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Abstract. Scanning tunneling microscopy imaging of amorphous and
crystalline D,O ice on Cu(111) is discussed with respect to the apparent and
the real heights of these structures above the metal surface. The apparent height
increases linearly below the conduction band onset of amorphous ice and the first
image state of crystalline ice, respectively. However, it largely underestimates
the real height. For these voltages, histograms of the apparent height can be used
to identify different layers. The dependence of the apparent height on voltage
increases step-like up to the real height at the onsets of the first unoccupied
electronic state. Apparent height spectroscopy is utilized to relate the apparent
height to the real height of the different structures. The analysis reveals the
layering during growth of porous amorphous ice between 0.1 and 1.4 BL and
the dynamics of crystallization between 130 and 145 K.
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1. Introduction

Scanning tunneling microscopy (STM) of molecules produces images that reflect the local
electronic structure of molecules on a solid surface rather than their real-space configuration.
Since the first successful images of molecules by STM [1], it has been realized that the
measured height of molecules above a surface (apparent height) underestimates the real, i.e.
geometric, height. Some adsorbed molecules (e.g. oxygen on several surfaces [2] or CO on
Cu(111) [3]) are even imaged with a negative apparent height, i.e. as a depression in the metal
surface. In addition, some molecules change contrast (oxygen/Ag(100) [4, 5], water/Ag(111) [6]
and benzyne/Cu(111) [7]) from negative to positive apparent height as the bias voltage is
altered. The molecules in these examples were imaged at tunneling voltages within the highest
unoccupied molecular orbit (HOMO)-lowest unoccupied molecular orbit (LUMO) gap of the
molecule as are many loosely bound molecules. The discrepancy between the real and
the apparent height measured by STM further increases for increasing layer thickness [8].
The examples demonstrate the difficulty to determine geometric heights of molecular structures
from STM images.

The real height of layered insulating structures was determined by imaging at voltages,
which correspond to their conduction or valence band [9]. An equivalent method that images
the molecules at a voltage corresponding to their LUMO or HOMO [10] cannot be used for
molecules that are easily disturbed by the imaging procedure. Park et al used a combination
of STM with atomic force microscopy (AFM) to investigate the height of alkylthiol molecules
on Au(111) [11]. However, even heights determined by non-contact AFM should be interpreted
with caution because of residual electrostatic forces as demonstrated for Cgy on highly oriented
pyrolitic graphite (HOPG) [12].

An example for a molecule that is easily disturbed by the imaging procedure is water [6], a
molecule that forms extended hydrogen-bonded networks often named ‘bilayer ice’. A bilayer
corresponds to one (0001) plane of bulk ice Ih [13], which consists of hexagonal rings. Three
water molecules in each ring are bound via the lone-pair orbitals of the oxygen to the surface.
Another three water molecules above them complete the hydrogen bonded ‘bilayer’ structure.
Alternating molecules within the hexagonal rings are raised or lowered by 48 pm relative to
the central plane to give the proper tetrahedral bonding angles. Hexagonal ice islands were
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found on hexagonal surfaces for submonolayer coverages in islands of different dimensionalities
[14, 15]. On Cu(111), we found crystalline ice islands based on the bilayer structure at around
1 BL coverage [16]. To our knowledge, the apparent height of these and other water structures
has not yet been investigated systematically.

In this paper, we discuss details of STM imaging of both amorphous and crystalline ice
(D,0) structures on Cu(111) presented with a different focus in short articles before [16, 17].
Here, we first discuss the coverage dependence of the amorphous ice by analyzing apparent
height histograms. We then give details about the formation of different ice structures at
temperatures between 118 and 145 K. This part of the study gives insight into the kinetics
of crystalline ice formation. We introduce an apparent height spectroscopy that allows the
determination of the real height of the structures. The apparent height spectroscopy should be
applicable to other molecular structures that are sensitive to the imaging process.

2. Experimental section

The experiments were performed with a custom-built low-temperature STM [18]. The STM
facilitates measurements at 0.5 pA. This low current is important for this study because of the
large difference between apparent and real height of more than 1nm for the ice structures
that demands a large surface—tip distance to avoid crashing the tip into the structures. The
STM is housed in an UHV chamber with standard facilities for sample cleaning. Its base
pressure is below 107! mbar.

The single crystalline Cu(111) surface is cleaned by cycles of Ne™ sputtering and annealing.
The D,0 is degassed in vacuum through freeze-thaw cycles. To minimize deposition of H,O
from the stainless steel walls of the vacuum chamber by exchange reaction, it is flushed with
D,0 prior to deposition. The D,O is brought directly to the surface held at 88 K through a
molecular tube doser with a rate of 0.3 BL min™".

Measurements are performed at 5 K in constant current mode. Voltages are applied to the
sample with respect to the tip. STM images are displayed in gray scale such that darker (brighter)
corresponds to approach (retraction) of the tip to (from) the sample and thus smaller (larger)
apparent height.

Images were taken in the course of 11 months and thus with a large variety of tips, both
on the microstructure level and on a macroscopic level. From the thousands of images the ones
shown here were chosen to represent a large variety of voltage and current combinations.

The STM images consist typically of 512 pixel by 512 pixel. We determine a pixel
histogram with WSxM, a freeware program from Nanotec Electronica S.L.

3. Results and discussion

3.1. Ice structures on Cu(111) at different annealing temperatures

We first review the different structures that form between 88 and 145K [16, 17]. Adsorption
of approximately 1 BL of D,O on Cu(111) at 88 K leads to a porous form of amorphous ice.
This amorphous ice (figures 1(a) and (b)) is characterized by small separated clusters without
long-range order.

Annealing at 118 K results into compact amorphous ice (called amorphous solid water,
ASW, figure 1(c)). This form of amorphous ice differs from the ice deposited at 88 K
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Figure 1. STM images of 1.1 BL of (a,b) porous amorphous ice as deposited
at 88K, (c) amorphous solid water obtained by flashing to 118K, (d) ice
crystallized by annealing at 130 K and (e) ice crystallized by annealing at 145 K;
lines in (d,e) mark direction of ridges; surface directions are indicated in (f) and
are identical in all images: (a) 1.1 pA, 140mV; (b) 0.95 pA, 133 mV; (c) 10 pA,
55mV; (d) 330 pA, 241 mV; (e) 1.4pA, 1.45V; (f) top view and side view of
ridges; hexagonal grid in top view represents underlying bilayer structure; solid
circles denote molecules in the third bilayer, open circles those in the fourth
bilayer.

by a smaller apparent volume without desorption as verified by mass spectrometry. The
change in volume is deduced from larger areas of exposed surface without an increase in
apparent height (see below). Further annealing leads to crystalline ice that consists of bilayer
structures terminated by facets equivalent to Th{1110} or Ic{221}. The facets form solely
ridges after annealing at 130K (figure 1(d)) and additional truncated pyramids above 145K
(figure 1(e)) [16]. A structural model of the ridges is shown in figure 1(f). They consist of two
complete bilayers with the same buckling and lattice constant as a non-supported Ih crystal, one
partial bilayer, and an additional row of molecules with (2 x 1) arrangement, i.e. 3.5 BL in total.
The partial bilayer in connection with the additional row of molecules form facets of Ih{1101}
or Ic{221}. Two opposite facets form ridges that are visible as stripes in the STM image. The
ridges and the sides of the pyramids are in parallel to the (112)-direction of the Cu(111) surface.
This indicates commensurate growth.

New Journal of Physics 11 (2009) 093015 (http://www.njp.org/)
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Figure 2. STM images of porous amorphous ice grown at 88 K at different
coverage (left row) with line scans (middle row) as indicated in the STM images,
and histograms of line scans (right row); arrows mark maxima (a) 0.13 BL,
140 mV, 8.0 pA; (b) 0.45BL, 100mV, 6.6 pA; (c) 0.82BL, 310mV, 1.0 pA; (d)
1.1 BL, 210mV, 1.1 pA; (e) 1.4 BL, 140mV, 1.1 pA.

3.2. Apparent height of as deposited ice

After this short review, we first analyze the apparent height of the porous amorphous ice at
different coverages (figure 2). The line scans demonstrate an overall increase in average apparent
height with increasing coverage (figure 2, middle row). Such a line scan is analyzed by counting
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the pixels of it at a certain height and display this count in the form of histograms (figure 2,
right row). At the lowest coverage of 0.13 BL (figure 2(a)) the histogram of such a line scan
displays only one maximum at 0.15 nm, though the line scan itself reveals already growth in
the next layers. For 0.45BL (figure 2(b)), we observe three types of clusters. The smallest
clusters are similar to the ones already observed at the lower coverage and would give rise
to the same maximum in the histogram of a line scan. Two of those and one of the largest ones
are encircled in figure 2(b). The largest clusters resemble those at higher coverage (see below).
The majority of the clusters are in height and size in between these two types and the line scan
over these (figure 2(b)) reveals a maximum at around 0.2 nm. At 0.82 BL, the smallest type of
the clusters is rare and the two larger types coexist. A line scan crossing these (figure 2(c)) leads
to a histogram with two maxima at 0.2 and 0.25 nm. The smallest type of islands is no longer
observable at 1.1 or 1.4 BL. The histograms of the line scans show the same maxima as before.
In summary, line scans of the porous amorphous ice structures show maxima at approx. 0.15,
0.2 and 0.25 nm. The existence of the maxima suggests that the molecules have some surface-
induced vertical order up to three distinct layers. Similar ordering was observed for fluid water
close to a surface [19]-[21].

The first maximum is with 0.15nm considerably lower than the distance of a single
molecule above the surface [22]. The next two layers have an apparent height of 0.05 nm each.
It is expected that additional insulating ‘layers’ have decreasing apparent height. However,
this is not observed for the third layer. The decrease might be undetectable within the error
bar. Alternatively, it might indicate that the layer thickness increases with increasing distance
from the surface. This is again in analogy to fluid water [19]-[21]. Note that the maxima shift
slightly to higher values at higher voltage and that the maxima vary in position for the different
histograms.

3.3. Apparent height of annealed ice

We now investigate the apparent height of the annealed structures (figures 1(c)—(e)) by analyzing
STM images that show molecular resolution in the top layer (e.g. figures 3(a) and (b)). In this
investigation, we concentrate on a fixed coverage of 1.1 BL, because a variation in coverage
is found to change the lateral dimension of the structures but not their structure. The analysis
reveals details on the mass transport during annealing.

The white circular protrusions show no order (figure 3(a)) indicative of amorphous ice.
Their diameter of 0.6—-0.7 nm identifies them as single molecules [15, 23]. Those protrusions
that are not circular or show a larger diameter are several molecules that are too close to each
other to be imaged as separate molecules.

The pixel histogram of the ASW ice shows two maxima at 0.16 and 0.24 nm with respect to
the surface maximum at O nm (figure 3(c)). The values are the same as for the porous amorphous
water. We thus attribute the maxima to molecules that are in the first and second bilayer above
the surface. In contrast to porous amorphous water at the same coverage (cf figure 2(d)), there
are almost no molecules observed in the third layer (at &~ 0.3 nm). As no material has been
desorbed and the water uncovered surface area has increased (see above) the amorphous ice
adsorbed at 88 K must have been porous. The existence of such a porous form of amorphous
ice was proven by N, adsorption—desorption experiments for ice grown on Pt(111) [24]. It was
explained by a hit-and-stick deposition. In figure 2, however, the number of identifiable layers
does not increase between 0.45 and 1.4 BL. This points to a certain lateral transport already
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Figure 3. Comparison of ASW ice (a) and just crystallized ice (b): (a) adsorbed
at 88 K and flashed to 118 K, 56 mV, 10 pA; (b) adsorbed at 88K and flashed to
130K, 125mV, 3 pA. (c) Height histogram of pixels in STM images; triangles
from (a), squares from (b); vertical lines mark maxima of a multiple Gaussian fit.

at 88 K. Such a transport is consistent with the observed gradual decrease of porosity with
temperature in [24]. A possible explanation is that more than one hydrogen bond has to be
formed, before the molecule ‘sticks’. Amorphous solid water was also found to grow layer-
by-layer at least the first three layers on Pt(111) [25]. In difference to the ice on Cu(111), the
ice wets Pt(111) facilitating to determine this layering by temperature programmed desorption
experiments. The experiment on Cu(111) here thus demonstrates that layering does not require
a wetting layer.

We observe here that the collapse of the pores is accompanied by a coarsening of the islands
and thus that the ice does not only rearrange within the clusters but also diffuses over the surface.
The form of the clusters (figure 1(c)) indicates a dominance of Smolouchowski coarsening.

We next flash the sample to 130 K. After this flash some part of the top structure shows
long-range order (figure 3(b), left-hand side). In the height histogram (figure 3(c)), the lowest
value of 0.16 ML disappears. Two higher values develop at 0.3 and 0.38 nm (figure 3(c)). We
infer that the structure is up to four bilayers high and the two lowest ones have the same lateral
size. Most of this double bilayer is covered by the facet such that the remaining peak at 0.24 nm
is rather small. Separate histograms of image sections allow us to attribute the peak at 0.3 nm
to the facetted part of the cluster on the left-hand side of the image and the one at 0.38 nm to
the not yet ordered part of the cluster at the right-hand side of the image. We conclude that (a)
molecules are transported into higher layers during crystallization and (b) first a double bilayer
is formed at the water—metal interface and only subsequently the top layer orders.

After complete faceting of the top layer (figure 4(a)) the peak attributed to the unordered
top structure disappears. The peak at 0.27 nm shows clear deviations from the single Gaussian.
In the higher resolution histogram of the top layer only, two shoulders to the left and the right
of the main peak at 0.23 and 0.3 nm, respectively, are discernible.

The layering is less obvious in the height histograms of figures 4(b) and (c) for facetted
structures, because molecules from partially filled bilayers contribute to the image. This is
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Figure 4. Completely crystallized ridges structure, adsorbed at 88 K and
annealed at 130 K: (a) STM image, 4.4 pA, 114 mV; (b) height histogram of total
image (a); (c) height histogram of partial image on ice island (d) line scan across
facet as indicated in STM image, 0.18V, 2.5 pA, and compared to molecule
position in model of facet; position of the arrows result from fitting Gaussians to
the line scan (e) STM image, 8.7 pA, 1.02 V (f) height histogram of (e).

demonstrated in the line scan shown in figure 4(d). Based on the model of the ridges shown
in the inset we infer that seven molecules at three different heights influence this specific height
profile. Similar line scans are observed in other directions and demonstrate the origin of the
broad peak in figure 4(c).

Again, the apparent heights in the histograms are obviously too small to represent
geometric heights.

As noted above for the amorphous ice, the exact positions of the maxima in the histograms
are voltage dependent. At approximately five times the voltage (figures 4(e) and (f)) the main
peak is again clearly a multiple peak, which is centered at 0.35 nm.

We finally report that further annealing leads to further maxima in the curves because of
the formation of pyramids (figure 5). The maxima for the pyramids are at 0.49 and 0.63 nm. The
0.33 nm peak results from the ridges structure.

Pyramids of three different base lengths exist (figure 5(c)). The height thereby increases
with increasing base length. The 3D view in figure 5(d) shows best that the pyramids are all
truncated. The image used for the pixel histogram in figure 5(b) shows one pyramid of type 3,
four pyramids of type 2 and one pyramid that just converts from type 1 to type 2. The two
additional peaks at 0.5 and 0.63 nm are thus attributed to two and three additional bilayers
above the double bilayer. 64% of more than 300 pyramids have a base length of (4.3 +0.3) nm,
corresponding to ten ice unit cells. 21% of the pyramids have a base length of (2.7 £0.2) nm,

New Journal of Physics 11 (2009) 093015 (http://www.njp.org/)
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Figure 5. Pyramidal structure on top of ridges, adsorbed at 88 K and annealed at
145 K: (a) STM image 1.9 pA and 1.02 V; (b) height histogram of (a); (¢) STM
image, 1.4 pA, 1.73V; (d) 3D image of (c) indicating the three most common
types of pyramids; (e) distribution of islands of different types; gray shades
represent average heights above the complete double bilayer.

i.e. six ice unit cells, and 15% of (6.0 £0.2) nm, i.e. 14 unit cells. We propose that the distinct
base lengths are a result of proton ordering [26]. Figure 5(e) shows the size distribution of the
pyramidal islands and the number of bilayers for the pyramids of a certain base length.

The discussion of the apparent heights of the different structures demonstrates that we
may follow qualitatively the development of the structure’s height by analysis of the image
histograms provided we use a similar bias voltage. Thereby, we attribute each additional
maximum to an additional (bi-)layer. However, the apparent height depends on voltage and
the question remains to which real heights the thus determined layers correspond.

3.4. Apparent height spectroscopy

In principle, it should be possible to measure the real height by imaging the ice at voltages
beyond the onset of either the conduction band [17] or the valence band [27]. However,
acquiring complete STM images above the conduction band onset is obstructed here, because
the electron sensitivity of the structures leads to damage, in particular at high voltage [23, 28].
We thus employ a different strategy. Fast scanning allows to take several lines of an image
before the first destruction event. From those partial images, we determine the average apparent
height of the ice islands.

The destruction event (desorption, hydrogen bond rearrangement, or dissociation, see
[23, 28, 29]) usually leads to a considerable change in ice structure. Thus, each data point is
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Figure 6. Average apparent height as a function of tunneling voltage for islands
of amorphous ice at 1.8 pA (a, adapted from [17]) and of crystalline ice; I =
0.5pA, 1.1 BL (b), (c,d) are (a,b) after subtraction of the first linear increase
shown as solid lines in (a,b); (c) is fitted by one Boltzmann function rising at
3.154£0.02V with a width of 0.2V; (d) is fitted by two increases at 2.67 and
3.18 'V, with a smaller width of approx. 0.05 V.

taken at a different spot of the surface. At this pristine spot of the surface, first an image is taken
at non-destructive tunneling parameters to ensure that the structures are indeed unperturbed.
Then this spot is imaged at the voltage of interest.

The average apparent height is displayed against voltage in figure 6 for one of the
amorphous and one of the crystalline structures. For the amorphous structure, we investigate the
porous amorphous ice (figure 6(a)) and the ridges without pyramids for the crystalline structure
(figure 6(b)). Note that the value displayed in figure 6 is comparable to the mean of the Gaussian
peak in a histogram (e.g. in figure 4(c)).

There are several similarities in the apparent height versus voltage curves of amorphous
and of crystalline ice. Both show a quasi-linear increase up to 2 'V, a region of strongly enhanced
increase up to 3.3V, and again a less strong increase above 3.3 V. In the nonlinear region, the
spectra differ.

In the case of amorphous ice, the apparent height is linear up to 2.4V with a slope of
0.058nm V~! (figure 6(a)). The deviation from this constant slope can be well fitted by a
Boltzmann curve at (3.15 £ 0.02) V with a width of 0.2 V (figure 6(c)).

For the crystalline ice, the increase is more complex (figure 6(b)). The increase is linear
only up to approximately 2 V with a smaller slope of 0.04 nm V~!. There is another region of
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linear increase up to approx. 2.8 V, with a much higher slope of 2.2 nm V~!. Two Boltzmann-like
increases are situated at 2.67 and 3.18 V (figure 6(d)).

The apparent height of a water bilayer on Pt(111) was found to change by ~ 0.02 to
0.035nm V~! at 0.2nA in the gap region up to £2V [30]. The change is thus in the same
order of magnitude as found here, though the current is lower, the coverage higher, and we
investigate a different surface. Though the number of data points in the earlier work does not
allow to identify a linear dependence, the comparison suggests that the linear increase might not
be restricted to the specific system on Cu(111).

The strong increases observed here on Cu(111) at higher voltage can be partly understood
by the electronic band structure as measured in two-photon photoemission [31, 32]. Crystalline
ice exhibits the first image potential state at 3.1 eV. Amorphous ice exhibits an energetically
broad conduction band with an onset at 3 V with many defect states within the gap because of
the disordered structure. Both are delocalized states and are involved in the transfer of electrons
from the metal to the ice layer in femtosecond laser excitation experiments. Therefore, the
increase at 3.15eV for the amorphous ice is attributed to its conduction band onset; defect
states are not observed for this form of ice in apparent height spectroscopy. The second increase
at approx. 3.2 V above the crystalline ice is consistent with its first image potential state.

Static local variations in the molecular environment are known to lead to localized
electronic states below the conduction band [33]. The first increase in the apparent height
spectrum above the crystalline ice at 2.7V is thus attributed to defect states that result from
the facets. The defects arise, because molecules have one to four hydrogen bonds within the
facets. The different slope of the linear increase beyond 2 V could be related to an additional
tunneling channel in STM and is thus not intrinsic to the ice structure.

We finally relate the heights measured beyond the strong increase to the layering revealed in
the height histograms of images taken in the gap. For amorphous ice, the three fluid-like layers
identified in figure 2 corresponds to 1.1 nm giving a reasonable average distance of 0.37 nm
between the layers. For crystalline bilayers, the distance between two layers is 0.368 nm and the
distance of the first bilayer above the surface is 0.31 nm [22]. We thus expect geometric heights
of 0.68 nm for the double bilayer, 1.05nm for the third, and 1.41 nm for a complete fourth
bilayer. The ridges with an average geometric height of (1.18 £0.02) nm thus correspond to
3.5 bilayers. This is in perfect agreement with the ridges model. The same kind of analysis
reveals a height of 1.5 nm for the pyramids.

We also tried to follow the same strategy in the negative voltage range, where the same
effect should be observable at the onset of the valence band, expected beyond the ice gap below
—5eV. However, our tip was not stable enough to support such a high voltage. In contrast,
Thiirmer and Bartelt were able to image up to 30 BL of ice on Pt(111) by imaging at —6 'V, the
voltage of the first occupied states of ice in contact with platinum [27].

4. Conclusion

We investigated the ice structures that form on Cu(111) between 88K and the desorption
temperature. For the porous amorphous form of ice, we follow the growth between 0.1 and
1.4 BL. This amorphous ice shows a layering. Thereby, the number of layers is three inbetween
0.45 and 1.4 BL indicative of lateral molecule transport at 88 K. At 118 K, the collapse of the
pores to amorphous solid water is accompanied by coarsening of the islands, indicative of the
motion of ice clusters over the surface. During crystallization at 130 K an upward transport
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of the molecules into higher layers is observed. Restricted to 1.2 nm above the surface for the
ridges, this upward transport is increased during annealing at 145 K to 1.5 nm.

The real heights and corresponding number of bilayers above the surface were determined
by apparent height spectroscopy. The latter was introduced here and rules out a possibility to
determine the real height even when imaging the molecule within the HOMO-LUMO gap for
both crystalline and amorphous ice structures. Above the first electronic state, the height values
are very close to real heights, while the apparent height of the structures is only about one-third
of their real height, when imaged within the gap. The apparent height spectroscopy should not be
restricted to the system investigated here, but applicable to other molecular islands and clusters
adsorbed on metal surfaces that are sensitive to electron damage provided that the density of
states of metal and the overlayer are similar as in the case of water on copper [34, 35].
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