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Abstract

The present treatise is concerned with the application of numerical models to the prediction of compres-
sive strength and associated phenomena in fiber reinforced polymer matrix composites. This topic has
received much attention by the scientific community, and the basic mechanisms at microscopic scale are
well understood. Even so, microscale models and theories offer no predictive capability at scales relevant
for practical application, and the problem of devising suitable approaches for this purpose is still wide
open. The main obstacle in this endeavor is that relevant mechanisms are spread over several length
scales, hindering their integration.

To address this challenge, the topic is thoroughly reviewed and mesoscale approaches are identified as
an essential stepping stone towards an eventual transfer of fundamental scientific research to engineering
application. Subsequently, the mesoscopic approach based on a homogenized representation of the
fiber/matrix composite is developed further and its application for the prediction of the aforementioned
mechanisms is demonstrated: Random flaws in local fiber alignment are the main source of uncertainty
with regard to compressive strength and introduce a dependence of compressive strength on domain
size. Methods for the proper representation of these flaws and their effect on compressive strength
are considered and extended. Compressive failure in the materials under consideration is caused by
shear strain localization and features characteristic width and orientation. To make these phenomena
amenable to mesoscale modelling as a homogenized solid, the application of an extended solid theory with
additional rotational degrees of freedom is considered. The versatility of the approach is demonstrated by
predicting phenomena ranging from very small sizes, i.e. the bandwidth, to large sizes via the predicted
scale law for compressive strength. Hence, it is argued that the mesoscale approach provides an excellent
platform for further work concerned with component scale applications.

1



Kurzfassung

Die vorliegende Habilitationsschrift befasst sich mit der numerischen Vorhersage der Druckfestigkeit
und verwandter Phänomene in langfaserverstärkten Polymermatrixverbunden. Dieses Thema hat über
mehrere Dekaden eine umfangreiche Literatur hervorgebracht und ein weitgehend vollständiges Verständ-
nis der grundlegenden Mechanismen auf Mikroskalenebene erreicht. Ungeachtet dessen bleibt das
Forschungsproblem der Versagensvorhersage auf anwendungsrelevanten Skalenebenen ungelöst, und die
Entwicklung geeigneter Simulationsmethoden ist noch immer ausständig. Die Hauptschwierigkeit dabei
ist der Umstand, dass über verschiedene Skalenebenen verstreute Mechanismen zu einem Gesamtmodell
integriert werden müssen.

Das oben beschriebene Forschungsproblem wird hier zunächst durch eine umfangreiche Aufar-
beitung und Übersicht über die bestehende Literatur angegangen. In dem Zuge werden Mesoskale-
nansaetze mit einer homogenisierten Beschreibung des Verbundmaterials als geeignet identifiziert.
Deren Vorhersagekraft und vielseitige Anwendungsmöglichkeit wird anschließend im Zusammenhang
mit mehreren konkreten anwendungsrelevanten Aufgabenstellungen demonstriert: Die Druckfestigkeit
einer Einzelschicht ist sehr sensitiv auf geringfügige, zufällig verteilte lokale Abweichungen in der Faser-
ausrichtung von der nominellen 0◦-Richtung und ist daher mit erheblicher Unsicherheit behaftet. Durch
geeignete Methoden können die statistischen Eigenschaften der Faserfehlausrichtung abgebildet wer-
den und mit einem probabilistischen Simulationsansatz zur Vorhersage der Druckfestigkeitsversteilung
eingesetzt werden. Die Druckfestigkeit selbst wird durch das Einsetzen von lokalisierten Schubver-
formung begrenzt. Diese Schublokalisierung entsteht in einem Band von charakteristischer Orien-
tierung und Breite. Um diesen Vorgang einer Simulation durch einen homogenisierten Mesoskalenansatz
zugänglich zu machen, wird eine Regularisierung durch den Einsatz einer erweiterten Kontinuumsthe-
orie vorgenommen. Auf Grundlage der vielseitigen Anwendungsmöglichkeit wird argumentiert, dass
homogenisierten Mesoskalenansatze eine geeignete Grundlage für weitergehende Modelle auf Kompo-
nentenebene darstellen.
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Chapter I.

The problem and its context

I.1. Scope and structure

I.1.1. Microbucking as a mode of compressive failure

The longitudinal compressive strength of a wide class of anisotropic materials is in many situations
limited by internal buckling and subsequent strain localization. Glass or carbon long fiber reinforced
polymer matrix materials with unidirectional or non-crimp-fabric fiber architecture are of particular
interest in this work, but similar phenomena can be observed in carbon or metal matrix composites
and even in some natural materials like wood. The terminology used in the literature to refer to this
phenomenon is somewhat inconsistent, and the names microbuckling or fiber kinking are sometimes
used interchangeably and sometimes with a more narrow definition assigned to one or the other. To
avoid confusion, the term microbuckling, abbreviated by MB, is used here almost universally, with a few
exceptions when discussing the literature, see the discussion of kinking- vs. bending-theories in Chapter II,
Sec. 2.2, paragraph 6 further down. MB is one of many distinct and competing failure mechanisms in
the considered class of materials, and which mode takes precedence depends on material properties
and loading conditions [Piggott, 1981]. Other notable failure mechanisms include fiber crushing and
longitudinal splitting, see Ref. [Fleck, 1997], Fig. 9 for a diagram associating different failure modes
with regions in a material parameter space. A more detailed discussion of failure modes is provided in
Chapter II, Sec. 2.1, at this point it suffices to state that MB is the most prevalent failure mechanism in a
wide range of materials and loading conditions and is the most relevant compressive failure mode in many
engineering applications. Contrary to what the name microbuckling might suggest, the phenomenon
arises not from a bifurcation of equilibrium, but rather from a limit load problem resulting from locally
imperfect fiber alignment and shear nonlinearity, an extensive discussion of the basic mechanism is
included further down in Chapter II, Sec. 2.2. Nevertheless, MB shares some traits with shell buckling,
i.e. the macroscopic response of a homogeneously loaded coupon is essentially linear until failure and
strength is very sensitive to small imperfections. This imperfection sensitivity causes a large scatter of
results in physical compression tests on coupon shaped specimens. It is almost universally accepted, that
fiber strength is insignificant for MB and is associated with a separate fiber crushing failure mechanism
instead, see Chapter II, Sec. 4.3, paragraph 2. As a result, compressive strength may be less than 60%
of the corresponding tensile strength in unidirectional carbon-epoxy laminates [Budiansky and Fleck,
1993,Fleck, 1997].

I.1.2. The research question

Theories and models regarding the onset and progression of compressive failure in long fiber reinforced
materials are a long-standing research subject that has received substantial attention of the research
community in the past and continues to do so in the present. Over several decades this effort rendered
profound insights into many aspects of the problem, and in some regards the basic theory of MB may
be considered mature. However, despite significant progress in the understanding of the basic principles,
most existing approaches remain limited in scope and are tailored to specific purposes and/or are subject
to limitations that render them unsuitable to reliably predict the outcome of a physical test. Among
the main causes for the intractability of the problem is the strong sensitivity of the response to minute
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imperfections in the local alignment of the fiber reinforcement. Further relevant mechanisms are spread
over several length scales, all much smaller than the macroscopic size of a coupon or engineering com-
ponent. Hence, though most aspects of the problem are well understood in isolation, their interaction
is often not. Moreover, the integration of the relevant aspects over their respective length scales into
a sufficiently general simulation approach suitable to the prediction of the initiation and evolution of
compressive failure in typical composite components is still open. The present work is motivated by
this lack of predictive capability at scales relevant to engineering application, and aims to address it
by extending the integration and consolidation of relevant mechanisms. The intent is to overcome the
difficulties that have been hinted at above, and to contribute towards a more general approach to the
problem. The remainder of Chapter I will provide a profound motivation for the application of modelling
approaches based on a mesoscopic scale, i.e. in between the scales defined by the microstructure and the
macroscopic component.

I.1.3. Document structure

Survey and interpretation of the substantial body of knowledge that has been accumulated by the
research community of about five decades is not a trivial endeavor. Hence, the purpose of this brief
introductory survey here is limited to the substantiation of the claims made in Subsec. I.1.2, scope and
structure are set accordingly. An extensive discussion of the literature is not intended here in Chapter I
and a comprehensive literature survey is deferred to Chapter II. In this spirit, an overview of the main
developments in the field is exposed here in a structure that lends itself to provide a consistent line
of argumentation that conveys the motivation for mesoscale approaches in general, and this work in
particular. In contrast, the review in Chapter II takes a more general standpoint and covers also the
wider scope of the problem. The versatility of the mesoscale approach is utilized in Chapter III to predict
MB-strength, and in Chapter IV to predict band morphology. It is hoped that this effort will eventually
fulfill the long term goal of reliably predicting component strength via a computational model derived
from the extensive theory on the subject. Prospective concepts to this end are discussed in Chapter V.

As a starting point, Sec. I.2 briefly summarizes the merits and limitations of the vast amount of liter-
ature concerned with microscale modelling. A definition of this, and other scales, will be given further
down. Subsequently, it will be argued that the main benefit of the mesoscale approach is the proper
representation given to the fiber misalignment, and prior work relevant to the characterization of mis-
alignment is reviewed in Sec. I.3. At the end of this introductionary chapter, advantages and challanges
of mesoscale models are discussed in Sec. I.4 and the research question formulated in Subsec. I.1.2 will
be revisited in Sec. I.5 for an informed discussion of the motivation of this work.

I.2. Microscale analysis, history and limits

I.2.1. Microscale

As will be elaborated below, many prior approaches to the subject consider a spatial domain that is
pertinently defined in terms of the fiber diameter as an intrinsic length scale. For convenience, the
symbol df shall denote the fiber diameter, typical sizes are between ≈ 5µm (carbon) and ≈ 20µm
(glass), and the attribute microscale is assigned to approaches covering domain sizes on the order of ≈ 1
to ≈ 10 times df. To structure the survey, microscale approaches are further classified into categories
based on the dimensionality and extent of the domain they consider. Further down, it will be argued
that microscale analysis is not well suited to address the research question formulated in Subsec. I.1.2.
Nevertheless, a brief discussion of this approach seems necessary in order to point out key differences to
mesoscale approaches. Moreover, theoretical and computational approaches at microscale are the most
common kind in the literature.
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I.2.2. 0d-analysis, size ≈ 1df

The historically oldest theories [Rosen, 1965, Schuerch, 1966, Argon, 1972] on the subject considered
compressive failure of long fiber reinforced composites via an internal instability of a material point.
Such 0d-approaches are sometimes referred to as kinking-theory models. The point-domain lacks any
structure and implies uniformity of parameters and displacements in all directions, therefore, it may
seem debatable to which length scale such approaches might refer. However, the assumed uniformity is
consistent with the notion that the material point represents only one elementary cell of the fiber/matrix-
microstructure with a spatial extent much smaller than the distance over which a gradient in parameters
or displacement might become noticeable. Thus, approaches of this category may be considered to refer
to a size on the order of 1 df and, hence, they are classified as microscale approaches here.

The first attempts to explain the compressive strength of long fiber reinforced composites were based
on the application of a theory for elastic instabilities in an anisotropic material point put forward by
B. W. Rosen [Rosen, 1965]. For composites with a fiber volume content of about 50% or more, the
theory predicts the elastic bifurcation of stiff reinforcements perfectly aligned with the loading direction
at a compressive load equal to the elastic matrix shear modulus. However, it was soon realized that
for polymer matrix composites this approach overestimates strength by about a factor of 4 [Budiansky
and Fleck, 1993, Naik and Kumar, 1999] and the elastic instability is preempted by a different failure
mechanism. Subsequent theories [Argon, 1972, Evans and Adler, 1978, Budiansky, 1983, Budiansky and
Fleck, 1993] accounted for the effect of initial misalignment of the direction of compression to the principal
direction of the reinforcement, and the effect of nonlinear matrix stiffness. Equilibrium considerations
rendered relatively simple analytical expressions for a critical far field stress that will initiate unstable
rotation of the local fiber direction, given some initial misaligned value of the fiber direction and the
nonlinear matrix shear response. More modern approaches of this category [Jensen and Christoffersen,
1997, Niu and Talreja, 2000, Basu et al., 2006, Wadee et al., 2012] are typically concerned with more
complex constitutive models, complex load states, and details of the unstable response. Both the elastic
and the refined models predict a salient characteristic of MB induced compressive failure, that is, an
essentially linear stress/strain relation in the pre-failure regime that is terminated by a subsequent regime
of sudden softening due to local rotation of the fiber direction. However, only the models accounting for
the imperfect fiber alignment and matrix nonlinearity predict plausible strength levels. Moreover, only
these models are consistent to the large scatter of strength observed in experiments, due to their strong
sensibility to the initial misalignment angle. Thus, only the latter class of theories, e.g. Ref. [Budiansky
and Fleck, 1993], pertains to MB as defined in Subsec. I.1.1.

A significant finding resulting from these theories is that they clearly identify fiber misalignment and
matrix nonlinearity as essential ingredients of any accurate model of MB. As a tool to predict compressive
strength against MB, however, they are ill-suited due to the simplicity in the representation of the fiber
misalignment. In this class of approaches one particular material point is considered without regard for
its environment, thus, the misalignment is quantified in terms of a single local misalignment angle. It
will be argued further down in Sec. I.3 that proper account must be given to the random fluctuation of
preexisting alignment imperfections over a finite domain. A more in depth review of approaches based
on the equilibrium analysis of material points is included in Chapter II, Sec. 2.2.

I.2.3. 3d models, size ≈ 1df

Closed form analysis is possible only on the basis of simplifying assumptions regarding the microstructural
kinematics, typically based on the classical Voight/Reuss assumptions. To overcome this limitation,
several investigations [Balacó De Morais, 1996, Bednarcyk et al., 2014, Skovsgaard and Jensen, 2018b,
Camarena et al., 2021] regarded a fully 3d micromechanical representation where fiber and matrix are
resolved as separate solids. Hexagonal or quadratic periodic fiber packing is typically assumed, since
the domain covers only an elementary cell of the composite. Similar to 0d-theories, fiber misalignment
is assumed to be uniform within this domain. Hence, this class of approach may be considered as an
extension of the closed form analysis theory discussed above, where the numerical framework allows
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for a more accurate representation of the microstructure and more complex constitutive models. This
results in an improved qualitative assessment of the effect of the microstructure and complex constitutive
relations for fiber matrix and interface. However, the representation of the misalignment is still the same
and this class of approach offers little benefit with regard to the prediction of compressive strength at
coupon or component size.

I.2.4. 1d-models, size ≈ 10df

Another distinct class of approaches accounts for gradients only along the longitudinal direction by
representing the fiber as a beam bedded on a foundation formed by the matrix [Xu and Reifsnider,
1993, Schapery, 1995, Fleck et al., 1995, Feld et al., 2011]. The assumption of uniformity in transversal
direction is occassionally called the infinite band assumption and is inherent to this class. This class of
investigations was typically motivated by questions regarding the band morphology, rather than strength
considerations, and with few exceptions [Feld et al., 2011], no consideration is given to the statistical
nature of the misalignment. The typical longitudinal extent of such models is on the order of a few tens
of df and chosen so that the width of the band is covered. Bandwidth and orientation are governed by
mechanisms known as band broadening and lock-up resulting from the condition of near incompressibility
and kinematic considerations, see Chapter II, Sec. 2.3. Inclusion of a fiber fracture condition allows for
the prediction of the post-mortem bandwidth, see Chapter II, Sec. 2.4. An important finding that was
derived from this class is that fiber bending stiffness has little effect on MB-strength for typical fiber
undulations [Fleck et al., 1995].

I.2.5. 2d/3d-models, size ≈ 10df

The final category of microscale models again considers a micromechanical discretization of fiber and
matrix, but over a larger domain size. Discretization size is bound to some fraction of df, hence,
such an approach becomes computationally inefficient at domain sizes approaching about 100 df. As a
consequence, 2d-models tend to be limited to about 100 fibers and somewhat fewer in a 3d model. This
allows for the accommodation of some degree of variation for the misalignment within the confinement
stipulated by the domain size. Several such approaches considered inhomogeneous misalignments, e.g.:
sinusoidal patches of correlated misalignment [Kyriakides et al., 1995, Romanowicz, 2014], eigenmodes
[Yerramalli and Waas, 2004], and uncorrelated, individually random fiber misalignments [Varandas et al.,
2020]; The infinite band assumption is also frequently adopted in this context, e.g. in Refs. [Pimenta
et al., 2009, Wind et al., 2014]. To reduce the computational effort some investigations introduced
some additional assumptions, e.g. in Refs. [Gutkin et al., 2010, Skovsgaard and Jensen, 2018a] a 2d-
discretization of a single fiber/matrix-stripe was used with the infinite band assumption and periodicity
constraints rendering these models similar to the class of 1d-models reviewed in the previous Subsec. I.2.4.
Other approaches simply disregarded the physical fiber diameter size and scaled it up to sizes on the
order of the ply thickness [Prabhakar and Waas, 2013,Bishara et al., 2017].

In summary, microscale approaches rendered many useful insights, but they are limited to exemplary
layouts of fiber misalignment in a domain of typically less than 100df in size. It will be discussed
in the next Sec. I.3, that measurements indicate that even in unidirectional plies nearby fibers have
similar, i.e. correlated, alignment and the locally predominant alignment changes over a distance of about
200 df [Lemanski and Sutcliffe, 2012] to 400 df [Fleck and Shu, 1995]. Hence, microscale approaches
necessarily struggle to capture even a single region of correlated fiber alignment, and a representative
volume element containing several such regions remains out of reach. This is not only due to the excessive
numerical effort, but also due to the delicate pre- and post-processing required by the fully resolved
fiber/matrix microstructure. The extreme sensitivity of MB-strength on the magnitude and spatial
distribution of misalignment, in turn, implies that microscale approaches seem ill-suited for meaningful
strength predictions, in general.
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I.3. Beyond microscale, misalignment topologies

I.3.1. Misalignment measurements

The previous Subsec. I.2.5 led to the conclusion that the local fiber misalignment and the nonlinear
shear stiffness are of paramount importance for MB-strength. Shear nonlinearity results from a variety
of causes including various microscopic mechanisms like: matrix plasticity [Vogler et al., 2001], viscous
effects [Hsu et al., 1999], and interface debonding [Camarena et al., 2021]; Microscale models are well
suited to represent the interplay of constitutive nonlinearity with the microstructure, but it has been
claimed in the previous section that they are not suitable to provide a representative volume element,
since the spatial domain is too small to reflect the spatial allocation of fiber misalignment. This assertion
is substantiated in this section by the means of a brief review of empirical investigations and a summary
of the most essential findings.

Early measurements of fiber misalignment were based on labor-intensive optical microscopy and mi-
crographs [Yurgartis, 1987, Clarke et al., 1995, Paluch, 1996]. These investigations inferred the in-plane
or out-of-plane misalignment angle from the semi-major axes of fiber cross-sections observed in micro-
graphs at some plane inclined to the longitudinal, or tracked the variable position of individual fiber
cross-sections over several micrographs in subsequent transversal section planes. More recent investiga-
tions take advantage of the increasing proliferation of lab-sized x-ray computer tomography apparatus,
see e.g. Ref. [Sutcliffe et al., 2012]. The working principle of computer tomography is based on mea-
surement of local density at a given point within a measurement volume, which is subsequently mapped
to a gray scale value in a 3d-voxel matrix. The automated processing of digital images obtained from
micrographs or tomography in order to extract the local fiber alignment with a high degree of precision
has also become a very active field, see e.g. [Kratmann et al., 2009, Wilhelmsson and Asp, 2018] or the
numerous contributions referenced in [Safdar et al., 2022b].

I.3.2. Misalignment topology, mesoscale

The empirical knowledge gathered by the investigations cited above in Subsec. I.3.1 indicates that,
despite its random appearance, the magnitude and spatial allocation of misalignment features certain
characteristics:

In unidirectional plies, e.g. manufactured from prepregs, fibers are nominally straight, but local devi-
ations from the nominal longitudinal are present as imperfections caused by manufacturing or handling.
In longitudinal direction the curvature resulting from these deviations is resisted by the fiber bending
stiffness, hence, typical undulation wavelengths fall in between ≈ 200df and ≈ 400df. Transversally,
contact and friction during compaction restrict the magnitude of deviation and enforce a local correla-
tion of nearby fiber (mis-)alignment. The attribute correlated indicates that the misalignment of nearby
fibers is not independent, in the statistical sense, but tends to be the similar. A more precise definition of
this property will be given further down in Subsec. I.3.5. The longitudinal and transversal extent of the
region of correlated fiber (mis-)alignment are somewhat different, but on the same order of magnitude
of about 1 mm [Sutcliffe et al., 2012]. Several of these regions randomly appear in succession, giving the
impression of a randomly fluctuating fiber misalignment over a distance of a few mm. This motivates the
introduction of a new lengthscale referred to as mesoscale to represent features of characteristic lengths
on the order of a few 1 mm. The term misalignment topology is used here to refer to such a mesoscale
domain comprising several correlated regions of misalignment. Graphical depictions of measured mis-
alignment topologies can be found in Ref. [Sutcliffe et al., 2012] and in [Safdar et al., 2022a]. Over much
larger distances approaching the component size, the nominal direction itself may be variable due to
draping or discontinuous due to ply drops etc.

In materials with a mesoscale fiber architecture, the characteristics of the misalignment topology are
somewhat different from unidirectional materials. This applies e.g. to non-crimp fabric materials where
rovings are held together by a stitching yarn periodically piercing through the ply plane, see Chapter III,
Fig. 1 for an example. There, the local fiber alignment is, in a first order approximation, determined by
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periodic roving undulations resulting from the stitching yarn. Random imperfections are superimposed
on the inherent roving undulation due to the architecture, thus the magnitude of misalignment and
its spatial correlation are stronger than in unidirectional plies. The spatial extent of the correlation is
predominantly determined by the mesoscale architecture, e.g. on the order of 10 mm for the material
considered in Chapter III. Random deviations in roving alignment result from manufacturing flaws,
undefined offsets during lay up, nesting and contact of neigboring plies during compaction, and viscous
or capillary forces during infiltration. A limitation of computer tomography is its high cost, and only
small volumes can be scanned economically with a sufficient resolution, typically on the order of a few
1 mm. This is sufficient for unidirectional materials, but too small for materials with mesoscale fiber
architecture with larger correlation length due to the architecture. Hence, in Ref . [Wilhelmsson et al.,
2018] misalignment topologies in various noncrimp fabric materials were measured via micrographs over a
length of 20 mm. An alternative low-cost/large-volume measurement approach based on optical imagery
of dry fiber material was used in Chapter III. A discussion of this technique is presented in Chapter III,
Sec. 2.1.

I.3.3. Statistically informed microscale models

To harness the data obtained from measurements for the purposes of numerical modelling, a mathemat-
ical quantification of the random misalignment must be determined first. A quantification in terms of a
statistic seems natural, and several investigations provide empirical histograms of the misalignment angle
or a fitted statistical distribution [Yurgartis, 1987,Paluch, 1996,Sutcliffe et al., 2012]. The distribution of
in-plane and out-of-plane misalignment are similar [Yurgartis, 1987] and approximately normal, although
it has been noticed that the tails of the normal distribution are somewhat inconsistent with physical
limits to the magnitude of misalignment [Sutcliffe et al., 2012]. In the mean, fiber alignment follows the
nominal direction, hence, the distribution of the misalignment is, by definition, centered around zero.
Standard deviations of misalignment are small and depend on materials and conditions, e.g. between
0.6 ◦ and 1.9 ◦ [Yurgartis, 1987,Sutcliffe et al., 2012] for unidirectional carbon fibers.

A shortcoming of statistical distributions is that they merely quantify the frequency of occurrence of
a given misalignment angle and do not contain any information regarding its spatial allocation. Hence,
the misalignment topology, as defined above, cannot be recovered from a statistical distribution alone,
see also Subsec. I.3.4 below. Nevertheless, with distribution data at hand, it may seem tempting to
attempt an integration of the misalignment as a statistical property into micromechanical models or
theories. The lack of topology information is of no concern in this case, because misalignment is reduced
to a single local fiber angle anyway. To effect such a statistically informed micromechanical theory, two
additional assumptions have to be introduced:

The first assumption is the neglect of any interaction between nearby regions of correlated misalign-
ment. In a micromechanical setting, this is necessary because the microscale domain is either a single
point or otherwise too small to represent the spatial correlation of fiber misalignment. This disregards
the possibility of constructive or destructive interaction of nearby misalignment, i.e. nearby misalignment
in the same direction are more detrimental to strength than if they were in opposite directions.

The second simplification in this context is the assumption of a weakest link -type behavior, i.e. that
the overall MB-strength of a homogeneously stressed panel is limited by the most severe misalignment
it contains. The topic will be revisited in Chapter III to evaluate the relation of component strength to
component size. The weakest link assumption is common for brittle materials like ceramics, but also
applies, to some extent, to compressive failure by MB, since there exist very little capacity for load
redistribution once deformation localizes and local softening begins. Localization occurs at the point of
least local strength which coincides with the position of the most severe misalignment, i.e. the weakest
link of a metaphorical chain.

On the basis of these assumptions, a known statistical distribution of misalignment may be combined
with a micromechanical theory to obtain a simple estimate for the MB-strength. A substantial difficulty,
however, is the problem of finding a suitable way to estimate the expected maximal magnitude of im-

9



perfection, i.e. the weakest link, from the known distribution. In [Wilhelmsson et al., 2018] the problem
was resolved by defining the 99th-percentile of an empirically determined misalignment distribution as
the maximal imperfection. This threshold seems somewhat arbitrary, and for a similar situation con-
templated in Chapter III, Sec. 3.1 the 90th-percentile was found to produce acceptable results. Thus, it
may be summarized that the approach has merit in its elegant simplicity, but suffers from more (first
assumption) or less (second assumption) crude simplifications, and depends on a seemingly arbitrary
tuning parameter (the threshold percentile), see also the discussion in Chapter III, Sec. 3.1, last para-
graph. As an improvement, it seems particularly worthwhile to overcome the first simplification by
choosing an approach based on a length scale that allows the accommodation of an entire misalignment
topology. For this purpose a mathematical quantification including spatial information must be found,
which will be the topic of Subsec. I.3.5 further down.

I.3.4. The sampling point problem

As stated before, the statistical distribution alone does not comprise a complete quantification of a re-
alistic misalignment topology. A demonstration of this shortcoming may be obtained from a practical
consideration: To generate a 2d-mesh for some numerical model, the local misalignment at the integration
points of the mesh may be defined in terms of a m by n matrix f[k, l] specifying the local misalignment
angle for a grid of evenly spaced points at positions Xk, Yl. For clearer notation, indices k, l of matrix
components are specified in square brackets, i.e. f[k, l] ≡ fkl, and grid point indices are taken from the
range 0 6 k 6 m−1 and 0 6 l 6 n−1. In a naive approach, f[k, l] may be determined by independently
drawing random samples from a known statistical distribution. Thus, in a finer mesh more sampling
points would be drawn than in a coarse one, hence, the finer mesh is likely to contain more extreme
misalignment, see Fig. I.1 for an example. By accepting the weakest link hypothesis introduced in the
previous Subsec. I.3.3, it follows that the finer meshes are likely to render a lower strength than coarse
meshes. This is not the result of a convergence with finer refinements towards a true strength, since
in the limit case of an infinitely fine mesh the most extreme misalignment permitted by its statistical
distribution is bound to be present, rendering an implausibly low deterministic strength. The proce-
dure of independently sampling the misalignment at each integration point leads to artificially ”noisy”
misalignment topologies in fine meshes, and a regularization is required to obtain a natural topology
independent of the discretization size. In nature, this regularization is provided by the autocorrelation
property, i.e. a relation between the distance of two points in the topology to the degree of statistical
(in-)dependence of the misalignment angle at the same points. In other words, in natural misalignment
topologies there is a minimum distance from one sampling point to the next that must be traversed
before the sampling at both points can be performed independently, thus, regularizing the problem. The
physical mechanisms enforcing this constraint are lateral contact and fiber bending stiffness, as reviewed
above.

I.3.5. The spectral representation method

The concepts of auto- and cross-correlation are common in the analysis of signals and random vibrations
[Newland, 2012] and closely related to Fourier analysis. There, the quantities under consideration are
1d-time series representing signals, but the concepts can be generalized to higher dimensional data sets
with little difficulty. For discrete data, e.g. pointwise measurements or element-wise properties in a finite
element mesh, the discrete Fourier transformation applies. Different conventions for the normalization
and the sign in the argument of the exponential function in the discrete Fourier transformation are
in use. The variant used here applies normalization on the forward transformation, see (I.1) below.
The forward transformation of f[k, l] is F[r, s] = F(f[k, l]), F and F−1 indicate forward and backward
transformations, respectively.

F[r, s] =
1

mn

m−1∑
k=0

n−1∑
l=0

f[k, l] exp
(
− 2πi

(rk
m

+
sl

n

))
(I.11)
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Figure I.1.: A demonstration of the sampling point problem considering a square domain of size a = b = 10 mm with variable
amount of m = n evenly spaced grid points. The misalignment f[k, l] at each grid point k, l is independently sampled from
a normal distribution with zero mean and standard deviation Std(f) = 2 ◦. The top row shows two randomly generated
grids of sizes m = 10 and m = 50, respectively. Directly below are their corresponding histograms. The dashed vertical
line in the histograms marks the weakest link, i.e. the maximum misalignment magnitude maxk,l(f[k, l]) in the given grid
realization. Note that the magnitude of maxk,l(f[k, l]) increases with the number of grid points. The lower right log-plot
shows how maxk,l(f[k, l]) increases with the grid size m in a numerical experiment with 1000 realizations for each grid size.
The blue line marks the mean and the shaded band the extent of the standard deviation of maxk,l(f[k, l]).

f[k, l] =

m−1∑
r=0

n−1∑
s=0

F[r, s] exp
(
+ 2πi

(rk
m

+
sl

n

))
(I.12)

Modelling techniques derived from Fourier analysis were first applied to represent misalignment in
Ref. [Slaughter and Fleck, 1994] in a 1d-model and subsequently extended to 2d in [Liu et al., 2004].
The same approach was applied in Chapter III and [Safdar et al., 2022a], the essential concepts are
briefly outlined here, further details can be found in [Safdar et al., 2020]. The overarching motivation for
including this discussion here is to elaborate the need for a sophisticated misalignment representation
that is beyond the means of micro-models and will motivate the mesoscale approach introduced in the
next Section Sec. I.4.

The misalignment topology of some numerical model may be given in terms of a set of discrete local
misalignment angles over a corresponding set of 1d, 2d or 3d-grid points. If the numerical model is
intended for unit cell analysis, the misalignment field will be periodic, and this situation is assumed for
the sake of the demonstration. If the misalignment was obtained from measurements, the assumption
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of periodicity is not appropriate, and some extra precautions must be taken, see e.g. [Newland, 2012].
Moreover, only a 2d-topology shall be considered where a m by n matrix of discrete angle values f[k, l]
represents either the in-plane or out-of-plane angle. More sophisticated constellations are conceivable,
e.g. a fully 3d-topology embedded in 3d space given in terms of 2 separate data sets for in-plane and
out-of-plane angles [Safdar et al., 2022a].

The objective is to overcome the sampling point problem, by finding a technique to generate a matrix
of discrete misalignment values f[k, l] of defined standard deviation and auto-correlation. To facilitate
the explanation, it is pertinent to start with the desired outcome and to trace the steps that were taken
during its creation in reverse. The matrix f[k, l] contains real valued, i.e. Im(f[k, l]) = 0, misalignment
angles at evenly spaced spatial position coordinates Xk, Yl covering a rectangular unit cell of length and
width a,b. Because f[k, l] is periodic it can be repeated in a cyclic manner f[k, l] = f[k − um, l − vn]
where u, v are positive or negative integers. It is recalled that the mean of f[k, l] is zero, by definition,
and this property is exploited in the following without further comment. The example data for f[k, l]
shown in Fig. I.2 features the desired properties and shows some degree of smoothness, i.e. the values f of
nearby points tend to be similar, unlike in Fig. I.1 above. A mathematical quantification of this property
is given by the so called auto-correlation matrix A[k, l], see (I.21). An alternative more tangible measure
for the same is the auto-correlation coefficient ρ[k, l] that contains a normalization by Var(f), i.e. the
variance of the random angle values f[k, l], see (I.22). The latter field is plotted in the second row, first
column of Fig. I.2. The absolute value of ρ[k, l] provides a measure for the probability of a point shifted
by k, l from the current location having the same magnitude of misalignment. Its sign indicates if the
misalignment is expected to be in the same (ρ > 0) or opposite (ρ < 0) direction. Since there is no shift
at the origin k = l = 0, ρ[0, 0] is always one. Towards the border of the diagram the shift k, l increases
and the auto-correlation coefficient tapers off towards the mean value which is zero.

A[k, l] =
1

mn

m−1∑
p=0

n−1∑
q=0

f[p,q]f[p+ k,q+ l] (I.21)

ρ[k, l] =
A[k, l]

Var(f)
(I.22)

The forward Fourier transform of the auto-correlation renders the power spectral density S[r, s] =
F(A[k, l]) of the field f[k, l]. It is defined in frequency domain and S[r, s] quantifies the participa-
tion of harmonic frequencies ωr = r2πa ,υs = s2πb in f[k, l]. In the present case it is more convenient,

however, to work with a derived property S̃[r, s] = 4π2

ab S[r, s]. Inspecting the second row, second column

of Fig. I.2, shows that the power spectral density, or rather S̃[r, s], has a peculiar form, i.e. it is a com-
bination of rectangular step functions, and is nonzero only for low frequencies. This is by design and
ensures the desired properties of f[k, l]. By eliminating very high frequency oscillations, the gradient in
f[k, l] is limited and the noise in f[k, l] is suppressed. The extent of the rectangular range of nonzero
S[r, s] can be used to control the auto-correlation property. The spectral density at the origin S̃[0, 0]
is zero, which results in a zero mean of f[k, l]. The functional form of S[r, s] is often assumed as a
1d/2d/3d-step function, but other forms lead to similar results [Liu et al., 2004] and it is not considered
of major importance. The spectral density S[r, s] of f[k, l] can also be obtained by an alternative route
from the forward discrete Fourier transform F[r, s] = F(f[k, l]), see (I.3) where the superscript asterisk
indicates the complex conjugate.

S̃[r, s] = F[r, s]F∗[r, s] (I.3)

A proper model generation procedure rendering a defined standard deviation and auto-correlation starts
with S̃[r, s], recovery of F[r, s], and subsequent backward discrete Fourier transform to arrive at f[k, l].
Parseval’s theorem relates the sum over S̃[r, s] to the standard deviation of the misalignment angle
f[k, l], see (I.4), and can be exploited to adjust the magnitude of the step function to the desired value,
e.g. known from measurement. The Fourier coefficients F[r, s] are not uniquely related to S̃[r, s] since
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the latter contains no information regarding the phase angle. However, one particular matrix F[r, s]
consistent with S̃[r, s] can be obtained by randomly sampling phase angles 0 6 θ[r, s] < 2π from a
uniform distribution.

Var(f) :=
1

mn

m−1∑
k=0

n−1∑
l=0

(
f[k, l]

)2 Parseval
=

m−1∑
r=0

n−1∑
s=0

F[r, s]F∗[r, s] =

m−1∑
r=0

n−1∑
s=0

S̃[r, s] (I.4)
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Figure I.2.: The first row shows a discrete misalignment field f[k, l] and its discrete Fourier transformation F[r, s]. The
auto-correlation coefficient ρ[k, l] and the property S̃[r, s] are shown in the bottom row. Fields in the left column refer to
the spatial domain, while fields shown in the right column are defined in frequency domain. In both rows, the field on
the left column is related to the field on the right column via the discrete Fourier transform F and its inverse F−1 for
the reversed direction. In the second row this property does not apply to ρ[k, l], but rather to A[k, l]. The matrix f[k, l]
represents a periodic field of discrete misalignment angles, e.g. measured in degrees, over a set of m = 39 by n = 39 grid
points over a spatial domain of a = 100µm by b = 100µm. The standard deviation of all plots is Std(f) = 2. Matrices
ρ[k, l], F[k, l] and S[r, s] were shifted so to show index [0, 0] at the center for a clearer representation. Negative indices
can be converted to positive ones by adding integer multiples of the matrix size m or n. F[r, s] is complex valued, and
obeys Re(F[−r,−s]) = Re(F[r, s]) and Im(F[−r,−s]) = −Im(F[r, s]). Matrix elements made redundant by this relation are
not shown. The dotted lines outline the last row/column before cutoff.

The procedure is also applicable to non-square domains, either in spatial or frequency domain, see
Fig. I.3 for an example. Moreover, the noise pattern shown in Fig. I.1 can be recovered by extending the
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step function for S̃[r, s] over the entire frequency domain, see Fig. I.4. The resulting field is pointwise
independently random and the auto-correlation coefficient is zero everywhere except for ρ[0, 0] = 1.
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Figure I.3.: A space domain of smaller size with a = 50µm, b = 100µm and fewer sampling points m = 19, n = 39. The
axis scale in the frequency domain is approximately the same as in Fig. I.2 above, hence, the width of the matrix columns
in S̃[r, s] is stretched horizontally. The standard deviation of all plots is Std(f) = 2.
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Figure I.4.: The same domain as in Fig. I.3, but without cutoff in S̃[r, s]. The standard deviation of all plots is Std(f) = 2.

I.4. Mesoscale analysis, efficient and versatile

I.4.1. Material models at mesoscale

In Sec. I.2 the fiber misalignment was identified as one of the two foremost aspects that determine
MB-strength, the other being the shear nonlinearity. While microscale theories clearly indicate that
MB-strength is very sensitive to misalignment, they struggle to represent misalignment topology and
statistics, recall the discussion in Subsec. I.3.3. This provides a clear motivation for approaches at a
higher, mesoscopic length scale to capture the misalignment topology, and a definition of mesoscale has
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already been given in Subsec. I.3.2. At mesoscale, it is not feasible to resolve the fiber/matrix con-
stituents and their microstructure, so the composite has to be represented via an equivalent anisotropic
homogeneous solid. The misalignment field can then be accounted for by applying a small preexisting
rotation of the local preferential direction of the material given by a field similar to f[k, l], see e.g. Fig. I.2
or Fig. 7(a) in Chapter III.

With the misalignment accounted for, it is time to shift the attention to the second crucial aspect,
the shear nonlinearity. From a microscopic vantage point, shear nonlinearity results from a combination
of matrix permanent deformation, cracking, and fiber/matrix-interface debonding, and in a microscale
model all of these mechanisms can be represented directly. At mesoscale, the nonlinear effect of these
mechanisms must be accounted for indirectly, a very challenging task, in general. However, if the appli-
cation of the material model is restricted to the simulation of MB until incipient failure, the requirements
can be relaxed: In many applications, the effect of transversal direct stress may be neglected, since it
is often of small magnitude and has little to no impact on MB-strength. Moreover, MB-strength is to
a large extent independent of fiber strength and fiber fracture occurs some time after the initiation of
softening, see Chapter II, Sec. 2.4. Hence, it is appropriate to model the material response for longitudi-
nal and transversal direct stress components as linear, if the simulation is to predict only the initiation
of softening, and not the full range of the subsequent collapse. The shear nonlinearity, on the other
hand, is crucial for MB-strength predictions and must be reflected accurately. However, a substantial
simplification results from the observation that if the external load is increased monotonously, the same
is true for the shear stress within the band of localized shear deformation. Hence, for monotonic loading
to failure it is not necessary to separately account for matrix permanent deformation, cracking, and
fiber/matrix-interface debonding via individual state variables, and all of these effects can be covered by
one single non-linear mechanism, e.g. via shear plasticity. The shear plasticity model then encapsulates
all microscale mechanisms into a single blanket mechanism with one state variable that can be calibrated
by an ordinary shear test, where the aforementioned microscale mechanisms may or may not actually
occur.

I.4.2. Regularization in the softening regime

The investigation that will be discussed in Chapter III is concerned with MB-strength only, hence the
simplifications above are applicable there. Even though strength is probably the most interesting prop-
erty in practical application, in some situations it may be desirable to extend the simulation beyond the
peak compressive load into the softening collapse regime, e.g. in a crash simulation. There are, however,
two obstacles associated with this task: The first aspect is that in most situations the model size is sig-
nificantly larger than the width of the band undergoing softening, and hence the compressive load and
the compressive displacements decrease simultaneously for quasi-static loading in the softening regime,
see Chapter IV Figs. 9 and 11 for an illustration. Hence, the equilibrium path can only be followed via an
arc length scheme, and the actual response in a physical test under load control will be a highly transient
dynamic one. Another more profound challenge is that the equations of conventional (Cauchy) solid the-
ory are rendered ill posed in the softening regime, i.e. a shear strain tending to infinity is predicted over a
band of width tending to zero. This artefact appears in homogenized models based on conventional solid
theory, but not in nature or micromechanical models, since there the bending resistance of the still intact
fibers enforces a finite extent of the shear band. Conventionally homogenized approaches lack the notion
of local (pointwise) bending and cannot impose any resistance to it. This deficiency can be rectified
by applying either a higher order theory accounting for second gradients of displacement or a higher
grade theory introducing further unknown variables, see the discussion in Chapter IV, Sec. 2.3. The
problem will be addressed in Chapter IV by formulating a material model suitable for MB applications
in the context of a Total-Lagrangian micropolar (Cosserat) solid theory. The approach presented there
overcomes the spurious mesh dependence of conventional solid theory in the softening regime and is able
to predict the finite size of the shear band. This and similar approaches [Fleck and Shu, 1995,Hasanyan
and Waas, 2018a, Hasanyan and Waas, 2018b] make the analysis of band morphology, e.g. angle and
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width, amenable to mesoscale approaches.

I.4.3. Stochastic analysis, size effects

For a given domain size, homogenized mesoscale approaches offer a vast advantage in numerical efficiency
over a microscale approach. Due to this numerical efficiency, mesoscale approaches lend themselves well
to repeated analysis with stochastic properties, e.g. in a Monte Carlo approach. The most signifi-
cant source of uncertainty and the main motivation for stochastic analysis is the random misalignment
topology. The spectral representation method discussed in Subsec. I.3.5 allows for easy and robust
generation of particular instances of misalignment topologies. The first application of the spectral rep-
resentation method for a stochastic analysis of MB-strength was presented in Ref. [Slaughter and Fleck,
1994]. That approach considered a 1d-model, however, it differs from the ones discussed in Subsec. I.2.4
with regard to the considered length scale and the circumstance that a 1d-misalignment topology was
considered. Subsequent extensions combined the spectral representation method with a 2d-homogenized
approach [Liu et al., 2004]. Other approaches pursued stochastic analysis via a 2d-homogenized medium,
but did not employ the spectral representation method [Sutcliffe, 2013]. Instead, they avoided the sam-
pling point problem discussed in Subsec. I.3.4 by starting with independently sampled misalignment
and subsequently applying smoothening filters until the desired auto-correlation properties were at-
tained. Stochastic analysis provides an adequate means to address the scatter in MB-strength, which is
a quintessential property of MB and is well documented in experimental observations [Jelf and Fleck,
1994, Schultheisz and Waas, 1996]. Hence, MB-strength is typically quantified in terms of a statistical
distribution of strength, rather than a single deterministic value.

Another important insight is that the statistical distribution of strength is subject to a size effect, i.e.
average strength diminishes with increasing coupon/component size. This is due to the increase in the
expected maximal misalignment flaw in larger domain sizes. Via the weakest link assumption introduced
in Subsec. I.3.3 this leads to an overall reduced strength. This topic will be revisited in Chapter III in
more detail, where it will be shown that the weakest link model applies either approximately or not at
all, depending on how the coupon/component size is scaled.

I.5. Motivation

I.5.1. Versatility

In the subsequent chapters it will be shown that mesoscale approaches proofed to be versatile, and are
applicable to predict a variety of phenomena associated with different characteristic lengths, see Table
I.1. The literature review in Chapter II, Sec. 2.3 will show that microscale models are often the preferred
instrument for the investigation of band morphology, since they offer a direct representation of the micro-
structure and the constitutive properties of fiber, matrix and interface. As discussed in Subsec. I.4.1
mesoscale approaches require more abstraction, but also offer much better numerical efficiency. It will
be shown in Chapter IV, that mesoscale approaches can capture phenomena associated with the band
morphology as well, provided proper regularization in the softening regime is applied. The misalignment
topology has been covered in Subsec. I.3.2 and the topic reappears in Chapter III Misalignment topologies
have been so far treated as 2d-in-plane field in the literature [Liu et al., 2004,Sutcliffe, 2013], and a 3d-
extension covering in-plane and out-of-plane misalignment is still open. In Chapter III it will be shown
that in a 3d volumetric representation of a laminate, another mechanism arises that leads to a substantial
mitigation of misalignment severity. Another topic covered in the same chapter are size effects, and the
scaling laws required to bridge the gap from meso- to macroscale. In this context, the numerical efficiency
of the mesoscale approach is exploited, making it an ideal tool for stochastic investigations.
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phenomenon governing mechanism(s) characteristic length for mechanism

band morphology band broadening
→II.2.3, IV.5.2

band width ≈ 20df ≈ 10−1 mm

MB-strength
at mesoscale

misalignment topology
→I.3, II.3.4, III.2

char. wavelength in UD
char. wavelength in NCF

≈ 100 mm
≈ 101 mm

laminate mitigation
→III.3.2

ply thickness ≈ 100 mm

MB-strength
at macroscale

size effect
→III.1

coupon size
component size

≈ 101 mm
� 101 mm

Table I.1.: Overview of phenomena and their associated mechanisms and length scales. The listed mechanisms are elabo-
rated further at the specified cross-references. Abbreviations UD and NCF stand for unidirectional and non-crimp fabric,
respectively. The numeric values in the third column specify the order of magnitude.

I.5.2. Overarching objective

To conclude the introduction, the research question formulated in Subsec. I.1.2 is recalled. There, the
prediction of the response at component scale was formulated as the long term objective in order to
transfer results from research to engineering application. The circumstance that essential mechanisms
are spread over different length scales was cited as the main obstacle to this endeavor. The subsequent
discussion has shown that an approach at mesoscale can account for the essential mechanisms controlling
the response, and that results can be transferred to macroscale via suitable scale-laws. This motivates
the present work to contemplate mesoscale approaches as a contribution towards this long term objective.
The efforts towards this objective presented here are complemented by further investigations performed
in cooperation with Safdar et al. [Safdar et al., 2022b,Safdar et al., 2022a].

17



Chapter II.

A review of computational modelling approaches to
compressive failure in laminates

As apparent from the introduction, compressive failure in general and MB in particular is a wide field, and
a comprehensive review of computational approaches to MB is presented in this chapter. This survey
establishes an overview of existing work on the subject, and is thus a prerequisite for a meaningful
extension of the state of the art. Homogenized models are of the foremost interest in this work, but it is
useful to consider the problem within its wider context, hence, the survey is extended to cover microscale,
fracture mechanical and multiscale models. Some main characteristics of these compementary approaches
were briefly summarized in Sec. I.2 to motivate the current approach.

This chapter was published as an article and the respective reference is stated below. The first author
performed the majority of the survey, worked out the structure and wrote the majority of the manuscript.

B. Daum, N. Feld, O. Allix, and R. Rolfes.
A review of computational modelling approaches to compressive failure in laminates.
Composites Science and Technology, 181:107663, 2019.
https://doi.org/10.1016/j.compscitech.2019.05.020
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A B S T R A C T

Microbuckling is an important failure mode for fibre reinforced composites loaded under compression and the
topic has received substantial attention of the research community. This effort led to a good understanding of the
basic mechanisms behind the microbuckling phenomenon. However in spite of the well-developed theory, the
ability to accurately predict failure loads and other related properties based on available data has not been
attained yet. This may be attributed to a number of factors, arising at different scales. Consequently, numerous
computational models and methods were put forward in the literature to approach this objective and this survey
attempts to provide an overview of these developments. A concise reminder of the phenomenology and theo-
retical basis is also included to make the present survey self-contained.

1. Motivation and scope

The failure of high volume fraction, continuous fibre reinforced
polymer matrix composites under compressive loading is a complex
multi-staged process involving many different mechanisms spanning
over several scales. This complexity, and the high relevance of the
failure mode for many industrial applications, led to a significant re-
search interest in this field over the past five decades. As a result of this
effort, most individual theoretical aspects of the problem became well
understood by the end of the 20th century and several literature surveys
focusing on theoretical and experimental investigations were published
in the mid-nineties. Budiansky and Fleck compiled an overview of the
theoretical results in Ref. [1]. Piggott [2] reviewed several articles on
the effect of fibre waviness on static and fatigue strength. Schultheisz
and Waas [3,4] published a popular review on the subject with parti-
cular emphasis on experimental techniques; however the state of the art
of micromechanical theories at that time is also presented there. Soutis
[5] reviewed the compressive strength of fibre reinforced laminates
with regard to fracture mechanics approaches. Fleck comprehensively
reports the state of the art at the mid-nineties in Ref. [6]. In particular,
the work discusses different modes of compressive failure and relates
them to certain parameter ranges. Furthermore conditions for kink
band propagation are discussed there. Naik and Kumar [7] compared
several analytical micromechanical theories to experimental data. More
recently, a short review was published by Pinho and coworkers [8].

These past surveys testify that a satisfactory theoretical basis was
available for most micromechanical aspects of the problem by the turn
of the century. However classical microbuckling theories depend on
very specific data at the microscopic scale and are, thus, inapplicable
for engineering purposes without further modelling abstractions. For
instance, classical theories typically make reference to an a priori known
misalignment angle, that is often implicitly assumed constant in space.
As such, predictions for panels or components based on micro-
mechanical theories are problematic, from a conceptual point of view,
since the spatial distribution and the stochastic properties of im-
perfections are essential. The importance of imperfect fibre alignment
was recognized early and investigations into the stochastic properties of
its magnitude and distribution were conducted, but its integration into
micromechanical theories is computationally very expensive. Further
complications arise from the fact that material properties referenced to
by micromechanical models are often difficult to obtain experimentally,
due to the small length scales and multi-axial loading conditions in-
volved. Notorious examples include the ‘true’ fibre compressive
strength, fibre-matrix interfacial strength, interface toughness, and in
situ inelastic matrix hardening behaviour under multi-axial loads. The
fact that, in industrial applications, the relevant mechanisms exist at
different length-scales, causes further complications as the scale of the
structure under consideration is typically very different from, e.g. the
characteristic wavelength of an undulation imperfection.

Any approach aiming at overcoming these limitations inherent to
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the classical micromechanical theories for microbuckling requires fur-
ther modelling, typically in a numerical setting. This task received
substantial attention from the research community and a vast amount
of such computational models concerned with the different aspects of
microbuckling were put forward. For the sake of clarity, let us define
how the term computational model is understood here: For the pur-
poses of this work, a computational model comprises the set of math-
ematical abstractions of selected physical mechanisms calibrated by
reasonably obtainable data, implemented within a numerical solution
scheme. A key property of a computational model lies in its ex-
tensibility, i.e. its ability to predict mechanical responses in situations
that differ from the ones used in its calibration. Unlike the theoretical
basis, the variety of computational modelling approaches to micro-
buckling has not yet been comprehensively surveyed.

The motivations and scopes of the approaches surveyed here are
diverse. For instance, some models reviewed hereafter aim mostly at
understanding the small scale physics and therefore are mostly con-
cerned with the prediction of some local features such as buckling onset
or kink-band morphology. Other models however intend predictions of
the structural response, particularly for values such as strength and
toughness. Also the different aspects of microbuckling and their con-
sequences at higher scales are modelled with varying degrees of com-
plexity, as pertinent for each intended purpose. The resulting diversity
of approaches makes the identification of a clear taxonomy of models
difficult. Indeed, no unified approach covering every aspect of the
problem has emerged, and proper experimental validation of the results
is challenging due to the random nature of misalignment. Furthermore,
material combinations for which numerical results were obtained are
rarely similar, and therefore hardly comparable. Hence, this review
does not intend to provide a quantitative assessment of the predictive
capabilities of the surveyed approaches.

To make this article sufficiently self-contained and to provide re-
ference for sections further down, a very brief summary of the phe-
nomenology and theoretical bases is given in §2. Detailed information
about topics discussed briefly or omitted is available in the classical
surveys listed above. The survey of recent computational models begins
with §3, where semi-analytical micro models extending classical the-
ories by accounting for more general load states, nonlinear kinematics,
and more complex constitutive models are discussed. The following §4
reviews explicit micromodels which attempt to achieve a clearer un-
derstanding of non-idealized fibre misalignments, edge and notch ef-
fects, and small-scale interactions between damage mechanisms, using
a distinct resolution of fibres and matrix in a 2D or 3D setting. Finally
all approaches bridging the gap between fibre scale and ply scale, either
for the prediction of structural quantities or the study of couplings
between kinematics or damage mechanisms at different scales, are
covered in §5. This survey is concluded in §6 and some directions for
open research challenges are proposed.

2. Phenomenology and failure mechanisms

Before reviewing more recent advances, the phenomenology and
the classical theoretical basis are presented. The most essential findings
on this topic were available by the end of the last century and, for a
more in-depth review of the topic, the reader is referred to the literature
[6]. Nevertheless, this section provides the motivation and reference for
the discussion of the computational approaches presented from §3 on-
ward.

2.1. Failure modes

Continuous fibre reinforced composites typically display a com-
pressive strength that is substantially lower than their tensile strength.
Thus resistance against compressive failure is often a critical design
criterion. The umbrella term ‘compressive failure’ covers a variety of
failure modes that are observed in fibre composites, cf. [6] for a

detailed classification of different modes.
The most common failure mode for stiff fibres embedded in a

compliant matrix is known as microbuckling. It can, in principle, occur
along two competing modes: with a phase shift of half a wavelength
(transverse extensional mode, Fig. 1(a)) or without phase shift (shear
mode, Fig. 1(b)) [9]. The extensional mode is typically not relevant for
commonly employed high fibre volume fraction composites. Shear
mode microbuckling, however, is common and manifests itself as a
concentration of inelastic shear deformation in a narrow band, which
can be interpreted as a localization of the shear mode. This band of
localized shear is oriented at a certain angle which is sensitive to ma-
terial properties and loading conditions. For a given loading, e.g. uni-
axial, the band angle is a characteristic of the composite. The occur-
rence of microbuckling induces a sharp softening in the band, causing
an unstable structural response in structures where load redistribution
cannot compensate for the decreased stiffness in the band, as e.g. in
homogeneously loaded, unnotched plates. Under these circumstances
strain localizes within the band and strain energy is released by elastic
unloading of neighbouring regions. The unloaded volume is typically
much larger than the band so that a snap-back-type structural response
would be expected under quasi-static conditions. In practice, however,
the unstable regime is normally traversed in an instationary, dynamic
manner, making the softening phase difficult to observe in experiments.
The eventual outcome of the microbuckling process is a narrow band of
rotated fibres between two fracture planes: the kink band. In homo-
geneously loaded plates, the transition from an essentially linear pre-
microbuckling response to dynamic collapse occurs suddenly and with
a sharp peak in the compressive load-compressive displacement rela-
tion.

Although (shear mode) microbuckling is the most prevalent failure
mode for commonly employed glass or carbon fibre composites, other
failure modes can be observed for particular composites or loading
conditions. Failure modes competing with microbuckling in compressed
plies are, amongst others, fibre fracture and longitudinal splitting.
Piggott [10] observed fibre crushing for strong matrices in combination
with weak fibres and longitudinal debonding of fibre and matrix. Oguni
an coworkers [11] tested 50% E-glass/vinylester laminates and found a
failure mode transition from splitting to microbuckling upon change
from uniaxial to multi-axial loading. They also found that splitting in
turn can induce microbuckling. At a higher scale, microbuckling and
delamination are susceptible to compete or combine, leading to the
ultimate failure of a laminated structure, as was reported in e.g. Ref.
[12]. Lee and coworkers [13] performed a series of experiments on
glass and carbon fibre vinyl ester resin composites with different vo-
lume contents. In these experiments, it was observed that the glass fibre
composites failed due to splitting until a fibre volume fraction of about
30% and a combination of splitting and microbuckling for higher fibre
contents. With carbon fibres, no splitting was observed. In the same

Fig. 1. Fibre buckling modes as considered by Rosen. In (a) the ‘extensional’ or
‘symmetrical’ mode, is only of theoretical interest. In (b) the ‘shear’ mode is
shown. The dashed rhomboid outlines the location of the free body diagram
assumed in ‘kinking’ theory shown in Fig. 2(a). The dashed sine wave indicates
the axis of the beam model used in ‘bending’ theory, see Fig. 2(b).
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work an analysis was presented: Assuming a preexisting microscopic
fibre-matrix debonding, the energy release rate for the propagation of a
cylindrical debonding was calculated for perfectly straight and mis-
aligned fibres. The resulting model gave predictions in-line with ex-
perimental results, i.e. predicting splitting for glass fibre composites but
not for carbon fibre composites, on account of the much smaller dia-
meter and higher stiffness of the carbon fibres. Yerramalli and cow-
orkers [14] later extended the experimental and analytical investiga-
tions to combined compression-torsion loading. Using a special test
fixture to induce multi-axial compression, Oguni and coworkers [11]
also observed a failure mode transition from splitting to microbuckling
under multi-axial compression for 50% E-glass vinylester.

In summary, these investigations showed that, for glass fibre com-
posites of medium to low fibre volume contents and predominantly
uniaxial compressive loading, splitting must be taken into account as a
possible failure mode in the bulk material. For non homogeneous
samples splitting is also frequently observed in carbon fibre composites,
but rather as a competing mechanism. Soutis and Fleck have observed
splitting as a secondary failure mode accompanying microbuckling in
samples with an open hole [15].

2.2. Closed-form peak load prediction

Rosen [9] is usually credited with the first theoretical treatment of
microbuckling. He considered the bifurcation from equilibrium of
perfectly aligned fibres embedded in an elastic matrix by the transverse
extensional or shear modes, as defined above. For the shear mode, this
approach estimates peak loads according to (1), where Gm represents
the elastic matrix shear modulus and 1̂1 longitudinal far field com-
pressive stress at peak load.

= Gˆ m
11 (1)

Magnitudes predicted by this approach overestimate the peak load
by about a factor of 4 [16]. Moreover, its deterministic nature is in-
consistent with the large scatter observed in experiments. In subsequent
theories, the consideration of initial misalignments and of the nonlinear
shear response [17] in the matrix resulted in peak load predictions
more closely in line with experimental results. Theories of this kind
generally consider the equilibrium of a volume element taken inside a
band of shear deformation, under the assumption that it is re-
presentative for every location within the band, see Fig. 2(a).

Assuming an initial misalignment of fibres with respect to the di-
rection of applied compression, 0, the compressive stress was related to
the matrix shear stress by equilibrium analysis by Argon [18]. Further
assuming a rigid-ideal plastic shear response, with yield stress y, and
inextensible fibres without bending stiffness, peak loads of reasonable

magnitude are obtained for typical matrix yield strengths and fibre
misalignments from (2a). Further refinements of this model were
published e.g. in Ref. [16], where the effect of the elastic shear response
and inelastic hardening were included. The quintessence of this ex-
tension is reflected in (2b) with: matrix shear stress ( )12 as a function
of the shear angle γ, linearized initial misalignment 0, and linearized
shear deformation γ. The total fibre rotation is given by the sum of the
initial misalignment and matrix shear deformation and max-function
indicates maximization with respect to γ. The matrix shear response,

( )12 , is typically modelled by ideal plasticity or a Ramberg-Osgood
plasticity model.

=ˆ y
11

0 (2a)

=
+

ˆ max ( )
11

12

0 (2b)

At peak load 1̂1 , the expression in parentheses attains a maximum
and geometrical softening caused by increasing γ can no longer be offset
by shear hardening in the matrix, i.e. an increase in ( )12 . In case of a
rigid-ideal-plastic shear response, i.e. | | y12 , (2b) reverts to (2a). In
the hypothetical case of very small initial misalignments 0, elastic
buckling according to (1) still limits the far field peak stress 1̂1 . Thus,
contrary to what the name ‘microbuckling’ might suggest, the phe-
nomenon is not the result of a bifurcation, as assumed by Rosen, but
rather the result of a combination of structural and material instabilities
driven by the nonlinear matrix response. As a matter of fact, the mac-
roscopic peak load corresponding to a loss of ellipticity in global
equilibrium might occur at or after this microscopic instability [19], i.e.
microbuckling might not cause macroscopic softening if loads can re-
distribute.

The considerable variation in the peak load observed in experiments
is consistent with (2a) and (2b) due to the strong sensitivity of 1̂1 to the
misalignment angle. Variants of (2b) account for the effect of applied
in-plane far-field shear stress 12 by adding it to the numerator.
Furthermore, the contribution of transverse stresses to yielding in the
matrix can be accounted for by a suitable multiaxial yield criterion. In
(2b) and many similar approaches, fibres are assumed to possess in-
finite stiffness against shortening, thus neglecting the effect of long-
itudinal matrix stress on matrix nonlinearity.

Even though fibre shortening is usually not considered important,
neglecting or considering a finite fibre bending stiffness has been used as
a basis to classify theories in two categories. The terms ‘kinking theory’
and ‘bending theory’ are occasionally used to refer to these theories,
respectively. The bending-type theory was proposed by Fleck and
coworkers, where they accounted for the fibre bending stiffness via an
adapted beam theory [20], see Fig. 2(b) for a schematic. Considering
the equilibrium of a material element where the fibre and matrix were
smeared into a homogeneous composite, the corresponding governing
equations were obtained. The consideration of the bending moment
transmitted by the fibres introduces the fibre diameter as an intrinsic
length scale and gives rise to couple stresses. From further considera-
tions, it was then found that fibre bending stiffness has little effect on
the peak stress for typical undulation wavelengths in the millimeter
range, but it is still an essential parameter for the kink bandwidth and
other properties.

2.3. Kink band morphology

The theories outlined above allow a description of the mechanisms
controlling the peak load based on stress components in fibre axial
direction alone, i.e. longitudinal stress and in-plane shear. The trans-
versal component, although insignificant for the peak load, plays an
important role after the kink band is initiated. A common feature of
peak load theories surveyed in §2.2 is that the kink band is predicted to
initiate perpendicularly to the fibre direction at a band angle of zero.

Fig. 2. Closed form analysis considers equilibrium in a deflected state. Nominal
fibre direction is vertical, the actual direction is rotated by the (small) initial
misalignment angle 0. Further shear deformation due to loading is indicated by
γ. The stresses 11 and ( )12 are the compressive far field loading and the shear
response, respectively. Sub-figure (a) shows a free-body diagram for a typical
‘kinking’ theory. Bending theory models feature a finite extend in fibre long-
itudinal direction and a non-zero bending stiffness, see (b).
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Attempts to derive a theory with an explicitly non-zero band angle
overestimate the peak load [16,21]. This seems to be contradicted by
numerous experiments that showed a characteristic band angle in the
range of 20 to 30 . See Fig. 4 for the geometric definition of the band
angle. A typical experimental observation of the band angle formation
is given in Fig. 6 in Ref. [22]. Theory and experiments were reconciled
by the observation that the band realigns after initiation to the or-
ientation observed post-mortem [23]. The realignment of the band from
its initial orientation, perpendicular to the fibres, to the final kink band
angle occurs in an instationary, dynamic manner during the softening
and is, thus, difficult to observe.

Assuming plane strain and inextensible fibres, the volumetric strain
vol is directly equal to the transversal strain. Within a band inclined to
the transversal by the band angle β and containing fibres rotated by the
fibre rotation angle θ the volumetric (or transversal) strain is given by
(3) [24,25] and shown in Fig. 3.

= cos( )
cos

1vol (3)

Volumetric dilation can be accommodated by the formation of
matrix cracks or voids, but under volumetric compression a very stiff
behaviour is to be expected. Allowing volumetric dilation, but assuming
complete volumetric incompressibility implies that the fibre rotation
angle may not exceed twice the band angle. Fleck et al. [26] coined the

expression ‘lock-up’ to describe a state of maximal fibre rotation, see
Fig. 4(c). Since after lock-up, further fibre rotation is insignificant,
compressive shortening of the sample can only emanate from an elon-
gation of the rotated segment of the fibres, i.e. an extension of the band
in the longitudinal direction, Fig. 4(d). Bending theory also predicts a
successive increase in bandwidth with increasing fibre rotation, but
without reference to volumetric lock-up [20]. In any case, the widening
of the band is known as ‘band broadening’ in the literature.

The compressive stress transferred over the band of rotated fibres
during band broadening was identified as a characteristic property [23]
for a given composite and is robust to imperfections. Band broadening
can be observed experimentally for both fractured [27] and intact fibres
[28]. Furthermore, it was shown to remain constant as the band widens
[25]. It was also argued that even if fibres fracture, see Fig. 4(e), the
principal characteristics still persist due to volumetric lock-up [25]. In
recognition of these peculiar features, the stress transferred across the
band was assigned the name ‘band broadening stress’. It plays an im-
portant role for considerations regarding the lateral propagation of kink
bands and energy absorption. In sources referenced above, no theore-
tical argument to determine the band angle was put forward and the
band angle is generally treated as an input parameter [25].

2.4. Fibre fracture after peak load

Theories that consider fibre misalignment in conjunction with ma-
trix shear nonlinearity as the initiation mechanism for microbuckling,
as discussed so far (§2.2), generally assume that fibre fracture has no
effect on the peak load, and predominantly occurs in the softening re-
gime. However, differing arguments were presented regarding the
mechanism that ultimately leads to fibre fracture in the post-peak load
regime. The band broadening mechanism keeps the rotated fibres in the
interior of the forming kink band rather straight, therefore bending
curvature is concentrated at the transition to the region of unrotated
fibres, see Fig. 4(d).

In these locations of concentrated curvature, the bending stress is
substantial and can induce tensile stress in parts of the fibre cross-sec-
tion. Because the mechanism of fibre failure, and hence strength, may
be different for compression and tension, both cases must be con-
sidered. This holds true, even though compressive stress in the cross-
section is generally larger, by about a factor of 2, than the tensile stress.
A possible failure mode in the part of the cross-section loaded in tension
is, for instance, crack opening, and strength values can be obtained
from tensile test on fibres. On the contrary, the mechanism for com-
pressive fibre failure is less apparent. Budiansky and coworkers [16]
name longitudinal splitting for glass fibres and buckling of fibrils within

Fig. 3. Contour-plot of vol over the band angle β and the fibre rotation θ via (3).
The shaded area above = 2 is essentially blocked off due to volumetric
compression.

Fig. 4. Schematic representation of key stages in the progression of microbuckling: Some preexisting small misalignment 0 (a) induces matrix shear and eventually
causes matrix nonlinearity. Soon after this point, fibre rotation θ starts (b). When rotation becomes locked-up (c) at 2lu bending theory predicts the formation of
a straight fibre segment b in the middle of the band (d). Eventually, or concurrently, matrix degradation, debonding and/or fibre fracture occurs (e). Degradation may
also occur between (b) and (c), in particular, to accommodate volumetric expansion if < 2 . Complex material nonlinearity cannot be accounted for in closed form
analysis and typically only matrix yielding is considered.
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carbon fibres as possible failure modes determining the apparent fibre
strength. Gutkin and coworkers [29] observed shear fracture oriented
at 45 to the fibre axis in carbon fibres. Vinçon and coworkers [30]
performed tests on individual filaments embedded in resin for different
fibre types. They observed a ratio of compressive failure strain to tensile
failure strain of about 3 and 1 for high strength and high modulus
carbon fibres, respectively. Otherwise, data for the compressive fibre
strength associated with these modes is rare as the exact loading con-
ditions seen by the fibre are hard to evaluate in an experimental setup.
Hence, opposing standpoints were taken in the literature, with some
assuming tensile failure, e.g. Refs. [20,31,32], while others argue in
favor of compressive failure [8,33].

Fibre fracture is generally understood as the event terminating band
broadening and, hence, defines the kink bandwidth observed post-
mortem. Thus, a better understanding of fibre failure modes and
strength under tension and compression would lead to more accurate
predictions regarding the kink band morphology. Furthermore, shear
stress might also affect fibre failure in addition to normal stress due to
fibre bending. These issues may warrant some new investigations.
Besides the two groups of researchers arguing either for tensile or
compressive fibre failure in the post peak load regime, a third group
stresses that early localized fibres breaks may have a significant influ-
ence on the peak load [34]. This latter class of theories are discussed
separately in §2.5.

Even though the peak load is very sensitive to imperfections, some
other characteristics were found to be quite robust. In particular, the
energy absorbed in a structure undergoing microbuckling is quite in-
sensitive to misalignments as a relatively constant residual strength
remains after the snap back phase. This property was exploited to find
e.g. the conditions under which an incipient kink band, emanating from
a stress concentration, can propagate transversally [25]. A schematic of
the propagation and the associated load reduction is given in Fig. 6 of
[25]. Based on the consideration that the stress transferred over the
band of microbuckled fibres is the band broadening stress, the critical
stress for steady-state transversal propagation was obtained. The rea-
soning employed for this purpose is similar to Maxwell's criterion used
to describe phase transitions, cf. also [35]. The attribute ‘steady-state’
refers to the circumstance that, at this stress, the propagation can occur
in a quasi-static manner, without a net energy release.

2.5. Fibre failure as initiation mechanism

The attainment of maximal fibre stress in an essentially unrotated
state is a compressive failure mode distinct from microbuckling as
discussed in §2.2 and §2.3. Fleck [6] uses the name ‘fibre crushing’ for
this mode and notes that it might occur if the matrix is particularly stiff
and strong with respect to the fibres. A fibre strength-dominated failure
mode was also noticed early on in specimens with very high fibre vo-
lume fractions and well bonded fibres [36,37]. Still, for conventionally
employed glass or carbon composites, large scale fibre crushing is
generally not considered as the strength-limiting failure mode and the
basic assumption of the classical microbuckling theories is that fibre
misalignment is the essential factor for the initiation of microbuckling.

However, some authors argued in favor of fibre failure as an in-
itiation mechanism for kink band formation. Lankford [38] argued that
stable pre-peak load fibre failure, due to e.g. inhomogeneous fibre
strength or local defects, and the resulting damage act as the nucleus for
kink band formation. He further pointed out the role of fibre-matrix
interface properties, insofar that the stress redistribution in the vicinity
of individual failed fibres strongly depends on fibre-matrix interface
properties. Narayanan and Schadler [34] used micro-Raman spectro-
scopy to measure strain in the neighbourhood of individual broken fi-
bres. They argued that kink bands originate from stable local damage
events that occur before the peak load is attained. During the growth-
phase, the band angle of the subsequent microbuckling is determined
by a shear-lag mechanism governed by matrix and interface properties.

The authors reasoned that a stiff, elastic matrix and stiff, intact interface
will cause high stress concentration near the fracture. This would cause
neighbouring fibres to fail at locations very close to the first fracture
and so on, thus a small or zero band angle will ensue. If the matrix is
yielding, however, it tends to deform at 45° to the load axis and thus is
more likely to initiate fracture in neighbouring fibres axially offset from
the first fracture. Similar arguments were brought forward for the effect
of the interface properties on the band angle concluding that weak
interfaces bring the band angle closer to 90 . This was developed further
in Refs. [39,40].

Shear fracture of fibres and a resulting fracture plane oriented at 45
to the longitudinal direction was observed for notched specimens in
Refs. [29,41]. At some distance from the notch, the failure mode
transitioned to microbuckling. Furthermore, Gutkin and coworkers
used a numerical model discussed further in §4.3 to identify the cir-
cumstances that cause a transition from classical microbuckling to fibre
failure, but no reference to a theory similar to the one by Narayanan
and Schadler was made.

Attempting a connection between these results and those of [34], it
could be argued that experiments indicate fibre fracture as a competing
failure mode in locations of high stress concentrations. fibre fracture as
an initiation mechanism seems relevant in situations were local stresses
are high enough to cause fibre failure, but for some reason micro-
buckling cannot initiate. In Ref. [29] the effect of 90 -plies in a laminate
is cited as delaying microbuckling in the notch. The stress gradient in
the notch also seems to be an important factor, as kinking theories
(§2.2) are applicable only for homogeneous compression loads were the
whole structure, or at least a wide enough part, can participate in the
kink band formation. Conversely, inhomogeneous stress distribution
might inhibit and delay the development of the kink band beyond the
peak far field stress predicted by kinking theories. In such a case, a
conventional crystallographic failure mode of the carbon fibres, likely
driven by shear (or deviatoric) stresses, might act as a complementary
mechanism. The observed crack angle of 45 near the notch is consistent
with the prediction of [34] for a yielding matrix and, at some distance,
the failure mode transitions back to kink banding at a much shallower
angle.

2.6. Fracture mechanics interpretation

The theoretical considerations discussed so far considered a small
material element representative of an unnotched structure under
homogeneous loading. For the reasons elaborated there, an essentially
reversible, quasi-linear behaviour can be expected before the peak load,
followed by sudden collapse, i.e. brittle failure. While this behaviour is
generally observed for homogeneous samples, other samples featuring
stress concentrations due to cut-outs, notches or similar geometric de-
tails, fail more gradually. Notched samples also do not show as strong a
scatter in strength compared to homogeneous samples [15]. In these
structures, microbuckling starts at the stress concentration and subse-
quently spreads. Although the stress transferred over the microbuckled
sections is much lower than the peak stress, stress redistribution can
allow for stable propagation of the kink band, i.e. accompanied by an
increasing total load on the structure.

Guynn and coworkers and Soutis and Fleck [15,42] pointed out
similarities in the propagation behaviour of kink bands and cracks. This
correspondence exists only in an abstract sense, i.e. the strain locali-
zation in the kink band is treated as a negative crack opening. Via this
abstraction, the application of the well-developed instruments of frac-
ture mechanics is made available to the problem of kink band propa-
gation. Guynn and coworkers and Soutis and coworkers adapted the
Dugdale model for elastic-plastic fracture in thin plates to model the
problem at hand in several variants [6,15,42,43]. These approaches
generally assign some residual strength to the kinked length of the
component, corresponding in analogy to a traction bridging the crack.
In accordance with Dugdale's theory, it is postulated that the
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singularities from the far field loading and residual tractions cancel out
at the crack tip, allowing the kinked length to be calculated. In more
refined versions of these models some traction-negative separation law
is adopted, thus defining a quantity corresponding to a fracture
toughness, i.e. the energy that has to be expended to propagate the kink
band by a unit length. This propagation energy or ‘fracture’ toughness
acts as a blanket term for all dissipative effects covering yielding,
fracture and friction. Measurements of this quantity for particular
layups were presented e.g. in Refs. [44,45], although in the latter re-
ference it was pointed out that it is not a constant and depends on the
length of the kink band as is the case in fracture mechanics of finite
media. An inherent limitation of fracture-mechanics-type approaches is
that they only apply to the propagation phase and cannot predict the
initiation in itself.

2.7. Size effects and statistics

Bažant and coworkers [46] argued that notched fibre reinforced
composites suffer from a size effect, curtailing the strength of larger
structures. In essence, the argument is based on the different scaling
laws for microbuckling ‘fracture’ toughness, which is supposedly a
constant for a given laminate, and the energy released by propagating
kink bands from proportionally scaled notches, cut-outs or similar
features. Experimental investigations concerned with this type of size
effect can be found in e.g. Ref. [47]. There, the size effect due to notches
and an additional size effect due to layer thickness were studied. The
same effect of absolute scale on the maximum load also arises in con-
ventional linear elastic fracture mechanics [48], and it is generally re-
ferred to as the ‘deterministic size effect’, to distinguish this mechanism
from other size effects. The size effect also applies to cases were the
finite extent of the fracture process zone is relevant. In this case,
however, the scaling law is more complex [46].

Another mechanism by which absolute component size affects its
strength is via the statistical nature of the misalignments. The as-
sumption that the overall strength is controlled by the weakest, i.e.most
misaligned, region implies a decrease in strength with size, as larger
size increases the likelihood of a critical flaw. This argumentation is
consistent with a weakest link theory and motivates the assumption of a
Weibull-distribution of strength under random imperfections [49,50].
The general principle holds, although the applicability of Weibull
theory has been critically assessed e.g. in Ref. [51]. Several investiga-
tions linking the statistical distribution of fibre misalignments are dis-
cussed in §3.4.

The circumstance that the infinite band assumption is inherent to
most theoretical considerations also provides motivation for more so-
phisticated representation of the misalignment statistics in computa-
tional approaches. The infinite band assumption is typically not well-
founded, as micrographical investigation showed that the misalign-
ments of nearby fibres are correlated and the wavelength of misalign-
ment fluctuations can be rather short [52], i.e. 10 fibre diameters, see

Fig. 5. Even worse, the amplitude of the misalignment angle is subject
to significant variation [53] within a given UD-ply, and it is not ap-
parent how the single input value can be extracted from the distribution
obtained from measurements. For this purpose, occasionally ad hoc
assumptions are introduced to produce an ‘effective’ misalignment
angle. Wilhelmsson [54] and coworkers performed experiments on a
number of unidirectional non-crimp fabric samples and obtained a sa-
tisfactory agreement with predictions by (2a) and (2b) by using the
99th-percentile of the measured fibre misalignment distribution as ef-
fective angle.

2.8. Motivation for computational models

The approaches discussed so far led to a qualitative understanding
of the main phenomena and mechanisms controlling the peak load and
kink band morphology. These efforts provide a sound modelling of the
involved physics, but generally do not enable quantitative predictions.
Given the restrictions of closed-form analysis, several important factors
cannot be incorporated in such a model, including: edge effects and
stress gradients, complex constitutive responses, inhomogeneous mis-
alignment distributions, among others. The open challenge of providing
quantitative predictions for the multitude of phenomena that go along
with compressive failure prompted a variety of new approaches pub-
lished in the last 20 years, generally in a computational setting. The
remainder of this article is dedicated to the discussion of these ad-
vances, starting with semi-analytical models. As a graphical aid for
navigating this diverse collection of approaches, a chart that links and
discriminates their most characteristic attributes is provided where
appropriate. The model of these flowcharts and a description of each
attribute is given in the appendix, Fig. 16.

3. Semi-analytical models

A large class of computational models derive from the historic,
closed-form micromechanical methods, preserving a simplified re-
presentation of the microstructure. They however perform numerical
integration which allows for incremental solution procedures. Such
models are hereafter referred to as semi-analytical. A typical char-
acteristic of this class is that the medium is partly modelled using
homogenized – or smeared – properties. Occasionally, specific analy-
tical homogenization schemes are invoked. The resulting equations are
then integrated over a point, beam, or planar domain.

Peak load predictions by means of semi-analytical extensions of the
‘beam theory taking into account bending stiffness, as defined in §2.2,
are discussed first in §3.1. Compressive failure criteria of the plies using
approaches corresponding to an extension of the ‘kinking theory’ by
Mohr-Coulomb failure theory are presented in §3.2. Approaches dedi-
cated to the prediction of the band angle, which was postulated until
then, are discussed in §3.3. The final subsection §3.4 is concerned with
models tackling inhomogeneous misalignment distribution and edge
effects. An overview of typical modell attributes is given in Figs. 6, 7
and 8.

3.1. Behaviour predictions up to and beyond peak load

Morais and Marques [59] developed a uniaxial model based on
analytical micromechanics to predict the peak load. Both a 2D and a 3D
formulation were presented, each working with an unit cell consisting
of a single fibre and the surrounding matrix. The authors assumed ki-
nematics similar to Rosen's in-phase mode, i.e. an initiation band angle
of zero. The fibre in the unit cell featured an initial sinusoidal im-
perfection that would be gradually amplified by longitudinal loads until
the peak load was reached. Effective shear-stiffness of the 2D model was
obtained from Reuss' constant stress-model, while a concentric cylinder
approach was used for the 3D formulation. Finite strain measures and a
Drucker-Prager matrix plasticity model introduced nonlinearities. fibre

Fig. 5. Different modelling conceptions of fibre misalignment: Under the in-
finite band assumption (a) no change in transversal direction is considered and
the misalignment is perfectly correlated. Conversely, for independently random
misalignment no correlation exists (b). More realistically, misalignment of
neighbouring fibres may be thought of as correlated to a certain extent (c).
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bending stiffness was considered and numerical minimization of the
potential energy rendered equilibrium states and peak loads. The pre-
dicted peak loads closely matched reference results obtained for ana-
logous FEM unit cell models presented in Ref. [63]. In a separate
publication [64] a simplified closed form solution resembling (2b) was
presented.

A closed form, 1D bending theory model was developed by Pimenta
and coworkers [60] for predicting the deflection profile of fibres within
the kink band in the softening regime. This was accomplished by se-
parately considering an elastic and a perfectly plastic domain in the
kink band, each with respective governing equations, and appropriate
transitions. The evolution of the boundary between the elastic and
plastic domains was tracked.

Davidson and Waas [61] used an approach similar to the 2D model
by Morais and Marques with a nonlinear stress-strain curve for the
matrix shear behaviour. In accordance with (2b) their model demon-
strated that sufficient shear hardening can offset geometrical softening
due to fibre rotation and delay microbuckling. Unlike in Ref. [60],
when the evolution of fibre deflection profile and the evolution of the
plastic zone was tracked, the authors noted that the peak load did not
correspond to first yielding of the matrix in contrast to the assumptions
made in Ref. [60]. Instead, the maximum load occurred after the first
yielding and when a sufficiently large volume of matrix has yielded to
allow the fibre bending to overcome the decreasing tangent stiffness of
the matrix. Davidson and Waas have illustrated the fundamental me-
chanisms by which a kink band forms, see Fig. 10 of [61]. These
findings were in close agreement with refined FE models of the kink
band formation [12,65,66] that show that the maximum load does not
correspond to first yielding of the matrix.

Feld and coworkers [62] studied the energy dissipated during mi-
crobuckling. The representation of material nonlinearity by either
plasticity or damage is decisive for this purpose, and the authors
showed that the assumption of a purely plastic response without some
sort of softening, ensuring finite dissipated energy, overestimates dis-
sipation by orders of magnitude. To obtain accurate results, a matrix
material model with damage variables for transversal tension and ma-
trix shear was employed in this investigation. fibre fracture was con-
sidered via a separate criterion. In extension of earlier investigations by
Guimard and coworkers [32], the micromodel was employed to study
the effect of applied far field shear stress and fibre misalignment on the
peak load failure envelope and the energy dissipated during micro
buckling. Far field shear had the effect of linearly decreasing peak
stress, its value reaching zero when the shear field equals the compo-
site's shear strength. However, it did not have any significant effect on
dissipated energies for low shear values, since the widening of the shear
band appears to compensate the decreasing strength. The linear de-
crease of peak compressive stress with applied shear was experimen-
tally verified e.g. in Ref. [67]. Furthermore, Eyer and coworkers [68]
found a linear decrease of peak compressive strain with the damage
variable associated with shear, also linearly dependent on shear stress
for low values.

Wadee and coworkers [56] presented an adaptation of an earlier
approach, initially intended to predict the band angle for layered ma-
terials sliding under friction, to the problem of compressive failure of
fibre composites. The model is based on a somewhat abstract re-
presentation of the composite via a set of rheological elements. These
elements represented the shortening and bending stiffness of the fibres
as well as the shear and transverse stiffness of the matrix. For the matrix
shear stiffness, a bilinear relation was used, with initially positive
stiffness followed by either hardening at reduced stiffness or softening.
fibre bending was abstracted to a discrete rotational spring. For this
discrete set of rheological elements, the total potential energy was
formulated in terms of the degrees of freedom: longitudinal shortening,
fibre rotation, and bandwidth. Subsequently, closed form expressions
for longitudinal load and bandwidth in terms of band angle and fibre
rotation were obtained from the condition of stationary potential en-
ergy. Unlike in the precursor model, however, the adaption does not
attempt to predict the band angle, but rather uses it as an input para-
meter. The model also does not feature an initial misalignment angle,
thus the peak load results correspond to Rosen's. However, matrix
nonlinearity is reflected in the bilinear shear stiffness, hence post-peak
load behaviour of the model is representative for fibre composites.
Adjusting the material properties to match the same AS4/PEEK com-
posite as used in Ref. [66] the authors performed parametric studies.
Notable findings were that, beyond a certain (fixed) band angle, the
bandwidth no longer increased monotonically with respect to in-
creasing fibre rotation. Also, the residual load bearing capacity at lock-
up showed a local minimum for some particular band angle.

A more comprehensive investigation of the effect of various material
nonlinearities in the same model was performed by Zidek and
Völlmecke [57]. For this purpose, the authors replaced the bilinear
shear nonlinearity model with a power law hardening response and
considered additional material nonlinearities in other, previously
linear, elements. Out of these refinements, the nonlinear shear law was
found to have the highest impact, while nonlinearity of matrix trans-
versal stiffness, i.e. due to cracking, was found to be innocuous. The
results for the residual load at lock-up were in good agreement with the
predictions of the micromechanical model by Kyriakides and coworkers
[66]. A further development of this model was presented in Ref. [58]
where it was combined with a Ritz approach to model structural effects
in laminates.

3.2. Ply failure criteria

The essentially linear response of composite plies until approaching
the peak load and the following unstable collapse motivated the de-
velopment of simple, ply-based failure criteria for compressive failure.
This is done in the context of physically founded failure theories that
have become common in the last years. In general, inter-fibre failure is
the foremost concern of these theories and failure in the fibre direction
is often modelled simply by non-interacting maximum stress criteria.
However, Davila and coworkers and Pinho and coworkers have

Fig. 6. Typical model attributes in §3.1.
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developed theories that predict the compressive strength in nominal
fibre direction based on inter-fibre fracture caused by shear in mis-
aligned regions. The classical Mohr-Coulomb model for brittle fracture
is the underlying hypothesis for several variants of inter-fibre failure
theories. A non-exhaustive listing of notable publications on this topic
includes Puck and Schürmann [72], Davila and Camanho [69], and
Pinho and coworkers [70].

In Mohr-Coulomb-type theories, fracture is assumed to occur in an a
priori unknown fracture plane which is characterized by the stress
acting in this plane attaining a critical value. The effective shear on the
fracture plane, however, is reduced by a friction-like mechanism caused
by normal stress on the fracture plane, cf. e.g. Puck and Schürmann
[72]. Shear and normal stress on the fracture plane are related to the far
field stress by the appropriate coordinate transformation. Potential
inter-fibre fracture planes are rotated by an unknown angle about the
longitudinal direction and, in general, the critical plane has to be found
iteratively. For plane stress, however, the fracture plane can be esti-
mated analytically and three modes are distinguished based on the far
field stress state: (a) transverse tensile, (b) predominantly in-plane
shear, and (c) predominantly transverse compression, cf. [73] for fur-
ther details.

Although strength in nominal fibre direction is typically not the
focus of these theories, Davila and coworkers [69] applied an inter-fibre
failure criterion in the coordinate frame of misaligned fibres to deduce
the compressive strength of homogenized UD-plies. More precisely, the
authors considered the stress state in a coordinate frame aligned with
fibres rotated from the nominal longitudinal direction, either due to
misalignment alone or misalignment plus additional pre-failure rota-
tion. In this publication a pure in-plane fibre rotation was considered.
In the case where only initial misalignments exist, an analogon to the
expression (2a) derived by Argon for a rigid-ideally plastic matrix was
obtained, with shear fracture strength substituted for shear yield
strength. Furthermore, the extension by Davila and coworkers deviates
from (2a) by a modification accounting for the frictional parameters
arising from the Mohr-Coulomb model. In a similar manner, a strength
prediction analogous to (2b) was obtained by considering an elastic
shear response up to failure.

In Ref. [70] Pinho and coworkers extended these investigations by
considering a generic nonlinear matrix shear response and finite fibre
rotations. In this context, the authors also contemplate the possibility of
the compressive strength being controlled by a shear instability rather
than material failure under shear. In an effort to more accurately pre-
dict the strength under plane stress loading, an out-of-plane misalign-
ment was considered in addition to the purely in-plane misalignments
considered before.

The same principle of using an inter-fibre failure criterion in a
misaligned coordinate frame to find the compressive strength was also

employed by Camanho and coworkers [71]. There, the Mohr-Coulomb
based criterion was substituted with a failure surface formulation in
terms of stress invariants, cf. e.g. Refs. [74,75].

3.3. Band angle prediction

The inability of simple, closed form models to predict the band
angle has been noted in §2.3. This lack of knowledge regarding the
mechanisms controlling the kink band angle was cited as a motivation
in an investigation by Schapery [76]. In contrast to earlier approaches
employing deformation theory to represent material nonlinearity,
Schapery used a thermodynamically consistent formulation based on a
single internal damage variable to represent shear and transverse ma-
trix nonlinearity. The evolution of the respective engineering constants
with the internal variable was calibrated from coupon tests of a carbon/
epoxy composite. Another particular feature of the approach is the
usage a finite strain formulation specialized for plane strain/plane
stress. Only in-plane microbuckling was considered, but under a generic
far field stress state. The resulting governing equations were solved
numerically and, with some simplifications, analytically. In the in-
vestigation, the pre-existence of infinite band misalignments was as-
sumed with the band angle treated as a parameter. Results for models
including a nonlinear hardening behaviour predicted the smallest peak
load for a band angle of zero, similar to the approaches discussed in
§2.3. These results, however, were obtained without any provisions to
account for matrix fracture and the peak load for experimentally rea-
sonable band angles was found to be only marginally higher. Moreover,
upon adopting a simple matrix fracture criterion featuring a linear in-
teraction of shear and transversal stress, the results predicted matrix
fracture for realistic band angles, but not for unrealistically low ones. It
was then argued that realistic imperfections are not infinite bands, thus
the peak load calculated for the zero band angle can be exceeded
somewhat and matrix fracture is triggered. Further it was stated that
the experimental band angle matches the lowest band angle for which
matrix fracture occurs. The numerical results presented were for
carbon/epoxy AS4/3502 for which a band angle of 17 was predicted.
The band angle was found to be sensitive to the transversal strength,
but relatively insensitive to the misalignment angle and, in con-
sequence, the peak load.

Later Basu and coworkers [77] also approached the band angle
problem. Unlike Schapery's, their approach considered both fibre ro-
tation and the band angle as evolving quantities. The strain arising from
the evolution of fibre rotation and band angle was considered via
nonlinear kinematics, thus representing the effect of the band angle on
shear and transversal strain. The strain in the band was composed of the
strain due to the band kinematics and the far field strain via the ap-
propriate coordinate transformation. The customary deformation

Fig. 7. Typical model attributes in §3.2.

Fig. 8. Typical model attributes in §3.3.
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theory plasticity model with power law hardening was then used to
model the material response within the band. This led to a set of non-
linear relations of far field stress components to local stress components
in a coordinate frame aligned with the band containing the rotated fi-
bres. In the special case of a vanishing band angle and uniaxial long-
itudinal compression, the classical equilibrium relations in (2) were
recovered from the extension. Employing a numerical solution scheme,
the evolution of the band angle under an applied far field stress state
was calculated. The material data used was representative for AS4/
3501–6. For a uniaxial far field loading, the authors found a steady
increase in the band angle to 7.75 at peak load. Repeating the calcu-
lation for simultaneous far field shear and transverse stresses rendered
failure envelopes in the respective section of stress space. The set of
governing equations was also used in a perturbation analysis to derive a
criterion for stability of an equilibrium state with respect to perturba-
tions of the band angle and the fibre rotation. The developed stability
criterion predicted bifurcation for cases of large transversal compres-
sion, but not for any other investigated load combination.

A synthesis of this approach and the thermodynamically consistent
material model for matrix damage from Ref. [76] led to a 2D pro-
gressive damage model presented in Ref. [78]. It was applied to predict
in-plane microbuckling of thick laminates via a FE-model.

3.4. Misalignment distribution and edge effects

Peak load predictions of all models discussed so far make explicit
reference to a single initial misalignment angle. However, the inability
to account for the actual statistics of imperfect fibre alignments in this
manner was pointed out in §2.8. To shed some light on the probabilistic
aspect of the problem a series of successively generalized investigations
were published by Slaughter and Fleck [79], Fleck and Shu [80] and
finally Liu and coworkers [82]. In all models a bending type theory was
employed to consider the wavelength of misalignments in addition to
their magnitude (see Fig. 8).

An early approach to the problem was made by Slaughter and Fleck
[79] using a 1D bending theory model. In the 1D model, the infinite
band assumption is inherent, but in the longitudinal direction, a sto-
chastic distribution of the misalignment amplitude and wavelength was
considered. The ability to model both wavelength and amplitude of the
initial misalignment, rather than just their ratio given by the mis-
alignment angle, is particular to bending theory models. To quantify the
random initial misalignment, the authors argued that the misalignment
profile along the longitudinal direction can be characterized by its
Fourier transform. This technique accounts for the statistical distribu-
tion and the autocorrelation of the misalignment in terms of spectral
densities. At that time no measurements of characteristic spectra of
misalignments in fibre composites were available, so the spectrum had
to be assumed. Later Clarke and coworkers [83] tracked individual fi-
bres in glass fibre/epoxy composites and used that information to cal-
culate the misalignment spectrum. Random fibre misalignment profiles

along the longitudinal direction were generated as random realizations
consistent with the assumed spectral density, see Fig. 10(a) for a
schematic. These random realizations were then used in a Monte Carlo
simulation solving the governing equations of the 1D couple stress
problem. The obtained peak load distribution for a large number of
realizations with equal length was found to closely match a 2-parameter
Weibull distribution. Based on this result, the conclusion was drawn
that the peak load of the 1D infinite imperfection model is controlled by
its weakest link, i.e. the segment with the largest fibre misalignment.
For the same reason it was argued that the peak load tends towards zero
as the model length is increased to infinity under the modelling as-
sumptions used there. It was reported that the results were insensitive
to the shape of the spectrum but sensitive to the highest included fre-
quency and mean square value of misalignment. Accounting for fibre
bending provides a noticeable mitigation of the effect of misalignment
angles associated with small wavelengths. Hence, kinking theory
models give lower bounds for the peak load compared to bending
theory models. Since then, this finding has been corroborated by several
other investigations, cf. e.g. Ref. [66] discussed in §4.1.

Fleck and Shu [80] abandoned the infinite band assumption by
considering a 2D model of an ellipsoidal region of misalignment em-
bedded in a domain of straight fibres, see Fig. 10(b). For this purpose
they applied the smeared Cosserat material model in a finite element
formulation. Investigating the effect of the transversal extent of the
misaligned region, they found it falling between two limit cases: For
vanishingly narrow ellipses, only a few fibre diameters wide, the peak
load approached Rosen's result (1). Conversely, the peak load ap-
proached the predictions based on the infinite band assumption within
20% for ellipses as wide as 400 fibre diameters.

Liu and coworkers [82] produced a synthesis of the previous ap-
proaches by integrating the stochastic misalignment generation proce-
dure from Ref. [79] into the 2D finite element model of [80], see
Fig. 10(c). Like before, the statistical misalignment properties were
accounted for via their respective power spectrum. The conclusions
drawn form this investigation largely coincide with the ones

Fig. 9. Typical model attributes in §3.4.

Fig. 10. Schematic of initial misalignment distributions as referred to in Fig. 9:
(a) ‘random-infinite band’, (b) ‘harmonic-single patch’, and (c) ‘random-dis-
tributed’. Dashed lines represent implied, but not explicitly modelled, fibre
paths. Contours in (b) and (c) are curves of constant misalignment angle 0.
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summarized above for the 1D case in Ref. [79].
Lemanski and Sutcliffe [81] also used a smeared description of the

composite, but devised a somewhat different technique to implement it
in FE models. Instead of employing a Cosserat continuum with addi-
tional degrees of freedom, the fibre and matrix constituents were re-
presented by separate element types. For plane stress models, planar
shell elements were assigned isotropic matrix properties and coupled
with beam elements. For 3D models, the shell and beam elements were
replaced by solid and rebar elements for matrix and fibre, as appro-
priate. Due to this modelling approach, shear and transverse effective
material properties are determined by the matrix alone and the con-
tribution of the fibres is neglected. A J2-plasticity model was used to
model matrix nonlinearity. A preliminary study of the effect of fibre
bending stiffness on peak load confirmed the conclusions, drawn in
Refs. [79,82], that it can be safely neglected for undulation wavelengths
of 200 times the fibre diameter. Further considerations regarded the
interaction of misalignment regions with their surrounding, by com-
paring differently sized and shaped patches of misaligned fibres em-
bedded in otherwise perfectly straight plies. Also the effect of posi-
tioning the misaligned patch at the specimen center or near the free
edges was considered. Overall, their findings confirmed and extended
previous results by Liu and coworkers [82]. A similar model featuring a
defined autocorrelation of fibre misalignments was used in Ref. [55] to
study the statistical size effect cf. §2.7. The approach considered a
homogeneous sample with a misalignment pattern of defined auto-
correlation properties. For given statistical distribution and auto-
correlation of misalignments, more detrimental flaws occurred, on
average, in larger models than in smaller ones, thus reflecting the sta-
tistical size effect. This approach, however, ruled out misalignment
wavelengths below 200 fibre diameters, so that fibre bending stiffness
could be neglected.

3.5. Preliminary conclusions and motivation for explicit micromechanics

The approaches discussed, heretofore, all rested on a simplified
representation of the micro-structure, thanks to homogenized or
smeared mechanical properties. Semi-analytical developments allowed
more accurate prediction of the overall nonlinear response, peak load,
post-peak behaviour, band angle, and a variety of effects such as con-
tinuum damage mechanics, misalignment statistics, and edge effects.
However a number of influences remain out of reach, among which are
fibre-scale stress gradient effects and fibre-scale misalignment dis-
tributions, discrete failure mechanism combination between micro-
buckling, fibre debonding, splitting, and fibre failure - as an initiation
mechanism. Taking advantage of increasing computational power and
refined measurement techniques, explicit micromechanical models,
presented in the next section, aim at answering those open questions.

4. Explicit micromechanical models

The approaches described previously require substantial simplifi-
cation of the microstructure and its properties, which prevents an ac-
curate modelling of the underlying micromechanical behaviour at the
scale of the fibre diameter. A direct micromechanical representation of
the involved mechanics at the microscale, however, was desired by
several researchers. Finite element models featuring a separate resolu-
tion of fibre, matrix and possibly interphase constituents appear well
suited for this purpose. They allow, in principle, an accurate re-
presentation of microbuckling, splitting, and fibre failure. A typical
challenge in such approaches, however, is the determination material
parameters at a microscopic scale.

In its classical incarnation, micromechanical models consist of a 2D
or 3D slice of alternating fibre and matrix segments representing a
single UD-ply, see Fig. 11. This modelling approach offers some innate
advantages: The fibre stripe thickness endows the fibres with bending
stiffness which is a requirement for a well defined bandwidth. The

width of the stripes is typically adjusted to match either the fibre vo-
lume content of the composite or the fibre bending stiffness. If a more
accurate representation of the complex triaxial stress state that results
from the fibre geometry is desired, 3D volume slices are an option. The
separate resolution of the constituents allows to use separate material
models for failure and degradation as well as interface elements to
model fibre-matrix debonding. A disadvantage is that the fibre- or
matrix-stripe thickness controls the mesh size, which can result in sig-
nificant numerical effort, in particular for 3D models. See Fig.12 for an
overview of approaches covered in §4.1.

Some care is required with regard to the interpretation of results of
finite element ‘unit cell’ models due to the strain localizing nature of
microbuckling. In the softening regime, the response of the micromodel
depends on its own size and does not constitute a representative volume
element (RVE) for the bulk composite [84]. Another aspect is the de-
finition of suitable boundary conditions at the transverse edges of the
model. Periodic boundary conditions constrain the band angle a priori,
but the band angle is, in general, not known in advance and reorients in
the post-peak regime. As an alternative, zero traction boundary con-
ditions are typically used and free edges are marginalized by choosing a
sufficiently large model. A comparative study of micromodels with
periodic and zero traction boundary conditions was performed by Ro-
manowicz [85].

The high resolution of the discretization required for micromodels
leads to substantial numerical cost, in particular for 3D models.
Therefore, many micromechanical analyses are limited to either 2D
plane strain models or effectively plane strain 3D models. Another
difficulty is the proper representation of the spatial distribution of the
misalignment angle, whose importance was discussed in §3.4. The
limitation to model sizes of a few tens of fibre diameters generally al-
lows only the representation of a local distribution of misalignments.

4.1. Discrete microbuckling and microstructural effects

The archetype of micromechanical models was used by Kyriakides
and coworkers to simulate microbuckling in UD plies manufactured
from AS4/PEEK. The model progressed though several stages. In its
initial iteration [65,66] it started as a simple 2D plane strain finite
element model where the composite was represented by a regular ar-
rangement of alternating fibre and matrix stripes with thicknesses ad-
justed to match the desired volume content. The plane strain assump-
tion was motivated by accompanying experiments that employed a
confinement fixture. Zero traction conditions were applied on the
transversal boundary, and a suitable model size was identified via a

Fig. 11. Schematic of typical micromechanical models. Areas assigned fibre
properties are shaded, matrix is left white. Single-stripe models (a) are used
with periodic boundary conditions left to right. This enforces a band angle β to
zero. Other plane models (b) use zero traction boundary conditions to allow a
nonzero band angle, but the model needs to be sufficiently large to mitigate
boundary effects. Models (a) and (b) are generally plane strain or plane stress.
Plane models can respect either the actual fibre diameter or the actual fibre
volume content. (c) Volume slice models may restrict out-of-plane motion, ef-
fectively enforcing plane strain. The number of fibres in (b) and (c) is typically
much larger than shown here.
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convergence study.
In Ref. [66], a nonlinear material behaviour was considered for both

fibre and matrix. The mildly nonlinear elastic constitutive behaviour of
the fibres was soon found to be of little significance, but the matrix
nonlinearity was confirmed to be a crucial parameter, as expected.
Matrix nonlinearity was represented by incompressible J2-plasticity
[66,86] in earlier approaches. The considerations discussed in §2.3,
however, imply a relation between band angle and volumetric strain.
Therefore, the plasticity model was later changed to a dilatant Drucker-
Prager model in order to study the effect of compressibility [87]. As a
result, the band inclination, although robust to most parameters, was
confirmed to be sensitive to the dilatancy of the matrix in the finite
element studies also. Furthermore, it was pointed out that the hard-
ening curves of pure matrix resin do not coincide with the hardening
behaviour of the in situmatrix, which was argued to be due to the multi-
axial stress state induced by the fibre inclusions. For this reason, the
matrix hardening curve used in the 2D model was not taken from shear
tests on pure matrix, but was adjusted to match the in-plane shear
hardening of a test on the composite. In Refs. [65,66] the suitable
matrix properties were found from a separate 3D fibre-matrix RVE
where the matrix hardening was calibrated so that the RVE response
matched shear tests on the composite.

The same group [86] also investigated the applicability of a 2D
model by exchanging the plane cross-section with a 3D volume slice
containing cylindrical fibres. A regular hexagonal fibre arrangement
was assumed for this purpose. As before, out-of-plane motion was
suppressed in this type of model by applying appropriate boundary
conditions at the section planes of the slice and effectively enforcing
plane strain. In comparison to the 2D models, some quantitative dif-
ferences in bandwidth and angle were reported, which were attributed
to the differences in fibre bending stiffness. Later publications, e.g. Ref.
[87], by the same research group employed the 3D model.

In Ref. [66] the initial implementation of the 2D model was sub-
jected to an extensive parametric study considering several model
quantities. In particular, the effect of imperfect fibre alignment was
studied. To investigate if the misalignment angle alone is a sufficient
characterization of the imperfect alignment, an infinite band fibre un-
dulation of sinusoidal shape with a defined wavelength and amplitude
was applied. It was confirmed that the misalignment angle, i.e. the
quotient of amplitude over wavelength, is the most influential para-
meter on the peak load and that the direct effect of the magnitude of
amplitude and wavelength is relatively minor. Specifically, it was found
that, for long wavelengths, ca. beyond 150 fibre diameters, only the
maximal misalignment angle, as derived from amplitude and wave-
length, is essential. In addition to infinite band imperfections, the effect
of the transverse distribution of the alignment imperfections was stu-
died. Sinusoidal imperfections with exponential amplitude decay in the
transversal direction showed a significantly higher peak load than the
infinite band imperfection, further highlighting the importance of an
accurate representation of the distribution of misalignments. In

summary, the findings regarding the effect of the misalignment dis-
tribution were similar to corresponding results obtained from homo-
genized bending theory approaches discussed in §3.4. The model also
replicated the course of events predicted by the analytical considera-
tions. After peak load, the inclination of the band noticeably increased,
and band broadening was observed as well. Band orientation and width
were found to be relatively insensitive to imperfections in a parametric
study.

A 3D plane strain volume slice micromodel was used in Ref. [88] to
investigate band broadening during softening featuring visco-plastic
effects. The matrix was modelled by as an elastic-visco-plastic material
with J2-plasticity and power law viscosity. Contrary to previous ap-
proaches, periodic boundary conditions were used with the periodicity
in transversal direction adjusted in order to control the band angle in a
parametric study. Simulations were sustained beyond the peak load
and, after the softening phase, the far field applied stress remained
relatively constant. The stress level in this load regime was dubbed the
‘plateau stress’. At the plateau stress, the maximal fibre rotation re-
mained stationary and the bandwidth increased by forming, and sub-
sequently elongating, a virtually straight segment of fibres in the band.
This behaviour was related to the band broadening mechanisms in-
herent to bending theory, i.e. that a fixed band angle and the volumetric
incompressibility provoked an arrest of the fibre rotation. General as-
pects of bending theory were already discussed in §2.3 and §3.1, and
the specifics of the band broadening mechanism and plateau stress itself
were investigated in Refs. [20,23,25]. Furthermore, it was demon-
strated that, with changing band angle, the model shows the trend in
the magnitude of the band broadening stress as predicted by bending
theory, although quantitative differences remained. It was concluded
that the accuracy of the model could be improved by a better re-
presentation of the mechanism arresting the fibre rotation.

In further analyses on the same basis, the effect of a superimposed
far field shear was investigated in Ref. [67]. Peak loads of numerical
models with an infinite band imperfection under both longitudinal
compression and in-plane shear were found to be in good agreement
with a modified version of (2b), where the far field shear stress was
added to the numerator. Normal and shear far field loadings were ap-
plied sequentially, but the loading history was found to be insignificant.

The transversal propagation of the band from a local imperfection at
a free edge was investigated in Refs. [22,87]. The model and accom-
panying experiments exploited the circumstance that the snap-back
response under normal loading with shear preload can be transformed
to a snap-through response under shear loading with a normal preload.
As a result, compression-torsion test were stable in rotation despite
being unstable in displacement. By controlling the shear angle, a quasi-
static deformation was achieved. The plasticity model was changed to a
dilatant Drucker-Prager model to study the effect of compressibility.
Band inclination was found robust to most parameters, but sensitive to
the dilatancy of the matrix.

Wind and coworkers [90] used the finite strain constitutive model

Fig. 12. Typical model attributes in §4.1.
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from Ref. [91] in a 2D micromechanical model to investigate the re-
lation of kink band angle with fibre rotation. They noticed a certain
dependence of the band angle on the width of the band of initial mis-
alignment. Furthermore, the results from the micromechanical model
were in approximate agreement with the condition of volumetric in-
compressibility, i.e. the band inclination was observed to follow about
half the fibre rotation angle.

Most micromodelling approaches do not attempt to represent an
actual fibre topology and assume a regular arrangement. To verify this
modelling technique, Lee and Waas [13] considered non-uniform fibre
spacing and found that it had little impact on the peak load. Yerramalli
and Waas [89] also compared the peak load obtained from a 3D model
of a cylindrical specimen to results from 2D plane strain models. The
peak load obtained from the 3D model was substantially lower. The
model consisted of a matrix cylinder with 37 embedded fibres which
was deemed a representative microsection. Orthotropic fibre properties
were considered and the matrix response was modelled by J2-plasticity
with the hardening curves calibrated so that the torsion response on the
cylinder matched test data of a macroscopic specimen.

Lapusta and coworkers [92,93] compared several 3D unit cell
models via a linear buckling analysis. Although linear buckling analysis
cannot predict microbuckling in Argon's sense, i.e. due to initial mis-
alignment and matrix nonlinearity, it yields bifurcation loads consistent
with Rosen's theory. The authors studied the bifurcation loads of several
3D models comparing isotropic and anisotropic fibre elasticity, square
and circular fibre cross-sections, dense and dilute fibre arrangements.

4.2. Interactions with debonding and matrix damage

Although micromechanical models with an abstract representation
of matrix nonlinearity via plasticity are most prevalent in the literature,
some authors strived for a more accurate depiction of fibre-matrix in-
terface debonding and matrix damage. Debonding and matrix damage
can be observed as diffuse microscopic events distributed over a da-
maged region or as localized, discrete longitudinal splits.

Prabhakar and Waas [12] conducted a parametric study of the effect
of fibre-matrix debonding. They used a 2D stripe model with cohesive
interface elements allowing for mode I and mode II debonding and
repeated simulations with different strength and toughness for both
modes. Other aspects were modelled simply, using a J2-plasticity model
and a uniform imperfection angle. They found that, for sufficiently low
mode II strength, debonding failure can compete with microbuckling
due to matrix shear nonlinearity. In models that failed by debonding,
the inelastic shear strain localization, distinctive for a kink band, was
not observed.

Several 2D plane strain models were considered by Pimenta and
coworkers in a computational analysis accompanying experimental and
analytical methods [33]. One model allowed for cohesive fibre-matrix

debonding and a separate model featured a continuum damage model
for the matrix.

Bishara and coworkers [94,95] performed a progressive failure
analysis with degrading material models for fibre and matrix in a mi-
cromechanical 3D slice model. The fibre failure model assumed that
high in situ strength prevents failure under compression and fibre
fracture occurs under tension. A parametric variation of the fibre tensile
strength showed a strong correlation with the band angle, with higher
fibre strength causing steeper angles. This correlation was anticipated
by analytical considerations in Ref. [25].

4.3. fibre failure as initiation mechanism

Although much evidence has been gathered linking microbuckling
to imperfect fibre alignment, an alternative (or complementary) in-
itiation mechanism considering fibre failure and subsequent matrix
damage as the decisive element was discussed in §2.5. Fracture planes
oriented at 45 to the longitudinal direction indicating compressive
fibre failure were experimentally observed in notched samples by
Gutkin and coworkers [29]. At some distance from the notch, the
fracture plane transitioned to a regular kink band at a more shallow
angle, as the sliding of fibre fracture surfaces apparently induced suf-
ficient misalignment to initiate microbuckling, see Fig. 13(c).

These observations motivated further investigations to clarify the
role of fibre strength which were presented in Ref. [96]. The micro-
mechanical model developed for this purpose consisted of a single fibre-
matrix stripe under plane stress with applied periodic boundary con-
ditions. The periodicity enforced a band angle of zero and the initial
misalignments constituted, in effect, an infinite band imperfection. To
model fibre fracture, a simplified continuum damage model based only
on longitudinal stress was used, neglecting any interaction with other
stress components. This model was then employed to search the long-
itudinal compression/in-plane shear far-field stress plane to identify the
respective domains for fibre fracture and microbuckling as strength-
limiting failure modes. The search was repeated for different initial
misalignments and fibre strengths. The outcome of the investigations
was that, for very small misalignment angles and moderate fibre
strength, the failure envelope defined by microbuckling is truncated by
the fibre fracture mode in the compression-dominated region of stress
space. For larger misalignments, the fibre strength-controlled failure
region vanished and peak load is exclusively limited by the micro-
buckling strength.

An investigation by Yerramalli and Waas [89] studied fibre dia-
meter size effects. A description of their model is given at the end of
§4.1. They found that smaller fibre diameters led to larger fibre strains
and interpreted this result as an affirmation of the hypothesis that fibre
fracture does affect the peak load, by precipitating micro-buckling, as
formulated by Narayanan and Schadler [34].

4.4. Preliminary conclusions and motivation for multiscale approaches

All the approaches discussed so far rested on a strictly micro-
mechanical description of both morphology and loading. Explicit de-
scription of the microstructure allowed authors to explore local mi-
croscopic effects and also confirming some theoretical foundations of
semi-analytical models. For instance, the role of fibre fracture as a
possible catalyst for micro-buckling and the kinematics of kink-band
initiation and propagation were illustrated. However, upscaling these
results into ply-scale behaviour, beyond simple failure criteria (e.g. as in
§3.1), is no easy task. Further, uncertainty models and their propaga-
tion across scales must be addressed in order to design engineering-
scale structures. This prompted the development of multiscale ap-
proaches to establish a direct link between micro- and macro-me-
chanics.

Fig. 13. Possible interaction of failure modes: microbuckling may trigger
longitudinal splits (a). On the other hand, longitudinal splits emanating from a
crack tip may also shield nearby fibres from microbuckling (b). In other cases,
microbuckling may also be initiated by fibre fracture in a region of stress
concentration like the tip of a notch as shown in (c).
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5. Multiscale models

The models described up until now have been used with notable
success to predict peak stress, kink-band morphology and other mi-
croscopic characteristics. However achieving convincing predictions at
the structural scale, e.g. macroscopic behaviour and failure, requires
taking into the interactions between the micro and macro scales.

At the risk of over-simplifying, two main considerations motivate
these investigations: The identification of a physically sound ply-scale
constitutive model to analyze complex geometries, or the study of ply-
scale effects – size, gradients, damage mechanisms – and their inter-
action with microbuckling. Both of these motivations will be addressed
in turn in the following.

5.1. Identification of a mesoscopic constitutive model

Considering the meso-scale as the scale of the homogeneous plies, a
mesoscopic constitutive model represents the equivalent response of
each elementary ply as a homogeneous anisotropic material. The pro-
cess of extracting such a behaviour from micromechanics is called
homogenization, see schematic in Fig. 14. Elastic properties have long
been predicted with various levels of accuracy with a variety of schemes
(e.g. Ref. [59]), together with elastic limits and other brittle failure
criteria (e.g. Ref. [97]). However progressive failure and more generally
nonlinear responses often lack theoretical foundations which prevent
simpler schemes from offering reliable results. Therefore, so-called
numerical homogenization approaches, relying on refined micromodels
of the kind described previously, are predominantly employed [98].

Perhaps the first significant step in this direction is due to Fleck and
Shu [80], who identified a Cosserat-continuum elastic-plastic behaviour
based on the unit-cell response of the underlying fibrous composite.
This homogenization analysis relied on a principle of virtual work
equivalence, which allowed the authors to relate the independent
Cosserat rotation with the rotation of the fibres.

In the same spirit but considering a Cauchy macroscopic continuum,
Feld and coworkers proceeded to upscale the response of their previous
micromodel [62] at the meso-scale [99]. In order to reproduce the fibre
waviness-induced elastic nonlinearity both in compression and tension
without a Cosserat medium, an a priori reduced model schematized as a
truss structure with an additional rotating degree of freedom was in-
troduced. The mechanical properties of the composite were assumed
identical to a regular meso-scale model in all directions, except in the
fibres, where the truss structure allowed reaction thanks to a nonlinear
spring resisting its transverse displacement. The initial offset of the
truss was linearly related to the fibre waviness and the far field shear
strain. It was shown that the stiffness, damage, and plasticity para-
meters of the transverse spring, coupled with the rest of the multiaxial
meso-model, could then be easily identified thanks to a principle of
virtual work equivalence with the response of the bending theory
model.

Bednarcyk and coworkers [100] employed a homogenization
scheme based on a variant of the generalized method-of-cells [101] to
determine a stochastic homogenized model. Using this method,

effective stiffness and stress concentration tensors were calculated for a
repeating unit cell micromodel containing a single fibre in a cubic ar-
rangement. The obtained tensor quantities were subjected to a trans-
formation implementing the misalignment. The availability of the stress
concentration tensor allowed the examination of yield- or failure-cri-
teria in each matrix cell for given macroscopic stress states. This result
was exploited to generate surfaces of failure initiation in macroscopic
stress space. Furthermore, effective stiffness properties were de-
termined by assuming a probability distribution of fibre misalignment
angles and performing suitable averaging techniques.

Some authors used a combined micromechanical/homogenized
model to take advantage of the efficiency of the homogenized de-
scription for the off-axis plies, while maintaining a micromechanical
resolution in the plies subject to microbuckling. This generally requires
the modification of the fibre-diameter-to-ply-thickness ratio to avoid
excessive numerical effort. Prabhakar and Waas [102] employed the
concentric cylinder method to find homogenized properties for off-axis
plies in a laminate, i.e. plies not oriented in the loading direction. For
the elastic regime, the concentric cylinder method provided the effec-
tive moduli directly from the elastic moduli of the constituents and the
volume fraction. Beyond the elastic regime, the incompressible Hill's
plasticity model was used to represent the effective material response of
the homogenized material. The hardening behaviour of Hill's potential
was then calibrated via a series of secant moduli obtained from the
concentric cylinder approach. No plasticity was assumed for the long-
itudinal direction for this purpose, but a nonlinear stress-strain relation
was used for the matrix contribution.

In order not to postulate any form of macroscopic behaviour,
homogenization schemes may also be used to iteratively provide the
tangent response for every integration point at every increment in time.
This computationally intensive variant is usually called multiscale
homogenization or FE2 [103]. Nezambadi and coworkers used such an
approach in Ref. [104], combined with a higher order solution scheme,
cf. [105], and limited to plane stress problems. The authors used this
type of model to show that macroscopic loss of ellipticity is connected
to microbuckling. They argued in favor of using loss of ellipticity as a
condition to have a well-posed problem as it does not assume a specific
mode and does not imply a specific constitutive law. Furthermore it was
demonstrated that a first gradient homogenization in conjunction with
a classical Cauchy continuum at the macro scale cannot preserve the
intrinsic length scale of the problem given by the fibre bending stiffness.
As a result the macroscopic response becomes mesh-dependent after
loss of ellipticity.

5.2. Structural effects and competition between damage mechanisms

Although a consistent constitutive model is necessary to perform
meso- and higher-scale finite element analyses, it is not entirely suffi-
cient. Actual composite structures exhibit a variety of effects that
cannot easily be modelled at the constitutive level, including scale ef-
fects [46], unusually higher bending strength [106], and often a com-
bination of microbuckling with ply-scale failure models such as trans-
verse cracking and delamination [11]. In recent years, a number of
multiscale approaches have been developed to tackle these challenges,
although at an ever-increasing computational cost.

After an earlier micromechanical study of the through-the-thickness
stress distribution in Ref. [107], Drapier and coworkers successively
developed a dedicated multi-scale approach in Ref. [108]. Displace-
ments were split into a slow component at a macroscopic FE length
scale and a fast component at a smaller length scale. The latter relied on
a very simple elastic-plastic microbuckling model and was discretized
using Ritz shape functions. fibre misalignment was represented as an
inhomogeneous field. This multiscale model was then used for a sen-
sitivity analysis of material and structural properties in Ref. [109]. For a
material corresponding to T300/914 carbon/epoxy, it was found that
the peak load is sensitive to the initial misalignment wavelength, and

Fig. 14. Identification of a mesoscopic constitutive model for a homogenized
model at a larger length scale.
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not just the misalignment angle, outside a range of 0.3 0.6 mm. Re-
garding the misalignment angle, two failure scenarios were dis-
tinguished. For small initial misalignments, matrix plasticity develops
evenly over the thickness due to stress redistributions, rapidly causing
an instability. For larger misalignments, plasticity develops more het-
erogeneously and the fibre waviness progresses more smoothly up to a
critical point. The authors also studied the influence of load gradients
(Fig. 15), thickness effects, and stacking effects, confirming several
earlier experimental findings. Concerning load gradients, bending was
found to play a critical role in the predicted strength of the laminate.
Indeed the strain at failure in pure bending was found quite higher –
typically 50–100% – than in compression. This effect was actually
found to dependent on ply thickness: The thinner the ply, the higher the
bending failure strain. Conversely, compressive failure strain remains
unaffected. Finally, this combined effect is also the most striking result
of the stacking influence study: The key parameters for each unique
stacking sequence is the total thickness of consecutive 0 plies and their
load gradient through the thickness.

Using the same baseline micromodel as in Ref. [102], Prabhakar and
Waas also studied the interaction of microbuckling with the two most
frequent ply-scale failure modes: delamination and splitting [110]. Both
these studies were therefore based on a plane strain 2D model and
additionally featured cohesive zones at the discrete interfaces where the
damage mechanisms of interest could occur. The authors studied size
and stacking effects, although never under bending loading and
therefore observed minimal influences. More significant was the sen-
sitivity to the laminate waviness angle, considered in this study in ad-
dition to microscopic waviness, and to the cohesive parameters, de-
parting from their experimental values. It was found that mode I
(opening) strength and toughness had little influence on the mechanical
response in compression, unlike mode II (shear) strength and toughness
which could drastically change the response of the laminate. Further,
laminate waviness appeared to have quite a similar effect to fibre wa-
viness in microbuckling analyses, which was to be expected given the
similarities between the two modelling approaches.

Following the identification of a ply-scale homogenized response in
Ref. [99], Allix and coworkers implemented it in the framework of a
hybrid discrete/continuous model [111], where micro-buckling could
compete with transverse cracking and delamination in the response of
complex samples [112]. The hybrid model used for this purpose dis-
cretizes the laminate in microscopic unit cells about as wide as the ply
thickness, separated by potential failure interfaces on all sides. Discrete
failure mechanisms are activated on these interfaces based on a finite
fracture mechanics approach featuring a mixed strength-toughness
criterion [113], while diffuse failure mechanisms – and plasticity – are
considered homogeneous per unit cell. The width of these unit cells
must therefore be small enough to represent transverse cracking sa-
turation when all potential surfaces fail. The width of a kink-band being
slightly smaller than such a value, it was possible to model compressive
failure in such a model with minimal interference with the existing

design. The authors used it to show that the interactions between
kinking and transverse cracking appear naturally thanks to the strain
and stress redistributions: e.g. fully failed kink-bands were always found
saturated with transverse cracks, while localized transverse cracks
(splitting) caused by notches or holes could act as a shielding me-
chanism, see Fig. 13(a), effectively delaying the initiation of micro-
buckling – and increasing strength – in some cases.

Going a step further, Bishara and coworkers [95] combined micro-
mechanical and meso-mechanical models to study the interaction of
microbuckling in 0 plies with other failure modes in neighbouring
plies. The micro-mechanical model used for 0 plies [94] has already
been discussed in §4, therefore the problem is technically three-di-
mensional but remains largely constrained in a 2D plane. The meso-
mechanical model, representing neighbouring (i.e. non-microbuckling-
prone plies), is a conventional elastic-plastic damage model that allows
a significant reduction of the overall computational cost. With the
combination of these models, separated by delaminating interfaces, the
authors could analyze the response of balanced 5-ply and 16-ply la-
minates to compression loading. They observed the expected interac-
tion of microbuckling with delamination and splitting, but also the
ability of a kink-band to propagate through-the-thickness, by activating
inter-fibre failure mechanisms in neighbouring plies through stress re-
distributions. Again, the combination between different failure modes
appears naturally and preferably around kink-band initiation and stress
concentration regions, as long as all mechanisms are explicitly de-
scribed.

6. Summary and outlook

The purpose of this survey was to provide an overview of modelling
approaches based on micromechanics to the problem of compressive
failure in laminated composites. As reminded in §2, the theoretical
understanding of the basic phenomena has been well developed for
some time. However, theories considering individual mechanisms in
isolation generally do not allow for predictive assessments, for the
reasons elaborated in §2.8. Hence, the formulation of computational
models drawing from these original micromechanics prompted a
variety of approaches, generally purpose-made, depending of the spe-
cific aspect or question at hand. Some of which remain challenges up to
this day. Three main categories of models, with their own sets of shared
characteristics, have been investigated.

Semi-analytical models, based on uniaxial developments of formerly
analytical equations, allowed the modelling of complex material non-
linearities while keeping the morphological description of the micro-
structure simple (i.e. the initial fibre misalignment and the ultimate
kink-band). Most aimed at and allowed to produce strength envelopes
and energy dissipation estimates in better accordance with experi-
mental results, for reasonable values of fibre misalignment. The role of
fibre – or composite – bending stiffness and issues pertaining to stability
were also highlighted. Others offered a better understanding and pre-
dictability of the kink-band angle, which was an input parameter of
earlier theories. The influence of the variability and associated spatial
correlation of fibre misalignment on kink-band initiation was explored
via smeared continuum models and suitably generated misalignment
fields [55,81,82]. The smeared approach continues to receive attention
[114], in particular to represent fibre waviness [54,115].

Explicit micro-models allowed to better understand effects associated
with boundary conditions and damage mechanisms competing at the
microscale - particularly compressive fibre failure [116] and fibre-ma-
trix debonding. With the advancement of computational power and the
increased availability and precision of X-ray tomography measure-
ments, “image-based” models, i.e. models based on numerically re-
constructed experimental morphologies, sometimes combined with in-
situ measurements, are becoming a strong trend for a variety of appli-
cations including bone, porous metals, and woven composites. Their
extension to fibre-scale microbuckling is likely to improve our

Fig. 15. Structural properties like bending loads, cut-outs, and similar cause
stress gradients which have an effect on the microbuckling response.
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understanding of these intricate phenomena even more in the very near
future.

Multiscale models bridge the ultimate gap between component-scale
computations and micromechanics. Their generalization over the past
twenty years has finally allowed structure-scale predictions, taking into
account the influence of evolving multiaxiality, nonlinear stress redis-
tributions, size effects, and the coupling of microbuckling with splitting
and delamination. Their significant computational costs limits however
their usage to small centimetric samples. But this should be enough to
confront recent experiments which support the importance of structure-
scale effects [117–120], thanks to complex geometries or loading cases,
usually instrumented with full-field measurements.

As a final outlook, the reader should keep in mind that most if not
all of these developments were considered in the framework of quasi-

static compression. Industrial reality usually involves repeated, cycled
loadings, possibly leading to fatigue failure [121], as well as fast, up to
shock wave loadings, in case of structural crash or high energy impact
[122,123]. These domains of study and the multiscale problematics
they raise, including the effects of fatigue damage mechanisms, asso-
ciated stress redistributions, strain rate strengthening, couple stresses
with microinertia, and the saturation of crack propagation at high
speed, remain to be assessed for microbuckling. A notable exception is
the question of creep, which has received significant attention over the
years [124–126]. With the current level of predictions offered by quasi-
static theories and supported by the generalization of high resolution
and high frequency full field measurements, these open questions now
appear within reach.

A Appendix

Fig. 16 shows a web-structure linking attributes frequently appearing together. Attributes are taken from 6 categories listed in the column
heading: Domain specifies the geometrical extent of the model. fibre/matrix is one of: smeared, to indicate an anisotropic homogeneous medium, or
discrete, for separate resolution of the constituents. Continuum theory is one of: Cauchy, for a standard medium, Cosserat, to indicate that the medium
is enriched with rotational degrees of freedom, or Cauchy+ rebar, to indicate embedded stiffening elements. Material model is one of: deformation
theory, i.e. no internal variables, incremental theory, for plasticity and/or damage with state variables, and IFF criterion, for the failure envelope
theories reviewed in §3.2. The initial Misalignment can be modelled as uniform, by harmonic functions, or random. The last category specifies the
Region over which the misalignment extends, see also Fig. 10. Attributes not applicable to a category are omitted.

Fig. 16. Schematic overview of typically linked model attributes as a web-structure.
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Chapter III.

A numerical investigation of the statistical
size-effect in non-crimp fabric laminates under
homogeneous compressive loads

In this chapter, the scale laws governing the reduction of compressive strength with increasing specimen
size are investigated by numerical means. Several main concepts of the approach were already briefly
discussed in the introduction, see Subsec. I.4.3. The material under consideration features a mesoscale
architecture, and the characteristic of the resulting misalignment topology have already been briefly
discussed in Subsec. I.3.2. Roving misalignment data obtained was obtained via large scale measurements
and formed the basis for a misalignment quantification via the spectral representation method, see
Subsec. I.3.5. The topic of statistically informed microscale approaches introduced in Subsec. I.3.3 is also
revisited here.

This chapter was published as an article and the respective reference is stated below. The first author
developed the scientific concept of the approach, provided the computer implementation, performed all
simulations and wrote the manuscript.

B. Daum, G. Gottlieb, N. Safdar, M. Brod, J.-H. Ohlendorf, and R. Rolfes.
A numerical investigation of the statistical size-effect in non-crimp fabric laminates under homogeneous
compressive loads. Journal of Composite Materials, 2021.
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Abstract
The compressive strength of fiber reinforced composites is typically limited by a shear localization phenomenon known as
microbuckling and is very sensitive to local imperfections of fiber alignment. Local misalignments act as randomly dis-
tributed flaws and introduce a dependence of the compressive strength on the size of material volume element under
consideration. For homogeneously loaded material elements, weakest-link theory in combination with a Weibull power
law is a frequently employed statistical model for microbuckling strength. This implies a dependence of strength on the size
of volume under consideration. The present contribution investigates the strength–size relation for a non-crimp fabric via a
numerical approach. Characteristics of the misalignment flaws used in simulations are derived from a comprehensive data
set collected via large-scale measurements of roving dislocations on dry fiber material. Predictions resulting from the
weakest-link Weibull theory are compared against strength–size statistics gathered by numerical analysis. In this manner,
the size effects in single plies and laminates are quantified. The main findings are that weakest-link Weibull theory is well
suited to predict size related strength loss in individual plies. However, it is also found that when plies are bonded to form
laminates, misalignments in individual plies are mitigated in a way that is inconsistent with the weakest-link assumption. In all
situations considered here, the strength loss expected from weakest-link Weibull theory was outweighed by a strength
increase due to the mitigation effect when the volume was increased by adding extra layers to a laminate.
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1. Introduction

For a large class of composites comprising stiff fibers bonded
by a compliant matrix, the strength under predominantly
compressive loading is limited by a mechanism known as
microbuckling or fiber kinking in the literature. Here, the
former term or its abbreviation MB is used. MB is strongly
linked to preexisting imperfections of fiber alignment and to
matrix shear nonlinearity. As a mode of failure, it leads to a
reduction in the applicable far field compressive stress due to
rotation and subsequent fracture of fibers within a small band
of localized shear deformation. It is initiated when the geo-
metrical softening due to small pre-failure deformations out-
paces the material hardening in the incipient shear band.1–3 In
the interest of brevity, no extensive discussion of general
aspects of MB is included here. For a comprehensive expo-
sition of the basic mechanisms and closed-form analysis,1,3

experimental techniques,4 and computational approaches,5,6

the reader may refer to the cited literature reviews.

1.1 The statistical size effect and associated
scaling law

In the presence of local stress concentrations, MB may
progress with increasing load in a quasistatic manner due to
stress redistribution.7,8 In homogeneously loaded panels,
however, redistribution is insubstantial and initiation of MB
at a local point leads to immediate sudden collapse in a
transient dynamic manner. In the latter situation, several
experimental investigations9–11 reported that MB-strength
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decreases with increasing coupon size. However, com-
pressive testing is notoriously difficult, and inconclusive
results were reported as well.12 Nevertheless, for specimens
under homogeneous compressive stress, a decrease of
strength with increasing volume is expected due to sto-
chastic considerations.12–14 To distinguish this effect from
other mechanisms which produce a different kind of size
effect in notched, that is, in-homogeneously loaded speci-
mens, it is designated the statistical size effect.

The stochastic arguments that lead to the prediction of
the statistical size effect in MB problems are very similar to
the reasoning applied to the well understood size effect in
ceramics and other brittle materials with random flaws. In
brittle materials, failure initiation in any particular location
triggers catastrophic failure propagation, that is, the overall
strength is limited by the strength of the weakest element.
The statistical size effect then arises from the increased
chance of encountering more extreme imperfections in
larger specimen volumes. For a weakest-link model, the
probability of survival P of a volume V with respect to the
applied far field compressive stress σ11 is given by (1).
There, P0 is the survival probability in some reference
volume V0.

P
�
σ11
�
¼ exp

�Z
V

ln
�
P0

�
σ11

�� dV
V0

�
(1)

To complete the model, a further assumption regarding
P0ðσ11Þ is required, which is distinct from the previously
discussed weakest-link model.15 For this purpose, a power
law proposed by Weibull is typically employed (2); how-
ever, this assumption is not based on any physical argu-
ments, and the suitability of such a model is frequently
questioned.16,17 There, R0 and m are the scale and shape
parameters of the Weibull distribution and the symbol Rt

refers to an optional third parameter which specifies a
minimum threshold strength below which probability of
failure is zero. For the 3-parameter variant of the Weibull
distribution, Rt is positive and the 2-parameter variant is
obtained by setting the threshold to zero. The angled
brackets denote Macauley brackets, that is, hxi = x if x > 0
else x = 0.
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By combining the weakest-link model and the Weibull
power law assumptions, expression (3) is obtained.
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(3)

For a homogeneously applied far field stress σ11,
equation (3) implies the scaling law (4). To arrive at this

equation, the strengths R1 and R2 referring to same prob-
ability of survival, but different specimen volumes V1 and
V2, respectively, are introduced. Writing (3) for each σ11 ¼
Ri and V = Vi with i = 1, 2 and subsequently equating the
probability yields (4). From a known strength R1 determined
for a particular Volume V1 and a certain survivability P, a
new strength R2 of the same survivability but a different
specimen size V2 can be determined from the scaling law

R2 � Rt

R1 � Rt
¼
�
V2

V1

��1=m

(4)

Experimental investigations of the size effect and scaling
law are costly due to the large number and large size of
specimens required for this purpose. Moreover, the strong
sensitivity of MB to even small additional misalignment
introduced during manufacturing or handling of specimens
makes compressive testing a very delicate affair. Virtual
testing via computational methods offers an alternative
approach to investigate size effects within the controlled
setting of numerical analysis. The amount of virtual tests is
limited only by the numerical efficiency of the model; thus,
the size effect may be identified by simply solving a large
number of models with individual misalignment topologies
and different domain sizes in a Monte-Carlos style ap-
proach. One of the main challenges in this approach is the
proper and efficient representation of misalignment flaws in
the models.

1.2. Misalignment representation in
computational approaches

Computational modelling of MB must provide adequate
representation of fiber misalignment flaws and matrix shear
nonlinearity. Approaches to this problem may be roughly
categorized into two groups: micromechanical models, see,
for example, refs. 18–21, and homogenized models, for
example, refs. 22–24. Micromechanical approaches resolve
the constituents and microstructure of the composite; thus,
misalignment and matrix response can be modelled directly.
Effective or apparent properties of the composite at a larger
length scale emerge naturally from the model. Hence,
micromechanical approaches require relatively few ab-
stractions or assumptions. A disadvantage of micro-
mechanical approaches is that the discretization must be fine
enough to represent microscale details like individual fibers.
This results in a large computational effort and causes
complications with automatic mesh generation techniques.
In Monte-Carlo type investigations, large numbers of
simulations must be solved and handled automatically; thus,
the aforementioned shortcomings render micromechanical
models impractical for all but very small microscale domain
sizes. As an alternative, homogenized approaches take a
standpoint at mesoscale. There, the fiber-matrix
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microstructure is smeared out and represented indirectly via
a homogeneous solid of effectively equivalent response.
Matrix nonlinearity is accounted for by adjusting the shear
response of the equivalent solid, and misalignments are
treated by rotating its principal axes. Thus, more abstraction
is required in the formulation of homogenized models for
the benefit of decoupling the discretization size from the
microstructure. Micromechanical approaches usually in-
clude only a single patch of misalignment.18,19 Homoge-
nized models are less restricted with respect to size and may
cover a spatial domain several times the size of the typical
wavelength of misalignment undulations.

1.3. Measurement and quantification
of misalignment

In order to build numerical models with realistic repre-
sentations of the fiber misalignment, measurement and
proper quantification of the apparently random properties of
the misalignment topology is essential. In this spirit, several
authors have gathered statistical data of misalignments and
the proliferation of lab-sized X-ray computer tomography
equipment triggered a rapid development in this field. For
unidirectional carbon fiber composites, a variety of methods
to determine in-situ misalignment angles via automated
processing from volumetric grey-scale imaging data has
been developed recently, see, for example, refs. 25 and 26,
to cite just a few. In unidirectional fiber materials with
simple architecture, misalignments are mostly due to ran-
dom imperfections resulting from handling or processing.
The situation is somewhat different for non-crimp fabric
(NCF) materials with an elaborate mesoscale architecture,
where stitching yarns or other bindings are used to bundle
fibers into distinct rovings. The stitching results in an
inherent, and somewhat regular, undulation of the pre-
dominant roving direction. Considering several NCF-
materials, Wilhelmsson al.27,28 used image processing
techniques to acquire misalignment data from optical
images of micrographs to investigate the out-of-plane
waviness characteristics.

The results of such measurements are typically presented
in terms of empirical or fitted misalignment distributions.
However, on their own, such misalignment distributions, in
the statistical sense of the word, are not sufficient for the
reconstruction of realistic misalignment topologies in nu-
merical models. If the local misalignment of each grid point
in the finite element mesh is determined by independently
sampling from the misalignment distribution, a spurious
mesh dependence is introduced. This is because in the
measured misalignment topology, the misalignment field is
smooth and the misalignments of nearby measurement
points are related. Hence, the autocorrelation length has
been found to be a very important statistical property to
characterize misalignment topologies.23,29 This property

provides a measure of the minimum distance between points
that have independent misalignments. Points that are closer
than this distance have an (auto-) correlated misalignment,
that is, their misalignment is not completely independent.
Some authors23,30 proposed a characterization of the mis-
alignment undulations in terms of their power spectrum in
the frequency domain. This method provides a pertinent
encoding of both misalignment distribution and autocor-
relation properties.

1.4. Motivation

The brief review discussed so far motivates the present
contribution to consolidate and extend earlier efforts with
regard to these aspects:

(i) The observed size effect in physical or virtual
specimens with unsupported edges is not neces-
sarily caused by the volume related statistical size
effect elaborated in §1.1. In the presence of un-
supported edges, MB is likely to be initiated there
first before initiation can occur in the interior. This
particular situation was considered in ref. 29 with
the specific intention to quantify the effect of un-
supported model edges on the compressive strength.
Thus, volume related and edge related effects
compete in specimens with unsupported edges, and
it is not clear in advance if either effect is dominant.
The present investigation is concerned with size
effects resulting from a change in material reference
volume only, and any lateral unsupported edges are
avoided to isolate this effect. Hence, virtual speci-
mens in the present contribution are taken as pe-
riodic unit cells embedded in surrounding material.

(ii) Prior investigations regarding the size effect gen-
erally refer to unidirectional carbon fiber materials,
see numerical investigations23,29 and experimental
investigations.9–12 Although there is a compre-
hensive literature concerned with other aspects of
MB in NCF-materials, it seems that the statistical
size effect, as defined in §1.1, has not yet been
considered for NCF-materials, in particular. It is
discussed in the following, that the mesoscale
roving architecture of NCF-materials results in
some peculiarities, that are not present in unidi-
rectional materials.

(iii) As evident from the review §1.2 and §1.3, realistic
modelling of the misalignment topology is critical
for numerical MB-strength predictions. The mis-
alignment topology in the present contribution is
derived from a large-scale measurement of roving
undulation which provides a wide statistical basis
for the generation of realistic misalignment to-
pologies, see §2.1 and §2.2.
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(iv) Earlier numerical approaches reviewed above
generally considered a single misalignment field in
a 2-dimensional setting. Thus, the results may be
interpreted as pertaining to the size effect in single
plies, rather than multi-ply laminates. The present
contribution considers a simple model for the in-
teraction of ply-specific misalignment topologies
in the laminate, see §2.4. It is shown in §3.2 that the
bonding of individual plies to laminates has a
significant effect on the strength–size relation and
outweighs the statistical size effect in some
situations.

2. Measurements and modelling

2.1. Fiber material and misalignment measurements

Misalignment data used in the investigation presented here
was acquired via measurements on nominally unidirectional
dry NCF-fiber material. All measurements were done on
single plies resting on a rigid flat surface. In most appli-
cations, moulds are not flat and require some draping which
leads to further roving dislocations and roving deforma-
tions. Moreover, measurements were performed on single
uncompacted plies; hence, nesting, that is, further roving
dislocations resulting from the compaction pressure, is also
not considered. The type code of the material is [G;1134;
0°//G;36;90°][PES;12;L]1, where the letter G indicates glass
fiber and 1134/36 are the area weights in g/m2. The 90°-
rovings exist as somewhat irregularly arranged thin fiber
strands. Due to the relatively small area weight of the 90°-
rovings, the fiber material is considered nominally unidi-
rectional. A plan view photo of the fiber material is shown in
Figure 1. Both 0° and 90°rovings are bonded by a polyester

stitching yarn [PES;12;L] in tricot-stitch, which is the main
source of undulation.

In order to enable large-area scans of the textile surface,
an automated material unwinding unit31 was combined with
a recording unit for textile surfaces. The textile was unrolled
discontinuously in longitudinal direction in 60 mm steps.
After each unrolling step, a robot arm mounted camera took
a series of orthogonal images along the transversal direc-
tion. These images cover an area of 65 mm×65 mm with a
resolution of 1 Pixel per 31.6 μm, see Figure 1(a) for an
example. Images were subsequently joined in post-
processing to cover a length of approximately
10 000 mm and a width of approximately 300 mm. From the
image data the roving edge position was determined via an
automatic edge detection algorithm. This yields a raw data
set comprising about 320 000 sampling points for the lateral
position along the nominal 0°-direction for each of the 83
rovings in the textile. Sampling points of the raw data set are
marked in green, see Figure 1(c).

As apparent from Figure 1, the stitching yarn produces a
0°-roving undulation in the longitudinal direction with a
relatively constant wavelength. This is due to the textile
manufacturing process, where the stitching bond is pro-
duced via a rigid sewing mechanism. The stitching undu-
lation occurs simultaneous with other imperfections.
Occasionally, stitching does not occur at the boundary
between rovings, and instead splits off a certain amount of
filaments from one roving which then merge with the
neighbouring roving. This situation typically appears as a
discontinuous jump in the mutual edge of the involved
rovings, see annotation ‘roving split’ in Figure 1(c). It
appears that the presence of these measurement artifacts
leads to some overestimation of the roving undulation,
ramifications and remedies are discussed in §2.2

Figure 1. Images of the front (a) and reverse (b) sides of the dry textile. A magnified detail of the front side is shown in (c). Green pixels
indicate the automatically detected edge and provide sampling points for the 0°-roving edge. Images courtesy of A. Miene/Faserinstitut
Bremen.
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2.2. Misalignment data processing

In the following, the necessary preprocessing steps for the
application of the measurement data in periodic unit cell
analysis are elaborated. These steps were applied repeatedly
to obtain as many undulation fields as were required for the
analysis presented further down in §3.

Roving width is variable with a mean of 3.60 mm
calculated from the entire measurement data. All models
considered in the following were chosen to comprise 10
rovings within a fixed model width of b =36.0 mm. In the
first step of the preprocessing procedure, a continuous
range of 10 rovings was selected at random from the total
of 83 rovings. For this purpose, the first three and last
three rovings were omitted, since the textile edges were
slightly frayed, and those rovings showed an atypically
small undulation. Subsequently, a longitudinal starting
position was randomly selected from the range of about
320 000 sampling points per roving, omitting the first 5%
and the last 5% of the data set. In order to investigate the
size effect, models of different lengths a = 20/40/60/
80 mm were considered. These lengths correspond to 2/4/

6/8 times the dominant undulation wavelength of about
10 mm caused by the stitching yarns dislocating the
rovings. For the optical resolution of 31.6μm per pixel,
these lengths correspond to ranges of m = 632/1264/1896/
2528 total pixels in longitudinal direction. Beginning
from the random starting point, the next m longitudinal
sampling points and the next n = 10 rovings edges were
used as the basis for further processing. The data subset
defines a m by n matrix Ykl storing the transversal posi-
tion, that is, coordinate y in Figure 1, of each roving edge.
Row index k = 0…m � 1 indicates the position along the
evenly spaced sampling points in longitudinal direction,
and column index l = 0…n� 1 indicates the edge number,
each counting from 0 at their respective starting points.
Next, the undulation is isolated from the position data by
subtracting the mean lateral position Y l of each roving
edge l to obtain a new matrix Vkl, see (5). It is emphasized
that the index l refers to the edges between two rovings,
not for the rovings themselves. In a periodic unit cell n =
10, roving edges are sufficient to define 10 rovings with
the first edge repeated also as the last edge with a lateral
translation by b.

Vkl ¼ Ykl � Y l Y l ¼ 1

m

Xm�1

k¼0

Ykl (5)

Although the measurement domain approximately fits an
integer amount of stitching periods longitudinally, the un-
processed data is not precisely periodic, that is, V0l«Vml

and Vk0«Vkn, see Figure 2(a) and Figure 2(c). Even
though deviations from periodicity are rather small, they
are inconsistent with periodic unit cell analysis, tend to
attract the region of failure and distort results. To avoid
this problem, the method to obtain a precisely periodic
undulation field via Fourier analysis presented by Liu
et al 23 is applied here. As the first step in this proce-
dure, discrete Fourier analysis is performed on the matrix
Vkl rendering complex-valued Fourier coefficients Fkl,
see (6).

Figure 2. Lateral roving edge displacement fields for a domain of length a = 40 mm and width b = 36.0 mm. Index k counts the axial
position in pixels and index l the roving edges. Measured displacement Vkl and modified displacement ~Vkl are shown in (a) and (b),
respectively. To make differences more apparent, both are also drawn for l = 5 in (c). Notice that Vk5 jumps when k rolls over from 1263
back to 0 while ~Vk3 does not.

Figure 3. Plot of the power spectral density Skl for the same data
that is shown in Figure 2. Notice that only a very small segment
of the range 0 ≤ k ≤ m � 1 is shown. To smooth out the step-
function-like measurement artefacts, all values of Skl were set to
zero for k ≥ kcut in subsequent steps. For the length a=40 mm
shown here, the cutoff occurs at kcut = 9.
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Fkl ¼
Xm�1

p¼0

Xn�1

q¼0

Vpq exp

�
�2πi

�
pk

m
þ ql

n

��
(6)

From the Fourier coefficients, the real-valued spectral
power density Skl may be calculated, (7), where superscript
asterisk to Fkl indicates its conjugate complex number. The
spectral power density Skl retains the information regarding
the magnitude of undulation; however, the phase angle θkl
encoded in the complex-valued Fourier coefficients Fkl is
stripped off in Skl.

Skl ¼ ab

ð2πÞ2FklF
*
kl (7)

A plot of the power spectral density Skl is displayed in
Figure 3. Notice that only a small segment of the range of
index k is displayed. The matrix components of Skl deter-
mine the intensity of the harmonic oscillation associated
with k and l. The longitudinal wavelength of these harmonic
oscillations is given by λk = a/k, and the transversal
wavelength is given by μl = b/l. The dominant harmonic in
the measurement data is caused by the stitching yarn
piercing through the ply back and forth and thereby dis-
placing the rovings, see Figure 1. For a=40 mm, the
stitching results in dominant peak at k = 4, l = 0 which is
associated with a longitudinal wavelength λ4 = 10 mm and
μ0→∞. The dominant wavelength of 10 mm corresponds to
the nominal sewing period. In transversal direction, the
roving displacement is mostly constant, that is, the peak is
located at l = 0 where the associated wavelength μ0 tends to
infinity and the frequency to zero. Another property ap-
parent from Figure 3 is that the intensity rapidly diminishes
with increasing k.

In the next step, edge displacement fields of equiva-
lent spectral power distribution as in the initial data subset
Vkl, but with enforced periodicity on the boundary, were
generated. For this purpose, the spectral power data is
complemented by new phase angle data randomly gen-
erating θkl from a uniform distribution ranging from 0 to
2π. These phase angles are, however, not independent
over the entire range 0 ≤ k ≤ m � 1, 0 ≤ l ≤ n � 1, but need
to adhere to certain symmetry and antimetry conditions,23

see (8).

θ0;0 ¼ θm=2;0 ¼ θ0,n=2 ¼ θm=2,n=2 ¼ 0
θm�k,0 ¼ �θk,0 for k ¼ 1,::,m=2� 1
θ0,n�l ¼ �θ0,l for l ¼ 1,::,n=2� 1

θm=2,n�l ¼ �θm=2,l for l ¼ n
�
2þ 1,::,n� 1

θm�k,n�l ¼ �θk,l for k ¼ m=2þ 1,::,m� 1
and l ¼ 1,::,n� 1

(8)

By applying this procedure, a new undulation pattern ~Vkl

is obtained from a given spectral power density Skl as the

real-valued part, Re, of the inverse discrete Fourier trans-
form (9). The undulation ~Vkl now satisfies periodicity
constraints of the unit cell, unlike the initial data Vkl, see
Figure 2(b) and (c). Since the spectral power density dis-
tribution over the wavelengths associated with k and l is the
same between both, the essential characteristics are con-
served in this process.

~Fkl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ2
ab

Skl

s
expðiθklÞ

~Vkl ¼ 1

nm
Re

 Xm�1

p¼0

Xn�1

q¼0

~Fpq exp

�
2πi

�
pk

m
þ ql

n

��! (9)

The measurement data Vkl quantifies the roving edge
position in terms of pixels from the coordinate origin; hence,
it is inherently discontinuous, cf. Figures 1(c) and 2(c).
Occasional ‘split roving’ imperfections introduce further
discontinuities to the data set. Together, these discontinu-
ities result in low intensity, low wavelength contributions to
Skl and superimpose unrealistic short wavelength, and low
amplitude undulations in ~Vkl if not action is taken. To
eliminate these artefacts and to obtain a smooth output, all
longitudinal harmonics with a wavelength below λcut =
5 mm were considered noise and were removed by setting
Skl = 0 for k ≥ kcut = a/λcut. This procedure has some effect on
the misalignment magnitude; however, it is consistently the
same for all misalignment topologies considered here.

2.3. Roving model

For the reasons elaborated in §1.2, the present investigation
adopts a homogenized modelling approach at mesoscale.
Individual fibers in the rovings are much smaller in diameter
than the meso-length scale, so the rovings may be regarded
as a transversally isotropic homogeneous solid with one
preferential direction from a mesoscopic point of view. The
rotation of this preferential direction may then be used to
represent the initial misalignment and the subsequent fiber
rotation associated with MB. Hence, a viable modelling
approach could be based on a solid discretization in
combination with a transversally isotropic constitutive law.
One disadvantage of this approach is the difficulty of for-
mulating an appropriate anisotropic and nonlinear consti-
tutive law to emulate the roving response. In particular, it is
difficult to account for the effect of longitudinal stress on the
shear nonlinearity to which MB is very sensitive. Another
disadvantage is of practical nature: In the popular Finite
Element software Abaqus, which is used in this investi-
gation, this approach suffers from a known limitation32

resulting from the particular implementation of the kine-
matics of anisotropic solids. In this software, the preferential
axis of an anisotropic solid is rotated only by the amount due
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to the rigid body motion, disregarding any further rotation
due to shear deformations. This leads to an overestimation
of MB-strength. To overcome both of these problems,
Lemansky and Sutcliffe24,29 proposed the use of a com-
bination of isotropic solid elements and embedded truss or
‘rebar’ elements instead of a pure solid element dis-
cretization with anisotropy. In this approach, the stiffness of
the solid elements is enhanced in the preferential direction
by the embedded 1-dimensional elements so to obtain the
desired longitudinal stiffness via the appropriate rule of
mixture. Initial misalignment and subsequent rotation of the
preferential direction is then directly associated with the
nodal positions that the 1-dimensional elements attach to.

The present investigation adopts Lemansky and Sut-
cliffe’s approach, and nodal positions are adjusted to so that
their length-wise connection traces the undulating prefer-
ential direction of the roving. The length-wise connection of
these points by truss elements add extensional stiffness to
the longitudinal direction, but does not add any bending
stiffness and does not introduce any rotational degree of
freedom. Truss elements are elastic, and their stiffness was
adjusted so that the elastic longitudinal stiffness E11 mea-
sured in a physical calibration test is matched, see Table 1.
The linear and nonlinear response in transversal direction
and under shear is determined by the solid elements alone.
MB-strength is insensitive to the transversal direct stiffness,
but sensitive to the shear nonlinearity. To match the non-
linear shear response of the roving, the solid elements
feature an isotropic J2-plasticity model. This is motivated by
the circumstance that yielding occurs in the matrix which
may regarded as isotropic. Shear stress is the dominant
component in the plasticity model. However, the truss
stiffness is finite and this allows for a small contribution of

longitudinal stress via the J2 yield criterion used in the solid
elements. The yielding shear band is never unloaded before
attaining the peak load; hence, no benefit can be obtained
from a more sophisticated representation of shear nonlin-
earity via a combined plasticity damage model. To deter-
mine the elastic shear stiffness, the plastic hardening law
and the shear fracture strength, six tensile tests on ± 45°-
layup specimens were performed according to standard DIN
EN 6031. To account for softening subsequent to the ini-
tiation of shear fracture, the plastic hardening law was
complemented by a subsequent plastic softening regime
with an assumed energy release rate GII regularized by
element size, see Table 1 and Figure 4(b). The parameters
listed in Table 1 state the shear hardening law in terms of
parameters of the Ramberg–Osgood relation (10). This
relation is used in analytical solutions discussed further
down where a deformation theory of plasticity is assumed.
The application of deformation theory is admissible, since
material points in the shear band are never unloaded before
collapse. In formula (10), γ12, σ12 and G12 are the shear
strain, shear stress and effective shear modulus, respec-
tively. Symbols τy and n are material constants.

γ12 ¼
σ12
G12

�
1þ 3

7

�
σ12

τy

�n�1�
(10)

To verify the suitability of the present modelling ap-
proach to capture the peak load, a comparison is made to
analytical results due to Budiansky and Fleck1. The
classical formula (11) relates the MB-strength R to the
shear stress σ12 as a nonlinear function of the shear strain
γ12 and the initial misalignment angle φ0. There, max
denotes that the argument is to be maximized with respect
to γ12. This result was obtained under the assumption of
longitudinally rigid fibers shielding the matrix from any
longitudinal strain and stress and yielding is due to shear
alone.

R

G12
¼ max

γ12

�
σ12ðγ12Þ
φ0 þ γ12

�
(11)

The assumption of rigid fibers is a simplification, and in
reality, there is a small contribution from longitudinal stress
to matrix shear yielding. The effect of this simplification
may be gauged by using another analytical result that ac-
counts for the effect of longitudinal stress on the shear
nonlinearity, see equation (12). This relation is far more
involved, and a full exposition is available in the original
source, Equation 96 in Ref. 1. The discussion here is limited
to a presentation of the results. Symbol r is to be understood
as an independent variable and the ratio s≡ σ11=G12 acts as
the dependent variable. Other symbols are as follows: the
longitudinal modulus of the homogenized roving E11, the
modulus of the isotropic matrix Em =3350 MPa, the fiber

Table 1. Material parameters.

Constituents

Glass fibers [G;1134;0°//G;36;90°]
Stiching yarn [PES;12;L]
Matrix Epoxy RIM 135/H137
Fiber vol. content 50%
Effective elastic properties
Longitudinal E11 44.77 GPa
Transversal E22 11.10 GPa
Shear G12,G13 4.37 GPa
Poisson’s ratio ν12 0.27

Shear properties
Fracture strength 40 MPa
Energy release rate 1.5 N mm�1

Ramberg–Osgood parameters used in (10)
parameter 1 γy 6.31 × 10�3

parameter 2 τy 27.6 MPa
parameter 3 N 7.99
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volume content vf = 1/2, and further constants: b = 7/10, ρ =
3/2 and γy ¼ τy=G12. The normalized MB-strength
maxðsÞ ¼ R=G12 is obtained via numerical maximization
of (12) with respect to r

Analytical results obtained for rigid fibers (11) and
flexible fibers (12) are compared to numerical results ob-
tained from a simple verification model, Figure 4. It is
apparent that for a wide range of initial misalignments, all
three models give very similar results. The finite stiffness of
the truss elements ensures that the numerical results are
closer to results from (12) for small initial misalignments
φ0 < 3°.

Failure due to MB generally preempts failure due to
exceeding the compressive fiber crushing strength. How-
ever, in some cases of exceptionally low misalignment, the
strength limit imposed by MB may exceed the one imposed
by fiber crushing strength, see the discussion in Ref. 33.
Such situations are disregarded here and only failure due to
MB is considered. Moreover, out-of-plane wrinkling of
thicker laminates can also not be represented by the model
due to the applied boundary conditions.

2.4. Meso scale unit cell modelling

The predominant undulation wavelength in the fiber textile
considered here is 10 mm, and its ply thickness is 0.8 mm.
These characteristic dimensions define the mesoscale be-
tween the microscale associated with the fiber diameter and
the macro scale relating to the component size. At meso-
scale, it is feasible to resolve individual 0°-rovings and their

geometry. No attempt is made to explicitly model the
stitching yarn, and it is reflected only indirectly via its effect
on the 0°-roving undulation. The irregularly arranged very
low fiber weight 90°-rovings are not expected to substan-
tially impact the microbuckling strength and are also
omitted. As elaborated in §2.3, a combination of solid and
truss elements, Abaqus designation C3D8 and T3D2, are
employed to model the roving stiffness. In longitudinal
direction, the mesh size is 10 elements per dominant
wavelength of 10 mm. Transversally and through the
thickness, each roving is discretized into 4 and 2 elements,
respectively. To gauge the effect of the discretization size,
models with half and double the elements in each direction
were solved resulting in a strength increase of 16% and a
strength decrease of 4.4%, respectively. For this investi-
gation, about 1200 models were solved, and to keep the
numerical effort manageable, the original mesh size was
used. A view of the undeformed mesh for one particular
model is shown in Figure 5.

As stated in §1.4, the intention of the present contri-
bution is to investigate the statistical size effect pertaining
to a change in volume in isolation from other competing
size effects arising from a change of unsupported edge
length. To eliminate the latter effect, material unit cells
embedded in surrounding material are considered. The
volume is varied by changing the model length a in steps of
20/40/60/80 mm. These steps are integer multiples of the
wavelength of the dominant harmonic, see Figure 3 and the
discussion in §2.2. Periodicity of displacement is enforced
via standard periodic boundary conditions. The undulation

Figure 4. The verification model. The layout of the truss and solid elements in the model is shown in (a). The response of the model
under shear loading is determined by the solid element and is compared to six experimental curves in (b). The compressive response of
the model for a nonzero initial misalignment φ0 is compared to analytical models (11) and (12) in (c).
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field is applied to the unit cell geometry by adjusting the
transversal nodal positions to ~Ykl ¼ ~Vkl þ Y l, in order to
trace out the edge dislocation as specified by the particular
undulation field of the ply. In this process, ~Ykl is re-
sampled as required by the discretization size and ap-
plied to the nodal coordinates. Dislocations are faintly
visible in Figure 5. The misalignment angles Φkl corre-
sponding to these nodal dislocations are calculated via
(13). Symbol Δ is the truss element length, and indices k
and l are wrapped around by taking the modulo operation,
if required.

Φkl ¼
~V ðkþ1ÞðlÞ � ~V ðkÞðlÞ

Δ
(13)

Out-of-plane misalignments are not modelled. More-
over, the out-of-plane motion is suppressed on the back
surface of the laminate to avoid global plate buckling.
Therefore, single ply models considered further down in
§3.1 only account for the in-plane membrane response,
similar to the pure 2-dimensional approaches cited in §1.
However, the solid discretization allows the combina-
tion of multiple plies to volumetric laminate meshes
which are considered in §3.2 and §3.3. In these laminate
models, the membrane stiffness of neighbouring plies is
coupled via the transverse shear stiffness of the solid
elements.

For all model sizes, the spectral density Skl is cut off at the
same wavelength λcut = 5 mm and kcut was adjusted ac-
cordingly. The histograms in Figure 6 display the distri-
bution of misalignment angles for 100 randomly generated
topologies for each of the 4 length classes a = 20/40/60/
80 mm. The mean misalignment angle is near zero in all
cases, and the standard deviation in each class is 2.67/2.68/
2.65/2.65 degrees.

Since the element edges at the ply interface follow the
imperfection data for their respective plies, meshes are
non-congruent between neighbouring plies of laminate

meshes. Therefore, ‘tie’-constraints were used to enforce
bonding of neighbouring plies at their mutual interface, see
annotation ‘tie constraint’ in Figure 5(b). This type of
constraint couples the displacement of the nodes of a
dependent surface to the displacements interpolated from
the independent surface.

It is assumed that the manual or automated production of
the laminate does not enforce a well-defined lateral position
but allows for some lateral shift during the layup of the dry
fiber material. This seems reasonable, as the transversal
position of consecutive plies in real laminates is usually not
aligned perfectly flush and a certain random lateral shift

Figure 5. A view of the undeformed mesh of a five ply model of length a=40 mm. Subfigure (a) depicts a global view of the model and (b)
shows a magnified detail. Rovings are oriented longitudinally and are four elements wide transversally. One roving and four interfaces
are shaded blue in (b). The phantom rovings at the edge of the actual unit cell are coloured in red. To avoid clutter truss elements are not
shown in (a).

Figure 6. Histogram of the element-wise misalignment angle Φkl

evaluated over 100 misalignment topologies generated for each
model size class a=20/40/60/80 mm. The total number of
elements/angles are 80k/160k/240k/320k in the four classes.
The vertical axis counts the number of angles within fixed
intervals of 1°.
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from ply to ply is expected. To account for this manufacturing
uncertainty in the model, every ply after the first one was
shifted by a certain distance in transversal direction, see
annotation ‘shift’ in Figure 5(b). The shift distance of each
ply was determined at random from an uniform distribution
between 0 and the mean roving width 3.60 mm. Due to this
shift, the plan view outline of the ply surfaces forming the
interface of any given ply pair are not congruent. This is
problematic, as the independent surface of the tie constraint
needs to cover the dependent surface completely to allow for
displacement coupling via interpolation. As a remedy, the
first and the last roving of each ply were repeated outside of

the unit cell as ‘phantom’ roving on either edge of the ply, see
annotation ‘phantom roving’ in Figure 5(b). In the figure,
phantom rovings are coloured teal and are not part of the unit
cell proper coloured in beige. Phantom rovings represent a
part of the geometry of the imaginary neighbour unit cells.
This allows for an extension of independent tie-surface into
the neighbour unit cells, thus, ensuring that it is larger than the
dependent surface on the unit cell proper. Nodal displace-
ments in the phantom rovings are entirely coupled to their
respective parent rovings.Moreover, the phantom rovings are
assigned very compliant material properties, so that their
contribution to the unit cell stiffness is negligible.

Table 2. Overview of the simulation series. The slash character separates steps of the varied parameter. Numbers in parentheses are
repeated from earlier sections due to reused classes.

Section Sample size Plies Length a [mm] Width b [mm] Thickness [mm]

Simulations
§3.1 100 1 20/(40)/60/80 36 0.8
§3.2 100 (1)/2/3/4/5 40 36 (0.8)/1.6/2.4/3.4/4.0
§3.3 100 5 20/(40)/60/80 36 4.0

Physical validation tests
§3.4 22 5 20 20 4.0

Figure 7. Progression of compressive failure in a typical single ply model of length a=40 mm. (a) Shows the initial misalignment field, (b)
shows the in-plane shear stress σ12, (c) and (d) both show the equivalent plastic strain; (b) and (c) depict the state at the peak load, that
is, the applied far field compression σ11 is largest in magnitude so that σ11 ¼ R, (d) depicts the state when the termination criterion is
met, that is, σ11 ≤ 0:9R.
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3. Results and discussion

The previously discussed modelling techniques were applied
to 3 separate series of simulations. In each of these series,
only one parameter is changed in discrete steps separated by
the slash character, see also Table 2. In Sections §3.1 and
§3.3, series with model lengths a = 20/40/60/80 mm are
investigated for a single ply and a 5 ply laminate, respec-
tively. In §3.2, another series representing laminates com-
prising 2/3/4/5 plies is considered. For each configuration,
a class of 100 models were independently generated and
solved. All simulations considered an uniaxial loading via a
far field compressive stress σ11. At mesoscale, this corre-
sponds to the axial force acting on the unit cell normalized
by the unit cell cross-section area. Likewise, the macro scale
axial compressive strain ε11 is defined as the shortening of
the unit cell normalized by its length. Both σ11 and ε11 are
defined positive for compression. The primary result of each
simulation is the maximum of σ11 which corresponds to

the MB-strength R of the model. In order to positively
identify the peak stress, all simulations were continued into
the softening regime until the far field stress dropped to 90%
of the peak value. This termination criterion was attained in
all but one simulation run. The unsuccessful simulation was
excluded from all further analyses. Solutions were obtained
via dynamic implicit analysis. Dynamic, rather than static,
analysis was used to regularize the problem in the post-peak
global softening regime. Simulation parameters were
chosen so to avoid inertia effects until the load peak is
attained. The implicit solution procedure does not require
mass scaling for efficient increment sizes in the linear re-
gime before the onset of softening. However, mass/time
scaling was still used to enhance convergence in the soft-
ening regime.

To validate simulation results, a small series of physical
compression tests was conducted and the respective results
are reported in §3.4.

3.1. Length size effect study for single plies

In Figure 7, some key states in the failure progression of the
first out of 100 single ply models belonging to the size
class a=40 mm are depicted. It is apparent that up to the
peak load, permanent deformation accumulates in two
separate regions; however, in the post-peak regime, shear
localizes into one critical region. The regions of note-
worthy plastic strain correspond to the regions of large
initial misalignment magnitude. The peak load is attained
when the shear stress reaches the fracture strength of
40 MPa. However, this is particular to the materials
considered here, and in general, MB can occur while the
shear response is still hardening.

The empirical survival function for each length class in
the series a=20/40/60/80 mm is shown in Figure 8. These
empirical distributions were fitted with a normal distribution
and 2/3 parameter Weibull distributions using the maximum-
likelihood method. Parameters obtained from the fitting are
reported in Table 3. There, and in the following, parameters
referring to the 2-parameter form are furnished with an over-
script tilde.

Figure 8. Empirical probability of survival P over the compressive
strength R for different length classes.

Table 3. Parameters of different distribution fits. The abbreviation gof. stands for goodness-of-fit and indicates the probability that the
data follows the respective distribution. Goodness-of-fit was determined via the Pearson-χ2-test.

Normal distribution fit 2-Parameter Weibull fit 3-Parameter Weibull fit

Length
a [mm]

Mean
[MPa]

Std. dev
[MPa]

gof.
[%]

Shape
~m[1]

Scale
~R0 [MPa]

gof.
[%]

Shape
m[1]

Scale
R0[MPa]

Thresh
Rt[MPa]

gof.
[%]

20 372 28.6 81 12.9 385 13 2.9 85 296 57
40 359 29.7 59 13.8 372 55 8.8 238 133 59
60 353 25.8 77 14.3 365 85 4.1 104 259 90
80 347 25.5 16 15.7 358 68 8.7 197 160 50
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Each of either the 2- or 3-parameter fits to any of the 4
length classes may be used to calibrate the scaling law (4)
rendering eight variants. If the weakest-link model (3)
applies, all variants should result in approximately the same
relation, regardless of which parameter set from Table 3 is
used in the scale law (4). To test this presumption, scaling

laws for the median strength, that is, with a probability of
survival P = 0.5, are plotted in Figure 9 for each of the 4
length classes as short inclined line segments near the re-
spective model length. These segments show the 2-parameter
form of the scale law and appear as a straight line due to the
double logarithmic axis scale. The 3-parameter variants are
very similar over the considered ranges and are not shown.
The scaling law predicted by these curves is to be compared
against the reduction of strength obtained for different model
lengths. For this purpose, 25/50/75 percentiles of strength are
also plotted over the model length a. To aid the comparison,
another variant of the scaling law forP = 0.5 is included in the
plot where ~m ¼ 21:2 and ~R0 = 372 MPa were determined so
that the fit passes through the median strengths at a = 20 mm
and 80 mm. Comparing all five variants shows that the slope
of the four class-wise fits somewhat overestimate the ob-
served reduction of median strength. Despite these devia-
tions, it appears that the scale law implied by the Weibull fits
are approximately consistent with the scaling of the class
median strength for the range of sizes considered here.
Moreover, it is apparent that in the case of single ply models,
the predicted strength is very low. It is shown in the following
sections that the bonding of plies to laminates brings about a
substantial increase in strength.

Before moving on, the estimation of single ply strength
via analytical formulae from measured or assumed mis-
alignment distributions is briefly discussed. In the present
approach, the entire set of misalignment angles is known for
a given model manifestation from the model generation
procedure. Moreover, this set of misalignment angles is
associated with a particular microbuckling strength RSim

observed in the simulation of the particular model. This
association allows the verification of the predictive capa-
bilities of classical closed-form theories for the buckling
strength. In the following, the model (11) will be considered
for this purpose. This and other similar formulae were
derived via closed-form analysis and, hence, are limited due
simplifications with respect to topology and constitutive
response. Most critical is that these models take only a
single deterministic misalignment angle φ0 and it is not
immediately apparent how they may be applied if the
misalignment is quantified as a spatially variable fieldΦkl as
is the case here. With regard to this problem, Wilhelmsson
et al27 proposed a modification to (11) by replacing φ0 with
an ‘effective’ misalignment angle calculated as a certain
percentile of the distribution of angles in the field Φkl. For
this purpose, the absolute value of each angle Φkl is taken to
obtain a half-normal distribution. Subsequently, a certain per-
centile of the half-normal distribution is considered as the
‘effective’ misalignment angle. This still leaves the problem of
determining which percentile might yield the appropriate ‘ef-
fective’ misalignment. For the present data, it is found em-
pirically that the 90-percentile yields a close to best
correlation of the prediction RBud to the observed strength

Figure 9. Percentiles of the observed strength R over the model
length a. The dots mark the median strength with a probability
of survival P = 0.50, error bars extend down/up to P = 0.25/0.75.
The scaling on both axes is logarithmic, although it is barely
noticeable on the vertical axis.

Figure 10. Scatter plot of strength RSim observed in the
simulation versus strength RBud predicted by Budiansky’s
formula (11). The effective angle used in this formula is the 90-
percentile of the set of all angles of a given model length class.
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RSim for the series of simulations considered here. A scatter
plot of prediction versus observation is provided in
Figure 10. The prediction has a mean absolute error of

17.9/12.9/13.9/15.4 MPa for the four considered length
steps and the quality of the prediction appears approxi-
mately independent from the size of the model.

3.2. The effect of laminating multiple plies

In this section, the effect of bonding 2/3/4/5 plies to a
laminate is studied. Contrary to the study in the previous
section, only a single unit cell length a=40 mm is considered
here. Results for the same length already presented in the
previous section provide the data point for the single ply
case. All plies are nominally aligned in longitudinal di-
rection, that is, [0°]2/3/4/5. This stacking sequence is found,
for instance, in spar caps of wind turbine blades where
transversal stiffness is provided by very thin 90° plies which
are not explicitly modelled here. The failure progression in
the first of 100 models belonging to the class of models with
five plies is depicted in Figure 11.

Again, the results of the series are presented in terms of
the empirical survival functions Figure 12 and corre-
sponding parameters in Table 4. Median and percentiles of
the strength for the considered ply numbers are plotted in
Figure 13. It is apparent that the bonding of plies to a laminate
leads to a dramatic increase in strength for the first few plies

Figure 11. Progression of compressive failure in a typical five ply model of length a=40 mm. Model is the same as the one depicted in
Figure 5. To inspect the interior only half of the model is shown. (a) and (b) show the in-plane shear stress σ12 and the equivalent plastic
strain at σ11 ¼ R, respectively; (c) depicts the state when the termination criterion σ11 ≤ 0:9R is met.

Figure 12. Empirical probability of survival P over the
compressive strength R.
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with a diminishing effect as the ply number increases. This
observed strength increase is at odds with the weakest-link
Weibull theory discussed in §1.1. The scale law (4) predicts a
drop in strength for any increase in volume, either length-
wise or in thickness direction. Results from §3.1 confirmed
the applicability of the scale law to the length-wise size effect;
however, this is clearly not the case here.

An intuitive explanation for the suppression of the sta-
tistical size effect is that the critical misalignment, that is, the
one that eventually initiates failure, is very likely to be
near less severe misalignments in neighbouring plies.
This mitigates the misalignment severity and increases
strength in multi-ply laminates. For the NCF-textile
considered here, the 10 mm harmonic is dominant, see
Figure 3. Between neighbouring plies, these dominant
harmonic undulations occur with a random phase shift,
see (8). When the phase shift is small, the critical mis-
alignment is likely to be in the neighbourhood of a

misalignment in the same direction in the next ply and the
strengthening effect is small. If the phase shift happens to
be close to half a period, misalignment in the neigh-
bouring ply is likely to be in the opposite direction to the
critical misalignment, thus reducing its severity and in-
creasing the laminate strength.

To provide a quantitative evaluation of this reasoning,
the simplest case of the 2-ply laminate is considered. The
severity mitigation is estimated via the covariance C as
defined in (14) for the angle pairsΦð1Þ

kl ,Φ
ð2Þ
kl sharing the same

indices k, l in the first and second ply. Positive/negative
covariance means that most angle pairs have the same/
opposite sign leading to a small/large mitigation, respec-
tively. The misalignment angles are defined at the element-
integration point, see (13) and the accompanying text for a
definition. Due to the roving displacement and the lateral
random shift between 0 and one roving width between
plies, Φð1Þ

kl and Φð2Þ
kl are not necessarily nearest neighbours

and may be offset by as much as one mean roving width of
3.60 mm. This simplification is considered adequate for
the present purpose. Symbols Φ

ð1Þ
and Φ

ð2Þ
denote the

mean misalignments in each ply which are approximately
zero.

C ¼
Xm
k

Xn
l

�
Φð1Þ

kl � Φ
ð1Þ
��

Φð2Þ
kl � Φ

ð2Þ
�

(14)

By plotting the resulting angle covariance over the ob-
served strength for each 2-ply model in the class, the in-
tuitive expectation that there is an inverse correlation between
strength and the degree of covariance of misalignments in
neighbouring plies is confirmed, see Figure 14.

The observation that neighbouring plies have a mitigating
effect on the misalignment severity also seems to hold in the
case of more than 2 plies. To demonstrate this, a strength
estimation based on the method of effective misalignment
angles, as used in §3.1, is applied to the multi-ply laminate
case in two different variants. In the first variant, the effective
angle is determined as the 90-percentile of absolute value of
the union of all misalignment angles ΦðpÞ

kl of all p plies in the
laminate. As apparent from Figure 15(a), this results in a very
poor estimate of the observed strength, except for the single

Table 4. Parameters of different distribution fits. The abbreviation gof. stands for goodness-of-fit and indicates the probability that the
data follows the respective distribution. Goodness-of-fit was determined via the Pearson-χ2-test. Single ply data is repeated from Table 3.

Plies

Normal distribution fit 2-Parameter Weibull fit 3-Parameter Weibull fit

Mean
[MPa]

Std. dev
[MPa]

gof.
[%]

Shape
~m [1]

Scale
~R0 [MPa]

gof.
[%]

Shape
m [1]

Scale
R0 [MPa]

Thresh
Rt [MPa]

gof.
[%]

1 359 29.7 59 13.8 372 55 8.8 238 133 59
2 486 81.8 0 6.1 521 0 1.2 121 372 23
3 531 76.0 95 7.4 564 21 2.4 191 362 86
4 574 73.5 88 8.7 607 94 4.0 285 316 89
5 581 72.2 40 8.5 613 75 2.6 198 405 57

Figure 13. Percentiles of the observed strength R over the
number of plies in the laminate. The dots mark the median
strength with a probability of survival P = 0.50, error bars extend
down/up to P = 0.25/0.75. Axes are not in logarithmic scale for this
diagram.
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ply case. The mean absolute errors are 128/173/217/226MPa
for 2/3/4/5 plies, respectively. In the second variant shown in
Figure 15(b), a much better estimate is obtained by taking the
90-percentile with respect to a modified set of angles. As a
crude approximation of the mitigating effect, this modified
set holds the set union of angles averaged between neigh-

bouring plies. Averaged angles Φkl ¼ 1
2ðΦð1Þ

kl þ Φð2Þ
kl Þ were

calculated pointwise for angle pairs Φð1Þ
kl and Φð2Þ

kl sharing
the indices k, l, and the 90-percentile was taken with re-
spect to these averaged angles. This procedure is only

approximately correct for the reasons stated further up.
Nevertheless, it provides an improved prediction with
mean absolute errors of 36/66/99/116 MPa for 2/3/4/5
plies, respectively.

3.3. Length size effect study for laminates

The final series considers again models of increasing length
like in §3.1, however, for laminates comprising five plies.
Empirical survival distribution Figure 16 and corresponding
parameters are reported in Table 5.

To discuss the size effect, a diagram in the manner of
Figure 9 is constructed for the multi-ply case, see Figure 17.
Like before, the diagram displays the observed 25/50/75
percentiles of the strength and a short segment of the scale
law (4) configured class-wise using the parameters in Table 5.
In contrast to the results for the single ply case, no lengthwise-
size effect is apparent over the range of considered sizes.

3.4. Physical compression tests

Compression tests were performed according to the spec-
ifications of ASTM D6641 using a so-called ‘combined
loading compression’ fixture. Test specimens are coupon
shaped with unsupported edges. In the simulations, un-
supported edges are eliminated by the application of pe-
riodic boundary conditions. To estimate the impact of the
unsupported edges, 100 single ply models were solved with
and without periodic boundary conditions which resulted in
a lower mean strength of 3.7% in the latter case. Physical
specimens were manufactured from the same dry fiber
material as the one for which the misalignment was mea-
sured, see §2.1. The layup of the specimens is [0°]5 which
corresponds to the layup of the models discussed in §3.3. The
available fixture limited the gauge area of the specimen to

Figure 14. Scatter plot of the empirical covariance C of
misalignment over the observed strength R for the 2-ply model
series.

Figure 15. Scatter plot of laminate strength RSim observed in the simulation versus strength RBud predicted by Budiansky’s model (12). In
(a) the effective angle is assumed as the 90-percentile of all initial misalignment angles. For (b) the same percentile was taken from a new
set of angles obtained via averaging angles of neighbouring plies.
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20 mm in width. Moreover, the free length between clamps
was limited to 20 mm to avoid plate buckling. Thus, the
effective stressed volume of the physical specimens is
smaller than the volume in the simulations. In order to ac-
count for this size difference, the 25/50/75 percentiles of
strength are shown in Figure 17 at a horizontal position that
corresponds to the stressed volume in the specimen. The
testing campaign produced 22 valid results for the com-
pressive strength which is less than the 100 models solved
for each configuration class. The empirical survival distri-
bution obtained from the tests is shown in Figure 16. Median
strength is somewhat higher, and the spread is more narrow
in the physical specimens compared to the simulations. The
most likely cause of this deviation is an over estimation of
the fiber misalignment due to the measuring artefacts dis-
cussed in §2.2.

3.5. Comparison to results from the literature

It is difficult to compare results from the present contribution to
earlier literature, since, the peculiarities of the considered ma-
terials andmethods prevent direct comparison.Nevertheless, the
findings of other authors are reported here to provide some
orientation. To the knowledge of the authors, experimental
campaigns with the specific intent to characterize size effects
were only performed on unidirectional carbon fiber materials.
An early experimental investigation by Jelf and Fleck9 tested
proportionally scaled carbonfiber cross-ply laminate specimens.
They assume a 3-parameter Weibull distribution and reportm =
6.1, R0 =805 MPa and Rt =350 MPa. Interestingly, the increase
of strength with the number of laminate plies for the present
NCF-material observed in §3.2 is in contrast to result obtained
for unidirectional carbonfiber laminates. Lee and Soutis34 found
a strength decrease in proportionally up-scaled unidirectional
carbon fiber laminate specimens and no effect of scale for quasi-
isotropic layups. However, the authors point out that edge ef-
fects due to stress concentrations at the begin of the gauge length
may occlude the volume related size effect considered there.

In a numerical investigation, Liu et al.23 considered an
embedded single ply unit cell without unsupported edges
which is comparable to the present approach. However, the
misalignment properties represented a unidirectional carbon
fiber material without a dominant harmonic. The study
investigated the effect of different standard deviations and
spectral properties of the fiber misalignment for a constant
model size. This allowed calibration of the scale law via the
fitted Weibull parameters but not verification against the
change of strength in models of different size as was con-
sidered in §3.1 and §3.3. For a root mean square mis-
alignment amplitude of 0.7°, they find normalized parameters
R0/τy = 7.25, Rt/τy = 28.6 andm = 5.60. Other relevant results
were reported by Sutcliffe29 who conducted a numerical
investigation of the statistical size effect in single ply models
representing carbon fiber reinforced polymers. The mis-
alignment pattern in that investigation was generated from a

Figure 16. Empirical probability of survival P over the
compressive strength R.

Table 5. Parameters of different distribution fits. The abbreviation gof. stands for goodness-of-fit and indicates the probability that the
data follows the respective distribution. Goodness-of-fit was determined via the Pearson-χ2-test. Data for 40 [mm] is repeated from
Table 4.

Normal distribution fit 2-Parameter Weibull fit 3-Parameter Weibull fit

Length
a [mm]

Mean
[MPa]

Std. dev
[MPa]

gof.
[%]

Shape
~m [1]

Scale
~R0 [MPa]

gof.
[%]

Shape
m[1]

Scale
R0 [MPa]

Thresh
Rt [MPa]

gof.
[%]

Simulations
20 584 81.5 13 7.7 620 19 2.8 235 374 88
40 581 72.2 40 8.5 613 75 2.6 198 405 57
60 573 61.5 70 10.3 601 46 3.6 219 376 83
80 573 63.5 95 9.8 601 64 3.1 201 393 98

Experiments
20 698 40.2 75 19.8 717 66 5.4 204 511 66
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misalignment angle distribution with a standard deviation of
1.5° and a controlled autocorrelation property. Unlike the
present contribution, the author considered a model with zero
traction boundary conditions on the lateral edges. The author
assumed a 2-parameter Weibull distribution and reports ~m ¼
16:3 and 12.9. The first result was obtained frommodels with
fiber misalignment limited to the model interior, while the
latter result was reported for models with misalignments
extending to the unsupported edges.

4. Conclusions

Overall, weakest-linkWeibull theory provided a goodmodel for
the single ply case considered in §3.1. This is apparent from the
approximate agreement of strength scaling laws (4) configured
via any of the parameters in Table 3 to the observed reduction of
strength. However, calibration of the scale law via the distri-
bution parameters obtained for each size class somewhat
overestimates the strength drop as evident from Figure 9. The
apparent applicability of the weakest-link Weibull model to the
single ply case is in contrast with the increase of strength with
the number of plies observed in §3.2. From the perspective of a
Weibull model, a reduction in strength is expected for any
increase in volume, either in longitudinal or thickness direction.
However, for the NCF-material considered here, anyweakening
due to volume increase is completely overpowered by the

misalignment mitigation mechanism discussed in §3.2. It is also
apparent that the mitigation is quickly saturated and strength-
ening abates when the laminate comprises four to five plies, see
Figure 13. The effect of more than five layers was not inves-
tigated here, and it is possible that for a much larger number of
layers, the volume related Weibull weakest-link mechanism
eventually becomes dominant. Since physical specimens for
compression tests tend to have about five layers or more, it
seems unlikely that the mitigation effect becomes apparent in
such tests. The mitigating effect is still relevant for numerical
investigations; however, it shows that, for example, 2-
dimensional approaches representing the misalignment topol-
ogy of a single ply will underestimate the strength. The same
reasoning applies to the strength results obtained for single ply
models in §3.1 that were considerably below typical com-
pressive strengths for NCF-materials.

As a secondary result, the use of ‘effective’ misalignment
angles derived from a specific percentile of the heterogeneous
misalignment field was considered in §3.1 and §3.2. The use of
a so defined effective misalignment angle in classical closed-
form formulae like Budiansky’s appears applicable in the single
ply case. The crux of this approach is, however, that the
misalignment angle distribution and the appropriate percentile to
define the effective misalignment are usually not known. In the
multi-ply case, the approach renders poor results, unless the
mitigation effect is considered, see Figure 15.

The length-wise size effect study considered in §3.3 did
not reveal a clear size effect over the range of the considered
sizes. Results discussed in that section are approximately
comparable to results obtained from physical specimens. The
comparison of the respective median strengths shown in
Figure 17 indicate that the strength is somewhat under-
estimated in the simulations. On the contrary, the spread of
strength results is wider in the simulations than in the physical
tests. Since the compressive strength is very sensitive to the
misalignment magnitude which is also difficult to measure, it
appears that the most likely cause of this deviation is an
imperfect quantification of the fiber misalignment angles. As
elaborated in §2.1, the misalignment data was acquired by
optically tracking the edge between subsequent rovings. The
magnitude of undulation of this edge is artificially magnified
by sporadic ‘roving split’ flaws which cannot be corrected
easily. Hence, the misalignment magnitude may be some-
what larger in the models than in the test specimens.
However, the misalignment magnitude is consistent between
different models as is evident from Figure 6.

A possible direction for future improvement is the devel-
opment of more robust image processing and measurement
techniques for a more precise misalignment characterization
at low cost per scanned area. The latter point is relevant, since
a large data base is required to attain statistical significance
which is difficult to obtain via high cost/high fidelity methods
like computer tomography. Another aspect is that the periodic
unit cell approach necessarily restricts the formation of the

Figure 17. Percentiles of the observed strength R over the
effective volume V. The volume V specified by the horizontal axis
scale shown on the top of the frame applies to both physical
specimens and simulation models. The second horizontal axis
shown on the bottom specifies the unit cell length a and applies
only to the simulation models. As before, dots mark the median
strength with a probability of survival P = 0.50, error bars extend
down/up to P = 0.25/0.75.
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shear band to directions parallel to the vector of peri-
odicity. For the orthogonal unit cell used here and in the
literature, the shear band is confined to the transversal
direction. However, experimentally, the postmortem
band is found at some angle to the transversal direction.
The effect of this restriction could be evaluated via a
non-orthogonal unit cell. A more comprehensive testing
campaign dedicated to the quantification of size effects
specific to NCF-materials is another starting point for
future investigations.
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Chapter IV.

A micropolar approach to microbuckling problems in
unidirectionally reinforced polymer composites

In this chapter, micropolar solid theory is applied to regularize the simulation of MB via homogenized
approaches in the post buckling regime. The relation of this contribution to the wider context of
computational approaches to MB has been briefly discussed further up in Subsec. I.4.2.

This chapter was published as an article and the respective reference is stated below. The first author
developed the scientific concept of the approach, performed the theoretical work, provided the computer
implementation, performed all simulations and wrote the manuscript.

B. Daum and R. Rolfes.
A micropolar approach to microbuckling problems in unidirectionally reinforced polymer composites.
Mechanics of Materials, page 104112, 2021.
https://doi.org/10.1016/j.mechmat.2021.104112
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A B S T R A C T

The present contribution considers the application of micropolar continuum theory to predict the microbuckling
strength of microbuckling problems in long fiber reinforced composites and to extend simulations into the
collapse regime. The approach considers a homogenized description at a coarse length scale where fiber
and matrix phases are not individually resolved, but are represented indirectly via an effectively equivalent
homogenized solid. The salient characteristic of this approach is its superior numerical efficiency over a fine-
scale micromechanical representation where fibers and matrix would need to be discretized separately. A
disadvantage of conventionally homogenized models, however, is the circumstance that fiber curvature is not
accounted for. Hence, the local fiber bending stiffness cannot be preserved in the homogenization process
and the strain localization stage of microbuckling problems is rendered ill-posed. Micropolar homogenization
rectifies this deficiency by introducing additional rotational degrees of freedom to account for curvature strain.
The present contribution distinguishes itself from earlier micropolar homogenization approaches by adapting
a Total-Lagrangian finite strain plasticity theory for micropolar continua to the microbuckling problem under
consideration here. From this theoretical basis, a constitutive model and a finite element formulation are
derived, and the extra parameters introduced by the micropolar solid are identified.

1. Introduction and phenomenology

Microbuckling, abbreviated MB in the following, refers to a partic-
ular mode of failure observed in long fiber reinforced unidirectional
plies and other fiber architectures under predominantly compressive
loading. Sometimes the term fiber-kinking is used synonymously to
MB. A brief overview of the phenomenology associated with MB is
given further down. For a more detailed overview regarding different
aspects of MB several survey articles are available. A general exposition
regarding the theory and closed form analysis of MB is due to Budiansky
and Fleck (Budiansky and Fleck, 1994; Fleck, 1997; Budiansky et al.,
1998). Experimental techniques were surveyed by Schultheisz and
Waas (Schultheisz and Waas, 1996; Waas and Schultheisz, 1996). A
review of computational models pertaining to MB of unidirectional
plies and other fiber architectures is available in Ref. (Pinho et al.,
2012a). Recently, computational approaches were also reviewed in
Ref. (Daum et al., 2019). The listed literature provides a comprehensive
survey to the topic, hence, the discussion of MB phenomenology and
theory is limited to aspects that pertain directly to the subject of the
present contribution.

Although other modes of failure may compete with MB, it is gener-
ally the strength limiting mode in panels under predominantly uniform

∗ Corresponding author.
E-mail address: b.daum@isd.uni-hannover.de (B. Daum).

compressive stress. Unavoidable preexisting local fiber misalignment
causes local shear stress fluctuations, even under nominally pure com-
pression loading. Local shear stress acting on the matrix increases with
the applied compression and eventually triggers a nonlinear mate-
rial response. Under shear, polymer–matrix-composites typically have
some degree of ductility, however, the resulting increase in compliance
causes further rotation of the initially misaligned fibers and leads to
geometrical softening. The far field compressive stress peaks when
geometric softening outpaces plastic hardening in the matrix. The par-
ticular location where local softening is initiated first is determined by
the local misalignment (Liu et al., 2004), free edge effects (Kyriakides
et al., 1995; Sutcliffe, 2013) and other aspects. In homogeneously
loaded panels, load redistribution is insignificant and cannot com-
pensate for the local softening. Once initiated, MB causes structural
collapse of the affected panel via a band of shear strain localization
dynamically propagating from the initial location. The band is typically
oriented at some obtuse angle to the fiber direction and is of small,
but finite, width with respect to the structural scale. From a structural
vantage point, the response of the panel is essentially linear until MB
initiation. From there on, a sharp snap-back type response is typical,
provided the panel is sufficiently large. The sensitive dependence of

https://doi.org/10.1016/j.mechmat.2021.104112
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apparent strength on local misalignments poses a difficult challenge for
compressive strength prediction and contributes to the large scatter of
experimental data.

In the presence of an inhomogeneous stress distribution, e.g. due
to a notch, compressive fiber crushing may compete with MB as the
strength limiting failure mode (Gutkin et al., 2010b,a). Such a situa-
tion, however, will not be given any further consideration here and
homogeneous loading is assumed throughout. On that condition, the
apparent compressive strength is unrelated to fiber strength, as it has
no direct effect on shear localization and fiber fracture occurs in later
stages of the softening phase. Fiber bending resistance does not have an
appreciable effect on the apparent composite strength either, provided
that the wavelength of misalignment undulations is at least on the order
of 200 (Lemanski and Sutcliffe, 2012) to 400 (Fleck and Shu, 1995)
fiber diameters. Measurements and spectral analysis (Clarke et al.,
1995; Liu et al., 2004; Sutcliffe et al., 2012) of fiber misalignment found
that the minimum undulation wavelength for the base materials and
manufacturing techniques considered there generally exceeded these
limits. Fiber bending resistance does not have substantial impact on the
peak load, i.e. the apparent strength, and bending resistance remains
intact over a certain period of progressing shear localization. This gives
rise to a phenomenon known as band broadening, where the band of
shear localization subsequently widens as the compression increases.
Eventually, fiber fracture degrades bending resistance, and fixes the
band in place, typically at a width of 10–15 fiber diameters (Fleck et al.,
1995). There is some controversy in the literature if fiber fracture is
initiated by compressive (Pinho et al., 2012b; Pimenta et al., 2009a)
or tensile stress (Fleck et al., 1995; Budiansky et al., 1998; Guimard
et al., 2007) due to simultaneous compression and bending in the fiber.
Also the in-situ compressive strength of the individual fiber remains
unclear and may be substantially different from the tensile strength of
fibers (Vinçon et al., 1998) which is more amenable to testing.

2. Scope and motivation

2.1. Micromechanical and homogenized modeling

The present contribution considers models representing a single ply
of unidirectionally fiber reinforced polymer at a length scale on the
order of a few tens or hundreds of fiber diameters in size. Models
at this scale are well suited for the investigation of the phenomenol-
ogy and progression of MB-failure of individual plies (Fleck and Shu,
1995; Kyriakides et al., 1995; Bishara et al., 2017). Moreover, mod-
els at this length scale may be coupled to a multiscale process to
obtain a computational model for compressive failure at component
scale (Nezamabadi et al., 2015). Depending on the representation of
the composite, such models may be classified into two groups: homog-
enized and micromechanical models. In homogenized approaches, the
mechanical properties of the microscopically heterogeneous composite
are condensed into a homogeneous medium with an apparently equiva-
lent response at a larger length scale. The effect of the individual phases
of the composite and their microstructure is represented indirectly
via suitably assumed constitutive models for the linear and nonlinear
response. For instance, the anisotropy due to fiber orientation may be
accounted for by the introduction of extra constitutive parameters into
the strain energy and plasticity potentials (Eidel and Gruttmann, 2003;
Vogler et al., 2013).

Complementary, micromechanical approaches aim for a direct rep-
resentation of the individual phases and apparent properties of the
composite, like anisotropy, arise from the constituents and their topol-
ogy. Micromechanical models are closer to first principles and require
less abstraction, however, the explicit modeling of the microstructure
incurs a large computational cost limiting the model size to small length
scales. Hence, when numerical efficiency and/or larger model size is
required, homogenized modeling may be desirable even at relatively
small length scales. In particular, efficiency and model size considera-
tions make homogenized micro-scale models attractive for Monte Carlo
analysis of stochastic fiber misalignment distributions (Safdar et al.,
2018).

2.2. Limitations of homogenized modeling based on Cauchy continuum
theory

As elaborated in Section 1, fiber bending resistance has, in most
situations, no substantial effect on the apparent compressive strength
of unidirectional plies. Thus, there is usually no need to account for
strain gradient effects or inherent bending stiffness for the purpose
of predicting apparent strength. In the subsequent shear localization
phase, however, softening occurs which renders conventional homog-
enization based on first gradient Cauchy continuum theory ill-posed.
This phenomenon is not particular to MB and has been extensively
studied in a broader context of shear localization problems. The defi-
ciency with respect to shear localization problems is the circumstance
that shear strain tending toward infinity is predicted in a localiza-
tion zone of a size approaching zero. In a computational model the
discretization acts as an artificial lower bound for the extent of the
localization zone. Moreover, the ill-posedness generally goes along with
numerical difficulties, which are exacerbated in MB-problems by the
strong nonlinearity of the snap-back response.

In nature, the singularity of infinite strain over a zone of size
zero does not occur since shear band formation goes along with fiber
bending. Smaller shear bands induce more bending resistance which en-
forces a finite bandwidth. Hence, fiber bending, although insignificant
for the apparent MB-strength of the composite, plays an important role
in the softening regime. This insight may be applied to the regulariza-
tion of a numerical model by introducing an inherent length property
relating to the fiber diameter to quantify bending resistance. A very
straightforward regularization technique implementing this principle
was proposed in Lemanski and Sutcliffe (2012) where beam elements
were embedded into a Cauchy-solid discretization. These beams did
not represent individual fibers, but rather their homogenized effect.
Although remarkably simple, this technique seems feasible only for
structured meshes of constant discretization size. Another drawback
is that available beam and solid elements may not have matching
interpolation order.

2.3. Generalized continuum theories

A more general approach to overcome the aforementioned limita-
tions may be based on extended continuum theories. A discussion of
the hierarchical relation of various extended continuum theories with
regard to elasto-plastic modeling is available in Ref. (Forest and Sievert,
2003).

One possible extension of classical Cauchy theory is the introduction
of higher than first gradients of the displacement in the constitutive
potential functions. This class of extended theories is known in the
literature as strain gradient theories if the second displacement gradient
is included, or more general as higher grade theories. The second
gradient of the displacement with respect to the fiber direction can
be associated with fiber bending which provides the required length
property absent in conventional Cauchy continuum theory. Fully non-
linear strain gradient continuum theory specialized for the transversal
isotropic symmetry class may, in principle, feature a large number of in-
variants and corresponding material parameters (Spencer and Soldatos,
2007). However, practical models introduce only a handful of extra
parameters (Steigmann, 2012; Kim, 2019)

Alternatively, continuum theory may be extended by incorporating
extra degrees of freedom, in addition to the standard displacements.
This latter class is known as higher order theories and is exemplified by
micropolar theory, or synonymously: Cosserat theory; In a micropolar
continuum, each point is endowed with rotational degrees of freedom,
in addition to the usual displacements. Thus, in micropolar theory each
continuum point may perform a rigid body rotation independent from
the macroscopic rigid body rotation. In the context of a micropolar
theory for a fiber reinforced material, this pointwise rotation may be as-
sociated with the local rotation of the fiber cross-section. This provides
a handle to introduce a fiber bending strain energy term associated with
the gradient of this rotation in a similar, but not completely equivalent
manner as is the case for strain gradient theories.
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2.4. Prior investigations and motivation

Beam-theory based approaches to MB-problems inherently reflect
fiber bending stiffness and are quite common in the literature, see
e.g. Refs. (Pimenta et al., 2009b; Feld et al., 2011; Davidson and
Waas, 2016). It seems that ‘couple stress’ theory was first used by
Fleck et al. in Ref. (Fleck et al., 1995) in an essentially 1-dimensional
approach. This investigation is notable since it brought about the notion
of band broadening.

For the sake of brevity, further discussion here is limited to ap-
proaches based on generalized continuum theory, omitting
1-dimensional approaches. On that condition, it appears that the first
application of a ‘general Cosserat theory’-based, 2-dimensional for-
mulation to MB-problems is due to Fleck and Shu (Fleck and Shu,
1995), extending earlier work. The resulting model was implemented
in a finite element procedure which was then utilized to investigate
the evolution of fiber rotation in a 2-dimensional domain. After these
early investigations, it appears that the application of generalized
continuum theories to MB have not been considered until more recent
investigations by Hasanyan and Waas in Refs. (Hasanyan and Waas,
2018a,b). There, the authors handle geometric nonlinearity in an
Updated-Lagrangian setting via a user defined element implemented
in the finite element software Abaqus. Material nonlinearity is handled
via a modification of Hill’s anisotropic plasticity model and a particular
parameter identification procedure for the elastic and plastic material
properties is presented.

The present contribution approaches the problem from a different
theoretical angle by considering a finite strain plasticity constitutive
model in a Total-Lagrangian formulation. The foremost motivation for
this approach is that there exists a well established theory of plasticity
for higher order solids within this setting (Forest et al., 1997; Forest
and Sievert, 2003). Thus, the specialized model for MB presented in
this contribution is embedded within a wider context and links up to
existing theory. Another aspect is that the Total-Lagrangian vantage
point is very popular in solid mechanics and, hence, seems advanta-
geous from a didactic point of view. Besides these practical advantages,
it is not claimed that a Total-Lagrangian setting offers a fundamental
advantage, and the popular finite element program Abaqus in which
earlier approaches were embedded uses a different setting. The model
used in the present contribution was implemented from scratch, and
the choice of a finite strain setting is not predetermined by some
external program. As an additional advantage, this allows the present
contribution to provide a transparent exposition of all relevant steps
in the model formulation, spanning from equilibrium to numerical
implementation. In effect, this contributes to a more complete under-
standing of the problem within the context of the theory of higher order
solids. Moreover, a parameter identification procedure complementary
to the one used in Ref. (Hasanyan and Waas, 2018a) is presented.
An advantage of the procedure presented here is that it does not
depend on the size of the representative volume element adopted as
a micromechanical reference model.

3. Model development

3.1. Concept and outline of the present approach

To begin, the modeling concept shall be motivated by referring to
some general properties of MB-problems. In line with earlier micropolar
approaches to MB mentioned in Section 2.4, the present contribution
considers 2-dimensional problems. While fibers are intact, they effec-
tively suppress inelastic deformation along their axis in a homogenized
description of the composite. Thus, plasticity is restricted to in-plane
shear and possibly transversal normal deformations. However, only in-
plane shear inelasticity is essential for MB-problems since, compressive
strain transversal to the fiber direction occurs only at large rotations
in the deep post-peak load regime, except for any applied far field

Table 1
Index notation and reference frames.

case alphabet letter range coordinate frame

lower case Latin 𝑎, 𝑏,… current
upper case Latin 𝐴,𝐵,… initial
lower case Latin 𝑟, 𝑠,… back-rotated
lower case Greek 𝛼, 𝛽,… intermediate
lower case Latin 𝑖, 𝑗,… unspecified

transversal loads. In-plane shear nonlinearity is a crucial mechanism
for the initiation of MB as well as for the evolution of the shear band
in the immediate post peak load regime for the reasons discussed in
Section 1. Moreover, it is generally the only mode with notable degree
of ductility. Thus, the present contribution considers matrix shear-
nonlinearity as the sole material nonlinearity resulting in a simple
and clear constitutive model. In light of the additional complexity
introduced by the micropolar modeling, this clarity is of particular
value. It is noted, that the lack of representation given to other sources
of inelastic deformation, like transversal cracking/debonding, fiber
fracture, etc., restricts the present approach to the immediate post peak
load regime.

The remainder of this section is structured as follows: After a brief
discussion of the notation in Section 3.2, the geometrically nonlinear
theory for elastoplastic micropolar solids with respect to various ref-
erence frames is recalled from Section 3.3 to Section 3.5 based on
the theory presented in Forest et al. (1997), Sievert et al. (1998). In
Sections 3.6 and 3.7, a new constitutive model tailored to MB-problems
is derived within this theory. The linearization and discretization for a
finite element formulation are presented in Sections 3.8 and 3.9. Subse-
quent to a specialization to the case of linear elasticity in Section 3.10,
a novel parameter identification technique is discussed in Section 4.
In Section 5 the calibrated micropolar model is compared against
an analytical model, a micromechanical model, and a conventionally
homogenized model.

3.2. Notation

In direct tensor notation, underscore and under-tilde decorations
indicate tensor order as defined in (1) for the place holder symbol 𝑋
and unit vectors 𝒆𝑖.

𝑿 = 𝑋𝑖 𝒆𝑖 (1a)

𝑿
̃
= 𝑋𝑖𝑗 𝒆𝑖 ⊗ 𝒆𝑗 (1b)

𝑿
̃̃
= 𝑋𝑖𝑗𝑘𝑙 𝒆𝑖 ⊗ 𝒆𝑗 ⊗ 𝒆𝑘 ⊗ 𝒆𝑙 (1c)

When index notation is used, the letter and case of the index indicate
the configuration the respective coordinate frame refers to, see Table 1.
A two dimensional model is contemplated, hence, all indices iterate
over the range {1, 2}. Symbols 𝛿𝑖𝑗 and 𝜖𝑘𝑙 denote the Kronecker delta
and Levi-Civita permutation symbols. The 2 dimensional Levi-Civita
symbol 𝜖𝑘𝑙 corresponds to 𝜖𝑘𝑙3 in 3 dimensions. As usual, indices follow-
ing a comma denote differentiation w.r.t. the corresponding direction.
The symbol 𝛿 is also used as a prefix to a variable to denote variation.
Square brackets are used for arguments to functions.

3.3. Kinematics

The displacement-kinematics at finite deformations in a micropolar
continuum are specified in terms of a deformation gradient 𝑭

̃
mapping

a material segment, initially along 𝖽𝑿, to 𝖽𝒙 in the current configura-
tion in the same way as for a standard continuum (2a). In addition to
displacements, a micropolar continuum features independent rotational
degrees of freedom and each material point is endowed with a local set
of orthogonal directors that may undergo a local rigid body rotation.
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This micro rotation is, in general, different from the macroscopic rota-
tion of the body, i.e. it is different from the rotation of the displacement
field obtained via the polar-decomposition of the deformation gradient
𝑭
̃

. In the context of the plane formulation contemplated here, the micro
rotation is defined in terms of a single rotation angle 𝜑, initially zero.
This angle defines an orthogonal rotation matrix 𝑹

̃
[𝜑], the so-called

micro rotation. It maps the director 𝑨 from the initial configuration to
𝒂 in the current configuration (2b). Subsequently, the director will be
identified with the normal to the fiber cross-section.

𝖽𝑥𝑎 = 𝐹𝑎𝐴𝖽𝑋𝐴 (2a)

𝑎𝑎 = 𝑅𝑎𝐴[𝜑]𝐴𝐴 (2b)

Since the micro rotation 𝑹
̃

is independent from the rotation obtained
via polar decomposition of the deformation gradient 𝑭

̃
, the basis for

defining strain measures has to be reconsidered. For this purpose
the decomposition (3) is introduced, where 𝑮

̃
denotes the so-called

Cosserat tensor. Unlike the right stretch tensor encountered in the polar
decomposition of 𝑭

̃
, it is, in general, unsymmetric.

𝐹𝑎𝐴 = 𝑅𝑎𝑟𝐺𝑟𝐴 (3)

Solving (3) for 𝑮
̃

renders a definition in terms of 𝑭
̃

and 𝑹
̃

, see (4a).
Imposing a rigid body rotation by the orthogonal matrix 𝑸

̃
subsequent

to 𝑭
̃

and 𝑹
̃

, leaves the Cosserat tensor unchanged, i.e. the Cosserat
tensor is invariant with respect to 𝑸

̃
(4b).

𝐺𝑟𝐴[𝑭
̃
,𝑹
̃
] ∶= 𝑅𝑎𝑟𝐹𝑎𝐴 (4a)

𝐺𝑟𝐴[𝑸
̃
𝑭
̃
,𝑸
̃
𝑹
̃
] = 𝑄𝑎𝑠𝑅𝑠𝑟𝑄𝑎𝑡𝐹𝑡𝐴 = 𝛿𝑠𝑡𝑅𝑠𝑟𝐹𝑡𝐴 = 𝐺𝑟𝐴[𝑭

̃
,𝑹
̃
] (4b)

A gradient in the micro rotation of neighboring material points gives
rise to a strain-like property known as wryness. In the context of a plane
deformation, the wryness is given by the vector 𝜞 ∶=

[
𝛤31 𝛤32

]
𝖳

denoting the gradient of the rotation angle 𝜑 with respect to the spatial
directions in the initial frame (5b). The first index always equals 3 and
is dropped in the following so that 𝛤1 ≡ 𝛤31 and 𝛤2 ≡ 𝛤32.

𝖽𝜑 = 𝛤𝐴𝖽𝑋𝐴 (5a)

𝛤𝐴 = 𝜑,𝐴 (5b)

The wryness is related to the micro rotation as shown in (6a), where
𝜖𝑟𝑠 is the Levi-Civita permutation symbol in 2 dimensions. Like the
Cosserat tensor, wryness is invariant under the rigid body rotation 𝑸

̃
,

see (6b)

𝛤𝐴[𝑹
̃
] ∶= 1

2 𝜖𝑟𝑠𝑅𝑎𝑠𝑅𝑎𝑟,𝐴 (6a)

𝛤𝐴[𝑸
̃
𝑹
̃
] = 1

2 𝜖𝑟𝑠𝑄𝑎𝑡𝑅𝑡𝑠𝑄𝑎𝑢𝑅𝑢𝑟,𝐴 = 1
2 𝜖𝑟𝑠𝛿𝑡𝑢𝑅𝑡𝑠𝑅𝑢𝑟,𝐴 = 𝛤𝐴[𝑹

̃
] (6b)

The invariance property of 𝑮
̃

and 𝜞 implies objectivity and makes
them a suitable basis for the formulation of constitutive equations.

3.4. Kinetics

The wryness strain resulting from a gradient in the rotational de-
gree of freedom is conjugate to a corresponding couple stress. The
couple stress acts as a moment on each material point in addition to
the conventional force stress conjugate to displacement strain. Couple
and force stresses are constitutively related to their respective strain
measures, and linked to each other by the equilibrium condition. For
the case at hand, couple stresses are thought of as the micropolar
homogenization of the fiber bending moments. In a micromechanical
representation of the composite, the couple stress would be observed
directly as the moment arising from the distribution of (force-)stress
over the volume element. The homogenized representation of the com-
posite takes a stand point at a coarser length scale where fibers and
matrix are not individually resolved. In a conventionally homogenized
solid the effect of the uneven stress distribution is lost.

Fig. 1. Force and couple stress components acting on a volume element.

Force- and couple stress components acting on a homogenized mate-
rial point in the current configuration are shown in Fig. 1. In principle,
external loads may introduce additional force or moment densities to
the balance considerations, however, such loads are disregarded here.
Moreover, only static equilibrium is considered, eliminating any inertia
effects. Notice that the convention used here is so that the first index of
the stress component indicates the direction of action, while the second
indicates the section plane. Assuming plane stress in direction 𝒆3, the
first index of the two nonzero couple stress components is always 3. To
simplify the notation, this redundant index is omitted for couples stress
components 𝜇31 ≡ 𝜇1 and 𝜇32 ≡ 𝜇2.

As for conventional solids, translational equilibrium requires that
the divergence of the Cauchy force stress 𝝈

̃
vanishes, (7a). The presence

of Cauchy couple stress 𝝁 =
[
𝜇1 𝜇2

]
𝖳 in the rotational equilibrium

renders the Cauchy force stress tensor non-symmetric, in general, see
(7b).

𝜎𝑎𝑏,𝑏 = 0 (7a)

𝜇𝑎,𝑎 − 𝜖𝑎𝑏𝜎𝑎𝑏 = 0 (7b)

The virtual power 𝛿P is the weak form of (7), where 𝑣 is the current
volume.

𝛿P = ∫𝑣
(
𝜎𝑎𝑏,𝑏𝛿�̇�𝑎 + (𝜇𝑎,𝑎 − 𝜖𝑎𝑏𝜎𝑎𝑏)𝛿�̇�

)
𝖽𝑣 = 0 (8)

Applying Gauss’ theorem, (8) is separated into virtual power densities
of the internal forces 𝛿pcur

int and external forces at the boundary 𝛿pcur
ext .

Both measured w.r.t. units of current volume and area, respectively.
Symbol 𝑛𝑎 denotes components of the normal vector at the boundary
surface 𝑠 with prescribed tractions.

𝛿P = +∫𝑠𝜎 ,𝑠𝜇 𝛿p
cur
ext 𝖽𝑠 − ∫𝑣 𝛿p

cur
int 𝖽𝑣 = 0 (9a)

𝛿pcur
ext = 𝜎𝑎𝑏𝑛𝑏𝛿�̇�𝑎 + 𝜇𝑎𝑛𝑎𝛿�̇� (9b)

𝛿pcur
int = 𝜎𝑎𝑏(𝛿�̇�𝑎,𝑏 + 𝜖𝑎𝑏𝛿�̇�) + 𝜇𝑎𝛿�̇�,𝑎 (9c)

The boundary term (9b) corresponds to the externally applied traction
forces and couples, it is not considered any further. Moving on to
the power density of the internal forces, (9c), the virtual velocity
gradient 𝛿�̇�𝑎,𝑏 and the virtual angular velocity 𝛿�̇� are restated in terms
of rates referring to the Cosserat tensor and wryness. By taking the time
derivative and variation of (4a) and (6a), the identities (10) become
apparent.

𝛿�̇�𝑎,𝑏 + 𝜖𝑎𝑏𝛿�̇� = 𝑅𝑎𝑟𝛿�̇�𝑟𝐴
−1
𝐺𝐴𝑠𝑅𝑏𝑠 (10a)

𝛿�̇�,𝑎 = 𝛿�̇�𝐴
−1
𝐺𝐴𝑟𝑅𝑎𝑟 (10b)

By using (10) in (9c) the expression (11) for the virtual internal power
density w.r.t. to a rotated frame is obtained. There, 𝑠𝑟𝑠 = 𝑅𝑎𝑟𝜎𝑎𝑏𝑅𝑏𝑠 and
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Fig. 2. Schematic of the different kinematic and kinetic quantities.

𝑚𝑟 = 𝜇𝑎𝑅𝑎𝑟 are understood as a pull-back of force and couple Cauchy
stress from the current configuration to a coordinate frame attached to
the micro-structure (Forest et al., 1997). The name back-rotated is used
here to refer to this frame and a schematic overview of the different
stages of deformation is included further down.

𝛿pbr
int = 𝑠𝑟𝑠

−1
𝐺𝐴𝑠 𝛿�̇�𝑟𝐴 + 𝑚𝑟

−1
𝐺𝐴𝑟 𝛿�̇�𝐴 (11)

3.5. Multiplicative split and thermodynamical principles

For the formulation of the elasto-plastic constitutive model it is
necessary to separate strain into elastic and plastic contributions. The
field of finite strain plasticity of conventional continuum theory pro-
duced a large variety of concepts and approaches to this end (Xiao
et al., 2006). Approaches based on the notion of an elastically unloaded
intermediate configuration between initial and current configuration
form a particular class of theories within this field. In the context
of conventional solids, the main characteristic of that approach is a
multiplicative decomposition of the total deformation gradient into
respectively purely plastic and purely elastic sub-steps. The plastic step
maps the initial configuration to the intermediate and the elastic step
maps the intermediate to the current configuration.

A comprehensive theory for finite strain plasticity of generalized
continua was presented in Forest and Sievert (2003), and in particular
for micropolar continua in Sievert et al. (1998), Forest et al. (1997).
For micropolar solids, the problem of elastic–plastic strain partition
applies to both the Cosserat tensor and the wryness, rather than just
the deformation gradient as in conventional solids. To this end, the
aforementioned authors propose a multiplicative decomposition for the
Cosserat tensor in combination with a mixed multiplicative/additive
split for the wryness.

For the MB-problem under consideration here, plastic deformation
may occur only via fiber-parallel in-plane shear. As argued in Sec-
tion 3.1, no other plastic deformation shall be considered, in particular
no plastic deformation of the fiber. Noting that wryness and couple
stress serve as homogenized abstractions of fiber bending strain and
stress, it is assumed here that the total wryness is entirely elastic,
negating the need for a decomposition. With respect to the remaining
Cosserat tensor, the theory based on a multiplicative split as outlined
above is adopted. This yields (12), where superscripts e and p denote
elastic and plastic sub-steps of deformation, respectively.

𝐺𝑟𝐴 = 𝐺e
𝑟𝛼𝐺

p
𝛼𝐴 (12a)

𝛤𝐴 = 𝛤 e
𝛼𝛿𝛼𝐴 (12b)

Like the overall Cosserat deformation 𝑮
̃

, its elastic part 𝑮
̃

e is an in-
variant tensor under rigid body rotation 𝑸

̃
superimposed to the current

configuration. Thus, the time derivatives of the invariant quantities 𝑮
̃and 𝜞 with regard to their decomposition in (12) are given in (13) .

�̇�𝑟𝐴 = �̇�e
𝑟𝛼𝐺

p
𝛼𝐴 + 𝐺e

𝑟𝛼�̇�
p
𝛼𝐴 (13a)

�̇�𝐴 = �̇� e
𝛼𝛿𝛼𝐴 (13b)

Dropping the variation symbol 𝛿 in (11), the actual power is obtained.
Inserting the multiplicative split (12) and (13) in this expression yields
pim

int, the internal power density per unit volume on the intermediate
configuration (14d). There, several abbreviations were introduced: 𝑷

̃
∗

the stress conjugate of the rate of the elastic Cosserat tensor (14a), the
Mandel stress 𝜮

̃
conjugate to the plastic velocity gradient (14b), and 𝑴

conjugate to the rate of wryness. The symbol 𝐽 e represents the deter-
minant of elastic Cosserat tensor, and is assumed to be approximately
1.

𝑃 ∗
𝑟𝛼 ∶= 𝐽 e𝑠𝑟𝑠

−1
𝐺 e
𝛼𝑠 (14a)

𝛴𝛼𝛽 ∶= 𝐽 e𝐺e
𝑟𝛼𝑃 ∗𝑟𝛽 (14b)

𝑀𝐴 ∶= 𝐽 e𝑚𝑟
−1
𝐺𝐴𝑟 (14c)

pim
int = 𝑃 ∗

𝑟𝛼�̇�
e
𝑟𝛼 + 𝛴𝛼𝛽

−1
𝐺 p
𝐴𝛽 �̇�

p
𝛼𝐴 +𝑀𝐴�̇�𝐴 (14d)

Fig. 2 provides a schematic overview of the numerous kinematic and
kinetic quantities involved. The designation intermediate configuration
for the elastically unloaded configuration in-between the initial and
the back-rotated configuration is somewhat ambiguous, however it is
retained here from conventional plasticity theory.

The elastic part of Cosserat tensor 𝑮
̃

e and the wryness 𝜞 are
assumed to contribute to the Helmholtz strain energy 𝜓[𝑮

̃
e,𝜞 ].

�̇� = 𝜕𝜓
𝜕𝐺e

𝑟𝛼
�̇�e
𝑟𝛼 +

𝜕𝜓
𝜕𝛤𝐴

�̇�𝐴 (15)

Now state laws for 𝑷
̃
∗ and 𝑴 may be obtained by considering the

intrinsic mechanical dissipation d under isothermal conditions.

d=
(
𝑃 ∗
𝑟𝛼 −

𝜕𝜓
𝜕𝐺e

𝑟𝛼

)
�̇�e
𝑟𝛼 + 𝛴𝛼𝛽

−1
𝐺 p
𝐴𝛽 �̇�

p
𝛼𝐴 +

(
𝑀𝐴 − 𝜕𝜓

𝜕𝛤𝐴

)
�̇�𝐴 (16)

The standard argument of reversibility of �̇�e
𝑟𝛼 and �̇�𝐴 requires that the

brackets vanish identically, i.e. the state laws are given by (17).

𝑃 ∗
𝑟𝛼 = 𝐽 e 𝜕𝜓

𝜕𝐺e
𝑟𝛼

(17a)

𝑀𝐴 = 𝐽 e 𝜕𝜓
𝜕𝛤𝐴

(17b)

The elastic domain in stress-space is defined by the inequality y[𝜮
̃
,𝑄] <

0, where y is the yield function. Evolution equations for the rate
of the plastic Cosserat tensor are obtained by maximizing d subject
to the inequality constraint y[𝜮

̃
,𝑄] ≤ 0. This is implemented by

minimizing the Lagrangian functional L as defined in (18), where 𝜆
is a Lagrange-multiplier taking only positive values.

L = −d+ 𝜆y (18)

Optimality condition 𝜕L∕𝜕𝛴𝛼𝛽 = 0 provides the evolution Eqs. (19).
−1
𝐺 p
𝐴𝛽 �̇�

p
𝛼𝐴 = 𝜆

𝜕y
𝜕𝛴𝛼𝛽

(19a)

This concludes the summary of the finite strain plasticity theory for
micropolar solids and sets the stage for formulating a specific material
model. For this purpose specific functions of the strain energy 𝜓 and
the yield function y are adopted in Sections 3.6 and 3.7, respectively.

61



Mechanics of Materials 165 (2022) 104112

6

B. Daum and R. Rolfes

3.6. Elasticity

The task at hand is to specify a strain energy function 𝜓 that reflects
the transversal isotropic symmetry of the long fiber reinforced ply and
properly accounts for the extensions required by the micropolar solid.
The strain energy should give rise to a transversal isotropic elastic
relation and, therefore, depends on the direction unit vector 𝑨∗ on the
intermediate configuration. Moreover, in (15) it was already assumed
that the strain energy depends on the generally unsymmetric elastic
Cosserat tensor 𝑮

̃
e and the wryness 𝜞 . Both are invariant under rigid

body transformation as shown by (4b) and (6b). In the following it is
convenient to separate the Cosserat tensor into a symmetric part 𝑺

̃
and

an antisymmetric part 𝑻
̃

, see (20).

𝑆𝑖𝑗 ∶=
1
2 (𝐺

e
𝑖𝑗 + 𝐺

e
𝑗𝑖) − 𝛿𝑖𝑗 (20a)

𝑇𝑖𝑗 ∶=
1
2 (𝐺

e
𝑖𝑗 − 𝐺

e
𝑗𝑖) (20b)

To proceed, the customary assumption that force and couple stress
are coupled via the equilibrium equations, but not by the constitutive
relation is adopted. A constitutive coupling of force stress and couple
stress is possible in the case of general anisotropy, but not for the
transversal isotropic symmetry class considered here (Kessel, 1964). On
this basis, the strain energy may be split into separate contributions
from force strain 𝜓1 and couple strain 𝜓2, see (21).

𝜓[𝑨∗,𝑮
̃

e,𝜞 ] = 𝜓1[𝑨∗,𝑺
̃
,𝑻
̃
] + 𝜓2[𝑨∗,𝜞 ] (21)

The two strain energy contributions are isotropic tensor functions of
the considered arguments 𝑨∗,𝑺

̃
,𝑻
̃

, and 𝜞 , i.e. they depend on the
arguments only via certain functional bases. Tables for the irreducible
functional bases of isotropic tensor functions for vectorial and tensorial
arguments are available in the literature, e.g. (Liu, 2002). Considering
the force strain energy 𝜓1 first, the functional bases of the respective
arguments are stated in (22) where bases of higher than 2nd order in
𝑮
̃

e were omitted.

𝐼1[𝑺
̃
] = 𝑆𝑖𝑖 (22a)

𝐼2[𝑺
̃
] = 𝑆𝑖𝑗𝑆𝑖𝑗 (22b)

𝐼3[𝑨∗,𝑺
̃
] = 𝐴∗

𝑖 𝑆𝑖𝑗𝐴
∗
𝑗 (22c)

𝐼4[𝑨∗,𝑺
̃
] = 𝐴∗

𝑖 𝑆𝑖𝑗𝑆𝑗𝑘𝐴
∗
𝑘 (22d)

𝐼5[𝑻
̃
] = 𝑇𝑖𝑗𝑇𝑖𝑗 (22e)

𝐼6[𝑨∗,𝑺
̃
,𝑻
̃
] = 𝐴∗

𝑖 𝑇𝑖𝑗𝑆𝑗𝑘𝐴
∗
𝑘 (22f)

To obtain a linear elastic constitutive relation, the strain energy is spec-
ified as a quadratic form, see (23). There, factors 𝜂1 to 𝜂6 are generic
elasticity constants, their identification is discussed further down. The
mixed term 𝐼1𝐼3 is redundant in 2 dimensions and omitted. Linear terms
representing effects like thermal expansion are not considered.

2𝜓1[𝑨∗,𝑮
̃

e] = 𝜂1𝐼
2
1 + 𝜂2𝐼2 + 𝜂3𝐼23 + 𝜂4𝐼4 + 𝜂5𝐼5 + 𝜂6𝐼6 (23)

From (23) and (17a) one obtains the force stress (24a). The force stress
elasticity tensor E

̃̃
appearing there is related to the elasticity constants

as stated in (25) and (24b).

𝑃 ∗
𝑟𝛼 = E𝑟𝛼𝑠𝛽 (𝐺e

𝑠𝛽 − 𝛿𝑠𝛽 ) (24a)

E𝑟𝛼𝑠𝛽 =
𝜕𝑃 ∗

𝑟𝛼
𝜕𝐺e

𝑠𝛽
= 𝜂1E1

𝑟𝛼𝑠𝛽 + 𝜂2E
2
𝑟𝛼𝑠𝛽 + 𝜂3E

3
𝑟𝛼𝑠𝛽

+ 𝜂4E4
𝑟𝛼𝑠𝛽 + 𝜂5E

5
𝑟𝛼𝑠𝛽 + 𝜂6E

6
𝑟𝛼𝑠𝛽 (24b)

The tensor contributions E
̃̃
𝑘 are the second derivative of the corre-

sponding invariant 𝐼𝑘 with respect to 𝑮
̃

e.

E1
𝑟𝛼𝑠𝛽 = +𝛿𝑟𝛼𝛿𝑠𝛽 (25a)

Fig. 3. Kinematics of plastic deformation.

E2
𝑟𝛼𝑠𝛽 = + 1

2 (𝛿𝑟𝛽𝛿𝑠𝛼 + 𝛿𝑟𝑠𝛿𝛼𝛽 ) (25b)

E3
𝑟𝛼𝑠𝛽 = +𝐴∗

𝑟𝐴
∗
𝛼𝐴

∗
𝑠𝐴

∗
𝛽 (25c)

E4
𝑟𝛼𝑠𝛽 = + 1

4 (2𝛿𝑟𝛽𝐴
∗
𝑠𝐴

∗
𝛼 + 2𝛿𝑠𝛼𝐴∗

𝑟𝐴
∗
𝛽 + 𝜖𝑟𝛼𝜖𝑠𝛽 ) (25d)

E5
𝑟𝛼𝑠𝛽 = −𝜖𝑟𝛼𝜖𝑠𝛽 (25e)

E6
𝑟𝛼𝑠𝛽 = +𝛿𝛼𝛽𝐴∗

𝑟𝐴
∗
𝑠 − 𝛿𝑟𝑠𝐴

∗
𝛼𝐴

∗
𝛽 (25f)

Because neither 𝑃 ∗
𝑟𝛼 nor 𝐺e

𝑠𝛽 are symmetric, the force stress elastic
tensor E𝑟𝛼𝑠𝛽 features only major symmetry, i.e. it is symmetric only with
regard to a simultaneous transposition of 𝑟 ↔ 𝑠 and 𝛼 ↔ 𝛽. Moving on
to the couple stress constitutive relation, the respective functional bases
are given in (26).

𝐽1[𝜞 ] = 𝛤𝛼𝛤𝛼 (26a)

𝐽2[𝑨∗,𝜞 ] = 𝐴∗
𝛼𝛤𝛼 (26b)

The generic constants for the couple stress are 𝜁1 and 𝜁2 and the
quadratic form is stated in (27).

2𝜓2[𝑨∗,𝜞 ] = 𝜁1𝐽1 + 𝜁2𝐽 2
2 (27)

and from (17b)

𝑀𝐴 = 𝐷𝐴𝐵𝛤𝐵 (28a)

𝐷𝐴𝐵 = 𝜁1𝛿𝐴𝐵 + 𝜁2𝐴∗
𝐴𝐴

∗
𝐵 (28b)

In Section 3.10 the fourth order force elasticity tensor E
̃̃

is recast to a
matrix notation and a parameter identification technique is discussed
in Section 4.

3.7. Plasticity

Plastic deformation is restricted to fiber-parallel in-plane shear.
Hence, the plastic part of the Cosserat tensor can be expressed in terms
of the fiber director 𝑨, unit vector 𝑩 perpendicular the fiber direction,
and a plastic shear factor 𝛾, see Fig. 3 and (29a). The plastic shear from
initial to intermediate configuration does not rotate the fiber direction,
therefore, the rate of the plastic Cosserat tensor is given by (29b).
Moreover, 𝑨∗ = 𝑨 may be used in the elastic relations derived in
Section 3.6.

𝐺p
𝛼𝐴 = 𝛿𝛼𝐴 + 𝛾p𝐴𝛼𝐵𝐴 (29a)

�̇�p
𝛼𝐴 = +�̇�p𝐴𝛼𝐵𝐴 (29b)

Yielding is initiated when the shear stress on the fiber parallel section
plane attains a critical value. The respective shear stress component
is obtained by projecting the Mandel stress 𝜮

̃
onto vectors 𝑨 and 𝑩.

The yield strength in this plane is denoted by 𝑆 and is a function
of the isotropic hardening variable 𝑞 (30). The shear strength refers
to apparent properties of the homogenized solid and the hardening
variable is strictly increasing with the rate �̇� = |�̇�p|.
y = |𝛴𝛼𝛽𝐴𝛼𝐵𝛽 | − 𝑆[𝑞] (30)

Evaluating the general evolution law (19) for the specific yield function
(30) provides (31), where 𝑠 is a shorthand for sgn[𝛴𝛼𝛽𝐴𝛼𝐵𝛽 ], and sgn
is the Signum function.
−1
𝐺 p
𝐴𝛽 �̇�

p
𝛼𝐴 = 𝜆

𝜕y
𝜕𝛴𝛼𝛽

= 𝑠𝜆𝐴𝛼𝐵𝛽 (31)
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The next step is to develop an integration procedure for the constitutive
law in the elasto-plastic regime for the use in an incremental-iterative
finite element solution process. The procedure is supposed to take the
new Cosserat tensor 𝑮

̃
, obtained by the previous iteration of the global

equilibrium, and should return the stress 𝑷
̃
∗ and internal variables 𝛾p, 𝑞

compatible with the state law and yield condition. In order to formulate
a numerical solution scheme, the relevant equations are combined into
one, starting by stating the Mandel stress defined in (14b) in terms of
the elastic Cosserat tensor by inserting the elastic relation (24).

𝛴𝜀𝛼 = 𝐺e
𝑟𝜀E𝑟𝛼𝑠𝛽 (𝐺

e
𝑠𝛽 − 𝛿𝑠𝛽 ) (32)

Using the previous equation and 𝐺e
𝑟𝜀 = 𝐺𝑟𝐴

−1
𝐺 p
𝐴𝜀 = 𝐺𝑟𝐴(𝛿𝐴𝜀 − 𝛾p𝐴𝐴𝐵𝜀),

the resolved shear stress 𝛴𝜀𝛼𝐴𝜀𝐵𝛼 can be recast in terms of the input
𝑮
̃

and a quadratic polynomial in the unknown 𝛾p. The single scalar
unknown 𝛾p may then be found by inserting this expression in the
yield function (30) and applying Newton’s scheme. For this purpose
the Jacobian j= 𝜕y∕𝜕𝛾p is required, see (33).

j= 𝑠
(
𝛴′
𝜀𝛼𝐴𝜀𝐵𝛼 −

𝜕𝑆
𝜕𝑞

)
(33a)

𝛴′
𝜀𝛼 = 𝜕

𝜕𝛾p
[
𝐺𝑟𝐴

−1
𝐺 p
𝐴𝜀E𝑟𝛼𝑠𝛽𝐺𝑠𝐵

−1
𝐺 p
𝐵𝛽

]

= −(𝐴𝐴𝐵𝜀
−1
𝐺 p
𝐵𝛽 +

−1
𝐺 p
𝐴𝜀𝐴𝐵𝐵𝛽 )𝐺𝑟𝐴E𝑟𝛼𝑠𝛽𝐺𝑠𝐵 (33b)

−1
𝐺 p
𝐵𝛽 = (𝛿𝐵𝛽 − 𝛾p𝐴𝐵𝐵𝛽 ) (33c)

3.8. Linearization

To utilize the previously discussed constitutive model for the simu-
lation of MB-problems a numerical solution scheme for the unknown
displacements 𝒖 and unknown rotations 𝜑 must be adopted. In the
context of a solution via an implicit finite element simulation the prior
linearization and discretization of the respective equations is required.
Here, a Lagrangian formulation is contemplated and the power of the
internal forces (11) is recast by grouping the stress terms (34a) and
(34b) to provide the power density per unit volume on the initial
configuration (34c). To simplify the notation, no superscript is used
with pint.

𝑃𝑟𝐴 ∶= 𝑠𝑟𝑠
−1
𝐺𝐴𝑠 (34a)

𝑀𝐴 ∶= 𝑚𝑟
−1
𝐺𝐴𝑟 (34b)

pint = 𝑃𝑟𝐴�̇�𝑟𝐴 +𝑀𝐴�̇�𝐴 (34c)

In (34c), the force stress power is specified in terms of the conjugate
pair 𝑷

̃
, �̇�
̃

rather than 𝑷
̃
∗, �̇�
̃

e for which the elastic relation (24a) was de-
rived. However, 𝑷

̃
may be readily obtained via the pull-back operation

(35).

𝑃𝑟𝐴 =
−1
𝐺 p
𝐴𝛼𝑃

∗
𝑟𝛼 (35)

The nonlinear solution path comprises subsequent equilibrium states.
In each equilibrium state the variation (36) w.r.t. �̇� and �̇� vanishes.

𝛿pint =
𝜕
𝜕ℎ

[
pint[�̇�𝑎 + ℎ𝛿�̇�𝑎, �̇� + ℎ𝛿�̇�]

]
ℎ=0 (36)

Taking into account the definitions (4a) and (5b) provides (37). There,
the abbreviations 𝛿�̇�𝑎𝐴 ∶= 𝛿�̇�𝑎,𝐴 and 𝑅′

𝑎𝑟 ∶= 𝜕𝑅𝑎𝑟∕𝜕𝜑 = 𝑅𝑎𝑠𝜖𝑟𝑠 are
introduced.

𝛿�̇�𝑟𝐴 = 𝑅′
𝑎𝑟𝐹𝑎𝐴𝛿�̇� + 𝑅𝑎𝑟𝛿�̇�𝑎𝐴 (37a)

𝛿�̇�𝐴 = 𝛿�̇�,𝐴 (37b)

𝛿pint = 𝑃𝑟𝐴𝛿�̇�𝑟𝐴 +𝑀𝐴𝛿�̇�𝐴 (37c)

Application of the Newton–Raphson scheme to search for solutions to
(37c), requires a linearization (38) w.r.t. the unknowns 𝒖 and 𝜑.

𝛥
[
𝛿pint

]
= 𝜕
𝜕ℎ

[
𝛿pint[𝑢𝑎 + ℎ𝛥𝑢𝑎, 𝜑 + ℎ𝛥𝜑]

]
ℎ=0 (38)

The linearized equilibrium is given by (39).

𝛥
[
𝛿�̇�𝑟𝐴

]
= (+𝑅′

𝑎𝑟𝛥𝐹𝑎𝐴 − 𝑅𝑎𝑟𝐹𝑎𝐴𝛥𝜑)𝛿𝜑 + 𝑅′
𝑎𝑟𝛥𝜑𝛿𝐹𝑎𝐴 (39a)

𝛥
[
𝛿�̇�𝐴

]
= 0 (39b)

𝛥
[
𝛿pint

]
= 𝛥𝑃𝑟𝐴𝛿�̇�𝑟𝐴 + 𝑃𝑟𝐴𝛥[𝛿�̇�𝑟𝐴] + 𝛥𝑀𝐴𝛿�̇�𝐴 (39c)

Moreover, increments 𝛥[𝑮
̃
] and 𝛥[𝜞 ] are given in (40).

𝛥𝐺𝑟𝐴 = 𝑅𝑎𝑟𝛥𝐹𝑎𝐴 + 𝑅′
𝑎𝑟𝐹𝑎𝐴𝛥𝜑 (40a)

𝛥𝛤𝐴 = 𝛥𝜑,𝐴 (40b)

In (39c) the increments of the force stress 𝛥[𝑃𝑟𝐴] and the increment of
the couple stress 𝛥[𝑀𝐴] appear. The stress increments are related to the
strain increments (40) by their respective a tangent operators C

̃̃
and 𝑫

̃
,

(41).

𝛥𝑃𝑟𝐴 = C𝑟𝐴𝑠𝐵𝛥𝐺𝑠𝐵 (41a)

𝛥𝑀𝐴 = 𝐷𝐴𝐵𝛥𝛤𝐵 (41b)

Since the couple stress is entirely elastic, 𝐷𝐴𝐵 is given by (28b). The
force stress increment, however, is to be determined via the algorithmic
elasto-plastic tangent. To limit the scope, the algorithmic tangent is not
derived in an analytical manner here, rather it is determined by the
numerical perturbation technique proposed in Ref. (Miehe, 1996). The
method preserves the quadratic convergence of the Newton–Raphson
scheme, but incurs some extra computational cost over the analytical
approach.

3.9. Discretization

Completion of the nonlinear finite element formulation commenced
in Section 3.8 requires the discretization of the domain. Thus, for a
given element 𝓁, displacements 𝒖𝓁 and rotations 𝜑𝓁 are interpolated
from respective discrete nodal values 𝑈𝓁

𝑎𝑛 and 𝑉 𝓁
𝑛 via a set of interpola-

tion functions 𝑁𝑛 defined with respect to coordinates 𝜉𝑖 in the reference
domain, see (42) and Fig. 4.

𝑢𝓁𝑎 = 𝑁𝑛[𝝃]𝑈
𝓁
𝑎𝑛 = A𝑎𝑛𝑝𝑁𝑛[𝝃]𝑈

𝓁
𝑝 (42a)

𝜑𝓁 = 𝑁𝑛[𝝃]𝑉
𝓁
𝑛 (42b)

Index 𝑛 indicates the node number and 𝑝 iterates over the range
[1..2�̂�] where �̂� is the amount of nodes in the element. The factor
A𝑎𝑛𝑝 = 1 if 𝑝 = 𝑛 + �̂�(𝑎 − 1) and zero otherwise is used to vectorize
nodal displacements via 𝑈𝓁

𝑎𝑛 = A𝑎𝑛𝑝𝑈𝓁
𝑝 . From (42) the gradients (43)

are calculated, where 𝐼𝓁𝑖𝐴 is the inverse of the element-Jacobian and 𝑖
refers to the direction on the reference domain. The abbreviations B𝓁

𝑎𝐴𝑝

and 𝐵𝓁
𝐴𝑛 are defined as apparent from (43).

𝐹 𝓁
𝑎𝐴 = 𝛿𝑎𝐴 + A𝑎𝑛𝑝𝑁𝑛,𝑖[𝝃]𝐼𝓁𝑖𝐴[𝝃]𝑈

𝓁
𝑝 = 𝛿𝑎𝐴 + B𝓁

𝑎𝐴𝑝[𝝃]𝑈
𝓁
𝑝 (43a)

𝛤 𝓁
𝐴 = 𝐼𝓁𝑖𝐴[𝝃]𝑁𝑛,𝑖[𝝃]𝑉

𝓁
𝑛 = 𝐵𝓁

𝐴𝑛[𝝃]𝑉
𝓁
𝑛 (43b)

Inserting the relevant expression into the linearization of the virtual
power density of the internal forces (39c) and subsequent integration
over the element domain 𝛺𝓁 provides the internal force 𝑭 int

𝓁 and
tangent stiffness 𝑲

̃
𝓁 contributions (44). The vector of nodal variables

has the structure
[
𝑈11 ⋯𝑈2�̂� 𝑉1 ⋯𝑉�̂�

]
.

𝑭 int
𝓁 = ∫𝛺𝓁

[
𝒇𝓁

𝒈𝓁

]
𝖽𝛺 (44a)

𝑲
̃
𝓁 = ∫𝛺𝓁

[
𝒌
̃
𝓁 𝒍

̃
𝓁

𝒎
̃
𝓁 𝒏

̃
𝓁

]
𝖽𝛺 (44b)

The sub-matrices in (44) are defined in (45).

𝑓𝓁
𝑝 = 𝑃𝑟𝐴B𝓁

𝑎𝐴𝑞𝑅𝑎𝑟 (45a)
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Fig. 4. Nodal displacements 𝑈𝓁
𝑎𝑛 and nodal rotations 𝑉𝑛𝓁 for a given finite element 𝓁. From left to right the images show: the reference space, the initial configuration, and the

current configuration.

𝑔𝓁𝑛 =𝑀𝐴𝐵𝐴𝑚 + 𝑃𝑟𝐴𝐹𝑎𝐴𝑁𝑚𝑅
′
𝑎𝑟 (45b)

𝑘𝓁𝑝𝑞 = C𝑟𝐴𝑠𝐵B𝓁
𝑎𝐵𝑝B

𝓁
𝑏𝐴𝑞𝑅𝑎𝑠𝑅𝑏𝑟 (45c)

𝑙𝓁𝑝𝑛 = C𝑟𝐴𝑠𝐵𝐹𝑏𝐴𝑁𝑚B𝓁
𝑎𝐵𝑝𝑅𝑎𝑠𝑅

′
𝑏𝑟 + 𝑃𝑟𝐴𝑁𝑚B𝓁

𝑎𝐴𝑝𝑅
′
𝑎𝑟 (45d)

𝑚𝓁
𝑛𝑝 = 𝑙𝓁𝑝𝑛 (45e)

𝑛𝓁𝑛𝑚 = 𝐵𝓁
𝐴𝑚𝐷𝐴𝐵𝐵

𝓁
𝐵𝑛

+C𝑟𝐴𝑠𝐵𝐹𝑎𝐵𝐹𝑏𝐴𝑁𝑚𝑁𝑛𝑅
′
𝑎𝑠𝑅

′
𝑏𝑟 − 𝑃𝑟𝐴𝐹𝑎𝐴𝑁𝑚𝑁𝑛𝑅𝑎𝑟 (45f)

The finite element formulation discussed here has been implemented
in a Python program. All results presented in Section 5 pertaining to
micropolar solids were obtained from this implementation. For MB-
problems, a snap-back type response, i.e. a simultaneous decrease of
applied load and load-point displacement, is typical for the post-peak
load regime. Hence, an arc-length controlled solution of the global
equilibrium is required to traverse this segment of the equilibrium
path. The particular arc-length control scheme used here is detailed in
de Souza Neto and Feng (1999).

3.10. Specialization for small strain elasticity

Before proceeding to the parameter identification procedure in the
next section, the set of elasticity constants 𝜂𝑖 and 𝜁𝑖, introduced in Sec-
tion 3.6, are interpreted by contemplating the special case of geometric
and material linearity. To this effect, a small perturbation by 𝛥𝒖 and
𝛥𝜑 w.r.t. the initial configuration shall be considered, i.e. 𝐹𝑎𝐴 → 𝛿𝑎𝐴,
𝑅𝑎𝑟 → 𝛿𝑎𝑟 and 𝑅′

𝑎𝑟 → 𝜖𝑟𝑎. An according specialization of (39) leads to
(46), where the superscript 0 indicates that the linearization refers to
the initial configuration.

𝛥𝐺0
𝑟𝐴 = 𝛥𝐹 0

𝑟𝐴 + 𝜖𝑟𝐴𝛥𝜑0 (46a)

𝛥𝛤 0
𝐴 = 𝛥𝜑0

,𝐴 (46b)

All stress measures defined above coincide, and symbols 𝛥𝝈
̃
0 and 𝛥𝝁0

introduced further down denote the linearized force and couple stress.
Both can be obtained from their respective elastic relation (24a) and
(28a). The couple stress elastic relation is already given in a matrix
form and it is illuminating to also restate the force stress elastic relation
in this manner. For this purpose a vectorization 𝜺 of the linearized
Cosserat tensor and wryness strain is adopted (47). To ease interpreta-
tion, the first 3 components in 𝜺 are formed so that they coincide with
Voigt’s vector notation of the linearized strain in conventional solids.
The remaining components are particular to micropolar solids and shall
be examined further in the following.

𝜺 =
[
𝛥𝐺0

11 𝛥𝐺0
22 (𝛥𝐺0

12 + 𝛥𝐺
0
21) (𝛥𝐺0

12 − 𝛥𝐺
0
21) 𝛥𝛤 0

1 𝛥𝛤 0
2

]
𝖳 (47)

By referring to the relation (46a) the strain vector may also be formulated in
terms of linearized displacement strains and linearized rotations. To this end,
the symbol 𝛥𝛷0 = 1

2 (𝛥𝐹
0
21 − 𝛥𝐹 0

12) is introduced to denote the linearized macro
rotation, i.e. the rotation of the displacement field. When micro and macro
rotation differ, a respective strain is registered in the 4th component of 𝜺. The last

two components 𝛥𝛤 0
1 and 𝛥𝛤 0

2 represent the curvature strain in their respective
direction.

𝜺 =
[
𝛥𝐹 0

11 𝛥𝐹 0
22 (𝛥𝐹 0

12 + 𝛥𝐹
0
21) 2(𝛥𝜑0 − 𝛥𝛷0) 𝛥𝛤 0

1 𝛥𝛤 0
2

]
𝖳 (48)

The force and couple stress components are rearranged into vector form 𝝉
in a manner similar to the strain components. Again, the bracket terms are
formed to have correspondence to the first 3 components of the stress vector
in conventional solids.

𝝉 =
[
𝛥𝜎011 𝛥𝜎022

1
2
(𝛥𝜎012 + 𝛥𝜎

0
21)

1
2
(𝛥𝜎012 − 𝛥𝜎

0
21) 𝛥𝜇0

1 𝛥𝜇0
2

]
𝖳 (49)

With respect to these definitions a matrix representation 𝑬
̃

of the elastic constitu-
tive relation is obtained (50). For clarity, it is assumed there that the preferential
direction 𝑨 is aligned with the first coordinate direction 𝒆1.

𝝉 = 𝑫
̃
𝜺

𝑫
̃

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜂1 + 𝜂2 + 𝜂3 + 𝜂4 𝜂1 0 0 0 0

𝜂1 𝜂1 + 𝜂2 0 0 0 0

0 0 1
2
𝜂2 +

1
4
𝜂4

1
8
𝜂6 0 0

0 0 1
8
𝜂6 − 1

2
𝜂5 0 0

0 0 0 0 𝜁1 + 𝜁2 0

0 0 0 0 0 𝜁1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)

4. Parameter identification

The 6 generic constants 𝜂1 to 𝜂6 appearing in the elastic stiffness matrix
𝑫
̃

, see (50) may be replaced by a new set of constants 𝐷11, 𝐷12, 𝐷22, 𝐷33, 𝐷34,
and 𝐷44, see (51). Moreover, bending moments are only transmitted in fiber
direction, hence, the constant 𝜁1 is set to zero.

𝑫
̃

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐷11 𝐷12 0 0 0 0
𝐷12 𝐷22 0 0 0 0
0 0 𝐷33 𝐷34 0 0
0 0 𝐷34 𝐷44 0 0
0 0 0 0 𝜁2 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(51)

The upper left sub matrix in (51) is the same a for a conventional transversal
isotropic solid. Assuming plane strain, the respective coefficients are given
by (54). There, 𝐸𝑙, 𝐸𝑡, and 𝜈𝑙𝑡 = − 𝜀𝑡

𝜀𝑙
are the standard effective moduli and

Poison’s ratios of the homogenized solid, where indices 𝑙 and 𝑡 denote the
longitudinal and transversal directions.

𝐷11 =
𝐸2
𝑙

𝐸𝑙 − 𝐸𝑡𝜈2𝑙𝑡
= 𝜂1 + 𝜂2 + 𝜂3 + 𝜂4 (52)

𝐷12 =
𝐸𝑙𝐸𝑡𝜈𝑙𝑡
𝐸𝑙 − 𝐸𝑡𝜈2𝑙𝑡

= 𝜂1 (53)

𝐷22 =
𝐸𝑙𝐸𝑡

𝐸𝑙 − 𝐸𝑡𝜈2𝑙𝑡
= 𝜂1 + 𝜂2 (54)
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Fig. 5. A micromechanical schematic of the two shear load cases considered to identify
the micropolar shear properties. In (a) the rotation if the cross-section is locked to zero,
while in (b) it rotates freely as determined by its shear stiffness.

4.1. Elastic shear parameter identification

The remaining coefficients 𝐷33, 𝐷34, and 𝐷44 are particular to micropolar
solids and require attention. Ref. (Hasanyan and Waas, 2018a) identifies
these parameters by considering three complementary shear load cases:
𝜎12 ≠ 0 with 𝜎21 = 0, 𝜎21 ≠ 0 with 𝜎12 = 0 and 𝜎12 = 𝜎21; The respective
loads were applied as surface traction on a micromechanical finite element
model. No periodicity boundary conditions were enforced in that approach
resulting in a somewhat non-uniform deformation which was controlled by
studying the effect of the micromodel size. There, the compliance matrix,
i.e. the inverse of (51), is found from the resulting deformation of the model
under the corresponding applied load.

The present contribution takes a complementary approach by identify-
ing the elastic parameters from the stiffness, rather than the compliance,
of a unit cell. This allows the consideration of periodicity constraints to
avoid any dependence on the considered unit cell size. For this purpose only
two complementary shear load cases need to be considered: one were the
rotation of the fiber cross-section is locked to zero, and another with free
rotation of the cross-section, see Fig. 5. There, the symbol 𝛼 is introduced to
denote the applied shear angle, and 𝜑 denotes the rotation of the fiber cross-
section, as before. To simplify the notation, the prefix 𝛥 and the superscript
0 indicating the linearization w.r.t. the initial configuration are dropped.

Considering the locked load case first, a set of equations is obtained by
evaluating (50) with 𝜑 = 0. Notice that this constraint requires that the
fiber has finite shear flexibility. The unsymmetric shear stress components
𝜎𝐿12, 𝜎

𝐿
21 arising under these conditions are furnished with an superscript 𝐿

and it is recalled that the first index denotes the direction of action while
the second denotes the section plane. The curvature is zero, thus, there is no
constitutive moment. The moment resulting from the non-symmetric stress
tensor is in balance with an external moment resulting from the constraint.

𝜎𝐿12 = (𝐷33 −𝐷44)𝛼 (55a)

𝜎𝐿21 = (𝐷33 − 2𝐷34 +𝐷44)𝛼 (55b)

A second set of equations is obtained by considering the load case where
the fiber cross-section is free to rotate, and symbols referring to this case
are furnished with an overscript 𝐹 . The homogenized solid responds like
a Cauchy solid in this situation, i.e. the symmetric part of shear stress
1
2
(𝜎𝐹12 + 𝜎𝐹21) should be determined by the conventional shear modulus 𝐺𝑙𝑡

and the asymmetric stress 1
2
(𝜎𝐹12−𝜎

𝐹
21) must vanish. It is important to notice

that the rotation of the fiber cross-section 𝜑𝐹 is determined by the fibers
shear flexibility, hence, it differs from the rotation of the fiber axis which
corresponds to 𝛼.

𝐺𝑙𝑡𝛼 = (𝐷33 −𝐷34)𝛼 + 2𝐷34𝜑
𝐹 (56a)

0 = (𝐷34 −𝐷44)𝛼 + 2𝐷44𝜑
𝐹 (56b)

Next, the intermediate constants 𝜎𝐿21, 𝜑
𝐹 , and 𝐺𝑙𝑡 are related to properties of

the constituents via an analytical micromechanics approach. In the locked
shear case, the shear angles in both fiber and matrix coincide with 𝛼. Hence,

the corresponding stress is given by 𝜎𝐿21 = (𝑣fib𝐺fib + (1 − 𝑣fib)𝐺mat)𝛼, where
𝐺fib, 𝐺mat are the fiber and matrix shear moduli and 𝑣fib is the fiber volume
content. For the free shear case, the applied shear stress is symmetric
𝜎𝐹12 = 𝜎𝐹21 = 𝐺𝑙𝑡𝛼. In a 2-dimensional setting, shear stress coupling between
fiber and matrix may be assumed so that the rotation of the fiber cross-
section from the vertical can be stated as 𝜑𝐹 = (1 − 𝐺𝑙𝑡∕𝐺fib)𝛼, i.e. it
will be slightly less than 𝛼. Moreover, the conventional shear modulus can
be expressed as 1∕𝐺𝑙𝑡 = 𝑣fib∕𝐺fib + (1 − 𝑣fib)∕𝐺mat. Subsequently, 𝜎𝐿12 can
be eliminated from the 4 equations in (55) and (56), and the remaining
equations can be solved for 𝐷33, 𝐷34, 𝐷44, see (57). In the limit case of zero
fiber volume fraction 𝑣fib → 0 the micropolar solid reverts back to a Cauchy
solid for the pure matrix with 𝐷33 → 𝐺mat and 𝐷34 → 𝐷44 → 0.

𝜎𝐿12 = 𝐺mat𝛼 (57a)

𝐷33 =
1
4

( (2 − 𝑣fib)2𝐺mat

1 − 𝑣fib + 𝑣fib𝐺fib
)

(57b)

𝐷34 =
𝑣fib

4(1 − 𝑣fib)

(
(2 − 𝑣fib)𝐺mat − (1 − 𝑣fib)𝐺fib

)
(57c)

𝐷44 =
𝑣fib

4(1 − 𝑣fib)

(
𝑣fib𝐺mat + (1 − 𝑣fib)𝐺fib

)
(57d)

4.2. Hardening law

In subsequent sections, the micropolar modeling approach is compared
against micromechanical and analytical reference models. The hardening
law for the matrix plasticity has a strong impact on the MB-strength, and
care must be taken to ensure the comparability of the various types of
models.

In the micromechanical reference models, both fibers and matrix are
assumed isotropic and matrix plasticity is represented by isotropic 𝐽2-
plasticity. Matrix hardening is isotropic and obeys the power law (58)
for monotonic loading. The equation relates the plastic shear angle in
the matrix (𝛾mat

12 )p to the respective shear yield stress 𝜎mat
12 in an uniaxial

shear test. Symbol 𝐺mat represents the matrix shear modulus and 𝜏𝑦 and 𝑛
are plasticity parameters, their numeric values are stated in Table 2. The
threshold for initial yielding was set at 𝜎mat

12 = 20MPa. The peak load is
sensitive to the parameters 𝜏𝑦 and 𝑛, but not the initial yield strength. This
is because plastic strain remains quite small after initial yielding and only
becomes substantial at higher shear stress. The micromechanical reference
models were solved in Simulia/Abaqus. The input material card for the
hardening law in this software requires a translation of (58) to a relation
of the equivalent plastic strain to the von Mises stress and the respective
conversion factors were taken into account.

(𝛾mat
12 )p =

3𝜏𝑦
7𝐺mat

(𝜎mat
12
𝜏𝑦

)𝑛
(58)

In the micropolar medium fiber and matrix are smeared out, and the
hardening law must be specified in terms of the homogenized plastic shear
angle 𝛾p

12 and the homogenized shear stress 𝜎12. Assuming shear rigid fibers
and moderate deformation, the homogenized plastic shear angle is related
to the matrix shear angle by the kinematic relation (𝛾p

12)
mat = 𝛾p

12∕(1 − 𝑣
fib),

where 𝑣fib is the fiber volume fraction. To obtain a strictly increasing
hardening variable, the symbol 𝑞 was introduced in Section 3.7, its rate
obeys �̇� = |�̇�p

12|. Moreover, the shear yield stress in the micropolar solid
is by designated 𝑆, thus, the hardening law equivalent to (58) for the
micropolar solid is given by (59). The approximation stated there follows
from neglecting fiber shear flexibility which is admissible for the purpose
of defining the hardening law. For the fiber volume fraction of 50%, the
equivalent plastic strain in the matrix, Abaqus output variable PEEQ in the
figures shown further down, is related to 𝑞 via PEEQ = 2∕

√
3𝑞.

𝑞 =
3(1 − 𝑣fib)𝜏𝑦

7𝐺mat

( 𝑆
𝜏𝑦

)𝑛
≈

3𝜏𝑦
7𝐺𝑙𝑡

( 𝑆
𝜏𝑦

)𝑛
(59)

The peculiar form (58) was chosen to facilitate comparison to classical
closed form estimates for the peak load, which will be considered in Sec-
tion 5.1. In closed form analysis, typically a deformation theory of plasticity
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Table 2
Properties for fiber and matrix constituents used in the micromechanical reference model. The values approximately correspond to a carbon
fiber/epoxy prepreg UD300/M79.
fiber, isotropic matrix, isotropic

slice thickness volume fraction Young’s modulus Poison’s ratio Young’s modulus Poison’s ratio parameter 𝜏𝑦 parameter 𝑛

5 μm 50% 250 GPa 0.3 5 GPa 0.3 40 MPa 6

Fig. 6. Meshes and load–displacement diagrams for the shear tests. (a), (d): micromechanical reference model solved in Simulia/Abaqus; (b), (e): results obtained from an
implementation of the present micropolar formulation; (a) to (c): shear with free micro rotation; (d) to (f): shear with locked micro rotation; Green arrows emanating from nodes
indicate the rotated fiber direction vector 𝒂. Symbols ∑

𝐹 rgt
2 and ∑

𝐹 top
1 represent the total of the vertical nodal forces on the right and the total of the horizontal nodal forces on

the top boundary, respectively. All meshes are shown with a linear scaling by a factor of (𝑛fib∕𝑙)𝐸fib𝐼 fib = 0.260N mm applied to displacements, and also rotations for (b) and (e).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

is adopted to represent the matrix nonlinearity from a homogenized vantage
point. Following Ref. (Budiansky and Fleck, 1993), the Ramberg–Osgood
relation (60) will be used in the context of the closed form peak load
formulae discussed further down. The symbol 𝛾12 denotes the total shear
angle of the homogenized solid, i.e. 𝛾12 = 𝜎12∕𝐺𝑙𝑡 + 𝛾p

12.

𝛾12 =
𝜎12
𝐺𝑙𝑡

(
1 + 3

7

(𝜎12
𝜏𝑦

)𝑛−1)
(60)

4.3. Bending stiffness and verification

To verify the micropolar model in the elastic and plastic regime it is
compared against results of a micromechanical finite element model for the
two calibration shear load cases considered in Section 4.1 and a third load
case involving bending. For this purpose, numeric values for the properties
of the constituents are adopted, see Table 2. The particular numerical values
listed there correspond to a carbon fiber/epoxy prepreg UD300/M79. For
the comparison a square domain of size 0.1mm × 0.1mm containing 10
fibers with a volume fraction of 50% is considered. Compatible deformation
is enforced via periodic boundary conditions. Due to the periodicity of
the model, size has no effect on the resulting effective properties. In the
micromechanical reference model, fiber and matrix phases are explicitly

represented by alternating slices. The thickness of the fiber slices corre-
sponds to the fiber diameter only approximately, since the segmentation
was adjusted to match a given fiber volume content.

Results obtained from micromechanical and micropolar models are
compared in Fig. 6 for the two shear load cases defined in Section 4.1.
The shear is applied via a prescribed vertical displacement by 𝑢rgt

2 on the
right boundary and the resulting reaction forces are tracked to obtain the
effective stress response. In the micropolar solid the strain is completely
homogeneous, therefore, the domain is discretized by a single element.
Results for the free shear load case are shown in Fig. 6(a) to (c). In the
micromechanical model the periodicity constraints enforce the overall shear
deformation, but still allow the fiber cross-section to rotate freely, see Fig. 6.
Correspondingly, the rotational degree of freedom was left unconstrained
in all nodes for the micropolar model. The locked shear load case is shown
in (d) to (f). In that case displacement in direction 1 is suppressed at all
nodes for both the micromechanical and the micropolar models. In the
micromechanical model the condition of zero displacement in direction
1 prevents the fiber cross-section from rotating, in the micropolar model
the same is implemented by constraining 𝜑 to zero. The condition of zero
displacement in direction 1 acting on the interior of the micro model does
not effect a source or sink of force-stress (as seen from a micropolar vantage
point), since the reaction forces at the interior nodes occur as force couples
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Fig. 7. Meshes and load–displacement diagram for the bending load case. All meshes are plotted in the same manner as in Fig. 6; (a): micromechanical reference model, the inset
shows 𝜎11 for the fiber only; (b): micropolar model; Symbol ∑

𝐹 rgt
2 represents the total of the vertical nodal forces on the right and ∑

𝑀 lft represents the total reaction moment
on the left boundary.

in such a manner that their total cancels out. Even so, the force couples
render a non-zero total moment acting on the interior, thus the condition
implements a moment-stress source, see inset to Fig. 6(d). The need for
such an external moment density to arise in the locked shear load case was
already mentioned in Section 4.1. The elastic shear stiffness of the fiber is
much larger than the shear stiffness of the elastoplastic matrix, hence, there
is large difference in the reaction forces on the right and the top boundary
of the model, see (f). Inspecting force–displacement diagrams (c) and (f)
shows a good match between micromechanical and micropolar models in
both the elastic and plastic regime.

With the force stress elasticity constants accounted for, the only remain-
ing constant is 𝜁2, since 𝜁1 has already been eliminated. The constant 𝜁2
quantifies bending resistance and has no effect in any of the tests discussed
above because the rotation is homogeneous over the domain in all of them.
A suitable test with inhomogeneous rotation and, hence, nonzero wryness,
is shown in Fig. 7. The reference model is finely discretized using about
6400 elements, the micropolar mesh comprises only 10 elements. In this
test again a displacement 𝑢rgt

2 at the right vertical edge is applied, however,
micro rotation is now suppressed only at the left and right vertical edges
but not in the interior. To enforce the no micro rotation condition on
the micromechanical model, the left and right edges are rigid so that the
fiber cross-section cannot rotate there. On the top and bottom boundaries
periodicity conditions are still in place in both models, resulting in a smooth
variation of 𝜑 along the horizontal direction. Although the micromechanical
model has no notion of couple stress, a nonzero reaction moment results
from the inhomogeneous distribution of the force stress 𝜎11 on the vertical
edges, see inset of Fig. 7(a). The right edge is free to translate horizontally,
so the net force resulting from 𝜎11 is zero. There is, however, a nonzero
net moment due to the bending stress in the fibers. This net moment
was extracted from the micromechanical model by multiplying the nodal
reaction force at the rigid boundary with its respective lever arm. Since the
net horizontal force is zero, the reference point for the lever arm has no
effect on the result. In this manner the total reaction moment on the vertical
edges was extracted from the micromechanical model, see in Fig. 7(c). The
specific bending stiffness 𝜁2 of the micropolar solid may be estimated by
(𝑛fib∕𝑙)𝐸fib𝐼 fib = 0.260N mm, where 𝑛fib = 10 is the number of fibers over
the length 𝑙 = 0.1mm and 𝐸fib𝐼 fib is the bending stiffness of a single fiber.
However, a better match to the micromechanical reference is obtained with
a slightly smaller value of 𝜁2 = 0.245N mm which is used in all subsequent
calculations. The small difference is likely caused by bending stress in the
matrix. From Fig. 7(c) it is apparent that the total of the nodal forces ∑𝐹 rgt

2
on the right edge as a reaction to the applied displacement 𝑢rgt

2 is matched
well in this load case without any further adjustments.

5. Microbuckling simulations

5.1. Comparison to classical peak load estimates

With the micropolar model fully calibrated, it is ready to be applied to
microbuckling problems. The first application is a comparison of the mi-
cropolar model against the classical peak load formula given by Budiansky
and Fleck (Budiansky and Fleck, 1993), see (61). This formula considers
a zero-dimensional material point under uniform far field compression
and with an uniform preexisting fiber misalignment angle 𝜃 relative to
the axis of compression. It predicts the peak compressive stress 𝑅 which
initiates microbuckling. Another input is the nonlinear shear stress/shear
strain relation 𝜎12(𝛾12) which is inversely given by (60). The operator max𝛾12
denotes that the argument is to be maximized with respect to 𝛾12, which is
performed numerically.

𝑅 = max
𝛾12

(𝜎12(𝛾12)
𝜃 + 𝛾12

)
(61)

Since (61) assumes that all quantities are uniform, the corresponding
micropolar model comprises only a single element. The initial misalignment
𝜃 is implemented by rotating the initial orientation of the director 𝑨 by the
respective amount. The model is then loaded by an uniform compressive
load −𝜎11 along the zero degree axis so that the peak load 𝑅 is exceeded,
see Fig. 8(a). For small initial misalignment angles 𝜃, the characteristic
snap-back response necessitates the use of an arc-length solution scheme.
The peak load values obtained from the micropolar model is compared the
corresponding prediction by (61) for a range of initial misalignments in
Fig. 8(b) showing good agreement.

5.2. Comparison to a micromechanical model

To verify the suitability of the micropolar model for microbuckling prob-
lems in a 2-dimensional setting it is compared to another micromechanical
reference model. Additionally, results obtained from a homogenized model
based on conventional continuum theory are presented to demonstrate the
deficiencies of that approach. All three models consider a square domain of
side length 𝑙 = 0.5mm under plane strain. In the micromechanical model,
the domain contains 50 fiber slices. The nominal fiber direction is aligned
with 𝒆1, however, a small preexisting misalignment by angle 𝜃 acts as
imperfection. The imperfection has the form of a half period of a sine wave
over the model domain with an amplitude of 𝛩 = 2◦, see (62).

𝜃 = 𝛩 sin
(
𝜋 𝑋1

𝑙

)
(62)

It is noted that the fiber undulation wave length is 1mm, i.e. on the order of
200 fiber diameters. In this situation, Refs. (Lemanski and Sutcliffe, 2012;
Fleck and Shu, 1995) suggest that fiber bending stiffness has only minor
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Fig. 8. Results for the single element MB-verification model. (a) shows relation of applied far field compression −𝜎11 to compressive strain −𝜀11, (b) shows a comparison of peak
loads as obtained from the micropolar model to results calculated from (61).

Fig. 9. Undeformed mesh (a), mesh at maximal deformation (b), and load–displacement diagram (c) for the micromechanical reference model. Displacements are to scale and
not magnified. Symbol −

∑
𝐹 rgt
1 is the total compressive force applied to the right boundary. The point marker denotes the peak in the load–displacement diagram.

or negligible effect on the peak load. In the micromechanical reference
model fibers are explicitly modeled. The fiber geometry equivalent to (62)
is generated by applying a stress-free pre-deformation of 𝑢ini

2 = ∫ 𝜃 𝖽𝑋1.
The conventionally homogenized model requires an anisotropic plasticity
model to prevent the solid from yielding in fiber direction. Here, this
is implemented by using a Hill-type anisotropic plasticity model where
all yield strengths except for the in-plane shear strength are set so large
that they may be ignored. This results in plastic behavior comparable
to the one discussed in Section 3.7. In the conventionally homogenized
model, 𝜃 rotates the initial orientation of the material principal axes. In
the micropolar model, 𝜃 defines the initial orientation of the director 𝑨𝖳 =[

cos(𝜃) sin(𝜃)
]
.

Load is applied in form of a homogeneous uniaxial compression in
nominal fiber direction at the right vertical edge, see Fig. 9(a). Horizontal
displacement is fixed on the left edge and the top and bottom edges are
traction free. The same boundary conditions apply to all three models.
In the micromechanical reference model, the reaction force is essentially
linear until a load peak at 393N, followed by snap-back collapse, see
Fig. 9(c). It is noted that the arc-length procedure renders the quasi-static
equilibrium path, however, in nature MB is a dynamic process and the
quasi-static solution is merely an approximation. The simulation is stopped
at a displacement −𝑢rgt

1 = 4.0 × 10−3 mm, since the maximum shear stress
in the matrix has increased to about 70MPa at this point and thus exceeds
the matrix fracture stress for the material adopted here. The width of the
band of plastic deformation is well defined as apparent from Fig. 9(b) and

corresponds to about 25 fiber slices. It does not conform to the band of
initial misalignment which extends over the entire model. Moreover it is
inclined at an angle of about 8◦ to the vertical.

Attempting to replicate the results of the micromodel with an conven-
tionally homogenized model results in several problems, see Fig. 10. The
bandwidth obtained from this kind of model is sensitive to the discretization
size, compare Figs. 10(a) and 10(b), and does not match the width observed
in the micromechanical model. The mesh dependence also affects the load–
displacement response in the softening regime which is rather erratic as
apparent from Fig. 10(c). There 3 different discretizations are considered,
the two shown in the figure and an intermediate one. All deviate from
the micromechanical reference. It is also noteworthy that the homogenized
approach overestimates the peak load, rendering peak loads between 445N
and 460N compared to 393N for the micromodel. There are 2 causes for this
overestimation of the peak load in the homogenized models: The main cause
is that in the finite element software Abaqus the rotation of the principal
material axes is implemented in such a way that it accounts only for the
rigid body rotation of the deformation, i.e. for simple shear by angle 𝛼 the
material axis rotate only by 𝛼∕2. As a result, in this software the rotation of
the principal material axis lags behind the actual fiber rotation and the peak
load is overestimated. This limitation was first reported in Wisnom (1993).
It is shown further down that the micropolar model does not suffer from
this limitation. A secondary cause of the overestimation is that the effect of
compressive stress on matrix yielding is not considered. This is a relatively
minor effect, due to the large difference in stiffness between matrix and
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Fig. 10. Meshes 10 × 4 (a), 30 × 12 (b), and load–displacement diagram (c) for a conventionally homogenized model. The point markers denote at the peaks in the
load–displacement diagram. Notice the overestimation of the peak load and the erratic load–displacement relation in the softening regime.

Fig. 11. Meshes 10 × 4 (a), 30 × 12 (b), and load–displacement diagram (c) for the micropolar model. The point markers denote at the peaks in the load–displacement diagram.
The deformation and the load–displacement response converge to the reference on mesh refinement (a) to (c).

fiber which effectively shields the matrix from longitudinal stress so that
yielding is dominated by shear stress.

The micropolar approach correctly replicates the micromechanical ref-
erence model, both with regard to the deformation as well as the load–
displacement response, see Fig. 11. The bandwidth is well defined even for
the very coarse mesh in Fig. 11(a) and it is about the same as in the mi-
cromechanical model. The load–displacement relation is smooth and closely
matches the reference. A small difference to the reference is apparent with
regard to the peak load, where the micropolar models predict between
415N to 409N, while the reference value is slightly smaller at 393N. Like
in the conventionally homogenized model, this discrepancy results from the
neglect of the compressive stress in the plasticity model. More importantly,
however, the micropolar model avoids the limitation regarding the rotation
of the material axes present in the Abaqus implementation.

As a side note, the effect of the shear nonlinearity on the peak load
is briefly discussed. For this purpose, simulations on the micropolar model
without matrix plasticity were performed, all other conditions being the
same as mentioned above. The models without plasticity render a very
high peak load, at about 4 times the peak load of the model including
plasticity. The post peak load behavior is different and no distinct strain
localization occurs. This is expected, since the two properties with the
strongest impact on microbuckling strength are fiber misalignment and the
nonlinearity (plasticity) of the matrix shear response. Neglecting the latter
has dramatic effects on the peak load and renders a model approximately
in line with the elastic bifurcation theory for MB which was developed by

B. W. Rosen. This elastic bifurcation theory has historical relevance since
it was developed as one of the very first approaches to the subject. It does
not, however, provide a suitable model for MB and is known overestimate
peak loads by about a factor of 4 for common materials. Ref. (Budiansky
and Fleck, 1993) provides a good exposition of the elastic bifurcation theory
and its shortcomings.

6. Summary and conclusion

The present contribution considered the adaptation of micropolar con-
tinuum theory for the application to microbuckling (MB) problems. The
present approach is founded on the finite strain plasticity theory for gen-
eralized continua (Forest et al., 1997; Sievert et al., 1998; Forest et al.,
2000; Forest and Sievert, 2003) to MB-problems, thus, distinguishing itself
from other such adaptations (Fleck and Shu, 1995; Hasanyan and Waas,
2018a,b). On this basis, a finite strain elasto-plastic constitutive model and
a corresponding finite element implementation were developed. A novel
identification procedure for the additional parameters introduced by the
micropolar solid was also presented and verified against a reference model.
The resulting model allows the extension of simulations into the post peak
load regime, which is required for the investigation of MB investigation of
certain MB-specific phenomena like band broadening. The calibrated model
was verified against a micromechanical reference, and it was shown to ac-
curately predict bandwidth and band inclination. The peak load prediction
was also found to be satisfactory. In contrast, a conventionally homogenized
model gave an erratic response in the softening regime and also poorly
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predicted the peak load due an implementation detail in the proprietary
software Abaqus.

An avenue of further extension of the present approach is the con-
sideration of additional failure modes in the softening regime like matrix
rupture and fiber fracture. The fiber fracture aspect is of particular interest,
since it has been proposed that it is initiated by bending stress, either
compressive (Pinho et al., 2012b; Pimenta et al., 2009a) or tensile (Fleck
et al., 1995; Budiansky et al., 1998; Guimard et al., 2007), see the discussion
in Section 1. Detection of fiber failure is not possible in a conventionally
homogenized approach where no measure of fiber bending exists. In a mi-
cropolar setting, however, the wryness quantifies curvature, thus, providing
a handle for the formulation of a fiber bending failure criterion in a homog-
enized context. Another direction for future work is the application of the
present approach to a realistic multi ply laminate modes with representative
misalignment topologies in a 3 dimensional setting. An apparent challenge
in this respect is that the mesh size is tied to the inherent length scale of the
problem, i.e. it should not exceed about 10 times the fiber diameter or else
the bandwidth cannot be resolved. Hence, the computational effort required
to solve a coupon sized laminate model is expected to be substantial.
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Chapter V.

Towards component scale, an outlook

V.1. Measurement and image processing techniques

In Chapter III, Sec. 2 a large scale/low cost method of acquiring misalignment data from optical images
on dry fiber material was presented. The foremost merit of this method is its ability to scan large areas
at low cost, which is of major importance for a possible future application in an industrial environment.
This aspect is also relevant for academic purposes, since it allows the collection of a large data set for
statistical analysis. However, the method also suffers from several disadvantages. One disadvantage is
that it operates on dry fiber material. he effects of compaction or infiltration on the misalignment require
further investigation. Another shortcoming of the current method is that the imaging data is 2d and
does not capture the out-of-plane undulation. An extension to 3d-surface data would be straightforward
by extending the sensory equipment, e.g. using stereoscopic imaging or by adding a laser altimeter. In
this way, out-of-plane undulations resulting from nesting effects in the layup of successive plies may be
captured. Volumetric data may be subsequently reconstructed from the surface data of the ply interfaces
in the laminate.

Processing of the image data obtained via such measurement may also be improved further. In
Chapter III, Sec. 4 it has been noticed that the method of inferring misalignment from the roving edge
used there tends to overestimate the misalignment. One particular reason for this overestimation was
that this method is susceptible to the split roving manufacturing imperfection that causes a discontinuity
in the detected roving edge, but does not necessarily cause a large misalignment of the actual fibers within
the split roving. Hence, it appears desirable to detect the fiber direction directly from the image data,
rather than infer it from the roving edge. As summarized in Subsec. I.3.1 and Chapter III, Sec. 1.3 the
development of image processing techniques to this end is a very active field of research. The application
of the method proposed in Ref. [Kratmann et al., 2009] is examined here, pars pro toto. This and
similar approaches operate on imaging data in frequency domain, hence there is a connection to the
spectral representation method for misalignment topologies discussed in Subsec. I.3.5. The technique
is demonstrated on a 2048 by 2048 pixel 8-bit gray scale image taken by a conventional camera, see
Fig. V.1(a). This raw image is subdivided into 32 by 32 tiles (indices K,L) of 64 by 64 pixels (indices
k, l) each, see (b). Within each tile, individual fibers or small bundles of fibers appear as faint dark
or bright streaks. Hence, the fluctuation of the gray value along the fiber direction is of much lower
frequency than the frequency perpendicular to it. This observation can be exploited to automatically
find the locally predominant fiber direction within each tile. The easiest way to do so is to transform
the tile image to frequency domain where, greater fluctuation in fiber perpendicular direction results
in a characteristic lobe of the spectral density perpendicular to the predominant fiber direction, see
(c). The orientation of this lobe can be algorithmically found by maximizing an objective function
z(ϕ̃) = S[r, s]w[r, s](ϕ̃) where w[r, s] is a rotating mask of weights, see (d) and (e). Eventually the
predominant fiber direction is found as the angle ϕ where z attains a maximum, see (f).

This method can be repeated for every tile K,L in the larger raw image (a). Several such images can
be joined together to cover an extensive 2d-domain. The method is very robust and is not susceptible
to other flaws or imaging artefacts like the black dot apparent in (b) Moreover, it succeeds even the tile
is partially covered by the stitching yarn that has its own predominant fiber direction different from the
roving’s fiber direction, see Fig. V.2. In (b) the tiles intersected by the stitching yarn stand out due to
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their much larger orientation angle ϕ[K,L]. In most applications, the stitching yarn orientation will not
be relevant and will be filtered out. The gaps left by the filtering were filled in by interpolation from the
neighbor tiles, see (c).
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Figure V.1.: An extended image processing technique on the same material as shown in Chapter III, Fig. 1. Image (a) shows
a region sized about 40 mm by 40 mm at a resolution of 2048 by 2048 pixels. It is subdivided into 32 by 32 tiles of 64
by 64 pixels each. One row and column of tiles is outlined by the 4 dotted lines. The image is encoded in the 8-bit gray
scale format, where black is corresponds to a numeric value of 0 and white to a value of 255. In (b) the tile K = 9,L = 5
is shown, see intersection of doted lines in (a). The spectral density of this tile is shown in (c), notice the inclined lobe.
The weighting matrix is shown in (d) and (e), and the objective function is shown in (f). A parallel to the identified fiber
direction at −8.2 ◦ is drawn in (b) as a dotted line.
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Figure V.2.: The same region as shown in Fig. V.1 is considered, and Subfigs. (a) are the same in both Figures. Subfig. (b)
shows the raw result of the tile-wise application of the procedure to find the predominant angle ϕ[K,L]. The tiles covered
by the stitching yarn stand out due to their large angle magnitude. In (c) all tiles with angles over 15 ◦ in magnitude
were filtered out and replaced by values interpolated from the remaining tiles. The angle ϕ is measured from the nominal
direction. The nominal direction is approximately, but not exactly, horizontal.

V.2. Surrogate modelling

Another avenue for further research follows the recent boom in machine learning techniques and regards
their application as surrogate models. The basic concept is to employ the surrogate to quickly predict
the expected strength from a measured misalignment topology, avoiding cumbersome discretization and
numerical modelling. A prospective application would depend on large scale/low cost imaging technology
similar to the one discussed in Sec. V.1 to acquire misalignment data, perhaps in a real-time industrial
application integrated with the production process.

The basic concept is elaborated here by referring to a 2d-misalignment topology. The first step is to
acquire a large set of training data of topologies f[k, l], see Subsec. I.3.5, and their associated strength
values. Since a huge data sets is required, the only feasible way of obtaining it is by numerical analysis.
Moreover, if the number of input parameters is too large, the training effort will be excessive, hence, it
is desirable to keep the number of input variables to a minimum. This may be accomplished by down-
sampling the fully resolved misalignment topology f[k, l] of size m by n to a coarser resolved topology
g[k, l] sized p < m by q < n. The coarsest admissible resolution is given by the auto-correlation length.
This matrix g[k, l] then forms the input of the neuronal network which is to predict a real valued strength
as the output, i.e. it is a model of the regression type. Problems where the input is provided via matrix
values are common in image analysis, and for this purpose particular architectures of neural networks
have emerged as pertinent. A common property of these architectures is that they involve one or several
of convolution and pooling layers ahead of a fully connected network, see Fig. V.3. The main purpose
of the convolution and pooling steps is to recognize particular features in the data, irrespective of the
position of the feature within the data. In the present context, the features to look out for are regions
of low local strength, either because of a large magnitude of misalignment at a particular location itself
or because of constructive interaction of the location with its neighbors. Constructive interaction occurs
when the direction of misalignment is the same within a local neighborhood, reducing the local strength,
recall Subsec. I.3.3. In the convolution layer, the weights of a kernel matrix are trained so to extract the
local severity. The size of this kernel determines how many neighbour pixels will be considered in this
assessment.

For demonstration, a simple numerical example with a input matrix g[k, l] of size p = q = 9 shall
be considered. For simplicity, periodicity is assumed so that g[k, l] = g[k + uq, l + vp] for any integers
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g̃[k, l] h[k, l] g
⊙
h pooling flatten 6 dense layers output

11× 13 100× 3× 5 100× 9× 9 100× 1× 1 100 2× 100+ 2× 50+ 2× 25 1

Figure V.3.: Convolutional network architecture; Symbols g[k, l], h[k, l], and g
⊙
h stand for the padded input matrix, the

kernel matrix, and their convolution, respectively. Network architectures specialized for image analysis often use several
staged convolution and pooling layers. The particular network shown here was used in the numerical example and contains
31.251 parameters to be trained, in total.

u, v. The kernel h[k, l] of the convolution layer was chosen to be of size 3 by 5, i.e. at each location two
neighbors left/right and 1 neighbor up/down, respectively, will be considered for constructive/destructive
interaction. In order to extend the convolution into the corners, the 9 by 9 matrix g[k, l] was padded in
a cyclic manner to render the 13 by 11 to matrix g̃[k, l]. In the first layer the convolution of g̃[k, l] with
100 separate kernels h[k, l] is performed, rendering the output g

⊙
h of dimensions 100 by 9 by 9. Each

of the 100 kernels is activated by a particular constellation of local interaction and the jth-kernel maps
the degree of severity of its constellation at a particular location k, l onto (g

⊙
h)[j,k, l]. A subsequent

maximum pooling layer selects the location k, l of maximal activation for each kernel j, thus ensuring
translation independence and reducing the output to a vector of length 100. This vector is then fed
into a dense network of 6 layers that eventually produces a singe output, the strength associated with
the input topology g[k, l]. To train the network, a reference dataset of 67.5k misalignment topologies
g[k, l] with a standard deviation of 2 were generated. The corresponding strength to each topology was
determined via finite element analysis. This dataset was then augmented by cyclic permutation and used
to train the neural network. Subsequent validation shows that the demonstration network has learned to
emulate the finite element reference model up to a mean absolute error of about 49.5 MPa, see Fig. V.4.
Material parameters and shear nonlinearity are constant in the training data, and predictions refer to
these material properties.
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Figure V.4.: Scatter plot of absolute error overpredicted strength for 22.5k validation topologies. Each point represents a
validation test. The mean absolute error is indicated by the dotted horizontal line at 49.5 MPa.
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19 H. Krüger Ein physikalisch basiertes Ermüdungsschädigungsmodell zur
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Anschrift Oberbach 7/3, A-6671 Weißenbach am Lech, Österreich
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