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Abstract: Terrestrial laser scanners (TLS) are contact-free measuring sensors that record dense point
clouds of objects or scenes by acquiring coordinates and an intensity value for each point. The
point clouds are scattered and noisy. Performing a mathematical surface approximation instead
of working directly on the point cloud is an efficient way to reduce the data storage and structure
the point clouds by transforming “data” to “information”. Applications include rigorous statistical
testing for deformation analysis within the context of landslide monitoring. In order to reach
an optimal approximation, classification and segmentation algorithms can identify and remove
inhomogeneous structures, such as trees or bushes, to obtain a smooth and accurate mathematical
surface of the ground. In this contribution, we compare methods to perform the classification of
TLS point clouds with the aim of guiding the reader through the existing algorithms. Besides the
traditional point cloud filtering methods, we will analyze machine learning classification algorithms
based on the manual extraction of point cloud features, and a deep learning approach with automatic
extraction of features called PointNet++. We have intentionally chosen strategies easy to implement
and understand so that our results are reproducible for similar point clouds. We show that each
method has advantages and drawbacks, depending on user criteria, such as the computational time,
the classification accuracy needed, whether manual extraction is performed or not, and if prior
information is required. We highlight that filtering methods are advantageous for the application at
hand and perform a mathematical surface approximation as an illustration. Accordingly, we have
chosen locally refined B-splines, which were shown to provide an optimal and computationally
manageable approximation of TLS point clouds.

Keywords: terrestrial laser scanner; point cloud; classification; segmentation; deep learning; landslide
monitoring; PointNet++; LR B-splines

1. Introduction

A terrestrial laser scanner (TLS) is a stationary sensor that records the range and angles
automatically in timely, equally spaced scanning steps [1]. TLS does not require direct
contact with the objects scanned and can be used in a wide range of scenarios, such as
for three-dimensional (3D) model reconstruction, canopy investigation, dam or bridge
monitoring, and terrain monitoring with early warning systems (see [2–4] for further
examples). The TLS can record and process a large number of points within a short time
and at a low cost. Unfortunately, the handling and processing of point cloud data can
become cumbersome as the number of points acquired by TLS increases. Working with

Remote Sens. 2022, 14, 5099. https://doi.org/10.3390/rs14205099 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14205099
https://doi.org/10.3390/rs14205099
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5986-5269
https://doi.org/10.3390/rs14205099
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14205099?type=check_update&version=2


Remote Sens. 2022, 14, 5099 2 of 18

the point clouds directly in standard software is not appealing due to the huge amount
of storage needed when analyzing many epochs. We refer to [5,6] for a change analysis
from near-continuous TLS recording. Solutions have been proposed, such as in [7], who
developed a software to face that challenge. However, their proposal still does not address
the problem of evaluating identical points over several epochs for change analysis. Indeed,
TLS does not measure defined points, such as tachymeters, which greatly complicate the
areal deformation analysis, as pointed out in [8], which compared diverse strategies, such
as point to point, point to surface, and surface to surface. All of these proposals necessitate
work on the point clouds directly (see also [9] for a review). Unfortunately, TLS point
clouds are scattered, noisy, and potentially entailed with registration errors [10]. Here,
new solutions based on mathematical surface approximation with local refinement address
the challenges of deformation analysis within the context of landslide monitoring with
smooth surfaces and allow the efficient analysis of the information contained in the point
clouds (see [11,12] for TLS point clouds, ref. [13] for bathymetry data set, or [14] for turbine
blade design, to cite but a few). The main advantages of mathematical surfaces is to reduce
the point clouds to a few parameters while simultaneously allowing spatially continuous
and parametric deformation analysis [15,16]. However, the accuracy and smoothness of
surface approximations are affected by uneven objects, such as trees, low vegetation, stones,
houses, and roads. Consequently, the point cloud needs to be segmented/classified before
performing an approximation, so that a deformation analysis of the ground only can be
performed, as shown in [11,17].

Many contributions focus on semantic object extraction from point clouds dedicated to
urban environments (see, e.g., [18] and the references inside). Extracting geomorphological
objects from TLS point clouds is a challenging task due to their heterogeneity, the presence
of outliers and/or missing observations, as well as the need to define multiscale criteria.
Exemplarily, Brodu and Lague [19] classified point clouds of natural scenes by characteriz-
ing their local 3D organization. Dorninger et al. [20] further characterized landslides by
segmenting aerial and terrestrial point clouds from the laser scanner into planar patches.
Other strategies, such as those presented in [21], analyzed the rotation and translation of
individual parts of a point cloud. This method is restricted to the exposed surface and lacks
semantic information. Mayr et al. [22] presented an approach for automatically classifying
multitemporal scenes of a hillslope affected by shallow landslides. Their proposal was
based on a combination of machine learning and a topological rule set and allowed the
extraction of various classes, such as carp, eroded area, and deposit. Unfortunately, many
methods are far from evident to implement and not available for typical TLS users. There
is a need to provide guidance and compare simple methods to perform classification,
with the aforementioned surface approximation of ground in mind. We propose to fill
that gap in this contribution and aim at identifying the advantages and disadvantages of
various classification/segmentation algorithms. The topic is broad (see, e.g., [23] for urban
applications). Consequently, we restrict ourselves to underlying applications for landslide
monitoring where vegetation needs to be extracted prior to the surface approximation.
We guide the reader using easy-to-understand and -use strategies that do not require
specific programming skills. More specifically, we will investigate three different types of
algorithms:

• The first type of algorithm involves filtering approaches, which are often used to
generate digital elevation models (DEM). We have chosen the widely used cloth
simulation filter (CSF) and the simple morphological filter (SMRF) [24]. Here, the
point clouds are simply divided into ground and non-ground parts [25].

• The second approach consists of using machine learning classification algorithms
based on point cloud features extracted for each point and its neighbors [23]. We
include the intensity as an important optical feature (see [26,27] for investigations
on the intensity to derive a stochastic model for TLS). We will test three different
neighborhood selection algorithms, which strongly affect the feature extraction: two
are based on Shannon entropy following [28], whereas the third algorithm is based
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on pretraining the classifier. We will use a variety of different algorithms, such as the
random forests classifier (RFC), discriminant analysis classifier (DAC), and decision
tree classifier (DTC) [29,30].

• The third approach uses a deep learning algorithm. In this case, the features of the
point cloud are automatically extracted based on the neural network to perform the
classification and segmentation process. Deep learning algorithms can be classified
into two types based on the form of the input data: (i) the point cloud is converted
into a two-dimensional spherical image as input to a convolutional neural network
(NNC) [31] or (ii) the original point cloud is used as input as in PointNet++ [32]. In this
contribution, the latter will be used, as it allows the consideration of local features, and
improves the performance and robustness regarding the original PointNet algorithm.

These methods, summarized in Figure 1, correspond to different approaches for
classifying TLS point clouds. They were chosen for not only their variety, but also their
ease of implementation. The corresponding algorithms will be tested on a data set from a
mountainous region in Austria where specific measurements with TLS were performed
for landslide monitoring. Without going into mathematical details, we will show an
application of the classification results for performing adaptive surface approximation with
locally refined (LR) B-splines, which are best suited for approximating smooth terrains [13].
Other fields of application of such a comparison are the deformation analysis of near
continuous monitoring of snow or sand dune movements from TLS point clouds, as well
as for bathymetry.

Figure 1. Summary of the methods tested in this contribution.

The remainder of this contribution is as follows: in Section 2, we introduce the concepts
of TLS, focusing on the information needed to perform the classification/segmentation.
We briefly describe the concepts of the three types of algorithms chosen. In Section 3,
we compare the results obtained using a real point cloud from a mountainous region in
Austria. We conclude with the mathematical surface fitting of the classified point cloud as
an illustration.

2. Methodology

In this section, we firstly introduce the principle of TLS, the retained features of the
TLS point clouds to perform classification, and k-d trees. The second part is dedicated to
explaining the algorithms chosen for TLS point cloud classification.

2.1. Terrestrial Laser Scanner

A TLS, also referred to as terrestrial light detection and ranging (lidar), provides
coordinates of numerous points on land or objects by emitting laser pulses toward these
points and measuring the distance from the device to the target. The TLS range mea-
surements can be based on either phase shift or time-of-flight (see [1] for more details).
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Time-of-flight sensors are better suited for long-range measurements and will be used in
this contribution [33].

2.1.1. k-d Tree

The TLS point clouds are unorganized, scattered, noisy, and contain a huge number of
points recorded in a short amount of time. A spatial index for the point cloud has to be
computed using some suitable data structures in order to search, locate, and process the
data efficiently. We have chosen the k-d tree [34], where k is the number of dimensions d,
for example, 3 for a TLS point cloud. The k-d tree is used to store disordered spatial point
data, which is beneficial for neighborhood search. It can be seen as a binary search tree
where a data point in each node is a k-d point in space.

2.1.2. Features

Classification is defined as a method of classifying and defining something based on
currently available information [35]. Thus, classifying a point cloud can be understood as
grouping points using some chosen criteria, here non-ground/ground. The segmentation
of point clouds is a similar task, so that both methods are based on the definition of some
features of the point clouds. However, point cloud segmentation does not generally require
supervised prior knowledge, and the segmentation results do not normally contain high-
level semantic meaning [32]. We can define two types of features for the specific case of
TLS point clouds, geometric and optical:

• Optical features can be either information directly recorded by the TLS (RGB or
intensity) or based on the voxelization of the point clouds. In this contribution, we
only use the intensity, which is easily available without further processing. We refer
to [2,27], also see [36] for a definition of the intensity and a derivation of an empirical
stochastic model for TLS range measurement from this quantity.

• Geometric features are calculated based on the information on the spatial location of
each point. Their computation necessitates setting a reference point p0, and finding its
kn nearest neighboring points. A covariance matrix is built from the point set selected
and its eigenvalues are sorted in a descendant order, starting from λ1. Finally, the
features are computed from Table 1. We have chosen 19 features following [37].

Table 1. Geometric features of a point p0 with coordinates (x, y, z). kn is the number of nearest
neighboring points. λ are the eigenvalues of the covariance matrix built from the kn points per
descending order. Z refers to the z-coordinate, dr is the distance between the reference point and the
best fitting plane computed on its nearest neighbors. rmax denotes the distance of the farthest point
from the reference point among the kn neighboring points.

Feature nb Feature Name Formula

1 Linearity
λ1 − λ2

λ1

2 Planarity
λ2 − λ3

λ1

3 Scattering
λ3
λ1

4 Omnivariance λ1λ2λ3

5 Anisotropy
λ1 − λ3

λ1

6 Eigenentropy −∑3
i=1 λi ln λi

7 Sum of eigenvalues λ1 + λ2 + λ3
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Table 1. Cont.

Feature nb Feature Name Formula

8 Change of curvature
λ3

λ1 + λ2 + λ3

9 Mean Z ∑kn+1
i=1

Zi
kn + 1

10 Z variance ∑kn+1
i=1

Zi − mean(Z)
kn + 1

11 Maximum Z difference Zmax − Zmin

12 PCA1
λ1

λ1 + λ2 + λ3

13 PCA2
λ2

λ1 + λ2 + λ3

14 Roughness dr
15 normal vector x nx
16 normal vector y ny
17 normal vector z nz

18 Density
kn + 1

4/3rmax

19 Verticality 1 − nz

2.2. Algorithms for Classification

Once the features are computed, classification or segmentation can be performed. To
that end, different algorithms exist, which we present briefly in the following sections (see
Figure 1 for guidance through the abbreviations). Filtering algorithms do not necessitate
a priori data labeling and segment the point cloud based on some specific parameters.
Classification methods based on machine learning require the manual extraction of point
cloud features. Point cloud processing algorithms based on deep learning use neural
networks to automatically extract point cloud features and perform classification. We recall
that our application aims at separating ground points from non-ground parts to perform
optimal surface approximation.

2.2.1. Filtering Algorithm

In the following, we will abbreviate the methods based on filtering to FPCC for
filtering point cloud classification. We refer to [38] for a detailed comparison of filtering
algorithms for high-density airborne light detection and ranging point clouds over complex
landscapes.

Cloth simulation filtering The first algorithm is CSF [25]. It aims at classifying the
ground and non-ground parts of the point cloud and is based on the physical simulation
of the cloth, i.e., the point cloud is inverted first, and a piece of cloth is simulated to land
on the inverted point cloud. In order to cope with complex and changing real-world
situations, the CSF algorithm contains seven parameters that have to be adjusted according
to the application at hand: rigidness, time step, grid resolution, distance threshold, height
difference, maximum iteration number, and one optional parameter, the steep slope fit
factor. An example of how to fix these parameters is given in [39].

Simple morphological filter The SMRF algorithm is a point cloud filtering algo-
rithm [24] and is based on image processing techniques. Here, the points are, firstly,
segmented into multiple cells, and a new surface is created using the lowest height point
in each cell, potentially causing information loss in regions with changing slopes. The
minimum surface is iteratively processed by an opening operation, which includes erosion
and dilation processing to enlarge (dilate) or reduce (erode) the size of features in binary
images. Points with elevation differences before and after the operations greater than a
predefined tolerance are classified as ground and non-ground. The restored ground part
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interpolated can be produced as a DEM. Four parameters need to be set by the user during
the operations: the cell size of the minimum surface grid, a percent slope value, the radius
of the window, and a single elevation difference value. Progressive morphological filters
can be implemented to face the challenge of the window size (see [40]). We restricted
ourselves to the SMRF for the sake of simplicity.

2.2.2. Machine Learning-Based Point Cloud Classification Method

Point cloud classification methods based on machine learning are supervised ap-
proaches, hereafter abbreviated MLPCC. Compared to the filtering algorithm, these types
of algorithms require prior labeling of the point cloud. A typical workflow is shown in
Figure 2 and consists of five main steps. The first step is to determine a spatial index for
each point using, for example, a k-d tree to reduce the neighborhood search time. In the
second step, the appropriate number of nearest neighbor points kn is selected. The third
step consists of labeling the point cloud by evaluating its features, as described in Table 1.
In the fourth step, the model is trained based on this information. Finally, the trained model
is used to process the original data.

Figure 2. Typical workflow of classification methods.

More specifically:

• The spatial indexing of the point cloud is performed using the k-d tree, as described
in Section 2.1.1.

• The appropriate kn value is determined using a single-scale kn value method or a
multiscale one. Regarding the single-scale approach, the value of kn leading to the
most optimal result based on, for example, the mean accuracy (mAcc, see Section 2.3),
is chosen. We mention that the computational time of the method can be reduced
by using a subset of the point cloud containing all features. TLS point clouds may
have a highly variable density and all neighboring points may not belong to the same
object. The multiscale approach was introduced to face these challenges: here, the
kn value can vary for each point. We have compared two different methods in this
contribution. The first one, called Ed, is based on dimensional features and Shannon
entropy, as proposed in [41]. This approach takes the kn value corresponding to the
lowest Shannon entropy (lower uncertainty) as the optimal one. The second method,
called Eλ, is developed in [37] and is based on the eigenvalues of the 3D covariance
matrix of the set of neighboring points. The Shannon entropy is defined here by
replacing the linearity with the first eigenvalue, the planarity with the second, and
scattering with the third, and is said to be a general approach.
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• Finally, the point cloud features are computed using the kn values obtained in the
previous steps. We use the 19 geometric features and 1 optical feature (intensity) for
the training of the classification model, as described in Table 1.

We have compared four classification algorithms, as proposed in [42]: the DTC, RFC,
DAC and NNC.

1. The DTC builds a model in the form of a tree structure [43]. Here, the algorithm will
try to recursively segment the training data set during the model construction process.

2. The RFC creates multiple decision trees and merges them together to obtain a more
accurate and stable prediction.

3. The DAC is a supervised classification method that assumes that different classes
generate data according to different Gaussian distributions. In this contribution, we
used the linear DAC (LDAC) model, which is based on projecting the data in lower
dimensions and searching for the best projection direction, i.e., where the distance
between different classes is the largest and the distance between the same classes is
the smallest after projection. Finally, the class with the highest probability is selected.

4. The NCC generally consists of three layers (input, hidden, and output layer) and only
has a few parameters. This property greatly improves the time to learn and reduces
the amount of data required to train the model.

2.2.3. Classification Based on Deep Learning

The classification based on deep learning, abbreviated as DPCC, can be divided into
two types according to the input to the neural network. Whereas the first method converts
the point cloud to another format as input (two-dimensional images or 3D voxels), the
second one makes use of the original point cloud to avoid an increase in data volume and
a loss of information during the conversion. In this contribution, we use an extension of
PointNet [32], which is a deep learning point cloud classification/segmentation algorithm
that utilizes the scattered point cloud directly as input. PointNet++ uses neighborhood
information for feature extraction to face the generalization ability of this algorithm in
complex scenarios. The idea behind PointNet++ is to first divide the point set into multiple
overlapping subsets in space and use PointNet to extract fine local features from each
subset. This process is repeated several times in a hierarchical manner, i.e., the output point
set of each layer is used as the input point set of the next layer. This multilayer process
generates point sets that contain rich contextual information. The workflow is summarized
in Figure 3. The first step splits and downsamples the large-scale TLS point cloud. The
second step sets the parameters of PointNet++, such as the training epoch. The training of
the model chosen is performed in the third step. The fourth step tests the trained model
using the test data set. Finally, the fifth step quantitatively evaluates the test results, using
the metrics presented in Section 2.3.
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Figure 3. Principle of PointNet++ for large-scale TLS point clouds.

2.3. Metrics

Different evaluation metrics have been proposed to evaluate the effectiveness of
classification and segmentation algorithms quantitatively [42]. These evaluation metrics
include accuracy, F1 score, and Intersection over Union (IoU). They are based on the values
of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) (see
Table 2 for the corresponding definitions).

Table 2. Definition of true positive (TP), true negative (TN), false positive (FP) and false negative (FN).

Definition 1.

TP: A test result correctly indicating the presence of a condition or characteristic.
FN: A test result wrongly indicating that a particular condition or attribute is absent.
FP: A test result wrongly indicating that a particular condition or attribute is present.
TN: A test result correctly indicating the absence of a condition or characteristic.

The accuracy (Acc), IoU, and F1 score can be computed from the values presented in
Table 2. They evaluate the classification algorithm’s performance for each class. In order
to measure the classification algorithm as a whole, three metrics will be used additionally.
They are called mean IoU (mIoU), overall accuracy (OA), and mAcc. We refer to [42] for
the corresponding formula and further mention that:

• Accuracy indicates the number of samples that are correctly predicted divided by the
number of all samples. The mAcc means the average of Acc values for each category.

• IoU represents the intersection of predicted and true labels divided by the union of
predicted and true labels [30]. In general, the larger the value of IoU, the better the
classifier will be. The mIoU represents the average of the IoU values for each category.

• The F1 score is the harmonic mean of the precision and recall. Precision represents the
proportion of samples predicted to be positive cases that are actually positive cases.
Recall is the proportion of correctly predicted positive cases to all true positive cases
and is used as a measure of the classifier’s ability to identify positive cases.

• OA represents the number of samples correctly classified as positive cases in all
categories as a percentage of the total number of samples.
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3. Results

We quantitatively test the various point cloud classification/segmentation algorithms
described in Section 2 using a TLS point cloud from a landslide monitoring experiment
that took place in Austria. After a short description of the experiment and an explanation
of the pre-processing steps, we compare the various algorithms using the metrics defined
in Section 2.3. Please note that all calculations were performed using the same hardware
device with an AMD Ryzen 7 3700X CPU, 32G DDR4 running memory and a NVIDIA
GeForce RTX2060 SUPER 8G graphics card.

3.1. Software

The point cloud labeling and division in the data preparation step were performed
using CloudCompare [44]. CloudCompare is an easy-to-use, open source, 3D point cloud
processing software with good visualization tools. We also used the software MATLAB
2021b [45] for the classification process, which includes the full process of algorithm
operation and quantitative evaluation as well as the output of the point cloud processed.
More specifically, we used the Deep Learning Toolbox (for setting up and training machine
learning algorithms), the Computer Vision Toolbox (to visualize point clouds), and the
LiDAR Toolbox Computer Vision Toolbox (for point cloud data reading, segmentation
processing and other related tasks).

3.2. Description of the Data Set
3.2.1. Experiment

The data set used in this contribution was recorded in the Valsertal region in Austria
as part of HORIZON 2020 via the Research Fund for Coal and Steel funded research
project i²MON—“Integrated Impact MONitoring for the detection of ground and surface
displacements caused by coal mining”, and is described in a dedicated publication [3] (also
see [33]). The TLS under consideration is a long-range scanner, the RIEGL VZ-2000i [46].
The latter is able to measure objects with a very high accuracy (5 mm at 100 m) up to a
range of 2500 m contact-free. Specific pre-processing is applied to improve the temporal
discretization and enhances reliability to a high degree, making this TLS suitable for
application in, for example, near-continuous monitoring of landslides. Here, this long-
range TLS allows the analysis of deformation for safeguard applications. A picture of
the scene recorded is shown in Figure 4, top. The original point cloud was recorded on
20 August 2020, and is presented in Figure 4, bottom left.

3.2.2. Pre-Processing

The point cloud under consideration contains about 15 million points in total. After
manual classification using mainly the intensity value, we identified about 9 million
containing vegetation (non-ground) points, as depicted in Figure 4, bottom right.

The supervised learning algorithm necessitates dividing the point cloud into a training
set, a test set, and a validation set.

• The training set is the data set used for model training [47].
• The validation set is the data set used to evaluate the performance of the current model

during training and tune the parameters.
• The test set is the data set used to evaluate the model performance after the model

training has been completed.

Unfortunately, there is no absolutely optimal division strategy. We have chosen 3%
of the point cloud for the test set and 97% for the validation and test, based on the fact
that the point cloud contains more than 10 million points, and following [47]. We further
mention that a balance between the number of classes is mandatory when dividing the
data to avoid one class with a much larger number than the others. In addition to the point
cloud used for training and testing, a pre-processed point cloud needs to be divided to find
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a single-scale kn value. This point cloud is a small partition from the training point cloud.
The data division is described in Table 3.

Figure 4. Top: View of the region under consideration. Bottom left: Visualization of the point cloud
with the software CloudCompare. Bottom right: Results of the manual labeling (red: non-ground,
blue: ground).

Table 3. Data division.

Vegetation Part Surface Part Total Proportion

Train set 8,734,614 5,685,387 14,420,001 93.47%
Test set 188,582 342,772 531,354 3.44%

Validation set 171,756 305,034 476,790 3.09%
Pre-train set 41,806 60,178 101,984 82.69%
Pre-test set 5338 16,007 21,345 17.30%

3.3. Classification
3.3.1. Parameters Selected

The use of the CSF and SMRF algorithms starts with the adaptation of the parameters
to the point cloud. When the accuracy of the algorithm no longer significantly improves
in the process of adjusting the parameters, the current parameters are output. They are
presented in Tables 4 and 5, respectively. An example of the classified point cloud is shown
in Figure 5.

Table 4. Parameter setting for CSF.

Rigidness Time Step Grid
Resolution

Distance
Threshold

Height
Difference

Maximum
Number of
Iterations

Steep
Slope Fit

Factor

Parameter
Value 1 0.715 0.1 1.5 0.3 500 True

Table 5. Parameter setting for SMRF.

Surface Grid Slope Value (%) Windows Size Single Elevation
Difference Value

Parameter Value 0.1 0.15 90 0.001
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The values found for the single scale are 47, 53, 60, and 54 for the classifier DTC, RFC,
DAC, and NNC, respectively (see Section 2.2.2).

The training parameters of PointNet++ are the training epoch, the validation frequency,
and the learning rate, to cite but a few. They need to be tested several times before selecting
the most suitable ones, as presented in Table 6.

Table 6. Parameter settings for PointNet++.

Parameters Settings Meaning of Parameters

Number points 10,000 Fixed number of points per grid
Grid size (m) [20, 20] Size of the grid

Grid orientation YZ Direction of the split
Max epochs 20 Epoch number

Validation frequency 50 Frequency of network validation
Initial learn rate 0.0005 Initial learning rate

L2 regularization 0.01 Factor for L2 regularization (weight decay)

Mini batch size 6 Size of the mini-batch to use for each
training iteration

Learn rate drop factor 0.1 Factor for dropping the learning rate
Learn rate drop period 10 Number of epochs for dropping the learning rate
Gradient decay factor 0.9 Decay rate of gradient moving average

Squared gradient decay factor 0.999 Decay rate of squared gradient moving average

Number nearest neighbors 20
The number of nearest points in the

downsampled point cloud for each point in the
dense point cloud

Training time (s) 25,774.86 Time to train the model.
Test time (s) 60.967 Time to test the model

Figure 5. Classification of the point cloud with CSF.

3.3.2. Results

We have chosen to compare the various algorithms from two perspectives: their
classification performance and their running time.

Classification Performance of Algorithms

Figure 6 summarizes the classification results for the ground based on the Acc, IoU,
and F1 score metrics (see Section 2.3). We note that among the FPCC algorithms, SMRF
performs better than CSF for all metrics with a difference of approximately 0.02. Regarding
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the MLPCC methods, the performance of the single-scale algorithms is generally better
than that of the methods based on multiple scale. Here, the Ed-based method seems slightly
superior compared to the Eλ-based method, with a difference of around 0.02–0.05 for the
DAC/F1 score. The classification result from PointNet++ outperforms the FPCC algorithm
and most of the MLPCC methods based on multiscales, but remains worthier than the
DAC, RFC, and NNC algorithms based on a single scale. The difference reaches up to
0.1 compared, for example, to the DAC method with Eλ for the F1 score.

Figure 6. Classification results: Acc, IoU, F1 score.

Figure 7 describes the average classification results of each algorithm based on the
OA, mIoU, and mAcc for classifying ground points. Here, the SMRF algorithm performs
slightly better than the CSF algorithm in all metrics (a difference of approximately 0.02).
Regarding the MLPCC algorithm based on the single-scale kn, the average classification
ability of NNC, RFC, and DAC is very similar compared to the DTC classification algorithm.
However, when the kn value is computed with either the Ed or Eλ method, the classification
performance of the DAC algorithm decreases significantly compared to the RFC and NNC
algorithms (0.05 for the OA and 0.1 for the F1 score). From this perspective, the RFC and
NNC algorithms outperform the DAC algorithm. Regarding the DPCC algorithm, the
average classification performance of PointNet++ is in the middle to upper range of these
classification algorithms. It performs 0.02 worthier than the single-scale method RFC, DAC,
and NNC algorithms for the OA and mAcc metric and 0.05 for the mIoU. To summarize
the results of Figure 7, the classification performance of MLPCC based on single scale is
better than that of DPCC, which is itself better than that of the FPCC algorithm for the
average metrics.

Running Time of the Algorithms

A summary of the running times of the algorithms is provided in Figure 8. Here, we
define the running time of the FPCC algorithm as the time taken to perform the point cloud
classification. Regarding the MLPCC algorithm, this time includes the time to determine
kn, compute the point cloud features, train the model and use the model for point cloud
classification. Regarding the DPCC algorithm, this time includes the training time of the
model and the time to classify the point cloud using the model.
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Figure 7. Classification results: OA, mIoU, mAcc.

A detailed analysis of the running time is provided in Figure 8 (right). As expected,
the FPCC algorithms have the shortest running time and the DPCC algorithm the longest
one. Here, the determination of the kn value is shown to be time-consuming. Exemplarily,
the RFC algorithm takes more than 50% of the total running time in determining the kn
values and training the model compared with DTC and NNC methods, which are one-third
faster than the RFC, independently of whether the Eλ or the Ed method is used. Almost
all of the computing time for the PointNet++ algorithm (which is more than two times
higher than for the other algorithms) is used for model training. This method is, thus, less
appealing than the other one regarding its computational performance.

The classification time is investigated more specifically in Figure 8 (left). As expected,
the DTC, DAC, and NNC algorithms had the shortest classification times, i.e., 0.2 s in this
case study. The RFC was slightly slower than these three algorithms and took about 11 s to
classify. The SMRF algorithm needed twice as long, i.e., about 20 s. The slowest classification
algorithms were PointNet++ and CSF, taking 60 and 87 s, respectively, to classify. Here,
the bottleneck of the CSF is most probably the distance computation. However, regarding
the total running time, the simplicity of the algorithm, and for both the data sets under
consideration and the classification task, the filtering methods were the fastest overall.

Figure 8. Left: Running time for the classification only. Right: Total running time.

3.3.3. Application: Surface Fitting

In this section, we show an application using the classified point cloud for surface
approximation. The underlying application would be a deformation analysis from a near-
continuous monitoring as in [11,48]. Here, distances can be easily computed based on the
approximated surfaces, and mathematical spatiotemporal volumes can help visualizing
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changes by reducing data storage [49]. It is mandatory to extract only the ground for such
applications in order not to approximate and compare the growth of the vegetation. As an
example, we have chosen the CSF method to classify the point cloud based on its speed
and accuracy, without a lack of generality regarding the other methods presented in the
previous sections.

A subset of the point cloud containing approximately 1 million points has been chosen
to perform the mathematical surface approximation with LR B-splines, see Figure 9 (left).
We refer to [13] for more details on the procedure. The surface fitting algorithm chosen
is called locally adaptive as it compares the difference in absolute value between the
mathematical surface and the parametrized points inside a cell of a mesh using a given
tolerance (the higher the tolerance, the coarser the approximation). If the tolerance is set too
low, the risk of fitting the noise of the point cloud instead of its features exists. To face that
challenge, the refinement is performed iteratively and stopped when, for example, the mean
average distance starts to saturate. In our example, this value reaches 0.08 m for a tolerance
of 0.5 m. We mention that the point clouds are noisy and the ground truth unknown, i.e.,
this value gives an indication of the adjusted point cloud to the mathematical surface and
not about the details that can be detected. The maximum error was 4 m and the point cloud
was reduced to 13,800 coefficients in less than 8 s. The result of the surface approximation
after seven steps is depicted in Figure 9 (middle) with the corresponding LR mesh. The
latter shows the cells where the adaptive refinement was performed (narrow gridding).
Regarding the red points, the distance between the mathematical surface and the point
cloud is maximum. This may be due to features that are difficult to approximate with a
smooth mathematical surface, or the presence of non-ground points, such as any remaining
unclassified vegetation. Thus, the number of points outside tolerance could come as a
support to quantify the goodness of the classification algorithm. Further investigations are
needed to validate such a promising approach.

Figure 9 (right) shows the final mathematical LR B-splines surface. We mention that
the algorithm may try to extrapolate the gaps due to missing observations after the filtering
of outliers and non-ground points, creating artificial oscillations. Accordingly, trimming
is used, which is a popular method within the context of computed-aided design. This is
illustrated by the voids, which correspond to the non-ground points eliminated prior to the
surface approximation and non-fitted.

Figure 9. Left: Domain selected for surface approximation. Middle: points colored according to the
distance to the approximated surface, together with the LR mesh. Right: The trimmed surface after
seven iterations.

4. Discussion

We tested three different types of point cloud classification and segmentation methods
in this contribution: FPCC, MLPCC, and DPCC. We selected popular and easy-to-use
algorithms, which are available in either Python or MATLAB. Our classification task was
to separate ground from non-ground points with the aim of performing a mathematical
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surface approximation of the point cloud for exemplary, rigorous statistical testing of the
deformation between two point clouds. The data chosen were recorded in a mountainous
region in Austria where landslides are known to occur. The advantages and drawbacks of
each classification method are summarized in Table 7.

Table 7. Advantages and disadvantages of different algorithms.

FPCC MLPCC DPCC

Advantages
1. No prior information

required.
2. Time to run the complete

algorithm short.

1. Good generalization ability.
2. Fast classification speed.
3. High classification accuracy.

1. Good generalization ability.
2. Automatic extraction of point

cloud features.
3. Relatively high classification

accuracy.

Disadvantages
1. Each use requires parameter

adjustment.
2. Relatively low classification

accuracy.

1. Requires manual extraction of
point cloud features

2. Large amount of computing
resources for large point
clouds.

3. Long training time.
4. Training data with labeling.

1. Long training time.
2. Classification speed is slow.
3. Requires training data with

labeling.

The following remarks can be drawn from Table 7:

• Regarding the FPCC method, the advantage of the CSF and the SMRF algorithms
compared to supervised classification algorithms comes from the fact that no a priori
information (e.g., point cloud labels) is required to classify and segment the point
clouds at hand. This property is very useful when the number of points is small and no
prior information is available. Unfortunately, the parameters cannot be automatically
adjusted in the simplest versions of the filtering algorithms.

• Considering the MLPCC method, we tested the DAC, DTC, RFC, and NNC classifica-
tion algorithms and three methods for the kn value determination. These algorithms
have three disadvantages compared to FPCC methods: they require training data
with a manual labeling, a manual extraction of features and the model needs to be
trained. Consequently, the computational time is generally much higher than that of
the FPCC method (except for DAC, where the training time is shorter). Fortunately,
these methods have a good generalization ability, i.e., it is possible to classify point
clouds using the trained model for the same type of classification task without pa-
rameter adjustment. The classification is fast and its accuracy is higher than with
FPCC methods, provided that the kn value is chosen appropriately. The performance
of the DAC algorithm based on the single scale in the OA metric example is about
5% higher than the SMRF algorithm and about 7% higher than the CSF algorithm.
Compared to the DPCC method, the MLPCC method has three advantages: a higher
classification accuracy when the best parameters are chosen, a shorter training time,
i.e., the RFC with the longest training time is about 20,000 s less than the training time
of PointNet++ for the point cloud under consideration, and its classification speed is
fast. The RFC with the longest classification time takes about 50 s less than PointNet++.
Compared to PointNet++, MLPCC requires manual extraction of point cloud features
and, thus, large computational resources.

• Regarding the DPCC method chosen (PointNet++), the 3D point cloud is used as input
for the training of the model, and much is mandatory regarding the scattered and
noisy TLS data. Compared to the MLPCC algorithm, no manual extraction of point
cloud features is needed, the counterpart being the longer training time compared to
the MLPCC algorithms. With respect to the FPCC methods, the DPCC has a higher
classification accuracy and a better generalization ability, i.e., the parameters do not
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need to be adjusted after the model has been trained. Its disadvantage is the long
training time.

5. Conclusions

In this contribution, we presented different methods for extracting non-ground points
(here, vegetation) from TLS point clouds. We have chosen easy-to-understand and -implement
strategies so that the reader can easily reproduce the results for similar applications. We
have compared the algorithms chosen using a point cloud from a mountainous region
in Austria with an underlying near-continuous monitoring application based on mathe-
matical surfaces. We identified that the MLPCC algorithm based on the single scale has
the best classifier regarding its computational time and classification performance. The
CSF and SMRF were also interesting candidates due to their simplicity. The choice of
the classification method is left to the user’s convenience depending on its needs and
applications. The summary proposed in Table 7 can be used as orientation. We pointed out
that the near-continuous recording with TLS makes a mathematical surface approximation
of the point clouds a powerful alternative to working directly with the point clouds in
standard software by reducing them to a few coefficients. Moreover, statistical testing of
deformation can be performed based on the mathematical parameters. We have shown
an example of how the filtered point cloud performs a mathematical surface modeling.
The local refinement algorithm based on B-splines was chosen as particularly suitable
for approximating smooth surfaces. Here, the voids due to the removal of non-ground
points could be trimmed to avoid a drop in the approximated surface in domains with
no points, thus, reducing the risk of oscillations in case of dense vegetation. Interpolation
could be performed additionally. This topic is the subject of future research, as well as the
possibility of using the results of the surface approximation itself to judge the goodness of
the classification algorithms. Further applications using classified point clouds can include
snow or sand dune monitoring. The extent to which those conclusions can be generalized
to smoothed point clouds, as presented in, for example [50], needs further investigations.
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Abbreviations

3D Three-dimensional
Acc Accuracy
CSF Cloth simulation filtering
DAC Discriminant analysis classifier
DEM Digital elevation models
DPCC Deep learning point cloud classifier
DTC Decision tree classifier
FN False negative
FP False positive
FPCC Filtering point cloud classifier
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IoU Intersection over union
LDA Linear discriminant analysis
Lidar Light detection and ranging
mAcc Mean accuracy
mIoU Mean intersection over union
MLP Multilayer perception
MLPCC Machine learning point cloud classification
NNC Neural network classifier
OA Overall accuracy
OKBC Optimal K value finding method based on classification algorithms
RFC Random forest classifier
SMRF Simple morphological filter
TLS Terrestrial laser scanning/scanner in context
TN True negative
TP True positive
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