
Sparse Representations and Harmonic Wavelets for
Stochastic Modeling and Analysis of Diverse
Structural Systems and Related Excitations

Von der Fakultät für Bauingenieurwesen und Geodäsie

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor der Ingenieurwissenschaften

Dr.-Ing.

genehmigte Dissertation

von

George D. Pasparakis



Referent: Prof. Dr.-Ing. Michael Beer

Korreferent: Prof. Antonina Pirrotta

Mitglied der Kommission: Prof. Dr.-Ing. habil. Christian Heipke

Tag der Promotion: 21.11.2022



Erklärung

Ich erkläre hiermit, dass die in dieser Dissertaion vorgestellten Ergebnisse auf meiner eigenen

Arbeit beruhen und dass ich keine Arbeiten andere Personen vorgelegt habe und dass ich in allen

Fällen, in denen ich auf Arbeiten anderer Personen Bezug genommen habe, diese in vollem Umfang

und in angemessener Weise angegeben habe.

George D. Pasparakis

Oktober 2022





i

Kurzfassung

In dieser Dissertation werden neuartige analytische/rechnerische Ansätze vorgeschlagen, um ver-

schiedene Themen im Bereich stochastischer Schwingungen zu behandeln. Das erste Thema bet-

rifft die Bestimmung der stochastischen Systemantwort mit singulären Parametermatrizen. Solche

Systeme erscheinen als Anhaltspunkt, wenn ein redundantes Schema zur Modellierung von Ko-

ordinaten verwendet wird. Dies ist oft mit einem rechnerisch kosteneffizienten Lösungskonzept

und einer flexiblen Modellierung zur Behandlung komplexer Systeme verbunden. Ferner sind

Strukturen Umweltanregungen ausgesetzt, wie etwa Bodenbewegungen, die typischerweise nicht-

stationäre Eigenschaften aufweisen.

In diesem Zusammenhang wird im Rahmen der Verbund-Zeit-Frequenz-Analyse ein kürzlich en-

twickeltes Generalized-Harmonic-Wavelet (GHW)-basiertes Lösungsverfahren in Verbindung mit

Methoden aus der Generalized-Matrix-Inverse-Theorie eingesetzt. Dies führt zu einer Verallge-

meinerung früherer Anregungs-Antwort-Beziehungen der stochastischen Schwingungstheorie, um

Systeme mit singulären Matrizen zu berücksichtigen. Auf harmonischen Wavelets basierende

statistische Linearisierungstechniken werden auch auf den Fall von nichtlinearen Multi-Degree-of-

Freedom (MDOF)-Systemen mit singulären Matrizen ausgedehnt. Die Genauigkeit des vorgeschla-

genen Schemas wird weiter verbessert, indem frühere Annahmen zur „lokalen Stationarität“ über

die Antwort umgangen werden. Darüber hinaus wird das Verfahren allgemein durch die Berück-

sichtigung von Gleichungen unter Zwangsbedingungen verbessert. Hierdurch können generell

beschränkte System mit singulären Matrizen behandelt werden. Dazu gehören beispielhaft gekop-

pelte elektromechanische Gleichungen, wie sie in der Energiegewinnung vorkommen, und Oszil-

latoren, die nicht-weißen Anregungen unterliegen, welche über Hilfsfiltergleichungen modelliert
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werden.

Das zweite Thema betrifft die probabilistische Modellierung von Anregungsprozessen bei fehlen-

den Daten. In diesem Zusammenhang wird eine Compressive-Sampling-Methodik zur unvoll-

ständigen Rekonstruktion und Extrapolation von Windzeitverläufen in einer einzigen räumlichen

Dimension sowie die damit verbundene statistische Schätzung stochastischer Felder entwickelt.

Als nächstes wird ein alternatives Verfahren entwickelt, dass auf Matrizen mit einem niedrigen

Rang und der Nuclear-Norm-Minimierung für die Windfeldextrapolation in zwei räumlichen Di-

mensionen basiert. Das vorgeschlagene Framework kann für die Überwachung von Windenergiean-

lagen unter Verwendung von Informationen aus wenigen gemessenen Standorten sowie im Zusam-

menhang mit der leistungsbasierten Entwurfsoptimierung von Struktursystemen eingesetzt werden.

Das dritte Thema beschäftigt sich mit datengetriebenen Sparse-Identification-Methoden der nicht-

linearen Dynamik. Insbesondere wird eine Bayesian-Compressive-Sampling Technik unter Ver-

wendung gemessener Antworten entwickelt, um die maßgeblichen Gleichungen von stochastisch

angeregten strukturellen Systemen zu bestimmen. Diese weisen verschieden nichtlineare Verhal-

tensweisen auf und/oder sind ausgestattet mit Elementen von fraktionaler Ableitungen. Verglichen

mit alternativen Schemata, die dem Stand der Technik entsprechen und deterministische Schätzun-

gen für ein identifiziertes Modell liefern, weist die hier entwickelte Methodik weitere Eigenschaften

für dünne Besetzungen auf und ist in der Lage, die mit der Modellschätzung verbundene Unsicher-

heit zu quantifizieren. Dies bietet ein quantifizierbares Maß an Konfidenz bei der Verwendung des

vorgeschlagenen Frameworks als Vorhersageinstrument.

Schlagwörter: stochastische Schwingungen, singuläre Parametermatrize, stochastische Dynamik,

Harmonic-Wavelet, Moore–Penrose inverse, probabilistische Modell, Stochastisches Feld, Com-

pressive -Sampling, Nuclear-Norm-Minimierung, Windfeldextrapolation, Energiegewinnung.
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Abstract

In this thesis, novel analytical and computational approaches are proposed for addressing several

topics in the field of random vibration. The first topic pertains to the stochastic response deter-

mination of systems with singular parameter matrices. Such systems appear, indicatively, when

a redundant coordinate modeling scheme is adopted. This is often associated with computational

cost-efficient solution frameworks and modeling flexibility for treating complex systems.

Further, structures are subject to environmental excitations, such as ground motions, that typically

exhibit non-stationary characteristics. In this regard, aiming at a joint time-frequency analysis of

the system response a recently developed generalized harmonic wavelet (GHW)-based solution

framework is employed in conjunction with tools originated form the generalized matrix inverse

theory. This leads to a generalization of earlier excitation-response relationships of random vi-

bration theory to account for systems with singular matrices. Harmonic wavelet-based statistical

linearization techniques are also extended to nonlinear multi-degree-of-freedom (MDOF) systems

with singular matrices.

The accuracy of the herein proposed framework is further improved by circumventing previous

“local stationarity” assumptions about the response. Furthermore, the applicability of the method

is extended beyond redundant coordinate modeling applications. This is achieved by a formulation

which accounts for generally constrained equations of motion pertaining to diverse engineering ap-

plications. These include, indicatively, energy harvesters with coupled electromechanical equations

and oscillators subject to non-white excitations modeled via auxiliary filter equations.

The second topic relates to the probabilistic modeling of excitation processes in the presence of

missing data. In this regard, a compressive sampling methodology is developed for incomplete
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wind time-histories reconstruction and extrapolation in a single spatial dimension, as well as for

related stochastic field statistics estimation. An alternative methodology based on low rank ma-

trices and nuclear norm minimization is also developed for wind field extrapolation in two spatial

dimensions. The proposed framework can be employed for monitoring of wind turbine systems

utilizing information from a few measured locations as well as in the context of performance-based

design optimization of structural systems.

Lastly, the problem of with data-driven sparse identification methods of nonlinear dynamics is con-

sidered. In particular, utilizing measured responses a Bayesian compressive sampling technique

is developed for determining the governing equations of stochastically excited structural systems

exhibiting diverse nonlinear behaviors and also endowed with fractional derivative elements. Com-

pared to alternative state-of-the-art schemes that yield deterministic estimates for the identified

model, the herein developed methodology exhibits additional sparsity promoting features and is

capable of quantifying the uncertainty associated with the model estimates. This provides a quan-

tifiable degree of confidence when employing the proposed framework as a predictive tool.

Keywords: random vibration, singular parameter matrices, stochastic dynamics, harmonic wavelet,

Moore–Penrose inverse, probabilistic model, stochastic field, Compressive-Sampling, nuclear norm

minimization, wind field extrapolation, energy harvesting.
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Chapter 1

Introduction

1.1 Motivation

Structural dynamics is concerned with the prediction and analysis of the vibration response of me-

chanical and structural systems subjected to dynamic loading. The primary quantities of interest

are, typically, system displacements, accelerations and strains, which are a result of the applied

excitation and the induced internal forces of the system. Assessing whether these responses reach

and/or cross predetermined safety margins is a critical task of response analysis. Among others, this

enables evaluation of the reliability of the structure, prediction of its expected lifetime and develop-

ment of cost-effective designs. Until recently, engineers regarded vibration response to be periodic

and deterministic. However, during the 1950s, the need to predict complex vibration behavior of

aircraft components motivated a probabilistic treatment of vibration problems (Davenport, 1961;

Roberts and Spanos, 2003). In particular, irregularity and lack of repeatability of the response

under identical conditions was attributed to the random nature of the applied excitation. It subse-

quently became evident that both the excitation and the response can be modeled as realizations of

a stochastic process and are amenable to statistical analysis in the average sense. Further, earlier

contributions in the physics of Brownian motion (Einstein, 1905; Fokker, 1913; Ornstein, 1927),

probability theory (Kolmogoroff, 1931; Wiener, 1930; Khintchine, 1934) and information theory

(Rice, 1944; Bendat and Turin, 1959) provided readily available mathematical tools, and gave rise

to the field of Random Vibration; see, for instance, Refs. Crandall (1958); Elishakoff (1999); Lin

(1967); Roberts and Spanos (2003).

1
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Similar to classical vibration theory, structural components are represented by mathematical mod-

els specified by a set of parameters whereas excitation-response relationships are given in the form

of differential equations. The irregularity of the response can be generally attributed to two sources

of uncertainty (Ghanem and Spanos, 2003). The first one relates to the randomness of the model

parameters as a result of manufacturing tolerances, variability in the material properties and uncer-

tainty in the geometry, etc. Aiming at quantifying this form of uncertainty, the system parameters

can be modeled as random variables and/or random fields (Ghanem and Spanos, 2003; Stefanou,

2009) although alternative approaches have been recently reported to this end (Moens and Vande-

pitte, 2006). The second source of uncertainty is induced to the system by the applied excitation,

which is modeled in a probabilistic framework as a stochastic process. The objective of Random

Vibration theory is oriented towards characterizing the system response in terms of low-order sta-

tistical moments (mean, variance, etc.) and (ideally) via the specification of the probability density

function (PDF), depending on the complexity of the problem.

1.2 Nonlinear random vibration

Several numerical and analytical solution frameworks have been developed over the past decades

for determining statistical moments of the system response with various degrees of accuracy and

computational efficiency (Ibrahim, 2008; Grigoriu, 2013; Kougioumtzoglou and Spanos, 2013b;

Crandall and Mark, 2014). Obtaining an analytical solution for the case of linear, deterministically

defined systems subject to stationary Gaussian excitation is a straightforward task. Arguably, one

of the most widely used techniques is the frequency domain analysis where the stochastic process

is characterized in terms of a power spectral density function (PSD). The response PSD is obtained

by linear input-output relationships, which can be efficiently computed by employing fast Fourier

transform (FFT) algorithms. Further, physically significant information can be directly inferred

from the PSD and well established, deterministic methodologies can be directly extended for ad-
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dressing stochastic excitation problems.

Notwithstanding their importance, frequency domain methods are not applicable in nonlinear

stochastic phenomena which commonly arise in engineering applications. Typical examples in-

clude nonlinear random rocking (Lin and Yim, 1996), flow induced forces (Morison et al., 1950)

and geometric stiffness nonlinearities (Mignolet et al., 2013). However, the number of pertinent

analytical solution frameworks is rather limited and research efforts have been directed towards

developing approximate schemes and numerical simulation methods. These include, indicatively,

statistical linearization (Roberts and Spanos, 2003; Socha, 2007), stochastic averaging techniques

(Roberts and Spanos, 1986), stochastic equivalent non-linearization (Cai and Lin, 1988), pertur-

bation methods (Nayfeh and Mook, 2008), recently developed path integrals approaches (Naess

and Johnsen, 1993; Katsidoniotaki et al., 2022; Petromichelakis and Kougioumtzoglou, 2020) and

Monte Carlo simulation (MCS) (Rubinstein, 1981). Among these, MCS is the only method that

yields response statistics estimates with a prescribed degree of accuracy by means of a number of

statistical experiments. However, computational costs become prohibitive for an increasing num-

ber of degrees-of-freedom (DOF), expecially for high degrees of nonlinearity. Overall, it can be

argued that statistical linearization is among the most versatile methods, providing a straightfor-

ward approximation for low order statistics for a broad class of MDOF nonlinear problems. This

is achieved by replacing the original nonlinear equations with a set of equivalent linear equations

based on diverse minimization criteria (Elishakoff et al., 2009). Thus, a direct implementation of

standard input-output frequency domain approaches is admissible.

1.3 Time-frequency response analysis

In addition to nonlinear behavior, signal non-stationarity poses a notable challenge towards quan-

tifying the system response. Environmental excitations, such as ground motions, typically exhibit

time-varying frequency content whereas structural response has transient characteristics. In this
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regard, conventional Fourier analysis is not well suited for localizing these temporal variations

since the frequency distribution of the signal is averaged over the entire time domain. Fourier

transform (FT) variants, e.g., the Short-time Fourier transform (STFT), have also found limited

application. In this case, the FT is performed on piecewise segments of the signal, a process also

called windowing, which yields a fixed resolution in frequency as dictated by Heisenberg’s uncer-

tainty principle. Alternative tools such as the Gabor transform provide lower uncertainty bounds

by utilizing a Gaussian function as the window function. However, Gabor bases lack orthogonality,

completeness and independence properties that are necessary for obtaining signal representations

in a straightforward manner (Goswami and Chan, 2011). Compared to the previously mentioned

transforms, the Wigner–Ville distribution yields the highest possible time-frequency resolution.

This is achieved via a FT of the correlation function, which is expressed in terms of time averages

(Cohen, 1995). The applicability of this transform is nonetheless limited as a result of the introduc-

tion of arbitrary correlation terms between signal components. Arguably, transforms originating

from wavelet theory address the aforementioned limitations and have been extensively employed

in various scientific disciplines.

1.3.1 Review of wavelets-based techniques

Recently developed wavelet-based tools permit a multi-resolution analysis, whereby different fre-

quencies are analyzed with different resolution. Wavelets are oscillatory functions, localized in

time and frequency. They are generated by dilating and shifting a “mother” function and offer a

time-scale signal decomposition where scale is defined as the frequency equivalent. Large scales

reveal global features in the signal and small scales are associated with detailed characteristics.

Despite earlier developments, wavelet analysis attracted noteworthy attention in the 1980s, initially

in geophysics (Morlet et al., 1982) and theoretical physics (Grossmann and Morlet, 1984). Most

notably, the work of Mallat (Mallat, 1988) formalized the systematic construction of an orthog-

onal wavelet basis and the work of Daubechies (Daubechies, 1988) provided conditions for the
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formulation of compactly supported orthonormal wavelet bases. Following these breakthroughs, a

theoretical framework was established (see Refs. Daubechies (1992); Mallat (1999); Goswami and

Chan (2011) for some indicative textbooks), and since then, wavelets have been utilized in diverse

fields of science (Addison, 2017). In regard to structural mechanics, wavelets have been used in

system identification (Staszewski, 1997; Ghanem and Romeo, 2000; Kijewski and Kareem, 2003;

Kougioumtzoglou et al., 2017a), seismic response analysis (Basu and Gupta, 1997, 1998), stochas-

tic processes representation (Spanos and Failla, 2004; Liang et al., 2007; Wang et al., 2022) and for

studying wind effects on structures (Kareem and Kijewski, 2002; Kareem and Wu, 2013).

1.3.2 Harmonic wavelets-based response determination

There exist numerous wavelet families tailored to specific applications. Harmonic wavelets devel-

oped originally by Newland (Newland, 1993, 1994), are the most potent tool for time-frequency

analysis in vibration problems due to several appealing properties. First, they posses a box-like

frequency spectrum in non-overlapping frequency bands, which enables accurate estimation of the

power spectrum. This resolution can be varied throughout the signal yielding a trade-off between

frequency fidelity and computational efficiency. Secondly, wavelets are given in the form of analyt-

ical expressions without the need of expensive, recursive computations. Due to their orthogonality

properties, they form an orthogonal basis, which allows for perfect reconstruction of the original

signal in terms of wavelet coefficients. Thus, harmonic wavelets can be employed in signal expan-

sions and are suitable for developing analytical solution frameworks. It is also worth noting that the

wavelet coefficients are derived from the convolution between the signal and the band-limited, time

representation of the wavelet. This operation reduces to multiplication in the frequency domain

(Newland, 1999) and can be highly accelerated via the FFT.

In the field of engineering mechanics, research towards joint-time frequency response analysis of

nonlinear systems was until recently rather limited. This has changed with with the advent of
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wavelets the last few years. Specifically, in Tratskas and Spanos (2003) the frequency response

function was extended to the wavelet domain for non-stationary response determination of MDOF

linear systems, within the context of stochastic process realizations. Further, in Spanos and Kou-

gioumtzoglou (2012) the locally stationary wavelet (LSW) representation of non-stationary pro-

cesses (Nason et al., 2000) in conjunction with generalized harmonic wavelets was adopted for

estimating the underlying evolutionary power spectrum (EPS). Novel excitation-response relation-

ships pertaining to linear oscillators were derived and the response of a number of nonlinear os-

cillators was determined via a modified statistical linearization scheme. This approach was later

coupled in Kougioumtzoglou and Spanos (2013b) with a stochastic averaging framework for de-

riving the response of a class of hysteretic systems. Moreover, in the work of Kong et al. (2014a),

harmonic wavelets were implemented towards the solution of differential equations describing non-

linear single-degree-of-freedom (SDOF) systems whereas Spanos and coworkers (Spanos et al.,

2016) introduced a periodized generalized harmonic wavelet (PGHW) version addressing the lim-

itations of the LSW assumption. The aforementioned methods have also been extended in the past

years to address MDOF nonlinear systems (see, for instance, Kong and Li 2015) and to account for

combined periodic and stochastic excitations (Kong et al., 2022a).

Within the context of MDOF system response determination it is commonly assumed that the struc-

tural parameter matrices are non-singular. However, there exist several engineering applications

where this assumption does not hold. In this case, deriving the response statistics is not a straight-

forward task, especially considering non-stationary excitations. Further, the relevant literature in

this direction is quite limited. In an effort to address this gap, in this thesis a framework is proposed

for extending the application of wavelets as a time-frequency analysis tool to a broader class of

problems, i.e., to systems with singular parameter matrices.
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1.4 Systems with singular matrices

In general, utilizing the minimum number of (generalized) coordinates when formulating the equa-

tions of motion yields symmetric, positive-definite, and thus, non-singular mass, damping and stiff-

ness matrices. This approach has been established on the basis of analytical mechanics (Ginsberg,

2008) and has been the standard approach in numerical methods such as the finite element method

(FEM) (Bathe, 2006). However, in several engineering applications singular matrices appear, in

particular, as a direct consequence of the physical properties of the system under consideration.

1.4.1 Diverse engineering applications

A representative example of systems with singular parameter matrices pertains to the translational

motion of rigid bodies. For instance, a uniform beam that can move axially as a rigid body gives

rise to a stiffness matrix whose determinant is zero (Craig and Kurdila, 2006). By definition, this

is a singular matrix. Additionally, highly ill-conditioned and/or singular mass parameter matrices

are encountered in motion simulation applications (Maciejewski, 1990), in structures with massless

joints and in problems where some degrees of freedom have no associated inertia (Balakrishnan,

1996). Apart from practical considerations, singular matrices can also come about as a consequence

of the mathematical formulation of the problem. For instance, systems endowed with singular

diffusion matrices can arise within the context of Wiener path integrals (Petromichelakis et al.,

2020). Similarly, time domain representations of non-white stochastic excitations by series of

filters subject to white noise can also lead to the appearance of singular matrices in the governing

equations of motion.

More generally, the occurrence of singular matrices is akin to the absence of derivatives of certain

degrees of freedom in the system of differential equations. This is prevalent, for example, in a

class of systems exhibiting hysteretic behavior. Specifically, hysteretic loops manifest the energy
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dissipation mechanism of the structure in response to the applied force, whereby the restoring

force depends on the instantaneous value of the deformation as well as its past time history (Ismail

et al., 2009). This has been commonly approximated by the Bouc-Wen model (Bouc, 1971), which

has received considerable attention the past years due to its versatility in reproducing a variety

of hysteretic patterns. The mathematical description of this model utilizes an auxiliary first order

differential equation coupled with the second order differential equation of the original oscillator.

Clearly, this renders the mass matrix singular.

A similar effect is also encountered in the equations describing energy harvesting applications

such as oscillating water columns (Spanos et al., 2018; Scialò et al., 2022) and vibratory energy

harvesting devices (Adhikari et al., 2009). The principle of operation of the latter category of energy

harvesters is based on the coupling of smart materials (e.g, piezoelectric patches) with structural

components (e.g., cantilever beams), which permits the transformation of ambient vibration into

electrical current. In general, such devices can be deployed as stand-alone units for powering low

energy consumption adjoining electronics and can, potentially, negate the need for conventional

batteries. Indicative fields of application include wireless sensors employed in structural health

monitoring (SHM) and medical implants (Safaei et al., 2019). From an engineering perspective, a

critical task relates to the optimal choice of physical parameters with the aim of maximizing the

amount of harvested energy. Unfortunately, the aforementioned electromechanical coupling often

leads to singular matrices in the equations of motion (Adhikari et al., 2009), and thus, hinders the

implementation of analytical- and MCS-based schemes, which are a prerequisite for optimization.

Further, the presence of nonlinear restoring forces (Daqaq et al., 2014) and the stochastic nature of

the excitations (Petromichelakis et al., 2018) adds to the level of difficulty of the analysis.
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1.4.2 Redundant coordinate modeling schemes

It is worth noting that systems of equations involving rectangular/singular matrices arise when

a redundant (non-generalized) coordinate scheme is employed. This strategy is predominantly

adopted in the field of multibody system dynamics and is carried out as part of commercial software

(Mariti et al., 2011). Although derivation of the equations of motion via generalized coordinates is

a straightforward task for a small number of DOFs, it becomes an arduous process with increasing

model complexity (e.g., highly coupled systems with large number DOFs).

Specifically, conventional approaches entail casting the multibody system in a tree configuration in

which each component is sequentially joint with several others in order to form the system structure

(Schutte and Udwadia, 2011). This process can be accelerated by recursive computational schemes

(Critchley and Anderson, 2003), however, it assumes a prescribed model structure. Therefore, in

cases where a constraint modification is required, a complete remodeling is called for. Alternatively,

Lagrange multipliers are employed (Schutte and Udwadia, 2011) for deriving the equations of mo-

tion, albeit obtaining them can be labor-intensive, especially when a large number of DOFs with

several non-integrable constraints is considered. Further, ensuring that all constraints are function-

ally independent may prove challenging and requires problem-specific approaches (Udwadia and

Phohomsiri, 2006).

Circumventing these limitations, unconventional coordinate modeling frameworks prove advanta-

geous in deriving the system governing equations of motion in a less labor-intensive manner, and

by allowing for enhanced modeling flexibility (Udwadia and Phohomsiri, 2006). In this regard, the

mechanical system is modeled as a collection of individual sub-systems whose equations of motion

can be obtained in a relatively easy manner. A number of additional constraints is also considered

in order to ensure structural compatibility. Utilizing such a scheme implies, in general, some degree

of dependence between the coordinates and leads to singular matrices in the equations of motion.

In the field of deterministic multibody system dynamics, Udwadia and coworkers (Schutte and Ud-
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wadia, 2011; Udwadia and Kalaba, 1992; Udwadia and Phohomsiri, 2006; Udwadia and Kalaba,

2001; Udwadia and Wanichanon, 2013) have developed over the years a framework for handling

constrained systems with singular matrices.

1.4.3 General solution treatments

In view of the broad range of problems where singular matrices appear, it is deemed appropriate

to examine the implications of matrix invertibility, which is of relevance to stochastic dynamics

problems. By definition, the determinant of a singular matrix is equal to zero, and thus, its in-

verse cannot be defined. Consequently, time domain solutions relying on state-space formulations

cannot be derived. Similarly, input-output relationships of random vibration are not applicable in

the case of rectangular, rank-deficient matrices, which can arise as a result of utilizing redundant

coordinates in forming equations of motion. From a mathematical perspective, ill-conditioned ma-

trices are closely related to singular matrices and impose similar restrictions to the applied solution

frameworks. Concisely, ill-conditioned matrices are characterized by a large condition number, and

thus, systems with ill-conditioned matrices are very sensitive to small perturbations in the input as

well as to roundoff errors. Further, computation of their inverse is prone to large numerical errors

and introduces instabilities in the solution process. In the limiting case, i.e., as their condition num-

ber tends to infinity, ill-conditioned matrices reduce to singular matrices. Thus, it can be argued

that problems pertaining to both classes can be addressed within the same category of solution

frameworks.

Limitations stemming from singular and/or ill-conditioned matrices are usually mitigated by means

of optimization, or the so-called regularization. Such techniques have been instrumental in develop-

ing approximate solutions for a wide range of ill-posed inverse problems (Hansen, 1998; Tikhonov

and Arsenin, 1977). However, the inexact nature of the solution does not facilitate closed form

expressions, while the uniqueness of the solution is case-dependent and, generally, implied via a
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family of possible solutions. What is more, for most classes of nonlinear systems, the system of

differential or algebraic equations cannot be posed in a matrix equation form, i.e., Ax = b, and

therefore, is not amenable to (even approximate) solutions.

1.4.4 Stochastic response determination strategies

Considering the brad range of practical applications where singular matrices may appear in con-

junction with the unsuitability of conventional of established random vibration techniques, the

development of pertinent stochastic response analysis methodologies is of great importance and

has been, recently, an area of active research. The works of Fragkoulis et. al (Fragkoulis et al.,

2016a; Fragkoulis, 2017) constitute the first contributions in this direction. Utilizing elements from

the Moore-Penrose (M-P) generalized matrix inverse theory and by augmenting the equations of

motion considering a set of additional constraints (Udwadia and Phohomsiri, 2006), time-domain

random vibration results have been generalized to treat systems with singular matrices. In Fragk-

oulis et al. (2016b), the standard statistical linearization method (SLM) was extended to nonlinear

systems with singular matrices and in Kougioumtzoglou et al. (2017b), a frequency domain input-

output relationship was established for both linear and nonlinear systems. Further, in Ni et al.

(2021) pertinent methodologies were expanded to accommodate a combination of stochastic and

deterministic loading applied to systems with singular matrices. In Pirrotta et al. (2021), deter-

ministic and random response solutions were derived for linear systems with singular matrices

endowed with fractional derivative elements whereas the random eigenvalue problem was consid-

ered in Fragkoulis et al. (2022) and expressions for determining the rate of change of eigenvalues

for systems with singular matrices were developed.

Although the aforementioned approaches have been construed on the basis of M-P pseudoinverses,

two alternative strategies have been probed for treating linear systems with singular matrices. In

this regard, the authors in Antoniou et al. (2017a) employed tools from polynomial matrix theory
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and the authors in Karageorgos et al. (2021) formalized an approach based on Kronecker canonical

forms of matrix pencils. Both contributions aimed at circumventing issues akin to generalized

matrix inverse approaches, which are associated with the choice of the optimal solution.

In passing, despite the considerable body of work on the response determination of systems with

singular matrices, the analysis has been limited to stationary excitations and to relatively specific

forms of constraint equations. In the present thesis, these points are addressed jointly by providing

semi-analytical solution schemes for linear and nonlinear structural systems with singular matri-

ces. A mathematical framework is also introduced to accommodate general forms of constraint

equations and to account for non-stationary excitations.

1.5 Data-driven probabilistic modeling of stochastic processes

It is worth noting that the applicability of the excitation-response relationships discussed in the

previous sections is conditioned on the existence of accurate probabilistic models accounting for

the randomness in the excitation process. Along these lines, it can be asserted that the aspects of

randomness are twofold (Ghanem and Spanos, 2003). The first pertains to the inherent, irreducible

randomness of the phenomenon under consideration. The second stems from the lack of informa-

tion about the underlying process and the uncertainty associated with the statistical model. For the

case of several environmental processes this model is given by the process PSD.

A large body of work has been devoted in deriving PSD-based, semi-empirical expressions for

ground motions and wind loads over the past decades (Davenport, 1961; Housner and Jennings,

1964; Priestley, 1965; Harris, 1968; Lin and Yong, 1987; Simiu and Scanlan, 1996). The practical

merit of the majority of these descriptions is that they are given by a few, physically interpretable

parameters that can be adjusted to match site-specific conditions. More importantly, PSD functions

can be employed within the context of the spectral representation method (SRM) (Shinozuka and

Jan, 1972; Di Paola and Zingales, 2000; Chen et al., 2013; Benowitz and Deodatis, 2015) for
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generating stochastic process realizations. This becomes vital when frequency-domain approaches

are not applicable. For instance, in modern long-span bridges innovative design aspects induce

nonlinear aerodynamic forces even in normal operating conditions (Kareem, 2008), and thus, only

time-domain-based frameworks provide reliable estimation for the response statistics. Clearly, the

degree of uncertainty associated with the PSD can be reduced by collecting additional data.

1.5.1 Sources of missing data

The advent of advanced, low cost sensors in conjunction with widespread measurement campaigns

poses as a promising technology towards statistical stochastic process estimation. Nevertheless,

there are several challenges when data acquisition strategies are considered. First, data is often

stored and wirelessly channeled to centralized units for post processing. Transmission of large vol-

umes of uncompressed data from multiple sensors simultaneously may not be feasible as a result

of bandwidth limitations. This can potentially lead to records with missing data segments. Similar

effects are often encountered as a consequence of communication errors in wireless sensor net-

works (WSN). Further, there exist applications (e.g., rotating vibration sensing) that require high

sampling rates for capturing frequency ranges of interest. Inherent hardware limitations can impose

restrictions on the attainable frequency bands and can be associated with excessive costs. Emerg-

ing sub-Nyquist sampling paradigms can, in part, alleviate these difficulties. Budget constraints

may also limit the number of deployed sensors and can adversely affect reconstruction accuracy,

especially, in cases where spatio-temporally varying stochastic fields are considered. As a remedy,

optimal sensor placement strategies (Ranieri et al., 2014) can be implemented in order to gener-

ate sensor configurations that maximize the amount of obtained information. However, this often

requires a priori knowledge of equipment availability whereas specific sensor placement may not

always be physically realizable.

Apart from inherent sensor deployment challenges, environmental conditions such as electromag-
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netic interference and extreme weather phenomena can also lead to power outages and equipment

failure. This necessitates the development of robust data reconstruction methodologies with respect

to extreme data values and data corruption (Comerford et al., 2016). What is more, in real-life

applications where, for instance, the role of seismic excitations is instrumental in the reliability as-

sessment, only a few stochastic process realizations might be available and deriving a probabilistic

model consistent with the observations without imposing convenient assumptions (e.g., Gaussian

process) can be a daunting task. In passing, data processing challenges extend beyond the matter of

PSD estimation and their role in the performance of engineering structures is rather critical. Indica-

tively, nacelle-mounted, 3-D laser scanning devices allow for the prediction of the oncoming wind

field before it reaches the wind turbine. This emerging technology coupled with Model Predictive

Control (MPC) strategies can, potentially, lead to reduced fatigue loads and improved wind turbine

efficiency (Santos, 2007). Nevertheless, the amount of available data is restricted to scanning beam

patterns and spatio-temporal discretization (Towers and Jones, 2016).

1.5.2 Review of existing methods for wind field data reconstruction

Considering the preceding discussion, the difficulties arising in data-driven methods can be cast

as an inverse problem where the task relates to the reconstruction of the stochastic process (or

stochastic field) and its relevant statistics from a limited number of observations. The literature

for treating diverse environmental processes is extensive and the range of excitations spans over

several environmental and temporal scales (Yang et al., 2010; Gallego et al., 2011; Grover and

Lall, 2021). In this context, the discussion herein will be focused on fluctuating wind field data

reconstruction and extrapolation techniques in one- and two-dimensional spatial domains and time.

This is aimed at obtaining a probabilistic characterization of the underlying stochastic field, which

can be utilized to derive and/or calibrate wind speed spectral models within the context of the SRM.

Further, the analysis is motivated by the fact that wind excitations are the governing design load

for slender structures and long span bridges (Benowitz and Deodatis, 2015). Thus, the presented
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methodologies can be potentially used for performance-based design optimization of structural

systems.

In this regard, a probabilistic wind field characterization methodology from partial observations was

proposed in Pourhabib et al. (2016) for the purpose of short-term wind speed forecasting. Utilizing

time-series modeling tools and data from a number of informative locations, the authors proposed

a spatio-temporal autoregressive model for predicting the wind speed on a wind farm model. De-

spite its usefulness, this approach does not yield a wind speed distribution with fine temporal or

spatial resolution. Alternative approaches have been established on the basis of computational fluid

dynamics (CFD) (Sun et al., 2019b; Qin et al., 2018). The rationale relates to employing measure-

ments from a number of optimally placed sensors on predefined boundary locations and performing

CFD simulations in order to obtain a refined wind field representation in a real-time fashion. Ac-

counting for computational overheads, efficient numerical adaptations such as the proper orthog-

onal decomposition (POD) (Sun et al., 2019a) have been introduced. However, the feasibility of

integrating real data from the interior simulation domain is still unclear whereas CFD simulations

often require considerable simplifications in the flow models (Wang et al., 2019). Undoubtedly,

field measurement campaigns for analyzing wind field statistics have significant practical merit.

An alternative strategy in this direction has been provided from the perspective of real-time state

estimation in Towers and Jones (2016). In this work, a Kalman filter implementation was proposed

for mitigating discrepancies between measured and target wind velocity measurements in light

detection and ranging (LiDAR) devices. The mathematical model was formulated via a simplified

version of the Navier–Stokes equations and an Unscented Kalman Filter (UKF) was employed.

Despite the reported accuracy of the method in estimating unobserved wind quantities, the analysis

was restricted to a deterministic framework. Similarly, it has also been shown that it is possible

to identify the wind load acting on a structure from a number of measured responses by solving

an inverse state-space problem. Further, a Kriging-based methodology was proposed in Lin and
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Li 2020 for statistical interpolation of missing wind field data. Addressing the same problem, a

number of neural network implementations and configurations were employed recently (e.g., Qu

et al. 2020; Ni and Li 2016; Mohandes and Rehman 2018). Notwithstanding their importance, the

preceding methodologies are characterized by certain limitations. Specifically, they are applicable

only to a few possible incomplete data configurations and, typically, assume a small percentage of

missing data. Further, implementations involving black-box approaches such as neural networks

offer limited interpretability and require large amounts of, potentially unavailable, data for training.

1.5.3 Compressive sampling for stochastic wind field statistics estimation

Sparse representation concepts and compressive sampling (CS) tools offer a promising framework

for stochastic process statistical estimation in the presence of missing data. CS theory establishes

conditions for the existence and the uniqueness of low-dimensional signal representations. This

newly developed mathematical formalism, coupled with potent optimization algorithms for signal

reconstruction, has resulted to a paradigm shift in data acquisition and signal sensing. Quantization

strategies were, until recently, limited by the Nyquist–Shannon sampling theorem, which asserts

that a time-signal with maximum frequency f can be uniquely determined at a f/2 uniform sam-

pling rate. Under this condition, signals are conventionally sampled at the Nyquist rate and then

transformed to a sparse basis where most of the coefficients close to zero can be discarded. This

allows for "lossless" data compression since the information is retained in the compressed signal

and can be used to perfectly reconstruct the signal back to its original form.

CS has enabled sub-Nyquist rate protocols, whereby analog to digital data conversion happens at

the compressed state. This is guaranteed as long as the original signal is sparse in an appropriately

constructed basis and on the condition that this basis is incoherent with respect to the original

domain. Considering that many environmental stochastic processes, such as wind, exhibit sparsity

in the frequency domain, CS can be readily applied to the reconstruction of stochastic process
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record with missing data as well as for estimation of relevant statistical quantities. In this case,

missing observations leading to ill-posed systems of algebraic equations can be cast into an inverse

problem in the context of CS (Candès and Wakin, 2008).

Early efforts in the field of engineering mechanics can be found in Comerford et al. (2016) in which

stationary and non-stationary PSD reconstruction from incomplete stochastic process records was

achieved via an l1-norm minimization approach. A sparsity-inducing alternative methodology was

proposed in Comerford et al. (2014) utilizing an l1-norm re-weighting procedure which was later

applied in Comerford et al. (2017) to assess the reliability of a real structure. Also, an enhanced

lp-norm (0 < p < 1) minimization was presented in Zhang et al. (2018) with the aim of further

promoting sparsity for the reconstruction of power spectra pertaining to various two-dimensional

stochastic processes. Notably, CS-based strategies have also been employed in various sea state es-

timation problems. For instance, in Laface et al. (2017) highly under-sampled water wave records

were reconstructed by means of l1/2-norm minimization whereas in Malara et al. (2018) sea state

characteristics were extrapolated in both space and time from a small number of distributed wave-

buoys. More details can be found in the recent review paper Kougioumtzoglou et al. (2020), where

a systematic review of CS implementations in diverse engineering mechanics applications is pre-

sented.

In general, CS-based techniques have been applied to treat wind field data related problems. Indica-

tively, in Wang et al. (2019) an efficient data compression methodology was established for efficient

storage and transmission of wind monitoring data collected by a WSN operating on large-scale

structures. This was achieved via a dedicated sparse dictionary that exploited spatial correlations

between wind speed signals. Further, in Tascikaraoglu et al. (2016) a structured-sparse recovery

algorithm was applied for enhancing the performance of a spatio-temporal wind speed forecasting

framework which utilized observations from a large set of meteorological stations. Conversely, the

capabilities of CS-based algorithms with respect to wind field missing data problems have not been
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fully explored.

Considering the foregoing examples, it can be noted that the implementation scope of the devel-

oped frameworks has been limited to data communication schemes and to wind speed prediction

over relatively large areas. In an effort to address this gap in the literature, a CS strategy is pro-

posed in this work for reconstruction and extrapolation of wind speed time histories in previously

unmeasured locations along one spatial domain. Further, computational overheads associated with

multi-dimensional domains are ameliorated via the employment of a nuclear norm minimization

scheme. In passing, the nuclear norm is defined as the sum of the singular values of a matrix and

generalizes the notion of vector sparsity to account for matrices.

1.6 Data-driven discovery of structural systems dynamics

It is apparent from the discussion in sections 1.1 and 1.5 that in many engineering applications the

randomness in the response can be adequately captured by relying on a probabilistic characteri-

zation of the input process in conjunction with versatile numerical techniques for determining the

response statistics. However, as mentioned in section 1.1 a significant degree of uncertainty arises

when the model parameter values cannot be specified to prescribed levels of accuracy. Model-

ing procedures that account for this randomness lead to stochastic differential equations (Grigoriu,

2013) that describe the evolution of the system dynamics. As a consequence, the complexity of

the analysis increases considerably and solutions lend themselves, predominantly, to numerical

schemes. These include indicatively MCS methodologies (Shinozuka and Astill, 1972), pertur-

bation methods (Liu et al., 1986), polynomial chaos expansions (Ghanem and Ghosh, 2007) and

stochastic order reduction techniques (Farhat et al., 2018); see also Refs. Ghanem and Spanos

(2003); Li and Chen (2009) for a broad perspective.
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1.6.1 Review of system identification techniques

Undoubtedly, methodologies for identifying the physical properties of structural systems can

greatly enhance the efficiency and accuracy of response determination schemes. As a result, they

are also critical in engineering applications. For instance, even though structural systems are mod-

eled in practice under linear assumptions, nonlinear behavior is likely to be exhibited in cases

of high amplitude excitations, such as wind gusts or earthquakes (Kougioumtzoglou and Spanos,

2013a). Besides the presence of extreme events, deviation between expected and realistic behavior

is manifested even in normal operational conditions when complex, high dimensional structures are

considered. It becomes clear that identification techniques are instrumental for reliability assesment

and damage detection purposes. The field of system identification formally comprises techniques

that employ experimental or field measurements along with a set of prior assumptions in order to

furnish a model whose behavior is consistent with the measured data.

These approaches can be broadly classified into parametric and non-parametric methods. The first

class assumes a parametric model structure where a finite set of parameters is updated by mini-

mizing an error metric between observation and prediction. Indicative techniques include (but are

not limited to) least squares minimization (Gersch et al., 1976), autoregressive, moving-average

(ARMA) models (Pi and Mickleborough, 1989), multiple-input-single-ouput (MISO) (Kougioumt-

zoglou and Spanos, 2013a; dos Santos et al., 2020) and Bayesian (Azam et al., 2015) approaches.

The second class of methods is geared towards identifying a linear mapping between the input

and the output. Subspace identification (Peeters and De Roeck, 1999) and blind source separation

(Yang and Nagarajaiah, 2013) are some representative methods.

The explosive growth of available data accompanied by emerging data science techniques has

stimulated research in novel data-driven approaches for identifying dynamical system behavior

(Schmidt and Lipson, 2009; Brunton et al., 2016; Raissi et al., 2019). From the perspective of

structural identification, pertinent implementations relate to neural networks (Lai et al., 2021) and
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sparse regression (Lai and Nagarajaiah, 2019). These frameworks are motivated, primarily, by the

fact that in many problems a purely physics-based modeling of the governing dynamics by resorting

to first-principles may be unattainable. Along these lines, neural networks can identify nonlinear

input-output maps in view of the universal approximation theorem. However, despite their versatil-

ity in capturing arbitrarily nonlinear dynamics (as mentioned in section 1.5.1) they are not always

interpretable from a physical point of view and their extrapolation capabilities are conditioned on

training data. Further, brute-force implementations of neural networks can lead to exceedingly

large parameterizations and data overfitting.

1.6.2 Compressive sampling for equation discovery of diverse systems

It can be argued that, for data-driven modeling to be efficacious, the identified model should exhibit

sparsity in the sense that the fewest possible terms are considered for the description of the system

dynamics. This enhances the interpretability of the model, and provides balance between model

complexity and accuracy. The rationale for such data-driven discovery of governing equations

and identification of parsimonious system dynamics relates to the fact that the dynamics of most

physical systems can be described accurately by considering only very few relevant terms in the

appropriate expansion basis; thus rendering the governing equations sparse in a high dimensional

nonlinear function space. In this regard, approaches for sparse identification of nonlinear dynamics

based on compressive sampling concepts and tools have been proposed recently (Champion et al.,

2019; Brunton and Kutz, 2022). In the majority of these methods, the resulting non-square system

of linear algebraic equations for the expansion basis coefficients is typically solved by an l1-norm

minimization treatment (e.g., Champion et al. 2019; Cortiella et al. 2021). Note, however, that

alternative advanced compressive sampling tools can be employed that exploit additional informa-

tion in the data and enhance solution sparsity. These approaches can improve solution robutsness

to high degreess of missing data. Further, they have the potential of quantifying the uncertainty

associated with the model estimates; thus, providing a measurable confidence degree when em-
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ployed as a prediction tool. Solution alortihms that exhibit such features are lp-norm (0 < p < 1)

minimization formulations and iterative re-weighting solution schemes, Bayesian approaches, as

well as structured sparsity and dictionary learning strategies (Kougioumtzoglou et al., 2020).

In general, sparse regression techniques do not impose a strict model structure to the underlying

differential equations of motion and rely on the cardinality of a set of nonlinear candidate functions.

Thus, appropriate selection of functions that correspond to diverse structural behavior adversely ef-

fect the identification performance. For instance, it has been progressively recognized over the past

decades from the engineering community that several materials exhibit a combination of viscous

and elastic behavior (Gemant, 1936; Di Paola et al., 2011), which can be adequately captured by

resorting to fractional calculus. Clearly, this leads to fractional differential equations governing

the dynamics of such systems. Indicative applications pertain to seismic isolation devices such

as viscoelastic dampers (Shen and Soong, 1995) and tuned mass damper with fractional deriva-

tive damping (Rüdinger, 2006) as well as to the characterization of mechanical behavior of asphalt

(Lagos-Varas et al., 2019).

Towards addressing the preceding challenges, a data-driven uncertainty quantification framework is

proposed in this thesis for determining the equations of motion of stochastically excited structural

systems exhibiting nonlinear behavior and following fractional derivative modeling.

1.7 Contributions

In this thesis, an effort is made to address a number of challenges in the field of Random Vibra-

tion. Following the outline of the previous sections the main aspects can be summarized into three

key areas. The first pertains to system complexity under consideration which is a result of nonlin-

ear behavior, elements following fractional derivative modeling, high dimensionality and singular

parameter matrices in the governing equations of motion. The second relates to the uncertainty

associated with the structure of the underlying equations of motion and with the set of relevant
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parameters. The third is connected with the excitation process and the corresponding probabilistic

model, which typically features non-stationarity and is characterized by high degree of uncertainty

as a result of missing data. In view of the above, the following methodologies are proposed.

1.7.1 Stochastic response determination of systems with singular matrices

First, a new response determination treatment is developed for linear and nonlinear systems subject

to non-stationary ground excitation. To this end, the excitation process is expanded on the basis

of the LSW assumption in conjunction with generalized harmonic wavelets. In addition, utilizing

elements from matrix pseudoinverse theory a novel frequency response function is derived. This

result can be viewed as the generalization of celebrated input-output relationships of Random Vi-

bration theory in order to account for systems with singular parameter matrices and non-stationary

excitations. It is noted that this approach is tailored to systems whose equations of motion are de-

rived via a redundant coordinate modeling scheme. Next, the framework is extended to the case of

nonlinear systems. This is achieved by coupling the proposed approach with the SLM. Moreover,

an approximate closed-form solution is provided for systems with singular parameter matrices and

polynomial nonlinearities. These results have been published in Pasparakis et al. (2021).

The versatility of the proposed framework is subsequently enhanced by circumventing the assump-

tion of “local stationarity” of the excitation (and the response) process. Specifically, a periodized

version of GHWs along with a set of interaction coefficients is employed for improving the ac-

curacy of the method especially for systems with a short lived impulse response function. This

expands upon previous work on PGHW-based input-output results in order to account for systems

with singular parameter matrices. The method is rendered readily applicable to diverse engineering

applications by an a appropriate modification which enables the incorporation of general forms of

constraint equations in the modeling scheme. The flexibility of the methodology is demonstrated by

determining the response PSD of diverse engineering applications such as an energy harvester with
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coupled electromechanical equations and an oscillator subject to non-white excitations modeled via

auxiliary filter equations. These findings have been published in Pasparakis et al. (2022b).

1.7.2 Wind field data statistical estimation and extrapolation

Furthermore, a data-driven optimization technique is established for the probabilistic characteri-

zation of wind field stochastic processes in the presence of incomplete measurements. Specifi-

cally, sparse representations by means of a Fourier expansion are exploited for recontructing highly

under-sampled wind speed records in the time domain. Next, a suitable expansion basis is con-

structed utilizing measurements from a number of neighboring locations. A CS minimization algo-

rithm is subsequently proposed for extrapolating wind speed records to various points in a single

spatial domain. The practical merit of the proposed approach relates to the fact that the expansion

basis is consistent with the frequency-wavenumber spectral representation of the signal. This is

particularly advantageous since it incorporates the spatial information of the signal into the min-

imization algorithm. Hence, the coherence of the wind field between measured and extrapolated

locations is preserved.

A novel framework is also introduced for extrapolating wind speed records in two spatial dimen-

sions. In this case, the spatial correlation of the wind speed signals is exploited by resorting to a

matrix reshape nuclear norm minimization procedure. This improves notably the computational ef-

ficiency of the scheme compared to alternative CS-based approaches. In this regard, the method is

rendered applicable to real-time wind speed estimation problems, e.g., for monitoring of wind tur-

bine systems. The extrapolation capability is demonstrated by comparing the estimated statistical

quantities with corresponding analytical expressions. It is found that the technique yields signifi-

cant levels of accuracy even in the presence of a high degree of missing data. These results have

been published in Pasparakis et al. (2022a).
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1.7.3 Data-driven uncertainty quantification and identification of dynamical
systems

Moreover, a data-driven uncertainty quantification methodology is developed for discovering the

equations of motion of nonlinear dynamical systems. This is done by relying on measured response

data which are cast into a state-variable formulation. This leads to a non-square system of algebraic

equations to be solved within the context of sparse regression. In this regard, a Bayesian compres-

sive sampling (BCS) minimization algorithm is employed for deriving a parsimonious model and

for quantifying the uncertainty of the estimated coefficient vector. The contribution of this im-

plementation is twofold. First, it exhibits significant sparsity-promoting features. Secondly, it is

suitable for identifying diverse engineering systems via an informed construction of the expansion

basis. The reliability of the technique is presented by discovering the equations of motion of an

electromechanical energy harvester endowed with fractional derivative elements.

1.8 Mathematical preliminaries

In this section the mathematical tools employed throughout the present thesis are briefly reviewed.

The ensuing presentation is not intended as an in depth review of the available methodologies, the

majority of which has been thoroughly covered in a number of textbooks and academic publica-

tions. The scope is rather oriented towards improving readability and for serving as reference for

some of the main concepts.

1.8.1 Simulation on non-stationary stochastic processes

In the present thesis, the validity of the proposed techniques is assesed by comparison with MCS

data. In this regard, the SRM (Liang et al., 2007) is employed for generating sample realizations
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f(t) of a non-stationary stochastic processes f0(t) in the form

f(t) =
√

2
N−1∑
j=0

√
2Sf0f0 (t, ωj) ∆ω cos (ωjt+ ϕj) , (1.1)

where t and ω denote time and frequency, respectively. The frequency domain is discretized by

ωj = j∆ω,∆ω = ωu/N and ωu denotes the upper cut-off frequency. Sf0f0 is the (two-sided)

evolutionary PSD and ϕj are independent uniformly distributed random phase angles between 0

and 2π. The upper cut-off frequency is chosen on the basis that the energy of the signal is contained

in this interval by a significant factor α (e.g. 95%) by

2
∫ ωu

0
S(ω)dω ≥ αVar(f), (1.2)

where Var(f) denotes the variance of the process. The simulated process is periodic with T =

2π/∆ω and the discretization frequency complies with the Nyquist sampling rate condition which

is given by ∆t ≤ 2π/ωu in order to avoid signal aliasing. Further, it has been shown that for a large

number of N the simulated realizations are asymptotically Gaussian.

1.8.2 Generalized matrix inverse theory

Many engineering applications require finding a solution to a linear algebraic system of equations

in the form

Ax = b, (1.3)

where A is either a rectangular m× n or a square n× n matrix, x is an n-dimensional vector and

b is an m-dimensional vector. Clearly, in the case where A is a square, non-singular matrix the
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solution to Eq. (2.1) can be uniquely determined by

x = A−1b, (1.4)

where A−1 denotes the inverse matrix of A. Following the rationale presented in section 1.4, there

exist many cases where A is rectangular or square but singular. Solutions to this class of problems

can be provided by utilizing tools from the generalized matrix inverse theory. In this regard, there

exist a number of generalized inverses for any m× n matrix A. Theorem 1 facilitates the ensuing

analysis (Fragkoulis, 2017; Ben-Israel and Greville, 2003).

Theorem 1. Let A ∈ Cm×n, B ∈ Cp×i and D ∈ Cm×q. Then the matrix equation

AXB = D (1.5)

is consistent if, and only if for some A(1),B(1) that satisfy the first Penrose equation (Ben-Israel

and Greville, 2003)

AA(1)A = A (1.6)

BB(1)B = B (1.7)

it holds that

AA(1)DB(1)B = D, (1.8)

in which case the general solution is

X = A(1)DB(1) + Y −A(1)AYBB(1) (1.9)
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for arbitrary Y ∈ Cn×p.

For a system of algebraic equations in the form of Eq. (1.3), Theorem 1 is equivalent to the form

given by the following corollary

Corollary 1. Let A ∈ Cm×n and b be an m-dimensional vector. Then, Eq. (2.1) is consistent if,

and only if for some A(1)

AA(1)b = b, (1.10)

in which case the general solution of Eq. (1.3) is

x = A(1)b +
(
I−A(1)A

)
y, (1.11)

where y is an arbitrary n-dimensional vector. If matrix A satisfies an auxiliary set of conditions

(Penrose equations), matrix A(1) is generalized to the the Moore-Penrose inverse of A. This gen-

eralization offers significant methodological merit since it enables the determination of a unique

solution for Eq. (2.1). Further details about the conditions of existence of the Moore-Penrose ma-

trix and implementation aspects within the context of random vibration problems are included in

the corresponding chapters of this thesis.

1.8.3 Fractional derivatives modeling

A persistent challenge in stochastic dynamics relates to the response determination and reliability

assesment of dynamical systems endowed with fractional derivative elements. Specifically, frac-

tional calculus has been extensively employed in several branches of science over the past decades.

With regard to engineering problems, its use has been stimulated by necessities pertaining to the

modeling of complex material behavior, which has been dictated by advances in theoretical and

applied mechanics (e.g., Di Paola et al. (2013); Tarasov (2017)). This has led to the development

of several uncertainty quantification frameworks (e.g, Di Matteo et al. (2014); Fragkoulis et al.
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(2019); Pirrotta et al. (2021); Kougioumtzoglou et al. (2022)) in the field stochastic dynamics.

From a mathematical perspective, fractional derivatives can be viewed as the generalization of clas-

sical integer order derivatives to arbitrary order (Podlubny, 1999). Although integer order deriva-

tives are uniquely determined, there exist several alternative representations for derivatives of frac-

tional order. The most commonly encountered formulations are presented in the remaining part of

this section, in which a denotes the order of differentiation, Da
0,t(·) is the fractional operator, β, t

are the limits of fractional differentiation and Γ is the Gamma function.

The first one is the Riemann-Liouville representation, given by

RLD
a
0,tx(t) = 1

Γ(m− a)
dm

dtm

∫ t

0
(t− τ)m−a−1x(τ)dτ, m− 1 ≤ a < m ∈ Z+, (1.12)

where Z+ is the set of real positive numbers. Adopting this expression, the fractional derivative

is given by integrating (m − a) times and then by differenting m times the function x(t). An

alternative definition is given by Caputo’s representation (Caputo, 1967) in the form

cD
a
0,tx(t) = D

−(m−a)
0,t

dm

dtm
x(t) = 1

Γ(m− a)

∫ t

0
(t− τ)m−a−1x(m)(τ)dτ, (1.13)

where x(m) represents the m order derivative of the function x(t). Clearly, this requires the ex-

istence of the m order derivative, which typically holds in engineering applications. Further, in

Caputo’s representation the initial conditions can be expressed by integer order derivatives, which

is convenient from a physical point of view. Finally, a third representation based on the Grunwald-

Letnikov definition follows the expression

GLD
a
0,tx(t) =

m−1∑
k=0

x(k)(0)t−a+k

Γ(−a+ k + 1) + 1
Γ(m− a)

∫ t

0
(t− τ)m−a−1x(m)(τ)dτ, (1.14)

m− 1 ≤ a < m ∈ Z+.
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Typically, solutions to differential equations containing fractional derivative elements are provided

by means of numerical schemes. In the ensuing analysis the linear L1-algorithm (Koh and Kelly,

1990) is adopted. The algorithm relies on the Riemann-Liouville representation (1.12) for the

modeling of fractional derivative elements.

1.9 Organization of the thesis

This thesis consists of six chapters followed by the list of cited literature. With the exception of

chapter 1 and chapter 6, the remaining chapters comprise four independent research articles that

address pertinent problems in probabilistic engineering mechanics and Random Vibration theory.

Chapter 1 has an introductory role and outlines the motivation and key areas of focus of the current

thesis. Moreover, the contributions, some mathematical prerequisites and the structure of the thesis

are also briefly presented.

Chapter 2 presents a novel analytical framework for non-stationary stochastic response determi-

nation of multi-degree-of-freedom (MDOF) linear and nonlinear structural systems with singular

matrices. This is accomplished utilizing a harmonic-wavelet-based technique and tools from gen-

eralized matrix inverse theory.

Chapter 3 focuses on enhancing the veracity of the scheme introduced in Chapter 2 by using a peri-

odized generalized harmonic wavelet approach and by accounting for diverse engineering systems.

Chapter 4 treats the problem of incomplete wind time-histories reconstruction and extrapolation in

one and two spatial dimensions, as well as for related stochastic field statistics estimation. This is

achieved by invoking concepts and algorithms of sparse representation theory.

In Chapter 5 a data-driven methodology is proposed for inferring the governing equations of motion

of stochastically excited systems by employing measured response data and BCS tools.
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Chapter 6 provides some concluding remarks and future research directions of this thesis. A list of

cited references and publications follows.
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Harmonic wavelets based response evolutionary power spectrum

determination of linear and nonlinear structural systems with

singular matrices

George D. Pasparakisa, V. C. Fragkoulisa,∗, M. Beera,b,c

aInstitute for Risk and Reliability, Leibniz Universität Hannover, Callinstr. 34, 30167 Hannover, Germany

bInstitute for Risk and Uncertainty and School of Engineering, University of Liverpool, Liverpool L69 7ZF, UK

cInternational Joint Research Center for Engineering Reliability and Stochastic Mechanics, Tongji University,

Shanghai, China

Abstract: A new approximate analytical technique is proposed for determining the response evolu-

tionary power spectrum (EPS) of stochastically excited structural multi-degree-of-freedom (MDOF)

linear and nonlinear systems with singular matrices. Such systems can appear, indicatively, when a

redundant coordinates modeling is adopted for forming the equations of motion of complex multi-

body systems. For this case, it can be argued that this modeling approach facilitates the system’s

stochastic response analysis, since employment of redundant DOFs is associated with computa-

tional cost efficient solution frameworks, and potentially provides with enhanced modeling flex-

ibility. In this context, aiming at the joint time-frequency response analysis of MDOF systems,

recently developed wavelet-based solution frameworks, which generalize classic input-output re-

lationships of random vibration, are adopted and further generalized in this paper to account for

systems with singular matrices. Specifically, resorting to the theory of generalized inverses of sin-

gular matrices, as well as to the theory of harmonic wavelets, a Moore-Penrose generalized matrix

inverse excitation-response relationship is derived herein for determining the response EPS of lin-

ear MDOF systems. Further, a recently developed harmonic-wavelet-based statistical linearization
∗Corresponding author

E-mail addresses: george.pasparakis@irz.uni-hannover.de (G. D. Pasparakis), fragkoulis@irz.uni-hannover.de (V. C.
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technique is also generalized to account for the case of nonlinear MDOF systems. The validity of

the proposed technique is demonstrated by pertinent numerical examples.

Keywords: Stochastic Dynamics; Moore-Penrose Inverse; Harmonic Wavelet; Singular Matrix;

Evolutionary Power Spectrum; Time-Frequency Analysis

2.1 Introduction

The nature of environmental excitations, such as earthquakes and wind loadings which evolve in

time and are described by evolutionary power spectra (EPS) (Priestley, 1965), plays an instrumental

role in the efficient analysis of structural systems. In conjunction with the complexity of the con-

sidered system, they constitute two critical aspects towards the development of efficient response

analysis solution treatments. Therefore, taking into account the non-stationary characteristics of

natural excitations, several frameworks have been proposed for determining the system response,

as well as for conducting joint time-frequency response analysis, of linear and nonlinear systems;

see, indicatively, Refs. (Roberts and Spanos, 2003; Grigoriu, 2013; Li and Chen, 2009; Kougioumt-

zoglou et al., 2015; Kougioumtzoglou and Spanos, 2014; Spanos and Failla, 2004; Spanos et al.,

2005; Spanos and Kougioumtzoglou, 2012; Fragkoulis et al., 2019; dos Santos et al., 2019).

As far as the joint time-frequency response analysis of engineering systems is concerned, the ad-

vent of the potent machinery of wavelets has been proved pivotal. It has substantially enhanced

the arsenal of the system response characterization methods, when dynamic systems subjected to

non-stationary excitation are considered (Spanos and Failla, 2005; Spanos et al., 2005). Specif-

ically, standard excitation-response relationships of random vibration theory, have been extended

and generalized in a wavelet-based framework, whereas wavelet-based versions of classic method-

ologies and techniques, such as the statistical linearization method (Roberts and Spanos, 2003),

have also been developed (Spanos and Kougioumtzoglou, 2012; Kong et al., 2014b). Moreover,

wavelet analysis has been used in conjunction with fractional calculus, for deriving the EPS of
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oscillators endowed with fractional derivative elements (Kougioumtzoglou and Spanos, 2016).

With regards to the complexity of the dynamic systems, it is commonly accepted that the mini-

mum number of independent coordinates/degrees-of-freedom (DOF) is used in forming the system

governing equations of motion (Roberts and Spanos, 2003). However, it can be argued that for

the case of multibody systems, a redundant coordinates approach potentially facilitates the mod-

eling procedure, while also results in enhanced flexibility and reduced overall computational cost

(Udwadia and Kalaba, 1992; Udwadia and Phohomsiri, 2006; de Falco et al., 2005; Critchley and

Anderson, 2003; Featherstone, 1984; Schutte and Udwadia, 2011; Pappalardo and Guida, 2018a,b).

Further, it also leads to systems with singular matrices, rendering all standard stochastic response

analysis frameworks inapplicable. Note, in passing, that singular matrices do not solely appear due

to adopting a redundant DOFs modeling. They are also met in diverse engineering systems and

applications, such as systems with “massless” joints (Antoniou et al., 2017b; Pirrotta et al., 2019),

and in vibratory energy harvesting applications, where they appear due to the coupling between the

governing equations of the mechanical and the electrical system (Adhikari et al., 2009).

In this paper, taking into account the aforementioned aspects, a generalized inverse matrix harmonic-

wavelet-based treatment is proposed for conducting joint time-frequency response analysis of linear

and nonlinear MDOF systems with singular matrices, which are subjected to non-stationary exci-

tation. Specifically, focusing on the determination of the system response EPS, and resorting to the

theory of the Moore-Penrose (M-P) generalized matrix inverses, standard harmonic-wavelet-based

techniques (Spanos and Kougioumtzoglou, 2012; Kong et al., 2014b) are generalized herein.

In this context, adopting a redundant coordinates modeling of the equations of motion, and also

employing the locally stationary wavelet (LSW) representation of a stochastic process (Spanos and

Kougioumtzoglou, 2012), an M-P localized in time and frequency domains, harmonic-wavelet-

based frequency response function (MP HW-FRF) is derived. This can be construed as a gen-

eralization of a recently developed HW-FRF (Kong et al., 2014b), to account for systems with
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singular matrices. Further, the MP HW-FRF is used for determining the system response EPS, by

constructing an input-output relationship which connects the excitation and response EPS. Next,

a recently developed harmonic-wavelet-based statistical linearization methodology (Kong et al.,

2014b) is also generalized. In this regard, an equivalent linear system corresponding to the orig-

inal nonlinear system is defined, and a set of time and frequency dependent expressions for the

equivalent linear elements is derived. This is attained by resorting to an iterative solution numerical

scheme. The scheme is applied on the coupled set of equations defined by the set of the equivalent

elements expressions, and the M-P input-output relationship of the equivalent linear system. Fur-

ther, although the employment of the M-P inverse framework implies a family of equivalent linear

elements, uniquely defined elements are determined by setting equal to zero the arbitrary term of

the M-P based family. Finally, the nonlinear system response EPS is estimated by considering the

corresponding response EPS of the equivalent linear system. The efficiency of the proposed M-P

inverse framework is demonstrated by pertinent examples of linear and nonlinear MDOF systems.

The obtained results are compared with results derived by the standard solution treatment of Ref.

(Kong et al., 2014b) and are in complete agreement.

2.2 Mathematical preliminaries

2.2.1 Aspects of Moore-Penrose matrix inverse theory

The study of generalized matrix inverses has initiated and flourished mainly as a result of attempting

to solve systems of algebraic equations of the form

Ax = b, (2.1)

where A is either rectangularm0×n0, or square but singular n0×n0 matrix, and x, b are n0 vectors.

Eq. (2.1) appears in many theoretical problems in mathematics as well as many applied problems.
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Clearly, the nature of matrix A renders its solution impossible. In this regard, the necessity of

defining any form of “partial inverse” for rectangular or square but singular matrices gave birth

to the theory of generalized matrix inverses (Ben-Israel and Greville, 2003). The Moore-Penrose

(M-P) generalized matrix inverse holds an exceptional place among these theoretical results.

Definition 1. For any matrix A ∈ Cm0 × n0, there is a unique matrix A+ ∈ Cn0 ×m0 such that

AA+A = A, A+AA+ = A+, (AA+)∗ = AA+, (A+A)∗ = A+A. (2.2)

The matrix A+ defined in Eq. (2.2) is called the M-P inverse of A. If A ∈ Rn0×n0 is non-singular,

then A+ coincides with A−1. Using the M-P inverse, a closed form solution to the algebraic system

of Eq. (2.1) is attained, which highlights its importance for several applications. In this regard, for

any matrix A ∈ Rm0×n0 , Eq. (2.1) implies

x = A+b + (In −A+A)y, (2.3)

where y denotes an arbitrary n0 vector and In0 represents the identity n0 × n0 matrix.

By resorting to the M-P matrix inverse theory, classic solution treatments of random vibration have

been recently generalized for determining the stationary stochastic response of linear and nonlin-

ear systems with singular matrices (Fragkoulis et al., 2016a,b; Kougioumtzoglou et al., 2017b); see

also Refs. Antoniou et al. (2017b); Fragkoulis et al. (2015); Pantelous and Pirrotta (2017); Pirrotta

et al. (2019) for additional applications. However, it can be argued that the application of state-

of-the-art M-P solution frameworks is considerably limited, since relevant approaches completely

ignore the non-stationary characteristics of the system excitation. A more detailed presentation of

the M-P inverse theory can be found in Refs. Ben-Israel and Greville (2003) and Campbell and

Meyer (2009).
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2.2.2 Harmonic wavelets theory elements

Generalized harmonic wavelets

In this section, a concise presentation of the basic elements of wavelets analysis is pårovided for

completeness. In this regard, the wavelet transform [Wψf ] (j, k) of a function f(t) is defined as

[Wψf ] (j, k) = 1
| j |1/2

∫ ∞
−∞

f(t)ψ∗
(
t− k
j

)
dt, (2.4)

where ψ(t) is the mother wavelet, i.e., the generating function for all basis functions, [Wψf ] (j, k)

is the wavelet coefficient at frequency and time scale j and k, respectively, and “*” denotes the

complex conjugate operator. Eq. (2.4) is used for conducting joint time-frequency analysis of the

function f(t). Further, choosing a different mother wavelet function ψ(t) results in the defini-

tion of different families of wavelets. Among them, the so-called generalized harmonic wavelets

(GHW) constitute the most often considered family of wavelets in engineering applications (New-

land, 1993, 1994). Utilizing the set of parameters (m,n) and k for defining the bandwidth at all

scale levels, the members of the GHW family in frequency domain are given by

ΨG
(m,n),k(ω) =


1

(n−m)∆ω exp
(
−iω kT0

n−m

)
, m∆ω ≤ ω < n∆ω

0, otherwise

(2.5)

where m,n, k ∈ Z+, T0 denotes the total time duration and ∆ω = 2π/T0. The importance of the

GHW of Eq. (2.5) stems from the fact that a decoupling of the time-frequency resolution from the

values of the central frequency

ωc,(m,n),k = (n+m)
2 ∆ω, (2.6)

which is defined in the intervals [m∆ω, n∆ω] and
[
kT0
n−m ,

(k+1)T0
n−m

]
, is attained.

Further, the continuous generalized harmonic wavelet transform (GHWT) of a function f(t) is
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defined as the projection of f(t) on the orthogonal basis given by the family of GHWs of Eq. (2.5)

(Newland, 1994), that is

WG
(m,n),k [f ] = n−m

kT0

∫ ∞
−∞

f(t)ψG(m,n),k(t)dt. (2.7)

A detailed presentation of the topic is found in Refs. Spanos and Failla (2004, 2005); Spanos et al.

(2005).

Locally stationary wavelet representation of non-stationary stochastic processes

In terms of engineering applications, the versatile locally stationary wavelet (LSW) representa-

tion of stochastic processes, firstly introduced in Ref. Nason et al. (2000), facilitates the ensuing

analysis by allowing for a representation of a given non-stationary process as the summation of

sub-processes defined at different scales and translation levels. Specifically, adopting a GHW ex-

pansion of the system response and excitation, the LSW forms a set of orthogonal basis functions

on any given finite interval. Therefore, it results in the definition of a wavelet spectrum at a partic-

ular scale and location providing, in essence, with the joint time-frequency content of the system’s

non-stationary excitation and the corresponding response.

In this regard, considering the family of GHWs of Eq. (2.7), the generalized harmonic-wavelet-

based representation of an n0 vector process x(t) takes the form

x(t) =
∑

(m,n)

∑
k

x(m,n),k(t), (2.8)

where the localized process x(m,n),k(t) at scale (m,n) and translation k, is given by

x(m,n),k(t) = a(m,n),k cos
[
ωc,(m,n),k

(
t− kT0

n−m

)]
+ b(m,n),k sin

[
ωc,(m,n),k

(
t− kT0

n−m

)]
. (2.9)
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In Eq. (2.9), ωc,(m,n),k denotes the central frequency of Eq. (2.6). Further, a(m,n),k and b(m,n),k are

statistically independent, zero-mean vector processes, whose variance is related to the EPS matrix

Sxx
(m,n),k via the expression (Spanos and Kougioumtzoglou, 2012)

E
[
a(m,n),kaT

(m,n),k

]
= E

[
b(m,n),kbT

(m,n),k

]
= 2(n−m)∆ωSxx

(m,n),k. (2.10)

Finally, resorting to the orthogonality properties of monochromatic functions, i.e.,

∫ (k+1)T0
n−m

kT0
n−m

cos
[
ωc,(m,n),k

(
t− kT0

n−m

)]
cos

[
ωc,(i,j),l

(
t− lT0

j − i

)]
dt =

T0
2(n−m) , if (m,n) = (i, j), k = l

0 , otherwise
(2.11)

and

∫ (k+1)T0
n−m

kT0
n−m

sin
[
ωc,(m,n),k

(
t− kT0

n−m

)]
sin

[
ωc,(i,j),l

(
t− lT0

j − i

)]
dt =

T0
2(n−m) , if (m,n) = (i, j), k = l

0 , otherwise
(2.12)

and utilizing Eqs. (2.9) and (2.10), the important for the ensuing analysis relationships

E
[
x(m,n),k(t)

]
= E

[
ẋ(m,n),k(t)

]
= E

[
ẍ(m,n),k(t)

]
= 0, (2.13)

E
[
x(m,n),k(t)ẋT

(m,n),k(t)
]

= E
[
ẋ(m,n),k(t)ẍT

(m,n),k(t)
]

= 0, (2.14)

E
[
x(m,n),k(t)xT

(m,n),k(t)
]

= 2Sxx
(m,n),k(n−m)∆ω, (2.15)
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E
[
ẋT

(m,n),k(t)ẋT
(m,n),k(t)

]
= 2ω2

c,(m,n),kSxx
(m,n),k(n−m)∆ω, (2.16)

E
[
x(m,n),k(t)ẍT

(m,n),k(t)
]

= −2ω2
c,(m,n),kSxx

(m,n),k(n−m)∆ω, (2.17)

and

E
[
ẍ(m,n),k(t)ẍT

(m,n),k(t)
]

= 2ω4
c,(m,n),kSxx

(m,n),k(n−m)∆ω, (2.18)

are derived; see also Refs. Spanos and Kougioumtzoglou (2012); Kougioumtzoglou (2013); Kong

et al. (2014b).

Note, in passing, that the advantages of employing the LSW representation of Eqs. (2.8) and (2.9),

are the simplicity and straightforward application of the representation model. Taking also into

account its efficiency in estimating the response EPS (Spanos and Kougioumtzoglou, 2012; Kong

et al., 2014b), it is adopted in the ensuing analysis, where the standard harmonic-wavelet-based

framework of Ref. Kong et al. (2014b) is generalized to account for systems with singular matrices.

However, it is also noted that a less approximate stochastic process representation than that of

Eq. (2.9) has been recently used for joint time-frequency response analysis (Spanos et al., 2016;

Kong et al., 2016). This consists in the employment of a periodized generalized harmonic wavelets

(PGHWs) based framework, and is identified as a potential future extension of the herein developed

M-P generalized matrix inverse theoretical framework.



CHAPTER 2. RESEARCH ARTICLE 1: HARMONIC WAVELETS BASED RESPONSE
EVOLUTIONARY POWER SPECTRUM DETERMINATION OF LINEAR AND NONLINEAR
STRUCTURAL SYSTEMS WITH SINGULAR MATRICES 41

2.3 Stochastic response of systems with singular matrices subjected to non-

stationary excitation

2.3.1 Linear systems with singular matrices

The general form of the equations of motion of a lumped-parameter n0−DOF linear system is given

by

Mq̈ + Cq̇ + Kq = Q(t), (2.19)

where q denotes the n0 vector of the generalized coordinates; and Q(t) represents the n0 vector

of the non-stationary, zero-mean system excitation, whose evolutionary power spectrum matrix

is denoted as SQQ(ω, t). Further, M,C and K denote the n0 × n0 mass, damping and stiffness

matrices of the system. Next, adopting a redundant coordinates modeling, a new coordinates `

vector x (` > n0), is considered. Thus, the mass, damping and stiffness ` × ` matrices are given

by Mx, Cx and Kx, whereas Qx denotes the corresponding ` vector of the system excitation.

Considering additional constraints equations, Eq. (2.19) is recast in the form

M̄xẍ + C̄xẋ + K̄xx = Q̄x(t), (2.20)

where M̄x, C̄x and K̄x denote the augmented mass, damping and stiffness

(m0 + `)× ` matrices, given by

M̄x =

(I−A+A)Mx

A

 , (2.21)

C̄x =

(I−A+A)Cx

E

 (2.22)
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and

K̄x =

(I−A+A)Kx

L

 , (2.23)

respectively; whereas Q̄x represents the augmented excitation (m0 + `) vector, given by

Q̄x =

(I−A+A)Qx

F

 . (2.24)

Further, the (m0 × `) matrices A,E and L in Eqs. (2.21-2.24) pertain to the system constraints

equation

A(x, ẋ, t)ẍ = b(x, ẋ, t), (2.25)

where

b = F− Eẋ− Lx; (2.26)

details on the derivation of Eqs. (2.20-2.26) can be found in Refs. Fragkoulis et al. (2016a,b);

Kougioumtzoglou et al. (2017b).

Next, focusing on the joint time-frequency response characterization of the system of Eq. (2.20),

it is assumed that the system excitation and corresponding response are modeled via the LSW

representation of Eq. (2.8). Thus, the augmented system of Eq. (2.20) becomes

M̄x
∑

(m,n)

∑
k

ẍ(m,n),k(t) + C̄x
∑

(m,n)

∑
k

ẋ(m,n),k(t)

+ K̄x
∑

(m,n)

∑
k

x(m,n),k(t) =
∑

(
m,n)

∑
k

Q̄x,(m,n),k(t). (2.27)

The localized in time and frequency domains ` vector process x(m,n),k(t) and (m0 + `) vector pro-

cess Q̄x,(m,n),k(t) of the double summations in Eq. (2.27), are defined in Eq. (2.9) as combinations
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of localized monochromatic functions, i.e.,

x(m,n),k(t) = ā(m,n),k cos
[
ωc,(m,n),k

(
t− kT0

n−m

)]

+ b̄(m,n),k sin
[
ωc,(m,n),k

(
t− kT0

n−m

)]
(2.28)

and

Q̄x,(m,n),k(t) = e(m,n),k cos
[
ωc,(m,n),k

(
t− kT0

n−m

)]

+ f(m,n),k sin
[
ωc,(m,n),k

(
t− kT0

n−m

)]
. (2.29)

The terms ā(m,n),k, b̄(m,n),k and e(m,n),k, f(m,n),k in Eqs. (2.28-2.29) correspond to statistically inde-

pendent zero-mean random (m0 + `) vectors, whose variance is given by Eq. (2.10). Substituting

Eqs. (2.28-2.29) in Eq. (2.27), and manipulating, yields

ω4
c,(m,n),kM̄xSxx

(m,n),kM̄T
x + ω2

c,(m,n),kC̄xSxx
(m,n),kC̄T

x + K̄xSxx
(m,n),kK̄T

x

− ω2
c,(m,n),kM̄xSxx

(m,n),kK̄T
x − ω2

c,(m,n),kK̄xSxx
(m,n),kM̄T

x = SQ̄xQ̄x

(m,n),k, (2.30)

where SQ̄xQ̄x

(m,n),k denotes the excitation EPS (m0 + `) × (m0 + `) matrix, and Sxx
(m,n),k denotes the

corresponding response EPS ` × ` matrix, both defined at different frequency and time bands.

Further, manipulating Eq. (2.30), the expression

RxSxx
(m,n),k

[
−ω2

c,(m,n),kM̄T
x − iωc,(m,n),kC̄T

x + K̄T
x

]
= SQ̄xQ̄x

(m,n),k, (2.31)

is derived, where the (m0 + `)× ` matrix Rx has the form

Rx =
[
−ω2

c,(m,n),kM̄x + iωc,(m,n),kC̄x + K̄x
]
. (2.32)
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In Eq. (2.32), M̄x, C̄x and K̄x denote the (m0 + `) × ` augmented mass, damping and stiffness

matrices of Eqs. (2.21-2.23), whereas ωc,(m,n),k represents the central frequency of Eq. (2.6).

Note, in passing, that using the minimum number of generalized coordinates for the formulation of

the system governing equations of motion (see Eq. (2.19)), results in non-singular mass, damping

and stiffness matrices. This, in turn, facilitates the derivation of a closed form, wavelet-coefficient-

based excitation-response relationship. Specifically, for the system of Eq. (2.19) it holds (Kong

et al., 2014b)

Sqq
(m,n),k = H[ωc,(m,n),k]SQQ

(m,n),kH[ωc,(m,n),k]T∗, (2.33)

where

H[ωc,(m,n),k] =
[
−ω2

c,(m,n),kM + iωc,(m,n),kC + K
]−1

(2.34)

is the localized harmonic-wavelet-based, frequency response function (HW-FRF). Clearly, the def-

inition of the HW-FRF relies on the existence of the inverse matrix of Eq. (2.34). Thus, it is readily

seen that following a redundant DOFs modeling approach, the singular mass, damping and stiff-

ness matrices of Eqs. (2.21-2.23), hinder the derivation of the corresponding HW-FRF. However,

employing elements of M-P generalized matrix inverse theory, a generalized HW-FRF is proposed

herein to account for the case of systems with singular matrices.

In this regard, utilizing Eq. (2.3), the solution to Eq. (2.31) takes the form

Sxx
(m,n),k

[
−ω2

c,(m,n),kM̄T
x − iωc,(m,n),kC̄T

x + K̄T
x

]
= R+

x SQ̄xQ̄x

(m,n),k + (I` −R+
x Rx)Y, (2.35)

where R+
x denotes the `× (m0 + `) M-P inverse of Rx, and Y is an arbitrary `× (m0 + `) matrix.

Clearly, the arbitrary matrix Y implies a family of solutions for Eq. (2.35), instead of a unique

solution. Nevertheless, the rank of matrix Rx facilitates the selection of a unique solution. Specif-

ically, when Rx has full column rank, i.e., it has linearly independent columns, its M-P inverse
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takes the form (Campbell and Meyer, 2009)

R+
x = (R∗xRx)−1R∗x, (2.36)

where R∗x corresponds to the conjugate matrix of Rx. Thus, taking into account Eq. (2.36), Eq.

(2.35) is equivalently written as

Sxx
(m,n),k

[
−ω2

c,(m,n),kM̄T
x − iωc,(m,n),kC̄T

x + K̄T
x

]
= R+

x SQ̄xQ̄x

(m,n),k. (2.37)

Further, applying the conjugate and transpose operations on both sides of Eq. (2.32) implies

[
−ω2

c,(m,n),kM̄T
x − iωc,(m,n),kC̄T

x + K̄T
x

]
= R∗Tx . (2.38)

Also, noting that for full column rank matrix Rx, its conjugate transpose R∗Tx has full row rank,

i.e., its rows are linearly independent, results in (Campbell and Meyer, 2009)

R∗Tx

(
R∗Tx

)+
= Im+`. (2.39)

Therefore, taking into account Eqs. (2.38) and (2.39), and also denoting by

αx[ωc,(m,n),k] the M-P inverse of matrix Rx of Eq. (2.32), i.e.,

αx[ωc,(m,n),k] =
[
−ω2

c,(m,n),kM̄x + iωc,(m,n),kC̄x + K̄x
]+
, (2.40)

Eq. (2.37) becomes

Sxx
(m,n),k = αx[ωc,(m,n),k]SQ̄xQ̄x

(m,n),k

(
αx[ωc,(m,n),k]

)T∗
. (2.41)

Matrixαx[ωc,(m,n),k] of Eq. (2.40) represents a generalization of the localized in time and frequency



CHAPTER 2. RESEARCH ARTICLE 1: HARMONIC WAVELETS BASED RESPONSE
EVOLUTIONARY POWER SPECTRUM DETERMINATION OF LINEAR AND NONLINEAR
STRUCTURAL SYSTEMS WITH SINGULAR MATRICES 46

HW-FRF matrix H
[
ωc,(m,n),k

]
(see Eq. (2.34)). In this regard, the herein proposed approach can

be construed as a generalization of the results in Ref. Kong et al. (2014b), for deriving the response

evolutionary power spectrum (EPS) of linear MDOF systems with singular matrices.

2.3.2 Nonlinear systems with singular matrices

In this section, aiming at the response EPS determination of MDOF chain-like nonlinear struc-

tural systems with singular matrices, a recently proposed, harmonic-wavelet-based version of the

statistical linearization methodology (Spanos and Kougioumtzoglou, 2012; Kong et al., 2014b) is

extended. Statistical linearization constitutes one of the most versatile approximate techniques

for nonlinear system response determination and/or characterization (Roberts and Spanos, 2003;

Socha, 2007), with a wide variety of applications over the last decades. It has been success-

fully adapted and/or extended for application in conjunction with fractional calculus (Spanos and

Evangelatos, 2010; Spanos and Malara, 2014; Fragkoulis et al., 2019) and wavelet-based solu-

tions frameworks (Spanos and Kougioumtzoglou, 2012), among others. The method is applied in

two steps, which are summarized as follows. First, the original nonlinear system is replaced with

an equivalent linear one, and then, the error between the two systems is formed and minimized

(Roberts and Spanos, 2003). Based on the fact that solution frameworks for treating the equivalent

linear system are readily available, the rationale behind the method is that the latter can be used as

approximations to the solution of the original nonlinear system.

In this regard, adopting a redundant coordinates modeling (Fragkoulis et al., 2016a,b), the equations

of motion for the nonlinear version of the system of Eq. (2.20) takes the form

M̄xẍ + C̄xẋ + K̄xx + Φ̄x(x, ẋ) = Q̄x(t), (2.42)

where the augmented mass, damping, stiffness matrices and excitation vector are given by Eqs.

(2.21-2.23) and Eq. (2.24), respectively. Further, the augmented nonlinear (m0 + `) vector of the
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system, which depends on the response displacement x and the response velocity ẋ, is given by

(Fragkoulis et al., 2016b)

Φ̄x =

(I−A+A)Φx

0

 . (2.43)

In Eq. (2.43), Φx denotes the nonlinear ` vector of the system governing equations of motion, due

to adopting a redundant coordinates modeling (Fragkoulis et al., 2016b).

Next, considering the LSW representation of Eq. (2.8) for the system excitation x(t), and thus

assuming that x(t) is represented by the sum of its wavelet coefficients, an equivalent to Eq. (2.42)

linear MDOF system is defined as

M̄xẍ +
∑

(m,n)

∑
k

C̄eq,(m,n),kẋ(m,n),k +
∑

(m,n)

∑
k

K̄eq,(m,n),kx(m,n),k = Q̄x(t). (2.44)

In Eq. (2.44), C̄eq,(m,n),k and K̄eq,(m,n),k denote the (m0 + `) × ` equivalent linear damping and

stiffness matrices, which account for the nonlinearity of the nonlinear system of Eq. (2.42), and are

both time and frequency dependent. Continuing with the application of the statistical linearization

method, the error function ε is formed as the difference between the original nonlinear system of

Eq. (2.42), and its linear equivalent Eq. (2.44), i.e.,

ε = Φ̄x

 ∑
(m,n)

∑
k

x(m,n),k,
∑

(m,n)

∑
k

ẋ(m,n),k


+ C̄x

∑
(m,n)

∑
k

ẋ(m,n),k + K̄x
∑

(m,n)

∑
k

x(m,n),k

−
∑

(m,n)

∑
k

C̄eq,(m,n),kẋ(m,n),k −
∑

(m,n)

∑
k

K̄eq,(m,n),kx(m,n),k. (2.45)

It is noted that for the formulation of Eq. (2.45), Eq. (2.42) is also expressed in terms of the

LSW representation of Eq. (2.8). Then, the error function Eq. (2.45) is minimized by considering

the orthogonality properties of the monochromatic functions at a given frequency band and time
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location (see Eqs. (2.11-2.12)). Specifically, Eq. (2.45) is first post-multiplied by the transpose

of the response displacement vector x(m,n),k. Subsequently, integrating with respect to time and

ensemble averaging results in zero average error, i.e.,

E

 ∫ (k+1)T0
n−m

kT0
n−m

Φ̄x

 ∑
(m,n)

∑
k

x(m,n),k,
∑

(m,n)

∑
k

ẋ(m,n),k

xT
(m,n),kdt

+(C̄x − C̄eq,(m,n),k)
∫ (k+1)T0

n−m

kT0
n−m

ẋ(m,n),kxT
(m,n),kdt

+(K̄x − K̄eq,(m,n),k)
∫ (k+1)T0

n−m

kT0
n−m

x(m,n),kxT
(m,n),kdt

 = 0.

(2.46)

In a similar manner, Eq. (2.45) also yields

E

 ∫ (k+1)T0
n−m

kT0
n−m

Φ̄x

 ∑
(m,n)

∑
k

ẋ(m,n),k,
∑

(m,n)

∑
k

ẋ(m,n),k

 ẋT
(m,n),kdt

+(C̄x − C̄eq,(m,n),k)
∫ (k+1)T0

n−m

kT0
n−m

ẋ(m,n),kẋT
(m,n),k

+(K̄x − K̄eq,(m,n),k)
∫ (k+1)T0

n−m

kT0
n−m

x(m,n),kẋT
(m,n),k

 = 0.

(2.47)

Further, Eqs. (2.46) and (2.47) can be equivalently written as

E

 ∫ (k+1)T0
n−m

kT0
n−m

Φ̄x

 ∑
(m,n)

∑
k

x(m,n),k,
∑

(m,n)

∑
k

ẋ(m,n),k

xT
(m,n),kdt


+4π(K̄x − K̄eq,(mi,ni),k)Sxx

(mi,ni),k = 0

(2.48)
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and

E

 ∫ (k+1)T0
n−m

kT0
n−m

Φ̄x

 ∑
(m,n)

∑
k

ẋ(m,n),k,
∑

(m,n)

∑
k

ẋ(m,n),k

 ẋT
(m,n),kdt


+4π(C̄x − C̄eq,(mi,ni),k)Sẋẋ

(mi,ni),k = 0.

(2.49)

Eqs. (2.48) and (2.49) connect, in essence, the localized in frequency and time intervals m∆ω ≤

ω < n∆ω and kT0
n−m ≤ t < (k+1)T0

n−m , response EPS Sẋẋ
(mi,ni),k and Sxx

(mi,ni),k, with the corresponding

localized equivalent linear elements C̄eq,(m,n),k and K̄eq,(m,n),k. Furthermore, taking into account

Eqs. (2.13-2.18), Sẋẋ
(mi,ni),k in Eq. (2.49) can be replaced by Sxx

(mi,ni),k. In this regard, Eqs. (2.48)

and (2.49), together with Eq. (2.41), form a coupled system of nonlinear equations to be solved

for determining C̄eq,(m,n),k and K̄eq,(m,n),k, and the response EPS Sxx
(mi,ni),k. For the solution of

the coupled system of equations, the following iterative scheme can be applied (Spanos and Kou-

gioumtzoglou, 2012; Kong et al., 2014b). First, initial values for the equivalent elements C̄eq,(m,n),k

and K̄eq,(m,n),k are considered, and solving Eq. (2.41), initial values for Sxx
(mi,ni),k are derived. Then,

the latter is used in conjunction with Eqs. (2.48-2.49) for updating the values of the equivalent ele-

ments C̄eq,(m,n),k and K̄eq,(m,n),k. The process repeats until convergence.

Next, considering the case of polynomial kind nonlinearities, the described statistical linearization

methodology results in closed form solutions for determining the equivalent linear elements. This

assumption is considered not only for facilitating the ensuing derivation of the closed form solu-

tions, i.e., for simplicity reasons, but also due to its practical merit, as nonlinearities of this kind

are often met in structural engineering applications (Roberts and Spanos, 2003; Kong et al., 2014b,

2016). In this regard, considering a redundant coordinates modeling of the equations of motion
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given by Eq. (2.19), the cubic nonlinearity ` vector is written in the form

Φx =


ε1k1x

3
1

...

ε`k`x
3
`

+


λ1c1ẋ

3
1

...

λ`c`ẋ
3
`

 , (2.50)

where εi and λi, for i = 1, 2, . . . , `, denote the magnitude of the nonlinearity for the stiffness and

damping of the system, respectively.

Further, considering the augmented nonlinear vector Φ̄x of Eq. (2.43) in conjunction with Eqs.

(2.48-2.49), closed form expressions are derived for the augmented equivalent (m0+`)×` elements

C̄eq,(m,n),k and K̄eq,(m,n),k. These are expressed in terms of summations of the response EPS over

all (mi, ni) at a specific k, and for all pairs of (m,n) and k. Specifically, for the determination of

the equivalent damping element, taking into account Eqs. (2.43) and (2.50), Eq. (2.49) implies

Dd + (C̄x − C̄eq,(mi,ni),k)S̃ẋẋ
(mi,ni),k = 0, (2.51)

where Dd is an (m0 + `)× ` matrix whose entries depend on the damping nonlinearity, as well as

on the system constraints defined in Eq. (2.25); and S̃ẋẋ
(mi,ni),k denotes the local auto/cross EPS `×`

matrix of the response velocity process ẋ(m,n),k. It is noted that, in contrast to the standard lineariza-

tion approach of Ref. Kong et al. (2014b) where the corresponding local auto/cross EPS matrix is

diagonal, matrix S̃ẋẋ
(mi,ni),k of Eq. (2.51) potentially has some non-zero off-diagonal entries. This

is due to the redundant DOFs employed in the system modeling. Specifically, the dependence be-

tween the redundant DOFs which form the coordinates vector x implies linear dependence between

some of the columns of matrix S̃ẋẋ
(mi,ni),k. Therefore, S̃ẋẋ

(mi,ni),k is singular, and thus, in order to de-

rive a closed form expression for the equivalent damping element, a special treatment is required

for solving Eq. (2.51).
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In this regard, taking into account Eq. (2.3), Eq. (2.51) implies

C̄eq,(mi,ni),k = Dd

(
S̃ẋẋ

(mi,ni),k

)+
+ C̄x

+
{(

(I` −
(
(S̃ẋẋ

(mi,ni),k)
T
)+

(S̃ẋẋ
(mi,ni),k)

T
)

Y1

}T
, (2.52)

where Y1 is a (m0 + `) × ` matrix of arbitrary elements. In a similar manner, taking into account

Eqs. (2.43) and (2.50), Eq. (2.49) yields

K̄eq,(mi,ni),k = Ds

(
S̃xx

(mi,ni),k

)+
+ K̄x

+
{(

(I` −
(
(S̃xx

(mi,ni),k)
T
)+

(S̃xx
(mi,ni),k)

T
)

Y2

}T
. (2.53)

In this case, Ds is an (m0 + `) × ` matrix whose entries depend on the stiffness nonlinearity and

the constraints of Eq. (2.25), whereas S̃xx
(mi,ni),k denotes the local auto/cross EPS `× ` matrix of the

response displacement x(m,n),k; Y2 is a (m0 + `)× ` matrix of arbitrary elements.

Clearly, due to the arbitrary matrices Y1 and Y2, Eqs. (2.52) and (2.53) form a family of solutions,

while C̄eq,(m,n),k and K̄eq,(m,n),k correspond to the unique damping and stiffness matrices of the

equivalent linear system defined in Eq. (2.44). However, taking into account that the M-P general-

ized matrix inverse framework employed in the derivation of Eqs. (2.52) and (2.53) corresponds, in

essence, to the solution of a quadratic (least squares) optimization problem, it is feasible to select a

unique solution for each of the equivalent elements. In this regard, the intuitively simplest solution

among the family of solutions, which also coincides with the minimal mean square solution of the

quadratic problem above (Campbell and Meyer, 2009), is considered. Thus, setting the arbitrary

matrices Y1 and Y2 equal to null matrix, Eqs. (2.52) and (2.53) become

C̄eq,(mi,ni),k = Dd

(
S̃ẋẋ

(mi,ni),k

)+
+ C̄x (2.54)
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and

K̄eq,(mi,ni),k = Ds

(
S̃xx

(mi,ni),k

)+
+ K̄x, (2.55)

respectively. Clearly, Eqs. (2.54) and (2.55) define a unique solution for the equivalent damping

and stiffness elements, respectively. Further, they constitute a generalization of the corresponding

results in Ref. Kong et al. (2014b), to account for systems with singular matrices and polynomial

kind nonlinearities, subjected to non-stationary excitation.

2.4 Numerical examples

2.4.1 Non-stationary stochastic excitation

The considered in the ensuing numerical examples MDOF systems, are subjected to non-stationary

stochastic excitation described by non-separable, evolutionary power spectra of the form

S(ω, t) = S0

(
ω

5π

)2
exp(−c0t)t2 exp

(
−
(
ω

5π

)2
t

)
, (2.56)

where S0, c0 ∈ R. Eq. (2.56), firstly introduced in Ref. Spanos and Solomos (1983), is used as

an indicative seismic excitation, since it encloses the main “build-up” and “die-off” characteristics

of the ground motion, while its dominant frequency decreases with time (Beck and Papadimitriou,

1993; Tubaldi and Kougioumtzoglou, 2015; Fragkoulis et al., 2019). The spectral representation

method is employed for deriving compatible to the EPS of Eq. (2.56) realizations (Liang et al.

(2007)) and the response EPS is obtained by averaging the mean square magnitude of the corre-

sponding wavelet coefficients (Spanos and Kougioumtzoglou, 2012), i.e.,

S(ω, tk) = T0

2π(n−m)E
[
| WG

(m,n),k |2
]
. (2.57)
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Fig. 2.1: Three degree-of-freedom system subjected to non-stationary stochastic excitation.

The parameter value n−m = 5 is used in the ensuing analysis. Moreover, the Mean Instantaneous

Frequency (MIF) given by

MIF(t) =
∫
ω ωS(t, ω)dω∫
ω S(t, ω)dω (2.58)

is included in the ensuing analysis for capturing the evolution of the “effective instantaneous fre-

quency” for the non-stationary system response (Spanos et al., 2007).

2.4.2 Linear systems with singular matrices

For the assessment of the herein proposed solution framework, the EPS for each DOF of the

3−DOF linear system depicted in Fig. 2.1, is determined. The system consists of three masses m1,

m2 and m3 interconnected with linear springs and dampers. In particular, mass m1 is connected

to the foundation by a linear spring and a linear damper with stiffness and damping coefficients k1

and c1, respectively, and to masses m2 and m3 by linear springs with stiffness coefficients k2 and

k4. Further, mass m2 is connected to mass m3 by a linear spring of stiffness coefficient k3 and a

linear damper of damping coefficient c2. The system is subjected to random force Q1(t) which is

applied on mass m1, and to random force Q3(t) applied on mass m3, which are both described by

the EPS of Eq. (2.56).

Following, a standard Newtonian approach for the formulation of the system governing equations

of motion, and considering the (generalized) coordinates vector qT =
[
q1 q2 q3

]
, the mass,
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damping and stiffness matrices are given by

Mq =


m1 0 0

0 m2 0

0 0 m3

 ,Cq =


c1 0 0

0 c2 −c2

0 −c2 c2

 (2.59)

and

Kq =


k1 + k2 + k4 −k2 −k4

−k2 k2 + k3 −k3

−k4 −k3 k3 + k4

 , (2.60)

respectively. Next, considering a relative displacement modeling, the coordinates vector yT =[
y1 y2 y3

]
is defined. Vector y denotes the relative displacement between the adjacent DOFs

(Roberts and Spanos, 2003), i.e.,

y1 = q1, y2 = q2 − q1, y3 = q3 − q2. (2.61)

Thus, the mass, damping and stiffness matrices in the relative coordinates system take the form

M =


m1 0 0

m2 m2 0

m3 m3 m3

 ,C =


c1 0 0

0 0 −c2

0 0 c2

 (2.62)

and

K =


k1 −k2 − k4 −k4

0 k2 −k3

0 k4 k3 + k4

 , (2.63)
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respectively. Finally, the excitation vector Q(t) is given by

Q =


Q1(t)

0

Q3(t)

 , (2.64)

where Q1(t) = Q3(t) = Q(t). Further, assuming the system and excitation parameter values

m1 = m2 = m3 = 1, c1 = c2 = 4.3, c3 = 1.4, k1, k2, k3 = 256, k4 = 64 and S0 = 10, c0 = 0.15,

and resorting to Eq. (2.33-2.34), the generalized response spectra are estimated. The response EPS

for each DOF of the system of Fig. 2.1 is depicted in Figs. 2.2a-2.2c. Also, the MIF of Eq. (2.58)

is included for each DOF.

Next, the herein proposed methodology for deriving the EPS of the system response is applied to

the system of Fig. 2.1. In this regard, adopting a redundant coordinates modeling of the equations

of motion, the 3−DOF system is decomposed into its component subsystems, as shown in Fig. 2.3.

This is attained by considering the coordinates vector

x =



x̄1

x2

x̄3

x4

x̄5


, (2.65)

where x̄1, x̄3 and x̄5 denote the displacements of masses m1,m2 and m3, respectively; and x2, x4

correspond to the redundant DOFs which, in essence, account for the constraints connecting the

partial subsystems (see Fig. 2.3). It holds

x1 + d = x2 (2.66)
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Fig. 2.2: Response EPS of the linear system of Fig. 2.1, subject to non-stationary excitation (S0 =
10, c0 = 0.15). (a) 1st DOF y1 of the system. (b) 2nd DOF y2 of the system. (c) 3rd DOF y3 of the
system.
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and

x2 + x3 + d = x4, (2.67)

where d is the physical length of each mass mi, i = 1, 2, 3. Taking into account the geometry of

the system in Fig. 2.3, as well as Eqs. (2.66-2.67), the expressions

x̄1 + l1,0 + d = x2 (2.68)

and

x2 + x̄3 + l3,0 + d = x4, (2.69)

where li is the unstretched length of the spring for the mass mi (i = 1, 2, 3), form a set of equations

which connect the system constraints with the redundant coordinates. Specifically, differentiating

twice with respect to time Eqs. (2.68)-(2.69), the 2× 5 matrix A of Eq. (2.25) and the 2−vector b

of Eq. (2.26) take the form

A =

1 −1 0 0 0

0 1 1 −1 0

 (2.70)

and

b =

0

0

 , (2.71)

respectively.

In this regard, the equations of motion are formed, and the augmented mass, damping and stiffness
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Fig. 2.3: Modeling the three degree-of-freedom system of Fig. 2.1 by using redundant coordinates.

7× 5 matrices of Eqs. (2.21-2.23) become

M̄x =



0.4 0.2 0.2 0.2 0.2

0.4 0.2 0.2 0.2 0.2

−0.2 0.4 0.4 0.4 0.4

0.2 0.6 0.6 0.6 0.6

0 0 0 1 1

1 −1 0 0 0

0 1 1 −1 0



, C̄x =



1.72 0 0 0 0

1.72 0 0 0 0

−0.86 0 0 0 0

0.86 0 0 0 0

0 0 0 0 4.30

0 0 0 0 0

0 0 0 0 0



(2.72)
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and

K̄x =



102.4 12.8 −51.2 −12.8 −12.8

102.4 12.8 −51.2 −12.8 −12.8

−51.2 −38.4 153.6 38.4 38.4

51.2 −25.6 102.4 25.6 25.6

0 −64 0 64 320

0 0 0 0 0

0 0 0 0 0



, (2.73)

respectively; whereas the augmented excitation vector of Eq. (2.24) takes the form

Q̄x =



0.6Q(t)

0.6Q(t)

0.2Q(t)

0.8Q(t)

Q(t)

0

0



. (2.74)

Next, the 7×5 matrix Rx is formed, for which rank(Rx) = 5. Therefore, utilizing the input-output

expression of Eq. (2.41), and taking into account the M-P HW-FRF of Eq. (2.40), the response

EPS for x̄1, x̄3 and x̄5 of the equivalent linear system, is obtained in an analytical manner. The

corresponding results, along with the MIF of Eq. (2.58), are plotted in Figs. 2.4a, 2.4b and 2.4c.

Comparing Fig. 2.4a with Fig. 2.2a, Fig. 2.4b with Fig. 2.2b, and Fig. 2.4c with Fig. 2.2c, it is seen

that the results obtained by applying the herein proposed M-P inverse framework are in agreement

with those obtained by following the standard formulation. This is also deduced by Fig. 2.5, where

the response EPS for each DOF of the two systems (Fig. 2.1 and Fig. 2.3) is determined for both

formulations, and is plotted at different time instants (t = 5.8s and t = 12s). In this regard, it can
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be argued that the herein proposed approach constitutes a generalized matrix inverses extension of

the harmonic-wavelet-based technique of Ref. Kong et al. (2014b).

2.4.3 Nonlinear systems with singular matrices

The 2−DOF chain-like structural nonlinear system of rigid masses m1 and m2 that is shown in

Fig. 2.6 is considered for demonstrating the efficiency of the linearization scheme. Mass m1 is

connected to the foundation by a nonlinear spring of linear-plus-cubic type, and a nonlinear damper

of the same nonlinearity type. Further, mass m1 is connected to mass m2 by corresponding linear

spring and damper with stiffness and damping coefficients k2 and c2, respectively. The nonlinearity

magnitude of the nonlinear spring is denoted by ε1, whereas λ1 denotes the nonlinearity magnitude

of the nonlinear damper. The system is subjected to non-stationary stochastic excitations Q1(t) and

Q2(t), both described by a non-separable EPS of the form given by Eq. (2.56).

Next, the system governing equations of motion are derived. In this regard, the generalized co-

ordinates y1, y2 are utilized, and relative displacements are introduced for facilitating the ensuing

analysis. Thus, the mass, damping and stiffness matrices for the system of Fig. 2.6 are given by

(Roberts and Spanos, 2003)

M =

m1 0

m2 m2

 , C =

c1 −c2

0 c2

 (2.75)

and

K =

k1 −k2

0 k2

 , (2.76)

respectively. Further, the system nonlinearity is written in the vector form

Φ =

ε1k1y
3
1 + λ1c1ẏ

3
1

0

 (2.77)
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Fig. 2.4: Response EPS of the linear system of Fig. 2.3, subject to non-stationary excitation (S0 =
10, c0 = 0.15). (a) 1st DOF x̄1 of the system. (b) 3rd DOF x̄3 of the system. (c) 5th DOF x̄5 of the
system.
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Fig. 2.5: Response EPS of the linear system of Fig. 2.3 at time instants t = 5.8s and t = 12s, sub-
ject to non-stationary stochastic excitation (S0 = 10, c0 = 0.15). Comparison between standard for-
mulation and the proposed technique. (a) 1st DOF (y1 vis-à-vis x̄1); (b) 2nd DOF (y2 vis-à-vis x̄3);
(c) 3rd DOF (y3 vis-à-vis x̄5).
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Fig. 2.6: Two degree-of-freedom nonlinear structural system subjected to non-stationary stochastic
excitation.

and the system excitation is

Q(t) =

Q1

Q2

 . (2.78)

Then, the standard linearization approach of Ref. Kong et al. (2014b) is followed for determining

the response EPS. In this regard, the equivalent linear elements Ceq,(mi,ni),k and Keq,(mi,ni),k are

given by

Ceq,(mi,ni),k = 6(n−m)∆ω

λ1c1
∑
j S

ẏ1ẏ1
(mj ,nj),k 0

0 0

+ C (2.79)

and

Keq,(mi,ni),k = 6(n−m)∆ω

ε1k1
∑
j S

y1y1
(mj ,nj),k 0

0 0

+ K, (2.80)

respectively. Further, the system parameter values mi = 1, ci = 4.3 and ki = 256 (i = 1, 2),

and the nonlinearity magnitude parameters ε1 = 2, λ1 = 0.5 are considered. It is also assumed

for simplicity that Q1(t) = Q2(t) = Q(t) and the excitation parameter values are S0 = 10 and

c0 = 0.15. Thus, solving the nonlinear set of equations formed by Eqs. (2.79-2.80) and Eqs. (2.33-

2.34), leads to determining the evolutionary response power spectrum for the 2−DOF system of

Fig. 2.6. Figs. 2.7a and 2.7b represent the results for the generalized coordinates y1 and y2, also

including the corresponding MIF.
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Fig. 2.7: Response EPS of the nonlinear structural system of Fig. 2.6, subject to non-stationary
stochastic excitation (S0 = 10, c0 = 0.15). (a) 1st DOF y1 (ε1 = 2, λ1 = 0.5); (b) 2nd DOF y2.
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Next, employing a redundant coordinates modeling for the formulation of the system governing

equations of motion, the 2−DOF system of Fig. 2.6 is decomposed in its partial subsystems, as

shown in Fig. 2.8. The independent coordinates x̄1, x2 and x̄3 describe the equations of motion of

the two subsystems, which are also connected to each other by the constraint equation

x2 = x̄1 + l0 + d, (2.81)

where l0 is the unstreched length of the spring k1 and d the physical length of mass m1. Note, in

passing, that the equations of motion for the system of Fig. 2.8 are formed in terms of relative co-

ordinates, and thus, the connection between the independent coordinates x̄1, x̄3 and the generalized

coordinates y1, y2 for the two different formulations are given by x̄1 = y1 and x̄3 = y2, respectively.

Further, twice differentiating the system constraint equations, which are described by Eq. (2.81),

matrix A of Eq. (2.25) becomes

A =
[
1 −1 0

]
, (2.82)

whereas taking into account Eq. (2.26), E = L = 0 and b = 0.

Deriving the system governing equations of motion, the augmented mass, damping and stiffness

matrices of Eqs. (2.21-2.23) take the form

M̄x =



0.5 0.5 0.5

0.5 0.5 0.5

0 1 1

1 −1 0


, C̄x =



2.15 0 0

2.15 0 0

0 0 4.3

0 0 0


(2.83)
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Fig. 2.8: Modeling the two degree-of-freedom system of Fig. 2.6 by using redundant coordinates.

and

K̄x =



128 0 0

128 0 0

0 0 256

0 0 0


, (2.84)

respectively. Finally, the augmented system nonlinear vector defined in Eq. (2.43) is given by

Φ̄x =



0.5ε1k1x̄
3
1 + 0.5λ1c1 ˙̄x3

1

0.5ε1k1x̄
3
1 + 0.5λ1c1 ˙̄x3

1

0

0


, (2.85)
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whereas the augmented excitation vector of Eq. (2.24) is given by

Q̄x =



Q1

Q2

Q2

0


. (2.86)

Taking into account the system nonlinearity of Eq. (2.85), as well as the constraints expression of

Eq. (2.81), matrices Dd and S̃ẋẋ
(mi,ni),k in Eq. (2.51) become

Dd =



d1,(m,n),k d1,(m,n),k 0 0

d1,(m,n),k d1,(m,n),k 0 0

0 0 0 0

0 0 0 0


(2.87)

and

S̃ẋẋ
(mi,ni),k =


s1,(m,n),k s1,(m,n),k 0

s1,(m,n),k s1,(m,n),k 0

0 0 s3,(m,n),k

 , (2.88)

respectively, where

d1,(m,n),k = E[(ẋ1,(m,n),k)4] + 3
∑

(i,j),i 6=m,j 6=n
E[(ẋ1,(m,n),k)2]E[(ẋ1,(i,j),k)2] (2.89)

and

sρ,(m,n),k = E[(ẋi,(m,n),k)2], ρ = 1, 3. (2.90)
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Further, the M-P inverse of matrix S̃ẋẋ
(mi,ni),k in Eq. (2.88) is given by Cline (1964)

(S̃ẋẋ
(mi,ni),k)

+ =


0.25s−1

1,(m,n),k 0.25s−1
1,(m,n),k 0

0.25s−1
1,(m,n),k 0.25s−1

1,(m,n),k 0

0 0 s−1
3,(m,n),k

 . (2.91)

Thus, substituting Eqs. (2.87) and (2.91) into Eq. (2.54), and manipulating, yields

C̄eq,(mi,ni),k = 6(n−m)∆ω



λ1c1
2
∑
j S

˙̄x1 ˙̄x1
(mj ,nj),k

λ1c1
2
∑
j S

˙̄x1 ˙̄x1
(mj ,nj),k 0

λ1c1
2
∑
j S

˙̄x1 ˙̄x1
(mj ,nj),k

λ1c1
2
∑
j S

˙̄x1 ˙̄x1
(mj ,nj),k 0

0 0 0

0 0 0


+ C̄x. (2.92)

In a similar manner, the augmented equivalent linear stiffness elements are derived in closed form

at each frequency band (n−m) and time level k, as functions of the localized response EPS. They

are given by

K̄eq,(mi,ni),k = 6(n−m)∆ω



ε1k1
2
∑
j S

x̄1x̄1
(mj ,nj),k

ε1k1
2
∑
j S

x̄1x̄1
(mj ,nj),k 0

ε1k1
2
∑
j S

x̄1x̄1
(mj ,nj),k

ε1k1
2
∑
j S

x̄1x̄1
(mj ,nj),k 0

0 0 0

0 0 0


+ K̄x. (2.93)

Noticing that the matrix Rx of Eq. (2.32) has full rank, and thus, that the M-P HW-FRF of Eq.

(2.40) holds, the estimation of the response EPS is attained by resorting to the recurcive lineariza-

tion scheme which is applied to the nonlinear set of Eqs. (2.92-2.93) and Eqs. (2.40-2.41). The

linearization process is initialized by considering the linear system response EPS, and continues

until convergence. The scheme stops when the maximum values of the percentile difference of the

equivalent elements over all frequency bands and time levels become smaller than 10−5. In this



CHAPTER 2. RESEARCH ARTICLE 1: HARMONIC WAVELETS BASED RESPONSE
EVOLUTIONARY POWER SPECTRUM DETERMINATION OF LINEAR AND NONLINEAR
STRUCTURAL SYSTEMS WITH SINGULAR MATRICES 69

regard, the estimated response EPS for the first DOF x̄1 is depicted in Fig. 2.9a, whereas Fig. 2.9b

shows the corresponding EPS for the independent to x̄1, coordinate x̄3. The MIF of Eq. (2.58) is

also plotted in the figures for completeness. Comparing Figs. 2.9a and 2.9b with Figs. 2.7a and

2.7b, respectively, it is seen that the corresponding results are in total agreement. This is also high-

lighted by Fig. 2.10, where the results obtained by applying the standard and alternative approaches

are plotted for different time instants (t = 5s and t = 10s). Thus, it is concluded that the herein de-

veloped M-P harmonic-wavelet-based statistical linearization scheme constitutes a generalization

of the results in Ref. Kong et al. (2014b), to account for the case of systems with singular matrices

subjected to non-stationary excitation.

2.5 Conclusion

In this paper, a generalized inverse matrix harmonic-wavelet-based technique has been developed

for determining the response evolutionary power spectrum (EPS) of stochastically excited multi-

degree-of-freedom (MDOF) linear and nonlinear structural systems with singular matrices. The

singular matrices appear in the system governing equations of motion due to adopting a redundant

coordinates modeling for their formulation. It can be argued, that this approach relates to solutions

of reduced computational cost, as well as enhanced modeling flexibility when the problem of form-

ing the equations of motion of complex multibody systems is considered. However, singular matri-

ces also hinder the application of standard solution treatments for estimating the system response

EPS. In this regard, resorting to the Moore-Penrose (M-P) matrix inverse theory in conjunction with

the generalized harmonic wavelets theory, a solution framework is developed herein for determin-

ing the evolutionary response spectra of such systems. Specifically, adopting the locally stationary

wavelet representation of a stochastic process, and relying on the theory of the M-P generalized

inverse of a singular matrix, an M-P localized in time and frequency, harmonic-wavelet-based

frequency response function (M-P HW-FRF) has been constructed. Subsequently, employing the

novel M-P HW-FRF, an input-output formula for determining the EPS of the system response has
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Fig. 2.9: Response EPS of the nonlinear structural system of Fig. 2.8 subject to non-stationary
stochastic excitation (S0 = 10, c0 = 0.15). (a) 1st DOF x̄1 (ε1 = 2, λ1 = 0.5); (b) 2nd DOF x̄3.
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Fig. 2.10: Response EPS of the nonlinear structural system of Figs. 2.6 and 2.8 at time instants t =
5s and t = 10s, subject to non-stationary stochastic excitation (S0 = 10, c0 = 0.15). Comparison
between standard formulation and the proposed technique. (a) 1st DOF (y1 vis-à-vis x̄1); (b) 2nd
DOF (y2 vis-à-vis x̄3).

been derived. This can be construed as a generalization of a recently developed harmonic-wavelet-

based input-output formula (Kong et al., 2014b), to account for the case of systems with singular

matrices. Further, for the case of nonlinear systems of this kind, a recently derived harmonic-

wavelet-based statistical linearization technique (Kong et al., 2014b) has also been generalized.

First, an equivalent linear to the original nonlinear system has been defined. Subsequently, closed

form solutions have been derived for the time and frequency dependent equivalent linear elements,

and the equivalent linear system EPS has been estimated by resorting to the solution of a nonlin-

ear set of equations. A linear and a nonlinear MDOF systems with singular matrices have been

considered as numerical examples for assessing the validity of the developed methodology. The

applicability of the proposed method to systems subject to a broad category of non-stationary ex-

citations has been highlighted by considering excitations described by evolutionary non-separable

spectra.



CHAPTER 2. RESEARCH ARTICLE 1: HARMONIC WAVELETS BASED RESPONSE
EVOLUTIONARY POWER SPECTRUM DETERMINATION OF LINEAR AND NONLINEAR
STRUCTURAL SYSTEMS WITH SINGULAR MATRICES 72

Acknowledgement

The authors gratefully acknowledge the support and funding from the European Union’s Horizon

2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No

764547.

Conflict of interests

The authors declare that they have no conflict of interest.



Chapter 3

Research article 2: Excitation-response relationships
for linear structural systems with singular parameter
matrices: A periodized harmonic wavelet perspective

73



CHAPTER 3. RESEARCH ARTICLE 2: EXCITATION-RESPONSE RELATIONSHIPS FOR
LINEAR STRUCTURAL SYSTEMS WITH SINGULAR PARAMETER MATRICES: A
PERIODIZED HARMONIC WAVELET PERSPECTIVE 74

Excitation-response relationships for linear structural systems with

singular parameter matrices: A periodized harmonic wavelet

perspective

George D. Pasparakisa, I. A. Kougioumtzoglou b,∗, V. C. Fragkoulisa, F. Kongc, M. Beera,d,e

aInstitute for Risk and Reliability, Leibniz Universität Hannover, Callinstr. 34, 30167 Hannover, Germany

bDepartment of Civil Engineering and Engineering Mechanics, Columbia University, 500 W 120th Street, New York,

NY 10027, USA

cSchool of Civil Engineering and Architecture, Wuhan University of Technology, China

dInstitute for Risk and Uncertainty and School of Engineering, University of Liverpool, Liverpool L69 7ZF, UK

eInternational Joint Research Center for Engineering Reliability and Stochastic Mechanics, Tongji University,

Shanghai, China

Abstract: Novel wavelet-based input-output (excitation-response) relationships are developed re-

ferring to stochastically excited linear structural systems with singular parameter matrices. This is

done by relying on the family of periodized generalized harmonic wavelets for expanding the exci-

tation and response processes, and by resorting to the concept of Moore-Penrose matrix inverse for

solving the resulting overdetermined linear system of algebraic equations to calculate the response

wavelet coefficients. In this regard, system response statistics in the joint time-frequency domain,

such as the response evolutionary power spectrum matrix, can be determined in a straightforward

manner based on the herein derived input-output relationships. The developed technique can be

construed as a generalization of earlier efforts in the literature to account for singular parameter

matrices in the governing equations of motion. The reliability of the technique is demonstrated

by comparing the analytical results with pertinent Monte Carlo simulation data. This is done in

conjunction with various diverse numerical examples pertaining to energy harvesters with coupled
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electromechanical equations, oscillators subject to non-white excitations modeled via auxiliary fil-

ter equations and structural systems modeled by a set of dependent coordinates.

Keywords: Evolutionary Power Spectrum; Moore-Penrose Matrix Inverse; Joint Time-Frequency

Analysis; Random Vibration; Energy Harvesting

3.1 Introduction

Structural systems are often subjected to stochastic excitations exhibiting strong variations both in

the time and the frequency domains (Li and Chen, 2009); thus, there is a need for developing effi-

cient joint time-frequency analysis techniques for determining the time-varying frequency content

of the system response. In this regard, various standard concepts and tools from random vibra-

tion theory have been generalized and extended over the past two decades based on wavelets; see

Spanos and Failla (2005); Kougioumtzoglou et al. (2020) for a broad perspective. These wavelet-

based techniques have been widely employed for addressing diverse problems including, indica-

tively, system response analysis and statistics determination (Kareem and Kijewski, 2002; Basu

and Gupta, 1997; Psaros et al., 2019a), system identification and damage detection (Kijewski and

Kareem, 2003; Spanos et al., 2006; Basu et al., 2008; Kougioumtzoglou et al., 2017a; dos Santos

et al., 2020), as well as evolutionary power spectrum (EPS) estimation (Spanos and Failla, 2004;

Spanos et al., 2005; Comerford et al., 2016; Zhang et al., 2018).

Further, Spanos and co-workers employed the family of generalized harmonic wavelets (GHWs)

for expanding the system excitation and response processes and for deriving an algebraic system

of equations to be solved for the response process wavelet coefficients; and thus, for the response

process EPS (Spanos and Kougioumtzoglou, 2012; Kougioumtzoglou, 2013). Note that, compared

to alternative wavelet families, a significant advantage of GHWs relates to the fact that they possess

an additional coefficient that decouples the wavelet resolution in the frequency domain from the

central frequency of the wavelet (Newland, 1994). This means that the resolution of the wavelet



CHAPTER 3. RESEARCH ARTICLE 2: EXCITATION-RESPONSE RELATIONSHIPS FOR
LINEAR STRUCTURAL SYSTEMS WITH SINGULAR PARAMETER MATRICES: A
PERIODIZED HARMONIC WAVELET PERSPECTIVE 76

analysis can be enhanced in frequency regions of interest. Clearly, this attribute renders GHWs an

indispensable tool particularly for structural dynamics applications, where the interest lies typically

in resonance phenomena manifesting themselves over relatively small regions in the frequency

domain. Further, the technique has been extended to address multi-degree-of-freedom (MDOF)

nonlinear systems (Kong et al., 2014b), as well as systems endowed with fractional derivative

terms (Kougioumtzoglou and Spanos, 2016).

More recently, Spanos and co-workers developed a novel GHW-based input-output relationship for

determining the response EPS of linear systems (Spanos et al., 2016), which circumvented the as-

sumption of “local stationarity” inherent in the early developments in Spanos and Kougioumtzoglou

(2012); Kougioumtzoglou (2013); Kong et al. (2014b); Kougioumtzoglou and Spanos (2016) and

yielded a higher degree of accuracy in predicting the system response. This was done by relying

on a periodized version of GHWs for addressing the non-orthogonality of the GHW basis on a

finite time interval, and by deriving interaction coefficients in closed form referring to wavelets at

different scales and translation levels. Further, the technique was extended in Kong et al. (2016)

to account for nonlinear systems and in Kong et al. (2022b) to address systems with fractional

derivative terms.

In this paper, the technique developed in Spanos et al. (2016) is further extended to account for

MDOF systems exhibiting singular parameter matrices. This is done in conjunction with the con-

cept of Moore-Penrose (MP) generalized matrix inverse for solving the resulting overdetermined

linear system of algebraic equations and for computing the response wavelet coefficients and re-

sponse EPS matrix. In passing, note that the herein derived input-output relationships can be con-

strued as an enhancement of the respective ones in Pasparakis et al. (2021). In fact, the range

of applicability and the accuracy degree of the results in Pasparakis et al. (2021) are limited by

the relatively strong assumption of local stationarity, which is removed in this paper. The relia-

bility of the herein developed technique is demonstrated by comparing the analytical results with
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pertinent Monte Carlo simulation (MCS) data. This is done in conjunction with various diverse

numerical examples exhibiting singular parameter matrices in the governing equations of motion.

These include energy harvesters with coupled electromechanical equations, oscillators subject to

non-white excitations modeled via auxiliary filter equations, and structural systems modeled by a

set of dependent coordinates.

3.2 Mathematical formulation

3.2.1 Preliminaries: Periodized generalized harmonic wavelets

In general, wavelet-based solutions of differential equations governing the response of diverse sys-

tems necessitate the determination of coefficients representing the interactions between wavelets (or

derivatives/integrals of wavelets) at different scales and translation levels; see, for instance, Beylkin

(1992); Chen et al. (1996); Cattani (2005) for some indicative references pertaining to calculation

of such interaction coefficients. Specifically, in the field of engineering dynamics, Spanos and co-

workers developed recently a periodized version of GHWs to address the non-orthogonality of the

GHW basis on a finite interval (Spanos et al., 2016). In this regard, interaction coefficients were

derived in closed form and were employed for obtaining an analytical relationship between wavelet

coefficients of the system excitation and of the system response. In comparison to alternative

earlier efforts towards deriving GHW-based input-output (excitation-response) relationships (e.g.,

Spanos and Kougioumtzoglou (2012); Kougioumtzoglou (2013)), the approach in Spanos et al.

(2016) circumvented the assumption of local stationarity and yielded a higher degree of accuracy

in predicting the system response. The basic aspects of the periodized GHWs and the associated

interaction coefficients are elucidated in the following for completeness. The interested reader is

also directed to Spanos et al. (2016) for a more detailed presentation.
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A periodized GHW is defined in the time domain as (Spanos et al., 2016)

ψG,per
(mi,ni),k(t) = 1

n−m

ni∑
q=mi

ei∆ωq(t− kT0
n−m) , (3.1)

where (mi, ni) denote the scale indices, i is the subscript for the i-th scale, and k = 0, 1, . . . , Nt,

with Nt = (n − m) − 1, denotes the translation index. A uniform constant bandwidth is chosen

for all scales under consideration in the ensuing analysis, i.e., ni − mi = nj− mj = n − m,

i, j = 1, 2, . . . , NΩ, where NΩ = N/2(n − m). Further, T0 = N∆t is the time duration of the

discretized signal, where N is the total number of sampling points and ∆ω = 2π/T0.

The periodized GHW of a continuous function f(t) defined in the interval [0, T0] is given by

(Spanos et al., 2016)

W f
(mi,ni),k = n−m

T0

∫ T0

0
f(t)ψ̄G, per

(mi,ni),k(t)dt = n−m
T0

〈
f(t), ψ̄ G,per

(mi,ni),k(t)
〉T0

0
, (3.2)

where 〈·〉 represents the inner product over the interval [0, T0] and the bar over a symbol denotes

complex conjugation. Moreover, based on the orthogonality properties of the periodized GHW

over a finite time domain, a signal f(t) can be reconstructed as

f(t) =
∑
i

∑
k

W f
(mi,ni),kψ

G,per
(mi,ni),k(t) +

∑
i

∑
k

W̄ f
(mi,ni),kψ̄

G,per
(mi,ni),k(t). (3.3)

If f(t) is a real valued signal, Eq. (3.3) becomes

f(t) = 2Re
[∑

i

∑
k

W f
(mi,ni),kψ

G,per
(mi,ni),k

]
, (3.4)

where Re[·] denotes the real part of the signal.

Further, the periodized GHW interaction coefficients of the zero-, first- and second-order are given
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by

C0
i,k,j,l =

〈
ψG,per

(mi,ni),k(t), ψ
G,per
(mj ,nj),l(t)

〉T0

0
=


T0
n−m , i = j, k = l

0, otherwise
, (3.5)

C1
i,k,j,l =

〈
ψ̇G,per

(mi,ni),k(t), ψ
G,per
(mj ,nj),l(t)

〉T0

0

=



iπ(n+m)
n−m , i = j, k = l

2πi
(n−m)2

ni∑
q=mi

qei2πq l−k
n−m , i = j, k 6= l

0, otherwise

(3.6)

and

C2
i,k,j,l =

〈
ψ̈G,per

(mi,ni),k(t), ψ
G,per
(mj ,nj),l(t)

〉T0

0

=



−(2(n3−m3)+3(n2+m2)+(n−m))
3(π∆ω)−1(n−m)2 , i = j, k = l

−2π∆ω
(n−m)2

ni∑
q=mi

q2ei2πq l−k
n−m , i = j, k 6= l

0, otherwise

, (3.7)

respectively.

Clearly, the importance of the closed form expressions in Eqs. (3.5)-(3.7) is

paramount for deriving GHW-based input-output (excitation-response) relationships pertaining to

second-order (stochastic) differential equations governing the dynamics of diverse engineering sys-

tems (Spanos et al., 2016; Xiao et al., 2021; Kong et al., 2022b). In the following section, the

stochastic response determination methodology and input-output relationships developed in Spanos

et al. (2016) are generalized to account for singular parameter matrices in the system equations of

motion.
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3.2.2 GHW-based input-output (excitation-response) relationships for lin-
ear MDOF systems with singular parameter matrices

In this section, the GHW-based excitation-response relationships derived in Spanos et al. (2016)

are generalized to account for MDOF systems exhibiting singular parameter matrices. Specifically,

the linear system response EPS matrix is determined by relying on a GHW-based expansion of the

response process, by considering the interaction coefficients of Eqs. (3.5)-(3.7), and by employing

the MP generalized matrix inverse operation.

In this regard, the governing equations of motion of an n0-DOF linear time-variant system are given

by

Mx(t)ẍ(t) + Cx(t)ẋ(t) + Kx(t)x(t) = Qx(t), (3.8)

where x is the n0-dimensional response vector; Mx(t), Cx(t) and Kx(t) denote, respectively, the

(possibly singular) time-varying mass, damping and stiffness n0 × n0 matrices; and Qx(t) rep-

resents the n0-dimensional system excitation, which is modeled as a non-stationary zero-mean

stochastic process. Next, consider the case that the system is subjected to m0 linear constraints of

the general form (Udwadia and Kalaba, 2007; Fragkoulis et al., 2016a)

Aẍ(t) + Eẋ(t) + Lx(t) = F(t), (3.9)

where A,E and L are m0 × n0 coefficient matrices and F(t) is an m0-dimensional vector. The

combined system of Eqs. (3.8) and (3.9) is cast in the form

M̃x(t)ẍ(t) + C̃x(t)ẋ(t) + K̃x(t)x(t) = Q̃x(t), (3.10)

where M̃x(t), C̃x(t), K̃x(t) and Q̃x(t) denote, respectively, the (n0 + m0) × n0 augmented mass,
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damping and stiffness time-varying matrices given by

M̃x(t) =

PMx(t)

A

 , C̃x(t) =

PCx(t)

E

 , K̃x(t) =

PKx(t)

L

 (3.11)

and

Q̃x(t) =

PQx(t)

F(t)

 (3.12)

is the augmented excitation (m0 + n0)-dimensional vector. In Eqs. (3.11) and (3.12), P is a (n0 +

m0)× n0 matrix interconnecting the constraints to the equations of motion. In fact, for the special

case of utilizing a set of dependent/redundant coordinates, it has been shown (e.g., Schutte and

Udwadia (2011); Fragkoulis et al. (2016b); Kougioumtzoglou et al. (2017b); Pirrotta et al. (2021))

that P takes the form

P = I−A+A, (3.13)

where “+” denotes the MP inverse of a matrix. The interested reader is also directed to Antoniou

et al. (2017b); Karageorgos et al. (2021) for a broader perspective.

Further, considering the expansion of Eq. (3.4) for the excitation and the response processes,

Eq. (3.10) is cast in the form

M̃x(t)
∑
i

∑
k

[
Wx

(mi,ni),kψ̈
G,per
(mi,ni),k(t) + W̄x

(mi,ni),k
¨̄ψG,per

(mi,ni),k(t)
]

+ C̃x(t)
∑
i

∑
k

[
Wx

(mi,ni),kψ̇
G,per
(mi,ni),k(t) + W̄x

(mi,ni),k
˙̄ψG,per
(mi,ni),k(t)

]
(3.14)

+ K̃x(t)
∑
i

∑
k

[
Wx

(mi,ni),kψ
G,per
(mi,ni),k(t) + W̄x

(mi,ni),kψ̄
G,per
(mi,ni),k(t)

]
=

∑
i

∑
k

[
WQ̃x

(mi,ni),kψ
G,per
(mi,ni),k(t) + W̄Q̃x

(mi,ni),kψ̄
G,per
(mi,ni),k(t)

]
.

Next, post-multiplying Eq. (3.14) by ψ̄G,per
(mj ,nj),l(t), integrating over [0, T0], taking into account the
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interaction coefficients in Eq. (3.5)-(3.7), and considering the time-variant matrices M̃x(t), C̃x(t)

and K̃x(t) as slowly varying, and thus, approximately constant over the compact support of the

GHW (i.e., M̃x(t) ≈ M̃x,k, C̃x(t) ≈ C̃x,k and K̃x(t) ≈ K̃x,k), yields

∑
i

∑
k

Bi,k,j,lWx
(mi,ni),k = T0

n−m
WQ̃x

(mj ,nj),l, (3.15)

where the (n0 +m0)× n0 matrix Bi,k,j,l is given by

Bi,k,j,l = C2
i,k,j,lM̃x,k + C1

i,k,j,lC̃x,k + C0
i,k,j,lK̃x,k. (3.16)

Furthermore, noticing that the interaction coefficients defined in Eqs. (3.5)-(3.7) are equal to zero

for i 6= j, and also denoting for simplicity Bj
k,l = Bi,k,j,l, Eq. (3.15) is cast, equivalently, in the

form 

∑
k

Bj
k,1Wx

(mj ,nj),1∑
k

Bj
k,2Wx

(mj ,nj),2

...

∑
k

Bj
k,Nt

Wx
(mj ,nj),k


= T0

n−m



WQ̃x
(mj ,nj),1

WQ̃x
(mj ,nj),2

...

WQ̃x
(mj ,nj),Nt


, (3.17)

for l = 1, . . . , Nt, with Nt = n−m. Alternatively, Eq. (3.17) is written as

BjWj
x = T0

n−m
Wj

Q̄x
, (3.18)
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where the (m0 + n0)Nt × (n0Nt) matrix Bj is defined as

Bj =



Bj
1,1 Bj

2,1 · · · Bj
Nt,1

Bj
1,2 Bj

2,2
. . . Bj

Nt,2
...

...
...

...

Bj
1,Nt

Bj
2,Nt

· · · Bj
Nt,Nt


(3.19)

and the (n0Nt)- and (m0 + n0)Nt-dimensional vectors Wj
x and Wj

Q̄x
are given by

Wj
x =



Wx
(mj ,nj),1

Wx
(mj ,nj),2

...

Wx
(mj ,nj),Nt


(3.20)

and

Wj

Q̄x
=



WQ̃x
(mj ,nj),1

WQ̃x
(mj ,nj),2

...

WQ̃x
(mj ,nj),Nt


, (3.21)

respectively.

Clearly, Eq. (3.18) represents a GHW-based input-output relationship connecting the wavelet coef-

ficients of the excitation and of the response processes. In passing, note that a similar relationship

was derived in Spanos et al. (2016) restricted, however, to the special case of matrix Bj being a

square, invertible matrix. Herein, due to the modeling of the system governing equations and the

definition of the parameter matrices in Eqs. (3.8)-(3.10), Bj can become a singular matrix (see also

Eq. (3.16)). Thus, a special treatment is required for “inverting” Bj and solving for the response

wavelet coefficient matrix Wj
x to be used in the calculation of the response EPS matrix. In the fol-
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lowing, this is done by resorting to the theory of generalized matrix inverses and to the MP matrix

inverse operation; see also Kougioumtzoglou et al. (2017b); Pirrotta et al. (2021); Ni et al. (2021)

for some recent indicative papers, and Appendix for more details.

Specifically, considering the MP generalized matrix inverse of Bj , Eq. (3.17) yields (see Appendix)

Wj
x = T0

n−m
(Bj)+Wj

Q̄x
+ (In0×n0 − (Bj)+(Bj))yn0 , (3.22)

where yn0 is an arbitrary n0-dimensional vector. It is readily seen that Eq. (3.22) defines a family

of solutions for the response wavelet coefficients. Nevertheless, for the special case of matrix Bj

being full rank, i.e., rank(Bj) = n0Nt, its MP matrix inverse is determined, uniquely, in the form

(Campbell and Meyer, 2009; Ben-Israel and Greville, 2003)

(Bj)+ =
((

Bj
)T

Bj
)−1 (

Bj
)T
. (3.23)

Substituting Eq. (3.23) into the second term of the right hand-side of Eq. (3.22) yields

(
In0×n0 − (Bj)+(Bj)

)
yn0 = 0, (3.24)

and thus, Eq. (3.22) simplifies to

Wj
x = T0

n−m
(Bj)+Wj

Q̃x
. (3.25)

Obviously, Eq. (3.25) can be construed as a generalization of the input-output relationship derived

in Spanos et al. (2016) to account for systems with singular parameter matrices in a straightfor-

ward manner. Indeed, as shown in the numerical examples in section 3, the herein developed

technique can address diverse system modeling yielding singular matrices, including structural sys-

tems modeled by a set of dependent coordinates, energy harvesters with coupled electromechanical



CHAPTER 3. RESEARCH ARTICLE 2: EXCITATION-RESPONSE RELATIONSHIPS FOR
LINEAR STRUCTURAL SYSTEMS WITH SINGULAR PARAMETER MATRICES: A
PERIODIZED HARMONIC WAVELET PERSPECTIVE 85

equations, and oscillators subject to stochastic excitations modeled via additional auxiliary state

equations.

Further, the problem of estimating the system response EPS based on the wavelet coefficients cor-

responding to an ensemble of realizations is addressed. In this regard, employing Eq. (3.25), mul-

tiplying both sides with their Hermitian transposes and taking expectation, yields

E
[
Wj

x(Wj
x)T

]
=
(

T0

n−m

)2
(Bj)+E

[
Wj

Q̃x

(
Wj

Q̃x

)T
](

(Bj)+)T
. (3.26)

It is readily seen that based on the formula

Sx(ωj, tk) = T0

2π(n−m)E
[ ∣∣∣W x

j,k

∣∣∣2 ], (3.27)

derived in Spanos et al. (2005); Spanos and Kougioumtzoglou (2012), the diagonal terms in Eq. (3.26)

represent response EPS values corresponding to translation levels k = 1, 2, . . . , Nt. Note that addi-

tional information (e.g., regarding the phase of the process) is available as well via the off-diagonal

elements that provide a measure of the interaction between wavelet coefficients at different time

intervals (for a specific scale j). It can be argued that the matrix E
[
Wj

x

(
Wj

x

)T
]

in Eq. (3.26) can

be construed as a form of “auto-correlation" matrix in the wavelet domain; see also Spanos et al.

(2016) for a relevant discussion.

3.3 Diverse numerical examples

In this section, various diverse numerical examples are considered for demonstrating the reliability

of the herein derived input-output relationship of Eq. (3.26), which can be construed as a gener-

alization of the methodology developed in Spanos et al. (2016) to account for singular matrices.

These examples pertain to energy harvesters with coupled electromechanical equations, oscilla-

tors subject to non-white excitations modeled via additional filter equations, and structural systems
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modeled by a set of dependent coordinates. It is remarked that the results obtained by the analytical

technique require approximately 2-3 s of computation time for the considered examples. These

are compared with MCS-based estimates (500 realizations) that require approximately 2-3 min of

computation time on the same computer, i.e., a MacBook Pro 2018 laptop with a 2.9 GHz 6-Core

Intel Core i9 processor and 16 GB RAM.

3.3.1 A class of electromechanical energy harvesting systems

A cantilever beam with piezoelectric patches attached near its clamped ends has been one of the

most popular and widely studied electromechanical energy harvesters (e.g., Daqaq et al. (2014);

Petromichelakis et al. (2018, 2021)). Following the presentation and detailed discussion in Daqaq

et al. (2014), the dynamics of such a system can be approximated by the following general mathe-

matical model of coupled electromechanical equations, expressed in a non-dimensional form as

q̈ + 2ζq̇ + dU(q)
dq + κ2υ = f(t) (3.28)

υ̇ + αυ − q̇ = 0 (3.29)

where q denotes the response displacement and υ represents the induced voltage in capacitive

harvesters or the induced current in inductive ones. Further, ζ is the damping, κ is the coupling

coefficient, α is defined as the ratio between the mechanical and electrical time constants of the

harvester (see Daqaq et al. (2014)), and U(q) denotes the potential function. Its derivative dU(q)
dq

represents the restoring force, which is modeled in the ensuing analysis as linear, i.e., dU(q)
dq = q;

see also Petromichelakis et al. (2018, 2021) for alternative nonlinear modeling.

In the following, the excitation f(t) is modeled as a non-stationary stochastic process compatible

with the EPS

Sf (ω, t) = d(t)2S0, (3.30)
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where S0 denotes the Gaussian white noise constant power spectrum value, and d(t) represents a

time-modulating function. Indicatively, Eq. (3.30) can describe approximately the relatively slow

variations in time of the intensity of the white noise process, and in this regard, d(t) is given by

d(t) = 1 + 0.5 cos(ω0t), (3.31)

where ω0 = 0.25 rad/s. Further, the parameter values considered herein are ζ = 0.1, κ = 3.25,

α = 0.8 and S0 = 0.05.

Although there exist alternative solution treatments in the literature for addressing Eqs. (3.28) and

(3.29), and for determining relevant response statistics (e.g., Adhikari et al. (2009); Petromichelakis

et al. (2018, 2021)), the herein developed methodology is employed next for determining the re-

sponse EPS and for demonstrating that singular matrices can be treated in a straightforward and

direct manner.

Specifically, similarly to Petromichelakis et al. (2018, 2021) where the stochastic response anal-

ysis of Eqs. (3.28) and (3.29) was performed based on a Wiener path integral solution treat-

ment, Eq. (3.28) can be construed as the governing stochastic differential equation constrained

by Eq. (3.29); see also Petromichelakis et al. (2020). In this regard, setting xT =
[
q υ

]
, and dif-

ferentiating Eq. (3.29) once with respect to time, the parameter matrices of the constraint Eq. (3.9)

become

A =
[
−1 1

]
, E =

[
0 α

]
, L =

[
0 0

]
, F = 0, (3.32)

whereas the matrix P of Eq. (3.13) takes the form

P =

0.5 0.5

0.5 0.5

 . (3.33)
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Further, the parameter matrices in Eq. (3.11) become

M̃x =


0.5 0

0.5 0

−1 1

 , C̃x =


−0.40 0.5

−0.40 0.5

0 0.8

 , K̃x =


0.5 5.6812

0.5 5.6813

0 0

 (3.34)

and Eq. (3.12) takes the form

Q̃x =


0.5

0.5

0

 f(t). (3.35)

Therefore, the excitation EPS matrix corresponding to Eq. (3.35) becomes

SjQ̃x
= T0

2π(n−m)



SjQ̃x,(1,1) 0 · · · 0

0 SjQ̃x,(2,2) · · · 0
...

... . . . ...

0 0 · · · SjQ̃x,(Nt,Nt)


, (3.36)

where

SjQ̃x,(k,k) =



0.25 d4
l S

j
f,(k,k) 0.25 d4

l S
j
f,(k,k) 0

0.25 d4
l S

j
f,(k,k) 0.25 d4

l S
j
f,(k,k) 0

0 0 0


, (3.37)

for 0 ≤ k ≤ Nt, and is utilized next for defining E
[
Wj

Q̃x

(
Wj

Q̃x

)T
]

on the right hand-side of

Eq. (3.26). Also, utilizing the parameter matrices in Eq. (3.34), the matrix Bj in Eq. (3.19) is

formed for each wavelet band j = 1, 2, . . . , 256 and each time instant to be used in Eq. (3.26). In

fact, it is noted that Bj has full rank, and thus, Eqs. (3.25) and (3.26) can be applied yielding a

unique solution for the interaction coefficients of the system response.

In Fig. 3.1a, the response EPS for the voltage υ is plotted based on Eqs. (3.26) and (3.27), whereas
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in Fig. 3.1b the response EPS for υ is estimated based on MCS data. Specifically, first, 500 ex-

citation time histories compatible with the EPS in Eq. (3.30) are generated by the spectral repre-

sentation method (Liang et al., 2007) with a signal duration T0 = 20.46 s, and a cut-off frequency

equal to ωu = 50π rad/s. Second, the coupled system defined by Eqs. (3.28) and (3.29) is solved

by resorting to a standard 4th order Runge-Kutta numerical integration scheme, and the response

voltage EPS is estimated by utilizing Eq. (3.27) and using a constant frequency band n −m = 4.

In Fig. 3.2, comparisons are provided between the MCS-based results and the estimates based on

the herein developed methodology for two indicative time instants, i.e., t = 4 s and t = 10 s. It

is readily seen that the herein derived input-output relationship of Eq. (3.26), which accounts for

singular matrices, exhibits a relatively high degree of accuracy in determining the system response

EPS.

3.3.2 Non-white stochastic excitation modeling via auxiliary filter equations

In the field of stochastic engineering dynamics, a non-white excitation process is typically repre-

sented in the time domain as the output of a filter subject to white noise (e.g., Roberts and Spanos

(2003); Karageorgos et al. (2021); Psaros et al. (2018)). In this regard, the state-variable vector is

augmented to account for the additional filter equation associated with the non-white excitation. In

many cases, the form of the filter equation leads to a system of governing equations with singular

parameter matrices. For example, consider a single-DOF linear oscillator of the form

mq̈ + cq̇ + kq = h(t), (3.38)

where m, c, k are the mass, damping and stiffness parameters of the system and h(t) denotes the

excitation, given by

h(t) = g(t)y(t). (3.39)
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Fig. 3.1: Response voltage EPS estimate pertaining to the energy harvesting system of Eqs. (3.28)
and (3.29) subject to time-modulated Gaussian white noise excitation: (a) Analytical closed-form
input-output relationship of Eq. (3.26), (b) MCS-based estimate (500 realizations).
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Fig. 3.2: Response voltage EPS estimate pertaining to the energy harvesting system of Eqs. (3.28)
and (3.29) subject to time-modulated Gaussian white noise excitation: Comparison for two in-
dicative time-instants between analytical closed-form input-output relationship of Eq. (3.26), and
MCS-based estimate (500 realizations).

In Eq. (3.39), g(t) denotes a modulating function of the form (Spanos and Kougioumtzoglou, 2012)

g(t) = λ(e−αt − e−βt), (3.40)

where α, β and λ are parameters controlling the shape of the modulating function. Further, the

power spectrum of the stochastic process y(t) is given by

Sy(ω) = S0

c2
nω

2 + k2
n

(3.41)

which is expressed in the time domain as the output of the first order linear filter

cnẏ + kny = w(t). (3.42)
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In Eq. (3.42), w(t) is a Gaussian white noise stochastic process with

E[w(t)w(t+ τ)] = 2πS0δ(τ), δ(τ) is the Dirac delta function and cn, kn are filter parameters.

Next, considering the state vector xT =
[
q y f(t)

]
, where f(t) = w(t), and taking into account

Eqs. (3.38) and (3.42), the governing equations take the form of Eq. (3.8) with

Mx =


m 0 0

0 0 0

0 0 0

 , Cx =


c 0 0

0 cn 0

0 0 0

 , Kx =


k −g(t) 0

0 kn −1

0 0 1

 (3.43)

and

Qx(t) =


0

0

w(t)

 , (3.44)

whereas the constraint equation parameter matrices corresponding to Eq. (3.9) become

A =
[
0 cn 0

]
, E =

[
0 kn 1

]
, L = 0, F = 0. (3.45)

Therefore, the matrix P of Eq. (3.13) is given by

P =


cn 0 0

0 0 0

0 0 cn

 . (3.46)

Note that the system defined in Eq. (3.43) is time-variant, since the matrix K̃x(t) contains the

function g(t). Nevertheless, this poses no difficulty in applying the proposed methodology since

it can readily treat time-variant parameter matrices as shown in Eq. (3.8). Further, the matrices of
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Eq. (3.10) for the herein considered system take the form

M̃x(t) =



m 0 0

0 0 0

0 0 0

0 cn 0


, C̃x(t) =



c 0 0

0 0 0

0 0 0

0 kn 1


, K̃x(t) =



k −g(t) 0

0 0 0

0 0 1

0 0 0


(3.47)

and

Q̃x(t) =



0

0

1

0


w(t). (3.48)

Therefore, the excitation EPS matrix corresponding to Eq. (3.48) is written in the form of Eq. (3.36),

where

SjQ̃x,(k,k) =



0 0 0 0

0 0 0 0

0 0 Sjw,(k,k) 0

0 0 0 0


, (3.49)

for 0 ≤ k ≤ Nt, and is utilized next for defining E
[
Wj

Q̄x

(
Wj

Q̄x

)T
]

on the right hand-side of

Eq. (3.26). The parameter values considered herein are m1 = 1 kg/(ms2), c1 = 4.3 Ns/m,

k1 = 256 N/m, kn = 8 N/m, cn = 1 Ns/m and S0 = 1. The resulting Bj has full rank, and thus,

the simplified expression in Eq. (3.23) is used for computing the MP matrix inverse. This yields

a unique solution for the interaction coefficients of the system response, which is determined by

Eq. (3.26). The obtained response displacement EPS is shown in Fig. 3.3a, whereas in Fig. 3.3b

the response EPS is determined based on MCS data generated by solving numerically Eq. (3.38)

via a Runge-Kutta integration scheme in conjunction with the spectral representation methodology

(Liang et al., 2007) for generating excitation realizations. Note that the discrepancies observed in
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Figs. 3.3a and 3.3b near the ends of the time domain are attributed to “end effects” due to the appli-

cation of the wavelet transform. The interested reader is directed to Kijewski and Kareem (2002)

for more details and possible melioration treatments such as zero-padding. Further, the analytical

solution and MCS-based estimate are compared in Fig. 3.4 for two indicative time instants, i.e.,

t = 4 s and t = 7 s. Clearly, the results obtained by the herein proposed input-output relationship

of Eq. (3.26) for determining the response EPS of systems exhibiting singular matrices are in good

agreement with the corresponding MCS estimates.

3.3.3 Structural systems modeled via dependent coordinates

It is common practice in the field of engineering dynamics to utilize the minimum number of co-

ordinates (generalized coordinates) for formulating the system equations of motion (e.g., Roberts

and Spanos (2003)). In general, this yields not only non-singular, but also positive definite param-

eter matrices in the governing equations. Nevertheless, it has been argued recently that the explicit

formulation of the equations of motion based on generalized coordinates can be a cumbersome

task, and thus, alternative approaches have been proposed based, indicatively, on utilizing a set of

dependent/redundant DOFs in conjunction with a number of constraint equations (e.g., Udwadia

and Kalaba (2007); Udwadia and Wanichanon (2013); Fragkoulis et al. (2022)). Although this

unconventional modeling appears to be advantageous from a computational efficiency perspective

(Mariti et al., 2011), it leads to equations of the form of Eq. (3.10) exhibiting singular matrices.

In this section, the herein developed solution methodology based on periodized GHWs is employed

for determining the response EPS of a stochastically excited structural system modeled via depen-

dent coordinates. Specifically, the 2-DOF system of Fig. 3.5 is considered, where mass m1 is

connected to the foundation via a spring and a damper with coefficients k1 and c1, respectively.

Further, it is connected to mass m2 via a spring and a damper with coefficients k2 and c2, respec-

tively. The applied excitation stochastic processes Q1(t) and Q2(t) are compatible with an EPS
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Fig. 3.3: Response displacement EPS pertaining to the oscillator in Eq. (3.38) subject to a
time-modulated non-stationary excitation: (a) Analytical closed-form input-output relationship of
Eq. (3.26), (b) MCS-based estimate (500 realizations).
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Fig. 3.4: Response displacement EPS pertaining to the oscillator in Eq. (3.38) subject to a time-
modulated non-stationary excitation: Comparison for two indicative time instants between analyti-
cal closed-form input-output relationship of Eq. (3.26) and MCS-based estimate (500 realizations).

given by

Sf (ω, t) = S0

(
ωt

5π

)2
exp(−c0t)t2 exp

(
−
(
ω

5π

)2
t

)
. (3.50)

It can be argued that the EPS form in Eq. (3.50) comprises some of the main characteristics of

earthquake excitations, such as decreasing of the dominant frequency with time (e.g., Spanos and

Solomos (1983); Fragkoulis et al. (2019)). The parameter values considered in the ensuing analysis

are: mi = 1 kg/(ms2), ci = 4.3Ns/m, ki = 256N/m, for i = 1, 2, and S0 = 1m2/s3, c0 = 0.15.

The system excitation is applied for time [0, T0], with T0 = 20.48 s, considering Nt = 1024 points

and cut-off frequency equal to 10π rad/s. Also, a constant bandwidth resolution of n −m = 4 is

used.

Next, utilizing the generalized coordinates vector qT =
[
q1 q2

]
, the governing equations of mo-
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Fig. 3.5: Two-degree-of-freedom linear structural system subjected to non-stationary stochastic
excitation.

Fig. 3.6: Modeling the system in Fig. 3.5 by using dependent coordinates.
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tion become

m1q̈1 + (c1 + c2)q̇1 + (k1 + k2)q1 − c2q̇2 − k2q2 = −m1Q1(t), (3.51)

m2q̈2 − c2q̇1 − k2q1 + c2q̇2 + k2q2 = −m2Q2(t). (3.52)

Further, adopting a dependent coordinates modeling for the derivation of the equations of motion

(see Fig. 3.6), the coordinates vector xT =
[
x1 x2 x3

]
is considered in conjunction with the

constraint equation

x2 = x1 + d, (3.53)

where d denotes the physical length of mass m1. In this regard, the parameter matrices correspond-

ing to Eq. (3.8) take the form

Mx =


1 0 0

0 1 1

0 1 1

 , Cx =


4.3 0 0

0 0 0

0 0 4.3

 , Kx =


256 0 0

0 0 0

0 0 256

 (3.54)

and

Qx =


Q1

Q3

Q3

 , (3.55)

whereas twice differentiating the constraint Eq. (3.53), the matrices in Eq. (3.9) take the form

A =
[
1 −1 0

]
, E = L = 01×3, F = 0. (3.56)
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Also, the matrix P in Eq. (3.13) is given by

P =


0.5 0.5 0

0.5 0.5 0

0 0 1

 , (3.57)

and thus, the matrices in Eqs. (3.11) and (3.12) become

M̃x =



0.5 0.5 0.5

0.5 0.5 0.5

0 1 1

1 −1 0


, C̃x =



2.15 0 0

2.15 0 0

0 0 4.3

0 0 0


, K̃x =



128 0 0

128 0 0

0 0 256

0 0 0


(3.58)

and

Q̃x =



Q1

Q3

Q3

0


. (3.59)

Accordingly, the excitation EPS matrix corresponding to Eq. (3.59) is written as in Eq. (3.36),

where

SjQ̃x,(k,k) =



Sjf,(k,k) 0 0 0

0 Sjf,(k,k) Sjf,(k,k) 0

0 Sjf,(k,k) Sjf,(k,k) 0

0 0 0


, (3.60)

for 0 ≤ k ≤ Nt, and is utilized next for defining E
[
Wj

Q̃x

(
Wj

Q̃x

)T
]

on the right hand-side of

Eq. (3.26). The matrix Bj in Eq. (3.19) is constructed for each wavelet band j = 1, 2, . . . , 128,

and each time instant, and since it has full rank, its MP inverse is given by Eq. (3.23). Next, the

response displacement EPS is determined by utilizing Eq. (3.26). The analytical results pertaining
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to the 1st and 3rd DOF of the system in Fig. 3.6 are shown in Figs. 3.7a and 3.8a, respectively.

Further, the technique is also applied to the system of Eqs. (3.51-3.52), which is modeled based on

generalized (independent) coordinates. Clearly, based on Figs. (3.5-3.6), q1 = x1 and q2− q1 = x3.

In this regard, Bj in the resulting Eq. (3.18) is a square invertible matrix, and thus, Eq. (3.18) can

be readily solved for the response wavelet coefficients Wj
q to be used for determining the response

power spectra via Eqs. (3.26-3.27). In fact, the computed power spectra Sq1(ω, t) and Sq2−q1(ω, t)

are plotted in Figs. 3.7b and 3.8b, respectively. As anticipated due to the relationships q1 = x1 and

q2− q1 = x3, note that Sx1(ω, t) in Fig. 3.7a and Sx3(ω, t) in Fig. 3.8a are identical to Sq1(ω, t) and

Sq2−q1(ω, t), respectively.

Overall, it is seen that the solution obtained by the herein developed technique accounting for

dependent coordinates and singular matrices is identical to the solution determined based on an al-

ternative system modeling employing generalized (independent) coordinates and featuring square,

invertible, matrices. In other words, the herein proposed solution treatment of a system with singu-

lar matrices does not introduce any additional approximations compared to treating an equivalent

system with square invertible matrices.

Also, note that, for cases of square invertible matrices, the technique can be construed as an exten-

sion of the standard periodized GHW technique in Spanos et al. (2016) to treat MDOF systems.

Furthermore, MCS-based EPS estimates (500 realizations) are also included in Figs. 3.7c and 3.8c,

whereas response EPS estimates at two indicative time instants are plotted in Fig. 3.9. Comparisons

indicate a satisfactory degree of accuracy exhibited by the periodized GHW technique.

3.4 Concluding remarks

In this paper, a technique based on periodized GHWs has been developed for joint time-frequency

response analysis of linear systems with singular parameter matrices. This has been done by re-

sorting to concepts and tools related to the MP generalized matrix inverse theory. Specifically,
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Fig. 3.7: Response EPS of a 2-DOF linear system subject to non-stationary stochastic excitation
described by the non-separable EPS in Eq. (3.50): (a) EPS for displacement x1 based on Eq. (3.26)
with a singular Bj matrix (dependent coordinates), (b) EPS for displacement q1 based on Eq. (3.26)
with a square invertible Bj matrix (generalized coordinates), (c) MCS-based estimate (500 realiza-
tions).
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Fig. 3.8: Response EPS of a 2-DOF linear system subject to non-stationary stochastic excitation
described by the non-separable EPS in Eq. (3.50): (a) EPS for displacement x3 based on Eq. (3.26)
with a singular Bj matrix (dependent coordinates), (b) EPS for displacement q2 − q1 based on
Eq. (3.26) with a square invertible Bj matrix (generalized coordinates), (c) MCS-based estimate
(500 realizations).
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Fig. 3.9: Response EPS of a 2-DOF linear system subject to non-stationary stochastic excitation
described by the non-separable EPS in Eq. (3.50) for two indicative time instants: (a) compar-
isons between analytically determined EPS for x1, q1, and MCS estimates (500 realizations), and
(b) comparisons between analytically determined EPS for x2, q2 − q1, and MCS estimates (500
realizations).

considering GHW-based expansions for the excitation and response processes of the system, novel

input-output relationships have been derived in the wavelet domain. These have been used for

determining the EPS matrix of the system response.

The developed technique can be construed as a generalization of earlier efforts in the literature to

account for singular parameter matrices in the governing equations of motion, while its reliability

has been demonstrated by comparing the analytical results with pertinent MCS data. This has

been done in conjunction with various diverse numerical examples pertaining to energy harvesters

with coupled electromechanical equations, oscillators subject to non-white excitations modeled via

auxiliary filter equations, and structural systems modeled by a set of dependent coordinates.

Note in passing that the MP matrix inverse operation involves the solution of an optimization prob-

lem based on L2-norm minimization. In this regard, exploring the potential of alternative optimiza-

tion schemes based, for instance, on Lp-norm (0 < p < 1) minimization is identified as future work

(e.g., Kougioumtzoglou et al. (2020); He et al. (2019)).
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Appendix

Consider a linear system of equations in the form

Ax = b, (3.61)

where A is either a rectangular m × n, or a square but singular n × n matrix, and x, b are n-

dimensional vectors. It is readily seen that solving Eq. (3.61) necessitates the generalization of

the concept of matrix inverse, which has given birth to the theory of generalized matrix inverses

(Ben-Israel and Greville, 2003). In particular, the Moore-Penrose (MP) generalized matrix inverse

is utilized throughout the paper.

Definition. For any matrix A ∈ Cm×n, there is a unique matrix A+ ∈ Cn×m such that:

AA+A = A, A+AA+ = A+, AA+ = AA+, A+A = A+A. (3.62)

The matrix A+ of the Definition is called the MP inverse of A. If A is a square, real and non-

singular matrix, then A+ coincides with the inverse of A, i.e., A+ = A−1. Using the MP inverse, a

closed form solution to the algebraic system of Eq. (3.61) is attained. In this regard, for any matrix

A ∈ Rm×n, Eq. (3.61) yields

x = A+b + (In −A+A)y, (3.63)
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where y denotes an arbitrary n-dimensional vector and In represents the n × n identity matrix. A

more detailed presentation of the topic can be found in Campbell and Meyer (2009) and Ben-Israel

and Greville (2003).
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Wind data extrapolation and stochastic field statistics estimation via

compressive sampling and low rank matrix recovery methods
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Abstract: A methodology based on compressive sampling is developed for incomplete wind time-

histories reconstruction and extrapolation in a single spatial dimension, as well as for related

stochastic field statistics estimation. This relies on l1-norm minimization in conjunction with an

adaptive basis re-weighting scheme. Indicatively, the proposed methodology can be employed for

monitoring of wind turbine systems, where the objective relates to either reconstructing incomplete

time-histories measured at specific points along the height of a turbine tower, or to extrapolating to

other locations in the vertical dimension where sensors and measurement records are not available.

Further, the methodology can be used potentially for environmental hazard modeling within the

context of performance-based design optimization of structural systems.

Unfortunately, a straightforward implementation of the aforementioned approach to account for two

spatial dimensions is hindered by significant, even prohibitive in some cases, computational cost.

In this regard, to address computational challenges associated with higher-dimensional domains,

a methodology based on low rank matrices and nuclear norm minimization is developed next for
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wind field extrapolation in two spatial dimensions. The efficacy of the proposed methodologies is

demonstrated by considering various numerical examples. These refer to reconstruction of wind

time-histories with missing data compatible with a joint wavenumber-frequency power spectral

density, as well as to extrapolation to various locations in the spatial domain.

Keywords: Wind data; Stochastic field; Sparse representations; Compressive sampling; Low-rank

matrix.

4.1 Introduction

Estimating wind field model related statistics relies, typically, on information provided by data

acquisition systems such as distributed sensor networks and LIDAR acquisition systems (e.g.,

(Frehlich et al., 1998), (Harris et al., 2006)). In many real-life cases, however, the measured data

are corrupted and incomplete. Also, it is often required to extrapolate relevant wind field informa-

tion to points of interest, where there are no measurements due to limited equipment availability.

Clearly, developing methodologies for accurate reconstruction and extrapolation of wind field data

is of paramount importance to the analysis, design and monitoring of engineering systems such

as wind turbines; see, for instance, Carassale and Solari (2006). Further, it is worth noting that

such methodologies can be used potentially for environmental hazard modeling within the con-

text of performance-based design optimization of structural systems (e.g., Comerford et al. (2017),

Mitseas et al. (2016)).

Indicatively, a wavelet-based fluid motion estimator was developed in Dérian et al. (2015) for es-

timating wind fields based on backscatter data. Further, a dimension reduction approach based on

computational fluid dynamics data was applied in Qin et al. (2018) for wind field reconstruction.

Also, several machine learning approaches based on various neural network implementations and

configurations were employed recently for wind data reconstruction and extrapolation (e.g., Qu

et al. (2020); Ni and Li (2016); Mohandes and Rehman (2018)). Moreover, surrogate modeling
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based on Kriging was proposed in Lin and Li (2020), whereas Kalman filtering was used in Towers

and Jones (2016) for wind field estimation based on a limited number of LIDAR measurements.

Nevertheless, most of the aforementioned approaches are characterized by significant limitations.

For example, in many cases the techniques appear efficacious only for relatively small percentages

of missing data, whereas results based on black-box approaches such as neural networks are not al-

ways interpretable. Alternatively, various methodologies based on compressive sampling (CS) have

been developed recently, which appear promising for stochastic process statistics estimation based

on realizations with incomplete/missing data (e.g., Comerford et al. (2016); Laface et al. (2017);

Zhang et al. (2018)). The interested reader is also directed to the recent review paper by Kou-

gioumtzoglou et al. (Kougioumtzoglou et al., 2020) for a broad perspective on theoretical concepts

and diverse applications of sparse representations and CS approaches in engineering mechanics.

In this paper, a methodology based on CS is developed, which relies on l1-norm minimization in

conjunction with an adaptive basis re-weighting scheme, for incomplete wind field time-histories

reconstruction and extrapolation in a single spatial (vertical) dimension. Next, to address compu-

tational challenges associated with higher-dimensional domains, a methodology based on low rank

matrices and nuclear norm minimization is developed for wind field extrapolation in two spatial

dimensions. The efficacy of the proposed methodologies is demonstrated by considering various

numerical examples. These refer to reconstruction of wind time-histories with missing data com-

patible with a joint wavenumber-frequency power spectral density (PSD), as well as to extrapolation

to various locations in the spatial domain.

4.2 Wind field spectral representation

In various engineering applications, the wind field can be conveniently modeled as a stochastic

wave (e.g., Benowitz and Deodatis (2015)). This facilitates the efficient simulation of realizations

corresponding to a large number of points in the spatial domain, while circumventing the need for
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cross-PSD related calculations; see also Shinozuka and Deodatis (1996). In this section, following

closely Chen et al. (2018), the basic elements associated with Monte Carlo simulation (MCS) of a

wind field compatible with a joint wavenumber-frequency PSD are reviewed for completeness.

4.2.1 Wind field time-histories simulation in a single spatial dimension

A homogeneous wind field in the vertical dimension is related to a wavenumber-frequency PSD

(e.g., Benowitz and Deodatis (2015), Chen et al. (2018)) given by

S(WF)(k, ω) = 1
2π

∫ ∞
−∞

S(F)(ξ, ω)e−ikξdξ (4.1)

where ω, ξ, k denote the frequency, spatial distance and wavenumber, respectively. Further,

S(F)(ξ, ω) = S0(ω)ρ(ξ, ω) = S0(ω) exp
(
− Cz

2πU10
|ω||ξ|

)
(4.2)

where S0(ω) is the auto-PSD and ρ(ξ, ω) represents the coherence function. Combining Eq. (4.1)

and Eq. (4.2), S(WF)(k, ω) takes the form

S(WF)(k, ω) = S0(ω)ρ(WF)(k, ω) = S0(ω) Cz
2π2U10

|ω|(
Cz

2πU10

)2
ω2 + k2

(4.3)

where Cz is an exponential decay coefficient and U10 is the mean wind velocity at a height of

10m. Next, Eq. (4.3) can be used in conjunction with the spectral representation method (SRM)

(Deodatis and Shinozuka, 1989) for generating wind velocity records in the form

X(z, t) =
Nk∑
i=1

Nω∑
j=1

√
4S(WF) (ki, ωj) ∆k∆ω

× [cos (kiz + ωjt+ ϕij) + cos (kiz − ωjt+ ϕ̃ij)]

(4.4)
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where ϕij and ϕ̃ij represent two sets of independent random phase angles uniformly distributed

over [0, 2π] ki = i∆k with ∆k = ku/Nk denotes the discretized wavenumber domain with an

upper cut-off wavenumber ku; and ωj = j∆ω with ∆ω = ωu/Nω is the discretized frequency

domain with an upper cut-off frequency ωu. In the ensuing analysis and numerical examples, the

Davenport PSD is considered (e.g. Deodatis and Shinozuka (1989), Simiu and Scanlan (1996));

that is,

SDavenport (ω) = 2.0u2
∗

(
1200

2πU10
ω
)2

|ω|
(

1 +
(

1200
2πU10

ω
)2
)4/3 (4.5)

where u∗ denotes the shear flow velocity. Further, the parameters values used are U10 = 31.88 m/s,

u∗ = 1.691 m/s and Cz = 10.

4.2.2 Wind field time-histories simulation in two spatial dimensions

In this section, following closely Chen et al. (2018), a generalization of the results outlined in

section 4.2.1 is presented to account for a two-dimensional spatial domain. In this regard, the joint

wavenumber-frequency PSD of Eq. (4.3) takes the form

S(WF) (ky, kz, ω) = SDavenport (ω) · ρ(WF) (ky, kz, ω)

= u2
∗

πC1zC1y
(

1
2πU10

|ω|
)2

(
1200

2πU10
ω
)2

|ω|
(

1 +
(

1200
2πU10

ω
)2
)4/3

× 1(
1 +

[(
1
C1y

ky
)2

+
(

1
C1z
kz
)2
]
/
(

1
2πU10

|ω|
)2
) 3

2

(4.6)
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where

ρ(WF) (ky, kz, ω) = 1
2πC1zC1y

1(
1

2πU10
|ω|
)2

× 1(
1 +

[(
1
C1y

ky
)2

+
(

1
C1z
kz
)2
]
/
(

1
2πU10

|ω|
)2
) 3

2

(4.7)

In Eqs. (4.6)-(4.7), C1z and C1y are the exponential decay coefficients corresponding to the vertical

and horizontal directions, respectively, and kz and ky denote the respective wavenumbers. Next, re-

alizations compatible with the PSD of Eq. (4.6) can be generated based on the SRM (e.g., Benowitz

and Deodatis (2015), Chen et al. (2018)). In this context, Eq. (4.4) becomes

X(z, y, t) =
Nkz∑
i=1

Nky∑
j=1

Nω∑
m=1

√
4S(WF)

(
k

(z)
i , k

(y)
j , ωm

)
∆k(z)

i ∆k(y)
j ∆ω(m)

·
[
cos

(
k

(z)
i z + k

(y)
j y + ωmt+ ϕ

(1)
ijm

)
+ cos

(
k

(z)
i z + k

(y)
j y − ωmt+ ϕ

(2)
ijm

)
+ cos

(
k

(z)
i z − k(y)

j y + ωmt+ ϕ
(3)
ijm

)
+ cos

(
k

(z)
i z − k(y)

j y − ωmt+ ϕ
(4)
ijm

)]

(4.8)

k
(y)
j = j∆ky, j = 1, 2, . . . , Nky and k(z)

i = i∆kz, i = 1, 2, . . . , Nkz are the discretized wavenum-

ber domains in y and z directions with a number of points Nky and Nkz , respectively. Further,

ϕ
(1)
ijm, ϕ

(2)
ijm, ϕ

(3)
ijm and ϕ(4)

ijm represent four different sets of independent random phase angles

uniformly distributed in [0, 2π].

Regarding computational implementation aspects, it is readily seen that the Davenport PSD of

Eq. (4.5) exhibits a singularity at the origin, which can be addressed, however, based on a frequency

shift scheme (e.g., Benowitz and Deodatis (2015), Zerva (1992)). In this regard, it is reasonable

to consider an uneven discretization scheme, which is denser near the origin of the wavenumber

domains.
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4.3 Wind field reconstruction and extrapolation in the joint space-time do-

main: A compressive sampling treatment

Research efforts during the past fifteen years have focused on identifying and exploiting low-

dimensional representations of high-dimensional data, as well as on establishing conditions guar-

anteeing unique representation in the low-dimensional space (e.g., Candes et al. (2006), Donoho

(2006)). These theoretical results, coupled with potent convex optimization numerical algorithms,

have triggered the birth of the currently expanding field of CS and have led to numerous impactful

contributions in a wide range of application areas (e.g., Eldar and Kutyniok (2012)). The interested

reader is also directed to the recent review paper by Kougioumtzoglou et al. (Kougioumtzoglou

et al., 2020) and to references therein for a broad perspective on theoretical concepts and diverse

applications of sparse representations and CS approaches in engineering mechanics.

In this section, first, a CS approach based on l1-norm minimization in conjunction with an adaptive

basis re-weighting scheme is developed for wind field time-histories reconstruction and extrapo-

lation in a single spatial dimension. Second, to address computational challenges associated with

multi-dimensional domains, a CS approach based on nuclear norm minimization is developed for

wind field extrapolation in two spatial dimensions.

4.3.1 Reconstruction and extrapolation in a single spatial dimension: l1-
norm minimization in conjunction with an adaptive basis re-weighting
scheme

Theoretical aspects

In this section, the CS-based methodology developed in Malara et al. (2018) for extrapolation of

random wave field data in the joint space-time domain is adapted and extended to account for

wind stochastic field extrapolation. Indicatively, this methodology can be employed for cases of
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monitoring wind turbine systems, where the objective is to either reconstruct incomplete time-

histories measured at specific points along the height of a turbine tower, or to extrapolate to other

locations in the vertical dimension where sensors and measurement records are not available.

Consider an n0× 1 column vector y0 denoting a measured time history, which can be expanded by

employing a basis matrix A0 of dimensions n0 × n0 in the form y0 = A0x, where x is the cor-

responding coefficient vector. Clearly, the sparsity degree of the coefficient vector x (i.e., number

of non-zero elements) depends on the choice of the basis matrix A (e.g, polynomial, Fourier, etc).

Resorting to a CS-based solution approach and considering a relatively high degree of sparsity, the

coefficient vector x can be determined with satisfactory accuracy even if the system of equations

y0 = A0x is underdetermined. Specifically, consider an (n0 − nm) × 1 column vector y repre-

senting an under-sampled time history at a specific location along the height of a wind turbine. n0

denotes the original sample and nm is the number of randomly missing data. Further, considering a

sampling matrix A of dimensions (n0−nm)×n0 leads to the underdetermined system of equations

y = Ax, where the objective relates to determining the coefficient vector x assumed to be sparse.

According to CS theory (e.g., Kougioumtzoglou et al. (2020)), the problem can be cast in a convex

optimization setting via minimizing the l1-norm of x; that is,

min || x ||l1 subject to y = Ax (4.9)

Clearly, the use of the l1-norm promotes sparsity, whereas Eq. (4.9) can be readily solved by stan-

dard gradient optimization algorithms (e.g., Kougioumtzoglou et al. (2020)). Alternatively, the

constraint in Eq. (4.9) can be relaxed and replaced by || y − Ax ||l2≤ ε to account for possible

presence of noise.

Nevertheless, as also shown in Comerford et al. (2014); Comerford et al. (2017), Zhang et al.

(2018), an adaptive basis re-weighting scheme can further promote sparsity and yield solution
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• Initialize re-weighting matrix W,W2 = In0 where I is the identity matrix
while |W2 −W |> threshold do
W = W2
W2 =zeros(n0, n0)
• Generate re-weighting matrix via least squares

for i = 1 to m do . m = number of available time-histories
x = (AW)T

(
(AW)(AW)T

)
yi

x = [x1, x2, x3, . . . , xn0−1, xn0 ]
W2 = W2 + diag

([
|| x2, x1 ||, || x2, x1 ||, || x3, x2 ||, || x3, x2 ||, . . . ,

|| xn0/2, xn0/2−1 ||, || xn0/2, xn0/2−1 ||
])

end for
W2 = W2

Mean(W2) + bias · In0

end while
• Use l1 minimization to compute the coefficient vector x
x = min | x |l1 subject to y = AW2x

Fig. 4.1: Mechanization of l1-norm minimization with an adaptive basis.

estimates of enhanced accuracy. In this regard, Eq. (4.9) becomes

min || x ||l1 subject to y = AWx (4.10)

where W is a re-weighting diagonal matrix. The rationale of the scheme relates to matrix W

being used to appropriately weigh the columns of the basis matrix A. To this aim, the entries of

W correspond to the magnitudes of the components of x. This promotes sparsity as it reduces

the contribution of the smaller components of vector x. Concisely, the mechanization of the re-

weighting scheme is shown in Fig. (4.1), whereas the interested reader is directed to Comerford

et al. (2017), Zhang et al. (2018) for a detailed presentation and discussion.

Clearly, the scheme is best suited to problems where an ensemble of time-histories with incomplete

data points is available and the objective relates to determining statistics based on the ensemble

average, such as estimating the underlying process PSD. Nevertheless, even in cases where only

a single (relatively long) time-history is available, the scheme can be still implemented under the

assumptions of stationarity and ergodicity by considering a partition of the record into smaller time
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intervals.

Further, it is shown that the above methodology can be readily adapted to be used for extrapo-

lating wind time-histories corresponding to specific points along the vertical dimension based on

measured data at neighboring locations. Specifically, consider a number of N + M wind velocity

records, each composed of length n data points and corresponding to a vertical height zi. The ob-

jective refers to inferring wind velocity time histories at M distinct points from N measurement

locations as depicted in Fig. (4.2). In this regard, the measured records can be represented as a

column vector y of dimension nN × 1 to be used in the formulation of Eq. (4.9), or alternatively,

of Eq. (4.10). Next, the sampling matrix A can be constructed based on the SRM of Eq. (4.4). In

particular, matrix A is formed as the tensor product of trigonometric basis functions (e.g., Psaros

et al. (2019b)) spanning the frequency and wavenumber domains. For the frequency domain a basis

can be constructed as

B1 =
[
cos(ω0t) sin(ω1t) · · · sin(ωn

2−1t) cos(ωn
2
t)
]

(4.11)

with ω` = 2π`/n, ` = 0, · · · , n/2, whereas for the wavenumber domain the basis becomes

B2 =
[
cos(k0z) sin(k1z) · · · sin(kN/2−1z) cos(kN/2z)

]
(4.12)

with km = 2πm/N, m = 0, · · · , N/2. The tensor product of B1 and B2 produces a new basis for

the joint wavenumber-frequency domain in the form

B = B1 ⊗ B2 (4.13)

The complete matrix B is of dimensions n(N +M)×n(N +M). However, considering that time-

histories atM locations of interest are not available, B becomes an nN×n(N+M) sampling matrix

A to be used in Eq. (4.9) (or, alternatively, in Eq. (4.10)) for extrapolating for the M locations; see



CHAPTER 4. RESEARCH ARTICLE 3: WIND DATA EXTRAPOLATION AND
STOCHASTIC FIELD STATISTICS ESTIMATION VIA COMPRESSIVE SAMPLING AND
LOW RANK MATRIX RECOVERY METHODS 117

𝑛(𝑁 + 𝑀)

𝑛𝑁

Recorded data

Extrapolated data

2

666666666666666666664

A(t1, z1)
...

A(tn, z1)
...

A(t1, zN)
...

A(tn, zN)
...
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ỹ(t1, zN+1)
...

ỹ(tn, zN+M)

3

77777777777777777775

2

66666666664

A(t1, z1)
...

A(tn, z1)
...

A(t1, zN)
...

A(tn, zN)

3

77777777775

⇥ [x] =

2

66666666664

y(t1, z1)
...

y(tn, z1)
...

y(t1, zN)
...

y(tn, zN)

3

77777777775

Fig. 4.2: Sampling matrix construction for CS-based extrapolation in a single spatial dimension.
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also Fig. (4.2). Obviously, comparing with the dimensions of matrix A defined in Eq. (4.9) yields

n0 − nm = nN and n0 = n(N +M). In passing, it is noted that over-complete dictionaries can be

employed as well for constructing matrices B1 and B2 to enhance the respective domain resolution

(e.g., Chen et al. (2001), Van Den Berg and Friedlander (2009)).

Numerical examples

In this section, the efficacy of the proposed CS-based approach is assessed, first, in conjunction with

the problem of reconstructing wind time-histories with missing data, and second, in conjunction

with extrapolating to various locations in the one-dimensional spatial domain.

To this aim, 50 time-histories compatible with the PSD of Eq. (4.3) are generated by the SRM of

Eq. (4.4). The parameter values used are: time duration T0 = 255.75 s; upper cut-off frequency

wu = 8π rad/s; dt = 2π/wu = 0.0125 s; ∆ω = 2π/T0 = 0.0246 rad/s; upper cut-off wavenumber

ku = π rad/m; ∆k = 0.002 rad/m. Next, for each time-history, 40% of missing data are introduced

in uniformly random gaps. The records are then reconstructed based on the adaptive basis re-

weighting approach by utilizing Eq. (4.10).

Two indicative wind velocity time-histories are shown in Fig. (4.3) corresponding to vertical heights

of 50m and 62m, together with their reconstructed counterparts. It is seen that although there are

notable discrepancies between the target and the reconstructed records, the main features of the

time-histories are estimated satisfactorily in an average sense. This is very encouraging consid-

ering that the proposed CS-based approach in this paper focuses on estimating stochastic field

statistics (e.g., PSD) defined as averages over an ensemble of realizations. Indeed, in Fig. (4.4)

the PSD corresponding to a vertical height of 62m is shown, estimated as the ensemble average

of the Fourier transform of the reconstructed time-histories with 40% missing data. Similarly, the

cross-correlation and the coherence function referring to the two locations at 50m and 62m are

also estimated based on the ensemble average of the reconstructed time-histories and are shown in



CHAPTER 4. RESEARCH ARTICLE 3: WIND DATA EXTRAPOLATION AND
STOCHASTIC FIELD STATISTICS ESTIMATION VIA COMPRESSIVE SAMPLING AND
LOW RANK MATRIX RECOVERY METHODS 119

Fig. (4.5). Clearly, in all cases, comparisons with the target quantities demonstrate the capability

of the CS-based methodology to estimate stochastic field statistics based on an ensemble of real-

izations with a relatively high degree of accuracy considering the rather large amount of missing

data.

Next, the configuration shown in Fig. (4.6) is considered where the objective is to extrapolate for

the entire time-history at a height of 62m and determine related statistics by utilizing measured

records corresponding to heights of 50, 56, 68 and 74m. In this regard, Fig. (4.7) shows an indica-

tive target time-history at 62m generated via Eq. (4.4) together with its estimated counterpart based

on Eq. (4.9). Further, the CS-based estimated PSD at 62m is plotted in Fig. (4.8) and compared with

the target PSD, whereas the estimated cross-correlation and the coherence function between the ex-

trapolation point at 62m and two other indicative points are shown in Figs. (4.9) and (4.10), respec-

tively. It is readily seen that the accuracy degree exhibited by the proposed CS-based methodology

is, in general, satisfactory. As anticipated, however, and also observed in Fig. (4.10), the accuracy

degree of the technique in estimating coherence values decreases for increasing distance between

the considered points in the spatial domain.

4.3.2 Reconstruction and extrapolation in two spatial dimensions: Low-rank
matrices and nuclear norm minimization

Theoretical aspects

In this section, an alternative CS approach based on nuclear norm minimization is developed to

account for wind field extrapolation in two spatial dimensions. The rationale relates to the fact that

a straightforward application of the CS approach proposed in section 4.3.1 based on l1-norm mini-

mization becomes computationally intensive, and even prohibitive in some cases, for an increasing

number of dimensions. In particular, adapting the methodology in section 4.3.1 for addressing two

spatial dimensions yields a sampling matrix A in Eq. (4.13) with a prohibitively large number of
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(a)

(b)

Fig. 4.3: Indicative wind velocity time-histories at a height of (a) 50m and (b) 62m; comparisons
between the target and the CS-based reconstructed records considering 40% missing data.
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(a) (b)

Fig. 4.4: Estimated PSD corresponding to a vertical height of 62m based on the ensemble average
of reconstructed time-histories with 40% missing data; (a) linear scale and (b) logarithmic scale.

(a) (b)

Fig. 4.5: (a) Cross-correlation and (b) coherence function estimated based on the ensemble average
of reconstructed time-histories with 40% missing data corresponding to vertical heights of 50 and
62m.
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ỹ(
z 3
,t

n
)

. . .
ỹ(
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Fig. 4.7: Indicative wind velocity time-history at a height of 62m; comparisons between the target
and the extrapolated records.

(a) (b)

Fig. 4.8: Estimated PSD corresponding to a vertical height of 62m based on the ensemble average
of CS-based extrapolated time-histories; (a) linear scale and (b) logarithmic scale.



CHAPTER 4. RESEARCH ARTICLE 3: WIND DATA EXTRAPOLATION AND
STOCHASTIC FIELD STATISTICS ESTIMATION VIA COMPRESSIVE SAMPLING AND
LOW RANK MATRIX RECOVERY METHODS 124

(a) (b)

Fig. 4.9: Cross-correlation function estimated by employing CS-based extrapolated time-histories
at 62m and original records at (a) 56m and (b) 74m.

(a) (b)

Fig. 4.10: Coherence function estimated by employing CS-based extrapolated time-histories at 62m
and original records at (a) 56m and (b) 74m.
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elements. Clearly, this renders the subsequent numerical implementation of the methodology at

least a rather daunting, if not impossible, task. Thus, there is a need for developing alternative,

more computationally efficient, approaches to address more sophisticated and realistic wind field

modeling accounting for two spatial dimensions.

In this regard, the concept of a matrix norm is invoked in this section, and specifically, the nuclear

norm of a matrix is employed (given as the sum of its singular values), which can be construed

as a generalization of the l1-norm to account for matrices (e.g., Meyer (2000), Friedland and Lim

(2018)). In fact, minimizing the nuclear norm of low rank matrices can be viewed as an extension of

minimizing the l1-norm of sparse vectors, and thus, low rank matrices with a relatively large num-

ber of missing entries can be reconstructed with high probability (Candès and Recht, 2009). Based

on the above argument, the data extrapolation problem in two spatial dimensions can be recast as

a "basis-free" matrix completion problem at each time instant by appropriately re-arranging the

measured data in matrix form. In passing, it is worth mentioning that nuclear norm minimization

in conjunction with low rank matrices has been used recently in various civil engineering applica-

tions. Indicatively, by proposing a matrix reshape scheme, a low-rank representation of large-scale

structural seismic and typhoon responses was identified in Yang et al. (2015), which proved to be

beneficial for efficient data compression. The scheme was coupled in Yang and Nagarajaiah (2016)

with a nuclear norm minimization algorithm for recovering of multi-channel structural response

time-histories with randomly missing data.

Next, considering a matrix M ∈ Rn×n of rank r << n, with only l < n2 of its entries observed,

the problem of reconstructing the complete matrix can be formally expressed as

minimize ‖Y‖∗

subject to Yk,l = Mk,l, (k, l) ∈ Ω,
(4.14)

where ‖ · ‖∗ denotes the nuclear norm and Ω is the index set of observed entries. In general,

a smaller value of rank r dictates fewer required observed matrix entries for successful matrix
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completion. More specific relationships between n, r, and l can be found, indicatively, in Candès

and Recht (2009); see also Kougioumtzoglou et al. (2020) for a broader perspective. Eq. (4.14)

represents a convex optimization problem, and a variety of algorithms have been developed for

its solution; see, for instance, Cai et al. (2010), Lin et al. (2010) as well as Kougioumtzoglou

et al. (2020) and references therein. In the ensuing analysis, the Augmented Lagrangian Method

(ALM) is employed (Lin et al., 2010) for recasting Eq. (4.14) into an unconstrained optimization

problem and for determining the missing matrix entries; see also Hestenes (1969); Rockafellar

(1973); Powell (1978). An indicative mechanization of ALM is shown in Fig. (4.11), whereas the

interested reader is directed to Lin et al. (2010) for more details.

Numerical examples

In this section, the efficacy of the proposed CS methodology based on low-rank matrices and nu-

clear norm minimization is assessed in conjunction with extrapolating to various locations in the

two-dimensional spatial domain.

Specifically, the extrapolation configuration considered in this section is shown in Fig. (4.12), where

50 two-dimensional wind velocity realizations compatible with the PSD of Eq. (4.6) are generated

based on the SRM of Eq. (4.8). Next, time-histories at 12 out of the 36 grid points are considered

missing. It is readily seen that, at a given time instant, extrapolating for the aforementioned 12 loca-

tions in the two-dimensional domain can be formulated as a matrix completion problem in the form

of Eq. (4.14), where Y represents a matrix with 36 elements. Note that the low-rank assumption,

required for a successful implementation of the nuclear norm minimization solution approach, can

be adequately justified by considering the dependence (by construction based on Eqs. (4.6)-(4.7))

between time-histories corresponding to different locations in the two-dimensional spatial domain.

In this regard, applying the ALM shown in Fig. (4.11), the time-histories corresponding to the

12 grid points are determined. An indicative extrapolated record associated with location P2 in

Fig. (4.12) is shown in Fig. (4.13). Next, the PSD estimated based on the ensemble average of
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Input: observation set Ω, sampled entries PΩ(Mj) Output: Ak, Ek
Y0 = 0;E0 = 0;
while not converged do

// solve: Ak+1 = arg minA L (A,Ek,Yk, µk)
[U ,S,V ] = svd

(
D −Ek + µ−1

k Yk
)

Ak+1 = USµ−1
k

[S]V T . S: soft thresholding (shrinkage) operator
// solve: Ek+1 = arg min

πΩ(E)=0
L (Ak+1,E,Yk, µk)

Ek+1 = πΩ̄

(
Mj −Ak+1 + µ−1

k Yk
)

Yk+1 = Yk + µk (Mj −Ak+1 −Ek+1) ;µk+1 = ρµk
k k + 1

end while

Fig. 4.11: Augmented Lagrange Multipliers (ALM) Method based on Lin et al. (2010).
.

the extrapolated time-histories corresponding to location P2 is shown in Fig. (4.14), whereas the

estimated cross-correlation and the coherence function between points P1 and P3 are presented

in Fig. (4.15). Clearly, the proposed methodology exhibits a high degree of accuracy in estimat-

ing related statistics. To further assess its performance, the more challenging configuration shown

in Fig. (4.16) is considered, where only 18 out of the 36 grid points are measurement locations.

Indicatively, Fig. (4.17) shows the estimated PSD at location P1 as shown in Fig. (4.16). The es-

timated cross-correlation and coherence functions between points P1 and P2 and between points

P1 and P3 are shown in Figs. (4.18) and Figs. (4.19), respectively. The accuracy degree exhibited

remains satisfactory, although it tends to deteriorate as the distance between the locations increases.

4.4 Concluding remarks

In this paper, first, a CS approach based on l1-norm minimization in conjunction with an adaptive

basis re-weighting scheme has been developed for wind field time-histories reconstruction and ex-

trapolation in a single spatial dimension. Second, to address computational challenges associated

with higher-dimensional domains, a CS approach based on nuclear norm minimization has been

developed for wind field extrapolation in two spatial dimensions. Various numerical examples
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Fig. 4.13: Extrapolated time history at point P2 of Fig. (4.12).

(a) (b)

Fig. 4.14: Estimated PSD corresponding to point P2 as shown in Fig. (4.12) based on the ensemble
average of ALM-based extrapolated time-histories; (a) linear scale and (b) logarithmic scale.
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(a) (b)

Fig. 4.15: (a) Cross-correlation and (b) coherence function between the ALM-based extrapolated
time histories of points P1 and P3 as shown in Fig. (4.12).

have been considered for demonstrating the reliability of the proposed methodologies regarding

reconstruction and extrapolation of wind field data compatible with a joint wavenumber-frequency

PSD. It has been shown that the methodologies exhibit a relatively high degree of accuracy in

estimating relevant statistics of the underlying stochastic field based on the ensemble of the re-

constructed/extrapolated realizations, even for a large percentage of missing data. However, as

anticipated, the accuracy degree in estimating coherence values decreases for increasing distance

between the considered locations in the spatial domain. Finally, it is worth noting that the devel-

oped methodologies can be used potentially for environmental hazard modeling within the context

of performance-based design optimization of structural systems.
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(a) (b)

Fig. 4.17: Estimated PSD corresponding to point P1 as shown in Fig. (4.16) based on the ensemble
average of ALM-based extrapolated time-histories; (a) linear scale and (b) logarithmic scale.

(a) (b)

Fig. 4.18: (a) Cross-correlation and (b) coherence function between the ALM-based extrapolated
time histories of points P1 and P2 as shown in Fig. (4.16).
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(a) (b)

Fig. 4.19: (a) Cross-correlation and (b) coherence function between the ALM-based extrapolated
time histories of points P1 and P3 as shown in Fig. (4.16).
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Abstract: A data-driven technique based on compressive sampling concepts and tools is devel-

oped for discovering the governing equations of stochastically excited structural systems exhibit-

ing diverse nonlinear behaviors and/or following a fractional derivative modeling. This is done

by relying on measured data and by utilizing a state-variable formulation of the system governing

equations. Further, considering an expansion basis for approximating the nonlinear system dynam-

ics leads to either an over- or an under-determined system of equations. This is solved based on

sparsity-promoting numerical techniques for determining the active coefficients in the expansion

basis. Note that the uncertainty associated with the model estimate is also quantified based on a

Bayesian formulation of the technique. An indicative numerical example pertaining to a nonlinear

electromechanical energy harvester with fractional derivative elements is considered for demon-

strating the reliability of the technique, even in cases of highly limited/incomplete measured data.

Keywords: Wind data; Stochastic field; Sparse representations; Compressive sampling; Low-rank

matrix.
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5.1 Introduction

A novel paradigm of data-driven model discovery has emerged in recent years (e.g., Brunton and

Kutz (2022)). This framework can readily account for arbitrary nonlinear and time-variant behav-

iors, and is motivated primarily by the fact that in many problems a purely physics-based modeling

of the governing dynamics by resorting to first-principles may be untenable. However, it can be

argued that, for data-driven modeling to be efficacious, the identified model should exhibit sparsity

in the sense that the fewest possible terms are considered for the description of the system dynam-

ics. The rationale relates to the fact that the dynamics of most physical systems can be described

accurately by considering only very few relevant terms in an appropriate expansion basis; thus,

rendering the governing equations sparse in a high-dimensional nonlinear function space.

In this regard, approaches for sparse identification of nonlinear dynamics based on standard com-

pressive sampling concepts and tools have been proposed recently (e.g., Schaeffer et al. (2013);

Brunton et al. (2016); Champion et al. (2019); Brunton and Kutz (2022)). Note, however, that

alternative advanced compressive sampling tools can be employed that exploit additional informa-

tion in the data and enhance solution sparsity. These include lp-norm, 0 < p < 1, minimization

formulations and iterative re-weighting solution schemes, Bayesian approaches, as well as struc-

tured sparsity and dictionary learning strategies; see Kougioumtzoglou et al. (2020) for a broad

perspective.

Specifically, a data-driven technique based on Bayesian compressive sampling is developed in this

paper for discovering the governing equations of stochastically excited structural systems exhibit-

ing diverse nonlinear behaviors and/or following a fractional derivative modeling. This is done

by relying on measured data and by utilizing a state-variable formulation of the system govern-

ing equations. Compared to alternative state-of-the-art schemes that yield deterministic estimates

for the expansion coefficient vector (e.g., Champion et al. (2019), Brunton and Kutz (2022)), the
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herein developed technique is capable also of quantifying the uncertainty associated with the model

estimate; thus, providing a measurable confidence degree when employing the technique as a pre-

diction tool. An indicative numerical example pertaining to a nonlinear electromechanical energy

harvester with fractional derivative elements is considered for demonstrating the reliability of the

technique, even in cases of highly limited/incomplete measured data.

5.2 Mathematical formulation

5.2.1 Sparse representation of governing equations

Consider the general form of governing equations

ẋ = f(X,η) (5.1)

where a dot above a variable denotes differentiation with respect to time; f(·) is an operator (non-

linear, differential, etc) to be identified; and X and η are the vectors corresponding to the states

of the dynamical system and the excitation, respectively. In the following, attention is directed to

structural systems that can be represented by Eq. (5.1) based on a state-variable formulation, where

X = [X1; X2]T with X1 and X2 denoting the response displacement and velocity, respectively.

Next, relying on measured data X, Eq. (5.1) is approximated by

ẋ = Θ(X)Ξ, (5.2)

where Θ(X) is a library of candidate (nonlinear) functions, and Ξ denotes the coefficient vector to

be determined. Note that Eq. (5.2) can represent a non-square linear system of algebraic equations

for various reasons. For example, it can be an under-determined system due to missing entries in the

measured data (incomplete data). Also it can be an over-determined system due to considering long
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time-series data. To derive a parsimonious model and to promote a sparse coefficient vector Ξ with

only few non-zero entries, compressive sampling theory can be used and lp-norm minimization can

be applied for solving Eq. (5.2), i.e.,

min || ẋ−Θ(X)Ξ ||2 + λ || Ξ ||p (5.3)

where || · ||p denotes the p-norm, 0 ≤ p ≤ 1, and λ is a penalization factor; see also Kougioumt-

zoglou et al. (2020) for a broad perspective.

Regarding alternative solution schemes for treating Eq. (5.2), Brunton et al. (2016) utilized a

sequentially Thresholded Least Squares (STLS) algorithm. However, this optimization scheme

relies heavily on the selection of the thresholding level, which, in many cases, can be arbitrary and

sub-optimal. Further, the algorithm yields a unique solution based on the Moore-Penrose pseudo-

inverse only under the assumption that Θ(X) has full column rank, i.e., the system of Eq. (5.2) is

overdetermined. Furthermore, Champion et al. (2019) utilized an l1-norm minimization approach

for solving Eq. (5.2), which is a special case of the solution treatment proposed in Eq. (5.3). Clearly,

as demonstrated in various diverse applications in engineering dynamics (e.g., Zhang et al. 2018),

employing an lp-norm minimization with p < 1 is anticipated to promote solution sparsity further

and yield an even sparser representation of system dynamics.

Nevertheless, even the solution treatment in Eq. (5.3) yields a deterministic estimate for the coef-

ficient vector Ξ. In other words, there is no quantification of the uncertainty associated with the

accuracy degree of the identified sparse model. To address this limitation, and provide with a mea-

surable confidence degree when employing the technique as a prediction tool, a Bayesian formu-

lation is developed in the following section. This provides a posterior probability density function

(PDF) p(Ξ | X) which quantifies the uncertainty of the coefficient vector estimate Ξ given the data

X.
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5.2.2 Bayesian compressive sampling

Following Ji et al. (2008), consider a signal g expanded in a basis Φ as

g = Φw + ε, (5.4)

where w is the coeffiicient vector and ε is an error vector of identically distributed Gaussian

random variables with zero mean variance σ2
ε . Comparing Eqs. (5.2) and (5.4), it is seen that

g = vec (ẋ), Φ = I⊗Θ(X) and w = vec (Ξ), where "vec" represents the vectorization operator,

"⊗" is the Kronecker product and I is the identity matrix. Next, a zero mean Gaussian prior PDF

is considered for the coefficients w in the form

p (w | σw) =
∏
i

N
(
wi | 0, σ2

wi

)
(5.5)

where w, σw, σε are unknowns. Further, the conditional PDF of the unknowns is given by

p
(
w, σw, σ

2
ε | g

)
= p

(
w | g, σw, σ

2
ε

)
p
(
σw, σ

2
ε | g

)
(5.6)

and the first term on the right hand side of Eq. (5.6) is expressed based on the Bayes’ theorem as

p
(
w | g, σw, σ

2
ε

)
= p (g | w, σ2

ε ) p (w | σw)
p (g | σw, σ2

ε )
(5.7)

Furthermore, considering the Gaussian assumption for the error in Eq. (5.4), the likelihood p (g | w, σ2
ε )

in Eq. (5.7) is also Gaussian. In this regard, taking into account also Eq. (5.6), the posterior distri-

bution takes a multivariate Gaussian form, i.e., p (w | g, σw, σ
2
ε ) = N(µ,Σ) with mean vector and

covariance matrix

µ = σ−2
ε ΣΦT and Σ =

(
A + σ−2

ε ΦTΦ
)−1

, (5.8)
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respectively, with A = diag (σ−2
w1 , σ

−2
w2 , . . . ). Further, the optimal values for σw and σε are com-

puted based on a type-II maximum likelihood estimation (MLE) scheme (e.g. MacKay (1992))

Obviously, the uncertainty of the estimated coefficient vector Ξ in Eq. (5.2) is quantified herein

based on the multivariate Gaussian PDF p(Ξ | X) with mean vector and covariance matrix given

by Eq. (5.8). The mechanization of the herein developed technique is provided in Fig. 5.1.

5.3 Numerical example

Following Petromichelakis et al. (2018), consider next a nonlinear electromechanical energy har-

vester governed by the coupled equations

ẍ+ 2ζ (Dγx) (t) + x+ δx2 + βx3 − λy = f(t)

ẏ + αy + kẋ = 0 (5.9)

where q denotes the displacement of the beam and y the induced voltage. The applied excitation

f(t) is modeled as a Gaussian, zero-mean white noise process with a power spectrum value S0 =

0.05. Further, the parameter values used next are: ζ = 0.15, γ = 0.5, β = 0.05, δ = 0.2, λ = 0.5,

α = 0.05, k = 0.5, whereas the response vector xT = [x ẋ y] is obtained by solving numerically

Eq. (5.9). Next, Eq. (5.2) is constructed by considering the quite general library of functions

Θ(X) =
[
1, x, xPi , | x |, Dγkx, sgn(x), f(t)

]
, (5.10)

where Pi is the polynomial order for different values of i and "◦" denotes the Hadamard product.

Also, a 90% randomly missing data scenario is considered. Applying the developed technique in

section 5.2 yields the coefficient vector Ξ Gaussian PDF estimates described by Eq. (5.8). They are

plotted in Fig. 5.2 and compared with the target deterministic values. It is seen that the mean values

of the coefficients are in excellent agreement with the target values. Coefficient vector estimates
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Fig. 5.2: Uncertainty quantification of the estimated coefficient vector corresponding to the system
of Eq. (5.9) subject to measured time-histories with 90% missing data.

based on the STLS algorithm Brunton et al. (2016) are included as well. Clearly, however, the

STLS-based scheme fails to yield a sparse, parsimonious solution. Further, a Monte Carlo simu-

lation is performed (1000 samples) by using Eq. (5.2) and considering the PDF of the coefficient

vector given by Eq. (5.8). In this regard, Fig. 5.3 shows the predicted response voltage time-history

along with the quantified uncertainty.

5.4 Concluding remarks

A data-driven technique based on Bayesian compressive sampling has been developed for discover-

ing the governing equations of stochastically excited structural systems exhibiting diverse nonlinear
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Fig. 5.3: Uncertainty quantification of the estimated response of the system of Eq. (5.9).

behaviors and/or following a fractional derivative modeling. A significant advantage of the tech-

nique relates to the fact that the uncertainty associated with the model estimate is also quantified.

Further, the technique has exhibited robust performance even in cases of highly limited/incomplete

data.
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Chapter 6

Concluding Remarks

In this chapter, the main conclusions regarding the contributions of the present thesis are reviewed

and some future research paths are discussed.

Chapter 1 serves as an introductory part and summarizes key challenges in Random Vibration.

These pertain to stochastic response determination of systems with singular matrices, probabilistic

modeling of stochastic processes in the presence of missing data and data-driven system identifica-

tion. Further, state-of-the-art frameworks are briefly discussed and potential solution frameworks

are introduced to address some of the associated limitations.

In chapter 2 approximate analytical expressions have been derived for determining the response

evolutionary power spectrum of MDOF systems with singular matrices subject to non-stationary

excitation. The aim of the proposed formulation is geared towards generalizing earlier results in

stochastic dynamics to systems with singular matrices. The main focus is concentrated on the treat-

ment of complex multi-body systems whose governing equations of motion are derived by utilizing

non-generalized coordinate modeling approaches. This is motivated by the fact that unconven-

tional modeling schemes that employ additional DOFs are associated with enhanced flexibility and

facilitate the derivation of cost-effective solution methodologies, especially with increasing model

complexity and numbers of DOF. The proposed solution is derived by augmenting the constraints

equations in the system parameter matrices and by expanding the response on a GHW basis. Ex-

ploiting the orthogonality properties of the latter yields an input-output relationship by means of

a generalized M-P harmonic wavelet frequency response function. The proposed methodology is

applied to nonlinear systems with singular matrices by employing the SLM which enables the def-
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inition of a new, equivalent linear system. The envisaged computational accuracy for both linear

and nonlinear systems is displayed by comparing results from a generalized and a non-generalized

coordinate modeling scheme.

In chapter 3 the stochastic response determination problem of chapter 2 has been cast into an alter-

native solution framework which is geared towards improving the versatility of the technique. Con-

sidering the fact that GHWs do not form an orthogonal basis in a finite time interval, a periodization

procedure has been carried out and a set of connection wavelet coefficients has been derived. The

merit of this approach is twofold. First, it bypasses the restriction of “local stationarity” which

is inherent in the previous implementation. Secondly, it allows for a convenient expansion of the

response process permitting the energy transfer between different scales and translation levels. An

additional contribution in chapter 3 pertains to the fact that the proposed technique treats general

forms of system constraints, which renders the technique applicable to a broader class of engineer-

ing systems. This is supported by comparing obtained results with MCS estimates. Future research

directions include coupling of the method presented in chapter 3 with the statistical linearization

method in order to account for nonlinear systems. It is noted that the M-P matrix inverse, which is

employed in this work, is based on l2-norm minimization. In view of this, exploring the potential of

alternative algorithms, such as the l1-norm minimization is identified as a future research direction.

In chapter 4 a sparse representation framework has been developed for the statistical estimation of

wind field models in the presence of missing data and/or limited observations. Specifically, a sparse

representation scheme has been employed for treating incomplete (in temporal and spatial domains)

wind speed measurements. Within this context, the wind time histories are projected on an appro-

priately constructed and sufficiently sparse Fourier basis whose coefficients are found via a sparsity

promoting l1-weighted norm minimization algorithm. The extrapolation scheme is extended to two

spatial dimensions via a “matrix-reshape” nuclear norm minimization scheme which greatly re-

duces the associated computational overheads. The reported statistical accuracy and robustness of
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the the method (even in the presence of high degree of missing data) poses as a promising tool

for calibrating probabilistic models from field measurements. Further, application of the method

to non-stationary, multi-dimensional data in the context of response reliability assessment is also

identified as future work.

In chapter 5 a novel technique has been proposed for sparse identification of nonlinear dynami-

cal systems utilizing exclusively input/output measurements. The methodology relies on the fact

that most physical system dynamics can be captured by a few possible terms in an appropriately

constructed expansion basis. In light of this, a BCS treatment has been developed for determining

the governing equations of stochastically excited structural systems. This builds upon previous

research efforts in the field of sparsity-based system identification. In this work, utilizing a BCS

implementation further promotes sparsity and renders the method more robust to missing data con-

figurations. Further, it enables quantifying the uncertainty associated with the model estimate as

well as assessing the confidence degree in future predictions. The reliability of the method in iden-

tifying systems following fractional derivative modeling has also been investigated. Future research

directions include coupling of the proposed technique with dimensionality reduction approaches.

This will potentially yield a parsimonious, physically interpretable model in the reduced space

which can be utilized as a prediction tool for high-dimensional complex systems.
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