONS

Although the electronic band structure describes the energy rela-
tion of free electrons well, doping silicon with, e.g., phosphorus
or boron atoms introduces additional states for holes or electrons
into the system with energies inside the bandgap. Figure 6 shows
the energy levels of some common dopants for silicon. Phosphorus
and boron, which are widely used in the large-scale manufacturing
of semiconductor devices, both have a binding energy of approxi-
mately 45meV. The lower binding energy, compared to hydrogen,
stems from the fact that the extra charge and mass of the donor or
acceptor are shielded by the covalent silicon electrons. The states
of holes and electrons in Si:P are called shallow impurity states
due to their low binding energy. A quantitative description of shal-
low impurities is given by effective mass theory [34]. The effective
mass m∗ describes the charge and mass shielding of electrons us-
ing a parabolic energy-momentum relationship around the band
extremum [15].
The energetic states of shallow donor-bound electrons are lo-

cated directly below the conduction band, as shown in Fig. 7. The
corresponding binding energy can be computed from the hydrogen
1s ionization energy

E = −ER

ϵ2r

m∗

m0
, (6)

where ER ≈ 13.6 eV is the Rydberg energy, m∗ is the effective mass
ratio, and m0 is the mass of the free electron. The effective mass of
conduction electrons in silicon is not isotropic with respect to the
crystal axes, but it is possible to estimate the binding energy with
an effective mass m∗ = (m⊥ + m∥)/2 ≈ (0.191 + 0.916)/2m0.
Together with the relative permittivity of silicon ϵr ≈ 11.4, the
binding energy becomes 58meV [35]. This value has the right or-
der of magnitude, but does not exactly match the experimental

25
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Figure 6: Binding energies in units of eV for some donor and acceptor
states in silicon according to Ref. [27].

Figure 7: Donor bound states of the shallow phosphorus impurity in
silicon. The conduction band has a quasi-infinite amount of states for
the free electron, with a parabolic energy-momentum relation close
to the band edges. From Ref. [15].
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Figure 8: The A1, T2, E probability density functions for the 1s orbital
(left to right accordingly) for the phosphorus donor bound electron.
The orbitals were calculated using multivalley envelope functions
according to Ref. [36].

value of 45meV. The main reason why effective mass theory does
not accurately predict the binding energies is the strong attractive
potential that leads to valley-orbit coupling and deviations from
the Coulomb potential [36]. Figure 8 shows the wave functions for
the donor ground state that were calculated from a multivalley
envelope effective mass approach, which accurately predicts the
binding energies.
For the excited donor states, the situation becomes more com-

plicated because the reduction in symmetry causes some valley-
dependent degeneracies to be lifted. Figure 9 shows the energy
levels of the shallow donor states, including the excited states. On
the left side of Fig. 9 are the labels for the ground state and the first
excited state within the effective mass approximation. The electron
in its ground state has a large overlap with the donor atom, result-
ing in a large valley splitting. Although there are six conduction
band valleys, the levels are still degenerate for each irreducible rep-
resentation of the donor tetrahedral symmetry group A1,T2,E [15].
Valley splitting is also relevant for the 2s state, which has a large
overlap with the donor nucleus, but not for the 2p states, where
there is no overlap [37].
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Figure 9: The energy diagram of shallow donor states without mag-
netic field according to Ref. [37]. The electron has several far-infrared
transitions within the ground state D0, and a donor-bound exciton
transition D0 → D0X.

5.1 fine structure and hyperfine structure

The donor-bound electron and the phosphorus nucleus have a spin
1
2 , which leads to an observable hyperfine-structure interaction and
magnetic field dependence of the energy levels of the four possible
spin orientations. Spin-orbit coupling is negligible for the ground
state energy of the donor 1s,A1 resulting in an isotropic g-factor
of the electron spin with a value of g ≈ 2, very close to the free-
electron value. The electron-nuclear spin system is very well de-
scribed by the Breit-Rabi model [38]. In this model, a nuclear spin
Î is coupled to the electron spin Ŝ and both are coupled to the
static external magnetic field B̂. This quantum mechanical descrip-
tion uses the Breit-Rabi Hamiltonian and gyromagnetic ratios for
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γe γn A ge gn

27.972GHzT−1 17.252MHzT−1 117.53MHz 2 2

Table 4: The constants in Eq. 7 according to Ref. [18]. The g-factors ge
and gn are calculated from the gyromagnetic ratios using γe = geµB

h
and γn = gnµn

h with µB being the Bohr magneton, µn the nuclear
magneton, and h the Planck constant.

electron and nuclear spin, γe and γn, respectively, as well as the
hyperfine constant A:

Ĥ = −γeŜ · B̂ − γn · B̂ +A Ŝ · Î. (7)

Solving Eq. 7 for the eigenvalues of Ĥ with electron spin 1
2 and

γn ≪ γe results in the energies of the electron-nuclear spin system

E (F±,m,B) = ±A

4 +AF
√
1+ 2mx+ x2, (8)

where F = ±1
2 is the projected electron spin, m = 0 corresponds

to antiparallel spin orientation, m = 1 corresponds to parallel spin
orientation, and x = γeB

A is the ratio of electron magnetic field
splitting to the zero field splitting. The upper part of Fig. 10 shows
the four energy levels at a low magnetic field B < 100mT. Both
electron branches scale linearly at higher fields B > 100mT ac-
cording to the electron Zeeman splitting with the hyperfine split-
ting remaining below 117MHz for B < 3.4T. The lower part of
Fig. 10 shows the difference frequency between the F+ and F−
branches. The parallel spin branches follow a linear dependency
for the magnetic field energies, and the antiparallel spin branches
show an anticrossing with the parallel branches for higher field
values. The energy difference between the parallel and antiparallel
spin branches change rapidly for small magnetic field values. There
are two clock transitions at B0 = 0mT and B0 = 84.5mT where
the magnetic field differential vanishes.

d
dB

[
E(F , 0,B)−E(F , 1,B)

]
= 0 (9)
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Figure 10: Energy levels of the D0 electron ground state calculated
from Eq. 8 using the constants in Tab. 4. (a) The hyperfine splitting
A at 0T and the clock transitions of the donor ground state at B0 are
shown on a logarithmic scale according to Eq. 8. Above a magnetic
field of B1, the nuclear spin effectively decouples from the electron
spin. (b) Relative energy differences between nuclear states of the
donor electron spin complex for low magnetic field values.
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At this point, the F+ branch splitting has a global maximum, and
the F− branch splitting has a global minimum:

E(F+, 0,B0)−E(F+, 0,B0) = 56MHz, (10)
E(F−, 0,B0)−E(F−, 0,B0) = 62MHz. (11)

The F+ branches eventually intersect around B1 ≈ 3.4T where the
F− branch energy difference is exactly A for B = B1 in Eq. 8:

E(F+, 0,B1)−E(F+, 0,B1) = 0MHz, (12)
E(F−, 0,B1)−E(F−, 0,B1) = 117MHz. (13)

Above this magnetic field value B1, the electron and nuclear spin
are essentially uncoupled.

5.2 donor bound excitons

Excitons are Coulomb-correlated electron-hole pairs created by in-
terband transitions of electrons in semiconductors. When the sam-
ple contains a small number of donors, excitons are attracted to
these neutral impurities by van der Waals interaction if the temper-
ature is sufficiently low [15]. The binding energy of electron-hole
pairs is lowered in the vicinity of the impurity, and the excitons ex-
ist in an impurity-bound state. In the case of Si:P, a single electron-
hole pair is bound to a neutral phosphorus donor D0, and the phos-
phorus donor-bound exciton is labeled D0X. There exists a more
general theory of bound multiple exciton complexes for donors in
Si with excited states, which can be described using a shell model
[39]. The multiexciton complexes only form under conditions of
very high excitation and thus are not relevant here.

For a single bound exciton D0X in Si:P, the donor electron and
the conduction electron form a spin singlet, leaving only an ob-
servable fine structure splitting of the heavy hole with spin j = 3

2 .
The spin singlet has an increased binding energy of ≈ 5meV com-
pared to the free exciton [40]. Hyperfine interaction is absent for
the D0X due to the non-existing overlap between the exciton wave
function and the donor nucleus. The energies of the light hole and
the heavy hole are degenerate in the ground state of the bound ex-
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28Si:P sample reveals the twelve dipole-allowed transitions D0 →
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fine structure. From Ref. [43].

citon, but the degeneracy may be lifted by biaxial strain or a static
electric field [41]. The wave function of the D0X heavy hole is not
isotropic, but has an angular dependence [19], leading to a different
linear slope of the mj = ±1

2 versus the mj = ±3
2 and therefore

to different g-factors. When the magnetic field points in the [001]
crystal direction, the values of the g-factors are gh1/2 ≈ 0.86 and
gh3/2 ≈ 1.33 [19]. Figure 11 shows the magnetic field dependence of
the D0X fine structure, including the difference in g-factors which
can be seen by the different slopes of the black and red lines in the
upper part. While donor-bound excitons in direct semiconductors
such as GaAs recombine very quickly via radiative recombination
on the order of ≈ 1 ns, the phosphorus donor-bound excitons in
silicon mainly recombine nonradiatively via the Auger mechanism
with a lifetime of ≈ 0.3 µs [42].
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Figure 13: The width of the absorption lines in samples of different iso-
topic and phosphorus or boron impurities. Blue colored markers rep-
resent p-type while the red markers represent n-type samples. The
data is extracted using fits of spectra from Thewalt’s group, con-
tained in the thesis of Yang [44] with sample specifications listed in
Tab. 3. The black lines show the approximate scaling of the widths
Λ.
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5.3 D0X absorption spectrum

While the four D0 energy levels and four D0X energy levels would
possibly allow for sixteen NIR transitions, only twelve of them are
electric-dipole allowed. Figure 11 marks the allowed one-photon
transitions as vertical arrows. Depending on the difference in an-
gular momentum, the absorption responds to either linearly polar-
ized (m = 0) or circularly polarized (m = ±1) light. The allowed
one-photon transitions have an angular momentum difference of
-1, 0, or 1, and are numbered in ascending order according to their
energy difference. Because the exact energy of the D0 → D0X
transition can spatially vary due to different Si isotopes and other
impurity atoms present in the crystal, the linewidth of the donor-
bound exciton transition strongly depends on the sample refine-
ment. However, as Fig. 12 shows, the twelve lines can be well re-
solved spectroscopically for the purest 28Si samples via resonant
laser absorption measurements. Figure 13 shows the linewidths for
the 28Si samples doped with phosphorus (n-type) or boron (p-type)
for different levels of enrichment. In this work, the 28Si:P sample
3.1.6 is used, which has a relatively high doping concentration and,
therefore, a greater linewidth. The sample comes from a batch
of Avogadro material that contains 99.995% 28Si atoms and was
doped with phosphorus by the Leibniz-Institut für Kristallzüchtung
in Berlin (See Tab. 3). Unsurprisingly, the Avogadro 28Si sample
with an impurity concentration of less than 1013 cm−3 [21] shows
the narrowest transition linewidth.
The linewidth has an overall lower bound, which is called the nat-

ural linewidth. The natural linewidth originates from the quantum
mechanical energy-time uncertainty:

∆E · ∆t ≥ h̄

2 , (14)

∆fnat =
1

2πτ . (15)

The lower bound for the linewidth is therefore ≈ 0.5MHz accord-
ing to the measured D0X lifetime of τ = 0.3 µs. The linewidths in
Fig. 13 are much larger than the fundamental limit, which is due
to the inhomogeneous broadening via impurity atoms that create a
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spatial distribution of transition frequencies. Extrapolation of the
data in Fig. 13 to the lowest impurity concentrations yields the es-
timated values required to achieve the fundamental limit, which is
a residual 29,30Si concentration of 10−8 and an acceptor/donor con-
centration of 2× 1011 cm−3. Although these values are impossible
to achieve with current technology, there is another technique to
circumvent inhomogeneous broadening, which is spectral hole burn-
ing. In principle, this technique should yield the natural linewidth,
but even spectral holes were observed to possess linewidths that
are broadened to roughly four times the natural linewidth [45]. The
mechanism of the broadening itself is not yet well understood. An
unusual property of the inhomogeneously broadened ensemble is
the nearly Lorentzian lineshape. In contrast to the observations,
a random spatial distribution of donor frequencies is expected to
result in a Gaussian lineshape. Although there are known mech-
anisms based on donor-donor interactions, such as instantaneous
diffusion, which can lead to Lorentzian frequency distributions [46],
the context of this or other mechanisms and optical spectroscopy
is not discussed in the known literature.

5.4 spin relaxation and dephasing

Relaxation and dephasing of a spin ensemble are traditionally de-
fined within the framework of the Bloch-Torrey equations [47]:

d
dtMx = γ(MyBz −MzBy)−

Mx

T2
(16)

d
dtMy = γ(MzBx −MxBz)−

My

T2
(17)

d
dtMz = γ(MxBy −MyBx)−

Mz −M0
z

T1
(18)

B⃗(t) = {Bx(t),By(t),Bz} . (19)

Here, M⃗ is the average magnetization of the spin ensemble, B⃗(t)
is the time-dependent external magnetic field with a static lon-
gitudinal component, M0

z is the static magnetization in thermal
equilibrium, and γ is the gyromagnetic ratio. Spin diffusion can
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be neglected for donor-bound electrons because they are localized
spins.
The T1 time is denoted as the longitudinal spin relaxation time.

The spin relaxation time measures the duration required to estab-
lish a thermal equilibrium of the spin population with the lattice.
Spin-lattice relaxation involves transfer of energy to and from the
lattice, which usually occurs via phonons. The T2 time is denoted
as the transverse spin-spin coherence time. Spins in the x, y plane
precess around the static magnetic field vector with a frequency
given by Bzγ. The spin coherence time is the period over which
the precessing spins lose their phase relation to each other irre-
versibly. While there is no general relation between the T1 and the
T2 time, the inequality T2 ≤ 2T1 generally holds [47]. Consequently,
the T1 time represents a fundamental limit for the coherence time
which is a crucial parameter for quantum computation as it defines
an upper time boundary over which the qubits can be manipulated
without significant loss of information.

Very often, the T1 time cannot be significantly improved in a
given solid-state system because it is limited by phonon interac-
tions of which the likelihood essentially depends only on the tem-
perature. This is in contrast to the T2 time, which can be dependent
on small magnetic field fluctuations induced by strain or other fac-
tors that strongly depend on device engineering. For this reason,
it is important to look at the spin relaxation time T1 in detail, as
it represents an important physical parameter that quantifies the
latent performance of the device.

5.5 D0 spin-lattice relaxation

Electrons bound to shallow donors were reported to have very
long spin relaxation times more than 60 years ago [18]. The spin
relaxation time was found to be independent of the donor den-
sity for concentrations below 1016 cm−3 and to rapidly shorten for
higher concentrations. There are three relevant processes involved
in the spin relaxation of the donor-electron nucleus system. Figure
14 shows the electron spin relaxation time T e

1 , the nuclear spin
relaxation time Tn

1 and the cross-relaxation time T x
1 . The cross-

relaxation mechanism involves a simultaneous spin flip of the elec-
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Figure 14: A flow diagram of the spin relaxation paths for donors in a
magnetic field according to Ref. [18]. T e

1 , T
n
1 and Tx

1 are the electron,
nuclear and cross-relaxation times, respectively.

tron and the nucleus, with a relaxation time that is long compared
to the electron spin relaxation T e

1 . The nuclear spin relaxation time
Tn
1 is only established as a lower bound of 10 hours [18], but is likely

much longer. The electron spin relaxation time T e
1 has arguably re-

ceived the most attention in existing experiments, but the theory
is still ambiguous regarding the exact mechanisms involved at low
temperatures. An empirical formula describing the temperature de-
pendence of electron spin relaxation below the Debye temperature
of silicon (≈ 645K) and in the low donor concentration regime was
proposed 80 years ago by Castner et al. [24]:

1
T e
1
= ÃB4T + B̃B2T 7 + C̃T 9 + D̃T 13 + Ẽ(B)e−∆/(kBT ). (20)

Here, T is the lattice temperature, H is the static external mag-
netic field, ∆/kB ≈ 123K is the energy splitting between the A1
donor ground state and the T2 excited state (see Fig. 9), and
Ã, B̃, C̃, D̃, Ẽ(B) are empirical coefficients. Several sources describe
theoretical interactions that result in terms of given powers in tem-
perature, including magnetic field dependencies, but fail to pre-
dict the observed empiric coefficients [48–53]. The B4T term origi-
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nates from a single phonon absorption process in which the phonon
energy matches the energy difference of the electron spin states
Ephonon ≈ γeH [50]. The B2T 7 comes from an anisotropic Zee-
man interaction [53]. The T 9 originates from spin-orbit interaction
[50]. The T 13 only exists under the assumption of dilatational de-
formations and is negligible in 28Si:P [48]. Finally, the exponential
term originates from an Orbach-type interaction [50]. The Orbach
mechanism can be understood by considering the T2 excited elec-
tron state as a mixed spin state from where the electron may relax
to the ground state with either spin orientation under equal proba-
bility. The probability of the electron to be excited is given by the
Boltzmann distribution, and therefore it can be easily seen that
T−1
1 ∝ exp(−∆/(kBT )).

5.6 D0 spin-spin relaxation

Long spin coherence times of donor-bound electrons in 28Si:P have
prompted interest in donor electrons as quantum bits. In natu-
ral silicon, the 29Si isotopes with nonzero nuclear spin drive the
decoherence of electron spins due to spectral diffusion. Spectral
diffusion occurs via random magnetic field fluctuations caused by
the 29Si nuclear spins resulting in spin coherence times T2 ≈ 1ms
that are many magnitudes below the limit of the spin relaxation
time T2 ≤ 2T1. In 28Si:P samples, random magnetic field fluctu-
ations are absent, and the main decoherence mechanism becomes
the dipolar interaction between the donor spins [5].
Even at a very low concentration of donors, the interaction be-

tween the electron spins cannot be neglected. If a microwave pulse
is used to drive spin rotations in an experiment to coherently ma-
nipulate and measure spins, a small number of spins are excited
by the microwave field, leading to spin flips. The spin flips change
the local magnetic field and, therefore, the resonance frequency
distribution of the total spin ensemble. This effect is called instan-
taneous spin diffusion of magnetization [46] because in most cases
the pulse duration is negligible compared to the spin relaxation
time. The instantaneous diffusion mechanism causes the spin echo
in a two-pulse experiment to diminish for increasingly longer pulse
durations and thus increases the measured spin decoherence rate
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Figure 15: Optical pumping in a three-level system. The green arrows
represent the donor electron spins.

[54]. The optimal pulse duration with a maximum spin echo ampli-
tude in a two-pulse experiment corresponds to a rotation of 180◦
which reduces the spin coherence to 20ms by instantaneous diffu-
sion [5]. Measuring the intrinsic spin coherence time would require
infinitely small rotation angles, leading to vanishing spin echo am-
plitudes. However, the spin relaxation time can be extrapolated
from longer pulses to a pulse length of zero to extract the intrinsic
coherence time. According to Ref. [54] the instantaneous diffusion
relaxation time T ′

2 in a two pulse echo experiment is

T ′
2 ∝ sin(θ2/2), (21)

where θ is the pulse rotation angle and can be easily extrapolated
using linear regression. Using this technique, an intrinsic spin co-
herence time of 10 s is obtained for 28Si:P with a phosphorus doping
concentration of 1014 cm−3 [5].

5.7 three level system and optical pumping

While resonant RF pulses create coherent superpositions of the
ground states, optical pumping can move ground state populations
away from thermal equilibrium [55]. Thus, it is possible to change
the magnitude of spin magnetization, or equivalently spin polariza-
tion, only by optical pumping. Figure 15 shows a simplified sketch
of the donor-bound electron with a fine structure splitting of gµBB
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in an external magnetic field. The nuclear spin of phosphorus and
the fine structure of the excited state are neglected for simplic-
ity, resulting in an effective three-level system. Resonant pulsed
microwave excitation ultimately must depend on the thermal equi-
librium spin polarization to measure the spin dynamics. In thermal
equilibrium, the ground state polarization of the ensemble is given
by

ρ =
N↑ −N↓
N↑ +N↓

= 1− 2
1+ exp γeB

kBT

, (22)

where N is the population of spins in the up or down state, γe is the
electron gyromagnetic ratio, T is the lattice temperature, and B is
the static external magnetic field. In a typical ESR experiment [5]
where B ≈ 350mT and T = 2K the equilibrium spin polarization
amounts only to approximately 12%.
Efficient optical pumping is based on the fact that the D0X hole

spin relaxes very quickly. Because the hole spins relax within the
lifetime of the donor-bound exciton, electron spin orientations are
randomized after the exciton recombines. By utilizing a high-power
pump laser, it is therefore possible to move the population from one
electron spin state to the other very effectively. When the pump
laser is turned on, increased absorption of the probe laser can there-
fore be observed for the transition with opposite electron spin.
In contrast to the thermal equilibrium polarization in Eq. 22, the

steady state spin polarization induced by resonant optical pumping
depends on the ratio of the pump rate p to the spin relaxation rate
Γs = 1/T e

1

ρ =
1

1+ 4 Γs
p

. (23)

For the case of donors in silicon, pump rates of p ≫ Γs are easily
achievable and spin polarizations very close to unity can be ob-
tained almost independently of temperature and magnetic field. In
an actual experiment, the D0X spin polarization cannot approach
100% for higher pump rates, because the conduction electrons cre-
ated by the Auger decay of the D0X have high excess energy and
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Figure 16: The measured donor electron spin polarization as a function
of the quotient of the spin relaxation time and pump rate. The black
error bars are experimental values and the red line represents a fit
for the pump rate coefficient using Eq. 23.

cause some of the D0 electron spins to relax [56]. Optical pumping
and probing of spins is the main technique used in this work to
measure the spin-lattice relaxation times to a high degree of accu-
racy. Independent of the external magnetic field and temperature,
the experimental spin polarizations achieved are well above 80%.



Part III

SETUP AND METHODS





6
OVERVIEW

Many parts in the given setup need to work in a controlled way in
order to collect the data necessary to provide reliable statements
about the dynamics of spin polarization or bandgap changes. Var-
ious parameters such as environmental temperature and optical
frequencies need to be controlled. The procedures for each experi-
ment are very complex and involve fast, reliable, and synchronous
execution of dozens of individual devices. Precisely probing the fre-
quency spectrum and absorption amplitude of the bound exciton
transitions requires exact and fast control over laser frequencies
with minimal external perturbation. The unique methods used to
implement these requirements are broken down and discussed in
the following sections. The discussion begins with the general lay-
out of the cryogenic optical absorption experiments and further
delves into the details for additional requirements of high-precision
spectroscopy.
The aim of this work is to precisely measure the energy gap

of Si, to determine the spin-lattice relaxation times of donor elec-
trons, and to detect and create persistent spectral holes in the
spectrally broadened donor-bound exciton transition. Each aim re-
quires an individually optimized setup, but some concepts such as
phase modulation absorption spectroscopy and lock-in detection
are common to all setups and are covered in the following sec-
tions in detail. The sections in question may serve as a reference
on how to achieve optimal performance with the given setup and
are supposed to provide insight into the specific parameters cho-
sen to perform the experiments here. The details relating to each
experiment are individually discussed in Part IV of this thesis.

45
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Figure 17: The setup for laser spectroscopy of the donor-bound ex-
citon transition in 28Si:P at very low temperatures. The arbitrary
waveform generator (AWG) and lock-in detector work uniformly to
produce the absorption signal which is evaluated on a computer. The
laser frequency is controlled by the AWG using the laser driver mod-
ulation input and measured using a Fizeau wavelength meter via
a fiber-coupled input. The very low sample temperature of 35mK
is provided by the high-performance dilution refrigerator including
optical access and vector magnets for arbitrary magnetic field direc-
tions.
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6.1 setup and methods

Resonant laser absorption spectroscopy probes the absorption spec-
trum of a sample in order to quantitatively assess the concentra-
tion of certain species. The species investigated in this thesis is the
donor spin complex1 in 28Si:P, which has unique and fascinating
spectral properties and, consequently, poses unique demands on
the spectroscopy setup. The foundation of resonant laser absorp-
tion spectroscopy are a tunable laser and a photodetector which
monitor the frequency- and time-dependent absorption. Figure 17
shows the basic experimental configuration used in this work to de-
tect the D0X absorption spectrum in 28Si:P. The setup consists of
a tunable external cavity diode laser source (ECDL), an optically
accessible cryostat with superconducting vector magnets for low
temperatures of 35mK and high static magnetic fields up to 1.2T,
as well as photodetectors and fiber-based modulators for low noise
measurements. The ECDL output wavelength (see Sect. 8.1) is con-
trolled by adjusting the high-voltage and current control outputs
of the laser driver. The wavelength is measured with a Fizeau-type
wavelength meter (see Sect. 8.4) in order to obtain the frequency-
dependent laser absorption spectrum. Because the amount of light
absorbed by the 2 × 4 × 0.8mm 28Si:P sample is very low (only
about 0.5%), a sophisticated method to recover the laser absorp-
tion signal is required. Signal recovery is achieved here via optical
phase modulation and demodulation with a high-performance lock-
in amplifier (see Chap. 7). The unique setup in combination with
sensitive detection techniques allows to obtain information that is
usually difficult to access by conventional cryogenic spin-resonance
setups [24]. For example, limited to no information on the donor
electron spin relaxation or the dependence of the energy gap at
temperatures below 1K for varying magnetic fields was available
to date. Precise measurements in this regime are very challeng-
ing even with the setup described here because of the difficulty in
maintaining a low sample temperature under simultaneous heating
by the laser absorption. Efficient cooling of the sample at very low
temperatures is provided by a specially designed sample insert con-

1 Only the relative concentration of spins with certain orientation is assessed
here in order to obtain the spin polarization.
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nected to the cold plate of a 3He/4He dilution refrigerator, which
is discussed in the next chapter.

6.2 cryogenics

Experiments on donor-bound exciton transitions in 28Si:P require
cryogenic temperatures T ≲ 20K due to the low excitation ener-
gies of donor-bound excitons [40]. Even lower sample temperatures
are desired to accurately measure the spin dynamics and the en-
ergy gap over a wide temperature range and to detect very long
relaxation times. The cryostat used in all experiments is an Oxford
Triton 400 dry2 dilution refrigerator. The cryostat provides a base
temperature of 35mK including optical access and continuous op-
eration over months, which is crucial for long-term measurements.
Static magnetic fields up to 1.2T can be applied in all spatial
dimensions to investigate the donor spins in the sample by a vec-
tor magnet. Performing experiments with this cryostat requires a
non-magnetic sample insert which can benefit optimally from the
low base temperatures. The specially designed sample insert is dis-
cussed below.

6.3 sample insert

Cooling the 28Si:P sample below liquid helium temperatures effi-
ciently poses a very challenging task. The Kapitza resistance quan-
tifies the heat flow that occurs at the interface between the sample
and liquid helium in a simple immersion bath. Kapitza heat flow
is known to be very efficient and to scale well with higher temper-
atures [57]. Although it is potentially possible to liquify a large
amount of helium inside a dilution refrigerator and cool it below
the boiling point of 4He using the cryogenic cold plate, this method
is difficult to implement and requires a continuous supply of exter-
nal helium due to the volatility of the superfluid phase. Another
option to cool the sample is applying high contact pressure to the
cold plate of the dilution refrigerator [58]. When high contact pres-
sure is applied, there is significant contact heat flow between the

2 Dry means that there is no external supply of liquid helium.
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Figure 18: A three-quarter section of the sample insert for low-
temperature measurements. This drawing is not to scale.

sample surface and the cold plate surface. However, the contact
pressure also leads to strain in the sample, which is undesirable
as it disturbs the experiment. A different option is to use thermal
bonding material that provides low thermal resistance, supports
very low temperatures, and does not contaminate the sample or
cause strain. Unfortunately, no suitable bonding material is known
that matches the unique requirements here.
Instead, efficient thermal interfacing of the sample is achieved

by using a low-pressure helium exchange gas inside a hermetically
sealed sample insert. Figure 18 shows the specially designed cryo-
genic insert. Beryllium copper is chosen as the base material be-
cause it has high strength and thermal conductivity, and is at
the same time nonmagnetic and excellently machinable. Optical
access is provided by windows made from an N-BK7 substrate
with a broadband antireflection coating at a design wavelength of
1064 nm. The windows are glued with epoxy resin3 to a compress-
ing ring with tightly spaced holes for high pressure bolted con-
nections. Sealing the insert is performed by compressing indium

3 Loctite Stycast 2850FT is mixed with 24LV catalyst, air bubbles are removed
using a vacuum container and curing is performed at an elevated temperature.
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Figure 19: A schlieren image of the 28Si:P sample inside the insert
obtained by illumination with laser light from the back. A second
high-power laser is focused onto the edge of the sample insert to
vaporize the superfluid helium and create a bubble. The bubble is
visible on the left side and continuously expands and pops again.

inside the spherical outer edge between the insert and the com-
pressing ring. The compressing bolts are made from brass, which
has a higher thermal contraction than beryllium copper, causing
the compression to increase at lower temperatures. The sample is
loosely fixed inside the insert using a PTFE fixation screw that
contracts stronger than beryllium copper and consequently keeps
strain at low temperatures to a minimum. Connecting the insert
to the cold plate can be done using bolted connections at the top.
The creation of an effective seal for the very volatile superfluid

helium is the most critical part of constructing the sample insert.
The parts need to be cleaned in an isopropyl ultrasonic bath before
the windows are glued and the indium compressing seal is created.
Fortunately, the design of the insert requires the windows to be
glued only once, and the sample can be exchanged by opening one
of the compressing rings and closing them again under a helium
atmosphere. The sample and components of the insert are inserted
into a glove bag that is then sealed and flushed several times to cre-
ate a perfect helium atmosphere. One way to verify a successful seal
is by measuring the temperature-dependent D0X absorption spec-
trum under laser irradiation with increased powers. Another way
is to directly probe the helium content of the sample insert using
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schlieren imaging, as shown in Fig. 19. The slight refractive index
change in liquid helium causes intensity changes in the schlieren
image that can be detected by a camera. It is even possible to cre-
ate expanding superfluid helium bubbles in the sample insert by
local heating with a focussed laser beam. The oscillating behavior
of the bubble impressively demonstrates the creeping film flow and
the vanishing viscosity of superfluid helium.





7
S IGNAL RECOVERY

Performing laser spectroscopy of the donor-bound exciton tran-
sition is challenging due to the low absorption coefficient of the
sample. The low absorption coefficient is necessary because a low
donor concentration reduces undesired donor-donor interactions.
Hence, a sophisticated method is needed to recover the small laser
absorption signal from the background noise. Phase modulation
spectroscopy in combination with lock-in amplification provides
an excellent way to reduce background noise and allows for precise
measurements of the donor-bound exciton transition. The follow-
ing sections discuss the principles of laser absorption spectroscopy
in general and explain the methodology of phase modulation ab-
sorption spectroscopy as well as lock-in amplification.

7.1 absorption spectroscopy

When a coherent planar light wave propagating in z-direction en-
ters a linear optical medium1, the electric field transmitted through
the medium can be expressed as the real part of a complex-valued
electric field function

E(z, t) = ℜ
(
E0ei(kz−ωt)

)
, (24)

where k is the wave vector of the light, ω is the angular frequency,
|E0| is the amplitude of the wave entering the material, and k(ω)
is a complex parameter depending on the medium. For a linearly
absorbing medium, the wave number can be written as

k = (n+ iκ)ω
c
, (25)

1 Examples of non-linear optical media include strongly birefringent crystals,
magneto-optic materials, and meta-materials.

53
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where n(ω) is the linear refractive index of the material and κ(ω) is
called the extinction coefficient. Inserting Eq. 25 into Eq. 24 results
in the following expression for the electric field:

E(z, t) = e−κωz/cℜ
(
E0ei(ωnz/c−ωt)

)
. (26)

When detecting the photocurrent with a photodetector, not the
electric field amplitudes but only the power arriving at the detec-
tor is relevant. Taking the absolute square gives the optical power
which is proportional to the photocurrent:

|E(z)|2 = |E0|2 exp(−2κωz/c) ≡ |E0|2 exp(−αz). (27)

The absorption coefficient is defined as α = 4πω
c and is frequently

used to describe the amount of power absorbed per distance un-
der light transmission at a given frequency2. Equation 27 directly
relates the detected photocurrent to the optical absorption coef-
ficient, which is the basic working principle of laser absorption
spectroscopy. Some results of absorption measurements on Si are
discussed in the next section.

7.2 optical absorption spectra in si

While the band-to-band absorption coefficient exceeds 103 cm−1

easily in Si, donor-bound exciton absorption in the sample under in-
vestigation3 is comparatively low. The absorption coefficient for the
3.1.6 sample is determined at resonance as α ≈ 1.4× 10−2 cm−1,
which is in good agreement with existing measurements [59]. Figure
20 compares band-to-band absorption with resonant D0X absorp-
tion in the investigated sample. Band-to-band absorption approxi-
mately scales with the square root of the photon energy, which is
due to the parabolic band edges [15]. The onset of band-to-band
absorption follows the temperature dependence of the energy gap
and the phonon energy distribution in Si. Although band-to-band
absorption is negligible at low temperatures for the D0X transition
frequency, room temperature absorption is relatively high, which

2 See also the Beer-Lambert law for reference.
3 The sample has a donor concentration of 1.2× 1015 cm−3.
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Figure 20: Band-to-band absorption in Si at different temperatures.
The black dot represents the zero phonon line of the donor-bound
exciton absorption at 1.4K in the 3.1.6 sample under investigation.
The band-to-band absorption data is taken from Ref. [60].

is important for the utilization of Si photodetectors or Si-based in-
tegrated photonic devices in experiments involving the D0X tran-
sitions. In comparison to strong band-to-band absorption, donor-
bound exciton absorption is significantly weaker but also much
sharper in frequency. Figure 20 shows why the use of band-to-
band absorption in Si is suboptimal for detecting the temperature-
dependent bandgap. The indirect nature of the bandgap in combi-
nation with the phonon distribution causes a severe broadening of
the onset of absorption, which leads to high measurement uncer-
tainty. Instead, the energetically narrow D0X transitions are used
to precisely determine the temperature dependence of the bandgap.

A quantitative description of the energetically very sharp D0 →
D0X absorption can be obtained by considering an electric dipole
oscillator model. Within the dipole approximation, a charge q os-
cillates in response to an alternating electric field with frequency
ω. The cumulative response of the electric dipoles in the sample to
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the alternating field influences the relative absorption and refrac-
tive index according to [61]

κ =
Nq2

8ε0mω0

γ

(ω0 − ω)2 + (γ/2)2 (28)

n = 1+ Nq2

4ε0mω0

ω0 − ω

(ω0 − ω)2 + (γ/2)2 . (29)

Here, N is the number of oscillators (donor electrons), m is the
dipole mass, γ is the absorption linewidth (FWHM), and ω0 is
the resonance frequency of the dipole oscillator. The photon en-
ergy is h̄ω0 ≈ 1.150 eV for the zero phonon line of the donor-
bound exciton transition. In practice, the frequency distribution
of D0 → D0X absorption is well described by Eq. 29. The natural
linewidth (≈ 0.5MHz) in the given sample is not observed in di-
rect absorption as a result of the inhomogeneous broadening of the
ensemble. Nevertheless, the frequency-dependent extinction coeffi-
cient and refractive index from Eq. 29 are used to model the phase
modulated absorption spectrum. Figure 21 shows the measured
zero-field D0X absorption spectrum, which displays a multitude
of distinct resonances. The two leftmost lines (singlet state and
triplet state, respectively) originate from the hyperfine splitting
A = 117MHz and the third line (∗) is likely a shifted duplicate of
the hyperfine spectrum due to random local fields4.
While it is possible to directly detect the energetically sharp

D0X transition simply by acquiring the DC absorption signal of a
tunable diode laser via a photodetector according to Eq. 27, this
technique is subject to a significant amount of background noise.
The next section discusses a low-noise method that is ideally suited
to recover the D0X absorption spectrum for the sample under in-
vestigation.

4 A similar splitting is described in Refs. [44, 62] with different sample-dependent
values.
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Figure 21: The zero field no-phonon absorption spectrum of the donor-
bound exciton in the sample under investigation. A = 117.53MHz is
the hyperfine splitting and the asterisk ∗ marks a sample-dependent
splitting due to random field fluctuations [62].

7.3 phase modulation absorption spectroscopy

The background noise of DC laser absorption experiments can be
circumvented by detecting the heterodyne5 beat signal that occurs
when the phase modulated (PM) optical spectrum of the probe
laser is distorted by the spectral feature of interest. Calculating
the relationship between a PM absorption spectrum and a regular
absorption spectrum requires knowledge of the phase modulated
electric field amplitudes. Phase modulation of a carrier field with
frequency ω0 can be described in terms of complex functions as

EPM(t) = E0 exp [i(ω0t+ a sin(ωmt+ ϕm))], (30)

where ωm is the phase modulation frequency, a is the so-called
modulation index, and ϕm is the phase modulation offset. The

5 Heterodyne methods, in contrast to homodyne methods, utilize multiple carrier
frequencies to generate the desired signal.



58 signal recovery

electric field in Eq. 30 can be redefined in terms of Bessel functions
of the first kind Jn via the Jacobi-Anger identity [63]:

EPM(t) = E0 exp(iω0t)
∞∑

n=−∞
Jn(a) exp(in(ωmt+ ϕm)). (31)

From Eq. 31, it becomes apparent that the phase modulated elec-
tric field has multiple frequency components {. . . ,ω0 − 2ωm,ω0 −
ωm,ω0,ω0 + ωm,ω0 + 2ωm, . . . }, each offset by integer multiples
of the modulation frequency. The sidebands of order n have fre-
quencies ω0 ± nωm and power |E0|2Jn(a)2. Figure 22 (a) shows
two exemplary power spectra of the modulated carrier. While a
low modulation index a = 0.1 leads to only two visible sidebands,
a modulation index of a = 2 produces many visible sidebands. The
relative sideband power is shown in Fig. 22 (b).
When the phase modulated electric field is transmitted through

a medium, the sideband n experiences a phase shift φn(ω) due to
the refractive index and absorption δn(ω) related to the extinction
coefficient. The total transmitted electric field then becomes

EPM,T(t) = E0 exp(−δ0 − iφ0) exp(iω0t)×
∞∑

n=−∞
Jn(a) exp(−δn − iφn) exp(in(ωmt+ ϕm)). (32)

Again, only the optical power impinging on a photodetector can be
measured in the experiment. For the case of weak absorption6 it
can be assumed that |δn| ≪ 1 and |φn| ≪ 1. Furthermore, only the

6 The absorption in this work is in all cases less than 0.6%.
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Figure 22: (a) The optical power spectrum for phase modulated light
with carrier frequency ωc and modulation frequency ωm for high and
low modulation depths. (b) The sideband power can be determined
using the squared Bessel functions of the first kind.
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terms at the phase modulation frequency are kept for simplicity.
The detected power can then be approximated as [64]

|EPM,T|2 = |E0|2 exp(−2δ0)×
[
1

+ 2 cos(ωmt+ ϕm)
∞∑
n=0

Jn(a)Jn+1(a)

× (δ−n−1 − δn+1 + δ−n − δn)

+ 2 sin(ωmt+ ϕm)
∞∑
n=0

Jn(a)Jn+1(a)

× (φ−n−1 − φ−n + φn+1 − φn)]
. (33)

Equation 33 contains a DC term that is equivalent to Eq. 27, as
well as a cosine term that depends on the difference in absorption δ
and a sine term that depends on the difference in phase shift φ. The
prefactors of the cosine and sine functions are termed the in-phase
component (X) and the quadrature component (Y), respectively,
and can be conveniently measured using various quadrature de-
modulation techniques7. In an actual setup, the phase shift of the
modulation signal leads to a mixing of X and Y, which is explained
by a rotation of the 2D coordinates. However, the modulation phase
ϕm can be adjusted to compensate for phase shifts and obtain the
distinct X and Y components in Eq. 33 as the detected in-phase
and quadrature components.

It is useful to discuss some results of quadrature demodulation
using the theoretical resonant absorption spectrum for different val-
ues of a and ωm. The theoretical spectrum assumes a Lorentzian
distribution with the extinction coefficient and refractive index
given by Eq. 29. Figure 23 shows different exemplary PM absorp-
tion spectra calculated from the theoretical distribution where γ
is equal to the FWHM. Although the signal for small modula-
tion frequencies is mainly contained in the X component, higher
modulation frequencies also produce a significant signal in the Y
component. Higher modulation indices prove beneficial for the de-

7 Probably the most common technique in experiments is lock-in detection.
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and the spectral distortion on the modulation index a in units of
2π, and modulation frequency ωm in units of γ. (a) The amplitude
of the demodulation magnitude is calculated as R =

√
X2 + Y 2.

There exists a global maximum at a PM frequency of 0.9γ and a
modulation depth of 1.1 full phase rotations. (b) The distortion value
is calculated from the standard error between the measured and the
ideal spectrum and normalized by the integrated ideal spectrum. The
ideal spectrum is multiplied with ωm · a to account for amplitude
scaling. The grey and blue contours mark areas of low distortion
(10%) and high distortion (70%), respectively. The point of maximal
demodulation amplitude has a distortion of almost 70% (See Fig. 23
for comparison). (c) The inset shows the demodulation amplitude
around the contour of low distortion. A value of roughly only 6% of
the maximal achievable amplitude can be reached while maintaining
low distortion.
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modulation signal, but they also lead to a visible distortion of the
absorption spectrum which is shown in Fig. 24. This is especially
the case in combination with high modulation frequencies. For this
reason, it is necessary to carefully consider the choice of modula-
tion parameters for PM absorption spectroscopy experiments. Al-
though for some experiments the larger signal yield is very impor-
tant, the accurate determination of lineshapes should be performed
with lower modulation frequencies ωm ≪ γ and indices a ≪ 1. For
the case of sufficiently low modulation parameters, the demodu-
lated components in Eq. 33 can be further simplified by dropping
every sideband except where n= ±1 [64]

|EPM,T|2 ≈E2
0 exp(−2δ0)×

[
1

+ a cos(ωmt)× (δ−1 − δ1)

+ a sin(ωmt)× (φ−1 + φ1 − 2φ0)
]
. (34)

It becomes apparent that the X component in Eq. 34 is propor-
tional to the frequency derivative of the extinction coefficient given
the limit ωm → 0. On the other hand, the Y component shows two
separate resonances corresponding to the difference in dispersion
between the carrier and sidebands. A further assumption can be
made that the dispersion differences scale in the same way as the
absorption differences8 and thus φ−1 − φ0 + φ1 − φ0 ≪ δ−1 − δ1
holds because the difference in dispersion is taken only between
adjacent modulation bands. This assumption yields the most sim-
ple equation for PM absorption

|EPM ,T |2 ≈E2
0 exp(−2δ0)

[
1+ a(δ−1 − δ1) cosωmt

]
, (35)

where the Y component and, accordingly, the phase shift of the
field are neglected via the argument made previously.
Determining the linewidths of optical transitions with high ac-

curacy should be performed using Eq. 35 in, e.g., a spectral hole
burning experiment in which very narrow spectral features are in-
vestigated. For determining the polarization of donor-bound elec-
trons, a maximal signal amplitude is desired and hence Eq. 33

8 This assumption is founded on the Kramers-Kronig relations [65] which directly
connect the extinction coefficient κ to the refractive index n.
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Figure 25: A flow diagram of lock-in detection.

should be used in conjunction with the optimal parameters given
in Fig. 24. Regardless of the parameter choice, lock-in amplification
yields the optimal signal-to-noise ratio for detecting the in-phase
and quadrature components, which is discussed in the next section.

7.4 lock-in amplification

Lock-in amplifiers are capable of extracting signal amplitudes and
phases in extremely noisy environments. The lock-in method is
based on a homodyne detection scheme combined with low-pass
filtering to measure the amplitude and phase of the signal relative
to a periodic reference. Because the signal is detected in a very
well-defined frequency band around the reference frequency, noise
contributions in all other frequency components are efficiently re-
jected [66].
Figure 25 visualizes the basic working principle of lock-in ampli-

fication in a flow diagram. The detector voltage output (propor-
tional to the optical power in Eq. 33) has frequency components
at the known modulation frequency ωm. After splitting the detec-
tor output, the voltage is multiplied by two local oscillators, which
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are relatively phase shifted by π/2 and therefore orthogonal. The
following time-dependent signal is obtained after multiplication:

Vmix(t) =Vref sin(ωref + ϕref )×
[

(36)
+ VX (t) sin(ωmt+ ϕm)

+ VY (t) cos(ωmt+ ϕm)
]

=
Vref
2 VX (t)×

[
(37)

+ cos((ωref − ωm) + ϕm −ϕref )

− cos((ωref + ωm) + ϕm + ϕref )
]

+
Vref
2 VY (t)×

[
(38)

+ sin((ωref − ωm) + ϕm −ϕref )

+ sin((ωref + ωm) + ϕm + ϕref )
]
, (39)

where VX (t) and VY (t) are the time-dependent amplitude signals
of the in-phase and quadrature components, respectively. The re-
sulting signal after mixing Vmix(t) has components at the difference
and sum between the modulation frequency and the reference fre-
quency. For all purposes in this work, ωm = ωref holds and only
the phase relation between the reference and modulation signal is
of importance9. The low pass filter (LP) is chosen in a way that
the cutoff frequency is at least a factor ten lower than 2ωm, but
high enough to transmit the time-dependent experimental signals
VX (t) and VY (t). If the phases are chosen as ϕm − ϕref = 0, the
detected DC signal after low-pass filtering yields the in-phase and
quadrature components VX (t) and VY (t) of the PM modulation
signal.
The benefits of lock-in detection for low-noise signal recovery

can be understood by looking at the modulated signals and fil-
ters in frequency space. Figure 26 shows two demodulation bands
(dashed blue lines) and experimental signals (red bars) at frequen-
cies ω1 and ω2. The width of the demodulation bands is given

9 This relation is equivalent to locking the phase between the modulated sig-
nal and the reference signal, which is also the reason for the name “lock-in”
amplification. Reference and modulation signals are usually compared in a
phase-locked loop (PLL).



66 signal recovery

Figure 26: A typical power spectrum that includes the signal and dif-
ferent sources of noise in the experiment. Adapted from Ref. [67].

by the LP cut-off frequency. A high cut-off frequency yields wider
bands containing more noise. At lower frequencies, there is an in-
creased noise background scaling with roughly f−α 10. The noise
background also includes various sources of electromagnetic inter-
ference (EMI) and acoustic vibrations. There are two main benefits
of moving the signal modulation to higher frequencies. The first is
the absence of low-frequency interference, such as EMI and f−α

noise, which reduces the background to only white noise. Shot noise
is an important source of such white noise, which limits the SNR
at high laser powers and originates from the particle nature of pho-
tons. Another source of white noise is resistance fluctuation caused
by finite temperatures of the photodetector, which becomes impor-
tant at low laser powers. The second benefit of high modulation
frequencies is the wider possible detection bandwidth, which can
accommodate faster signals and therefore leads to faster measure-
ments. For example, mobile communication systems are advancing
to increasingly higher frequency bands11 to accommodate higher

10 f−α-noise is also called pink noise for the case α = 1.
11 The 6G standard could use 100GHz and more.
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bandwidths and less EMI. The modulation frequency in this work
is limited to f < 100MHz by the bandwidth of the low-noise am-
plified photodetector.
In addition to external interference, a very important source of

noise in PM absorption spectroscopy is the laser itself. Sudden laser
frequency jumps can lead to spurious amplitude noise at the PM
modulation frequency, and wavelength drifts can cause systematic
errors in the measurement. Chapter 8 discusses the laser system
used to achieve minimal interference and the fast, fiber-based PM
modulation method utilized in this work.





8
STABLE LASERS FOR SPECTROSCOPY

A continuous wave laser emits coherent light ideally at a single
frequency. However, this frequency is subject to small temporal
fluctuations, and thus the lasing intensity is fluctuating as well.
Amplitude, frequency, and phase fluctuations result in spurious
sidebands that can severely affect precise measurements or even
render them impossible to perform. For this reason, stable laser
operation is essential in any given experiment performed through-
out this work, and great care has been taken with respect to the
design, operational infrastructure, detection, and control schemes
of lasers.
Fortunately, the D0X transition has a very accessible wavelength

in the near-infrared region at roughly≈ 1078 nm. The near-infrared
wavelength allows for the use of cost-efficient, high-performance
semiconductor lasers, photodetectors, fiber optics, and optical fiber
modulators. The following sections describe the tunable semicon-
ductor lasers used in this work and different means of precisely
measuring and controlling their frequency.

8.1 external cavity diode laser

Semiconductor laser diodes based on the semiconducting compound
material AlGaAs are very inexpensive and reliable [69]. Figure 27
shows the basic operating principle of an AlGaAs diode laser. Elec-
tron hole pairs are generated via electric current mainly within the
optically active AlGaAs quantum well layer. The quantum well
thickness, as well as the aluminum content1, are chosen in order to
achieve maximum photon emission at the desired wavelength. In a
conventional external cavity laser diode (ECDL) design, one facet
of the quantum well layer is terminated with a highly reflective

1 The aluminum content heavily influences the size of the AlGaAs energy gap.

69



70 stable lasers for spectroscopy

Figure 27: Functional principle of an AlGaAs quantum well diode laser.
Adapted from Ref. [68].

coating, while the other facet is anti-reflection coated. External
feedback is applied using dispersive optics, such as a blazed Bragg
grating, to allow lasing at a controllable wavelength.
Figure 28 shows two different ECDL designs based on a con-

ventional gain chip and a surface-angled facet (SAF) gain module,
both of which are used in this work. The first-order diffracted beam
of a blazed Bragg grating2 provides external feedback to the opti-
cal gain medium. The position of the grating can be tuned via a
piezo-electric actuator (PZT). The conventional ECDL gain chip
has a highly reflective end facet as well as a transmissive feedback
facet, and the zero-order reflected beam acts as the laser output.
The SAF ECDL has a much lower reflectivity on the feedback
side and therefore extremely minimized round-trip losses. Where
the conventional ECDL is highly reflective on the opposite facet,
the SAF module is slightly transmissive with an optimized trans-
mission coefficient for maximum output power and stability. An
optical fiber is spliced onto the output facet, allowing the laser to
be conveniently connected to fiber optic devices, including modula-
tors and isolators. The SAF design is a more modern development
in ECDL technology and provides overall improved laser stability
and single-mode power [70, 71].

2 A narrow-band filter can also be used instead of a Bragg grating, leading to a
“cats-eye” configuration [70] which can provide more frequency stability.
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Figure 28: Two different external cavity diode laser designs. The upper
design is based on a conventional gain chip, and the lower design is
based on a surface-angle facet gain module.

As a consequence of the external cavity design, it is only possible
for the diode laser to operate in specific resonant modes that meet
the standing wave condition:

fq =
c

2Lq. (40)

Here, fq is the frequency of mode q, c is the speed of light, and L is
the effective optical path length of the resonator. The optical length
L generally depends on the temperature and laser current due to
thermal expansion of the cavity, atmospheric pressure changing
the reflective index, and mechanical vibrations of the cavity. The
frequency selectivity of the Bragg reflection grating is usually lower
than the mode spacing c/(2L) leading to mode competition and
mode hopping.
There are several options to control the laser frequency and keep

it operating in a single resonant mode. The PZT actuator voltage
can be adjusted, the laser current can be slightly modulated, and
the base temperature of the cavity and gain medium can be con-
trolled. The PZT voltage allows for a wide frequency control on the
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order of 10GHz with a modulation bandwidth of approximately
100Hz. On the other hand, the laser current can be changed very
rapidly with a bandwidth of ≈ 1MHz, but only allows for small
tunability on the order of 100MHz and influences the lasing inten-
sity as an undesired side effect. Cavity temperature tuning is very
slow and unreliable, and thus the cavity temperature is kept with
millikelvin stability at a fixed value.
Optimal frequency control is achieved by dividing the control

output into a high-frequency part and a low-frequency part through
electronic filters. Depending on the task at hand, the lasing fre-
quency may be modulated in an open loop, as is the case for elec-
tron polarization measurements, or in a closed feedback loop, as
is the case for high-resolution spectroscopy. In any case, the fre-
quency of the laser needs to be measured within a certain range
of accuracy, for which there are two methods used here, Fizeau
interferometry and heterodyne interferometry with a stabilized ref-
erence laser. Both methods are discussed in the following sections.

8.2 fizeau interferometer

In this work, a commercial Fizeau interferometer3 is used to mea-
sure the absolute frequency of light. The light is coupled into the
instrument via fiber and then collimated via a lens, before entering
the solid-state Fizeau interferometers. The interference pattern is
imaged by a cylindrical lens onto a Si-based CCD camera as shown
in Fig. 29. The recorded interference pattern is analyzed to obtain
the laser frequency with a nominal precision of 1MHz. However,
without continuous recalibration of the instrument, the detected
frequency can drift on the order of 10MHz within days due to
changes in atmospheric pressure and temperature. The device has
a fiber switch attached and therefore allows for simultaneous de-
tection of two different laser frequencies.
While the wavelength meter allows for controlling laser frequen-

cies via a PID feedback loop, there are several downsides to this
method. On top of drift with atmospheric pressure and tempera-

3 HighFinesse Ångstrom WS Ultimate 2 Wavelength Meter
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Figure 29: Schematic of a Fizeau interferometer used to measure the
wavelength of coherent light.

ture4, the frequency detection bandwidth is very low on the order
of 100Hz. Due to the low detection bandwidth, fast mode hopping
cannot be suppressed, and scanning the frequency is relatively slow,
leading to increased noise and measurement time. For this reason,
a different method based on a high-finesse optical cavity is used
for precise laser frequency control, which is described in the next
section.

8.3 high finesse optical cavity resonator

Ultrastable optical cavities are a standard tool for stabilizing laser
systems used in high-resolution spectroscopy. The resonance fre-
quencies of optical cavities depend on the longitudinal and trans-
verse spatial modes and are given for the case of circular symmetry5
by [72]

fplq =
c

2L

[
q+

2p+ l+ 1
π

arccos√g1g2

]
, (41)

where p and l are the transverse mode indices, q is the longitudinal
mode index, L is the optical mirror spacing, c is the speed of light,
and gi = 1−L/Ri are parameters depending on the radii of curva-

4 With coefficients −0.58(3)MHzPa−1 and −14(2)MHzK−1, respectively.
5 The transverse spatial modes in Eq. 40 can be neglected because the gain

medium is too small to support higher-order spatial modes.
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Figure 30: The home-built optical cavity resonator operating in a
higher-order spatial mode. The two mirrors, as well as the frame
machined from ULE glass, are visible as shadows in the picture.

ture Ri
6 of the two cavity mirrors. For a planar Fabry-Perot cavity,

g1g2 = 1 holds and all transverse mode frequencies are degenerate.
In practice, however, it is not possible to produce perfectly flat
mirrors, and the uncertainty in curvature causes slight frequency
changes, which lead to mode competition and frequency instability.
Therefore, the optical cavity used in this work has a plano-concave
mirror setup where g1g2 = 0.725. In this setup, the frequency de-
generacy of the cavity is effectively lifted, and stable operation in
a single spatial mode is possible without problems. The optimal
choice of spatial mode for practical operation is the fundamental
mode (p = l = 0) since it best matches the original spatial intensity
distribution of a Gaussian laser beam.
To achieve optimal frequency stability of a fundamental longitu-

dinal cavity mode, the correct choice of material and geometry for
the resonator is of utmost importance. Ultra-low expansion (ULE)
glass and a cylindrical cavity design are the best option here, as

6 R1 ≈ 3 km, R2 = 400mm and L = 110mm, for the home-built resonator.
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Finesse Free spectral range Zero crossing temperature
26× 103 1.362GHz 19(3) ◦C

Frequency drift Linewidth Temperature stability
1 kHz h−1 4 kHz 1.7 kHzmK−1

Table 5: Performance parameters of the optical cavity resonator.

they allow for a cavity with the lowest daily drift [73]. The low daily
drift is achieved by the minimal thermal expansion of ULE glass
at room temperature in combination with thermal decoupling and
precise temperature control. The resonator is additionally kept in
an ultra-high vacuum environment at all times using an ion-getter
pump, thereby eliminating any atmospheric absorption or refrac-
tive index fluctuations. All these precautions combined lead to a
daily drift on the order of 10 kHz which is more than sufficient for
any experiment carried out in this work. Table 5 shows the mea-
sured parameters of the optical cavity. Here, the free spectral range
(FSR) is the frequency spacing between two longitudinal modes in
Eq. 41, and the finesse can be calculated from round-trip losses
2π/ρ where ρ ≈ 24× 10−5.

Locking the laser to any of the fundamental modes is possi-
ble around the design wavelength of 1.03(7) µm where the cav-
ity mirrors are highly reflective. In practice, a frequency mode
very close to the D0X absorption line (278.0332THz) is used to
allow frequency measurement close to the D0X resonance. The
next section shall discuss how to use the very stable fundamental
resonator modes to create a laser frequency reference to perform
high-precision spectroscopy experiments using the D0X transition.

8.4 pound-drever-hall laser stabilization

The Pound-Drever-Hall (PDH) method is a sophisticated technique
for stabilizing a laser using the reflected optical power of a high-
finesse cavity resonator. While the frequency dependence of the
reflected laser power is symmetrical around the cavity resonance,
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Figure 31: The setup used to stabilize a laser using the PDH tech-
nique. Mixer, local oscillator, and PID are integrated in the Toptica
FALC110 module specifically designed for Pound-Drever-Hall fre-
quency control. The laser current is modulated using the fast modu-
lation input of the Koheron CTL200 digital laser diode controller.

phase modulation of the laser can be used to create an asymmetri-
cal error signal which is ideally suited for frequency control.
Figure 31 shows the setup that is used to detect the cavity re-

flection signal. The laser is coupled into a fiber, optically isolated,
and phase modulated via a fiber electro-optic modulator (EOM).
A half-wave plate is used to adjust the output powers of the polar-
izing beam splitter (PBS) cube, where one output is used to mea-
sure the absolute laser frequency using a wavelength meter, and
the other output is sent into the cavity. The double pass of the
quarter-wave plate after the PBS effectively rotates the reflected
light polarization by λ/2 and causes it to be reflected onto the
photodiode PDrefl. A local oscillator at the phase modulation fre-
quency is used to demodulate the reflected signal to obtain a PM
spectroscopy signal via quadrature demodulation (see Sect. 7.4).
The PDH error signal is fundamentally very similar to a PM ab-

sorption spectroscopy signal [74]. Figure 32 (b) shows the reflected
optical cavity power and the resulting PDH error signal. The PDH
signal can be readily calculated from the quadrature component
Y in Eq. 33 and the cavity transmission profile. The resonance
width is scaled up in Fig. 32 for visual clarity. The actual reso-
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Figure 32: (a) The reflectivity of the cavity resonator. The width of the
transmissive bands is exaggerated for visual clarity. (b) The Pound-
Drever-Hall signal results from the PM signal demodulation. The
sideband signal is shifted by the phase modulation frequency ωm.

nance linewidth of the cavity in the experiment is γ ≈ 4 kHz and
the modulation frequency is ωm = 20MHz. Because the modula-
tion frequency is high ωm ≫ γ and the modulation depth is small
a ≈ 0.1, the sideband spectrum of the modulated laser is directly
reflected by three distinct resonances in the PDH signal correspond-
ing to the strong carrier and the two weaker sidebands. Locking the
laser frequency can be performed very effectively using the steep
slope of the PDH signal close to the carrier resonance (Fig. 32 b) as
feedback for the laser frequency control. In principle, it is also pos-
sible to lock the laser in the transmission of one of the sidebands,
which allows to create a variable offset of the carrier frequency and
the resonance of the cavity by tuning the modulation frequency
[75]. However, this approach has issues with frequency slew rate
and is technically difficult to implement. A different method for
laser frequency tuning is described in the next section, where the
laser is locked into cavity resonance, and a tunable frequency offset
is derived from a scannable laser by stabilizing their relative phase.
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Figure 33: The flow diagram of an optical phase-locked loop (OPLL).

8.5 heterodyne beat-lock interferometer

An optical phase-locked loop (OPLL) is a feedback control sys-
tem that allows frequency stabilization between two lasers with
an absolute, adjustable offset. Figure 33 demonstrates the work-
ing principle of a basic OPLL. A heterodyne beat signal is created
by interference of two lasers inside a Mach-Zehnder interferometer
(MZI) and detected via a fast photodetector. The relative phase of
the beat signal and a stable reference oscillator is continuously de-
tected by the phase comparator and output as a phase error signal.
The error signal passes through a loop filter and is then supplied as
feedback to the laser frequency control. The loop filter acts to ad-
just the frequency response of the error signal to remove undesired
instabilities in the laser frequency control.
A special technique of phase locking is fractional synthesis. When

a fractional phase comparator is used, it is possible to synthesize
frequencies that are fractional values of the reference oscillator fre-
quency. Fractional synthesis is performed by dividing the beat fre-
quency and the reference oscillator frequency individually. The frac-
tional synthesizer used in this work is a Hittite HMC703LP4E chip
that works at high frequencies up to 8GHz with programmable
frequency output and support for arbitrary frequency waveforms.
With a reference frequency of 20MHz and a fractional resolution
of 24 bits, the programmable frequency steps can be as low as
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Figure 34: The setup for stabilizing of a heterodyne beat signal be-
tween the scanning laser and the reference laser. The reference input
originates from the PDH setup in Fig. 31.

1Hz which is more than sufficient for any experiment carried out
here. Both the reference oscillator and synthesizer are integrated
on a circuit board specifically designed for this setup. The loop fil-
ter used here is a Koheron PI200 adjustable proportional-integral
laser servo controller, which has a fast output for current modula-
tion and a slow output for PZT modulation of the ECDL.
Figure 34 shows the setup infrastructure which provides precise

and reliable frequency modulation for high-speed laser absorption
spectroscopy experiments. The reference laser is locked via the
PDH method to a ULE cavity (see Sect. 8.3 and 8.4). A fiber-
based Mach-Zehnder interferometer (MZI) with outputs connected
to fiber-coupled 5GHz bandwidth photoreceivers are used to cre-
ate the electronic beat signal between the two lasers. The spectrum
analyzer detects the OPLL output spectrum during operation, and
the wavemeter detects the absolute frequency and relative offset of
the lasers.
The scanning speed and stability of the setup are verified by

the measurements shown in Fig. 35. The laser is scanned around
a center frequency of 700MHz to verify the accuracy of the rapid
frequency ramps. A fast continuously triggered FFT spectrometer7
records the MZI output signal to obtain the time-dependent beat
frequency. A high slew rate of 400GHz s−1 can easily be achieved,
which is ideal for low-noise, time-resolved measurements. Opera-

7 The oscilloscope input of the Zurich Instruments UHFLI is used with a sample
rate of 1.8GHz.
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Figure 35: The frequency spectrum of the beat signal. (a) The beat
signal is detected during a fast frequency scan and converted to a
time-dependent frequency spectrum using a fast Fourier transform
(FFT) spectrometer with a sampling rate of 1.8GHz. (b) The beat
note between reference and scanning laser for a set frequency of
900MHz. The frequency spectrum is acquired by an R&S 3000FSL
swept spectrum analyzer with a resolution bandwidth of 300Hz and
a sweep time of 100ms.

tion at a constant programmable frequency offset is possible with
a relative frequency stability of 2.8 kHz, which is very close to the
estimated reference cavity linewidth of 4 kHz.
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9
BANDGAP TEMPERATURE DEPENDENCE

9.1 introduction

There exists a direct connection between the optical transition fre-
quency of the donor-bound exciton and the Si bandgap. With this
connection, it is possible to use the narrow frequency D0X transi-
tions in 28Si:P to precisely determine the temperature dependence
of the bandgap and measure the local lattice temperature. The
temperature dependence of the bandgap is measured here in the
regime from 0.05K to 3K to improve the temperature range, pre-
cision, and time resolution of existing data concerning the temper-
ature dependence of the bandgap [25]. The absolute parameters of
the behavior of A ·T p in the low temperature limit are verified and
compared with the existing theory [32] yielding p =4.03(5) with
high confidence. However, a discrepancy for A by a factor of ap-
proximately 30 compared to the theoretical value is extracted. The
specially designed fast and precise laser scanning setup allows for
precise measurement of the bandgap energy and facilitates time-
resolved D0X absorption measurements as a fast and contactless
local thermometer. Together with the precise knowledge of the tem-
perature dependence of the spin-lattice relaxation times [76], such
a local thermometer can be used to verify the performance limi-
tations of quantum technology based on electron donor spins in
28Si:P.

83
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9.2 setup

The sample 3.1.6, with specifications given in Tab. 3, is placed
inside the helium exchange gas insert described in Sect. 6.2. The
insert is filled with 4He at 1 bar pressure at room temperature be-
fore sealing. High-resolution PM laser absorption spectroscopy is
used for precise measurements of the D0X absorption frequency.
Figure 36 shows the experimental setup for PM absorption mea-
surements. A reference laser is locked to the ULE cavity with the
PDH method (see Sect. 8.4). The scanning laser frequency is stabi-
lized relatively to the reference laser frequency via an OPLL setup
(see Sect. 8.5). The scanning velocities for this experiment are kept
at 200GHz s−1 and the laser is adjusted to allow for mode-hopping
free scans over the zero-field D0X spectrum. At zero magnetic field,
the spin dynamics can be neglected due to the fast spin relaxation
of the electron donor spin complex. At higher magnetic fields, op-
tical spin pumping leads to a build-up of spin polarization which
is undesirable as the spin population needs to be actively pumped
back to probe the transition. The wavelength meter is used ini-
tially to lock the reference laser to the cavity resonance close to
the zero-field absorption spectrum and to roughly adjust the bias
and feedforward current of the scanning laser around the desired
frequency range. Setting the PM frequency to 41MHz suppresses
interference fringes in the detected spectrum which originate from
residual amplitude modulation in the fiber modulator. This exact
modulation frequency matches the free spectral range of the fiber
modulator and therefore causes the demodulated difference signal
between the sidebands to vanish [77, 78] which improves the signal
quality. Above-bandgap excitation (ABE) is applied via an ECDL
laser tuned to 1022 nm wavelength. Complete absorption of light
in the sample is guaranteed in very good approximation at this
wavelength and therefore the ABE laser functions as a controllable
local heat source.
The scanning laser is swept multiple times around the steep low-

frequency flank of the zero-field absorption spectrum (see Fig. 21)
with 400MHz range. The resulting demodulated signal is averaged
over each sweep into a single low-noise spectrum. Frequency scan-
ning is performed by triggering the PLL circuit at a constant rate
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Figure 37: The measured dependence of the spectrum amplitude and
center frequency on probe laser position relative to the sample, where
black dots mark the probed positions. (a) The demodulation ampli-
tude. (b) The central frequency shift in the regions of high ampli-
tude.

using the AWG sequencer which results in a symmetric, triangular
waveform devoid of any interruptions in-between the scans. Data
acquisition and averaging are achieved by using the sequencer to
trigger a digital oscilloscope1 connected to the fast lock-in demod-
ulation output in-sync with the frequency scan. The data from
the oscilloscope is acquired and evaluated using a custom python
program. The frequency shifts are computed with least squares op-
timization of the residuals between the measured spectrum and a
reference spectrum shifted by a variable frequency. The low-noise
reference spectrum is acquired by averaging a large number of spec-
tra in a small temperature range. This technique works well for
detecting small relative shifts, as is the case in this experiment.

1 Meilhaus ME-5200 PCIe card with 2MHz sample rate and 16-bit resolution
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Figure 38: The effect of the mixing chamber pressure on the detected
D0X frequency.

While all the mentioned precautions act well to reduce the sta-
tistical error in the detected spectrum, the main systematic error
originates from a probe laser position-dependent frequency shift.
The positional amplitude and frequency variations of the spectrum
are measured for different probe laser positions and are shown in
Fig. 37. The patterns in the signal amplitude variations are be-
lieved to arise from a combination of optical aperture limitations
and laser interference within the sample. The origin of the strong
positional frequency shift might be sample strain or inconsistent
doping concentrations, but it is ultimately unknown.
The positional frequency shift translates into a temperature-

dependent shift mainly due to the following mechanism: The mix-
ing chamber of the dilution refrigerator is filled with a 4He/3He
mixture at a temperature-dependent pressure. The He pressure
acts as a force upon the refrigerator construction and therefore
leads to slight mechanical deformations and positional shifts. At
temperatures below 0.7K, all the helium mixture must be con-
densed inside the mixing chamber to provide sufficient cooling. To
achieve very low temperatures down to 35mK, the mixing cham-
ber additionally needs to be heated to evaporate more 3He which
results in a high pressure up to 3 bar. Figure 38 shows the fre-



88 bandgap temperature dependence

quency shift caused by pressure changes in the mixing chamber.
By regulating the still heater with a digital PI feedback loop to
a stable chamber pressure at 1.000(2) bar, and keeping the base
temperature stable with a secondary cold plate heater, it is pos-
sible to achieve temperature control while maintaining constant
mixing chamber pressure. With a slope value of 2.2(1)MHzbar−1,
the pressure-dependent shift is well suppressed for the given stabil-
ity of 2mbar. This method cannot be used for temperatures above
0.7K, however, since the still heater is turned off and only part
of the He mixture is condensed into the chamber for decreased
cooling. With less of the He present, the still heater cannot be
used to control the chamber pressure in this temperature regime.
In addition to the lack of pressure control at higher temperatures,
slight variations of about 0.5MHz in the temperature-dependent
frequency shift persist even under stable pressure. The origin of
the residual shift is unknown, but it is probably caused by thermal
expansion inside the cryostat. The residual shift is well suppressed
by regulating the probe laser position relative to the sample us-
ing two additional lasers that measure the x and y positions of the
sample insert. Positional feedback is applied to a PZT actuated mir-
ror2 via a digital PI control loop. The final frequency deviations
that include all the precautions mentioned above are estimated at
0.2MHz. The maximal absorbed power of the probe laser is only
roughly 0.32 µW which excludes any significant heating of the sam-
ple3, and therefore the cold plate temperature well represents the
Si lattice temperature.

9.3 temperature dependence of the bandgap

Figure 39 shows the frequency shift of the bound exciton transition
as a function of the cryostat base temperature. The data shows a
monotonous decrease at the lowest and highest temperatures and a
distinct dip around 1.5K for the intermediate temperatures. This
behavior can be understood by not only taking into account the

2 The PZT mirror control is not used for time-dependent temperature measure-
ments, and the positional control lasers are not shown in Fig. 36 for simplicity.

3 This is evident from the time-dependent ABE measurements discussed in the
next section.
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Figure 39: Temperature dependence of the bandgap of silicon.

theoretical limit of T p, where p = 4 for T → 0 according to Debye
theory, but also a temperature-dependent pressure shift khP (T )
caused by the helium exchange gas. The theoretical He exchange
gas pressure is calculated from the Van der Waals equation for
He above the dew point, and from the T58 temperature scale [79]
below the dew point. The pressure-temperature relationship of the
exchange gas is shown as an inset in Fig. 39 and reveals a sharp
drop around the dew point at 1.5K which agrees well with the
observations. The resulting functional relationship for the fit shown
in red can be written as

δ(T ) = A · T p + kh · P (T ), (42)

where P is the exchange gas pressure, A is the electron-phonon cou-
pling coefficient, p = 4 for T → 0 according to the Debye theory
(see Sect. 4.3), and kh is the coefficient of hydrostatic shift. The fit
yields p =4.03(5), which is well in accordance with the Debye the-
ory. The optimized pressure coefficient kh =0.64(5)MHzmbar−1

disagrees in sign and magnitude with existing measurements [80]
which might be due to the much lower hydrostatic pressures. The
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Figure 40: Temperature dependent frequency change before and after
SiO2 removal. The higher uncertainty of the data with SiO2 removed
is due to a shorter measurement duration with a decreased number
of averages.

exchange gas pressure in the insert is at maximum 10mbar, whereas
the pressure in Ref. [80] is on the order of 10 kbar. An alternative
explanation for the varying kh value is sample strain. While the
insert is designed to mount the sample strain-free, there might be
some residual strain caused by the SiO2 surface oxide which results
in changes in the pressure coefficient. To test this proposition, the
oxide was removed by hydrofluoric acid in a control measurement
which is shown in Fig. 40. The control measurement indeed reveals
a significant frequency change related to the pressure-dependent
shift.
By comparing the dashed green line where kh = 0 in Fig. 39 to

the fit (red line), it becomes clear that the relative impact of the
exchange gas pressure is largest around the dew point where the
pressure drops sharply. For larger temperatures, the pressure only
increases linearly in the exchange gas insert and the overall pressure
is much less compared to a liquid helium immersion bath where the
pressure increases exponentially. The impact of hydrostatic pres-
sure on the measured parameters here is therefore much lower com-
pared to Ref. [25], where the frequency shift is dominated by the
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4He vapor pressure. The high vapor pressure leads to increased
uncertainty in the phonon coupling parameter because the hy-
drostatic pressure shift correlates with the temperature-dependent
shift. The fit for this work yields A = −0.90(5)MHzK−p, which is
roughly only half the value compared to Ref. [25]. The measured
value A is closer to the theoretical phonon coupling coefficient,
but still leaves a discrepancy of a factor 30. The factor of two dis-
crepancy between the phonon coupling coefficient measured here
and the one given in Ref. [25] is verified in a secondary control
experiment with a higher temperature range up to 5K and de-
creased absolute frequency resolution. This secondary experiment
rules out the possibility of an experimental artifact related to the
low frequency shifts in the regime below 3K.
It is important to note that around 0.9K, the boiling 4He/3He

mixture causes additional pressure, and consequently positional
fluctuations of the sample that cannot be suppressed by pressure
regulation or positional feedback control. The relevant area is marked
as gray in Fig. 39.

9.4 sample heating and cooling dynamics

Presented in the following are the results of capturing the fast
dynamics of the D0X frequency using the high-velocity scanning
setup. The measured frequency shifts are also used to detect the
local lattice temperature in a contactless measurement via Eq. 42.
To heat the sample locally, above bandgap excitation is used to cre-
ate free carriers that relax through the Auger effect and subsequent
phonon emission [56]. The AWG sequencer in Fig. 36 controls the
ABE laser uptime with a resolution of 100 µs synchronously to the
frequency scans to provide precise modulation of the heat input.
Figure 41 shows the change in D0X frequency after switching the

ABE on and off periodically every 16 s. Switching the excitation
on results in the neutralization of charged ions, which changes the
quasi-static electric field around the donor. After the excitation is
turned off, the donors and acceptors become slowly ionized again
due to donor-acceptor recombination. The frequency shift over time
is multi-exponential and has a long time constant, which agrees
with existing donor-acceptor photoluminescence measurement in
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Figure 41: The D0X resonance frequency dynamics after switching the
ABE excitation on and off. The inset shows a persisting frequency
offset, even when the ABE is switched off at t = 0. For low ABE
powers, the electric field shift ∆fE is dominant, whereas for high
ABE powers the temperature shift ∆fT becomes large as well.
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low doped Si [81]. A significant Stark shift under absence of ABE
for the 3.3.6 sample (see Tab. 3) is also reported in Ref. [44].
The frequency change according to the electric field of the donor

bound exciton level can be estimated using the measured Stark
shift of the D0X transition of 0.80(17)MHz cmV−1 [41]. The elec-
tric field distribution at the donor due to ionized donor-acceptor
pairs can be calculated via the random distribution of dipoles. The
average electric field in this approximation is [82]

Ē =
Γrdq

4πϵ0ϵr
r30, (43)

where Γr ≈ 1.081 is the half width of the Lorentzian field distri-
bution, d is the average dipole length, and r0 is the average dis-
tance between the dipoles. The dipole length and distance in the
investigated sample can be calculated from the donor concentra-
tion ρD and the acceptor concentration ρA, respectively. Although
the donor concentration is well determined at 1.2× 1015 cm−3, the
acceptor concentration ranges somewhere between 1× 1012 cm−3

and 1× 1014 cm−3. Using the average separation of (4πρ/3)−1/3

resulting from a Poisson distribution of donor and acceptor dis-
tances, the measured Stark shift of 12.1(2)MHz yields an acceptor
concentration of nA = 4.6(10)× 1013 cm−3. This value agrees well
with the acceptor concentration measured in Ref. [83] for a 28Si
sample from the same growth facility. There is another small fre-
quency shift of roughly 3MHz which persists when the ABE is
switched off. This effect, visible in the insert of Fig. 41, depends
on the intensity of ABE and can be attributed to the screening of
long-lasting surface electric fields by free carriers.
With an increase in the ABE power, the neutralization of the

ions becomes faster and the temperature change of the sample
becomes relevant as well. In contrast to sample heating, the fi-
nal amount of neutralized ions does not increase significantly with
higher ABE power. The electric field frequency shift caused by the
ions can therefore be subtracted from higher-power measurements
to obtain the temperature-dependent frequency shift only. Figure
42 shows the changes in sample temperature for switching on and
off the ABE with 0.6mW power. There is a striking difference be-
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Figure 42: The lattice temperature dynamics calculated according to
Eq. 42. The absorbed power during sample heating is 0.6mW.

tween the heating and cooling dynamics, which can be explained
by considering the two different sample cooling mechanisms. On
the one hand, cooling is performed by convective exchange with
the 4He gas4 and, on the other hand, by proximity to the cop-
per surface of the sample insert. When the sample is heated, the
temperature rises slowly because the exchange gas has a finite ther-
mal capacity and transfers heat to the sample insert continuously.
When the heating is interrupted, the sample cools down quickly be-
cause there is only proximity heat transfer to the copper and not to
the warmer exchange gas. To quantitatively describe this behavior,
a linear heat transfer model is used, which is shown in Fig. 43. This
model includes the sample temperature TS , the exchange gas tem-
perature TH , the base temperature TB , and the heat transfer due
to the ABE excitation Q̇L. A quantitative description of the heat

4 The Rayleigh number is estimated from the insert geometry to surpass 105,
which is in the extremely turbulent regime. High Rayleigh number convection
using cold helium gas is also investigated, e.g., in Ref. [84].



9.4 sample heating and cooling dynamics 95

TSTB

TH Q̇L

RH,B
RS,H

RB,S

Figure 43: A flow diagram of the heat transfer model used to explain
the results in Fig. 42. The corresponding set of differential Eqs. 44
to 46 quantitatively describe the heat flow.

transfer can be obtained by solving the following set of differential
equations

ṪB = 0, (44)

ṪSCS =
(TB − TS)

RB,S

+
(TH − TS)

RH,S
θ(TS − TH) + Q̇L, (45)

ṪHCH =
(TB − TH)

RB,H

+
(TS − TH)

RH,S
θ(TS − TH), (46)

where Ri,j are the thermal resistances, Ci are the thermal capaci-
ties, and θ is the Heaviside step function. Simulating the heat flow
is performed by calculating CH from the specific heat of an ideal
gas and the volume of the sample insert. CS is taken as the spe-
cific heat of Si in the Debye limit [85] multiplied by the sample
mass. The thermal resistances Ri are optimized to accurately de-
scribe the time dependence of TS in Fig. 44. The simulation result
with optimized boundary resistances matches the slow rise from
exchange gas convection observed in the experiment and the rapid
rise and fall due to the small heat capacity of the sample. The
thermal capacities and optimized resistances are shown in Tab. 6.
Very fast ABE modulation isolates the proximity heat transfer

from the slow heating of the exchange gas due to the small heat
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Figure 44: The measured temperature response for 1.5 s periodic modu-
lation of the heat flow with 0.36mW peak absorbed power and a base
temperature of 2.0K. The slow rise of the local maxima is caused by
an increase in exchange gas temperature.

Absolute Specific
(mKW−1) (mKW−1 cm−2)

RH,B 2.0(1) 0.20(1)
RS,H 1.0(3) 4.7(3)
RB,S 1.0(1) 31(3)

(mJK−1) (CV , J g−1K−1)
CS 1.3× 10−8T 3

S 8.6× 10−7T 3
S

CH 1.75 3.1

Table 6: Thermal resistances and capacities used to solve Eqs. 44 to 46
with heat flow Q̇L according to Fig. 44.
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Figure 45: Results of fast ABE modulation with only 20ms period and
extraction of the temperature differences for different base tempera-
tures. The green line is a quasi-linear fit according to Eq. 47 and the
red and blue lines are logarithmic fits.

capacity of the sample. Following this observation, another experi-
ment is performed where the ABE is modulated with a 20ms period
in order to extract the temperature-dependent thermal resistance
between the sample and the copper surface. The fast modulation
allows to separate the ABE neutralization effect of ions by assum-
ing a steady-state neutralization given by the average ABE power
applied. Subtracting this steady-state frequency using the known
base temperature and Eq. 42 yields, with high accuracy, the tem-
perature difference between the base and the sample. Figure 45
shows the resulting temperature differences for fast modulation
of ABE depending on power and base temperature. For the base
temperature 2.0K, which is above the dew point, the behavior is
quasi-linear. The quasi-linear behavior can be understood in terms
of gas-gap conductance, where the heat flow is given by [86]

Q̇ =
f

12
kB
σ

v̄
∆T

d
=

f

12
kB
σ

√
8kBT
πm

∆T

d
. (47)
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Figure 46: The relative sensitivity of different contactless temperature
sensing techniques. The polarization measurement assumes an ex-
ternal magnetic field of 0.1T and 0.1% absolute accuracy [87]. The
relative accuracy for the electron spin relaxation time T1 is fixed at
1%, and the absolute accuracy of the D0X frequency measurement
is 0.2MHz.

Here, f = 3 are the three translational degrees of freedom, v̄ is the
average velocity of the gas, σ is the effective atomic cross-section,m
is the mass of the helium atom, kB is the Boltzmann constant, and
d is the average gap size. The only unknown in Eq. 47 is the average
gap size, which depends on the surface roughness and curvature of
both the sample and the copper. Fitting the surface roughness for
T = 2.0K yields the average gap size of d =13.0(1) µm, which is a
realistic value given the unpolished copper surface [58]. For the base
temperatures 0.1K and 0.7K, which is below the dew point, the
∆T behavior is logarithmic, which may be related to the roughly
exponential decrease of helium vapor pressure. Heat is transported
through ballistic He atoms for very low gas pressures and therefore
the heat exchange scales linearly with the vapor pressure [58].
Building on the results of fast and precise time- and temperature-

dependent measurements of the D0X frequency, possible applica-
tions of the setup for non-contact temperature sensing are dis-
cussed below. Figure 46 shows the relative sensitivity of the D0X
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frequency measurements and compares them to measurements of
electron polarization and electron spin relaxation times. The sen-
sitivity parameter is defined according to Ref. [87] and describes
the relative change in output for relative changes in temperature
weighted by the measurement time and uncertainty. The compar-
ison shows the excellent performance of the D0X frequency ther-
mometer in the range from 1.0K to 10K. For higher temperatures,
the sensitivity decreases due to the thermal excitation of the D0X
and a spectral broadening due to phonon Raman scattering. The
main issue of the other sensing techniques in this temperature
regime is the long spin relaxation time of the donor-bound elec-
tron, which results in a long thermalization time of the spins.





10
LOW-TEMPERATURE RELAXATION OF D 0

ELECTRON SP INS

10.1 introduction

The absence of nuclear spins in 28Si:P reduces magnetic noise and
thus allows for very long spin coherence times. While spin coher-
ence times of seconds have been reported in 28Si:P [5], they are
fundamentally limited only by the spin-lattice relaxation time T1,
which is cast into the inequality of T2 ≤ 2T1 (see Sect. 5.4). Al-
though the T1 times of silicon donors have been studied in great
detail for various doping concentrations [88], all of these studies
date back half a century ago when highly pure, isotopically en-
riched Si material was not available. In addition to the low mate-
rial quality, the exact theoretical description of the temperature
dependence of the spin relaxation rate Γ = 1/T1 is left ambigu-
ous due to limited data points and accessible temperature ranges
[24]. For example, the existence of the term T 7B2 in Eq. 20 can
neither be confirmed nor ruled out by existing measurements [89].
The spin-lattice relaxation time at very low temperatures is known
to depend on donor concentration [90–92] and is caused by the re-
laxation of donor clusters. The temperature dependence of this
relaxation mechanism is unknown due to the lack of precise T1
data at the lowest temperatures. Existing measurements regarding
the magnetic field dependency of T1 reflect the predicted TB4 be-
havior, but the available data has an increased uncertainty caused
by the specifics of ESR measurements [89]. The magnetic field in
ESR measurements needs to match the resonance frequency of the
microwave resonator, and thus must be swept back and forth to
detect the magnetic field dependent spin relaxation time. The all-
optical method presented in this work avoids this issue by directly
detecting the spectrally narrow D0X absorption spectrum with a
pump probe scheme which, among other benefits, allows for more
than 80% initial D0 polarization.
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Figure 47: The D0X PM absorption spectrum at different magnetic
fields and 1.4K temperature. The small features correspond to the
circularly polarized σ transitions and the larger features correspond
to the linearly polarized π transitions.

10.2 setup and methods

Frequency modulated absorption spectroscopy is ideal for measur-
ing the D0 spin-lattice relaxation at various magnetic fields and
temperatures in 28Si:P due to the narrow D0X transitions, highly
efficient optical pumping, and wide frequency scanning range. Fig-
ure 48 shows the setup used to perform high-precision pump probe
experiments with donor spins in 28Si:P. A single phase-modulated
ECDL pumps the donors and probes the D0X transitions, which
ensures that the spins are pumped and probed inside a perfectly
overlapping, roughly 90 µm wide region provided by the laser fo-
cus. The PM absorption signal of the probe laser is detected via a
low-noise photodetector and a lock-in amplifier. Two shutters block
the laser beam and any other light passing the cryostat windows
during long durations over which the spins are neither probed nor
pumped. The pump and probe powers are controlled via a motor-
ized OD filter wheel to roughly 1mW and 1 µW, respectively. The
wavelength meter frequency control provides a long-term stability
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Figure 48: The setup for measuring T1 relaxation times. Two servo shut-
ters block the cryostat windows completely. A remotely controlled
OD filter wheel controls the laser power for optical pump and probe
experiments.

< 10MHz of the laser and assures a correct scanning range and
pumping frequency, even over measurement durations of days.
Because the experiment covers a wide range of magnetic fields

from 0.1T to 1.1T, the magnetic field-dependent resonance fre-
quency must be calibrated in the first step. Figure 47 shows PM
absorption scans performed with the wavelength meter at different
magnetic field values. The laser polarization in Fig. 47 is adjusted
such, that a slightly elliptical polarization is obtained in order to
show the circularly polarized σ transitions as well as the linearly
polarized transitions. The distinct resonances in Fig. 47 are used to
calibrate the exact frequency settings for efficient optical pumping
at each magnetic field value. For the T1 relaxation measurements,
the laser is propagating along the [001] crystal axis, and the mag-
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Figure 49: The polarization scan and time dependent polarizations.
(a) The differential absorption spectrum yields the D0 spin polar-
ization according to Eq. 48. (b) Polarization decay for ∆ = 350 s,
H = 60mT and T = 3K. (c) Simplified energy level diagram mark-
ing the probed transitions and the corresponding spin relaxation rate
Γ = 1/T1.

netic field direction is transverse along the [110] axis. Figure 49
shows an exemplary frequency scan that is used to detect the spin
polarization of the donor electron. High initial spin polarizations
are achieved by pumping the low-energy transition π+ of the lin-
early polarized doublet. Over the duration of the optical pump,
the laser is stabilized to the magnetic field dependent resonance
frequency with the wavelength meter. For scanning over the π dou-
blet transitions, the laser frequency offset is first adjusted to the
calibrated midpoint between both transitions using the wavelength
meter. After the scanning offset is adjusted, the laser frequency is
swept twice within 100ms in a symmetric triangular fashion to ob-
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Figure 50: The dependence of the spin polarization decay times τ on
the pause interval ∆ at 0.5K and 60mT yields an intrinsic relaxation
time of T1 ≈ 16h (solid blue line). The laser depolarization factor in
this measurement is λL ≈ 0.94.

tain a single absorption spectrum. The offset needs to be adjusted
regularly before each scan to compensate for laser frequency drift
over long measurement times.
The D0 spin polarization P is obtained by calculating the relative

weighted difference between the absorption areas A of the doublet
resonances in Fig. 49:

P =
A+ −A−
A+ +A−

. (48)

Polarization measurements are performed at regular intervals ∆ to
obtain the polarization decay shown in Fig. 49. The cryostat win-
dows are blocked completely over the duration of ∆ by aluminum
shutters to ensure that no residual parasitic light absorption occurs
during this interval, which may cause spin polarization decay.
After each scan, the spin polarization decreases slightly due to

the probe laser repopulation effect by a factor λL ≲ 1. This effect
results in an increase of the detected spin polarization decay time
τ for longer measurement intervals ∆ which can be seen in Fig. 50.
The depolarization factor λL generally depends on the scanning
speed, laser intensity and number of scans, but can be extracted
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from the linear dependence for low ∆ values shown as the dashed
gray line in Fig. 50.
Measuring the D0 spin relaxation times without perturbation

due to the laser scanning is possible by measuring the polarization
decay for increasing values of ∆. The dependence of the polarization
decay constant τ on ∆ is calculated in the following. After n scans,
the laser polarization becomes

Pn = λnL exp(−Γn∆′), (49)

where ∆′ = ∆ + 100ms is used to account for the duration of a sin-
gle scan, and Γ is the intrinsic spin relaxation rate. The measured
time-dependent spin-polarization decay can be written accordingly
by using t = ∆′n as

P (t) =P0 exp(−Γt)λt/∆′

L (50)
=P0 exp(−(Γ − ln(λL)/∆′)t). (51)

Equation 51 describes a simple exponential decay with an effective
relaxation rate of

Γeff =

(
Γ − ln(λL)

∆′

)
. (52)

Using the effective relaxation rate Γeff(∆′) allows to distinguish
the intrinsic spin relaxation from laser-induced relaxation through
measurements with increasing ∆. The red line in Fig. 50 shows a fit
of Eq. 52 to the measured data, yielding an intrinsic spin relaxation
rate of roughly 16 hours.

10.3 results

The intrinsic T1 time is acquired in the same way using Eq. 52 for
temperatures above 2.5K and plotted as black dots in Fig. 51. In
this regime, the spin relaxation is well described by the relation
(see Sect. 5.4)

1
T1

= kHB4T + k9T
9, (53)
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Figure 51: The magnetic field dependence of T1 for intermediate tem-
peratures 2.5K to 3.6K. The solid lines are calculated according to
Eq. 53 with kH = 1.8(1)mHzT−4 K−1 and k9 = 0.13(2) µHzK−9.

where the coefficients kH and k9 are given in Tab. 7. The solid lines
in Fig. 51 are calculated with the above constants and demonstrate
an excellent agreement of the data with Eq. 53 over the entire range
of parameters. The kH and k9 terms in Eq. 53 are already described
in Refs. [18, 24, 89, 92]. To compare the coefficients with existing
measurements on natural silicon, the relevant data is extracted
from Refs. [18, 92, 93] and shown in Fig. 52. The resulting coef-
ficients are summarized in Tab. 7. While the k9 coefficient agrees
well with ESR measurements in Ref. [18], the kH coefficients vary
for the different sources. The variations are likely due to a low accu-
racy of T1 and fewer points for the magnetic field dependencies in
Refs. [92, 93], as can be seen in Fig. 52. Compared to existing mea-
surements of the magnetic field dependencies, the data in this work
offers a much higher accuracy and a wider range of temperatures,
which leads to a much higher precision for kH . Nevertheless, it can
be stated that the measurements for the intermediate temperature
regime here agree in principle with the existing data, which is not
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Figure 52: Measurements from Refs. [18, 92, 93] and the corresponding
fits (black curves) which are performed to extract exclusively the
TB4 and T 9 coefficients shown in Tab. 7. The T 9 coefficient in this
work has a much lower uncertainty compared to existing values due
to the lower magnetic field, standard deviation, and more data points.
(a) The solid lines are fits according to 1/T1 = kHTB4 + k0 for the
data in Refs. [92, 93] where the sample doping concentrations are
in both cases 1× 1015 cm−3. (b) The solid grey line is calculated
from Eq. 55 and the solid black line is a fit according to 1/T1 =
kHTB4 + k9T

9 using the data in Ref. [18] where the sample doping
concentration is nd = 9× 1015 cm−3. The lower magnetic field here
leads to more reliable determination of k9 due to the absence of the
TB4 dependency.
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Table 7: Summary of the coefficients in Eq. 55 that completely describe
the D0 spin relaxation of the 28Si:P sample. The data in the lower
rows is extracted from measurements on natural silicon using the fits
shown in Fig. 52. The value of 0.1 µHzK−9 in Ref. [24] was likely
also extracted using data from Ref. [18]. In Ref. [18] a T 7 dependence
of 1/T1 was assumed, even though the T 9 dependence provides an
equally good fit as demonstrated in Fig. 52.

k0(µHz) k1 (µHzK−1) kH (mHzT−4K−1) k9 (µHzK−9)
13(2) 11(3) 1.8(1) 0.13(2)

2.61 0.13

0.82 0.134

1Ref. [93] nd = 1× 1015 cm−3 with B4 fit from extracted data.
2Ref. [92] nd = 1× 1015 cm−3 with B4 fit from extracted data.
3Ref. [24] nd = 9× 1015 cm−3.
4Ref. [18] nd = 7× 1015 cm−3 with T 9 fit from extracted data.

surprising, since k9 and kH do not depend on sample quality or
isotopic concentration.
The regime of very low temperatures is discussed next, where

no experimental data was available up to date. Figure 53 shows
measurements of T1 between 0.5K and 4K for different magnetic
fields. At a very low magnetic field and temperature, the spin re-
laxation time becomes extremely long, which is visible from the
blue line in Fig. 53 that shows the 60mT temperature dependence.
In addition to the T 9 term at higher temperatures, the relaxation
rate at low magnetic fields includes a linear term and is described
by the relation

1
T1

= k0 + k1T + k9T
9. (54)

The two coefficients k0 = 13(2) µHz and k1 = 1.8(1) µHzK−1 are
likely related to a neutral donor pair relaxation mechanism, which
is described in, e.g., Refs. [89, 91]. Extrapolating the spin relaxation
time to zero temperature at H = 0.06T yields an extremely long
value of 1/k0 ≈ 21 h. This relaxation time is orders of magnitude
longer than the fundamental limit of T1 assumed in Ref. [5].
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Figure 53: The spin relaxation time T1 for very low temperatures and
various magnetic fields. The dashed lines are calculated according
to Eq. 53 using the coefficients given in Tab. 7. The solid lines are
calculated according to Eq. 55, which includes the donor-donor pair
relaxation terms and the bosonic phonon distribution factor.
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For increasing magnetic fields and low temperatures, the TB4

term no longer provides an accurate description of spin relaxation,
which is well demonstrated by the dashed lines in Fig. 53. The low-
temperature limit of the TB4 term is already discussed in Ref. [94],
and yields an additional factor that depends on the distribution of
the phonon energies. Consequently, a full description of the spin
relaxation at low temperatures is given by

1
T1

= k0 + k1T + k9T
9 + kH

gµB

2kB
B5

 2

e
gµBH

kBT − 1
+ 1

 , (55)

where g is the electron g factor, µB is the Bohr magneton, and kB
is the Boltzmann constant. The expression above, together with
the coefficients given in Tab. 7 gives a complete and accurate de-
scription of the T1 time of the donor electrons for our sample.
Equation 55 yields at very low temperatures a B5 dependence

and not a TB4 dependence, which can be seen by comparing the
solid and dashed lines in Fig. 53. The low temperature regime is
relevant for 28Si:P quantum technology, as demonstrated in Ref.
[95], where the external magnetic field is 2T and the temperature
is 40mK. The T1 time measured in Ref. [95] is about a magni-
tude shorter than detected here, suggesting a limitation by the
Purcell effect in their device. The significant difference in the mea-
sured spin relaxation times shows that the T1 times measured with
the method here likely provide an upper limit of T1 for the given
sample, which can be used to evaluate the performance of 28Si:P
devices based on the same material system.
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SUMMARY

The advent of scalable quantum technology drives the research
with a prospect of more tools to solve difficult problems in many
scientific areas. Silicon is still at the foundation of modern classical
computers now and may also be in the future for integrated quan-
tum technology, as shown here and by existing research on 28Si:P
donors and other defects.
In the first part of this thesis, I motivate the use of donor elec-

trons in isotopically enriched silicon for quantum computational
applications. The main focus is on the history of research on iso-
topically enriched silicon, including some of the astonishing prop-
erties of donors in the said material. The computational perfor-
mance limitations given by the spin-lattice relaxation time which
represents a limit for spin coherence is discussed. Measuring the
silicon bandgap to evaluate the temperature of 28Si:P based de-
vices locally, and thereby determining their performance limit is
motivated as well.
In the second part of this thesis, I summarize the existing the-

ory on donor electrons and donor-bound excitons in 28Si:P. The
summary includes the optical absorption spectrum of donor-bound
excitons and the spin relaxation of donor electrons, as well as theo-
retical calculations of the temperature dependence of the bandgap
for the Debye limit of phonons.
In the third part of this thesis, I present a basic setup to per-

form phase-modulated optical absorption spectroscopy with a tun-
able diode laser at cryogenic temperatures. The special design for
a helium exchange gas insert provides efficient thermal transfer
between the sample and the cryostat. Efficient thermal transfer
between the sample and the insert is quantitatively demonstrated
in a later chapter. Chapter 7 discusses the foundations of PM ab-
sorption spectroscopy and provides additional practical informa-
tion on the optimal choice of modulation parameters for a given
experiment. In Chap. 8, I present my setup for performing high
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precision optical spectroscopy by locking the scanning laser phase
to a stabilized reference laser using an optical phase-locked loop
(OPLL). The OPLL performance is quantitatively evaluated and
demonstrates the ability for fast sweeps with 400GHz s−1 and a
frequency stability of 2.8 kHz.
In Chap. 9 of the experimental part, I measure the temperature

dependence of the donor-bound exciton transition frequency which
allows to directly measure temperature shift of the Si bandgap with
high precision. I am able to confirm that the the bandgap energy
follows a T 4 dependence in the temperature range of 0.05K to 4K
with high resolution absorption measurements at a relative accu-
racy for the bandgap energy of 7× 10−10. The T 4 dependence is in
accordance with the Debye model of the phonon energy distribu-
tion in the low-temperature limit T → 0. In this experiment, the
phonon coupling coefficient is determined to be 30 times smaller
than current predictions from theory, which suggests that cancel-
lation of the acoustic phonon contributions is not completely ac-
counted for in the latest published calculations. In time dependent
measurements of the donor-bound exciton transition frequency, I
determine a Stark shift of 12.1(2)MHz under above-bandgap exci-
tation caused by a random distribution of ionized donor-acceptor
pairs. Calculating the electric field of the random dipoles together
with the known Stark shift of the D0X transition yields the previ-
ously unknown acceptor concentration of 4.6(10)× 1013 cm−3. Us-
ing the above results, I lay the foundation for using the D0X tran-
sition in 28Si:P for local contactless measurements of the lattice
temperature and small electric fields in 28Si with a time resolu-
tion of 1ms. The temperature measurements accurately describe
the gas-gap heat transfer and convective heat transfer in the 4He
exchange gas sample insert. These results verify especially the ef-
ficient cooling of the sample in the custom sample insert and can
be used generally to evaluate the heating of 28Si:P based devices
by local, contactless temperature measurements.
In Chap. 10, I establish an optical pump probe technique that

allows to measure the intrinsic spin-lattice relaxation time with
very high efficiency and has several benefits to classical electron
spin resonance measurements. Using this technique, I determine
the T 9 two-phonon Raman process as the only relevant mecha-
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nism of donor electron spin relaxation in 28Si:P at low magnetic
fields for the intermediate temperature regime 2K to 4K. The
two-phonon Raman coefficient is measured here with much higher
accuracy and for a wider variety of magnetic field values than in
existing data, which allows to rule out the ambiguous T 7H2 Ra-
man process measured in natural silicon with high confidence. At
very low temperatures, an extremely long spin relaxation time ex-
ceeding 20 hours is measured exceeding orders of magnitude of the
originally assumed limit. For low temperatures and high magnetic
fields, I was able to observe the impact of the bosonic phonon dis-
tribution on the spin-lattice relaxation with high accuracy, which
was predicted by theory but not observed until now.

As a result, my experiments further motivate the use of phospho-
rus donors in 28Si:P for spin qubit applications by setting a new
limit on the donor electron spin coherence. Compared to other opti-
cally addressable quantum systems such as self-assembled quantum
dots and nitrogen-vacancy centres in diamond, donor ensembles in
silicon are more suited for quantum computation due to the longer
spin-lattice relaxation times and the efficient addressability. The
small frequency variance between different donors in ultra-pure
28Si:P bulk material is advantageous for coupling many donors
resulting in an excellent scalability of the system. While these are
great prospects for the donor electrons, they somewhat lack behind
these other systems in quantum sensing applications and single
photon generation because of the low temperature requirements
and long radiative lifetimes of the excited states. However, self-
assembled quantum dots can be engineered in size and shape in
order to match the donor electron resonance frequencies and po-
tentially allow for coupling and even entanglement between both
quantum systems. This hybrid strategy would allow to use the best
properties of each system for, e.g., storing, manipulating, and trans-
mitting quantum information within larger computational clusters.
As an outlook for future developments, it is useful to look at the
initialization of registers of such donor spins integrated hybrid sys-
tems which could be performed optically via resonant absorption of
coherent light. Resonant initialization of the donor electron spin is
closely tied to spectral hole burning because the ensemble is broad-
ened by the donor-donor interactions. The next chapter briefly dis-
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cusses my results on spectral hole burning as an outlook for future
experiments on donor ensembles.



12
OUTLOOK

12.1 spectral hole burning

Efficient spin state initialization is of utmost importance for fast
and reliable quantum computation and quantum error correction
schemes [3]. Understanding the mechanism of spin initialization
by optical pumping in 28Si:P requires studying the origin of the
inhomogeneous broadening of the donor-bound exciton transition.
Spectral hole burning with continuous ABE excitation and opti-
cal pump has already been used to determine the homogeneous
linewidth of the donor-bound exciton transition in 28Si and natSi
[45]. Unfortunately, Ref. [45] does not give a definitive explanation
of the difference in the measured spectral hole width of 20 neV
compared to the natural linewidth of 5 neV.
Instead of a steady-state approach, a different technique called

persistent spectral hole burning is applied here to create and detect
the spectral holes. Persistent spectral hole burning spectrally mod-
ifies the inhomogeneously broadened absorption lines in solids at
low temperatures for time periods much longer than the lifetime of
the excited states [96]. Although persistent spectral hole burning
can provide additional insight into the mechanism of homogeneous
broadening, to the best of my knowledge, there are currently no
published experiments with persistent holes in Si. Since the donor
electron spin relaxation times in Si:P become very long at low tem-
peratures, it is possible to burn long-lived spectral holes into the
broadened D0X absorption spectrum, which can be manipulated
and reset by ABE excitation. Such experiments with persistent
holes give insight into the spin initialization time for the donor en-
semble and single donors, which is relevant for quantum computa-
tional applications. Furthermore, the stochastically varying electric
field imprinted by ABE excitation could be detected by measuring
the frequency shift and width of the persistent spectral holes. Ac-
cording to Ref. [45] it may also be possible to obtain information
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Figure 54: The resonant peaks in the D0X absorption spectrum and the
cavity transmission spectrum which has a mode spacing of roughly
1.362GHz. The magnetic field dependence can be used to adjust the
D0X resonance frequency to one of the cavity resonances for spectral
hole burning.

about the D0X spin relaxation by measuring the magnetic field
dependence of the spectral hole broadening.

The OPLL setup described in Chap. 9 is, with slight modifi-
cations, capable of burning and detecting very narrow persistent
spectral holes by precise amplitude modulation and frequency con-
trol of the laser. Phase modulation absorption spectroscopy is ideal
for detecting the narrow spectral holes that superimpose the broad-
ened background absorption signal. The benefit, compared to DC
absorption methods, lies mainly in the linear scaling of the PM ab-
sorption signal with the frequency derivative, which puts a higher
relative weight to the narrow spectral hole compared to the wider
background. Here, two approaches are used to create and detect
spectral holes with the existing OPLL scanning setup. Firstly, the
setup in Fig. 36 is modified to use the reference laser with ABE
to create the spectral anti-holes in a steady-state, and secondly
the scanning laser is modulated quickly in amplitude to burn and
probe persistent spectral holes using only the scanning laser.
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Figure 55: The PM demodulation spectrum obtained from probing
the linearly polarized π− transition in a transverse magnetic field
under narrow-band optical pumping. The pump laser is locked to
the ULE cavity and the magnetic field is chosen to match the π+
transition frequency to the pump laser frequency. The probe laser
is phase modulated at 1.6MHz with a modulation index of a ≈ 0.7
and scanned using the OPLL around a relative detuning of 2.274GHz
that matches the π− → π+ frequency splitting at a magnetic field of
178mT.

Burning spectral holes using the cavity-locked reference laser
is possible by adjusting the magnetic field so that the π+ transi-
tion overlaps with one of the cavity resonances. Figure 54 shows
the cavity resonances as well as the D0X resonances depending on
the external magnetic field. At B = 178mT, the π+ resonance
overlaps with one of the cavity resonances, and the reference laser
creates spectral anti-holes at the π− resonance. The spectral anti-
holes can be detected by the probe laser using an OPLL frequency
offset that matches the difference frequency between the π+ and
π− transitions. In the first experiment, the steady-state spectral
hole is created by continuous pumping of the π+ transition using
the reference laser and additional ABE which uniformly reverts
the narrow-band spin polarization created by the pump. Figure 55
shows the spectrum obtained under the conditions above by scan-
ning the probe laser around the π− transition using the OPLL fre-
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Figure 56: Experimental anti-hole spectrum obtained from subtracting
spectra with periodic pump modulation. A Lorentzian distribution
with γ = 12MHz is shown as a black solid line. The measured sep-
aration of the two resonances is close to the hyperfine splitting of
117.53MHz.

quency offset of 2.274GHz at 0.14T magnetic field. The resulting
PM spectrum shows an undulation of the D0X absorption depend-
ing on the pump power, which is caused by the spectral anti-holes.
The background-free anti-hole spectrum is obtained by periodically
switching the pump on and off between the scans and subtracting
the according spectra. Figure 56 shows the subtracted spectrum ob-
tained in this way. The anti-holes which exist for the transition with
opposite electron spin become clearly visible in the background-free
spectrum. The anti-hole spectrum shows two distinct peaks, which
are separated by the D0 hyperfine splitting. These two peaks origi-
nate from the reversal of nuclear energies for the opposite electron
states [45]. Although the relative depth of the two anti-hole peaks
depend on the magnetic field setting, they are equal if the pumping
laser is in the center of the two π+ transitions (2,3 in Fig. 11) where
both nuclear states are pumped equally with the same probability.
The widths of the anti-holes are determined by a fit of Lorentzian
resonance (γ = 12MHz) with the PM spectrum which is shown
as the black solid line in Fig. 56. The fit does not describe the
spectrum perfectly due to the high PM index of a ≈ 0.7 in this
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Figure 57: Persistent spectral hole which is burned and probed by the
same laser. The phase modulation index is a ≈ 0.06 and much lower
compared to Fig. 55. The hole is burned with a power of 10 µW for
the duration of 0.16ms. The spectra after the first and second scan
are subtracted to obtain the background-free hole spectrum shown
in the lower part of this figure.

measurement, which leads to a spectral distortion (see. Chap. 7).
Therefore, the actual width of the holes is expected to be signifi-
cantly smaller.
Next, persistent spectral hole burning is performed with smaller

modulation indices to determine the width of the spectral holes in
the absence of spectral distortion. Persistent spectral hole burning
is performed by modulating the scanning laser with a high-speed
fiber Mach-Zehnder modulator. The holes are burned with 10 µW
maximum power of the laser for a defined duration, and scanned
with an intermediate power of 1 µW. The following procedure is
used to burn persistent holes using the scanning laser: First, the
laser power is adjusted to zero and the laser frequency is set close
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to the center of the resonance. Next, the laser power is adjusted to
maximum amplitude for a defined pump duration τp between 10 µs
and 10ms using the fast modulator. After the pumping, the laser
amplitude is adjusted to zero again and the frequency is quickly set
to the edge of the scanning range. From there, the laser amplitude
is set to an intermediate value of 1 µW and is quickly scanned twice
back and forth over the resonance to obtain the hole spectrum. The
result of this procedure is demonstrated in Fig. 57. A single spectral
hole is visible overlaid on the inhomogeneous background spectrum.
The width of this hole is about 8.4MHz, and therefore slightly
smaller than the width of the anti-holes, which is due to a lower
modulation index a = 0.06 in this experiment. The spectral hole
depth is slightly reduced after the first scan, which is due to optical
pumping from the scan laser. Because the scanning speed is well
controlled in the OPLL setup, the spectra of the first and second
scans can be subtracted to obtain a background-free hole spectrum,
which is shown in the lower part of Fig. 57. The subtracted hole
spectrum is well described by a Lorentzian distribution derivative
which can be seen by the solid black line in Fig. 57. The width
γ = 6.2MHz of the background-free spectrum is lower compared
to the unsubtracted width and depends on the depth of the spectral
hole.
Using this procedure, the dependence of the pump duration on

the spectral hole broadening and depth is investigated. Figure 58
shows the spectral holes with different pump durations. While there
is a slight asymmetry which originates from the inhomogeneous
background distribution, it can clearly be seen that the Lorentzian
shape becomes wider and distorted for longer pump durations,
which is due to the saturation of electron spin polarization. The
width and depth of the spectral holes are plotted in Fig. 59 to de-
termine pump rates and the onset of pump saturation. The depths
are shown as red dots and follow a logarithmic dependency, which
indicates that the given pump durations are within the saturation
regime. The widths γ are obtained by subtracting the background
as in Fig. 57 and plotted as blue dots in Fig. 59. There is a visi-
ble increase in γ for longer pump durations which is caused by the
saturation effect. Extrapolating the hole widths for small pump du-
rations yields the limiting value of γ ≈ 5MHz=̂21 neV. This value
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is close to the value of 20 neV obtained by extrapolating to zero
pump power in Ref. [45] using sample c in Tab. 3.
In conclusion, I have demonstrated the creation and detection

of steady-state anti-holes and persistent spectral holes using the
existing OPLL setup. Different methods for background subtrac-
tion are provided above, which allow to accurately determine the
linewidth of the spectral holes. The linewidths of persistent holes
are determined at a very low PM index and extrapolated for de-
creasing pump durations resulting in a homogeneous linewidth of
5MHz which well agrees with existing measurements. Neverthe-
less, to understand the discrepancy between the lifetime limited
linewidth and the measured homogeneous linewidth more experi-
ments are necessary. Possible experiments include time-dependent
ABE manipulation of spectral holes, which could determine the
impact of ion charge fluctuations in the donor environment on the
homogeneous linewidth, as well as the magnetic field dependency
of γ which may determine the influence of D0X spin relaxation on
the measured linewidths.
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Figure 60: Layout of a niobium microresonator. The feed line capaci-
tively couples the transmitted power to the resonator. The resonator
is similar to a LC circuit, with the conductors in the middle and two
capacities on the sides.

12.2 microresonators for esr

Electron spin resonance is a powerful technique ideally suited to
generate control sequences for manipulating spins [54]. ESR plays
an important role in the control of donor electron spins in 28Si:P,
because it can drive the quantum coherence of donor electrons that
are excellent carriers of quantum information [2]. Although a differ-
ent method exists for driving two-level systems with dichromatic
laser pulses [97], the applicability to the donor spin ensemble in
28Si:P is questionable due to the low optical oscillator strength of
the D0X transition. Therefore, the only obvious way to drive the
two-level D0 ground state coherence is a microwave magnetic field
source. There are several issues with integrating a microwave res-
onator into the existing low-temperature setup. While the cryogen-
free dilution refrigerator is ideal for long-term low-temperature
measurements, it only possesses a limited cooling power of 4mW
at the lowest temperatures. The low cooling power is a problem for
conventional ESR resonators because they need powers ≳ 10mW
[98] to create sufficient magnetic field magnitudes due to resis-
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tive losses inside the conductor. For this reason, superconducting
microwave resonators (microresonators) are more suited to per-
form ESR experiments with the given setup. Several designs have
been researched for various applications including spin resonance
with donor electrons in 28Si:P [99–103]. Figure 60 shows the spe-
cially designed microresonator for the given setup. The design uti-
lizes a combination of conductors and capacities and therefore be-
haves very similarly to a LC resonator. The conductor count and
their spacing is optimized via electromagnetic simulations to pro-
vide a very homogeneous magnetic field distribution for the sam-
ple mounted roughly 100 µm above the conductors. Compared to
standing waveguide resonators, the LC design allows for more com-
pact dimensions and high magnetic field homogeneity for the given
operating frequency. The conductor of choice for the resonator is
elemental niobium, which becomes superconducting below ≈ 9K
and has a critical magnetic field of ≳ 0.35T in the thin-film plane
[104]. Niobium is sputtered with 150 nm thickness on a sapphire
substrate, mounted on top of a PCB, and connected with short
bond wires to the RF feed-line. The sample is mounted on top of
the resonator with a 100 µm thick spacer made of Kapton tape.
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Figure 61: The exchange-gas sample insert for simultaneous optical
absorption and ESR experiments.

12.3 sample insert for esr

The sample insert made of non-magnetic beryllium copper for low-
temperature RF experiments with the microresonator is shown in
Fig. 61. The design is fundamentally similar to the insert in Fig.
18, but it has added mounts for the microresonator PCB and high-
frequency coaxial electric connections. Additional gradient coils al-
low to precisely adjust the magnetic field offset and gradient for the
ESR experiments. The main difficulty in assembling the sample in-
sert is to create the electrical feed-through and prevent He-II leaks
at the same time. To ensure leak-tightness, the coaxial lines are
made from a rigid copper tube via insertion of the inner insulation
from a conventional coaxial cable. The problem with using conven-
tional coaxial cables directly is the woven copper mesh, which can
easily cause leaks. The isolator and copper tube are bonded with
Stycast epoxy to the insert at elevated temperatures 60 ◦C to 70 ◦C.
All parts need to be sanded and ultrasonically cleaned prior to the
bonding process to prevent leaks.
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