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Abstract

Parameterized complexity is an interesting subfield of complexity theory that has received a
lot of attention in recent years. Such an analysis characterizes the complexity of (classically)
intractable problems by pinpointing the computational hardness to some structural aspects of the
input. In this thesis, we study the parameterized complexity of various problems from the area
of team-based formalisms as well as logical inference.

In the context of team-based formalism, we consider propositional dependence logic (PDL)
[114]. The problems of interest are model checking (MC) and satisfiability (SAT). Peter Lohmann
studied the classical complexity of these problems as a part of his Ph.D. thesis [75] proving that
both MC and SAT are NP-complete for PDL. This thesis addresses the parameterized complexity
of these problems with respect to a wealth of different parameterizations.
Interestingly, SAT for PDL boils down to the satisfiability of propositional logic as implied
by the downwards closure of PDL-formulas. We propose an interesting satisfiability variant
(mSAT) asking for a satisfiable team of size m. The problem mSAT restores the ‘team semantic’
nature of satisfiability for PDL-formulas. We propose another problem (MaxSubTeam) asking
for a maximal satisfiable team if a given team does not satisfy the input formula.

From the area of logical inference, we consider (logic-based) abduction and argumentation.
The problem of interest in abduction (ABD) is to determine whether there is an explanation
for a manifestation in a knowledge base (KB). Following Pfandler et al. [43], we also consider
two of its variants by imposing additional restrictions over the size of an explanation (ABD≤
and ABD=). In argumentation, our focus is on the argument existence (ARG), relevance
(ARG-Rel) and verification (ARG-Check) problems. The complexity of these problems have
been explored already in the classical setting, and each of them is known to be ΣP

2 -complete
(except for ARG-Check which is DP-complete) for propositional logic. Moreover, the work
by Nord and Zanuttini [89] (resp., Creignou et al. [22]) explores the complexity of these
problems with respect to various restrictions over allowed KBs for ABD (ARG). In this thesis, we
explore a two-dimensional complexity analysis for these problems. The first dimension is the
restrictions over KB in Schaefer’s framework (the same direction as Nord and Zanuttini [89] and
Creignou et al. [22]). What differentiates the work in this thesis from an existing research on
these problems is that we add another dimension, the parameterization.

The results obtained in this thesis are interesting for two reasons. First (from a theoretical
point of view), ideas used in our reductions can help in developing further reductions and prove
(in)tractability results for related problems. Second (from a practical point of view), the obtained
tractability results might help an agent designing an instance of a problem come up with the one
for which the problem is tractable.

Keywords: Parameterized complexity, propositional dependence logic, Schaefer’s framework,
non-classical logic, abductive reasoning, argumentation.
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Zusammenfassung

Parametrisierte Komplexität ist ein interessantes Teilgebiet der Komplexitätstheorie, das in
den letzten Jahren viel Aufmerksamkeit erhalten hat. Eine solche Analyse charakterisiert die
Komplexität von praktisch unlösbaren Problemen, indem sie die rechnerische Schwierigkeit
auf einige strukturelle Aspekte der Eingabe zurückführt. In dieser Arbeit untersuchen wir
die parametrisierte Komplexität verschiedener Probleme aus dem Bereich der teambasierten
Formalismen sowie der logischen Inferenz.

Im Kontext des teambasierten Formalismus betrachten wir die Propositional Dependence
Logic (PDL) [114]. Die Probleme, die uns interessieren, sind Model Checking (MC) und
Erfüllbarkeit (SAT). Peter Lohmann untersuchte die Komplexität dieser Probleme im Rahmen
seiner Doktorarbeit [75] und bewies, dass sowohl MC und SAT NP-vollständig für PDL sind.
Diese Arbeit befasst sich mit der parametrisierten Komplexität dieser Probleme in Bezug auf
verschiedener Parametrisierungen. Interessanterweise läuft SAT für PDL auf das Erfüllbarkeits-
problem der Aussagenlogik hinaus, wie sie durch die Abwärtsschliessung von PDL-Formeln
impliziert wird. Wir schlagen eine interessante Erfüllbarkeitsvariante (mSAT) vor, die nach einem
erfüllbaren Team der Grösse m fragt. Das Problem mSAT stellt die "team-semantische" Natur der
Erfüllbarkeit von PDL-Formeln wieder her. Wir schlagen ein weiteres Problem (MaxSubTeam)
vor, das nach einem maximal erfüllbaren Team fragt, wenn ein gegebenes Team die Eingabeformel
nicht erfüllt.

Aus dem Bereich der logischen Inferenz betrachten wir (logikbasierte) Abduktion und
Argumentation. Das Problem, das bei der Abduktion (ABD) von Interesse ist, besteht darin
festzustellen, ob es eine Erklärung für eine Manifestation in einer Wissensdatenbank (KB) gibt.
In Anlehnung an Pfandler et al. [43] betrachten wir auch zwei seiner Varianten, indem wir
zusätzliche Einschränkungen an die Grösse einer Erklärung auferlegen (ABD≤ und ABD=).
Bei der Argumentation konzentrieren wir uns auf die Probleme der Existenz (ARG), Relevanz
(ARG-Rel) und Verifikation (ARG-Check) von Argumenten. Die Komplexität dieser Probleme
wurde bereits im klassischen Rahmen erforscht und jedes von ihnen ist ΣP

2 -vollständig (außer
ARG-Check, das DP-vollständig ist) für Aussagenlogik. Darüber hinaus untersucht die Arbeit
von Nord und Zanuttini [89] (bzw. Creignou et al. [22]) die Komplexität dieser Probleme in Bezug
auf verschiedene Einschränkungen an erlaubte KBs für ABD (ARG). In dieser Arbeit untersuchen
wir eine zweidimensionale Komplexitätsanalyse für diese Probleme. Die erste Dimension sind die
Einschränkungen an KB im Rahmen von Schaefer ([89],[22]). Was die Arbeit in dieser Dissertation
von der bestehenden Forschung zu diesen Problemen unterscheidet, ist, dass wir eine weitere
Dimension, die Parametrisierung, hinzufügen.

Die in dieser Arbeit erzielten Ergebnisse sind aus zwei Gründen interessant. Erstens, können
die Ideen, die in unseren Reduktionen verwendet werden, dabei helfen, weitere Reduktionen
zu entwickeln und praktische (Un-)lösbarkeit für verwandte Probleme zu beweisen. Zweitens,
können die Lösbarkeitsergebnisse einem Agenten, der eine Instanz eines Problems entwirft, dabei
helfen, diejenige zu finden, für die das Problem praktisch berechenbar ist.
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PREFACE

The title of my thesis is Parameterized Aspects of Team-based Formalisms and Logical Inference
with an intentional emphasis on "parameterized aspects". In a Dagstuhl seminar on Logics for
Dependence and Independence in January 2019, Arne Meier mentioned in his introduction that
"I work on parameterized complexity and want to give all of you some taste of this amazing
subfield." The person next to Arne in the queue was me, and I started my introduction as: "My
name is Yasir Mahmood, and I am one of those who are already affected by Arne’s idea." I found
parametrized analysis a fascinating subfield of complexity theory. Here, one closely looks at an
intractable problem and assigns a degree of intractability to various components of an instance.
It answers the question "what role does this component play in the overall intractability" for
considered problems. This thesis presents parts of my research since September 2018. In the
following, I give some insights into each chapter with an overview of my contributions.

Chapter 3 I initiated my research by analyzing the parameterized complexity of propositional
dependence logic (PDL), jointly with Arne Meier. Initially, we listed five parameters, including
the treewidth, arity (dep-arity) and size of the formula (|φ|), size of the team (|T|), and the number
of variables (|var(φ)|) in the formula. Then we started to explore the complexity of satisfiability
(SAT) and model checking (MC) with respect to these parameters. Soon, we realized that the
disjunction operator in dependence logic is quite strong in the sense that the model-checking
problem for a fixed first-order dependence logic (D) formula with two split-junctions is NP-
complete [68]. However, the fragment of propositional dependence logic (PDL) without any
split-junction renders the problem tractable [39]. This resulted in considering the number of
split-junctions (#splits) as an interesting parameter for PDL. In the same vein, the failure of the
distributivity of conjunction over disjunction also impacts the normal forms of PDL-formulas.
Namely, a PDL-formula can be seen as a tree where leaves are atomic subformulas. This yielded
yet another parameter, namely the depth of this syntax tree of the input formula (formula-depth).
However, the question of defining the treewidth for a formula was still unresolved so far. Arne
suggested an approach proposed by Lück et al. [78] to consider the syntax circuit of an input
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formula. Later, we realized that the treewidth for PDL-formulas, which are already tree-like,
may not be interesting. We concluded that the notion of syntax structures is better suited for
PDL-formulas than that of syntax circuits. This way one can also express the team (for MC) in
a structure and consider the treewidth for the Gaifman graph of this structure. Moreover, this
yielded two different parameters regarding the treewidth, one with the team included in the
representation (formula-team-tw) and one without it (formula-tw). The complexity results for MC
with respect to these two parameters suggest that this distinction is indeed interesting. I proved
that formula-team-tw also bounds the teamsize, which is not the case for formula-tw. My other
contributions include a recursive bottom-up algorithm for solving MC when parameterized by
the teamsize. Interestingly, I later proved that this algorithm applies to any team-based logic
L such that L-atoms can be evaluated in polynomial time [84]. Additionally, I presented an
FPT-algorithm for SAT when parameterized by #splits. We also proposed a satisfiability variant
(mSAT) for PDL which asks for a satisfying team of size m ∈ N. I proved that mSAT is NP-
complete if m is given in unary and NEXP-complete otherwise. After an exchange of emails with
Phokion Kolatis (UC Santa Cruz), it turned out that mSAT bears a close resemblance with the
notion of Armstrong databases. Given a set of database dependencies, the question is whether
or not there is a database that satisfies precisely these dependencies. However, the Armstrong
database is stricter in that the resulting database must satisfy the given dependencies precisely
(nothing more and nothing less). Whereas it does not impose a size restriction as mSAT does.
Nevertheless, such a problem has not been considered in the context of dependence logic, as
pointed out by Juha Kontinen (Helsinki). This work was first published in the proceedings of the
eleventh International Symposium on Foundations of Information and Knowledge Systems (FoIKS
2020) [79] and later with new results on the complexity of mSAT in the Annals of Mathematics and
Artificial Intelligence [80]. Results regarding the two parameters (#conjunctions and #atoms) are
new to this thesis and not published before. Moreover, I introduce another problem MaxSubTeam
and prove that this is an NP-hard problem.

Chapter 4 We started exploring the parameterized complexity of abductive reasoning in
Schaefer’s framework when Johannes Schmidt (Sweden) first visited Hannover. Our analysis
included three flavors of the problem (ABD, ABD= and ABD≤), and after some discussion,
we agreed on four parameterizations. These include the size of the set of hypotheses (H),
variables (V), manifestations (M) and the solution set (E). It took me some time to digest
discussions on the Schaefer’s framework. In the beginning, my contributions were mainly on
the meta level. Such as, one can reduce IndependentSet to an ABD(Γ)-instance if the constraint
language (CL) Γ allows clauses of the form (¬x ∨ ¬y) in the knowledge base (KB). This resulted
in proving W[1]-hardness of ABD= for certain CLs when parameterized by |E|. Later, Johannes
extended these (ABD=) cases to W[1]-completeness as well as presented W[2]-completeness of
some further CLs. I argued that these cases are also W[2]-complete for ABD≤ when parameterized
by |E| but could not find the exact reduction. I also presented a so-called ‘monotone argument’
for dualHorn languages, which implied that ABD≤ and ABD= are equivalent when KB is a
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dualHorn formula. Furthermore, I proved that ABD≤ and ABD= for dualHorn languages are
FPT when parameterized by |M|. This was proven by finding a reduction to the problem
MaxSATs. This reduction, together with other results for the case of |E|, resulted in several FPT
cases for the case of |M|. The first version of this work was published in the proceedings of the
International Symposium on Logical Foundations of Computer Science (LFCS 2020) [81]. After
some time, I finally succeeded in achieving the W[2]-membership of ABD≤ for aforementioned
CLs when parameterized by |E|. I achieved this through a reduction from our problem to the
halting problem for multi-tape NTMs. Later, I also reduced cases of ABD and ABD≤ when
parameterized by |M| to the halting problem for single-tape NTMs, yielding W[1]-membership.
This (together with other additions to the LFCS-version) has been published in the Journal
of Logic and Computation [82]. We also proved several implementation results for constraint
languages which are independent of the problems we considered here. Finally, the results
regarding the constant-depth reduction between ABD≤ and ABD=, as well as the relationship
between the parameters |V| and |KB| are new to this thesis.

Chapter 5 The fifth chapter addresses the parameterized complexity of problems in logic-based
argumentation. This was also a joint work together with Arne Meier and Johannes Schmidt.
We considered three problems from argumentation, namely the existence problem (ARG), the
verification of an argument (ARG-Check), and the relevance problem (ARG-Rel). The meaningful
parameters include the size of the knowledge base (∆), the claim (α), and the support or the
solution size (Φ). We argued that each of these parameters has three values associated with
them. In other words, one can consider either the number of formulas, the number of variables,
or the size (the encoding length) for a set χ of formulas. In the conference version of our
work, we proved that all three versions of each parameterization are equivalent. However, with
some careful analysis, I recently observed that this equivalence is not true for the number of
formulas. Indeed, the number of formulas in a set Φ is bounded by the total number of variables,
whereas one can not prove the bound in the other direction. For the parameter claim-size (|α|),
I established the W[1]-membership for essentially negative (EN) and essentially positive (EP)
constraint languages by reducing ARG to Clique. Johannes later extended this reduction to
languages that are either EN or EP. Additionally, he switched the reduction and reduced it to his
favorite W[1]-complete problem, the weighted satisfiability for Γ1,d-formulas. In this thesis, I prove
that the same reduction works for the relevance problem with slight modifications, but only if
the constraint language is both (EN and EP). If a CL is either EN or EP, but not both, I could
only establish the membership in W[2], since the reduction yields a Γ2,d formula. A preliminary
version of this work has been published in the proceedings of the Thirty-Fifth AAAI Conference
on Artificial Intelligence (AAAI 2021) [83]. During our parameterized complexity analysis,
we encountered instances of implication (IMP) and tautology problems (TAUT) in Schaefer’s
framework. It turned out that these problems had not been studied for parameterized complexity
in Schaefer’s framework before. After an exchange of emails with Nadia Creignou (Aix Marseille),
we found that the complexity of TAUT in Schaefer’s framework had not been considered before,
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even in the classical setting. We proved that TAUT is in fact in P. My contributions included
formalizing the proof of P-membership for TAUT and classifying the parameterized complexity
of IMP in Schaefer’s framework. This also helped in achieving FPT-results for each problem when
parameterized by the number of variables in the knowledge base (|var(KB)|) and the support
(|var(Φ)|). The extended version with these additions has been accepted to be published in
ACM’s journal of Transactions on Computational Logic. Finally, in this thesis I include tractability
versus intractability frontier for each problem in argumentation whe parameterized by |KB| and
|Φ|. Results regarding these two parameters in argumentation (as well as several corrections to
the conference version) are new to this thesis as they did not appear in the journal version.

Other Work Apart from what is included in this thesis, I worked with Arne Meier and Juha
Kontinen on the parameterized complexity of MC for first-order dependence logic (D). This
work was published in the proceedings of the International Symposium on Logical Foundations
of Computer Science (LFCS 2022) [70]. The notable contributions include answering an open
question by Virtema [111, P.88] on the expression complexity of the fixed variable fragment (Dk)
of dependence logic. Recently, we extended our analysis to independence logic and the resulting
work is under review for the Journal of Logic and Computation. Together with Jonni Virtema
(Sheffield), I explored the parameterized complexity of propositional independence (PIND) and
inclusion logic (PINC) [84]. My major contribution in this work includes answering an open
question by Hella and Stumpf [58, P.13] regarding the complexity of satisfiability for the fixed
arity fragment of propositional inclusion logic (PINC). I find it worth mentioning that, although
the title of my thesis consists of team-based formalisms, only propositional dependence logic (PDL)
is included in this writing. Including other logics would make this thesis too large to be readable.

During the visit of Markus Hecher and Johannes Fichte (TU Vienna), we discussed how
interesting ‘treewidth’ as a parameter is. The motivation stems from the fact that given a tree
decomposition for an instance of a problem P, then a decomposition-guided (DG) reduction from
P to the satisfiability problem (SAT or QBF) can help in solving P using SAT- or QBF-solvers.
Moreover, one can prove tight lower bounds on the runtime of an algorithm that solves P under
the exponential time hypothesis (ETH) via a reduction from SAT/QBF to P. We explored DG-
reductions for all three problems in argumentation, and the resulting work was published in
the proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI
2021) [44]. We also proved runtime lower bounds under ETH. Later, we discussed with Johannes
Schmidt the possibility of finding such reductions for problems in abductive reasoning. We
concluded that one could find DG-reductions for ABD as well. This enables one to use QBF-
solvers for solving reasoning problems in abduction. However, we could not prove tight lower
bounds as in the case of argumentation. This can be explained by the fact that: reducing a
QBF-instance to an ABD-instance yields either a non-linear blow up in the treewidth or the
resulting theory in an instance of ABD is not of the desired form (CNF/DNF).
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CHAPTER 1
INTRODUCTION

1.1 Complexity Theory

Since the beginning of the human race, mankind has strived for efficiency. Be this the invention of
the wheel to cut down the traveling time, using birds for faster communication, or inventing a
computing device to do the math for them. There are many ways to make the term ‘efficiency’
precise. Generally, it refers to the best use of available resources to solve a particular task. The core
of complexity theory lies in analyzing various problems and estimating the required resources
to solve them. From a computational point of view space and time are the two most interesting
complexity measures of a problem. This is because both space and time are costly: our computer
has a finite and limited memory and can do only a certain amount of work in a given time.

Example 1.1. Consider the scenario where Mr. M wants to search for a flight between two cities. Clearly,
the database consisting of the flight schedule is sizeable, while Mr. M does not want his browser to take
5–10 minutes before returning a result. /

The first obvious question arises ‘how do we measure space and time?’ Do we calculate
the time as ‘time on a watch’, or should we consider the clock ticking of the processor? These
absolute measures may yield fascinating results, but they do have a limitation: the obtained
results are processor-specific. Nevertheless, we want our complexity analysis to be independent
of these details. In other words, we want the complexity of a problem to be independent of
whether we solve this on a Mac machine with a 3.1 GHz processor, on a 20th century 1.6 Pentium
computer with Windows OS, or maybe on a supercomputer. For this reason, we abstract away
all these details and consider the most basic machine model for computation, a Turing machine.
A Turing machine (TM) is a widely used and, for all practical purposes, an accurate model of
our general-purpose computers [106]. We define the time required to solve a problem P as the
time taken by a TM M that solves P. Moreover, we calculate the time with respect to the input

1



2 Chapter 1. Introduction

size. This causes another concern as there might be two input instances of the same size, but an
algorithm may solve one relatively faster than the other. To overcome this issue, we consider the
time taken in the worst case to solve a problem of size n. It is then clear that there can be no input
instance of size n that takes more than this worst-case time. We defer the detailed description
and the precise formulation of TMs until preliminaries.

The goal of the complexity analysis is twofold: (1) to find efficient algorithms and (2) to
compare the complexity of considered problems relative to each other. Some problems are
intrinsically hard, that is, there is no better way (known) to solve them than to brute-force all
possible solutions. Finding an efficient algorithm amounts to finding a procedure to solve a problem
that runs in polynomial time with respect to the input. If a problem is efficiently solvable, we
call it tractable and it belongs to the complexity class P. Whereas, if there is no efficient (known)
way of solving a problem, then it is intractable. Intractable problems fall in various complexity
classes depending on the running time or space usage of a Turing machine that solves them. One
such intractability class is NP, which includes the problems solvable by a non-deterministic TM
(NTM) running in polynomial time. An NTM is a TM that can also guess during its computation.
Equivalently, NP consists of problems for which the correctness of a solution to an instance can
be verified in polynomial time. Characterizing the relative complexity of two problems requires
finding an efficient way of reducing one of the problem to the other. This is achieved by the
concept of polynomial-time reduction between problems. A problem A reduces to a problem B
in poly-time if there is a polynomial-time computable function f mapping yes-instances (resp.,
no-instances) of A to yes-instance (no-instances) of B. Finally, NP-complete problems are the
hardest problems in NP. A problem P in NP is NP-complete if every problem A ∈ NP reduces to
P in polynomial-time.

Example 1.1 presents an instance of a well-known problem known as query evaluation, or the
model checking problem. The input consists of a structure (a database) and a query, the task is
either to determine whether the query is true in the structure or to return the result of the query.
Moreover, in literature, there exist two additional flavors of these problems (cf. [74, Def. 6.1]).
The problem when the query and the database are parts of the input is known as the combined
complexity. Whereas, if the structure (resp., query) is fixed and the input consists of the query
(structure), the problem is known as the expression (data) complexity of the model checking.

In practice, it is often the case that an input instance of a problem is exceedingly large.
Consider Example 1.1 where the query and the database are parts of the input. Notice that it
is unlikely that either the database or the query is fixed in advance. Consequently, one can not
study either the data or the expression complexity in this example. Searching even a small-sized
query against a large-sized database can be computationally expensive. Let us consider some
additional details, such as Mr. M wanting to search the database for flights between Hannover
in Germany and Lahore in Pakistan. One might use the fact that the query is small in size and,
among other things, it is preferable to find a flight between the two cities using at most one
stopover. This way, an algorithm that uses this additional information may perform better. This
concept of additional information is formalized further in the following discussion.
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This work focuses on the parameterized complexity analysis for problems. The motivation
stems from the fact that although some problems are intrinsically hard, the principal source of
the complexity is often just a little part of the input. This allows one to separate that part of the
input (called the parameter) and to study the complexity with respect to the parameter and the
input separately. Parameterized complexity [32] is a widely studied subfield of complexity theory.
The idea (once again) is to characterize the relative complexity of problems but also considering
the runtime dependence on the parameter this time. A parameterized problem (PP) Π consists
of two parts, the inputs and the parameterization. We say that Π is fixed-parameter tractable
(FPT for short), if it can be decided by a DTM that runs in polynomial time with respect to the
input and the runtime regarding the parameter is some arbitrary computable function. FPT is
the counterpart of P in the parameterized complexity world. However, problems not in FPT have
a much varying degree of intractability in the parameterized world. The class paraNP is the
non-deterministic variant of FPT. A PP Π is in paraNP if it can be decided by an NTM that runs
in polynomial time with respect to the input and some arbitrary computable function with respect
to the parameter. Moreover, the class XP includes problems decidable by a DTM in polynomial
time for each fixed value of the parameter. One can define additional complexity classes by
restricting the non-determinism of an NTM. The class W[P] consists of problems decideable by
an NTM that runs in polynomial time with respect to the input, some arbitrary computable
function f with respect to the parameter, and the number of non-deterministic steps is bounded
by a function h of the parameter. Moreover, in between FPT and W[P], there exists an infinite
hierarchy of classes known as the W-hierarchy. The following example highlights this interesting
degree of intractability and promotes the parameterized complexity analysis.

Example 1.2. Let G = (V, E) be an undirected graph with the set of vertices V, edges E = {{v, w} |
v, w ∈ V} and k ∈N be a natural number. Two vertices v and w are adjacent if {v, w} ∈ E. Consider
the following decision problems.

VertexCover: Is there a set S of size k, such that S includes at least one endpoint of every edge e ∈ E?

IndependentSet: Is there a set S of size k, such that no two vertices v, w ∈ S are adjacent?

DominatingSet: Is there a set S of size k, such that every vertex v ∈ V\S is adjacent to some w ∈ S?

k-Coloring: Is there a coloring of V into k-colors, such that no two adjacent vertices have same color? /

Concerning the classical complexity, these problems are NP-complete (see for example [106])
and enjoy the same complexity up to polynomial-time reductions. However, in parameterized
setting, these problems fall in different complexity degrees when parameterized by k. The problem
VertexCover is FPT, IndependentSet is W[1]-, DominatingSet is W[2]- and k-Coloring is
paraNP-complete (see [46]).



4 Chapter 1. Introduction

1.2 Logic and Reasoning

We use logic and reasoning in almost everything we do or say in our daily life. This includes
stating observations, defining a concept and formalizing theories, drawing conclusions, and
convincing others with our arguments. The story does not end here, as logic is one of the
fundamental aspect of working in computers. It is logic that makes our computers as powerful as
they are today. At the primary level, logic tells a system what to do when a key is pressed. At
more advanced levels, it is used in systems to validate various engineering designs, diagnose
failures and return the result of a query against a database.

The rudimentary components of logic are statements as well as expressions formed using a
specific set of rules. Statements are used to depict the relationship between various entities, which
are interpreted in a model. A model is simply a view of the universe that contains various objects
and relationships between them. In this thesis, we work with propositional logic. A proposition is a
statement that can either be true or false, such as ‘it is raining’ or ‘today is Sunday’. The universe
of our model is then {0, 1} or {F, T}. The unary operator ‘¬: negation’ switches the truth value
of propositions. Other complex statements (or formulas) in propositional logic are constructed
from propositions or their negations by connecting them with the help of ‘∧: conjunction’ and ‘∨:
disjunction’. The truth of a formula is evaluated under an assignment of propositions to 0 or 1.
In the satisfiability problem, the task is to search an assignment that evaluates a given formula
to true. Propositional logic (PL) is a simple form of logic where formulas are constructed from
propositions by using connectives {∧,∨,¬}. More powerful formulas can be constructed by
quantifying variables. That is, there is some valuation of x (∃x) or for every valuation of x (∀x).
There are extensions and generalizations of PL such as first-order logic, temporal logic, and
modal logic. In this thesis, we consider an extension (propositional dependence logic) and a
generalization (the constraint satisfaction) of propositional logic. Moreover, we focus on the
complexity-theoretic aspects of various problems pertaining to these logics and not involve
ourselves in the expressiveness issues — a different area of research in logic (see further [74]).

In the context of propositional logic, one often considers a formula in a so-called conjunctive
normal form (CNF). That is, a formula is a conjunction of clauses where each clause is a disjunction
of literals. A literal is simply a proposition or its negation. The collection of assignments that
satisfies a formula can be seen as a logical relation over {0, 1}. However, one can go the other way
around by first identifying n-ary relations over {0, 1} and then constructing formulas by taking
conjunctions of these relations.

Example 1.3. Consider the scenario where 4 people (pi for i ≤ 3) sit in two different offices at the same
faculty. The pandemic and its resulting social distancing allow only specific sitting arrangements at any
time. An example ‘office visiting plan’ is given by the logical relation R = {1011, 1110, 0011, 0101}. The
tuple 1011 depicts that {p0, p1, p3} are allowed to visit office whereas {p1} is not allowed. /

Schaefer’s framework [103] provides this very generalization of formulas in CNF. For a k-ary
relation R, a constraint is an expression of the form R(x1, . . . , xk) and it generalizes the notion of
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a clause. Moreover, for a set Γ of relations, a Γ-formula is simply a conjunction of constraints
with relations from Γ. The main idea behind Schaefer’s framework is that: given a set Γ of
relations, what other relations can be defined from Γ by allowing conjunctions and the existential
quantification? This approach provides an infinite class of satisfiability problems that contains
classical CNF-satisfiability as a special subcase. Schaefer’s dichotomy theorem states that every
member of this class of problems is either tractable (in P) or NP-complete. The results proved by
Schaefer [103] emphasize the importance of the framework on its own.

“[The dichotomy theorem] is potentially very useful in expediting NP-completeness
proofs, for the reason that [it] gives one a much broader ‘target cross-section’ for use
in reductions.”

The motivation behind such a generalized framework is that it allows one to no longer aim
for a specific NP-complete problem for proving hardness, as now there are a latitude of problems
available. A similar (yet different) approach is due to Post [96]. In Post’s framework, one considers
functions and their closure under functional composition. Our focus in this work is on Schaefer’s
approach and therefore, we omit the detailed discussion on Post’s framework.

Dependence and independence among various entities are natural phenomena observed in
our everyday life and scientific reasoning. Whether or not it rains today is independent of whether
today is Friday, whether or not the author visits Pakistan this year is dependent on whether he
completes his thesis within the deadline. In mathematics, an expression of the form y = f (x)
depicts the dependence of y on an independent variable x. Moreover, there exists a well-known
notion of functional dependencies (introduced by Codd in 1970) in the context of databases. For
variables x and y, the dependency x → y states that for every pair of rows (tuples) in the database,
whenever they have the same value for x, then they must also have the same value for y.

In order to motivate the necessity of dependence in logic, we consider the following scenario.
It was recognized that the usual dependence of variables in a formula of the form ∀x∃y∀u∃vφ is
such that: each quantified variable depends on all others appearing before itself in the sequence.
In particular, the valuation of y depends upon x, whereas the valuation of v depends on that of
x, y, u. An obvious question arose, what if we want v not to depend on x and y. One possible
solution was presented in terms of Henkin’s partially ordered quantifiers [59]. Henkin introduced
the idea of branching quantifiers and an expression of the following form.

Φ :=

(
∀x∃y
∀u∃v

)
φ (1.1)

The formula Φ has an interpretation that the valuation of y (resp., v) depends only upon the
valuation of x (u). As an alternative approach, Hintikka and Sandu [60] proposed independence
friendly logic (IF ). The idea was to introduce the so-called slashed-quantifiers, resulting in
expressions of the form (∀x)(∃y)(∀u)(∃v/∀x)φ. The intuition once again is to express the
(in)dependence of variables on each other. Hintikka and Sandu gave game-theoretic semantics
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for their IF logic (instead of the compositional/Tarski-like semantics). The challenge of devising
compositional semantics in opposition to Hintikka’s game-theoretic semantics was later tackled
by Hodges [62] through the introduction of trump semantics. For a better historical background, a
reader is advised to consult the introduction chapter of Martin Lück’s Ph.D. thesis [77].

Jouko Väänänen introduced a new atomic formula to the classical logic in order to capture
the notion of dependence [109]. A dependence atom of the form dep(x; y) states that the value of
y depends on the values of variables in x and nothing else. Along the same lines as Hodges,
Väänänen introduced team semantics where the truth of a formula is evaluated over a set of
assignments called a team. The central idea of a teams is the following fact by Väänänen [109].

“Dependence manifests itself in the presence of the multitude. A single event cannot
manifest dependence, as it may have occurred as a matter of chance.”

In this thesis, our focus is on the propositional dependence logic (PDL) and therefore we
only consider propositional teams. The usual Tarski semantics for PL-formulas is extended to
the team semantics by simply requiring that every assignment in the team satisfies a formula.
Enriching the classical propositional logic with team semantics by adding the dependence atoms
yields the propositional dependence logic (PDL). The example formula Φ from Equation 1.1
in dependence logic becomes ∀x∃y∀u∃v(φ ∧ dep(u; v)). Moreover, a dependence atom naturally
corresponds to the notion of functional dependency in the database setting.

Example 1.4. The database considered in Example 1.1 when seen as a team satisfies the dependence atom
dep({Flight,Date,Time}; Destination). It highlights that the destination is uniquely determined by
the flight for a particular date and time. /

It is worth pointing out that the satisfiability and the model checking problems for PDL
enrich these two problems from the classical PL-setting. Furthermore, one can encode the domain
D of a fixed first-order (FO) structure in binary and thereby translate an FO-structure into the
propositional setting. This implies that propositional dependence logic (although a restricted
version of first-order dependence logic) is still relevant in practice.

The introduction of dependence logic has resulted in an active community of researchers
spanning different areas including databases, statistics, and social choice to name a few. The
literature on team-based formalisms is very rich, as it includes various other dependency notions
such as independence [50], inclusion and exclusion [47, 56]. Moreover, the focus also has widened
from the first-order dependence logic further to modal logic [110], temporal logics [72, 71],
probabilistic logics [36], multi-team semantics [35], and poly-team semantics [54].

Logical Reasoning Reasoning (in general) is the process of reaching conclusions on the basis of
a careful consideration of the available information. Abductive reasoning as a type of inference is
frequently employed on various occasions in our everyday life. It is one of the most important
aspects of common sense reasoning [10]. The term ‘abduction’ finds its origin in the combination
of Latin words ab- (‘from, away from’) and dūcō (‘to lead, to draw’). That is, to draw from or
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to lead somewhere away from [something]. This makes abduction the process of leading to a
reason or an explanation for an event from the given information. Such an explanation must (1)
align with one’s belief or the given information, also known as the knowledge base, and (2) explain
the manifestation of the given event logically. One can further impose a minimality or the size
criteria for an acceptable explanation. Pierce [90, (CP 5.171)] proposed that abductive rasoning is
the only component of logic that produces any new knowledge.

“Abduction is the process of forming an explanatory hypothesis. It is the only logical
operation that introduces any new idea; for induction does nothing but determine a
value, and deduction merely evolves the necessary consequences of pure hypotheses”

The abductive reasoning has two different aspects or flavors, namely the creative and the selective
abduction (cf. [105]). Creative abductions can introduce new concepts or models, whereas
the task of selective abductions is to choose the best candidate among a given multitude of
possible explanations. Moreover, abduction can only offer hypotheses which may be refuted with
additional information. This is the reason why abduction is often referred to as an inference to
the best ‘available’ explanation. The following example highlights how abduction is engrained as
a fundamental component of common sense reasoning in human.

Example 1.5. Mr. M informs his family that he plans to visit them in March. However, in March, he
could not travel, and his family members are wondering what might be the reason. Either M was very busy
at work, there were new Corona regulations, or he ran out of money. Consider some additional information
that M would visit his family only when he has completed his thesis, as well as, he received his booster
vaccine for Covid19, and people vaccinated three times are allowed to travel. Moreover, M has saved enough
money for his tour. With the help of abduction, his brother concludes that M was busy writing his thesis,
and he will travel once it is complete. /

Abductive reasoning is a non-monotonic process. This is because adding new information
to the knowledge base may result in some explanations to become invalid. The components of
abductive reasoning include a knowledge base (given information), a manifestation (an event to be
explained) and hypotheses (candidate explanations). In this thesis, our focus is on the logic-based
abduction. Thereby, the knowledge base (KB) is modeled as a propositional logic theory, whereas
the manifestation and hypotheses are modeled by propositional variables. An instance of the
abduction problem consists of these three components. The task is to find a subset of hypotheses
that, together with the knowledge base, is logically consistent and entails the manifested event.
Abductive reasoning is an important concept in AI as emphasised by Morgan [88] and Pole [94].
Moreover, abduction is also used in the process of medical diagnosis, a physician hypothesizes
the disease that best explains a patient’s symptoms [64, 91]. Other applications of abductive
reasoning include planning [41], database updates [65], natural language understanding and text
generation [15, 61], and machine learning [20, 63, 66, 95].

In abductive reasoning, it is often argued that the lack of a particular piece of information does
not play any role, and only the ‘available information’ is relevant in finding an explanation. This is



8 Chapter 1. Introduction

contrary to the closed-world assumption (introduced by Reiter [98]) where the lack of information is
also important in reasoning. One assumes that all the relevant information has been stated in the
knowledge base and any fact not specified is assumed to be false. Often in abduction one does not
assume that the facts not included in an explanation are false. Nevertheless, Pfandler et al. [92]
proposed a new definition of explanations based on a closed-world approach. Their motivation
lies in the fact that the open-world assumption may not always yield minimal explanations.

The study of argumentation is also closely connected to that of reasoning. Upon making a
claim, someone may request further support for the claim in the form of reasons. However,
there are differences between abductive reasoning and the process of argumentation. In
abductive reasoning, an individual’s viewpoint is addressed, and consequently, this view of each
individual or the knowledge base is assumed to be consistent. However, argumentation manifests
itself while exchanging reasons in the presence of more than one views (possibly) contrary to
one’s own belief or the knowledge base.

Argumentation is a crucial aspect of communication in our daily lives. The importance of
argumentation, as put forward by Dung [33] is emphasized by the following fact.

“The ability to engage in an argument is essential for humans to understand new
problems, to perform scientific reasoning, to express, clarify and to defend their
opinions in their daily lives.”

Clearly, to gain, understand, and process new information, one has to question themself,
especially when the new information is in conflict with one’s previous knowledge. For humans,
argumentation works on the principle of “the one who has the last word laughs best”. That is, in an
exchange of arguments, the winning argument is the one that cannot be further counter-argued.
The research area in argumentation is broad, as discussed next. Some important aspects of
argumentation include: (1) constructing arguments and studying relationships between them, (2)
drawing conclusions based on a set of arguments, and (3) finding consistent (in some precise/pre-
given sense) sets of arguments that can be accepted together. Each of these three components is
well-studied, as we shortly discuss.

Dung’s argumentation framework [33] models the collection of arguments as a directed graph
where each node represents an argument. The (directed) edge represents the attack relation
between two arguments. The task is to find a coherent set of arguments which can be accepted
simultaneously. Assumption-based argumentation (ABA) [34] is a richer formalism spanning
all three aspects of the argumentation. In ABA, one considers the whole process starting from
constructing arguments in an underlying logic, identifying conflicts between them, and returning
conclusions based on the acceptance of specific arguments. Clearly, the considered logic plays an
important role in the complexity of reasoning problems in ABA.

The focus of this thesis is logic-based argumentation introduced by Besnard and Hunter [7, 8].
One considers propositional logic (PL) together with its entailment relation (|=) to construct
arguments over a knowledge base. In logic-based argumentation, one is given a knowledge base as
a collection of formulas (can be inconsistent altogether) together with a PL-formula as a claim.
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The task is then to construct a minimal support for the claim. That is, a minimal (with respect
to set inclusion) consistent subset of the knowledge base which logically entails the claim. The
pair consisting of the support and the claim is then called an argument. Below we illustrate an
example for better understanding.

Example 1.6. (A1): One needs money and visa to be able to travel, and a job to fulfil these two requirements.
Mr. M argues that he will travel to Pakistan. His argument in favour of travelling is supported by the fact
that he adheres to both conditions. Now consider another scenario. (A2): New Corona regulations caused
the visa office to shut down. As a result, the argument that M can not have a visa anytime soon, follows. /

The overall information in Example 1.6 is inconsistent because the claim of A2 (M do not
have a visa) is contrary to the support of A1 (M has a visa). This highlights the very nature
of argumentation that one wants to find the support for a particular claim in the presence of
contradictory information.

1.3 Related Work

This thesis addresses the computational problems from three different domains of logic. The
literature on the team-based formalisms is very rich, as we shortly discuss next. The three
most popular logics in team-semantics are dependence D [109], independence FO(⊥) [50] and
inclusion logic FO(⊆) [47]. Concerning the computational problems, the satisfiability and the
finite satisfiability for all three logics are undecidable (see [69]). Erich Grädel [49] explored the
complexity of model checking for D and FO(⊥). His analysis includes the expression and
the combined complexity, whereas, the results regarding the data complexity were explored by
Kontinen [68]. Recently, Kontinen et al. [70] explored the parameteriezed complexity of model
checking for D. Fan Yang has explored the propositional logic of dependence in depth [114].
However, model checking and satisfiability for modal dependence logic (and propositional
dependence logic) were studied by Peter Lohmann [39, 76]. Hannula et al. [55] (resp., Mahmood
and Virtema [84]) explored the classical (the parameterized) complexity of model checking and
satisfiability for propositional independence and inclusion logic.

An overview of the complexity results in abstract argumentation or the assumption-based
argumentation can be found by the work of Dvorák and Dunne [38]. The complexity of logic-
based argumentation in Schaefer’s Framework was first attacked by Schmidt et al. [22]. The
problems in abductive reasoning have also been explored in depth with various restrictions over
the allowed knowledge-base, the manifestation, and the hypotheses. The work by Nord and
Zanuttini [89] includes a detailed analysis with respect to these restriction over an input-instance
for problem in abduction. Fellows et al. [43] initiated the parameterized complexity analysis of
abductive reasoning for the fragments of the CNF-formulas. The work in this thesis is essentially
an expansion of their work, as we now consider not only the CNF-fragments but also further
restriction over the allowed formulas.



10 Chapter 1. Introduction

Organization

We begin with preliminaries in Chapter 2. This gives a brief and comprehensive introduction to
all the concepts and notions used in this writing. In Chapters 3, we discuss the parameterized
complexity of propositional dependence logic. This is followed by the abductive reasoning
in Chapter 4 and argumentation in Chapter 5. Each chapter begins with a discussion on the
considered parameters. This includes defining each parameterization and proving relationships
between them. Definitions used only in a specific proof or a theorem are included in the
appropriate subsections to make preliminaries less exhaustive. Chapter 6 concludes the thesis
with interesting remarks and possible directions for the future work.

Figure 1.1 presents a pictorial overview of the related work with brown circles depicting the
work included in this thesis.
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analysis of the problem. Circles in brown indicate the content of this work.
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CHAPTER 2
PRELIMENARIES

The reader is assumed to have at least a basic mathematical knowledge. This includes familiarity
with objects such as variables, sets, functions, etc. We begin by fixing the notation and defining
the terminology used in this thesis.

2.1 Propositional Logic

A propositional variable can take one of the two possible values, 0 or 1 (equivalently, False or
True). All variables considered in this work are propositional, unless stated otherwise. We denote
variables by small English letters such as x, y, p, q etc., possibly with indices and reserve capital
letters X, Y, P, Q for sets of variables. A collection of variables {x1, . . . , xn} when seen as a tuple
is denoted in boldface font x. If X is a set then |X| denotes the number of elements in X. The
classical propositional logic constitutes propositional statements which are often denoted by
variables. Formulas of propositional logic are obtained from variables using connectives, namely
‘conjunction’ (∧), ‘disjunction’ (∨), and ‘negation’ (¬). That is, if p and q are propositions then
each of p, q,¬p, p ∧ q, p ∨ q are propositional formulas. We find it convenient to write x → y
instead of ¬x ∨ y and x ↔ y for (x → y) ∧ (y → x). A literal is a variable x or its negation ¬x.
There are two special formulas, True (>), which is always true and False (⊥), which is always
false. We denote propositional formulas by small Greek letters φ, ψ, θ, γ and reserve capital letters
Φ, Ψ, Γ for collection of formulas. The propositional logic is denoted by PL. An observation, or
more formally, an assignment s with a domain X of variables assigns a truth value of 0 or 1 to
each proposition. That is s : X → {0, 1} is a mapping. For a tuple x = (x1, . . . , xn) of variables we
denote the tuple (s(x1), . . . , s(xn)) by s(x). In such an event, we sometimes find it convenient to
write s as a bit string b of length n to indicate that s(xi) = bi for i ≤ n. Moreover, we also write
s ∈ 2X and view s as a subset of X comprising of x ∈ X with s(x) = 1. We say that s satisfies a
proposition p ∈ X iff s(p) = 1 and denote this as s |= p. Then s does not satisfy p (s 6|= p) or p

13
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is false in s if s(p) = 0. The definition of satisfaction (also known as Tarski semantics) extends to
other PL-formulas as follows.

s |= > and s 6|= ⊥, always,

s |= ¬φ iff s 6|= φ,

s |= φ ∧ ψ iff s |= φ and s |= ψ,

s |= φ ∨ ψ iff s |= φ or s |= ψ.

Variables in a PL-formula φ are denoted as Vars(φ). We say that φ is satisfiable if there is an
assignment s over Vars(φ) such that s |= φ and otherwise, φ is unsatisfiable. The propositional logic
satisfies the so-called law of excluded middle. That is, for every PL-formula φ and an assignment s,
either s |= φ or s |= ¬φ. It is crucial to mention this property here because we will soon introduce
an extension of PL (propositional dependence logic) that fails it.

In the following, we enlist problems that interest us in this thesis. The model checking and the
satisfiability problem asks whether an assignment s satisfies a formula φ or whether there is such
a satisfying assignment, respectively.

Problem: PL-MC

Input: A PL-formula φ and an assignment s over Vars(φ).
Question: Does s |= φ?

Problem: PL-SAT

Input: A PL-formula φ.
Question: Is there an assignment s over Vars(φ) such that s |= φ?

The complement problem to satisfiability is the unsatisfiability problem (UNSAT) asking whether
the input formula is not satisfiable. A PL-formula φ is valid or a tautology if s |= φ for every
assignment s : Vars(φ)→ {0, 1}. For two PL-formulas φ and ψ, we say that φ entails (or implies)
ψ iff for every assignment s over Vars(φ)∪Vars(ψ) we have: if s |= φ then s |= ψ. This is denoted
as φ |= ψ. Finally, φ and ψ are equivalent, φ ≡ ψ if and only if φ |= ψ and ψ |= φ. The tautology
problem asks whether a given formula is a tautology.

Problem: PL-TAUT

Input: A PL-formula φ.
Question: Does s |= φ for every assignment s over Vars(φ)?

Finally, the implication problem asks for a pair of formulas φ and ψ whether φ |= ψ.

Problem: PL-IMP

Input: Two PL-formulas φ and ψ.
Question: Does φ |= ψ?
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The classical PL-formulas are often considered in a so-called conjunctive or disjunctive normal
forms (CNF/DNF). A clause is a disjunction of literals written as c = (l1 ∨ l2 ∨ · · · ∨ lr). A formula
φ is in CNF if φ =

∧
i ci where ci for each i ≤ n is a clause. A term is a conjunction of literals

written as t = (l1 ∧ l2 ∧ · · · ∧ lr). A formula φ is in DNF if φ =
∨

i ti where ti for each i ≤ n is a
term. A clause, term or a CNF/DNF is called positive (resp., negative) if it includes only positive
(negative) literals. One can impose these additional restrictions on the type of formulas included
in a problem P. In such a scenario, for example, P(CNF) denotes that an input to P consists of
only formulas in CNF. Finally, when there is no ambiguity, we drop the logic prefix from the
problem and write, for example, SAT when the considered logic is obvious from the context.

Sometimes, we come across an assignment s that has a subset Y ⊆ Vars(φ) as its domain. In
this case, we talk about the reduct of φ under s. Formally, let φ be a formula in CNF and s be an
assignment over Y. The reduct φ[s] of φ is defined as the propositional formula obtained from φ

by deleting all clauses satisfied by s and deleting all literals set to 0 by s from the remaining.

Propositional Dependence Logic

We first extend Tarski’s semantics from the previous subsection to the team semantics. A team T over
a domain X is a collection of assignments si such that si : X → {0, 1}. Given a propositional logic
formula PL and a team T over Vars(φ), we say that T satisfies φ (written as T |= φ) iff s |= φ

for every s ∈ T. Now we enrich the syntax of propositional logic by adding dependence atoms of
the form dep(P; Q) where P, Q are sets of variables. The so-obtained logic is called propositional
dependence logic (PDL). It is worth mentioning that we only allow negation symbols to appear
in front of atomic formulas. Allowing arbitrary negation yields the formation of more complex
formulas and therefore is out of the scope of this thesis (see further [55]). The semantics for
PDL-formulas is stated below.

T |= x iff ∀s ∈ T : s(x) = 1

T |= ¬x iff ∀s ∈ T : s(x) = 0

T |= dep(P; Q) iff ∀s, s′ ∈ T :
∧
p∈P

s(p) = s′(p) implies
∧

q∈Q

s(q) = s′(q)

T |= ¬dep(P; Q) iff T = ∅

T |= φ ∧ ψ iff T |= φ and T |= ψ

T |= φ ∨ ψ iff ∃T1∃T2(T1 ∪ T2 = T), T1 |= φ and T2 |= ψ

When either set P or Q in an atom dep(P; Q) is a singleton, we simply write it as an element rather
than the set. For example, we write dep(P; q) instead of dep(P; {q}). The disjunction operator
(∨) in the context of PDL is often referred to as the split-junction. In literature, there are two
different semantics for the split-junction (see further [57]). The one defined above is the so-called
lax-semantics. An alternative is the strict-semantics, which forces the split of the team into disjoint
subteams. Nevertheless, both semantics coincide for PDL [109] and we use the lax-semantics.
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Flight Date Departs Route Price($)

EY002 20.03.22 11:20 FRA-AUH-LHR 370
TK592 20.03.22 13:00 FRA-IST-LHR 320
TK102 20.03.22 11:00 HAJ-IST-LHR 350
QR068 21.03.22 17:35 FRA-DOH-LHR 330
EY002 21.03.22 11:20 FRA-AUH-LHR 350
QR068 22.03.22 17:35 FRA-DOH-LHR 310
QR528 22.03.22 10:35 BRE-DOH-LHR 340

Table 2.1: An example flights database.

Example 2.1. Consider the team T1 presented in Table 2.1 (seen as a database). Then T satisfies
the dependence atom dep({Flight,Date,Departs}; Route). Whereas, dep({Flight, Route}; Price)
fails in T, as depicted by the presence of the pair (EY002, 20.03.2022, 11:20, FRA-AUH-LHR, 370) and
(EY002, 21.03.2022, 11:20, FRA-AUH-LHR, 350). /

We now define some well-known properties of PDL-formulas which are also relevant to the
results in this thesis. PDL-formulas are local in the sense that for a formula φ and a team T
over variables X ⊇ Vars(φ), the satisfaction T |= φ is only determined by variables in Vars(φ).
That is, T |= φ ⇐⇒ T�Vars(φ) |= φ. For this reason, we omit writing the domain of T explicitly
since it is clear that T is a team over Vars(φ). For propositional literals, the team semantics is
defined with respect to individual assignments in the team. We can strengthen this property to
cover all PL-formulas. A formula φ is flat if, given a team T, we have T |= φ ⇐⇒ { s } |= φ for
every s ∈ T. The classical PL-formulas are flat. Moreover, the team semantics for such formulas
coincide with the Tarski’s semantics. As a consequence, the following is true for a PL-formula φ.

T |= φ iff ∀s ∈ T : {s} |= φ iff ∀s ∈ T : s |= φ.

PDL-formulas are downwards closed in the sense that for every PDL-formula φ and the team T,
if T |= φ then P |= φ for every P ⊆ T. Finally, a formula φ is 2-coherent if for every team T, we
have that T |= φ ⇐⇒ { si, sj } |= φ for every si, sj ∈ T. Every dependence atom, as well as every
PDL-formula without a split-junction is 2-coherent [68]. It is worth mentioning some properties
that PDL-formulas fail. These are also relevant to results in this work.

• Excluded middle: For a formula φ and a team T, either T |= φ or T |= ¬φ.

• Absorption law: For a formula φ, φ ∨ φ ≡ φ ≡ φ ∧ φ.

Remark 2.2. PDL does not satisfy the law of excluded middle. This is because the team {s1, s2} where
si(y) = i for i = 0, 1, neither satisfies y nor ¬y. Moreover, PDL fails the absorption law (w.r.t.

1Notice that T is not a propositional team. Nevertheless, it can be translated to the propositional setting via a
binary encoding of the possible entries for the variables. This might cause a logarithmic blow-up (by binary encoding
the universe values for each column. The parameter values we consider in this chapter correspond to the propositional
setting and therefore there is no need to consider this blow-up separately.
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disjunction). The team {00, 01, 10, 11} over {x, y}2 satisfies dep(x; y) ∨ dep(x; y), whereas, it does not
satisfy dep(x; y).

The computational problems from PDL that interest us include SAT and MC. The validity
and the implication problems have also been studied [52, 112] but will not be considered in this
thesis.

Problem: PDL-MC

Input: A PDL-formula φ and a team T over Vars(φ).
Question: Does T |= φ?

For PDL-SAT, in principle, the question amounts to finding a satisfying team for an input formula
φ. However, since PDL-formulas are downwards closed, we have for every PDL-formula φ

and a team T that: if T |= φ then for every s ∈ T, {s} |= φ. As a consequence, if a PDL-formula
φ is satisfiable then there is a singleton team T = {s} such that T |= φ. On the other hand, if
T |= φ for some singleton team T, then φ is clearly satisfiable. This implies that it is enough to
find a singleton team to determine the satisfiability of φ. Moreover, {s} |= dep(P; Q) trivially
for a dependence atom dep(P; Q) and any assignment s. Consequently, the team semantics and
the usual Tarskian semantics coincide for the case of singleton teams. This yields the following
version of SAT for PDL.

Problem: PDL-SAT

Input: A PDL-formula φ.
Question: Is there an assignment s over Vars(φ) such that {s} |= φ?

Schaefer’s Framework

We now introduce concepts and terminology required to work in Schaefer’s framework.
Constraints generalize the notion of clauses, whereas constraint languages generalize the notion
of classes of clauses. A relation R ⊆ {0, 1}k is called a logical relation of arity k ∈ N. A
constraint language (CL) Γ is a finite set of relations {Rk1

1 , . . . , Rkn
n }, where ki is the arity of Ri.

A constraint C over R is a formula C := R(x1, . . . , xk), where R is a k-ary logical relation and
x1, . . . , xk are (possibly repeating) variables. An assignment s : {x1, . . . , xk} → {0, 1} satisfies C, if
(s(x1), . . . , s(xk)) ∈ R. Let Γ be a constraint language, then a Γ-formula φ is a finite conjunction

of constraints over Γ, that is φ =
n∧

i=1
Ri(xi,1, . . . , xi,ki), where each Ri ∈ Γ has arity ki for i ≤ n.

Finally, let φ be a Γ-formula, an assignment s over Vars(φ) satisfies φ if s simultaneously satisfies
every constraint in φ. The notion of satisfiability, entailment, and equivalence is employed as for
propositional logic. Similarly, every problem P ∈ {SAT, IMP, TAUT} can be defined with respect
to a constraint language Γ, denoted as P(Γ).

2An assignment s over X = {x1, . . . xn} can be seen as a bit string s(x1) . . . s(xn)
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Example 2.3. Recall the relation R stating the ‘office visiting plan’ from Example 1.3. The constraints
such as ‘who else must be present today to take care of other duties’ further restricts the combination
of people allowed to visit offices. Let Γ = {R, S, T} be a CL where R = {1011, 1110, 0011, 0101},
S = {11, 00} and T = {1} are relations. Then φ := R(x1, . . . , x4) ∧ S(x1, x3) ∧ T(x4) is a Γ-formula.
Moreover, s |= φ for the assignment s : x 7→ 0101. /

Let C be a constraint, V be a set of variables, and u a variable, then C[V/u] denotes the
constraint obtained from C by replacing each occurrence of variables in V by u. Whenever
a Γ-formula φ (or a constraint C) is logically equivalent to a clause or a term, we write the
corresponding clause or term in place of φ. We formalize this in the following. A k-ary relation
R is represented by a formula φ in CNF if φ is a formula over k distinct variables x1, . . . , xk and
φ ≡ R(x1, . . . , xk). Moreover, we say that the relation R is

• Horn (resp., dual-Horn) if φ contains at most one positive (negative) literal in each clause.

• Bijunctive if φ contains at most two literals in each clause.

• Affine if φ is a conjunction of linear equations of the form x1⊕ . . .⊕ xn = a where a ∈ {0, 1}.

• Essentially negative if every clause in φ is either negative or unit positive. R is essentially
positive if every clause in φ is either positive or unit negative.

• 1-valid (resp., 0-valid) if every clause in φ contains at least one positive (negative) literal.

Furthermore, we say that R is Schaefer if it is Horn, dual-Horn, bijunctive, or affine. If a relation R
is 1- or 0-valid or both, then we say that R is ε-valid. Finally, for any property P of a relation, we
say that a CL Γ has P if every relation in Γ has P. Some proofs in Chapter 4 (regarding the base
independence of co-clones) require the following equivalent criteria for relations defined above.
The binary operations of conjunction, disjunction, and negation are applied coordinate-wise. A
relation R is

• Horn if and only if m1, m2 ∈ R implies m1 ∧m2 ∈ R.

• dualHorn if and only if m1, m2 ∈ R implies m1 ∨m2 ∈ R.

• essentially negative if and only if m1, m2, m3 ∈ R implies m1 ∧ (m2 ∨ ¬m3) ∈ R.

• essentially positive if and only if m1, m2, m3 ∈ R implies m1 ∨ (m2 ∧ ¬m3) ∈ R.

In general, this characterisations is given in terms of the polymorphisms of functions. However,
their details are not necessary to understand proofs in this work, and we omit defining these
concepts. An interested reader is referred to the literature (e.g. [29]) for a detailed exposition.

Definition 2.4. Let Γ be a CL.



2.2. Logical Inference 19

1. The set 〈Γ〉 is the set of all relations that can be expressed as a Γ ∪ {=}-formula with existentially
quantified variables. That is, the smallest set of relations that contains Γ, the equality constraint, =,
and which is closed under primitive positive first-order definitions of the following form: if φ is a
Γ ∪ {=}-formula and R(x1, . . . , xn) ≡ ∃y1 . . . ∃ylφ(x1, . . . , xn, y1, . . . , yl), then R ∈ 〈Γ〉.

2. The set 〈Γ〉 6= is the set of relations that can be expressed as a Γ-formula with existentially quantified
variables (the equality relation is not allowed).

3. The set 〈Γ〉 6∃, 6= is the set of relations that can be expressed as a Γ-formula (neither the equality relation
nor existential quantification is allowed).

The set 〈Γ〉 is called a relational clone or a co-clone and Γ is called the base [13]. Notice that for a
co-clone C and a CL Γ the statements Γ ⊆ C, 〈Γ〉 6= ⊆ C, 〈Γ〉 6∃, 6= ⊆ C, and 〈Γ〉 ⊆ C are equivalent.

Example 2.5. Let R(x1, x2, x3) := (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3). Then

(x1 ∨ x2) ∧ (x2 ⊕ x3 = 0) ≡ ∃y(R(x1, x2, y) ∧ F(y) ∧ (x2 = x3)),

where F = {0}. This implies that (x1 ∨ x2) ∧ (x2 ⊕ x3 = 0) ∈ 〈{ R, F }〉. /

We follow Schaefer’s terminology [103] and refer to different types of Boolean relations and
the corresponding co-clones in this work. Table 2.2 presents an overview of co-clones with their
relational properties and bases. Finally, notice that 〈Γ〉 6= ⊆ 〈Γ〉 is true by definition whereas the
other direction is not true in general. In order to achieve that 〈Γ〉 6= = 〈Γ〉, one must prove that
(x = y) ∈ 〈Γ〉 6=. Figure 2.1 depicts a graph representation of the co-clone structure, also known
as Post’s lattice [97]. Each vertex in the graph corresponds to a co-clone, whereas edges depict the
(bottom-up) subset relationship in this lattice. That is, C ⊆ D for two co-clones C,D, if C appears
below D and there is an edge between the two.

In Section 2.4, we discuss how Post’s lattice helps in considering fewer types of CLs when
classifying the complexity of a problem in Schaefer’s framework.

2.2 Logical Inference

A logical theory for problems in abduction (KB) and argumentation (∆) consists of formulas that
are conjunctions of constraints. An input instance of the abduction problem (ABD) is a tuple
(V, H, M, KB) where V is the set of variables, H, M ⊆ V are known as hypotheses and manifestation
respectively, and KB is a Γ-formula known as the knowledge base. A subset E ⊆ H is called an
explanation for M in KB if E ∧ KB is satisfiable and E ∧ KB |= M. This version of the abduction
problem is known in the literature as positive-abduction [89]. The name emphasizes that both
H and M are sets of variables. In contrast, H ⊆ V ∪V− can be any (or closed under negation)
subset of literals. Similarly, one can introduce various restrictions over M as being a literal, clause,
term, or a formula in CNF. We consider M as a positive term denoted as

∧
i mi for mi ∈ M.
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co-clone base clause type name/indication

BR (II2) 1-IN-3 = {001, 010, 100} all clauses all Boolean relations
II1 x ∨ (y ⊕ z) at least one positive literal per clause 1-valid
II0 DUP, x→ y at least one negative literal per clause 0-valid
II EVEN4, x→ y at least one negative and one positive literal per clause 1- and 0-valid
IN2 NAE = {0, 1}3 \ {000, 111} cf. previous column complementive
IN DUP = {0, 1}3 \ {101, 010} cf. previous column complementive and 1- and 0-valid
IE2 x ∧ y → z, x,¬x clauses with at most one positive literal Horn
IE1 x ∧ y → z, x clauses with exactly one positive literal definite Horn
IE0 x ∧ y → z,¬x (x1 ∨ ¬x2 ∨ · · · ∨ ¬xn), n ≥ 2, (¬x1 ∨ · · · ∨ ¬xn), n ≥ 1 Horn and 0-valid
IE x ∧ y → z (x1 ∨ ¬x2 ∨ · · · ∨ ¬xn), n ≥ 2 Horn and 1- and 0-valid
IV2 x ∨ y ∨ ¬z, x,¬x clauses with at most one negative literal dualHorn
IV1 x ∨ y ∨ ¬z, x (¬x1 ∨ x2 ∨ · · · ∨ xn), n ≥ 2, (x1 ∨ · · · ∨ xn), n ≥ 1 dualHorn and 1-valid
IV0 x ∨ y ∨ ¬z,¬x clauses with exactly one negative literal definite dualHorn
IV x ∨ y ∨ ¬z (¬x1 ∨ x2 ∨ · · · ∨ xn), n ≥ 2 dualHorn and 1- and 0-valid
IL2 EVEN4, x, ¬x all affine clauses (all linear equations) affine
IL1 EVEN4, x (x1 ⊕ · · · ⊕ xn = a), n ≥ 0, a = n (mod 2) affine and 1-valid
IL0 EVEN4, ¬x (x1 ⊕ · · · ⊕ xn = 0), n ≥ 0 affine and 0-valid
IL3 EVEN4, x⊕ y (x1 ⊕ · · · ⊕ xn = a), n even, a ∈ {0, 1} -
IL EVEN4 (x1 ⊕ · · · ⊕ xn = 0), n even affine and 1- and 0-valid
ID2 x⊕ y, x→ y clauses of size 1 or 2 bijunctive, KROM, 2CNF
ID1 x⊕ y, x,¬x affine clauses of size 1 or 2 2-affine
ID x⊕ y affine clauses of size 2 strict 2-affine
IM2 x→ y, x,¬x (x1 → x2), (x1), (¬x1) implicative
IM1 x→ y, x (x1 → x2), (x1) implicative and 1-valid
IM0 x→ y,¬x (x1 → x2), (¬x1) implicative and 0-valid
IM x→ y (x1 → x2) implicative and 1- and 0-valid
IS10 cf. next column (x1), (x1 → x2), (¬x1 ∨ · · · ∨ ¬xn), n ≥ 0 IHS-B-

ISk10 cf. next column (x1), (x1 → x2), (¬x1 ∨ · · · ∨ ¬xn), k ≥ n ≥ 0 IHS-B- of width k
IS12 cf. next column (x1), (¬x1 ∨ · · · ∨ ¬xn), n ≥ 0, (x1 = x2) essentially negative

ISk12 cf. next column (x1), (¬x1 ∨ · · · ∨ ¬xn), k ≥ n ≥ 0, (x1 = x2) essentially negative of width k
IS11 cf. next column (x1 → x2), (¬x1 ∨ · · · ∨ ¬xn), n ≥ 0 -

ISk11 cf. next column (x1 → x2), (¬x1 ∨ · · · ∨ ¬xn), k ≥ n ≥ 0 -
IS1 cf. next column (¬x1 ∨ · · · ∨ ¬xn), n ≥ 0, (x1 = x2) negative

ISk1 cf. next column (¬x1 ∨ · · · ∨ ¬xn), k ≥ n ≥ 0, (x1 = x2) negative of width k
IS00 cf. next column (¬x1), (x1 → x2), (x1 ∨ · · · ∨ xn), n ≥ 0 IHS-B+

ISk00 cf. next column (¬x1), (x1 → x2), (x1 ∨ · · · ∨ xn), k ≥ n ≥ 0 IHS-B+ of width k
IS02 cf. next column (¬x1), (x1 ∨ · · · ∨ xn), n ≥ 0, (x1 = x2) essentially positive

ISk02 cf. next column (¬x1), (x1 ∨ · · · ∨ xn), k ≥ n ≥ 0, (x1 = x2) essentially positive of width k
IS01 cf. next column (x1 → x2), (x1 ∨ · · · ∨ xn), n ≥ 0 -

ISk01 cf. next column (x1 → x2), (x1 ∨ · · · ∨ xn), k ≥ n ≥ 0 -
IS0 cf. next column (x1 ∨ · · · ∨ xn), n ≥ 0, (x1 = x2) positive

ISk0 cf. next column (x1 ∨ · · · ∨ xn), k ≥ n ≥ 0, (x1 = x2) positive of width k
IR2 x1,¬x2 (x1), (¬x1), (x1 = x2) -
IR1 x1 (x1), (x1 = x2) -
IR0 ¬x1 (¬x1), (x1 = x2) -
IR (IBF) ∅ (x1 = x2) -

Table 2.2: Overview of bases [13] and clause descriptions [89] for co-clones, where EVEN4 =
x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ 1.
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Example 2.6. The scenario from Example 1.5 can be rewritten as below.3

KB = {boosted→ ¬new-rules, (thesis ∨ semester)→ busy,
boosted, ¬no-money, (busy ∨ no-money ∨ ¬boosted)→ no-travel}

M = {no-travel}
H = {thesis, new-rules, no-money}

Clearly, the set E = {thesis} is an explanation for M. Moreover, E1 = {thesis, no-money} is an
explanation for M in KB1 = KB\{¬no-money}. This highlights how abductive reasoning is a non-
monotonic process since adding {¬no-money} to KB1 results in invalidating E1 as an explanation.
/

The computational problem in abductive reasoning that interests us is the following.

Problem: ABD(Γ)

Input: (V, H, M, KB), where V is a set of variables, KB is a set of
Γ-formulas and H, M ⊆ V.

Question: Is there an explanation E for M in KB?

In addition to the problem defined above, we consider two size variants of ABD(Γ). The problem
ABD≤(Γ) (resp., ABD=(Γ)) ask whether there is an explanation E of size atmost (exactly) s for
some s ∈N. Accordingly, an instance to both these problems is then the tuple (V, H, M, KB, s).

Definition 2.7. Let Φ be a set of formulas and α be a formula. The pair (Φ, α) is called an argument if

1. Φ is consistent,

2. Φ |= α, and

3. Φ is minimal with respect to set inclusion that satisfies (1) and (2).

Let ∆ be a large repository of information from which one aims to construct arguments for a given
claim. If Φ ⊆ ∆, then we say that (Φ, α) is an argument for α in ∆. The set Φ is called the support for
the claim α.

The knowledge base ∆ for problems in argumentation is not always expected to be consistent.
The underlying intuition is that from ∆ one can construct arguments for and against arbitrary
claims [9]. This is in contrast to the case of abductive reasoning. An instance of argumentation
existence problem (ARG) is the pair (∆, α), where ∆ is a collection of Γ-formulas, and α is a
Γ-formula.

3Clearly no-money is the same as ¬money. We used the rewording just to depict H and M as positive sets.
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Example 2.8. The scenario from Example 1.6 can be described as below.

∆ = {money, visa, new-rules, (money ∧ visa)→ travel,
new-rules→ ¬processing, ¬processing→ ¬visa}

α = {travel}

Clearly, Φ := {money, visa, (money∧ visa)→ travel} constitutes a support for α and therefore the pair
(Φ, α) is an argument in ∆. /

Argument existence (ARG) is the following decision problem.

Problem: ARG(Γ)

Input: (∆, α) s.t. ∆ is a set of Γ-formulas and α is a Γ-formula.
Question: Is there a set Φ ⊆ ∆ such that (Φ, α) is an argument in ∆?

Two further interesting problems are argument verification (ARG-Check) and the relevance
problem (ARG-Rel).

Problem: ARG-Check(Γ)

Input: (Φ, α) s.t. Φ is a set of Γ-formulas and α is a Γ-formula.
Question: Is (Φ, α) an argument?

Problem: ARG-Rel(Γ)

Input: (∆, α, ψ) s.t. ∆ is a set of Γ-formulas, α,ψ are Γ-formulas.
Question: Is there a set Φ ⊆ ∆ such that ψ ∈ Φ and (Φ, α) is an

argument in ∆?

It is worth pointing out that the minimality condition (see Def. 2.7) plays no role in the
complexity of ARG. This follows because there exists a minimal support if and only if there
exists a support. Nevertheless, minimality indeed needs to be checked for ARG-Check because
the support is given for this problem. Moreover, regarding ARG-Rel, one needs to assure that the
formula ψ is indeed relevant. In other words, there exists a support Φ for α such that ψ ∈ Φ and
Φ \ ψ is not a support for α.

The relevance and the verification problems for abduction have also been explored [22].
Furthermore, one can explore the size variants of problems for argumentation, but we do not
cover them in this work.

2.3 Complexity Theory

We briefly describe our model of computation, a Turing machine (TM). For a detailed exposition,
consult any textbook on the theory of computation (such as Sipser’s Introduction to the theory of
computation [106]). A single tape Turing machine is a tuple M = (Q, Σ, Γ, δ, q0, qa, qr,t) where,
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• Q is a state set with three distinguished states q0, qa, qr ∈ Q an initial, an accepting and a
rejecting state respectively,

• Σ is the input alphabet and Γ ⊇ Σ is the tape alphabet, t ∈ Γ\Σ denotes a blank symbol,

• δ : Q× Γ→ Q× Γ× {L, R} is the transition function.

During the computation of M, the current state, the tape content, and the current head location
changes. A particular setting of these three elements is called a configuration. That is, for two
strings s, t,∈ Γ? and the state q ∈ Q a configuration C represented as sqt highlights that the
current content of the tape is st, the current state is q, and the head is scanning the cell containing
the first symbol of t. Moreover, for two configurations C1, C2 we say that C1 yields C2 if M can go
from C1 to C2 in a single step using the transition function δ. The starting configuration of M on
an input string x is q0x and a machine enters a halting state if it ever encounters a configuration
with the state either qa or qr. M accepts an input x if there is a sequence of configurations
Ci, i ≤ k such that C1 = q0x, Ci yields Ci+1 for each i ≤ k and Ck is an accepting configuration (a
configuration with state qa). On the other hand, if Ck is a rejecting configuration (a configuration
with state qr) then M halts by rejecting x. A multitape Turing machine is a Turing machine with
several tapes such that each of these has its own head for reading and writing. A TM M is
deterministic (DTM) if every configuration has at most one successor configuration, otherwise
M is non-deterministic (NTM). For a NTM, the relation δ ⊆ Q× Γ×Q× Γ× {L, R} is called the
transition relation.

Let M be a DTM that halts on all inputs and f : N→N be a function. We say that M runs in
time f (n) if the maximum number of steps taken by M on any input of length n is f (n). It is
convenient to analyze the approximated runtime by considering the asymptotic bounds on the
running time. This gives rise to the so-called O-notation. Let f and g be functions f , g : N→ R+.
Then f (n) ∈ O(g(n)) if there exists positive integers c and n0 s.t. f (n) ≤ c · g(n) for every n ≥ n0.

We assume a reasonable encoding scheme for the inputs that can be computed in polynomial
time. Moreover, we do not distinguish an input instance x from its encoding. Finally, for an
element x, |x| denotes its encoding length, or in other words the size of x. Let Σ be an alphabet
and P be a decision problem over Σ, that is, a subset of Σ∗. We say that P is trivial if either P = ∅
or P = Σ∗, otherwise P is nontrivial. Moreover, we say that P is decidable in time f (n) on a
DTM, if there is a DTM M that halts on each input, decides every x ∈ P correctly and runs in
time f (n) where |x| = n. Two important complexity classes are P and NP, defined as classes of
problems decidable in polynomial time on a DTM and NTM, respectively. In order to compare
the complexity of two problems, the notion of reducibility is used.

Definition 2.9. Let Σ and ∆ be two alphabets with A ⊆ Σ∗ and B ⊆ ∆∗ two problems. We say that A is
polynomial time reducible to B, written A ≤P

m B, if there exists a polynomial time computable function
f such that for every x ∈ Σ∗, we have x ∈ A ⇐⇒ f (x) ∈ B.

Two problems A and B are polynomial time equivalent if A ≤P
m B and B ≤P

m A. A problem
B is NP-complete if B ∈ NP and A ≤P

m B for every A ∈ NP. Another interesting class is the
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Figure 2.3: Complexity classes in the classical world (cf. Figure 2.4)

complementary class of NP, the class CoNP. A problem A is in CoNP if the complement problem
Ac of A is in NP, where Ac := {x | x 6∈ A}. The complexity classes can be generalised using the
notion of an oracle. An oracle machine is a Turing machine with an oracle which is able to solve
certain problems in a single step. Let C be a complexity class, then PC (resp., NPC) is the class
of problems decidable by a DTM (NTM) in polynomial time with access to an oracle that can
decide problems in C. Figure 2.2 defines the complexity classes in the polynomial hierarchy (PH).
Moreover, Figure 2.3 depicts an overview of these classes with some example problems complete
for them. Classes that interest us the most in this thesis are P, NP, CoNP, ΣP

2 and the complexity
class DP. DP is the class of problems C such that C = A ∩ B for some A ∈ NP and B ∈ CoNP.

Parameterized Complexity Theory

To define parameterized problems, we borrow the notation from Downey and Fellows [32]. Let Σ
be an alphabet. A parameterized problem (PP) Π is a subset of Σ∗ ×N. For (x, k) ∈ Π, x is called
the input and k is the parameter value. A problem Π is fixed-parameter tractable, or FPT if there is
a DTM deciding Π in time f (k) · p(x) for every instance (x, k) of Π, where f is some computable
function and p is a polynomial. Whereas, problems decidable by an NTM with the same time
constraints are in the complexity class paraNP. For a problem to be FPT, the polynomial degree
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must be independent of the parameter. One can relax this condition and allow a running time of
the form |x| f (k) for an instance (x, k). The problems decidable in the running time of this kind are
in the class XP. It is known that FPT ⊆W[P] ⊆ XP∩ paraNP. The class W[P] contains problems
decidable by an NTM running in at most f (k) · p(n) steps, such that at most h(k) · log n of them
are nondeterministic for some computable function h. In between FPT and W[P], there exists
a (presumably) infinite hierarchy of complexity classes called the W-hierarchy. The notion of
hardness in parameterized complexity is employed by FPT-reductions.

Definition 2.10. Let Σ and ∆ be two alphabets with Π ⊆ Σ∗ ×N and Θ ⊆ ∆∗ ×N two PPs. We say
that Π FPT-reduces to Θ in symbols Π ≤FPT Θ, if

• there is an FPT-computable function f s.t. for all (x, k) ∈ Σ∗ ×N : (x, k) ∈ Π⇔ f (x, k) ∈ Θ,

• there is a computable function g such that, for all (x, k) ∈ Σ∗ ×N and f (x, k) = (y, `) : ` ≤ g(k).

Similar to the classical setting, we say that two problems Π and Θ are FPT-equivalent if
Π ≤FPT Θ and Θ ≤FPT Π. One can define the parameterized counter parts for each classical
complexity class via the notion of precomputation on the parameter. We say that a complexity class
C is robust if it satisfies the following two conditions (for all alphabets Σ and ∆).

1. For every problem P ⊆ Σ∗ with P ∈ C and every word y ∈ ∆∗ : P× {y} ∈ C,

2. For every P ⊆ Σ∗ × ∆∗ with P ∈ C and every word y ∈ ∆∗ : Py = {x ∈ Σ∗ | (x, y) ∈ P} ∈ C

The notion of robustness was introduced by Flum and Grohe [45] to relate classical complexity
classes with their counterparts in parameterized world. The authors also state the fact that the
complexity classes in the polynomial hierarchy are all robust.

Definition 2.11. Let C be a robust (classical) complexity class. Then paraC is the class of all PPs
Π ⊆ Σ∗ ×N such that there exists a computable function π : N → ∆∗ and a problem L ∈ C with
L ⊆ Σ∗ × ∆∗ such that for all (x, k) ∈ Σ∗ ×N we have that (x, k) ∈ Π⇔ (x, π(k)) ∈ L.

It is easy to observe that paraP = FPT and the definition of paraNP coincides with the one
defined before. Additionally, the classes paraCoNP, paraDP and paraΣP

2 interest us the most
in this work. We refer the reader to Figure 2.4 for an overview of complexity classes in the
parameterized world. A broader picture with other complexity classes can be found in the work
of Elberfeld et al. [40]. In particular, it is believed that XP 6⊆ paraΣP

i for any i ∈N [45, Prop. 8].

The Notation We sometimes find it convenient to describe a parameter as a function κ : Σ∗ →N

using the notation from Flum and Grohe [46]. In this setting, a PP is a pair (P, κ) where P ⊆ Σ∗

and κ is a parameterization. There should be no ambiguity as to how a parameterized problem is
defined. Indeed, an instance (x, k) of a PP Π ⊆ Σ∗ ×N can be seen as an instance of (P, κ) where
κ(x) = k. Our analysis concerns the parameterized complexity, and the considered problems are
parameterized problems. We denote the parameterized version of a problem P by p-P. Moreover,
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we find it convenient to mention the considered parameter alongside the problem. In other words,
we write the parameterization κ inside the parenthesis, along with other restrictions imposed on
an input instance. For example, p-ABD(Γ, κ) denotes the abduction problem parameterized by κ,
and the knowledge base in the input instance is a Γ-formula.

We next define the levels of the W-hierarchy through a weighted version of the satisfiability
problem. Let I be a nonempty finite index set and t, d ∈ N. Consider the following special
subclasses of formulas:

Γ0,d = { `1 ∧ . . . ∧ `c | `1, . . . , `c are literals and c ≤ d },
∆0,d = { `1 ∨ . . . ∨ `c | `1, . . . , `c are literals and c ≤ d },
Γt,d =

{ ∧
i∈I

αi

∣∣∣∣ αi ∈ ∆t−1,d for i ∈ I
}

,

∆t,d =

{ ∨
i∈I

αi

∣∣∣∣ αi ∈ Γt−1,d for i ∈ I
}

.

Finally, denote by Γ+
t,d (resp. Γ−t,d)4 the class of all positive (negative) formulas in Γt,d. The

parameterized weighted satisfiability problem (p-WSAT) for Γt,d-formulas is defined as follows.

Problem: p-WSAT(Γt,d, κ)

Input: A Γt,d-formula φ with t, d ≥ 1 and k ∈N.
Parameter: k.
Question: Is there a satisfying assignment for φ of weight k?

The weight of an assignment s is the number of variables mapped to 1 by s. The third line
(Parameter) in the problem definition is read as: k is the parameter value. We sometimes write κ(x)
instead of k to relate the function κ with its value k for a given instance x.

The following proposition characterizes the W-hierarchy.

4We also use Γ to denote a constraint language. There should be no ambiguity in using the letter Γ as a CL and as
a Γt,d-formula defined here. When Γ is a CL, it is written without indices.
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Proposition 2.12 ([46, Theorem 7.1]). Each of the following problem is W[t]-complete, under ≤FPT-
reductions:

• p-WSAT(Γ+
t,1, κ) if t is even,

• p-WSAT(Γ−t,1, κ) if t > 1 and odd,

• p-WSAT(Γt,d, κ) for every t ≥ 1 and d ≥ 1,

where the parameterization κ is the weight of a satisfying assignment.

Let c ∈ N and Π ⊆ Σ∗ ×N be a PP, then the c-slice of Π, written as Πc is defined as
Πc := { (x, k) ∈ Σ∗ ×N | k = c }. To prove that a PP Π is paraC-hard for some complexity class
C, it is enough to prove that Πc is C-hard for some c ∈ N. This is an easy consequence of the
following proposition by Flum and Grohe [45].

Proposition 2.13 ([45, Proposition 14]). Let C be a robust complexity class and let P be C-complete
under polynomial-time reductions. Then there is c ∈ N such that P × {c} is paraC-complete under
FPT-reductions.

Finally, the following folklore result from the parameterized complexity theory helps achieve
upper bounds in conjunction with the relationship between parameters.

Proposition 2.14. Let Q be a problem such that (Q, κ) is FPT and let γ be another parameterization such
that κ(x) ≤ f (γ(x)) for some computable function f and every x, then (Q, γ) is also FPT.

We define considered parameterizations at the beginning of each chapter. In the following, we
define a very generic parameter, namely the treewidth. The notion of treewidth is due to Robertson
and Seymour [100] and has proven itself to be an important structural parameter (further see
[18, 37, 51, 16, 17]). It is defined on top of a graph structure G = (V, E).

Definition 2.15 (Treewidth). Let G := (V, E) be an undirected graph. The tree decomposition of G is
a tree T = (B, ET), where B ⊆ P(V) (called a collection of bags) and ET is the edge relation such that
the following is true.

•
⋃

b∈B b = V,

• for every { u, v } ∈ E there is a bag b ∈ B with u, v ∈ b, and

• for all v ∈ V the restriction of T to v (the subset with all bags containing v) is connected.

The width of a tree decomposition T = (B, ET) is the size of the largest bag minus one: maxb∈B |b| − 1.
The treewidth of a given graph G is the minimum over all widths of tree decompositions of G.

Observe that if G is a tree, then the treewidth of G is one. Intuitively, the treewidth measures
how tree-like a given graph is. The decision problem to determine whether the treewidth of
a graph G is at most k, is NP-complete [2]. See Bodlaender’s Guide [12] for an overview of
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Figure 2.5: A graph (Left) with the a possible tree decomposition (Right).

algorithms that compute tree decompositions. Notice that an instance of a PP is the pair (x, k)
where x is the input and k is the parameter value. In other words, the parameter value is given
together with an input instance, therefore one does not have to worry about computing it from
the given input.

Example 2.16. Figure 2.5 presents a graph G on the left and its tree decomposition on the right. Since the
largest bag has size three, the treewidth of this decomposition is two. /

The problems discussed in Example 1.2 are also relevant in the reductions presented during
the course of this work. For this reason, we present a formal definition for each of these.

Problem: VertexCover

Input: G = (V, E), and a number k ∈N.
Question: Is there a vertex cover for G of size k?

Problem: IndependentSet

Input: G = (V, E), and a number k ∈N.
Question: Is there an independent set for G of size k?

Problem: k-Coloring

Input: G = (V, E), and a number k ∈N.
Question: Can G be properly colored using k-colors?

Classically, each of the above three problems is known to be NP-complete (consult any textbook
on the complexity theory, such as [106]). When parameterized by k, the problem p-VertexCover

is FPT [46, Cor. 1.19], p-IndependentSet is W[1]-complete [46, Thm.6.1], and k-Coloring is
paraNP-complete [46, Cor. 1.12].

2.4 Galois Connection

Now we discuss how Post’s lattice helps in considering fewer types of CLs when classifying the
complexity of a problem in Schaefer’s framework. Recall that the knowledge base in the context
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of abduction and argumentation consists of Γ-formulas for a CL Γ. The Galois connection in the
general setting for a problem P is the following important property. Let Γ and Γ′ be two CLs,

P(Γ′) ≤P
m P(Γ), if Γ′ ⊆ 〈Γ〉. (2.1)

It states that when studying the complexity of a problem P for finite constraint languages Γ,
it is enough to consider only one generating constraint language per each co-clone. In other
words, the complexity of P does not change for constraint languages which generate the same
co-clone. Property 2.1 might fail for some problems as discussed during the course of this thesis.
Lemma 2.17 highlights the Galois connection for the satisfiability problem.

Lemma 2.17 (Galois Connection). Let Γ and Γ′ be two finite CLs. If Γ′ ⊆ 〈Γ〉 then SAT(Γ′) ≤P
m

SAT(Γ).

Proof. The idea is to translate the given Γ′-formula ψ to an equivalent Γ-formula φ through the
following steps.

• Replace every constraint in ψ by its equivalent Γ ∪ {=}-formula.

• Remove existential quantifiers.

• Remove equality clauses and replace all variables connected via a chain of these equality
clauses with a common fresh variable.

It is easy to observe that ψ ≡ φ. Moreover, the translation can be achieved in polynomial time (in
log-space to be precise).

The following propositions exhibit the known results regarding the Galois connection for
problems in abduction and argumentation.

Proposition 2.18 ([89, Lemma 22]). Let Γ and Γ′ be two finite constraint languages. If Γ′ ⊆ 〈Γ〉 then
ABD(Γ′) ≤P

m ABD(Γ).

Proposition 2.19 ([22, Theorems 5.3 & 6.1]). Let Γ and Γ′ be two finite CLs. If Γ′ ⊆ 〈Γ〉 then
ARG(Γ′) ≤P

m ARG(Γ) and ARG-Check(Γ′) ≤P
m ARG-Check(Γ).

Regarding ABD≤ or ABD=, there are no known results. Nevertheless, we prove during the
course of this thesis that the Galois connection is indeed true for these two problems as well.
Regarding ARG-Rel, the Galois connection fails [22, Thm. 7.1]. In other words, there are two
CLs Γ and Γ′ such that 〈Γ〉= 〈Γ′〉 but ARG-Rel(Γ′) is in P whereas ARG-Rel(Γ) is NP-complete.
We state and prove the Galois connection (when it holds) for each considered problem in the
parameterized setting under FPT-reductions.



CHAPTER 3
PROPOSITIONAL LOGIC OF DEPENDENCE

In this chapter we discuss the parameterized complexity of model checking (MC) and
satisfiability (SAT) for PDL. We begin by defining each parameterization and various
relationships between them. The last section of this chapter is devoted to defining
some related problems. We introduce a satisfiability variant (mSAT) and characterize
its complexity in classical, as well as the parameterized setting. Moreover, we introduce
another problem (MaxSubTeam) that might be relevant from the database repairs’
pesepective. Table 3.1 summarises the main results of this chapter.

3.1 A Note on Parameterizations

Formulas in this chapter are PDL-formulas unless stated otherwise. Moreover, we drop the logic
prefix (PDL-) and write MC and SAT for model checking and satisfiability for PDL. Given a
team T and a formula φ, then it is assumed that the domain dom(T) of T is Vars(φ) (due to the
locality principle). We consider ten different parameters for each of the two problems MC and
SAT. Our parameterizations include formula-tw, formula-team-tw, |T|, |φ|, |var(φ)|, formula-depth,
#splits, #conjunctions, #atoms and dep-arity. These parameters arise naturally in an instance for
each problem under consideration. Moreover, some of these parameters render the problem
trivial (such as |φ| for SAT), and the soul purpose of including them is to complete the picture
with respect to parameterized complexity. Let T be a team and φ a PDL-formula. An instance of
p-MC(κ) (resp., p-SAT(κ)) is the tuple (T, φ, k) ((φ, k)) where κ(T, φ) = k is the parameter value.
Let I be an instance of either p-MC(κ) or p-SAT(κ), then each parameterization (κ) is defined in
the following discussion.

1. #splits(I) is the number of times a split-junction (∨) appears in φ, #conjunctions(I) is the
number of occurrences of conjunction, and |var(φ)| is the number of distinct propositional
variables in φ.

31
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2. The arity of a dependence atom dep(P; Q) is the size of P and dep-arity(I) is the maximum
arity of any dependence atom in φ. Moreover, #atoms(I) is the number of occurrences of
dependence atoms in φ.

3. |T| is the team-size (the number of assignments in T) and |φ| is the size (the encoding length)
of φ. Both these parameters can be considered as a function f such that f (I) returns the
appropriate value for an instance I.

Remark 3.1. It is worth pointing out that if a parameterization κ is seen as a function, then the expression
κ(I) only makes sense when the parameter value can be actually computed from the input. For example, an
instance I of MC is the tuple (T, φ) and |T| is the number of assignments in T. Whereas, an instance I of
SAT is simply a PDL-formula, and one might argue that the parameter |T| does not make sense. One can
follow the remark by Flum and Grohe ([46]) and “always make the parameter an explicit part of the input”.
Thereby, the parameterization is a constant function in such cases. In other words, |T| = c and an input
instance is the tuple (φ, c). Nevertheless, the reader can choose himself the meaning of κ(I) in such cases1.

To consider further structural parameters, we associate a graph structure (a representation)
with an input instance I. We achieve this goal in the following subsection.

Representation of Inputs as Graphs

The classical PL-formulas are represented via various kinds of graphs (such as, the Gaifman
graph or the primal graph) [101]. However, this setting typically considers CNF-formulas, and
the graph representation depicts the relationship between literals and clauses of a formula. A
generalization of this approach to consider arbitrary formulas was presented by Lück et al. [78],
where the authors defined ‘syntax circuits’ for temporal logic formulas. We adhere to the same
idea and define the syntax (or formula) structure for a PDL-formula.

It is also worth pointing out an important observation regarding the graph representation for
the PDL-formulas due to Grädel [49]. In the usual setting, for logics with team semantics, we
take the syntax tree and not the associated syntax structure and distinguish between different
occurrences of the same subformula. The reason for this choice is illustrated in Remark 2.2. That
is, φ ∨ φ is not equivalent to φ since different teams are entitled to the two occurrences of φ in
their evaluation. Consequently, the well-formed formulas of PDL are seen as binary trees with
leaves as atomic subformulas (variables and dependence atoms). This yields another interesting
parameterization defined below.

4. formula-depth(I) is the depth of the syntax tree of the formula φ. That is, the length of the
longest path from the root to any leaf in the syntax tree.

If a PDL-formula is seen as a tree, as discussed above, the parameter treewidth (Def. 2.15) is not
meaningful anymore. For this reason, we consider the syntax structure rather than the syntax

1Clearly, if the parameter value does not correspond to an input instance then it does not tell anything interesting
about the tractability. We follow this intuition and only consider a parameterization if it ‘makes sense’.
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tree as a graph structure to consider treewidth as a parameter. Moreover, in the case of MC,
one might include assignments in a graph representation. In the latter case, one considers the
Gaifman graph of the structure that models the team and the input formula.

Definition 3.2 (Syntax structure). Let (T, φ) be an instance of MC, where φ is a PDL-formula with
propositional variables X ⊆ VAR and T = { s1, . . . sm } is a team of assignments si : X → { 0, 1 }. The
syntax structure AT,φ over the vocabulary

τT,φ := {VAR1,SF1,<2,DEP2, inTeam1, isTrue2, isFalse2, r, c1, . . . , cm },

where superscripts denote the arity of each relation, then is defined as follows.
The universe of AT,φ is A := SF(φ) ∪ Vars(φ) ∪ T, where SF(φ) and Vars(φ) denote the sets of

subformulas and variables appearing in φ, respectively. Clearly, SF(φ) ∩ Vars(φ) 6= ∅ since some
variables can also appear as subformulas of φ. However, Vars(φ) 6⊆ SF(φ) as not every variable in
Vars(φ) appears as a subformula of φ (such as variables occurring only in dependence atoms).

• SF and VAR are unary relations representing ‘is a subformula of φ’ and ‘is a variable in φ’
respectively.

• < is a binary relation such that θ <A ψ iff ψ is an immediate subformula of θ and r is a constant
symbol representing φ.

• DEP is a binary relation which connects each dependence atom with the used variables.

• The set { c1, . . . , cm } encodes the team T, where cAi := si for each i ≤ m. That is, each ci corresponds
to an assignment si ∈ T for i ≤ m. Moreover, inTeam(c) is true if and only if cA ∈ T.

• isTrue and isFalse relate variables with the team elements. isTrue(c, x) (resp., isFalse(c, x)) is true if
and only if x is mapped 1 (resp., 0) by the assignment interpreted by c.

Analogously, the syntax structure Aφ over a respective vocabulary τφ is defined. In this case, the
team-related relations are not present and the universe does not contain constants cAi for 1 ≤ i ≤ m.

Definition 3.3 (Gaifman graph). Let T be a team and φ be a PDL-formula, the Gaifman graph
GT,φ = (A, E) of the τT,φ-structure AT,φ is defined as

E :=
{
{u, v}

∣∣ u, v ∈ A, such that there is an R ∈ τT,φ with (u, v) ∈ R
}

.

Analogously, we let Gφ to be the Gaifman graph for the τφ-structure Aφ.

Note that E := DEP ∪ < for Gφ, and E := DEP∪ < ∪ isTrue∪ isfalse for GT,φ.

Example 3.4. Let φ := (x3 ∨¬x1)∧
(
dep(x3; x4)∨ (x1 ∧ x2)

)
be a PDL-formula. Figure 3.1 represents

the Gaifman graph of the syntax structure Aφ (in the middle) with a tree decomposition (on the right).
Since the largest bag has a size of three, the treewidth of the given decomposition is two. Figure 3.2 presents
the Gaifman graph of the syntax structure AT,φ, that is, when the team T = {s1, s2} = {0011, 1110} is
also part of the input. /
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Figure 3.1: The syntax tree (left) with the corresponding Gaifman graph of the syntax structure
(middle) and a tree decomposition (right) for φ := (x3 ∨ ¬x1) ∧

(
dep(x3; x4) ∨ (x1 ∧ x2)

)
. For a

better presentation, we abbreviated subformulas in the inner vertices of the Gaifman graph.
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Figure 3.2: The Gaifman graph for (T, φ) (from Example 3.4) with a possible tree decomposition.

For MC, including the assignment-variable relation in the graph representation yields two
treewidth notions, namely formula-tw and formula-team-tw. The name emphasizes whether the
team is also part of the graph representation or not. Turning back to our list of parameters, we
append the following two items.

5. formula-tw(I) is the treewidth of Gφ.

6. formula-team-tw(I) is the treewidth of GT,φ.

Clearly, formula-team-tw is only relevant for MC. Moreover, we will shortly prove that the
treewidth increases when a team is also included in the graph representation (Lemma 3.6).

The following lemma proves relationships between several parameters considered in our
analysis. This is further visualized in Figure 3.3. As before, the notation κ(T, φ) stands for the
parameter value of the input instance (T, φ).
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Figure 3.3: The relationship among different parameters. The direction of arrow in p← q implies
that bounding q results in bounding p. Li means the proof can be found in Lemma i.

Lemma 3.5. Let I = (T, φ) where T is a team and φ is a PDL-formula, then

1. |T| ≤ 2|var(φ)|,

2. |T| ≤ 2 f (|φ|) for some function f ,

3. |φ| ≤ 22·formula-depth(I).

Proof. If a PDL-formula φ has m variables, then there are 2m many assignments (due to the
locality) and the maximum size for a team is 2m. As a result, we have |T| ≤ 2|var(φ)|. Furthermore,
the number of variables in a PDL-formula φ is bounded from above by |φ|. Recall that we
assume an encoding scheme which is computable in polynomial time. This implies that |var(φ)|
is bounded by the encoding length of Vars(φ), which in turn is bounded by |φ|. As a result,
we have |var(φ)| ≤ f (|φ|) for some function f (which depends on the encoding scheme). This
implies that 2|var(φ)| ≤ 2 f (|φ|) and proves the second claim.

If formula-depth(I) = d for an input instance I, then there are ≤ 2d leaves in the (binary)
syntax tree of φ and ≤ 2d internal nodes. Then |φ| ≤ 22d is true.

Now we prove the following non-trivial lemma stating that treewidth of the structure AT,φ

bounds either the team size or the number of variables in φ. This implies that bounding the
treewidth of the structure also bounds one of the two parameters. Recall that for formula-team-tw,
we consider the treewidth of the Gaifman graph GT,φ underlying the structure AT,φ that encodes
an instance of MC.

Lemma 3.6. Let I = (T, φ) be an instance of MC. Then the following relationship between the parameters
is true,

formula-team-tw(I) ≥ min{ |T|, |var(φ)| }

Proof. We prove that if there is a tree decomposition of GT,φ with the treewidth smaller than
the two values, then such a decomposition must have cycles and hence cannot be a valid tree
decomposition. The proof uses the fact that in the Gaifman graph GT,φ, every team element is
related to each variable. As a consequence, in any tree decomposition, the assignment-variable
relations ‘isTrue’ and ‘isFalse’ force some bag to have their size larger than either the team size or
the number of variables (based on which of the two values is smaller). Without loss of generality,
assume that |T| ≥ 2, if |T| < 2 there is nothing to prove since formula-team-tw(I) ≥ 1 trivially.
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This is due to the reason that the treewidth of a tree is one and a structure has treewidth zero
only if there are no relation symbols (see Def. 2.15). We consider individual bags corresponding
to an edge in the Gaifman graph due to the relations from τT,φ.

Let Vars(φ) = { x1, . . . , xn } and consider a minimal tree decomposition (B, ET) for GT,φ.
Denote by B(xi, cj) a bag2 that covers the edge between a variable xi and an assignment-element
cj, that is, either isTrue(xi, cj) or isFalse(xi, cj) is true. Moreover, denote by B(xi, α) the bag covering
the edge between a variable xi and its immediate <-predecessor α. Recall (Def. 3.2), there is a
path from each variable xi to the formula φ due to <. This implies the existence of a path between
each pair of variables in the Gaifman graph, which also passes through some subformula ψ of φ.
Let B(x, α1), B(α1, α2), . . ., B(αq, ψ), B(ψ, βr), . . . , B(β2, β1), B(β1, y) be the sequence of bags that
cover <A-edges between x and y (where q, r ≤ |SF(Φ)|). Without loss of generality, we assume
that all these bags are distinct. Now, for any pair x, y of variables, the bags B(x, ci) and B(y, ci)

contain ci for each i ≤ m and as a consequence, we have either of the following two cases.

Case 1. The two bags are the same, that is B(x, ci) = B(y, ci) and as a consequence, we have
|B(x, ci)| ≥ 3 because B(x, ci) contains at least x, y and ci. Moreover, if this is true (otherwise
case two applies) for each pair of variables, then there is a single bag, say B(ci), that contains
all variables and the element ci. This means the maximum bag size must be larger than the
total number of variables, a contradiction.

Case 2. Every bag in the ET-path between B(x, ci) and B(y, ci) contains ci. We know that if a
B(x, α1)-B(β1, y)-path between x and y due to relations in {<} ∪ {DEP} exist, then the
bags B(x, ci) and B(y, ci) cannot be ET-adjacent (because this will produce a cycle) unless
the whole B(x, α1)-B(β1, y)-path collapses to these two bags. Now, since |T| ≥ 2, consider
two different elements ci, cj, and the bags B(y, ci) and B(y, cj). If these two bags are ET-
adjacent then B(x, ci) and B(y, ci) cannot be ET-adjacent and the path between B(x, ci) and
B(y, ci) must contain ci. Notice that both B(y, ci), B(y, cj) and B(x, ci), B(y, ci) cannot be
adjacent since this would create a cycle. Consequently, the two possible cases are (see
Figure 3.4 explaining this situation): (1) B(y, ci) and B(y, cj) are not ET-adjacent and every
path between these bags contains y, or (2) B(x, ci) and B(y, ci) are not ET-adjacent and every
path between these bags contains ci. Finally, since this is true for all variables and elements
ci with i ≤ m, this proves that either there is a bag that contains all variables, or there is one
that contains all ci’s. The remaining case that there are cycles in the tree decomposition is
not applicable.

This proves the claim and completes the proof to the lemma.

The following corollary is immediate due to the previous lemma.

Corollary 3.7. Let I = (T, φ) where T is a team and φ is a PDL-formula. Then there is a fuction f such
that |T| ≤ f (formula-team-tw(I)).

2Such a bag always exists by definition. There can be many bags covering an edge, we simply choose one of them.
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B(x, cj) B(y, cj)

B(x, ci) B(y, ci)

Figure 3.4: The rectangles represent bags corresponding to the variable-assignment relation. If the
two ci-bags do not contain cj-nodes, then there can be only either dotted (horizontal) or dashed
(vertical) edges between the bags to avoid cycles.

Parameter (κ) p-MC(κ) p-SAT(κ)

formula-tw paraNP3.9 FPT3.20

dep-arity paraNP3.10 paraNP3.19

#splits paraNP3.11 FPT3.21

#conjunctions paraNP3.12

#atoms paraNP3.13 paraNP3.19

|T| FPT3.14 ?
|φ| FPT3.15 FPT3.23

|var(φ)| FPT3.15 FPT3.23

formula-depth FPT3.15 FPT3.23

formula-team-tw FPT3.16 FPT3.20

Table 3.1: Complexity classification overview with pointers to the proof details. All paraNP-results
are completeness results. For ?: see Remark 3.1

Proof. It follows from Lemma 3.6 that formula-team-tw(I) ≥ min{|T|, |var(φ)|}. In the first case,
formula-team-tw(I) ≥ |T| and there is nothing to prove. Otherwise, |var(φ)| ≤ formula-team-tw(I)
and the claim follows since |T| ≤ 2|var(φ)| ≤ 2formula-team-tw(I).

3.2 Model Checking

In this section, we classify the parameterized complexity of model checking (p-MC(κ)) under
various parameterizations (κ). Table 3.1 contains a complete list of our results.

Problem: p-MC(κ)

Input: A PDL-formula φ, a team T over Vars(φ), and k ∈N.
Parameter: k.
Question: Does T |= φ?

Classically, MC is NP-complete [39, Thm. 3.2]. This also implies that p-MC(κ) is in paraNP
under any parameterization κ.
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Proposition 3.8. p-MC(κ) is in paraNP for any parameterization κ.

We first present those parameters κ that render the complexity of p-MC(κ) as paraNP-
complete. The upper bound in each case follows from Proposition 3.8 and we only present
paraNP-hardness for individual cases. Our first result is regarding the parameter formula-tw.

Theorem 3.9. p-MC(formula-tw) is paraNP-complete.

Proof. For paraNP-hardness, we prove that the 1-slice of the problem is NP-hard by reducing from
3SAT. The reduction presented by Ebbing and Lohmann ([39, Thm. 1]) uses Kripke semantics (as
they aim for results for modal logic). We slightly modify the reduction to fit our presentation and
the correctness proof is the same. Let ψ := C1 ∧ . . . ∧ Cm be an instance of 3SAT over {x1, . . . , xn}
where each Ci is a clause, that is, a set of literals. We define an instance (T, φ) of PDL-MC such
that Vars(φ) = {p1, . . . , pn, r1 . . . , rn}. The team T = {s1, . . . , sm} contains m assignments, where
each si : Vars(φ)→ {0, 1} is defined as follows,

si(pj) = si(rj) = 1, if xj ∈ Ci,

si(pj) = 0, si(rj) = 1, if ¬xj ∈ Ci,

si(pj) = si(rj) = 0, if xj,¬xj 6∈ Ci.

In other words, there is an assignment si per clause. The value si(rj) encodes whether or not
xj appears in the clause Ci, whereas, si(pj) encodes whether xj appears positively or negatively

in Ci. Finally, let φ :=
n∨

j=1

(
rj ∧ dep(; pj)

)
. The proof of ψ ∈ SAT iff T |= φ is similar to the one

presented by Ebbing and Lohmann [39, Thm. 1].
“⇒”. Let θ be a satisfying assignment for ψ. We construct Tj for each j ≤ n such that,

Tj :=

{si | si(pj) = 1 = si(rj)} if θ(xj) = 1,

{si | si(pj) = 0, si(rj) = 1} if θ(xj) = 0.

That is, Tj contains an assignment si if and only if the clauses Ci is satisfied by θ(xj) where i ≤ m.
Clearly, Tj |= rj ∧ dep(; pj). Moreover, since every clause is satisfied, this implies that

⋃
j≤n

Tj = T

and consequently T |= φ.
“⇐”. Suppose that T |= φ, then there are T1, . . . , Tn such that T =

⋃
j≤n

Tj and Tj |= rj ∧ dep(; pj).

Clearly the value of pj is fixed by Tj for each j ≤ n. We construct a satisfying assignment for ψ

by considering each variable separately. For j ≤ n, let Vj = {i | si ∈ Tj}. Now, si(pj) = 1 implies
xj ∈ Ci, and we set θ(xj) = 1, otherwise set θ(xj) = 0. This implies that we set θ(xj) = 0 if
¬xj ∈ Ci. Since for every si ∈ T there is a j ≤ n with si ∈ Tj, we have an evaluation that satisfies
every clause Ci ∈ ψ and, as a consequence, θ |= ψ.

We conclude by observing that there is no interleaving of variables in φ and the value of the
parameter is fixed in advance. This is because Gφ is a tree; as a consequence, formula-tw(φ) = 1.
This completes the proof.
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vj vi

vk

e`

em

xi xj xk y`,i y`,j y`,k ym,i ym,j ym,k

si 0 1 1 1 1 1 1 1 1
sj 1 0 0 1 1 1 1 0 1
sk 1 0 0 1 1 0 1 1 1

Figure 3.5: A graph G : ({ vi, vj, vk }, { el , em }) with its corresponding team.

The following corollary follows from the proof of Theorem 3.9 since each dependence atom in
φ has arity zero.

Corollary 3.10. p-MC(dep-arity) is paraNP-complete.

It turns out that a split-junction is also a major source of the hardness in the model checking
problem for PDL. Furthermore, SAT and MC for the fragment of PDL without splits are in
P [87]. The following theorem establishes the paraNP-completeness of p-MC(#splits).

Theorem 3.11. p-MC(#splits) is paraNP-complete.

Proof. We achieve paraNP-hardness by a reduction from the 3-colouring problem (3COL) and
applying Proposition 2.13. An instance of 3COL constitutes a graph G = (V, E) and the problem
is to determine whether G can be colored using three colors such that no two endpoints of
an edge are colored same. We map G to an instance (T, φ) where T is a team, and φ is a
PDL-formula with two split-junctions. The reduction implies that the 2-slice of p-MC(#splits) is
NP-hard. The idea of the reduction from 3COL is to construct a team (as shown in Figure 3.5)
in combination with the formula containing two split-junctions, where each disjunct is ψ for
ψ :=

∧
ek={ vi ,vj } dep(yk; xi). Intuitively, each vertex of the graph corresponds to an assignment in

the team, and the subteams for the three disjuncts are then mapped to three colors.

Let V = { v1, . . . , vn } be the vertex set and E = { e1, . . . , em } be the set of edges of G. We let

Vars(φ) := { x1, . . . , xn } ∪ { y1,1, . . . , y1,n, . . . , ym,1, . . . , ym,n }.

That is, we have (1) a variable xi corresponding to each node vi and (2) a variable yj,k

corresponding to each edge ej and each node vk. For convenience, we will sometimes write
yj instead of (yj,1 . . . yj,n) when it is clear that we are talking about the tuple of variables
corresponding to the edge ej. This is because we have an n-tuple of variables yj for each
edge ej, where 1 ≤ j ≤ m. We construct a team that contains an assignment si corresponding to
each node vi. The assignment si encodes the neighborhood of vi and all the edges that contain
vi in the graph. This is achieved by mapping each variable y`,j in the tuple y` to 1 under the
assignment sj if vj ∈ e` whereas sj(y`,j) = 0 if vj 6∈ e` and for every j 6= i, sj(y`,i) = 1. Figure 3.5
depicts an example graph to get some intuition on this construction.

Formally, the team T = {s1, . . . , sn} is defined as follows.
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1. If G has an edge e` = { vi, vj } then we set si(xj) = 1 and sj(xi) = 1, and let si(y`,1) = . . . =
si(y`,n) = 1 as well as sj(y`,1) = . . . = sj(y`,n) = 1.

2. For the case vj 6∈ e`, we set sj(y`,j) = 0 and sj(y`,i) = 1 for i 6= j.

3. Since, we can assume w.l.o.g. the graph has no loops (self-edges) we always have si(xi) = 0
for all 1 ≤ i ≤ n.

Consequently, two assignments si, sj agree on a tuple yk and we have si(yk,q) = 1 = sj(yk,q)

for each q ≤ n, if the corresponding ek is the edge between vi and vj.
Now let φ be the following PDL-formula

φ := ψ ∨ ψ ∨ ψ,

where
ψ :=

∧
ek={ vi ,vj }

dep(yk; xi).

The choice of xi or xj to appear in the formula is irrelevant. The idea is that if there is an edge ek

between vi, vj and accordingly si(yk) = sj(yk) then the two assignments cannot be in the same
split of the team. This is always true because in that case the assignments si, sj cannot agree on
any of xi or xj. Since, by (3.), we have si(xi) = 0 but there is an edge to vj and we have sj(xi) = 1.
We prove the correctness of the reduction by the following claim.

Claim 3.1. G is 3-colourable iff {s1, . . . , sn} |= φ.

Proof of Claim. “⇒”: Let V1, V2, V3 be a partition of V into three colours. Consequently, for every
v ∈ V we have an r ≤ 3 such that v ∈ Vr. Moreover, for every vi, vj ∈ Vr there is no ` s.t. e` = { vi, vj }.
Let Tr = { si | vi ∈ Vr } for each r ≤ 3, then we show that

⋃
r<3

Tr = T and Tr |= ψ. This will prove that

T |= φ because we can split T into three subteams such that each satisfies one disjunct.
Since for each vi, vj ∈ Vr, there is no edge e` = { vi, vj } this implies that for si, sj ∈ Tr and the tuple

y`, we have si(y`) 6= sj(y`). As a result, {si, sj} evaluates each dependence atom in ψ trivially true.
Moreover, since every dependence atom is 2-coherent (see page 16), it is enough to check only for pairs si, sj

and since the condition holds for every edge, we have Tr |= ψ. Since we assume that V can be split into
three subsets, we have the split of T into three subteams. This proves that T |= φ.

“⇐”: Conversely, assume that T can be split into three subteams, each satisfying ψ. Then we show
that V1, V2, V3 is the partition of V into three colors where Vr = { vi | si ∈ Tr }. Clearly,

⋃
r≤3

Vr = V and

we prove that for any vi, vj ∈ Vr there is no edge between vi, vj. Suppose to the contrary that there is an
edge e` = { vi, vj } for some vi, vj ∈ Vr. Then we must have si, sj ∈ Tr such that si(y`) = sj(y`). That
is, si(y`,q) = 1 = sj(y`,q) for each q ≤ n. Since we have that si(xi) = 0 whereas sj(xi) = 1, this implies
that { si, sj } 6|= ψ, which is a contradiction since Tr |= ψ.

Finally, the reduction can be achieved in polynomial time and this concludes the full proof.
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‘variable’ ‘parity’ ‘clause’ ‘position’
x y u v

p1 1 1 0
p2 0 1 1
p3 0 1 2

‘variable’ ‘par’ ‘clause’ ‘pos’
x1 . . . xr−1 xr y u1 . . . us−1 us v1 v2

0 . . . 0 0 1 0 . . . 0 0 0 0
0 . . . 0 1 0 0 . . . 0 0 0 1
0 . . . 1 1 0 0 . . . 0 0 1 0

Table 3.2: A first-order team (left) and its propositional translation (right) for (p1 ∨ ¬p2 ∨ ¬p3).

We considered #splits as a parameter because a split-junction forces a team to split into
subteams. One might ponder whether the number of conjunctions also plays a role in the
complexity of the model checking problem. We claim that #conjunctions is also an interesting
parameter for the following reason. Peter Lohmann posed an open question in his Ph.D. thesis [76]
about the precise complexity of MC for the fragment of PDL which disallows the conjunction
operator. However, it is worth pointing out that the author considers only the dependence atoms
of the form dep(P; q), rather than dep(P; Q). In other words, the second argument in an atom
is a variable instead of a set of variables. In contrast, we use atoms of the form dep(P; Q) in
our analysis by observing that dep(P; Q) ≡ ∧

q∈Q
dep(P; q). Clearly, the absence of ‘∧’ renders this

impossible. In the proof of the following theorem, we present a reduction from 3SAT that uses no
conjunction operator (or, in the light of the above discussion, only a few conjunction operators).
The reduction in the proof of the following theorem was established during a collaboration with
Jonni Virtema, and I include this with his kind permission.

Theorem 3.12. p-MC(#conjunctions) is paraNP-complete.

Proof. Jarmo Kontinen ([68]) proved that the model checking problem for a fixed D-formula
(first-order dependence logic) of the form dep(x; y) ∨ dep(u; v) ∨ dep(u; v) is still NP-complete.
We briefly sketch the reduction from 3SAT presented by the author.

Let ψ := C1 ∧ . . . ∧ Cm be an instance of 3SAT over propositions {p1, . . . , pn}, where each Ci is
a clause of length at most three, for i ≤ m. Consider the structure A over the empty vocabulary,
that is, τ = ∅. Let A = {p1, . . . , pn} ∪ {c1, . . . , cm} ∪ {0, 1, 2}. The team T is constructed over
variables {x, y, u, v} that take values from A. Moreover, T encodes the position and the parity of
each variable in a clause. Finally, the desired D-formula is ϕ := dep(x; y) ∨ dep(u; v) ∨ dep(u; v).

We do not prove the correctness of the reduction here and only encode (A, T, ϕ) in binary
so that the resulting team Tb is a team over propositional variables, and the formula φ is a
PDL-formula. Let r = dlog(n)e and s = dlog(m)e. The idea is to encode the universe A
in binary using r + s + 2 additional propositions. The variable x is encoded by propositions
{x1, . . . , xr}, u by {u1, . . . , us}, v by {v1, v2}, and finally y remains unchanged. As an example, the
assignments corresponding to the clause (p1 ∨ ¬p2 ∨ ¬p3) and their binary encoding is depicted
in Table 3.2. Finally, (A, T, ϕ) (or indeed the instance ψ of 3SAT) is mapped to an instance
(Tb, φ) of PDL-MC, where Tb is the binary encoding of T over the propositional variables
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{x1, . . . , xr, y, u1, . . . , us, v1, v2} and φ is the following PDL-formula.

φ := dep(x; y) ∨ dep(u; v) ∨ dep(u; v) (3.1)

Notice that φ does not include any conjunction operator, and this proves that 0-slice of
p-MC(#conjunctions) is NP-hard, resulting in the desired paraNP-hardness.

In order to make a reference to the (above stated) open question by Peter Lohmann, we rewrite
the formula φ from Equation 3.1 as follows.

φ′ := dep(x; y) ∨ [dep(u; v1) ∧ dep(u; v2)] ∨ [dep(u; v1) ∧ dep(u; v2)]

Surprisingly, φ′ contains only two conjunction operators. Furthermore, notice that φ contains
only three dependence atoms. This yields the following interesting corollary, where #atoms(φ)

denotes the number of dependence atoms in φ.

Corollary 3.13. p-MC(#atoms) is paraNP-complete.

Proof. The paraNP-hardness follows from the proof of Theorem 3.12

It is interesting to observe that the PDL-formula φ in the proof of Theorem 3.12 also consists
of two splits. As a result, the paraNP-hardness of p-MC(#splits) follows as a corollary to
Theorem 3.12. Nevertheless, the hardness of p-MC(#splits) was first proven via a reduction
presented in Theorem 3.11 and we include the original reduction in the thesis.

Now we analyse the parameter |T|. Notice that due to the downwards closure property of
PDL, it suffices to consider only the strict splits for teams. As a result, a team of size k has 2k

different candidates for the correct split corresponding to each split-junction, and each can be
verified in polynomial time. This implies that an exponential runtime in the input length seems
necessary. However, when |T| is a parameter, the problem can be solved in polynomial time with
respect to the input-size and exponentially in the parameter.

Theorem 3.14. p-MC(|T|) is FPT.

Proof. We present a procedure (Algorithm 1) that solves the model checking problem for PDL
and runs in fpt-time. The correctness follows because the procedure is simply a recursive
definition of the truth evaluation of PDL-formulas in a bottom-up fashion.

Recall that the input formula φ is a binary tree. The procedure starts by labeling every
satisfying subteam P ⊆ T with each atomic (or negated atomic) subformula α. Notice that this
step also deals with negated atomic suformulas because we only allow atomic negations. Then
recursively, if P |= αi for i = 1, 2 and there is a subformula α such that α = α1 ∧ α2 then it adds P
to the label of α. Moreover, if Pi |= αi for i = 1, 2 and there is a subformula α such that α = α1 ∨ α2

then it adds P = P1 ∪ P2 to the label of α.
The first loop runs in O(2k) · |φ| steps for each leaf node and the number of iterations is

also bounded by |φ|. At each inner node, there are at most 2k candidates for each of P1 and P2,
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Algorithm 1: Recursive bottom-up algorithm solving p-MC(|T|).
Input : A PDL-formula φ and a team T
Output : true if T |= φ, otherwise false

1 foreach non-root node v in the syntax tree do Lv = {∅ }
2 foreach atomic/negated atomic ` ∈ SF(φ) do // find all subteams for `
3 L` = {∅ }
4 foreach P ⊆ T do
5 if ` = x and ∀s ∈ P : s(x) = 1 then L` ← L` ∪ { P }
6 else if ` = ¬x and ∀s ∈ P : s(x) = 0 then L` ← L` ∪ { P }
7 else if ` = ¬dep(P; Q) then L` ← L` // because ∅ |= ¬dep(P; Q)
8 else if ` = dep(P; Q) and ∀si∀sj

∧
p∈P

si(p) = sj(p)⇒ ∧
q∈Q

si(q) = sj(q) then
9 L` ← L` ∪ { P }

10 foreach α1, α2 with α = α1 ◦ α2 and Lαi 6= {∅ } for i = 1, 2 do
11 foreach P1 ∈ Lα1 , P2 ∈ Lα2 do
12 if ◦ = ∧ and P1 = P2 then Lα ← Lα ∪ { P1 }
13 else if ◦ = ∨ then Lα ← Lα ∪ { P1 ∪ P2 }

14 if T ∈ LΦ then return true else return false

and consequently, at most 22k pairs need to be checked. This implies the loop for each inner
node can be implemented in O(22k) · |φ| steps. Furthermore, the loop runs once for each pair of
subformulas α1, α2 such that α1 ◦ α2 is also a subformula of φ for ◦ ∈ {∧,∨}. Finally, in the last
step, a set of size k needs to be checked against a collection containing 2k such sets. This can be
achieved in O(k · 2k) steps.

We conclude that the above procedure solves p-MC(|T|) in O(22k) · p(|φ|) steps for some
polynomial p. It does not yield a blow-up in the number of subformulas because the formula
tree is binary. The procedure operates on a pair of subformulas in each step, and the size of each
label (|Lα|) is again bounded by 2k.

It is worth pointing out that Algorithm 1 is not optimal because in each label it stores more
subteams than required to solve MC for PDL. In other words, for literals (in Line 5–6), one can
allow storing only the unique maximal subteam satisfying it, rather than storing each satisfying
subteam. Similarly, for dependence atoms (Line 8), store all maximal satisfying subteams. The
desired results are achieved due to the downwards closure property of PDL-formulas. The only
modification requires taking intersections of subteams from each label for a conjunction node.
Nevertheless, in its current form it is easy to observe how Algorithm 1 can solve p-MC(|T|) for
any team based logic L, such that L-atoms can be evaluated in polynomial time.

We conclude this section on the model checking by presenting FPT results regarding the
remaining parameterizations.

Theorem 3.15. p-MC(κ) is FPT for every κ ∈ {|φ|, |var(φ)|, formula-depth}.

Proof. Recall the relationship we proved between various parameters (Lemma 3.5). The FPT-
membership for |φ| and |var(φ)| follows due to Proposition 2.14 and the fact the p-MC(|T|) is
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FPT. Furthermore, the FPT-membership when parameterized by formula-depth follows due to
the relationship between |φ| and formula-depth.

Finally, the case for formula-team-tw follows due to Corollary 3.7 in conjunction with the FPT
result for |T| (Lemma 3.14).

Corollary 3.16. p-MC(formula-team-tw) is FPT.

3.3 Satisfiability

In this section, we study the parameterized complexity of the satisfiability problem (p-SAT(κ))
under various parameterizations (κ). So the question, is there a team T for a given formula φ such
that T |= φ? Recall (Sec 2.1) that the question is equivalent to finding a singleton team satisfying
the input formula. As a result, team semantics coincides with the usual Tarskian semantics.
This facilitates in determining the truth value of (1) disjunctions in the classical way, and (2)
dependence atoms to be trivially true. Simplifying the notation slightly, for SAT we now look for
an assignment rather than a singleton team that satisfies the formula.

Problem: p-SAT(κ)

Input: A PDL-formula φ, and k ∈N.
Parameter: k.
Question: Is there an assignment s over Vars(φ) such that {s} |= φ?

Notice that an input instance for SAT consists of a PDL-formula φ alone. This affects two of
our parameterizations |T| and formula-team-tw which include a ‘team’. The parameter |T| is not
meaningful anymore (see Remark 3.1) whereas formula-team-tw is the same as formula-tw. This is
due to the reason that we have only one graph representation, namely Gφ for an input instance φ.

Corollary 3.17. p-SAT(κ) for κ ∈ {formula-team-tw, formula-tw} is the same.

Classically, PDL-SAT is NP-complete. The hardness follows from the NP-completeness
of PL-SAT [21, 73]. The membership holds because it is enough to find a single satisfying
assignment. This also implies the trivial paraNP upper bound under any parameterization.

Proposition 3.18. p-SAT(κ) is in paraNP for any parameterization κ.

Recall that PL is a fragment of PDL, with no dependence atoms. The following result is an
immediate corollary of the NP-completeness of PL-SAT [21, 73].

Corollary 3.19. p-SAT(κ) is paraNP-complete for any κ ∈ {dep-arity, #atoms}.

Proof. The 0-slice regarding dep-arity and #atoms (no dependence atoms at all) is NP-hard.
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Interestingly, these are the only parameters that yield intractability results. The remaining
cases are all FPT as we prove next.

Turning towards treewidth, notice first that PL-SAT(treewidth) is FPT due to Samer and
Szeider [102, Thm. 1]. However, their result does not immediately translate to our setting
because Samer and Szeider study CNF-formulas and we have arbitrary formulas instead.
Nevertheless, Lück et al. [78, Cor. 4.7] studying temporal logics under the parameterized
approach, classified, as a byproduct, the propositional satisfiability problem with respect to
arbitrary formulas to be fixed-parameter tractable. As a result, we have the following corollary.

Corollary 3.20. p-SAT(formula-tw) is FPT.

Proof. As stated before, we need to find a singleton team. It is important to observe that a
split-junction has the same semantics as the classical disjunction, and dependence atoms are
trivially satisfied. Consequently, replacing the occurrence of every dependence atom dep(P; Q) by
> yields a propositional logic formula. This substitution does not increase the treewidth. Finally
the result follows due to Lück et al. [78, Cor. 4.7].

Now, we turn towards the parameter #splits. We present a procedure that constructs a
satisfying assignment s such that s |= φ if there is one and otherwise it answers no. The idea is
that this procedure needs to remember positions where a modification in a satisfying assignment
is possible. We show that the number of modifications in such positions is bounded by the
parameter #splits.

Consider the syntax tree of φ where, as before, multiple occurrences of subformulas are
allowed. The procedure starts at the leaf level with satisfying assignment candidates (partial
assignments, to be precise). Reaching the root (the formula φ), the procedure confirms whether it
is possible to have a combined assignment or not. We assume that the leaves of the tree consist of
literals, dependence atoms, or negated dependence atoms. Accordingly, the internal nodes of the
tree are only conjunction and disjunction nodes. The procedure sets all the dependence atoms to
be trivially true (an assignment always satisfies them). Moreover, it sets all the negated dependence
atoms to be false because there can be no satisfying assignment for a negated dependence atom.
Additionally, it sets each literal to its respective satisfying assignment. Ascending the tree, it
checks the relative condition for conjunction and disjunction by joining the assignments and
thereby giving rise to conflicts. A conflict arises (at a conjunction node) when two assignments
are joined with contradicting values for some variable. At this point, it sets this variable x to a
conflict state c. At disjunction nodes the assignment stores that it has two separate options.

Joining a true-value from a dependence atom affects the assignment only at disjunction
nodes. This simulates the effect that the formula of the form dep(P; Q) ∨ ψ is true under any
assignment. At a conjunction node, when an assignment s joins with a true, the procedure returns
the assignment s. Since at a split the procedure returns both assignments, for k splits there can be
≤ 2k-many different choices. At the root node if at least one assignment is consistent then we
have a satisfying assignment. Otherwise, if all the choices contain conflicts over some variables
then there is no satisfying assignment for φ.
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Theorem 3.21. p-SAT(#splits) is FPT. Moreover, given a PDL-formula φ, there is an algorithm that
determines whether φ is satisfiable in time O(2#splits(φ)) · p(|φ|) for some polynomial p.

Proof. Consider Algorithm 2 which constructs partial assignments for φ of the form t : Vars(φ)→
{ 0, 1, c }. Intuitively, these mappings are used to find a satisfying assignment in the process of
the presented algorithm.

If t, t′ are two (partial) mappings then t c t′ is the assignment such that

(t c t′)(x) :=



undefined , if both t(x) and t′(x) are undefined,

c , if both are defined and t(x) 6= t′(x),

t(x) , if only t(x) is defined,

t′(x) , if only t′(x) is defined.

We prove the following claim.

Claim 3.2. The formula φ is satisfiable if and only if Algorithm 2 returns a consistent (partial) assignment
s. Moreover, s can be extended to a satisfying assignment for φ over Vars(φ).

Proof of Claim. We prove the claim using induction on the structure of φ.

Base case. If φ = x, then φ is satisfiable and s |= φ such that s(x) = 1. Moreover, the procedure
returns such an assignment as depicted by line 3 of the algorithm. Similarly, the case φ = ¬x
follows from line 4. The case φ = dep(P; Q) or φ = > is a special case since this is true under
any assignment. Line 6 in our procedure returns a partial assignment that can be extended to any
consistent assignment. Finally, for φ = ⊥ or φ = ¬dep(P; Q), the assignment contains a conflict
and can not be extended to a consistent assignment and the algorithm returns “φ is not satisfiable”.

Induction Step. Notice first that if either of the two operands is >, then this is a special case and triggers
lines 9–11 of the algorithm, thereby giving the satisfying assignment.

Suppose now that φ = ψ0 ∧ ψ1 and that the claim is true for ψ0 and ψ1. As a result, both ψ0 and
ψ1 are satisfiable, if and only if the algorithm returns a satisfying assignment for each. Let Si for
i = 0, 1 be such that some consistent t′i ∈ Si can be extended to a satisfying assignment ti for ψi. We
claim that Sφ returned by the procedure (line 13) is non-empty and contains a consistent assignment
for φ, if and only if φ is satisfiable. First observe that, by construction, Si contains all the possible
partial assignments that satisfy ψi for i = 0, 1. Consequently, Sφ contains all the possible c -joins
of such assignments that can satisfy φ. Let ψ0 be satisfied by t′0 and ψ1 be satisfied by t′1. Moreover,
let s′ ∈ Sφ be an assignment such that s′ = t′0 c t′1. If s′ is consistent then s′ can be extended
to a satisfying assignment s for φ since s′ |= ψi for i = 0, 1. On the other hand if every t′0 c t′1
is conflicting (for t′i ∈ Si) then there is no assignment over Vars(φ) = Vars(ψ1) ∪Vars(ψ2) that
satisfies φ. As a result, φ is not satisfiable.

The case for split-junction is simpler, as we prove next. Suppose that φ = ψ0 ∨ ψ1 and that the claim
is true for ψ1 and ψ2. Then φ is satisfiable, if and only if either ψ0 or ψ1 is satisfiable. Since the label
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Algorithm 2: Bottom-up algorithm solving p-SAT(#splits).
Input :PDL-formula φ represented by a syntax tree with atomic/negated atomic

subformulas as leaves
Output : An assignment s such that s |= φ or “φ is not satisfiable”

1 foreach Leaf ` of the syntax tree do //atomic or negated-atomic subformula
2 S` = {∅}
3 if ` = x is a variable then S` ← {{ x 7→ 1 } };
4 else if ` = ¬x is a negated variable then S` ← {{ x 7→ 0 } };
5 else if ` = ⊥ or ` = ¬dep(P; Q) then pick x ∈ VAR and S` ← {{ x 7→ c } };
6 else S` ← { 1 }; // case > or dep(P; Q)

7 foreach Inner node ` of the syntax tree in bottom-up order do
8 Let `0, `1 be the children of ` with S0, S1 the resp. sets of partial assignments;
9 if 1 ∈ Si then

10 if ` is a conjunction then S` ← S1−i;
11 else S` ← { 1 }; // empty split for a split-junction
12 else if ` is a conjunction then
13 foreach s0 ∈ S0 and s1 ∈ S1 do S` ← S` ∪ { s0 c s1 } ;
14 else // ` is a split-junction
15 foreach s0 ∈ S0 and s1 ∈ S1 do S` ← S` ∪ { s0, s1 } ;

16 if there exists a non-conflicting assignment s ∈ SΦ then return s;
17 else return “φ is not satisfiable”;

Sφ for φ is the union of the labels for ψ0 and ψ1, it is enough to check that either the label of ψ0 (that
is, S0), or that of ψ1 (S1) contains a consistent partial assignment. By the induction hypothesis, this
is equivalent to determining whether ψ0 or ψ1 is satisfiable. This completes the case for split-junction
and the proof of our claim.

Finally, notice that the label size adds when a split-junction occurs. In other words, we
keep all the assignment candidates separate, and each such candidate is present in the label
for the split-junction. In contrast, at conjunction nodes, we ‘join’ the assignments, and as a
result, the label size is the product of the two labels. Notice that we do not get a blow-up in the
number of conjunctions. This is because the label size for each node is initially one, and only at a
split-junction does the size increase. This implies that the maximum size for any label is bounded
by 2#splits(φ). As a result, the argument regarding the runtime follows.

In the following, we present an example as the application of Algorithm 2.

Example 3.22. Let φ = [(x4 ∧ x1)∧¬x2]∧ [((x1 ∧ x2)∨ dep(x3; x4))∧ (x3 ∨¬x1)]. Figure 3.6 depicts
the application of the procedure on the syntax tree of φ. To simplify the notation, we consider the assignment
labels of the form {xi,¬xj} rather than {xi 7→ 1, xj 7→ 0}. /

The remaining FPT-cases for the parameters |var(φ)|, |φ|, or formula-depth follow easily from
the results already proven.

Theorem 3.23. p-SAT(κ) is FPT for κ ∈ {|var(φ)|, |φ|, formula-depth}.
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∧

∧

∧

x4 x1

¬x2

∧

∨

∧

x1 x2

dep(x3;x4)

∨

x3 ¬x1

{ x4, x1,¬x2, x3 }, { x4,¬x2, xc
1 }

{ x4, x1,¬x2 }

{ x4, x1 }

{ x4 } { x1 }

{ ¬x2 }

{ x3 }, { ¬x1 }

1

{ x1, x2 }

{ x1 } { x2 }

1

{ x3 }, { ¬x1 }

{ x3 } { ¬x1 }

Figure 3.6: (Left) the syntax tree of φ, and (right) computation of Algorithm 2. Notation: x/¬x/xc

means a variable is set to true/false/conflict. Clearly, { x4, x1,¬x2, x3 } satisfies the formula.

Proof. If a formula φ contains k propositional variables, then there are 2k different assignments.
As a consequence, one can check for each assignment s whether s |= φ, this can be achieved in
time 2k · |φ|. Regarding |φ|, note that and any problem Π is FPT when parameterized by the
input-length. Consequently, p-SAT(|φ|) is FPT.

If formula-depth(φ) = d then there are ≤ 2d leaves and ≤ 2d internal nodes. Accordingly we
have |φ| ≤ 22d which shows FPT membership, when parameterised by formula-depth.

The complexity of p-SAT(#conjunctions) is currently unclassified. The author believes that
this might yield another FPT result, but do not have a proof yet.

3.4 A Digression

Towards the end of our parameterised complexity analysis of propositional dependence logic, we
present two additional interesting problems for PDL.

3.4.1 A Satisfiability Variant (mSAT)

Our first proposal is a variant of SAT, we call it mSAT. An input to mSAT includes a PDL-
formula φ and a unary encoding 1m of a number m ≥ 2. The task is to determine whether φ has
a satisfying team of size at least m.

Problem: mSAT

Input: A PDL-formula φ and m ∈N in unary.
Question: Is there a satisfying team T for φ such that |T| ≥ m?

Notice that since PDL-formulas are downwards closed, mSAT is equivalent to finding a team
of size exactly m. The motivation is to study the satisfiability problem for PDL with its original
team-semantic nature. The problem of finding a team of a given size has not been studied before
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in the classical setting (up to the author’s knowledge). Meier and Reinbold [87] considered the
enumeration complexity of Poor man’s propositional dependence logic, which is a fragment of
PDL with no splits. Another related yet different problem in the context of databases is to find
an Armstrong relation [6, 42]. Let Γ be a set of functional dependencies, the question is whether
there exists a database D that satisfies a functional dependency dep(P; Q) if and only if dep(P; Q)

is implied by Γ. In our setting, the problem mSAT considers general PDL formulas (so not only
functional dependencies). Furthermore, mSAT questions whether it is possible to generate a
database of size m, and the restriction that it should not satisfy any other functional dependency,
is dropped. We explore the classical complexity of mSAT, followed by proving results in the
parameterized setting.

We present a scenario to emphasize that mSAT is relevant in practice. Assume that one is
given a set of constraints, and the task is to populate the database with a certain number of
entries (m in our case). Such a scenario naturally arises, for example, when someone is making a
teaching schedule. The weekly lectures should be arranged subject to certain constraints, such as
(1) the teacher and the room determine the course, (2) the teacher and the time determine the
room and the course, and many more. One would like to have an algorithm with this collection of
constraints and the solution size (the number of weekly lectures) as an input, and the algorithm
outputs a consistent teaching schedule for them.

Example 3.24. Let φ := dep(x, y; z) ∧ (x ∨ y). Then, for the team T = {010, 101, 111} over {x, y, z},
we have that T |= φ. This implies that there is a team of size three for φ. Moreover, it is easy to observe
that for any other assignment t 6∈ T over {x, y, z}, we have that T ∪ {t} 6|= φ. As a consequence, there is
no team of size four that also satisfies φ.

There is a reason for the requirement that m should be in unary, as one might be looking
for an arbitrary large solution. Consequently, it makes sense to ask whether it is possible to
fill the database (even with an arbitrarily large size) in polynomial time with respect to the
input. This corresponds to the intuition that the input to mSAT is an empty database D with
allocated memory of size m (that is, with blank rows), and the task is to populate D with the
data that satisfies given constraints. If the restriction of m not being in unary is lifted, the
problem immediately becomes NEXP-complete. The membership follows because given an
input φ, guessing a team T of (presumably) exponential size and verifying that T |= φ requires
nondeterministic exponential time. The hardness follows due to a reduction from the validity
problem for PDL [112]. In polynomial time, one can count the number of proposition symbols n
in a PDL-formula φ and ask whether there is a satisfying team for φ of size m where m = 2n. It
is easy to observe that φ is valid if and only if φ has a satisfying team of size m.

Remark 3.25. The problem mSAT is NEXP-complete when m is given in binary.

Now we prove that restricting m to be unary drops the complexity to NP-completeness. The
proof uses the idea of a truth function introduced by Yang [113]. For a better understanding and
self containment, we include the definition (modified to fit our setting) for a truth function.
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Definition 3.26 ([113, Def. 4.17]). Let φ be a PDL-formula and T be a team. A function f : SF(φ)→ 2T

is called a truth function for φ over T if the following conditions are satisfied.

• f (φ) = T,

• f (ψ) = f (ψ0) = ψ1 if ψ = ψ0 ∧ ψ1, and f (ψ) = f (ψ0) ∪ ψ1 if ψ = ψ0 ∨ ψ1,

• f (ψ) |= ψ for every ψ ∈ SF(φ).

The truth evaluation of a PDL-formula φ under a team T can be determined by the existence
of a truth function for φ over T.

Proposition 3.27 ([113, Theorem 4.19]). Let φ be a PDL-formula and T be a team over Vars(φ). Then
T |= φ iff there is a truth function f : SF(φ)→ 2T for φ over T.

Theorem 3.28. The problem mSAT is NP-complete when m is given in unary.

Proof. Notice first that finding a team of size m is computationally harder than finding a team of
size one. Consequently, the hardness follows because SAT for PDL is NP-hard.

We prove NP-membership by presenting a non-trivial nondeterministic algorithm running
in polynomial time that constructs a team of size m if there exists such. This is achieved
by constructing a team Ti for each i ∈ SF(φ), starting with the atomic and negated atomic
subformulas. Let φ be an input formula, the procedure (Algorithm 3) labels each node of the
tree with a satisfying team of size at most m. For each atomic/negated atomic subformula, this
team is guessed nondeterministically, for a conjunction (resp., split-junction), the team is the
intersection (union) of the two subteams from the successor nodes.

Specifically, for each literal `, the label T` is a team of size m and T` = { si | si(`) = 1 }. The
question of how are the other variables mapped by each si, is answered nondeterministically.
For each dependence atom α = dep(P; Q), the label Tα is a team such that |Tα| = min{m, 2|P|}.
If |Tα| = m, the assignments over Vars(φ) are selected nondeterministically in such a way that
Tα |= α. However, if |Tα| = 2|P|, then each assignment over P is selected and these assignments
are extended to variables in Vars(φ)\P nondeterministically. At conjunctions, the label is the
intersection of the two labels from the successor nodes, and at split junctions, it is the union. At
the root level, if Tφ has a size of at least m, then Algorithm 3 accepts, otherwise, it rejects. The
result follows from the downward closure property of PDL-formulas. Moreover, the maximum
label size for any node can be at most |φ| ·m because the size only increases (potentially doubles)
at a split junction. This is unproblematic since m is in unary. Now we prove the correctness of the
procedure through the following claim.

Claim 3.3. φ has a satisfying team of size m if and only if Algorithm 3 outputs such a team when given
the input φ. Moreover, Algorithm 3 runs in nondeterministic polynomial time.

Proof of Claim. The result is justified by the fact that Algorithm 3 constructs the truth function for φ in
a bottom-up fashion.
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Algorithm 3: Non-deterministic algorithm solving mSAT.
Input :PDL-formula φ represented by a syntax tree with atomic/negated atomic

subformulas as leaves and m in unary
Output : A team T of size m s.t. T |= φ or “φ does not have a satisfying team of size m”

1 foreach Leaf ` of the syntax tree do
2 nondeterministically guess a team T` such that |T`| ≤ m and T` |= `

3 foreach Inner node ` of the syntax tree in bottom-up order do
4 Let `0, `1 be the children of ` with T0, T1 the resp. team labels;
5 if ` is a conjunction then T` = T0 ∩ T1 ;
6 else T` = T0 ∪ T1;

7 if |Tφ| ≥ m then return Tφ;
8 else return “φ does not have a satisfying team of size m”;

“⇒”: Let T be a satisfying team for φ of size m. Consider the syntax tree of φ. Due to Proposition 3.27,
each node ψ in the tree can be labeled with a satisfying team f (ψ) for ψ. Moreover, f (ψ) ⊆ T for each
ψ ∈ SF(φ) and consequently | f (ψ)| ≤ m. This implies that Algorithm 3 can guess teams T` in such a
way that T` = f (`) , where ` ∈ SF(φ) is a leaf node of the syntax tree of φ. These teams correctly ‘add-up’
to T at the root node and T |= φ due to our assumption.

“⇐”: Suppose that Algorithm 3 outputs a team T of size at least m. Let T1, . . . Tn be the teams labeled
by the algorithm at the leaves of φ, where n is the number of atomic or negated atomic subformulas (leaves
in the syntax tree) of φ. First note that Ti |= `i where `i a leaf of φ and i ≤ n . Moreover, for each
split-junction, ψ = ψ0 ∨ ψ1 the team label Tψ for the node ψ is the union Tψ0 ∪ Tψ1 , where Tψs is the team
label for ψs and s ∈ {0, 1}. Similarly, at the conjunction nodes, the team label for the parent node is the
intersection of the teams from each conjunct. Finally, at the root level, the label has size m. Now, working
in the backward direction, one can obtain the truth function f : SF(φ)→ 2T for φ over T (guaranteed by
the downwards closure property of PDL). This proves that T |= φ (Prop. 3.27), where T is a team of size
at least m.

It is easy to observe that Algorithm 3 runs in nondeterministic polynomial time with respect
to φ and m. This completes the proof to the theorem.

Now, we move on to the parameterised complexity of mSAT. Clearly those parameterizations κ

that yield paraNP-hardness for p-SAT(κ) also render p-mSAT(κ) intractable. The following result
follows from Corollary 3.19. The result regarding |T| follows since SAT is NP-hard (|T| = 1 = m).

Corollary 3.29. p-mSAT(κ) is paraNP-complete for any κ ∈ {|T|, dep-arity, #atoms}.

The following theorem presents FPT-results for mSAT under various parameterizations.

Theorem 3.30. p-mSAT(κ) is FPT for any κ ∈ {|var(φ)|, |φ|, formula-depth}, with time even linear in
the input length.
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Proof. Notice that a satisfying team T has a maximal size of 2k where k = |var(φ)|. Moreover,
there are a total of 22k

-many teams. Consequently, we can find all the satisfying teams of size m
(if any) in FPT-time with respect to the parameter |var(φ)|.

For |φ|, notice first that |var(φ)| ≤ |φ|, that is, bounding |φ| also bounds |var(φ)| for any
formula φ (Lem. 3.5). As a result, we have that mSAT parameterized by |φ| is FPT. For
formula-depth notice that |φ| ≤ 22·formula-depth and thereby the problem is FPT when parameterized
by formula-depth.

Finally, consider the brute-force (bottom-up) algorithm in each case. This algorithm evaluates
each subformula against the candidate subteam for this subformula. This implies that the running
time with respect to the input is linear in the number of subformulas. That is, the algorithm runs
in time f (k) · |φ| for some computable function f .

3.4.2 A Model Checking Variant (MaxSubTeam)

We propose another interesting problem which might have applications in the context of the
database repairing. Let MaxSubTeam be the following problem. Given a PDL-formula φ and a
team T such that T 6|= φ. The task is to find a maximal subteam T′ ⊆ T such that T′ |= φ. We also
define the decision version (mSubTeam) of MaxSubTeam in the following. Given a team T and a
PDL-formula φ such that T 6|= φ, mSubTeam asks whether there is subteam T′ such that T′ |= φ

and |T′| ≥ m for some m ∈N?

Problem: mSubTeam

Input: A PDL-formula φ, a team T s.t. T 6|= φ, and m ∈N.
Question: Is there a subteam T′ ⊆ T, s.t. |T′| ≥ m and T′ |= φ?

MaxSubTeam (or its decisional version) appears to be an interesting variant of MC for PDL as
we discuss next. The motivation lies in the fact that if T 6|= φ for a formula φ and a team T, then
one might be interested in finding a maximal subteam of T that satisfies φ. Recall that ∅ |= φ is
always true (the empty team property), one can restrict the attention to non-empty subteams.

We discuss the applications of such a task from the database perspective. A database D
(first-order relational structure3) is said to be inconsistent with respect to a collection Ψ of
constraints, if D 6|= Ψ. Clearly, it is desirable to repair such a broken database in order to retrieve
any useful information. One popular mean of repairing an inconsistent database is deleting the
minimum number of tuples to achieve consistency. Alternatively, one can keep the inconsistent
database but select answers only from a consistent subset of it (consistent query answering). In
the context of dependence logic, Ψ is a collection of dependence atoms (functional dependencies)
and the database D is a team. This is where the question of finding a (maximal) subteam D′ of
D, such that D′ |= Ψ, becomes relevant. Hella and Hannula [53] studied the maximal subteam
membership MSM(φ) for a fixed (first-order) inclusion logic formula φ. An input instance of

3We only intend to discuss the motivation without digging into details. Therefore it is not necessary to give
semantics.
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MSM(φ) is the tuple (A, T, s) and the problem is to determine whether s is in the maximal
subteam T′ of T such that T′ |= φ. For a detailed discussion and the usefulness of this problem,
we refer the reader to the introduction section of their work [53]. The complexity of the problems
related to database repairs and consistent query answering for various classes of dependencies
has been extensively studied in the literature (see [1, 3, 19, 107] and references therein).

Example 3.31. Let φ := dep(x, y; z)∧ (x∨ y) and the team T = {000, 010, 101, 111, 110} over {x, y, z}.
Then clearly, T 6|= φ. However, T1 = {010, 101, 111} and T2 = {010, 101, 110} are both the maximal
satisfying subteams for φ. As a consequence, there is a maximal satisfying subteam of T for φ with size
three. Moreover, it is easy to observe that there is no satisfying subteam for φ with size four.

Surprisingly, mSubTeam is already NP-hard for PDL. The hardness is established in the
same way as the reduction in the proof of Theorem 3.11.

Theorem 3.32. The problem mSubTeam is NP-hard.

Proof. We reduce IndependentSet to mSubTeam by a similar construction as in the proof of
Theorem 3.11 and using only one conjunct (no split-junction). Consider the reduction (presented in
the proof of Theorem 3.11) from an instance G = (V, E) of 3COL to the instance (T, φ) of MC. Let
T be the same team as constructed in the proof of Theorem 3.11, and let φ :=

∧
ek={ vi ,vj }

dep(yk; xi).

There is a one-one correspondence between the independent sets S of G and the subteams T′ of
T such that T′ |= φ. This is because each assignment s ∈ T corresponds to a node v ∈ V and
vice versa. As a result, for each ek, an independent set S contains no two end points of ek if
and only if the subteam containing assignments corresponding to nodes in S satisfies dep(yk; xi).
Conversely, T′ |= φ for a subteam T′ ⊆ T if and only if the set S containing nodes corresponding
to the assignments in T′ is an independent set. Consequently, the NP-hardness of mSubTeam
follows since IndependentSet is NP-complete ([67]).

Regarding membership, we can only prove an upper bound of ΣP
2 because guessing a subteam

requires NP-time and verification can be achieved via an NP-oracle. Nevertheless, if φ is a
Poor man’s PDL-formula (a fragment of PDL without split-junctions) then we can prove NP-
membership. In other words, we have the following corollary where PDLp denotes the Poor
man’s fragment of PDL.

Corollary 3.33. mSubTeam for PDLp is NP-complete.

Proof. For membership, notice that one only needs to guess the subteam T′ ⊆ T, and the question
whether T′ |= φ can be answered in polynomial time. The hardness follows since the formula in
the proof of Theorem 3.32 does not contain any split-junction.
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CHAPTER 4
LOGICAL INFERENCE: ABDUCTION

In this chapter, we explore the parameterized complexity of abductive reasoning
in Schaefer’s framework. The problem of interest is to find an explanation for a
manifestation (ABD). Moreover, we consider two of its size variants (ABD≤ and
ABD=) which impose size restriction for an explanation. We begin by proving several
technical expressibility results that are helpful in the proof for this chapter as well as
in Chapter 5. This is followed by the parameterized complexity analysis of abduction.
At first, we prove general results in the classical and the parameterized setting. This is
followed by the parameter-specific results in each separate subsection. We conclude the
chapter by a discussion on the base independence (Property 2.1) in the parameterized
setting for each considered problem. Figure 4.1 presents a complexity overview for
problems in ABD. Throughout this chapter, the knowledge base (KB) is a conjunction
of constraints over a fixed language, usually denoted by Γ.

4.1 Technical Implementation Results

We begin by presenting a wealth of technical expressivity results that allow us to prove the
crucial property stated in Equation 2.1. The general results regarding the constraint languages
are relevant for any problem in Schaefer’s framework. These results are independent of the
computational problems discussed in this work as they consider the expressibility of equality
constraints. Specific results regarding the base independence for each problem are proven inside
appropriate subsections.

Implementing Equality Constraints

In the following, we denote the classes of essentially positive and essentially negative languages
by EP and EN, respectively. Recall that a relation R is EP (resp., EN) if R can be implemented by a
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formula φ such that every clause in φ is either positive or unit negative (negative or unit positive).
Furthermore, we say that a Boolean relation R is strict essentially positive denoted as EPs (resp.,
strict essentially negative, ENs) if it can be defined by a conjunction of literals and positive clauses
(resp., negative clauses) alone. In similar manner, we say that a Boolean relation R is strict positive
denoted as Ps (resp., strict negative, Ns) if it can be defined by a conjunction positive clauses (resp.,
negative clauses) only. Note that the only difference between a strict and its non-strict counterpart
is the absence of the equality constraints (see Table 2.2).

The following proposition is a pre-requisite for the proof of Lemma 4.2. Its proof can be found
in the work of Creignou et al. [22, 23].

Proposition 4.1. ([22]) Let Γ be a constraint language, then the following is true.

1. If Γ is complementive, but neither 1-valid, nor 0-valid, then (x 6= y) ∈ 〈Γ〉 6= [22, Lem. 4.6.1].

2. If Γ is neither complementive, nor 1-valid, nor 0-valid, then (x ∧ ¬y) ∈ 〈Γ〉 6= [22, Lem. 4.6.3].

3. If Γ is 1-valid and 0-valid but not trivial, then (x = y) ∈ 〈Γ〉 6= [22, Lem. 4.7].

4. If Γ is 1-valid, but neither 0-valid, nor essentially positive, then (x = y) ∈ 〈Γ〉 6= [22, Lem. 4.8.1].

5. If Γ is 0-valid, but neither 1-valid, nor essentially negative, then (x = y) ∈ 〈Γ〉 6= [22, Lem. 4.8.2].

The underlying idea of the following lemma is to express equality by some other constraints.

Lemma 4.2. Let Γ be a constraint language such that Γ is neither EP nor EN. Then, (x = y) ∈ 〈Γ〉 6=
and 〈Γ〉 = 〈Γ〉 6=.

Proof. For constraint languages that are Horn (IE2) or dualHorn (IV2) we use the following
characterisations by polymorphisms (see, e.g. [29]). The binary operations of conjunction,
disjunction and negation are applied coordinate-wise.

1. R is Horn if and only if m1, m2 ∈ R implies m1 ∧m2 ∈ R.

2. R is dualHorn if and only if m1, m2 ∈ R implies m1 ∨m2 ∈ R.

3. R is essentially negative if and only if m1, m2, m3 ∈ R implies m1 ∧ (m2 ∨ ¬m3) ∈ R.

4. R is essentially positive if and only if m1, m2, m3 ∈ R implies m1 ∨ (m2 ∧ ¬m3) ∈ R.

To complete the proof of the lemma, we make a case distinction according to whether Γ is 1- or
0-valid.

1-valid and 0-valid. This case follows immediately from Prop. 4.1, 3rd item.

1-valid but not 0-valid. Follows immediately from Prop. 4.1, 4th item.

0-valid but not 1-valid. Follows immediately from Prop. 4.1, 5th item.
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Neither 0-valid, nor 1-valid. We make another case distinction according to whether Γ is Horn
and/or dualHorn.

Neither Horn, nor dualHorn. It suffices to show that we can express inequality (x 6= y),
since (x = y) ≡ ∃z(x 6= z) ∧ (z 6= y). If Γ is complementive, we obtain by the 1st item
in Prop. 4.1 that: (x 6= y) ∈ 〈Γ〉 6=. Now suppose that Γ is not complementive. Since Γ
is neither Horn, nor dualHorn, there are relations R and S such that R is not Horn and
S is not dualHorn.

Since R is not Horn, there are m1, m2 ∈ R such that m1 ∧m2 /∈ R. For i, j ∈ {0, 1}, let
Vi,j = {x | x ∈ V, m1(x) = i, m2(x) = j}. Observe that the sets V0,1 and V1,0 are both
nonempty (otherwise m1 = m1 ∧m2 or m2 = m1 ∧m2, a contradiction). Let C denote
the {R}-constraint C = R(x1, . . . , xk). Then, we let

M1(u, x, y, v) := C[V0,0/u, V0,1/x, V1,0/y, V1,1/v].

The relation M1 contains the tuples {0011, 0101} (since m1, m2 ∈ R) but it does not
contain 0001 (since m1 ∧m2 /∈ R).

Since S is not dualHorn, there are m3, m4 ∈ S such that m3 ∨m4 /∈ S. For i, j ∈ {0, 1},
let V ′i,j = {x | x ∈ V, m3(x) = i, m4(x) = j}. Once again, the sets V ′0,1 and V ′1,0 are
nonempty (otherwise m3 = m3 ∨m4 or m4 = m3 ∨m4, a contradiction). Let D denote
the {S}-constraint D = S(x1, . . . , xk). Then, we let

M2(u, x, y, v) := D[V ′0,0/u, V ′0,1/x, V ′1,0/y, V ′1,1/v].

The relation M2 contains the tuples {0011, 0101} (since m3, m4 ∈ R) but it does not
contain 0111 (since m3 ∨m4 /∈ R). Now, consider the following {R, S, (t∧¬ f )}-formula

M( f , x, y, t) := M1( f , x, y, t) ∧M2( f , x, y, t) ∧ (t ∧ ¬ f ).

It is easy to verify that M( f , x, y, t) is equivalent to (x 6= y)∧ (t∧¬ f ). Due to Prop. 4.1,
2nd item, (t∧¬ f ) is expressible as a Γ-formula, and therefore so is M( f , x, y, t). Finally,
∃t∃ f M( f , x, y, t) is equivalent to (x 6= y), and we obtain (x 6= y) ∈ 〈Γ〉 6=.

Horn. Let R be a relation in Γ such that R is Horn but not EN. Then, there are m1, m2, m3 ∈ R
such that m4 := m1 ∧ (m2 ∨ ¬m3) /∈ R. Moreover, since R is Horn, m5 := m1 ∧m2 ∈ R.
For i, j, k ∈ {0, 1}, let Vi,j,k = {x | x ∈ V, m1(x) = i, m2(x) = j, m3(x) = k}.
Observe that the sets V1,0,0 and V1,0,1 are nonempty (otherwise m5 = m4 or m1 = m4, a
contradiction). Let C denote the {R}-constraint C = R(x1, . . . , xk). Then, we let

M( f , x, y, t) := C[V0,0,0/ f , V0,0,1/ f , V0,1,0/ f , V0,1,1/ f , V1,0,0/x, V1,0,1/y, V1,1,0/t, V1,1,1/t].

The relation M contains {00001111, 00000011} (since m1, m5 ∈ R) but it does not contain
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00001011 (since m4 /∈ R). Finally consider the {R, (t ∧ ¬ f )-formula

M′( f , x, y, t) := M( f , x, y, t) ∧M( f , y, x, t) ∧ (t ∧ ¬ f )

It is easy to verify that the relation M′ contains {0111, 0001} but neither 0101, nor
0011. Therefore M′( f , x, y, t) is equivalent to (x = y) ∧ (t ∧ ¬ f ). Due to Prop. 4.1, 2nd
item, (t ∧ ¬ f ) is expressible as a Γ-formula, and therefore so is M′( f , x, y, t). Finally,
∃t∃ f M′( f , x, y, t) is equivalent to (x = y), and we obtain (x = y) ∈ 〈Γ〉 6=.

dualHorn. This case is analogous to the Horn case. We use a relation R that is dualHorn
but not EP.

This concludes all the cases and completes the proof of the lemma.

The following implementation result strengthens Lemma 4.2 to certain essentially positive
and essentially negative constraint languages.

Lemma 4.3. Let Γ be a CL that is not ε-valid. If Γ is either EP but not EPs, or EN but not ENs, then we
have that (x = y) ∧ t ∧ ¬ f ∈ 〈Γ〉 6∃, 6=, as well as, (x = y) ∈ 〈Γ〉 6= and 〈Γ〉 = 〈Γ〉 6=.

Proof. We prove the statement for a CL Γ that is EP but not EPs. The other case can be treated
analogously. Let R be the relation in Γ such that R is EP but not EPs. Furthermore, R is neither
1-valid nor 0-valid. Let k be the arity of R and V = {x1, . . . , xk} be a set of k distinct variables.
By the definition of EP (cf. IS02 in Table 2.2), R can be written as a conjunction of negative
literals, positive clauses and equality constraints. If R can be written without any equality, then
R is EPs, a contradiction. As a result, any representation of R requires at least one equality
constraint. Suppose, w.l.o.g., that R(x1, . . . , xk) |= (x1 = x2), while R(x1, . . . , xk) 6|= x1 and
R(x1, . . . , xk) 6|= ¬x1. Define the following three subsets of V: W = { xi | R(x1, . . . , xk) |= (x1 =

xi) }, N = { xi | R(x1, . . . , xk) |= ¬xi }, and P = V \ (W ∪ N).
By construction, the three subsets provide a partition of V. Now, W is nonempty by our

construction, N is nonempty since R is not 1-valid and P is nonempty since R is not 0-valid. Let
C denote the {R}-constraint C = R(x1, . . . , xk) and let M(x1, x2, t, f ) := C[W/x2, P/t, N/ f ]. It is
easy to verify that M(x1, x2, t, f ) ≡ (x1 = x2) ∧ t ∧ ¬ f .

Finally, observe that (x = y) ≡ ∃t∃ f (x = y) ∧ t ∧ ¬ f . We conclude that (x = y) ∈ 〈Γ〉 6= and
consequently 〈Γ〉 = 〈Γ〉 6=.

We want to remark that the expressivity results proven in this subsection are independent
of the problems we study. In other words, these results are not only applicable to problems in
abduction and argumentation, but they are useful in the general setting of Scheafer’s framework.

4.2 Abductive Reasoning

In this section, we consider the parameterized complexity of problems for abductive reasoning in
Schaefer’s framework. From this point on, (V, H, M, KB) denotes an instance of ABD(Γ), where
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V is a set of variables, KB is a set of Γ-formulas and H, M ⊆ V. As before, we find it convenient
to write an instance of the parameterized problem as (V, H, M, KB, k) where κ(V, H, M, KB) = k.

Problem: p-ABD(Γ, κ)

Input: (V, H, M, KB, k).
Parameter: k.
Question: Is there an explanation E for M in KB?

Additionally, we consider two size variants of p-ABD(Γ, κ). The problem p-ABD≤(Γ, κ) (resp.,
p-ABD=(Γ, κ)) ask whether there is an explanation E of size at most (exactly) s for some s ∈N.
An instance to both these problems is then the tuple (V, H, M, KB, s, k) where k is the parameter
value. Furthermore, for solution size |E| as a parameter, we omit s (since s = k) and only
write (V, H, M, KB, k) as an instance. Finally, we denote by ABD∗ any abduction problem under
consideration, that is, ABD∗ ∈ {ABD, ABD≤, ABD=}.

A Note on Parameterizations

The knowledge-base (KB) in an instance of the abduction problem ABD∗(Γ) is considered
as a single Γ-formula. The meaningful parameters arising from an ABD-instance are κ ∈
{|V|, |H|, |M|, |E|}, that is, the cardinality of each set. Two further parameters, the treewidth and
the backdoor-size1 have also been considered by Gottlob et al. [48, Theorem 3.10] and Pfandler
et al. [93], respectively.

One can also consider the size of the knowledge base KB (the encoding length) as another
parameter. Nevertheless, we argue that it is enough to consider either the number of variables |V|,
or the size of KB, since the two parameters are equivalent. Clearly, bounding the encoding length
implies having limited space for encoding variables. Furthermore, if one bounds the number of
variables, then one also has limited possibilities for defining different formulas. This is due to
the reason that the constraint language Γ for our problems is fixed in advance. In the following,
|Φ| denotes the number of distinct (up to logical equivalence) formulas, and enc(Φ) denotes the
encoding of the formulas in Φ.

Lemma 4.4. Let Γ be a fixed CL. Then for any set Φ of Γ-formulas over variables V, we have that

1. |Φ| ≤ 2p·|V|q for some constants p, q ∈N,

2. |V| ≤ f (|enc(Φ)|), and |enc(Φ)| ≤ g(|V|) for some computable functions f and g.

Proof. (1). Let Γ = {Rk1
1 , . . . , Rkp

p } be the constraint language such that each relation Ri has arity ki

for i ≤ p. Moreover, let V = {x1, . . . , xv} be a collection of v distinct variables. For each relation
Ri of arity ki, the number of distinct Ri-constraints are at most ( v

ki
) = vki . This implies that the

1Size of the smallest Horn backdoor. We omit the detailed discussion on this parameter since this is not covered in
this work. An interested reader is suggested to consult the cited paper.
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total number of distinct Γ-constraints are atmost p · vq where q is the maximum arity of any
relation in Γ. A Γ-formula is simply a conjunction of constraint, and therefore, can be seen as a
subset of Γ-constraints. This implies that there are at most 2p·vq

-many different Γ-formulas. The
result follows since the number and the arity of each relation in Γ is constant.

(2). We represent a variable xi by its binary encoding. This implies that any reasonable
encoding of variables requires log2(|V|) + c bits for some constant c. In other words, |enc(V)| =
log2(|V|) + c, or |V| = 2d·|enc(V)| for some constant d. Moreover, |enc(V)| ≤ |enc(Φ)| and
therefore |V| ≤ 2d·|enc(Φ)| is true.

We also know that |enc(Φ)| ≤ |Φ| · |enc(ψ)| where ψ is such that |enc(φ)| ≤ |enc(ψ)| for each
φ ∈ Φ. Now, observe that |enc(ψ)| is bounded from above by the size of the truth table for ψ, and
therefore |enc(ψ)| ≤ 2c·|Vars(ψ)|. This implies that |enc(Φ)| ≤ |Φ| · 2c·|Vars(ψ)|. By using (1) from
above, we conclude that |enc(Φ)| ≤ 2p·|V|q · 2c·|V|, since |Vars(ψ)| ≤ |V|

Notice that Lemma 4.4 is independent of the problems in this chapter. Therefore, we also use
this when defining meaningful parameterizations in Chapter 5 for argumentation.

Base Independence for ABD

As stated before, the base independence yields generalized upper as well as lower bounds for
certain CLs. The idea is to apply Lemma 4.2 and prove Property 2.1 for problems in abductive
reasoning with respect to each parameterization. We first prove these results for each problem in
the classical setting (Lem. 4.5, 4.6) and later strengthen them in the parametrized setting (Cor. 4.7).

Lemma 4.5. Let Γ and Γ′ be two constraint languages such that Γ′ is neither essentially positive nor
essentially negative. Let ABD∗ ∈ {ABD, ABD=, ABD≤}. If Γ ⊆ 〈Γ′〉, then ABD∗(Γ) ≤P

m ABD∗(Γ′).

Proof. Let KB be a Γ-formula. We transform KB into an equivalent Γ′-formula by replacing every
Γ-constraint with the corresponding Γ′-formula. This can be achieved by constructing a look-up
table, which maps every R ∈ Γ to an equivalent Γ′-formula, as illustrated next. Since Γ′ is neither
essentially positive nor essentially negative, we have 〈Γ′〉 = 〈Γ′〉 6= by Lemma 4.2 and R ∈ Γ ⊆ 〈Γ′〉
implies that R ∈ 〈Γ′〉 6=. By definition, there is a Γ′-formula ψR such that R(x1, . . . , xn) ≡
∃y1 . . . ∃ymψR(x1, . . . , xn, y1, . . . , ym), where xi’s and yi’s are n + m distinct variables. Finally, we
remove the existential quantifiers and map R to the formula ψR. Note that the look-up table can
be constructed in the constant time, since Γ is a fixed and finite CL which is independent of the
input instance. We are now ready to transform KB into an appropriate Γ′-formula by applying
the following replacement procedure as long as applicable.

• Let CR := R(x1, . . . , xn) be a Γ-constraint in KB (where xi’s are not necessarily n distinct
variables). Replace CR by its corresponding Γ′-formula ψR(x1, . . . , xn, y1, . . . , ym), where
y1, . . . , ym are fresh variables and unique to CR (they are not used for any other constraint).

This transformation introduces additional variables. We show that the total number of such
variables is bounded polynomially in the input. Let mR be the number of yi’s added while
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replacing CR (denoted m in the above procedure). It is easy to observes that the total number
of additional variables is bounded by the number of constraints in KB times the maximum of
all mR. Since mR is only dependent on R, it is constant. Moreover, Γ is finite, and therefore, the
maximum over all mR’s is also constant. We conclude that this transformation can be achieved in
polynomial time.

Furthermore, observe that an ABD∗(Γ′)-instance after this transformation has exact same
solutions as the original ABD∗(Γ)-instance.

In the following lemma, we prove the base independence for ABD∗(Γ) when Γ is essentially
positive. The proof idea is to remove the equality constraints while maintaining the size count
and preserving the solution of instances.

Lemma 4.6. Let Γ, Γ′ be two constraint languages such that Γ′ is essentially positive. Let ABD∗ ∈
{ABD, ABD=, ABD≤}. If Γ ⊆ 〈Γ′〉, then ABD∗(Γ) ≤P

m ABD∗(Γ′).

Proof. The case for ABD is due to Nordh and Zanuttini [89, Lemma 22]. We first prove the case
of ABD≤ in the following. Let (V, H, M, KB, s) be an ABD≤(Γ)-instance and (V ′, H′, M′, KB′, s)
be an instance where KB′ is obtained from KB by replacing every constraint by its equivalent
Γ′-formula and removing equality constraints (as well as duplicate variables) similar to the
proof of Lemma 2.17. Notice that removing the equality constraints and deleting the duplicate
occurrences of variables can only decrease the size of H and M. This implies that |M′| ≤ |M|
and |H′| ≤ H. Finally, the result follows by observing that (V, H, M, KB, s) has a solution E of
size at most s if and only if E is also a solution for (V ′, H′, M′, KB′, s).

Now we proceed with proving the case for ABD=. We show that for any ABD=(Γ ∪ {=})
instance (V, H, M, KB, s), there is an ABD=(Γ)-instance (V1, H1, M1, KB1, s) such that the former
has an explanation if and only if the latter has one. The proof uses the fact that the negative
clauses in KB are the unary clauses alone (of length one). Notice that the existence of a solution
is invariant under the equality clauses (the case of ABD). As a result, we only assure that the size
of a solution is also preserved after the transformation. To obtain (V1, H1, M1, KB1, s), we do the
following for each clause (xi = xj) ∈ KB.

Case 1. If at most one of xi and xj appears in H, then remove (xi = xj) from KB, replace xj by xi

everywhere in KB∪ H ∪V ∪M (and delete xj).

Case 2. If both xi, xj are from H. Then,

1. if ¬xi (resp., ¬xj) appears in KB, we add ¬xj (resp., ¬xi) to KB and remove the clause
xi = xj from KB.

2. otherwise ¬xi,¬xj /∈ KB and we simply remove (xi = xj) from KB and do not remove
any variable.

The problem caused by the equality clauses is the following. If we remove a variable x such that
x ∈ H, then removing x from H, owing to some equality constraint, may not preserve the size
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of the solutions. Furthermore, this problem occurs only when an equality clause contains both
variables from H (Case 2.) since the size of H is not changed otherwise (Case 1.). We prove the
following correspondence between the solutions of the two instances.

Claim 4.1. A subset E ⊆ H is an explanation for (V, H, M, KB, s) if and only if E is an explanation for
(V1, H1, M1, KB1, s).

Proof of Claim. “⇒”: Let E be an explanation for (V, H, M, KB, s). Since E ∧ KB is consistent, we
prove that E ∧ KB1 is also consistent. Note that KB1 ⊆ KB, except if ¬xj ∈ KB1 for some xj. This implies
that xj 6∈ E due to the reason that xi = xj and ¬xi ∈ KB. Finally, M1 ⊆ M and E is an explanation for
M implies that E is also an explanation for M1.

“⇐”: Suppose that E is an explanation for (V1, H1, M1, KB1, s). Since E∧KB1 is consistent, let θ be a
satisfying assignment. We consider each equality constraint separately and prove that E ∧KB is consistent.
If Case 1 applies for (xi = xj), then at most one (say xi) appears in H. Furthermore, if xi ∈ E ⊆ H
then ¬xj 6∈ KB1 since this would imply that ¬xi ∈ KB1 and xi 6∈ E. Consequently, E ∧ KB1 ∧ (xi = xj)

is consistent (extending θ to θ(xi) = 1 = θ(xj) satisfies it). On the other hand, if ¬xj ∈ KB1 then
¬xi ∈ KB1 and xi 6∈ E. As a result, θ extended by θ(xi) = 0 = θ(xj) is a satisfying assignment. If
Case 2 applies for (xi = xj), that is, both xi, xj ∈ H then we again have two sub-cases based on whether
¬xi ∈ KB1 or not. If ¬xi ∈ KB1, then due to the sub-case 1, we have that ¬xj ∈ KB1 and this implies that
xi 6∈ E. As a consequence, E ∧ KB1 ∧ (xi = xj) is consistent (extending θ to θ(xi) = 0 = θ(xj) satisfies
it). In the sub-case 2, when both xi, xj ∈ H and ¬xi,¬xj 6∈ KB1 then mapping θ(xi) = 1 = θ(xj) satisfies
E ∧ KB1 ∧ (xi = xj). This is because all the non-unit clauses in KB1 are positive. Finally, since this is
true for all the equality clauses, E ∧ KB is consistent.

For entailment, suppose that for some mi, mj ∈ M, we have that (mi = mj) ∈ KB and mj 6∈ M1,
that is M1 ( M. Since E ∧ KB1 is consistent and entails M1, we have E ∧ KB1 ∧ (mi = mj) is also
consistent (due to arguments for consistency) and entails M1 ∪ {mj}. Moreover, this is true for every pair
mi, mj ∈ M such that (mi = mj) ∈ KB. This completes the proof in this direction and settles the claim.

Finally, the presented reduction can be computed in polynomial time because both steps in
the transformation are applied once for each equality clause, and each step takes polynomial
time. This shows the desired reduction between ABD=(Γ ∪ {=}) and ABD=(Γ).

Notice that Lemmas 4.5 and 4.6 are stated with respect to the classical (unparameterized)
decision problems. However, these reductions can be generalized to ≤FPT-reductions whenever
the parameters are bounded as required by Definition 2.10. That is, in our case, for any
parameterization κ ∈ { |H|, |E|, |M| } the reductions are valid. Even more, the values of the
parameters remain same as the sizes of H, E, and M remain unchanged in the reduction.

Corollary 4.7. Let Γ, Γ′ be any two constraint languages except for essentially negative ones. Let
ABD∗ ∈ {ABD, ABD=, ABD≤}. If Γ ⊆ 〈Γ′〉, then p-ABD∗(Γ, κ) ≤FPT p-ABD∗(Γ′, κ) for any κ ∈
{|H|, |E|, |M|}.
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It is cumbersome to mention the base independence in almost every proof. As a result, we
omit this reference and show the results only for concrete bases implicitly using Corollary 4.7.
When we deal with essentially negative constraint languages, we do not have a general result
about the base independence. In these cases we have direct constructions showing membership
and hardness for all bases (e.g., Lemmas 4.15 and 4.25).

4.2.1 General Complexity Results

In this subsection, we prove general observations and reductions between defined problems. The
following two results regarding the classical problems relate the complexity of our problems
ABD∗ ∈ {ABD, ABD≤, ABD=} to each other.

Lemma 4.8. For every constraint language Γ, we have that ABD(Γ) ≤P
m ABD≤(Γ).

Proof. Clearly, an instance (V, H, M, KB) of ABD(Γ) has an explanation if and only if the instance
(V, H, M, KB, s) of ABD≤(Γ) has one, where s = |H|. In other words, an ABD-instance has an
explanation if and only if it has one with size at most that of the hypotheses set.

We can relate the complexity of ABD≤ with that of ABD= via a Turing reduction (using the
concept of oracles) between the two problems. Clearly, an instance (V, H, M, KB, s) of ABD≤(Γ)
has a solution of size at most s iff there is some i ≤ s such that the instance (V, H, M, KB, i) of
ABD=(Γ) has a solution of size exactly i. Such a reduction is indeed interesting but it does not
help in transferring the hardness results from ABD≤ to ABD=.

In the following, we relate the complexity of ABD with that of ABD=. The idea (presented by
Fellows et al. [43, Cor., 16]) is to add additional hypotheses which then help to assure the size
restriction for an explanation.

Lemma 4.9. Let Γ be a constraint language such that 〈Γ〉 ⊇ IE, then we have that ABD(Γ) ≤P
m

ABD≤(Γ).

Proof. Let (V, H, M, KB) be an ABD-instance where H = {h1, . . . , hp}. Moreover, let H′ =
{h′1, . . . , h′p}, M′ = {m′1, . . . , m′p} be collections of fresh variables, V ′ = H′ ∪ M′, and KB′ =∧
i≤p

(¬hi ∨ ¬h′i) ∧ (¬hi ∨ mi) ∧ (¬h′i ∨ m′i). Then we construct the ABD=-instance (V ∪ V ′, H ∪

H′, M ∪M′, KB∧ KB′, s) where s = |H| = p. Clearly, (V, H, M, KB) admits an explanation E ⊆ H
iff E ∪ {h′i | h′i ∈ H′ and hi 6∈ E} is an explanation for (V ∪V ′, H ∪ H′, M ∪M′, KB∧ KB′, s).

Notice that the reduction in Lemma 4.9 is only useful for certain CLs (when Horn clauses
can be represented). We wish to point that we use Lemma 4.9 for only those CLs Γ, such that
〈Γ〉 = BR (see Theorems 4.11 and 4.28). As a result, the restriction that ‘Γ must implement a
Horn clause’ is irrelevant. Moreover, when proving results for |H| (Theorem 4.11) the set H has
size already one and therefore the reduction does not increase the parameter value. However, H
is not expected to have fixed size when proving results for |M| (Theorem 4.28). Nevertheless, we
use the fact that the set M′ can be simulated by a single fresh variable m′. This is achieved by
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adding the formula (m′ ↔ ∧
i≤|M′| m′i) to KB. Consequently, the parameter value |M| increases by

one due to the reduction between ABD and ABD= (in Theorem 4.28).
Now, we proceed by proving the equivalence of ABD≤ and ABD= for dualHorn languages.

Lemma 4.10. For every constraint language Γ such that IBF ⊆ 〈Γ〉 ⊆ IV2, we have that ABD≤(Γ) ≡P
m

ABD=(Γ).

Proof. “≤P
m”: We claim that one can check in polynomial time whether a positive instance

(V, H, M, KB, s) of ABD≤(Γ) has a solution E of size exactly s. Given a solution E such that
|E| ≤ s, then a solution of size exactly s can be constructed (in polynomial time w.r.t. |H|) by
adding one element h at a time from H to E and checking that ¬h 6∈ KB. Moreover, if there are
no such elements in H then clearly there can be no solution of size exactly s.

“≥P
m”: Every solution of size exactly s is a solution of size at most s.

Intractable cases

Interestingly, for 0-valid, 1-valid, and complementive languages, all three problems remain
intractable under any parametrization except for the case of |V|.

Theorem 4.11. The problems p-ABD(Γ, κ), p-ABD≤(Γ, κ) and p-ABD=(Γ, κ) are

1. paraCoNP-hard if IN ⊆ 〈Γ〉 ⊆ II1 and κ ∈ { |H|, |E|, |M| },

2. paraDP-hard if C ⊆ 〈Γ〉 ⊆ BR and C ∈ {IN2, II0} and κ ∈ {|H|, |E|},

3. paraΣP
2 -hard if C ⊆ 〈Γ〉 ⊆ BR and κ = |M| for C ∈ {IN2, II0}.

Proof. (1). We prove paraCoNP-hardness of p-ABD(Γ, κ) when IN ⊆ 〈Γ〉 regarding all three
parameters simultaneously. Notice that IMP(Γ) is CoNP-hard when 〈Γ〉 ⊆ II1 [89, Thm. 34], even
if the right side contains only a single variable. We describe in the following a modified proof
from [89, Prop. 48]. Since 〈IN∪ { T }〉 = II1 (where T = {1}), we have that IMP(IN ∪ { T }) is
CoNP-hard, even if the right side contains only a single variable. We reduce IMP(IN ∪ { T })
to our abduction problems with |H| = 1, |M| = 1, and |E| = 1. Let (ΦT, q) be an instance of
IMP(IN ∪ { T }), where ΦT = Φ ∧ ∧x∈VT

T(x) and Φ is an IN-formula. We map (ΦT, q) to an
instance (V, {h}, {q}, KB) of ABD(Γ), where V = Vars(Φ) ∪ {h}, h is a fresh variable, and KB
is obtained from Φ by replacing every variable from VT by h. Note that ΦT ≡ KB ∧ h. Since Φ
and KB are 1-valid KB∧ h is always satisfiable and there exists an explanation iff KB∧ h |= q, iff
ΦT |= q. Furthermore, observe that ΦT |= q if and only if (V, {h}, {q}, KB, |H|) ∈ p-ABD(Γ, |H|)
if and only if (V, {h}, {q}, KB, 1, |H|) ∈ p-ABD≤(Γ, |H|) if and only if (V, {h}, {q}, KB, 1, |H|) ∈
p-ABD=(Γ, |H|), where 〈Γ〉 = IN. Finally, the equivalence is also true when |H| is replaced by |E|
or |M| since |E| ≤ |H| and M = q. This proves the claimed paraCoNP-hardnesses by noting that
|E| = |H| = |M| = 1, in each case.

(2). We prove paraDP-hardness for IN2 and II0 regarding both parameters simeltenously. From
Fellows et al. [43, Prop. 4] we know that ABD∗(Γ) for 〈Γ〉 ⊆ BR is DP-complete, even if |H| = 0
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and |M| = 1. We argue that the hardness can be extended to a CL Γ such that 〈Γ〉 = IN2. Note
that 〈IN2 ∪ {F}〉 = BR where F = {0}. Creignou & Zanuttini [30, Lem. 21] proved that ABD(Γ ∪
{ F }) ≤P

m ABD(Γ ∪ { SymOR2,1 }) where SymOR2,1(x, y, z) = ((x → y) ∧ T(z)) ∨ ((y → x) ∧ F(z)).
Moreover, they also prove that SymOR2,1 ∈ 〈Γ〉 if IN2 ⊆ 〈Γ〉 [30, Lem. 27]. Finally, having |M| = 1
allows us to use their proof ([30, Lem. 21]) and, as a consequence, ABD(Γ ∪ { F }) ≤P

m ABD(Γ)
such that 〈Γ〉 = IN2. Regarding II0, the proof follows by a similar argument using the observations
that 〈II0 ∪ { T }〉 = BR and OR2,1 ∈ 〈Γ〉 such that II0 ⊆ 〈Γ〉 where OR2,1(x, y) = x → y [30,
Lem. 19/27]. The desired paraDP-hardness follows by noting that |E| = |H| = 0 in each case.

(3). Nordh and Zanuttini [89, Prop. 46/47] proved that the problem ABD(Γ) with positive
literal manifestations is ΣP

2 -hard if 〈Γ〉 ⊆ C and C ∈ { IN2, I I0 }. This implies that the 1-slice of
p-ABD(Γ, |M|) is ΣP

2 -hard in each case, which gives the desired result. For ABD≤(Γ, |M|) and
ABD=(Γ, |M|), the results follow from Lemmas 4.8 and 4.9.

Notice that the paraΣP
2 -hardness from Theorem 4.11 can be strengthened to completeness.

This is because, guessing an explanation for an instance of each ABD∗ ∈ {ABD, ABD≤, ABD=}
takes nondeterministic time and the verification can be done by an NP-oracle.

Fixed-parameter tractable cases

The following corollary is immediate because ABD corresponding to these cases is in P due to
Nordh and Zanuttini [89].

Corollary 4.12. The problem p-ABD(Γ, κ) is FPT for any parameterization κ ∈ {|H|, |M|} and 〈Γ〉 ⊆ C

with C ∈ { IV2, ID1, IE1, IS12 }.

The result for each case when parameterized by |V| is already due to Fellows et al. [43, Prop. 13].

Corollary 4.13. The problems p-ABD(Γ, |V|), p-ABD≤(Γ, |V|), p-ABD=(Γ, |V|) are all FPT for all
Boolean constraint languages Γ.

Now, we prove P-membership of ABDs(Γ) for s ∈ {≤,= } and start with the case when Γ
is essentially positive. The idea is to first apply unit propagation. The positive clauses (after
unit propagation) do not explain anything, and one only has to check for each m ∈ M whether
m ∈ KB∪ H. Then, we need to adjust the size accordingly.

Lemma 4.14. The classical problems ABD=(Γ) and ABD≤(Γ) are in P if 〈Γ〉 ⊆ IS02.

Proof. We only prove the claim for ABD=(Γ), whereas, the result for ABD≤(Γ) follows from
Lemma 4.10. Let (V, H, M, KB, s) be an instance of ABD=(Γ) where Γ ⊆ IS02. Let H′, M′, KB′

denote the result of applying the unit propagation on each literal y such that y ∈ Lit(KB)\(H+ ∪
M−). Recall that for a set Y of literals, Y+ (resp., Y−) denotes the set of positive (negative) literals
formed upon Y. In unit propagation, for each literal u, any clause containing u is deleted and,
∼ u from any clause is deleted, where ∼ u = x if u = ¬x is a negative literal and ∼ u = ¬x if
u = x is positive. Note that each literal y ∈ H+ ∪M− (that is, y ∈ H or y = ¬m for m ∈ M) is
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excluded from this rule. The reason for this choice is as follows. If ¬m ∈ KB for some m ∈ M
then removing m from KB∪M transforms a ‘no solution’- to a ‘yes solution’-instance. Similarly,
removing an h ∈ H from KB∪ H may result in decreasing the solution size of an instance. Finally,
the positive literal m ∈ M may or may not be processed. However, it is important to consider
h ∈ H− since this helps in invalidating the clauses of length ≥ 2.

Let P and N denote the positive, respectively negative unit clauses of KB′. Note that if
N 6= ∅ then there can be no explanation for M. This is due to the reason that only negative
unprocessed literals are over M, implying that KB ∧M is inconsistent. Consequently, we have
N = ∅. Moreover, positive clauses of length ≥ 2 in KB′ do not explain anything as a variable
cannot be forced to 0 by an explanation E. Therefore, a positive literal x cannot explain anything
more than x itself. This implies that: there is an explanation for M if and only if M′ ⊆ H′ ∪ P. The
set M′ \ P consists of those m ∈ M which are not already explained by KB and must be explained
by H′. As a consequence, there exists an explanation for ABD≤(Γ) if and only if M′ \ P ⊆ H′ and
|M′ \ P| ≤ s. The consistency is assured already by the fact that N = ∅. Finally, to determine
whether there is an explanation E ⊆ H of size s, it suffices to check additionally whether |H′| ≥ s.
This argument assures whether we can artificially increase the solution size since, in that case,
any E ⊆ H′ with the above conditions constitutes an explanation for ABD=(Γ). Moreover, if
|H′| < s, then no explanation of size s exists. The unit propagation and the size comparisons can
be achieved in polynomial time. This proves the claim.

The following lemma proves that ABD≤(Γ) also remains tractable when Γ is EN.

Lemma 4.15. The classical problem ABD≤(Γ) is in P if 〈Γ〉 ⊆ IS12.

Proof. First, we prove the result with respect to 〈Γ〉 6= ⊆ IS12 (that is, without base independence).
Let P denote the set of positive unit clauses in KB and let EMP = M \ P. Now, we have the
following two observations.

Observation 1 There exists an explanation iff EMP ⊆ H and KB∧M is consistent. In other words,
what is not yet explained by P must be explainable directly by H because negative clauses
can not contribute to explaining anything, they can only contribute to ‘rule out’ certain
subsets of H as possible explanations.

Observation 2 If E is an explanation for M in KB, then E ⊇ EMP.

As a result, EMP represents a cardinality-minimal and a subset-minimal explanation. We
conclude that there exists an explanation E with |E| ≤ s iff EMP constitutes an explanation and
|EMP| ≤ s. Now, we proceed with base independence for this case.

Claim 4.2. ABD≤(Γ ∪ {=}) ≤P
m ABD≤(Γ) for 〈Γ〉 ⊆ IS12.

Proof of Claim. We remove equality clauses and delete the duplicating occurrences of variables. This
only decreases the size of H and possibly the size of an explanation E as well. It is important to notice that
a clause (x = y) ∈ KB does not enforce both x and y into E.
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This completes the proof of the lemma.

Finally, ABD=(Γ) and ABD≤(Γ) are also tractable when Γ is 2-affine, as we prove in the
following lemma. The proof idea is, similar to Creignou et al. [26, Prop. 1], to change the
representation of the knowledge base.

Lemma 4.16. The classical problems ABD=(Γ) and ABD≤(Γ) are in P if 〈Γ〉 ⊆ ID1.

Proof. Analogously to Creignou et al. [26, Prop. 1], we change the representation of the KB.
Without loss of generality, suppose KB is satisfiable and contains no unit clauses since unit clauses
can be dealt with by unit propagation. Each clause in Γ expresses either equality or inequality
between two variables. With the transitivity of the equality relation and the fact that (in the
Boolean case) a 6= b 6= c implies a = c, we can identify equivalence classes of variables such
that every two classes are either independent or they must have contrary truth values. We call a
pair of dependent equivalence classes (X, Y) a cluster (X and Y must take contrary truth values).
Denote by X1, . . . , Xp the equivalence classes that contain variables from M such that Xi ∩M 6= ∅.
Denote by Y1, . . . , Yp the equivalence classes such that for each i the pair (Xi, Yi) represents a
cluster. We make the following stepwise observations.

1. There is an explanation iff ∀i : H ∩ Xi 6= ∅.

2. The size of a minimal explanation (Emin) is p. Emin is constructed by taking exactly one
representative from each Xi.

3. There exists an explanation of size ≤ s iff p ≤ s.

4. An explanation of maximal size (Emax) can be constructed as follows:

(a) Begin by setting E := ∅,

(b) for each i add to E all variables from Xi ∩ H,

(c) for each cluster (X, Y) /∈ {(Xi, Yi) | 1 ≤ i ≤ p}:
i. if |X ∩ H| ≥ |Y ∩ H|: add to E the set X ∩ H,

ii. else: add to E the set Y ∩ H.

5. Any explanation of size between |Emin| and |Emax| can be constructed.

6. There is an explanation of size = s iff |Emin| ≤ s ≤ |Emax|.
This completes the proof.

Lemmas 4.14–4.16 yield the following corollary.

Corollary 4.17. The following problems are FPT for any κ ∈ { |H|, |E|, |M| }.
1. p-ABD=(Γ, κ) if 〈Γ〉 ⊆ C for C ∈ { IS02, ID1 },

2. p-ABD≤(Γ, κ) if 〈Γ〉 ⊆ C for C ∈ { IS02, ID1, IS12 }.
Now we prove complexity results for the considered problems under each parameterization.
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4.2.2 Parameter ‘number of hypotheses’ |H|
When parameterized by |H|, the only intractable cases are those pointed out in Theorem 4.11.

Theorem 4.18. p-ABD(Γ, |H|), p-ABD≤(Γ, |H|) and p-ABD=(Γ, |H|) are

1. paraDP-hard if C ⊆ 〈Γ〉 ⊆ BR, where C ∈ {IN2, II0},

2. paraCoNP-hard if IN ⊆ 〈Γ〉 ⊆ II1,

3. FPT if 〈Γ〉 ⊆ C ∈ { IE2, IV2, ID2, IL2 }.

Proof. (1+2). Follows from Theorem 4.11.
(3). Recall that SAT(Γ) and IMP(Γ) are both in P for every Γ in the question (cf. [103, 104]).

Note that |H| ≥ |E|, and (|H||E|) = |H||E| ∈ O(kk), where k = |H|. Consequently, one can brute-force
the candidates for E and verify them in polynomial time. This yields FPT membership.

What addition can make ABD tractable along with |H| as a parameter? It is worth stopping
here and asking ourselves: is there some parameterization κ, such that ABD(Γ, κ + |H|) is tractable
for every CL Γ? This question is answered by Pfandler et al. [93], where authors prove that
the size of the smallest (Horn) backdoor is one such parameter. One of the main results by the
authors is that ABD(CNF) is FPT when parameterized by |H| and backdoor-size.

4.2.3 Parameter ‘number of explanations’ |E|
In this subsection, we consider the solution size as a parameter. Notice first that the parameter
|E| for problem p-ABD is not meaningful anymore since an input instance does not include the
solution size. As a result, we only consider the two size-variants ABD= and ABD≤. The following
theorem classifies both problems into six different complexity degrees.

Theorem 4.19. The problems p-ABD≤(Γ, |E|) and p-ABD=(Γ, |E|) are

1. paraDP-hard if C ⊆ 〈Γ〉 ⊆ BR, where C ∈ {IN2, II0},

2. paraCoNP-hard if IN ⊆ 〈Γ〉 ⊆ II1,

3. W[P]-complete if IE ⊆ 〈Γ〉 ⊆ IE2,

4. W[2]-complete if IM ⊆ 〈Γ〉 ⊆ C for C ∈ {ID2, IS`10, IV2},

5. FPT if 〈Γ〉 ⊆ ID1 or 〈Γ〉 ⊆ IS02,

Moreover, if IS2
1 ⊆ 〈Γ〉 ⊆ IS12, then p-ABD≤(Γ, |E|) is FPT and p-ABD=(Γ, |E|) is W[1]-complete.

Proof. (1+2). Follows from Theorem 4.11.
(3). The W[P]-membership follows from the fact that SAT(Γ) and IMP(Γ) are both in P when

〈Γ〉 ⊆ IE2 (cf. [103, 104]). Guessing E takes k · log n non-deterministic steps, and the verification
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takes polynomial time. For the lower bound, we argue that the proof by Fellows et al. [43, Cor. 9]
for definite Horn theories (IE1) can be adapted. The only types of clauses used in the presented
reduction are (x ∧ y→ z) and (x → y), which are both expressible by Γ if IE ⊆ 〈Γ〉. Finally, the
membership and the hardness arguments are valid for ABD≤(Γ, |E|) as well since the problem
used for the reduction in [43, Cor. 9] is the Monotone Circuit SAT (which is monotone).

(4). The W[2]-completeness for p-ABD=(Γ, |E|) such that 〈Γ〉 = IM is proven in Lemma 4.20.
Then Lemma 4.21 strengthens this completeness result by showing W[2]-membership of the
problem p-ABD=(Γ, |E|) such that 〈Γ〉 ⊆ IV2. The question p-ABD≤(Γ, |E|) for the above
two cases follows from the monotone argument of Lemma 4.10. Furthermore, the result for
p-ABD=(Γ, |E|) and p-ABD≤(Γ, |E|) such that 〈Γ〉 ⊆ ID2 follows from the proof by Fellows et
al. [43, Thm. 21]. The membership for p-ABD=(Γ, |E|) and p-ABD≤(Γ, |E|) such that 〈Γ〉 ⊆ IS`10

is proven in Lemma 4.22, 4.23 respectively. The hardness for both cases follows from Lemma 4.20
and the Galois connection of ABD∗ (Corollary 4.7).

(5). Follows from Corollary 4.17.

The FPT-membership for p-ABD≤(Γ, |E|) when 〈Γ〉 ⊆ IS12 is established in Corollary 4.17.
Finally, the W[1]-hardness for p-ABD=(Γ, |E|) when 〈Γ〉 ⊆ IS12 is proven in Lemma 4.24. We
achieve the mentioned result by proving W[1]-hardness for a language Γ, such that ¬x ∨ ¬y ∈
〈Γ〉 6=. The W[1] membership for p-ABD=(Γ, |E|) if 〈Γ〉 ⊆ IS12 (including the base independence
for this case) is established in Lemma 4.25

This concludes all the cases in Theorem 4.19.

Intermediate Lemmas

Observe that when solving an instance of ABD=(Γ) and ABD≤(Γ) if IM ⊆ 〈Γ〉, a computationally
expensive step is the case when a solution of size larger than k is found. This solution must
be reduced to the one of size = k (resp. ≤ k). First, we prove the W[2]-completeness of
p-ABD=(Γ, |E|) such that 〈Γ〉 = IM. Later, we extend the membership to the cases when
〈Γ〉 = IV2 and 〈Γ〉 = ISl

10.

Lemma 4.20. p-ABD=(Γ, |E|) is W[2]-complete if 〈Γ〉 = IM.

Proof. For membership we prove that p-ABD=(Γ, |E|) ≤FPT p-WSAT(Γ2,1, κ) if 〈Γ〉 = IM. The
problem p-WSAT(Γ2,1, κ) is known to be W[2]-complete when κ is the weight of a satisfying
assignment (Proposition 2.12). Let (V, H, M, KB, k) be an instance of ABD=(IM, |E|), where the
solution size is the parameter value (that is, s = k). Specifically, let KB =

∧
i≤r

(xi → yi) and

M = m1 ∧ . . . ∧mn, where n = |M|. Note that, in order to explain an mi ∈ M, a single h ∈ H
suffices. As a result, for each mi ∈ M, we associate a set Hi ⊆ H of hypotheses that explains
mi. This implies that every element (singleton subset) of Hi explains mi. Now, it is enough
to determine whether at least one such h ∈ Hi can be selected for each mi. For this we map
(V, H, M, KB, k) to (φ, k) where φ =

∧
i≤n

∨
x∈Hi

x. Then our claim is that (V, H, M, KB, k) has an
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explanation E if and only if φ has a satisfying assignment of size k. Clearly, there is a 1-1-
correspondence between solutions E of (V, H, M, KB, k) and satisfying assignments θ for φ of
weight k. That is, θ(x) = 1 ⇐⇒ x ∈ E. We conclude by observing that Hi can be computed in
polynomial time for each mi and |Hi| ≤ H.

For the hardness, we reduce from p-WSAT(Γ+
2,1, κ) which is also W[2]-complete when κ is the

weight of a satisfying assignment (Proposition 2.12). Let (φ, k) be an instance of p-WSAT(Γ+
2,1, κ)

where φ is given as:
∧

i≤q

∨
j≤r

(xi,j) =
∧

i≤q
(xi,1 ∨ . . . ∨ xi,r) and Vars(φ) = { xi,j | i ≤ q, j ≤ r }. For

i ≤ q, let mi be a fresh variable, we use these variables to simulate each of the q clauses. Moreover,
we slightly abuse the notation and write x ∈ mi to depict that the variable x appears in ith
clause. Finally, we let KB =

∧
i≤q

∧
x∈mi

(x → mi), H = Vars(φ), M =
∧

i≤q
mi and V = H ∪M. It is

easy to observe that a subset E ⊆ H is an explanation for (V, H, M, KB, k) ⇐⇒ θ |= φ where
θ(x) = 1 ⇐⇒ x ∈ E. This completes the desired reduction for showing W[2]-hardness, thereby
proving the lemma.

The reduction p-ABD=(Γ, |E|) ≤FPT p-WSAT(Γ2,1, κ) in the proof of Lemma 4.20 is essential in
achieving several other reductions in this sequel. To establish the membership in these cases, we
only state required modifications on top of the same reduction. We next prove W[2]-membership
of p-ABD=(Γ, |E|) for languages in IV2.

Lemma 4.21. p-ABD=(Γ, |E|) is in W[2] if 〈Γ〉 ⊆ IV2.

Proof. Observe that in the proof of Lemma 4.20 (when 〈Γ〉 = IM), we dealt only with clauses of
the type (x → y) for variables x and y. We refer to these ‘implication’ clauses as clauses of type-0.
When 〈Γ〉 = IV2 we have additional clauses of the following types:

type-1. Unit clauses: positive and negative literals x, ¬x.

type-2. Positive clauses of size two or larger: (x1 ∨ · · · ∨ xn), n ≥ 2.

type-3. Clauses with exactly one negative literal of size 3 or larger: (¬x0 ∨ x1 ∨ · · · ∨ xn), n ≥ 2.

We can eliminate type-1 clauses by unit propagation and obtain an equivalent formula
(regarding satisfiability). Observe that unit propagation gets rid of type-1 clauses, though it
might generate additional clauses of type-0, type-2, or type-3. Nevertheless, we end up only with
clauses of either type-0, type-2, or type-3 and, particularly, no type-1 clauses anymore. Notice
that this transformation does not preserve all the satisfying assignments, but one can maintain
the equivalence by adding fixed values of the eliminated variables in an assignment.

Now, we argue that after applying resolution on variables in KB \ H, we can ignore type-2 and
type-3 clauses. Let x be a variable and C ∪ {x}, D ∪ {¬x} be two clauses, then a single step of
resolution on the variable x yields a clause C ∨ D, whereas it removes both C and D. Observe
that we do not apply resolution to the variables in H. This is due to the reason that a satisfying
assignment s for the clause (x → yi) ∈ KB such that s(x) = 1 also forces s(yi) = 1. Furthermore,
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it also forces s(zi,j) = 1 for each zi,j such that (yi → zi,j) ∈ KB, and so on. This precisely captures
the intuition that x (as a hypothesis) explains each yi and zi,j. Consequently, removing such a
variable x from H (in resolution) in the case when x explains some m ∈ M would be problematic.

Finally, we claim that we can ignore the type-2 and type-3 clauses after the resolution. Type-2
clauses are irrelevant since such clauses do not explain anything. In other words, the satisfaction
of a type-2 clause does not force any particular variable to 1. In a type-3 clause of the form
C = (¬x0 ∨ x1 ∨ . . . ∨ xr) an assignment s such that s(x0) = 1 forces a whole clause (x1 ∨ . . . ∨ xr)

to be true. That is, s(xi) = 1 for at least one xi. This implies that type-3 clauses cannot be ignored
right-away because there might exist further clauses of the form ¬xj ∨ m for each 2 ≤ j ≤ r
with m ∈ M. This is due to the reason that the candidate explanation x1 for m would be lost.
However, after applying resolution, we know that a type-3 clause only forces one of the many
variables to 1 instead of a single one. As a result, this allows us to ignore type-3 clauses as well.
Consequently, we only need to consider type-0 clauses. This completes the proof in conjunction
with the reduction in Lemma 4.20.

The complexity results for p-ABD≤(Γ, |E|) in the above two cases follow from the monotone
argument of Lemma 4.10. Moving forward, the hardness of p-ABD=(Γ, |E|) and p-ABD≤(Γ, |E|)
when 〈Γ〉 = IS`10 is a consequence of the W[2]-hardness of these problems when 〈Γ〉 ⊇ IM.
However, we strengthen these results to W[2]-completeness by showing the membership in W[2]
in the following two lemmas.

Lemma 4.22. Let ` ≥ 2, then p-ABD=(Γ, |E|) is in W[2] if 〈Γ〉 ⊆ IS`10.

Proof. Consider the reduction from Lemma 4.20, where we reduce an instance (V, H, M, KB, k) of
p-ABD=(Γ, |E|) to the instance (φ, k) of p-WSAT(Γ2,1, κ) with φ =

∧
i≤n

∨
x∈Hi

x. The only difference

from the aforementioned reduction is that now there are additional constraints of the form
(¬x1 ∨ . . . ∨ ¬xr) in Γ, where r ≤ `. Now we have two cases to consider.

Case 1. If all the additional (negative) constraints contain exclusively variables from H, then we
simply add them to φ and obtain a new formula ψ. Since any satisfying assignment for ψ

satisfies φ and these constraints, this yields an explanation E as required. Conversely, any
such explanation E yields a satisfying assignment for ψ since E ∧ KB is consistent.

Case 2. If some constraints contain variables not from H, we transform these constraints into
their equivalents which only contain variables from H. This is achieved by repeating the
following procedure as long as applicable:

Let Cu be a constraint and u be a variable such that u 6∈ H. We first compute the set of
hypotheses Hu ⊆ H that explain u (analogously to Lemma 4.20). Let Hu = { h1, . . . , hr },
now we replace Cu by r copies of itself and in each Ci

u, substitute hi for u. Note that this
does not change the width of any clause. We repeat this procedure for every u such that
u 6∈ H. Finally, we add these new clauses to φ and obtain a new formula ψ.
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Now we prove the correctness of this transformation via the following claim.

Claim 4.3. The construction in Case 2 preserves the correspondence between the solutions of an instance
of ABD=(Γ, |E|) and the satisfying assignments for φ of weight k. Moreover, this transformation can be
achieved in time polynomial in the instance (V, H, M, KB, k).

Proof of Claim. Note that the difference between Lemma 4.20 and this case lies in the fact that a solution
to ABD=(Γ, |E|) must satisfy additional constraints as specified above. The problematic part is when
(¬xi,1 ∨ . . . ∨ ¬xi,j) ∈ KB for some variables {xi,1, . . . xi,j} ⊆ H. The formula ψ assures that a satisfying
assignment s can not have s(xi,p) = 1 for each p ≤ j as restricted by the constraint (¬xi,1 ∨ . . . ∨ ¬xi,j).
This implies that an explanation E for (V, H, M, KB, k) can not include the set {xi,1, . . . xi,j}. This proves
the correctness claim in conjunction with the arguments in Lemma 4.20 for φ.

Now we prove that this transformation can be achieved in polynomial time. The worst case is when
there is a clause C which contains no variable from H. Furthermore, assume that C has the maximum arity.
That is, C = (¬x1 ∨ . . . ∨ ¬xq) where q ≤ ` is the maximum arity of the constraint language Γ. Then we
know that the set Hx for each x ∈ C can have a size at most m, where |H| = m is bounded by the input
size. As a result, C yields at most mq new constraints at the completion of the above procedure. Since q
is constant (it only depends on the constraint language and not on the input instance), the factor mq is
polynomial. Finally, there are polynomial many constraints to check for this procedure and we conclude
that the transformation takes only polynomial time.

Eventually, similar arguments as in Lemma 4.20 for ψ complete the proof.

We wish to point out that the reduction in Lemma 4.22 does not immediately settle the
complexity for p-ABD≤(Γ, |E|) when 〈Γ〉 ⊆ IS`10. Nevertheless, we achieve W[2]-membership
by reducing p-ABD≤(Γ, |E|) to Short-NTM-Halt(κ) (the halting problem for non-deterministic
multi-tape Turing machines, parameterized by the number of steps).

Problem: p-Short-NTM-Halt(κ)

Input: A nondeterministic multi-tape TM M and k ∈N.
Parameter: k.
Question: Does M accept the empty string in at most k steps?

The problem Short-NTM-Halt(κ) is W[2]-complete [46, Thm. 7.28]. The following reduction
provides the W[2]-membership for p-ABD≤(Γ, |E|) such that 〈Γ〉 ⊆ IS`10.

Lemma 4.23. Let ` ≥ 2, then p-ABD≤(Γ, |E|) is in W[2] if 〈Γ〉 ⊆ IS`10.

Proof. The proof is an extension of Lemma 4.22. Proceeding as before, we map (V, H, M, KB, k) to
(ψ, k), where ψ is a collection of positive and negative clauses. Let Ui for i ≤ P (resp., Vj, j ≤ N)
denote the collection of positive (negative) clauses and L = P + N. We give a reduction that
provides a multi-tape NTM M such that ψ has a satisfying assignment of size at most k if and
only if M accepts the empty string in at most k′ steps and k′ ≤ g(k) for some function g. M
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consists of L + 1 tapes with one tape per each clause. The initial P tapes are dedicated to positive
clauses and the following N tapes to the negative ones. For convenience, we denote the ith tape
(corresponding to Ui) as ui for i ≤ P, and (P + j)th tape (corresponding to Vj) as vj j ≤ N. The
last tape is referred to as the tape L + 1. The computation of M has the following four phases.

1. For each j ≤ N, mark the length of Vj on the tape vj. At the same time, non-determinstically
write k elements x1, . . . , xk from V on the tape L + 1.

2. Remove duplicates from the tape L + 1.

3. Read the tape L+ 1. At the same time, for each tape wr ∈ {ui, vj}, mark a cell if the elements
being read appears in the respective clause Wr ∈ {Ui, Vj} where r ≤ L.

4. If at least one cell of each tape ui (i ≤ P) is marked and at least one cell of the tape vj

(j ≤ N) is unmarked, then accept.

We first claim that negative clauses of length greater than k can be ignored. The reason is that,
for any assignment s with weight k, a negative clause of length more than k still contains ¬z for
some variable z such that s(z) = 0. As a result, each negative clause of length greater than k is
trivially satisfied. This implies that the length of each tape corresponding to a negative clause is
bounded by k. For positive clauses, the length does not matter. This is because M only needs
to determine if at least one variable appearing in each positive clause is selected by the guessed
assignment. Consequently, M only scans at most k cells on each of its tapes.

Our construction requires that the length of each Vj is hardcoded on the tape vj for j ≤ N.
This ensures that M runs in parallel and does not need a state set of exponential size to ensure the
correct computation. For each negative clause Vj of length lj, the tape vj has length lj + 1, where
j ≤ N. This is achieved through having a collection of r + 1 states, where r = max

{
lj | j ≤ N

}
and r ≤ k. Moreover, even though M can guess duplicate elements, it must work with the
distinct collection of variables in the subsequent steps. In other words, multiple occurrences
of any variable must be removed from the guessed assignment. The alphabet of M constitutes
V ∪ {yes, ∗, #} where V is the collection of variables in ψ. We now present a detailed but high-level
description of M consisting of the following five phases in its computation.

1. In the first k steps, the head of the tape vj writes the symbol ‘∗’ for lj-many cells and the
symbol ‘#’ in the cell lj + 1, where lj is the length of Vj for j ≤ N. In the same steps, the
head of the tape (L + 1) non-deterministically writes k elements x1, . . . , xk from V, into the
first k cells. After k steps, all heads go back to the first cell.

2. In the next (at most) k2 steps, the head on the tape L + 1 removes any duplicates.

3. In the following h steps (where h ≤ k), the head of the tape (L + 1) reads the guessed
distinct elements x1, . . . , xh. At the same time, in rth of these steps (for r ≤ h), the head
of each tape ui determines whether Ui contains xr, for i ≤ P, while the head of each tape
vj determines if ¬xr appears in Vj for j ≤ N. In the first case, M marks the cell with ‘yes’,
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and it does not mark anything new in the latter case (∗ remains there). After marking the
cell, each head moves right. Finally, if the variable xr does not appear in the corresponding
clause, the heads neither move nor mark anything.

4. After the previous h ≤ k steps, the head on tapes ui for i ≤ P moves one cell to the left
while, for other tapes, it stays in the same cell.

5. If each head reads ‘yes’ in the ui-tapes (i ≤ P) and a ‘∗’ in vj-tapes (j ≤ N), then M accepts.

We claim that the above translation between (ψ, k) and (M, k′) for some value of k′, is indeed an
FPT-reduction. Moreover, the reduction works as desired.

Claim 4.4. M can be constructed from ψ in FPT-time. Moreover, M accepts the empty input in at most
k′ steps where k′ = k2 + 3k + 2, if and only if ψ has a satisfying assignment of size at most k.

Proof of Claim. Recall that M has L + 1 tapes, where L is the number of clauses in ψ. Moreover, the
alphabet of M constitutes V ∪ {yes, ∗, #} where V is the collection of variables in ψ. Finally, M has
k +O(1) states, where k of these states are required to ensure the first phase of the computation.

In the phase 1, the head on the tape L + 1 moves right, writing x ∈ V (non-deterministically).
Moreover, the head on vj (j ≤ N) writes the symbol ‘∗’ for lj many cells and the symbol ‘#’ in the last cell,
where lj ≤ k is the length of Vj. In each case, head stays in the last cell. To bring the head back to the first
cell on the tape L + 1, it can read any element x ∈ V. However, the head on each vj-tape (j ≤ N) reads
the symbol ‘#’ exactly once and the symbol ‘∗’ in the remaining cells. M’s transitions force every head
on the tape vj to move one step to the left by reading ‘#’, after that, it can only read the symbol ‘∗’. This
implies that the transition relation of M has the size O(k · |ψ|2) for the first phase. Finally, the transition
in the following phases for removing duplicates, variables comparison, and the final check each has size
O(k · |ψ|). As a result, M can be constructed from ψ in FPT-time. This proves the first part of the claim.

For the second part of the claim, notice that M runs for 2k + k2 + k + 2 many steps. The first 2k
steps account for marking the length of each negative clause on the corresponding tapes and for guessing k
elements on the tape L + 1. In both cases, the head of each tape must move back to scan the first cell (the
reason for the 2k steps). The following k2 steps are required to determine and remove duplicates from the
guessed list of variables. Lastly, at most k steps are required to compare variables against each clause, and
the final two steps determine the acceptance criteria for each tape.

We prove the correctness through the following equivalence, where an assignment s is seen as a set of
variables x such that s(x) = 1.

• M guesses k elements in such a way that the head of the tape ui (i ≤ P) reads ‘yes’, no head of the
tape vj (j ≤ N) reads ‘#’ and the machine halts in the accepting state.

• The assignment s of weight at most k guessed by M is such that s contains at least one variable per
each positive clause and for each negative clause, s does not contain all of its variables.

• ψ has a satisfying assignment s of weight at most k, s(x) = 1 for at least one x ∈ Ui and every
i ≤ P, and s(y) 6= 1 for each y ∈ Vj and j ≤ N.
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Consequently, if ψ has a satisfying assignment s of weight k, then M simply guesses this assignment and
halts in the accepting state. Conversely, if M accepts, then the guessed elements constitute a satisfying
assignment for ψ.

This completes the proof to Lemma 4.23 by noting that the pair (ψ, k) in Lemma 4.22 can be
constructed from an instance (V, H, M, KB, k) of ABD≤(Γ, |E|) in FPT-time.

Regarding the parameter |E|, the only cases where p-ABD≤(Γ, |E|) and p-ABD=(Γ, |E|) have
different complexity is when 〈Γ〉 ⊆ IS12. The problem p-ABD≤(Γ, |E|) is FPT (Corollary 4.17). In
the following two lemmas, we prove the W[1]-completeness of ABD=(Γ, |E|). The W[1]-hardness
for ABD=(Γ, |E|) is proven for the languages Γ such that ¬x ∨ ¬y ∈ 〈Γ〉 6=.

Lemma 4.24. ABD=(Γ, |E|) is W[1]-hard for any constraint language Γ such that ¬x ∨ ¬y ∈ 〈Γ〉 6=.

Proof. We reduce p-IndependentSet(κ) to ABD=(Γ, |E|) where Γ is a CL such that ¬x ∨ ¬y ∈
〈Γ〉 6=. An instance (G, k) of p-IndependentSet(κ) constitutes a graph G = (Ṽ, Ẽ)2 and a number
κ(G) = k, the question is whether there is an independent set of size k in G. The problem
p-IndependentSet(κ) is W[1]-complete when κ is the size of the independent set [31]. Let (G, k)
be an instance of p-IndependentSet(k) where G = (Ṽ, Ẽ) is a graph and k is the solution size.
We map it to (V, H, M, KB, k + 1), where V = H := Ṽ ∪ {z}, M := z, and

KB :=
∧

(x,y)∈Ẽ

(¬x ∨ ¬y).

Let S be an independent set of size k for G, then S ∧ KB is consistent since no two elements of S
share an edge. As a consequence, S ∪ {z} is an explanation for (V, H, M, KB, k + 1). Conversely,
an explanation E for (V, H, M, KB, k + 1) of size k + 1 must include z as well as k other variables
from H. Now, E ∧KB is consistent, and this implies that no two variables in E share an edge in Ẽ,
consequently giving an independent set of size k. This implies that G admits an independent set
of size k if and only if (V, H, M, KB) admits an explanation of size k + 1.

Now we prove W[1] membership for ABD=(Γ, |E|) with 〈Γ〉 ⊆ IS`12 (for any arbitrary base) in
the lemma below.

Lemma 4.25. Let ` ≥ 2, then p-ABD=(Γ, |E|) is in W[1] if 〈Γ〉 ⊆ IS`12.

Proof. We reduce p-ABD=(Γ, |E|) to p-WSAT(Γ1,`, κ), which is W[1]-complete when κ is the
weight of a satisfying assignment (Prop. 2.12). It is worth pointing out that the proof is correct
even when equality constraints are present. As a result, the base independence is not implied by
the previous lemmas but follows directly from the proof below.

According to Lemma 4.15, we can solve ABD≤(Γ) when Γ ⊆ IS`12 in polynomial time. In
other words, in polynomial time, one can determine whether there exists a solution of size ≤ s

2We deote G = (Ṽ, Ẽ) to differentiate nodes and edges of G from V and E in the context of an abduction instance
and an explanation, respectively.
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of an instance. Let (V, H, M, KB, k) be an instance of p-ABD=(Γ, |E|) with KB =
∧

i≤r
Ci ∧ N ∧

P ∧ Q, where Ci = (¬xi
1 ∨ · · · ∨ ¬xi

`). Moreover, P, N denote the positive and negative unit
clauses, respectively, and Q are the equality clauses. Without loss of generality, assume that
(V, H, M, KB, k) admits a solution of size ≤ k (otherwise, there is no solution of size k). It follows
from the proof of Lemma 4.15 that EMP ⊆ E ⊆ H is true for any explanation E of the give
instance. This implies that k ≥ |EMP|. We also know from Lemma 4.15 that EMP is an explanation
for M and that both EMP and M are consistent with all clauses in KB.

The question now reduces to whether we can extend EMP to a solution of size k by adding
k− |EMP| variables from H \ EMP? To answer this, we map an abduction instance (V, H, M, KB, k)
to a satisfiability instance (φ, k− |EMP|), where φ is obtained from KB by the application of the
following consecutive steps.

1. For each (xi = xj) ∈ KB, such that xi, xj ∈ H, add clauses (¬xi ∨ xj) and (xi ∨ ¬xj) to φ.
This ensures that corresponding to each clause of the form (xi = xj), either both xi, xj are in
the solution, or none is.

2. Remove all clauses Ci containing only variables from V \ H.

3. Remove all negative unit clauses (¬x) ∈ N such that x /∈ H. Note that after this step all
remaining negative unit clauses are built upon variables from H \ EMP only.

4. For each clause Ci, denote by Xi
H (resp., Xi

H
) the variables from H (resp., not from H).

Execute the following steps:

(a) Remove Ci.

(b) If Xi
H
⊆ P: add the clause (¬x1 ∨ · · · ∨ ¬xp) to φ, where {x1, . . . , xp} = Xi

H \ EMP.
Otherwise, nothing needs to be done as Xi

H
6⊆ P is true. That is, we have x /∈ P for

some variable x ∈ Xi
H

and ¬x ∨∨xj∈Xi
H
¬xj is satisfiable via setting x to 0 if all xj are

mapped to 1.

Note that, after this step, all remaining clauses Ci are built upon variables from H alone.

5. Remove all positive unit clauses (x) ∈ P such that x /∈ H \ EMP. After this step, it holds that
Vars(φ) = H and remaining positive unit clauses are built upon variables in H \ EMP only.

6. For each clause Ci: remove from Ci all literals built upon variables in EMP. Note that in the
so-obtained C′i at least one literal remains, otherwise EMP ∧ Ci would be inconsistent.

After the above implementation, it holds that Vars(φ) = H \ EMP. As a consequence, we have the
following equivalence.

• (V, H, M, KB, k) admits a solution of size exactly k.

• EMP extends to a solution E of size k by adding k− |EMP| variables from H.
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• φ has a satisfying assignment of size exactly k− |EMP|.

Finally, notice that φ can be constructed from (V, H, M, KB, k) in polynomial time and that
k− |EMP| is bounded by a function of k alone (because |EMP| ≤ k) This implies that the reduction
is indeed an FPT-reduction and completes the proof of the lemma.

4.2.4 Parameter ‘number of manifestations’ |M|
The complexity landscape regarding the parameter |M| is more diverse than the parameter |E|.
The classification differs for each of the investigated problem variant. Consequently, we treat each
case separately and start with the general abduction problem, which provides a pentachotomy.

Theorem 4.26. The problem p-ABD(Γ, |M|) is

1. paraΣP
2 -complete if C ⊆ 〈Γ〉 ⊆ BR, where C ∈ {IN2, II0},

2. paraCoNP-complete if IN ⊆ 〈Γ〉 ⊆ II1,

3. paraNP-complete if IE0 ⊆ 〈Γ〉 ⊆ IE2,

4. W[1]-complete if IS2
11 ⊆ 〈Γ〉 ⊆ C, where C ∈ {ID2, IS`10},

5. FPT if 〈Γ〉 ⊆ C ∈ {ID1, IS12, IE1, IV2}.

Proof. (1+2). The membership is trivial since ABD(Γ) is in ΣP
2 (resp. CoNP) in this case. Moreover,

we proved in Lemma 4.11 using the fact that 1-slice of each problem is (classically) hard for
respective classes.

(3). The membership is trivial since ABD(Γ) is NP-complete in this case. For hardness, we
prove that 1-slice of p-ABD(Γ, |M|) is NP-hard.

Notice that due to Nordh and Zanuttini [89, Lemma 29] any abduction instance can be reduced
to an equivalent one with only one manifestation, provided that one can express certain clauses in
the KB. The idea is to encode the set M of manifestations by a single new manifestation y while
adding the clause y∨ ∨

m∈M
¬m to the KB. Recall that M is a (positive) set of propositions, implying

that the clause y ∨ ∨
m∈M
¬m is a Horn clause. Consequently, the aforementioned reduction is

valid if KB is a Γ-formula such that IE0 ⊆ 〈Γ〉. This reduction in conjunction with the result
for abduction problem with single literal manifestation ([89, Prop. 53]) implies that 1-slice of
p-ABD(Γ, |M|) is NP-hard if IE0 ⊆ 〈Γ〉. As a consequence, the problem is paraNP-complete.

(4). The W[1]-membership for ABD(Γ, |M|) such that 〈Γ〉 ⊆ ID2 follows from a result by
Fellows et al. [43, Thm. 25]. Notice that the authors (in [43]) prove the completeness for the
languages in ID2 alone, but using the fact that the formulas (or clauses) in their reduction are
Γ-formulas where 〈Γ〉 = IS2

11, we derive the hardness for p-ABD(Γ, |M|) such that 〈Γ〉 = IS2
11.

The W[1]-membership for p-ABD(Γ, |M|) such that 〈Γ〉 ⊆ IS`10 is established in Lemma 4.29. As a
consequence, we have the desired completeness result.

(5). Follows from Corollary 4.12.
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If Γ is definite Horn, that is, 〈Γ〉 = IE1, then p-ABD≤(Γ, |M|) surprisingly behaves different
and has a much higher complexity as compared to p-ABD(Γ, |M|).

Theorem 4.27. The problem p-ABD≤(Γ, |M|) is

1. paraΣP
2 -complete if C ⊆ 〈Γ〉 ⊆ BR, where C ∈ {IN2, II0},

2. paraCoNP-hard if IN ⊆ 〈Γ〉 ⊆ II1,

3. paraNP-complete if IE ⊆ 〈Γ〉 ⊆ IE2,

4. W[1]-complete if IS2
11 ⊆ 〈Γ〉 ⊆ C, where C ∈ {ID2, IS`10},

5. FPT if 〈Γ〉 ⊆ C ∈ {ID1, IS12, IV2}.

Proof. (1+2). Follows from Theorem 4.26 in conjunction with Lemma 4.8.
(3). The membership is trivial since ABD≤(Γ) is in NP for this case. For hardness, we prove

that 1-slice of p-ABD≤(Γ, |M|) is NP-hard by reducing from the classical vertex cover problem
(VertexCover). We argue that the reduction preseted by Fellows et al. [43, Thm. 5] is applicable
to our case as well. An instance (G, s) of VertexCover, where G = (Ṽ, Ẽ) is translated into
an abduction instance (V, H, M, KB, s), where V := Ṽ ∪ Ẽ ∪ {m}, H := Ṽ, M := {m}, and
KB := (m

∨
e∈Ẽ
¬e) ∧ ∧

e={x,y}
((x → e) ∧ (y→ e)). It is important to observe that KB is a Γ-formula

for 〈Γ〉 = IE, consequently giving the desired hardness result.
(4). The membership for ABD≤(Γ, |M|) such that 〈Γ〉 ⊆ ID2 follows from Fellows et al.[43,

Thm. 25]. Notice that the authors in [43] prove the completeness for the languages in ID2 alone,
but using the fact that the formulas (or clauses) in their reduction are Γ-formulas where 〈Γ〉 = IS2

11,
we derive the hardness for p-ABD≤(Γ, |M|) such that 〈Γ〉 = IS2

11. The W[1]-membership for the
languages Γ such that 〈Γ〉 ⊆ IS`10 is established in Lemma 4.30.

(5). FPT-membership for p-ABD≤(Γ, |M|) such that 〈Γ〉 ⊆ IM is proven in Lemma 4.31.
Lemma 4.32 strengthens this result to p-ABD≤(Γ, |M|) when 〈Γ〉 ⊆ IV2. The remaining cases
follow from Corollary 4.17.

We conclude this subsection by presenting the theorem for ABD=(Γ, |M|). Surprisingly, the
majority of cases are already paraNP-complete. Even the case of the essentially negative co-clones,
which are FPT for ABD≤ yield paraNP-completeness in this situation. Merely the 2-affine and
dualHorn cases are FPT.

Theorem 4.28. The problem p-ABD=(Γ, |M|) is

1. paraΣP
2 -complete if C ⊆ 〈Γ〉 ⊆ BR, where C ∈ {IN2, II0},

2. paraCoNP-hard if IN ⊆ 〈Γ〉 ⊆ II1,

3. paraNP-complete if C1 ⊆ 〈Γ〉, where C1 ∈ {IS2
1, IE} and 〈Γ〉 ⊆ C2 ∈ {IE2, ID2},

4. FPT if 〈Γ〉 ⊆ C ∈ {ID1, IV2}.
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Proof. (1+2). Follow from Theorem 4.26 in conjunction with Lemma 4.9.
(3). The membership is trivial since ABD=(Γ) is in NP for each of these case. The hardness

for ABD=(Γ) when IE ⊆ 〈Γ〉 follows from the argument used in the proof of Theorem 4.27 for
the IE case. We prove the hardness for the remaining cases in Lemma 4.33 where we show that
p-ABD=(Γ, |M|) is paraNP-hard as long as (¬x ∨ ¬y) ∈ 〈Γ〉 6=. The case for p-ABD=(Γ, |M|),
such that 〈Γ〉 ⊇ IS2

1 (also for arbitrary bases) then follows as a corollary.
(4). The proof for p-ABD=(Γ, |M|) such that 〈Γ〉 ⊆ IV2 is due to the monotone argument of

Lemma 4.10 and Theorem 4.27. The result for 〈Γ〉 ⊆ ID1 is due to Corollary 4.17.

Intermediate Lemmas

Our first result is the W[1]-membership of p-ABD(Γ, |M|) when 〈Γ〉 ⊆ IS`10. The membership
is achieved by reducing p-ABD(Γ, |M|) to Short-NSTM-Halt(κ) (the halting problem for non-
deterministic single-tape Turing machines, parameterized by the number of steps).

Problem: p-Short-NSTM-Halt(κ)

Input: A non-deterministic single-tape TM M and k ∈N.
Parameter: k.
Question: Does M accept the empty string in at most k steps.?

The problem Short-NSTM-Halt(κ) is W[1]-complete [46, Thm. 6.17]. The proof of the
following lemma uses the reduction from Lemma 4.23 and the fact that a multi-tape TM M can
be simulated by a single-tape machine M′. Moreover, this can be achieved only with a quadratic
blow-up in the running time of M′ [106, Theorem 7.8].

Lemma 4.29. Let ` ≥ 2 then the problem p-ABD(Γ, |M|) is in W[1] if 〈Γ〉 ⊆ IS`10.

Proof. Notice first that the problem p-ABD(Γ, |M|) does not impose any restriction on the size of
a solution. As a consequence, an instance (V, H, M, KB, k) of p-ABD(Γ, |M|) has a solution iff the
formula ψ constructed for the reduction in Lemma 4.22 is satisfiable. Recall that the parameter
value k in the present case is |M|, which corresponds to the number of positive clauses in ψ. We
claim that it is enough to determine if ψ has a satisfying assignment with weight at most k.

Claim 4.5. Let φ be any Γ2,1-formula with k positive and n negative clauses. Then φ is satisfiable if and
only if φ has a satisfying assignment of weight at most k.

Proof of Claim. Let Ui (resp. Vj) for i ≤ k (j ≤ n) denote the collection of positive (negative) clauses
in φ. If φ has a satisfying assignment with weight at most k, then φ is clearly satisfiable. For the other
direction, note that if s |= φ for some assignment s then, s ∩Ui 6= ∅ for any i ≤ k and Vj 6⊆ s for j ≤ N.
Where we consider s as the collection of variables that are mapped to 1. Let s′ be the assignment obtained
from s such that, for each positive clause Ui, s′ selects exactly one variable from Ui (with repetition allowed
for different clauses). Then s′ |= φ and |s′| ≤ k. This is because s′ selects exactly one variable from each
positive clause and s′ ⊆ s.
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Now we modify the reduction from Lemma 4.23 and argue that the resulting multi-tape TM
M can be simulated by a single-tape machine M′. This completes the desired reduction from
p-ABD(Γ, |M|) to p-Short-NSTM-Halt(κ), when 〈Γ〉 ⊆ IS`10. We further claim that the blow-up
in the size of M′ is only in terms of |M| = k, and M′ runs for f (k) steps for some function f . We
ignore negative clauses in ψ of length greater than k, as before. This implies that there are at most
2k negative clauses. Moreover, ψ contains k positive clauses. Consequently, the number of tapes
in M (see Lemma 4.23) is bounded by k + 2k + 1 . We argue that the size of M′ is O(2k · p(|ψ|))
where p is some polynomial. This is because there are 2k + k + 1 tapes in the worst case and
therefore, the size of each transition (of M′) is bounded by O(2k). As a result, the size of M′

is O(2k · |M|) where |M| = O(k · |ψ|2). Moreover, M′ runs for 22k · f (k)2 steps where f (k) is
the number of steps taken by M (for details of the simulation, see the textbook of Sipser [106,
Theorem 7.8]). The correctness follows due to Claim 4.5 and Lemma 4.23. This completes the
proof of the lemma by observing that the given translation is indeed an FPT-reduction.

The translation presented in the proof of Lemma 4.29 poses an interesting question: can
one always reduce an instance (M, k) of p-Short-NTM-Halt(κ) to an instance (M′, k′) of
p-Short-NSTM-Halt(κ′)? The answer to this question is clearly ‘no’. Although one can achieve
this translation in FPT-time, this is not always an FPT-reduction (see Def. 2.10) unless the number
of tapes in M is also bounded by some function in k. In other words, the presence of a function g
such that k′ ≤ g(k) implies that the reduction between M and M′ is an FPT-reduction. Indeed
this is impossible in the general case unless the first two levels of the W-hierarchy collapse.

Now we argue that with some slight modifications, the translation from Lemma 4.29 also
answers p-ABD≤(Γ, |M|) if 〈Γ〉 ⊆ IS`10.

Lemma 4.30. Let ` ≥ 2 then the problem p-ABD≤(Γ, |M|) is in W[1] if 〈Γ〉 ⊆ IS`10.

Proof. Let (V, H, M, KB, s, k) be an instance of p-ABD≤(Γ, |M|), such that the task is to find an
explanation of size at most s where |M| = k is the parameter value. We argue that the reduction
in Lemma 4.29 can be extended to solve the problem in this case. In Lemma 4.29 we proved that
there is an explanation for p-ABD(Γ, |M|) if and only if there is an explanation of size |M| at
most, if 〈Γ〉 ⊆ IS`10. Now we have the following two cases.

Case 1. If k ≤ s, then the result holds already due to Lemma 4.29 (in particular Claim 4.5). This
is because a solution of size at most k is also a solution of size at most s and there can be no
solution of size in between k and s if there is no solution of size at most k.

Case 2. If s < k, the solution size is still bounded by the value of the parameter. Our reduction in
the proof of Lemma 4.29 takes care of this change by producing two parameter values k1

and k2 such that k1 = k = |M| and k2 = s. This refined reduction is still an FPT-reduction
because the parameter value k1 + k2 is bounded by a function in k, that is, k1 + k2 < 2k. The
rest of the reduction remains the same. The only difference now is that the machine (say
M′′) guesses k2 elements and not k1 as M′ does in Lemma 4.29.
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This completes the proof to our lemma.

Now we prove FPT-membership for p-ABD≤(Γ, |M|), where 〈Γ〉 ⊆ IM, by reducing our
problem to the parameterized MaxSATs problem which asks, given an instance I as a collection
of m clauses, is it possible to set at most s variables to true so that at least κ(I) clauses are satisfied.
The problem p-MaxSATs(κ) (formally defined below) is FPT when κ is the minimum number of
clauses to be satisfied [14, Prop. 4.3]. We alter the notation slightly to fit our setting.

Problem: p-MaxSATs(κ)

Input: A collection C of clauses, and s, k ∈N .
Parameter: k (the number of clauses to be satisfied).
Question: Does setting at most s variables true satisfies at least k

clauses?

Lemma 4.31. The problem p-ABD≤(Γ, |M|) is FPT if 〈Γ〉 ⊆ IM.

Proof. Given an instance (V, H, M, KB, s, k) with KB =
∧

i≤r
(xi → yi) and M = m1 ∧ . . .∧mk. Recall

that each mi ∈ M can be explained by a single hi ∈ H. If k ≤ s, then there is nothing to prove.
That is, there are fewer than s many sets of the form Hi each explaining an mi ∈ M (see the
proof of Lemma 4.20). As a consequence, we need only select one hi,j from each Hi as the part
of an explanation to yield a solution of size ≤ s. Accordingly, assume that k > s. Proceed as in
the proof of Lemma 4.20 and associate a set Hi ⊆ H of hypotheses with each mi, such that Hi

explains mi for i ≤ k. It is enough to check whether selecting at most s many elements hi ∈ H
can explain all the manifestations mi ∈ M.

Let H′ be the collection of all Hi’s. For each i let Ci be the clause
∨

hi,j∈Hi

hi,j. Furthermore, let C

be the collection of all such clauses. Then C is built over variables in V ′ =
⋃

i Hi. Our reduction
maps an instance (V, H, M, KB, s, k) of p-ABD≤(Γ, |M|) to an instance (C, s, k) of p-MaxSATs(κ).
Note that we only have |M| = k many clauses in C and, as a result, the question reduces to
whether it is possible to set at most s variables from V ′ to satisfy every clause in C? Since
each Hi can be computed in polynomial time, the whole computation takes polynomial time.
Finally, the parameter value k of the two instances (C, s, k) and (V, H, M, KB, s, k) is the same, and
consequently, the reduction is indeed an ≤FPT-reduction. This completes the proof.

It is easy to observe that the FPT-membership from Lemma 4.31 can be extended to languages Γ
such that 〈Γ〉 ⊆ IV2. This is achieved using the same argument as in the proof of Lemma 4.21
regarding the type of clauses in the knowledge base KB.

Corollary 4.32. The problem p-ABD≤(Γ, |M|) is FPT if 〈Γ〉 ⊆ IV2.

Proof. After applying unit propagation and resolution, we can ignore positive clauses of length
≥ 2 and clauses with one negative literal of length ≥ 3.

Finally, we present the intractability of p-ABD=(Γ, |M|) for the majority of the cases.
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Lemma 4.33. The problem p-ABD=(Γ, |M|) is paraNP-hard, for any CL Γ such that ¬x ∨ ¬y ∈ 〈Γ〉 6=.

Proof. We prove that the 1-slice of the problem is NP-hard by reducing from IndependentSet

(which is NP-complete [67]) to p-ABD=(Γ, |M|) with |M| = 1. The reduction is essentially the
classical counterpart of the one presented in Lemma 4.24. Let G := (Ṽ, Ẽ) be an instance of
IndependentSet, we map it to (V, H, M, KB, s), where V = H := Ṽ ∪ {z}, M := z,

KB :=
∧

(x,y)∈Ẽ

(¬x ∨ ¬y),

and s := k + 1. Then G admits an independent set of size k if and only if (V, H, M, KB, s) admits
an explanation of size s.

Notice that we did not mention the base independence for essentially negative languages in
the previous proof. This is because, the paraNP-membership as well as the base independence
already holds for p-ABD=(Γ, |M|), when 〈Γ〉 ⊆ C ∈ {IE2, ID2}. This gives the desired results for
essentially negative languages as well.

We conclude this chapter by pointing out that the Galois connection (Prop. 2.1) is true
for p-ABD∗(Γ, κ) under FPT-reductions for each constraint language Γ and parameterization κ.
Figure 4.1 presents an overview of our results for ABD∗(Γ, κ) for each CL Γ and κ.
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Figure 4.1: Complexity landscape of abductive reasoning with respect to each parameter κ ∈
{|M|, |H|, |V|, |E|}. White colouring means unclassified. ABD? means same result for all three
variants. Each result depicts completeness for the mentioned class except for FPT-cases, or
specified otherwise.
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CHAPTER 5
LOGICAL INFERENCE: ARGUMENTATION

In this chapter, we explore the parameterized complexity of problems in logic-based
argumentation concerning Schaefer’s framework. The problems of interest are (1)
to find a support Φ for a claim α (ARG), (2) to determine whether the pair (Φ, α)

is an argument (ARG-Check), and (3) to determine whether a formula ψ is relevant
for the support of an argument (ARG-Rel). The proofs in this chapter also use the
technical expressibility results from Chapter 4. Moreover, we state and prove a few
more expressibility results (regarding inequality) that we need in this chapter. In the
second section, we prove that the tautology problem for any constraint language Γ
can be decided in polynomial time. This is followed by the parameterized complexity
analysis for the implication problem. For problems in argumentation, we consider
each parameter in a separate subsection. Notice that, an input instance for the
problems considered in this chapter (ARG, IMP, etc.) often consists of more than
one types of formulas. For example, an instance of IMP(Γ) is the pair (Φ, α). This
yields two variants of the parameterization ‘number of variables’, namely |var(Φ)|
and |var(α)|. We conclude the chapter by a discussion on the base independence
(Property 2.1) in the parameterized setting for each considered problem. Figure 5.1
present a complexity overview for problems in ARG.

5.1 Technical Implementation Results

We begin by proving some further expressivity results that are essential in achieving certain
reductions for problems in argumentation.

Lemma 5.1. Let Γ be a CL that is neither ε-valid, nor EP, nor EN. Then, if Γ is

1. neither Horn, nor dualHorn, nor complementive, then (x 6= y) ∧ t ∧ ¬ f ∈ 〈Γ〉 6∃, 6=,

85
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2. complementive, but neither Horn, nor dualHorn, then (x 6= y) ∈ 〈Γ〉 6∃, 6=, and

3. Horn or dualHorn, then (x = y) ∧ t ∧ ¬ f ∈ 〈Γ〉 6∃, 6=.

Proof. This follows immediately from the proof of Lemma 4.2. The proof makes a case distinction
according to whether Γ is 0- and/or 1-valid. In the case of non ε-valid Γ, a further case distinction
is made according to Γ being Horn and/or dualHorn.

Let T = {(1)} and F = {(0)} denote the unary relations. The relation T (resp., F) implements
true (false). Then we have the following implementation results.

Proposition 5.2 (Creignou et al. [23]). If Γ is a CL that is

1. complementive but not ε-valid, then (x 6= y) ∈ 〈Γ〉 6∃, 6=,

2. neither complementive, nor ε-valid, then (t ∧ ¬ f ) ∈ 〈Γ〉 6∃, 6=,

3. 1-valid but not 0-valid, then T ∈ 〈Γ〉 6∃, 6=,

4. 0-valid but not 1-valid, then F ∈ 〈Γ〉 6∃, 6=, and

5. 0-valid and 1-valid, then (x = y) ∈ 〈Γ〉 6∃, 6=.

5.2 Implication and Tautology

In this section, we consider the parameterized complexity of the tautology (TAUT) and the
implication problem (IMP). These two problems play a central role in proving results for
argumentation. The problem TAUT is defined as follows.

Problem: TAUT(Γ) — Γ is a constraint language

Input: A Γ-formula φ.
Question: Is φ a tautology?

Since TAUT has not been considered before in Schaefer’s framework, we first discuss its classical
complexity. The following notation is essential in formalizing the proofs in this section. We
say that a relation R is full with respect to a constraint R(x1, . . . , xk) if each assignment s over
{x1, . . . , xk} yields a tuple in R. Furthermore, a k-ary relation R is said to be full if R = {0, 1}k. It
is worth mentioning that the variables x1, . . . , xk in the constraint R(x1, . . . , xk), are not necessarily
distinct. Finally, a constraint R(x1, . . . , xk) is a tautology if the relation R is full with respect to
R(x1, . . . , xk). We elaborate these concepts with the help of an example.

Example 5.3. Let φ(x) = R(x, x) be a constraint where R = {00, 11}. Then R is full with respect to
R(x, x), however, R is not full with respect to R(x, y). As a consequence, φ(x) is a tautology, whereas,
ψ(x, y) = R(x, y) is not. /
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As Example 5.3 demonstrates, a constraint can be a tautology, even though the underlying
relation is not full. We now prove that the tautology problem (for ay CL) can be solved in
polynomial time.

Lemma 5.4. Let Γ be any constraint language. Then, TAUT(Γ) ∈ P.

Proof. Let a φ be a Γ-formula given as a conjunction of Γ-constraints. It suffices to check whether
each constraint R(x1, . . . , xk) in φ is a tautology. Determining if R(x1, . . . , xk) is a tautology,
amounts to verifying whether the relation R is full with respect to R(x1, . . . , xk). It is possible to
check in constant time whether R is full with respect to R(x1, . . . , xk) because of the following
observation. The maximum arity of the underlying relations in Γ is fixed, this implies that the
arity of R is constant. As a result, the number of distinct variables in R(x1, . . . , xk) is also constant.
Consequently, one can determine whether each constraint in φ is a tautology in time O(|φ|).

Let φ be a Γ-formula and s be an assignment. Then, φ[s] denotes the reduct of φ under s.
That is, the formula obtained from φ by instantiating each variable x ∈ dom(s) by s(x). Notice
that φ[s] is a Γ-formula with constants from {0, 1}. Moreover, the notion of a relation R being
full with respect to a constraint R(α1, . . . , αk) can be easily lifted to the case where some of the
αi ∈ {0, 1} are constants and other αj’s are variables. Formally, a relation R is full with respect to
R(α1, . . . , αk), if R ⊇ S, where

S =
{
(a1, . . . , ak) ∈ {0, 1}k

∣∣∣ ai = αi if αi ∈ {0, 1}, i ≤ k
}

.

In other words, each tuple in R must agree with constants for specified positions. We give an
example below for better understanding of the notation.

Example 5.5. Let φ = R(x, y, z) be a constraint where R = {000, 100, 101, 110, 111} and let s be an
assignment such that s(x) = 0. Clearly, φ[s] = R(0, y, z) and R is not full with respect to R(0, y, z) since
000 is the only allowed tuple from R (that agree with s(x) = 0). However, considering s(x) = 1 implies
that R is full with respect to R(1, y, z). /

We strengthen Lemma 5.4 to cases when constraints can also take constant values. In
other words, we prove that determining whether φ[s] is a tautology for a formula φ and some
assignment s can be solved in polynomial time. Keep in mind that φ[s] is a tautology, if and only
if θ |= φ[s] for every assignment θ over Vars(φ)\dom(s).

Lemma 5.6. Let Γ be any CL, φ be a Γ-formula, and s be an assignment. Then determining whether φ[s]
is a tautology can be solved in polynomial time.

Proof. The task is to determine whether each constraint R(α1, . . . , αk) in φ[s] is a tautology.
Moreover, this is true if each relation R is full with respect to the constraint R(α1, . . . , αk). As a
result, in the worst case, one needs to verify that all 2k-many tuples are present in R. A similar
argument as in the proof of Lemma 5.4 implies that this can be achieved in constant time (as k is
bounded by a constant). This gives a running time linear in |φ| and membership in P.
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Now we explore the parameterized complexity of implication (IMP) in Schaefer’s framework.
Let Φ denote a set of Γ-formulas α be a Γ-formula.

Problem: p-IMP(Γ, κ)

Input: (Φ, α, k).
Parameter: k.
Question: Is Φ |= α true?

For p-IMP(Γ, κ), we consider three parameters κ ∈ {|Φ|, |var(Φ)|, |var(α)|} (see Lemma 4.4).
Where, |Φ| denotes the number of formulas in Φ and |var(χ)| is the number of variables in
χ ∈ {Φ, α}. The following corollary is due to Schnoor and Schnoor [104, Theorem 6.5].

Corollary 5.7. Let Γ be a CL. IMP(Γ) is in P when Γ is Schaefer and CoNP-complete otherwise.

Observe that P-membership (resp., CoNP) of IMP(Γ) from Corollary 5.7 can be adapted
to the case when Φ is a set of formulas. This is due to the reason that Φ |= α iff Ψ |= α

where Ψ :=
∧

φ∈Φ
φ. Consequently, the parameterized problem p-IMP(Γ, κ) is FPT when Γ is

Schaefer for each κ ∈ {|Φ|, |var(Φ)|, |var(α)|}. Now we consider the cases when Γ is non-Schaefer.
Clearly, p-IMP(Γ, κ) is in paraCoNP for each κ ∈ {|Φ|, |var(Φ)|, |var(α)|}. In the following, we
differentiate the restrictions on Φ from the ones on α. In other words, we introduce a technical
variant, IMP(Γ′, Γ) of the (classical) implication problem. An instance of IMP(Γ′, Γ) is a tuple
(Φ, α), where Φ is a set of Γ′-formulas and α is a Γ-formula. The following corollary also follows
from the work of Schnoor and Schnoor [104, Theorem 6.5]. This is essential in achieving the base
independence (Property 2.1) for the implication problem.

Corollary 5.8. Let Γ and Γ′ be non-Schaefer CLs. If Γ′ ⊆ 〈Γ〉 then IMP(Γ′, Γ) ≤P
m IMP(Γ).

Regarding non-Schaefer CLs, it turns out that the parameter κ ∈ {|Φ|, |var(α)|} does not help
in achieving tractability. The hardness of p-IMP(Γ, |Φ|) when Γ is non-Schaefer, follows from
Corollary 5.7 because instances of the implication problem considered by Schnoor and Schnoor
are pairs (φ, α) (that is, |Φ| = 1).

Corollary 5.9. p-IMP(Γ, |Φ|) is paraCoNP-complete when Γ is a non-Schaefer CL.

The hardness of p-IMP(Γ, |var(α)|) is established in the following lemma. The underlying
idea of the reduction is that the formulas in Φ do not necessarily share a set of variables with α.

Lemma 5.10. p-IMP(Γ, |var(α)|) is paraCoNP-complete if Γ is a non-Schaefer CL.

Proof. To achieve the lower bounds, we reduce from the unsatisfiability problem (UNSAT).
UNSAT(Γ) asks whether an input Γ-formula φ is unsatisfiable. Moreover, checking
unsatisfiability of a Γ-formula is CoNP-complete, if Γ is non-Schaefer (follows by Schaefer’s [103]
SAT classification).
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We inherently use Corollary 5.8 and make a case distinction as whether (Φ, α) is 1-valid,
0-valid or complementive (according to sub-cases of Proposition 5.2). Moreover, in each case,
we prove that for some well chosen languages Γ′ and Γ, the problem p-IMP(Γ′, Γ, |var(α)|) is
paraCoNP-hard. The correctness in each case follows by observing that the variables of α do not
appear in φ. As a result, if there is an assignment s such that s |= φ, then the assignment s′ that
extends s in such a way that s′ 6|= α in each case, yields a contradiction.

Γ is complementive but not ε-valid. According to the first item in Proposition 5.2, we have
(x 6= y) ∈ 〈Γ′〉 6∃, 6=. The desired reduction follows as we take φ to be a Γ′-formula and
α := (x 6= x) for a fresh variable x.

Γ is neither complementive, nor ε-valid. According to item (2). in Proposition 5.2, we have
(x ∧ ¬y) ∈ 〈Γ′〉 6∃, 6=. As before, we take φ to be a Γ′-formula and α := (x ∧ ¬y) for fresh
variables x and y.

Γ is 1-valid but not 0-valid. According to item (3). in Proposition 5.2, we have T ∈ 〈Γ′〉 6∃, 6=. Let
φ be a Γ′-formula and α := T(x) for a fresh variable x.

Γ is 0-valid and not 1-valid. According to item (4). in Proposition 5.2, we have F ∈ 〈Γ′〉 6∃, 6=.
Similar to the previous case, we let φ be a Γ′-formula and α := F(x) for a fresh variable x.

Γ is 0- and 1-valid. According to item (5). in Proposition 5.2, we have (x = y) ∈ 〈Γ′〉 6∃, 6=. We let
φ to be a Γ′-formula and α := (x = y) for fresh variables x and y.

Clearly, φ |= α if and only if φ is unsatisfiable in each subcase. The paraCoNP-hardness follows
by noticing that α in each reduction has a constant size. This completes the proof.

Observe that (x = y) ∈ 〈Γ〉 6= if Γ is not Schaefer (Lem. 4.2). Nevertheless, we can not simply
let α := (x = y) in the proof of Lemma 5.10, and rather use different constraints for each subcase.
This is due to the reason that we can not bound the size of the constraints in 〈Γ〉 6= that implement
equality, whereas, in the proof we need that |var(α)| is fixed. Finally, observe that Φ = {φ} (and
|Φ| = 1) is true in each reduction of Lemma 5.10. This yields the following corollary.

Corollary 5.11. p-IMP(Γ, κ) is paraCoNP-complete when κ = (|var(α)|+ |Φ|), if Γ is non-Schaefer.

The following theorem settles the parameterized complexity of the implication problem under
the parameterization |var(Φ)|.

Theorem 5.12. p-IMP(Γ, |var(Φ)|) ∈ FPT for any constraint language Γ.

Proof. We construct an FPT-algorithm deciding p-IMP(Γ, |var(Φ)|). Let (Φ, α, k) be an instance
of p-IMP(Γ, |var(Φ)|), where Φ is a Γ-formula and |var(Φ)| = k is the parameter value. Clearly,
Φ |= α if and only if α[s] is a tautology for each s ∈ { s | s ∈ 2Vars(Φ) and s |= Φ }. Consequently,
the entailment problem can be reduced to 2k-many questions asking whether the resulting
formula is a tautology, which can be solved in polynomial time (Lemma 5.6). This proves the
desired FPT-membership.
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We conclude this section by noting that the Galois connection is also true for the problem
p-IMP(Γ, κ), for any CL Γ and parameterization κ ∈ {|Φ|, |var(Φ)|, |var(α)|}.

5.3 Logic-Based Argumentation

In this section, we explore the parameterized complexity of various problems in logic-based
argumentation concerning the Schaefer’s framework. From this point on, ∆ and Φ denote a
collection of Γ-formulas, and α denotes a Γ-formula.

Problem: p-ARG(Γ, κ)

Input: (∆, α, k).
Parameter: k.
Question: Is there a set Φ ⊆ ∆ s.t. (Φ, α) is an argument in ∆?

Two further problems of interest are argument verification (ARG-Check) and the relevance
problem (ARG-Rel).

Problem: p-ARG-Check(Γ, κ)

Input: (Φ, α, k).
Parameter: k.
Question: Is (Φ, α) an argument?

Problem: p-ARG-Rel(Γ, κ)

Input: (∆, α, ψ, k) where ψ ∈ ∆.
Parameter: k.
Question: Is there Φ ⊆ ∆ s.t. ψ ∈ Φ & (Φ, α) is an argument in ∆?

A Note on Parameterizations

It is worth pointing out that the set of variables V is not included in an instance of any problem
in argumentation, contrary to the case of problems in abduction. Nevertheless, recall from
Lemma 4.4 that the problems ARG, ARG-Check, ARG-Rel parameterized by |enc(χ)| and |var(χ)|
are FPT-equivalent for any χ ∈ {∆, Φ, α}. As a result, we choose to write |var(χ)| for χ ∈ {∆, Φ},
but |α| rather than |var(α)| for proving results.1

An instance of the argumentation problem ARG(Γ) is the pair (∆, α) where ∆ is a collection of
Γ-formulas, and α is a Γ-formula. An instance of ARG-Rel(Γ) constitutes a tuple (∆, α, ψ) and uses
an additional formula ψ in the input. Meaningful parameters arising from both these instances
are κ ∈ {|∆|, |var(∆)|, |α|}. Moreover, an instance of ARG-Check(Γ) is a tuple (Φ, α) This also

1Recall from Chapter 2: |χ| denotes the number of elements in χ for a set χ, and the encoding length if χ is not a
set.
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yields three parameters κ ∈ {|Φ|, |var(Φ)|, |α|} for ARG-Check. Notice that the parameter |∆| for
ARG-Check and |Φ| for ARG are not meaningful since an input instance does not include them.
The parameter treewidth was also considered by Mahmood et al. [44] for all three problems in
argumentation.

5.3.1 Parameter ‘size of the claim ’|α|
In this section, we discuss the complexity results regarding the parameter α. This includes the
number of variables and the encoding size of α. It turns out that the computational complexity of
the argumentation problems is hidden in the structure of the underlying CL. That is, in many
cases, considering the claim-size as a parameter does not lower the complexity. This is proved by
noting that certain slices of the parameterized problems already yield hardness results.

Theorem 5.13. Let Γ be a CL. Then, p-ARG(Γ, |α|) is

1. paraΣP
2 -complete if Γ is neither Schaefer, nor ε-valid, 2

2. paraCoNP-complete if Γ is not Schaefer but ε-valid,

3. paraNP-complete if Γ is Schaefer but neither ε-valid, nor EPs, nor ENs,

4. W[1]-complete if Γ is either EPs or ENs but not ε-valid, and

5. FPT if Γ is Schaefer and ε-valid.

Proof. For (1). (resp., (2)) The membership follows because the classical problem is in ΣP
2 (resp.,

CoNP) [22, Thm 5.3]. For hardness of p-ARG(Γ, |α|) when Γ is ε-valid, notice that, since ∆ is
ε-valid, an instance (∆, α, k) of p-ARG(Γ, |α|) admits an argument if and only if ∆ |= α. The result
follows from Lemma 5.10 because the implication problem p-IMP(Γ, |α|) is still paraCoNP-hard.
Finally, when Γ is not Schaefer and not ε-valid, in the proofs of Creignou et al. [22, Prop. 5.2] the
constructed reductions yields the claim α that contains either two or three variables (depending
on subcases). Accordingly, either the 2-slice or the 3-slice of p-ARG(Γ, |α|) is ΣP

2 -hard. This gives
the desired hardness result.

(3). The upper bound follows because the unparameterized problem ARG(Γ) is in NP [22,
Prop 5.1]. The lower bounds are established in Lemmas 5.16, 5.17 and 5.18 by a case distinction.

(4). The membership is proven in Lemma 5.19 and the hardness in Lemma 5.20.
(5). The classical problem ARG(Γ) is already in P for these cases [22, Thm 5.3].

Intermediate Lemmas

For technical reasons, we introduce the following variant of the (classical) argumentation
existence problem (ARG). This helps in achieving the base independence for ARG.

2For theorems related to problems in abduction we specified different Schaefer languages, such as IE and IV, since
the complexity differed for each of them.
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Problem: ARG(Γ, R)

Input: A set ∆ of Γ-formulas and an R-formula α.
Question: Is there a Φ ⊆ ∆ s.t. (Φ, α) is an argument in ∆?

Lemma 5.14. Let Γ, Γ′ be two CLs and R be a Boolean relation. If Γ′ ⊆ 〈Γ〉 6= and R ∈ 〈Γ〉 6∃, 6=, then
ARG(Γ′, R) ≤P

m ARG(Γ).

Proof. Let (∆, α) be an instance of ARG(Γ′, R), where ∆ = { δi | i ∈ I } is a collection of Γ′-
formulas and α = R(x1, . . . , xk). We map this instance to an instance (∆′, α′) of ARG(Γ), where
∆′ = {δ′i | δi ∈ ∆} and α′ is a Γ-formula equivalent to R(x1, . . . , xk) (which exists because
R ∈ 〈Γ〉 6∃, 6=). For each i, we obtain δ′i by replacing δi by an equivalent Γ-formula (such a
representation exists since Γ′ ⊆ 〈Γ〉 6=) and deleting all existential quantifiers.

The previous result can be easily extended in the parameterized setting, as depicted in the
following corollary.

Corollary 5.15. Let Γ, Γ′ be two CLs, and R be a Boolean relation. If Γ′ ⊆ 〈Γ〉 6= and R ∈ 〈Γ〉 6∃, 6=, then
p-ARG(Γ′, R, κ) ≤FPT p-ARG(Γ, κ) for any κ ∈ {|∆|, |α|}.

Proof. Notice that the translation in Lemma 5.14 respects the parameter values as indicated in
Definition 2.10. This is because ∆′ and ∆ have the same number of formulas. Moreover, α′ has
the number of variables bounded by those in α since no new variable is introduced. Finally, the
result holds due to Lemma 4.4.

The proof of Lemmas 5.16 and 5.17 is achieved via a reduction from the classical problem
Pos-1-In-3-Sat. We additionally use the fact that the parameter value |α| in the reduced instance
(∆, α) is constant in each case. This gives the paraNP-hardness using Proposition 2.13 and the
fact that Pos-1-In-3-Sat is NP-complete [103]. An instance of Pos-1-In-3-Sat is a 3CNF-formula
with only positive literals, the question is to determine whether there is a satisfying assignment
which maps exactly one variable in each clause to true.

Problem: Pos-1-In-3-Sat

Input: A 3CNF PL-formula φ with only positive literals.
Question: Is there an assignment s such that s |= φ and s(x) = 1 for

exactly one x in each clause?

Lemma 5.16. Let Γ be a CL such that Γ is Schaefer. If Γ is neither affine, nor ε-valid, nor EP, nor EN,
then p-ARG(Γ, |α|) is paraNP-hard.

Proof. We prove that the c-slice of p-ARG(Γ, |α|) is NP-hard for a constant c ∈ N. To achieve
this, we give a reduction from Pos-1-In-3-Sat to ARG(Γ) such that |α| is constant. Furthermore,
we make a case distinction according to the case (1) and (3) in Lemma 5.1. Case (2) is not
needed because if a Schaefer CL Γ is neither affine, nor horn, nor dualHorn, then Γ can not be
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complementive. We first treat case (3), that is, we have that (x = y) ∧ t ∧ ¬ f ∈ 〈Γ〉 6∃, 6=. We then
show that the other two cases can be treated with minor modifications of the procedure.

Let φ be an instance of Pos-1-In-3-Sat. We first reduce φ to an instance (∆, α) of
ARG({T, F,=}, (x = y) ∧ t ∧ ¬ f ), and then conclude with Lemma 5.1 and Corollary 5.15. Let
φ =

∧n
i=1(xi ∨ yi ∨ zi) be an instance of Pos-1-In-3-Sat and let t, f , c1, . . . , cn+1 be fresh variables.

We define ∆ and α as follows:

∆ =
⋃n

i=1{xi ∧ ¬yi ∧ ¬zi ∧ (ci = ci+1) ∧ t ∧ ¬ f }
∪⋃n

i=1{¬xi ∧ yi ∧ ¬zi ∧ (ci = ci+1) ∧ t ∧ ¬ f }
∪⋃n

i=1{¬xi ∧ ¬yi ∧ zi ∧ (ci = ci+1) ∧ t ∧ ¬ f },
α = (c1 = cn+1) ∧ t ∧ ¬ f .

Clearly, there is a one-to-one correspondence between the satisfying assignments for φ that map
exactly one variable in each clause to true, and subsets Φ ⊆ ∆ such that Φ is support for α in ∆.
That is, for each i ≤ n a satisfying assignment s sets a variable vi ∈ {xi, yi, zi} to true if and only
if Φ contains the formula in which vi appears positively.

Note that any formula in ∆ is expressible as a Γ-formula since {T, F,=} ⊆ IM2 ⊆ 〈Γ〉 (cf.
Table 2.2). Moreover, 〈Γ〉 6= = 〈Γ〉 (Prop. 4.2) and by construction (x = y) ∧ t ∧ ¬ f ∈ 〈Γ〉 6∃, 6=, we
have, the desired reduction to p-ARG(Γ, |α|) (Cor. 5.15) with |var(α)| = 4 and the claim follows.

For case (1) of Lemma 5.1 we have that (x 6= y) ∧ t ∧ ¬ f ∈ 〈Γ〉 6∃, 6=. To cope with this change
in the reduction we introduce one additional variable d and replace α by (c1 6= d) ∧ (d 6=
cn+1) ∧ t ∧ ¬ f . This completes the proof to our lemma.

Lemma 5.17. Let Γ be a CL such that Γ is Schaefer. If Γ is affine but neither ε-valid, nor EP, nor EN, then
p-ARG(Γ, |α|) is paraNP-hard.

Proof. We proceed analogously to the proof of Lemma 5.16 and give a reduction from
Pos-1-In-3-Sat such that |α| is constant. This time, we make a case distinction according to
cases (1) and (2) in Lemma 5.1 (case 3 can not occur for Γ is affine and not EP). First, we treat the
second case, that is, we have that (x 6= y) ∈ 〈Γ〉 6∃, 6=, and show that the first case can be treated
with minor modifications in the reduction.

We reduce an instance φ of Pos-1-In-3-Sat to an instance (∆, α) of ARG({=, 6=}, {6=}), and
then conclude with Lemma 5.1 and Corollary 5.15. Let φ =

∧k
i=1(xi ∨ yi ∨ zi) be an instance of

Pos-1-In-3-Sat and let t, d, c1, . . . , ck+1 be fresh variables. Define ∆ and α as follows:

∆ =
⋃k

i=1{(xi = t) ∧ (yi 6= t) ∧ (zi 6= t) ∧ (ci = ci+1)}
∪⋃k

i=1{(xi 6= t) ∧ (yi = t) ∧ (zi 6= t) ∧ (ci = ci+1)}
∪⋃k

i=1{(xi 6= t) ∧ (yi 6= t) ∧ (zi = t) ∧ (ci = ci+1)},
α = (c1 6= d) ∧ (d 6= ck+1).

The correctness follows due to the similar argument as in the proof of Lemma 5.16. Note that
any formula in ∆ is expressible as Γ-formula since {=, 6=} ⊆ ID ⊆ 〈Γ〉 (cf. Table 2.2). Since by
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Proposition 4.2 〈Γ〉 6= = 〈Γ〉 and by construction (x 6= y) ∈ 〈Γ〉 6∃, 6=, we have by Corollary 5.15 the
desired reduction to p-ARG(Γ, |α|) where |α| = 4.

For case (1) of Lemma 5.1 we have that (x 6= y) ∧ t ∧ ¬ f ∈ 〈Γ〉 6∃, 6=. To cope with this change
in the reduction, we introduce one additional variable f and add the constraints t ∧ ¬ f to α as
well as to every formula in ∆. This proves the claim by noting that the parameter size |α| is still
constant.

Lemma 5.18. Let Γ be a CL such that Γ is Schaefer but not ε-valid. If Γ is EP and not EPs or EN and not
ENs, then p-ARG(Γ, |α|) is paraNP-hard.

Proof. We can use the same reduction as in Lemma 5.16, except we do not require a case
distinction. Note that, by Proposition 5.2, we have that (t∧¬ f ) ∈ 〈Γ〉 6∃, 6=. Since ∃ f (t∧¬ f ) ≡ T(t)
and ∃t (t ∧ ¬ f ) ≡ F( f ), we conclude that T, F ∈ 〈Γ〉 6=. Further, by Lemma 4.3, we have that
(x = y) ∈ 〈Γ〉 6=. Together we have {T, F,=} ⊆ 〈Γ〉 6=, and thus any formula in ∆ is expressible
as Γ-formula with existential quantifiers but without equality. By Lemma 4.3, it follows that
(x = y) ∧ t ∧ ¬ f ∈ 〈Γ〉 6∃, 6=. As a result, we conclude by applying Corollary 5.15.

Now we prove W[1]-completeness of p-ARG(Γ, |α|) if Γ is either EPs or ENs but not ε-valid.

Lemma 5.19. Let Γ be a CL that is either EPs or ENs but not ε-valid, then p-ARG(Γ, |α|) ∈W[1].

Proof. We reduce p-ARG(Γ, |α|) to p-WSAT(Γ1,d, κ) for some fixed d. That is, given a Γ1,d-formula
φ, determine if there is a satisfying assignment for φ of weight κ(φ) = k. This problem is
W[1]-complete as depicted in Proposition 2.12. Moreover, we only prove the statement for Γ that
is EPs. The other case is proven analogously. Since we consider only finite constraint languages
we have that Γ ⊆ ISr

02 for some r ≥ 2. Therefore, any Γ-formula can be written as a conjunction of
positive or negative literals and positive clauses of size at most r.

Let (∆, α, k) be an instance of p-ARG(Γ, |α|) with ∆ = {δ1, . . . , δn} and α =
∧

i≤k αi, where
each αi is either a literal, or a positive clause of size ≤ r. First, we prove the following two claims.

Claim 5.1. For any i ≤ k, if αi has a support at all, then it has a support containing at most r formulas
from ∆. Consequently, there is support for α iff there is a one of size at most r · k.

Proof of Claim. If αi is a negative literal, then at most 1 formula from ∆ is sufficient (one that contains
αi). If αi is a positive literal, then at most r formulas from ∆ are sufficient. This is due to the reason that in
the worst case: one δi ∈ ∆ containing a (positive) clause which contains αi, then we need at most r− 1
more δj’s to force all other variables in the clause to 0. If αi is a positive clause, then it suffices to explain
one variable from that clause, as a result, at most r formulas from ∆ are sufficient as in the previous case.
In other words, there is no αi in α such that more than r formulas from ∆ are necessary to explain αi.

Claim 5.2. ∆ is consistent if and only if every subset ∆′ ⊆ ∆ of size r + 1 is consistent .

Proof of Claim. This is similar to Claim 5.1. The worst case to create an inconsistency is to take a
formula δ ∈ ∆ containing a positive clause C of size r and then formulas δj ∈ ∆ for j ≤ r, forcing together
all variables in C to 0.
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In accordance with Claim 5.1, let A1
i , . . . , Ami

i denote all subsets of ∆ of size at most r that
explain αi for each i. Note that each mi ≤ r · |∆|r. For each αi, we introduce fresh variables
a1

i , . . . , ami
i . The idea is that a`i represents the set A`

i for each ` ≤ mi. Note that, if i 6= j, it can
be the case that there are ` and s such that A`

i = As
j . In such a case a`i and as

j are still different
variables representing the same subset of ∆. Define V :=

⋃k
i=1{a`i | 1 ≤ ` ≤ mi}. For any u ∈ V,

let S(u) denotes the subset of ∆ represented by u. For U ⊆ V define S(U) =
⋃

u∈U S(u). Finally,
we define the desired Γ1,r+1 formula as φ = φ1 ∧ φ2, where

φ1 :=
k∧

i=1

∧
` 6=j

(¬a`i ∨ ¬aj
i),

φ2 :=
∧

U ⊆ Vs.t.
|U| ≤ r + 1,

S(U) |= ∅

( ∨
u∈U

(¬u)
)

.

Clearly, φ is a Γ1,r+1-formula. The role of φ1 is to assure that at most one subset of ∆ is chosen for
each αi. Moreover, since we are looking for a satisfying assignment for φ of weight k, φ1 further
ensures that for each αi, exactly one subset of ∆ is chosen. The role of φ2 is to make sure that
inconsistent explanations are forbidden.

Claim 5.3. (∆, α, k) admits a support iff φ has a satisfying assignment of weight k.

Proof of Claim. Let Φ ⊆ ∆ be a support for α. Since Φ explains each αi, by Claim 5.1 there is a set
Θi ⊆ Φ of size at most r such that Θi |= αi. By construction each Θi is identical to a certain A`

i for some
`. We can thus choose for each αi a corresponding a`i and obtain an assignment s of weight k. Now, it is
easy to verify that s |= φ1 (because we chose at most one a`i for each αi) and that s |= φ2 (because Φ is
consistent).

For the other direction, let W ⊆ V denote a satisfying assignment for φ of weight k. By construction of
φ, W contains exactly one a`i for each αi (because φ1 is satisfied) and S(W) is consistent (because φ2 is
satisfied). Therefore, S(W) constitutes a support for α.

We conclude by observing that (φ, k) can be computed in FPT-time from (∆, α, k) and the two
instances have the same value for the parameter.

The following lemma proves the W[1]-hardness for languages considered in Lemma 5.19.
The hardness is established by a reduction from the W[1]-complete problem p-Clique(κ) ([32,
Lem.2.3]) where κ(G) is the size of the clique in G. Given a graph G = (V, E) and k ∈ N, the
problem Clique asks whether there is a clique (a complete subgraph of G) of size k in G.

Lemma 5.20. Let Γ be a CL that is EPs and ENs but not ε-valid, then p-ARG(Γ, |α|)is W[1]-hard.

Proof. We give a reduction from the W[1]-complete problem p-Clique(κ) ([32, Lem.2.3]) where
κ(G) is the size of the clique in G. We first reduce p-Clique(κ) to p-ARG({T, F}, |α|). Observe
that a set of terms is consistent if and only if the terms are pairwise consistent. Let (G, k) be an
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instance of p-Clique(κ), where G = (V, E) is a graph with V = {v1, . . . , vn} and E ⊆ V ×V and
k ∈N. We construct an instance (∆, α, k) of p-ARG({T, F}, |α|) in two steps.

Step 1 We represent the graph G by terms such that each node vi corresponds to a term ti and
two terms ti, tj are pairwise consistent if and only if there is an edge (vi, vj) ∈ E. This
is achieved by the following iterative procedure. Let u1, . . . , un be a collection of fresh
variables. Initialize each ti := ui. Then for each pair ti, tj such that (vi, vj) /∈ E, take a fresh
variable, say xi,j, and set ti := ti ∧ xi,j and tj := tj ∧ ¬xi,j. After completion of this procedure
it holds (vi, vj) ∈ E iff ti ∧ tj is consistent. Consequently, G has a clique of size k if and only
if we can select k terms from {t1, . . . , tn} which are together consistent.

Step 2 We define α := z1 ∧ · · · ∧ zk, where z1, . . . , zk are fresh variables and extend the terms
t1, . . . , tn from the first step as follows. For each tr, we introduce k additional copies (ti

r for
i ≤ k) such that:

1. each ti
r explains exactly one zi for i ≤ k, and

2. ti
r ∧ tj

r is inconsistent for each i, j ≤ k.

Property (1) assures that each tr can be used to explain any of the zi (by selecting ti
r) and

property (2) assures that with each tr we can explain at most one of z1, . . . , zk. In order
to extend the terms t1, . . . , tn such that properties (1) and (2) hold we use the following
procedure. Property (1) is achieved by setting initially each ti

r := tr ∧ zi. Property (2)
is achieved by the same trick as in the first step: each pair ti

r, tj
r is made inconsistent by

introducing a fresh variable yr,i,j and setting ti
r := ti

r ∧ yr,i,j and tj
r := tj

r ∧ ¬yr,i,j.

We finally set ∆ = {ti
r | 1 ≤ r ≤ n, 1 ≤ i ≤ k} and observe that G has a clique of size k if and

only if ∆ contains a support (of size k) for α.

It remains to show that Corollary 5.15 can be applied, yielding the desired reduction to
p-ARG(Γ, |α|). We can achieve this only after some technical modifications of the above α and ∆.
Due to Lemma 5.2, item (2), we have (t ∧ ¬ f ) ∈ 〈Γ〉 6∃, 6=. Consequently, we obtain {T, F} ⊆ 〈Γ〉 6=
since ∃ f (t ∧ ¬ f ) ≡ T(t) and ∃t(t ∧ ¬ f ) ≡ F( f ). Furthermore, observe that α (a positive term)
can be written by using only constraints of the form (t ∧ ¬ f ) if we allow the introduction of one
additional variable ( f ) that occurs as a negative literal in α. In order to explain α, any explanation
needs to entail ¬ f . This is achieved by adding F( f ) to ∆, which will be part of any explanation.

This completes the desired reduction to p-ARG({T, F}, |α|) by noting that α contains only one
additional variable f and therefore |var(α)| = k + 1.

Now we turn towards the problem of verifying an argument under the parameterization
claim-size. The complexity picture here exhibits a dichotomy between FPT- and paraDP-cases.

Theorem 5.21. Let Γ be a CL. Then p-ARG-Check(Γ, |α|) is (1) FPT if Γ is Schaefer, and (2) paraDP-
complete otherwise.
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Proof. (1). This follows from Creignou et al. [22, Theorem 6.1] as classically ARG-Check(Γ) ∈ P if
Γ is Schaefer.

(2). The membership follows as classically ARG-Check(Γ) ∈ DP. Furthermore, the reduction
in the proof presented by Creignou et al. [22, Propositions 6.3 and 6.4] always uses the claim (α)
of the fixed size. As a consequence, certain slices of p-ARG-Check(Γ, |α|) are DP-hard, giving
the desired results.

Next, we follow up with the relevance problem for argumentation parameterized by the
claim-size and show a tetrachotomy. The precise complexity of ARG-Rel(Γ, |α|) is still open if Γ is
either ENs but not Ns, or EPs but not Ps. We only achieve W[2]-membership with W[1]-hardness.

Theorem 5.22. Let Γ be a CL. Then, p-ARG-Rel(Γ, |α|) is

1. paraΣP
2 -complete if Γ is not Schaefer,

2. paraNP-complete if Γ is Schaefer but neither ENs, nor EPs,

3. W[1]-hard, with membership in W[2] if Γ is either ENs but not Ns, or EPs but not Ps,

4. W[1]-complete if Γ is ENs and EPs but neither Ns, nor Ps,

5. FPT if Γ is either Ps or Ns.

Proof. (1). The membership is true because the classical problem ARG-Rel(Γ) is in ΣP
2 . The

hardness also follows from the results by Creignou et al. [22, Prop. 7.7]. Notice that while proving
the hardness for subcases, the claim α has a fixed size in each reduction. This implies that certain
slices in each case are ΣP

2 -hard. As a consequence, the desired hardness results follows.
(2). The membership follows because the classical problem ARG-Rel(Γ) is in NP when Γ is

Schaefer. For hardness, we make a case distinction as to whether Γ is ε-valid or not.

Case 1. Let Γ be Schaefer and ε-valid, but neither ENs, nor EPs. The hardness follows because
the 2-slice of the problem is already NP-hard [22, Proposition 7.6].

Case 2. Let Γ be Schaefer but neither ε-valid, nor ENs, nor EPs. The hardness follows from
Theorem 5.13. This is due to the reason that ARG-Rel(Γ) is always harder than ARG via the
reduction (∆, α) 7→ (∆ ∪ {ψ}, α ∧ ψ, ψ). Moreover, in this case we can take ψ to be a copy of
α with fresh variables. This only doubles the size of α.

(3+4). The hardness in both cases follow because of the W[1]-hardness of p-ARG(Γ, |α|) for these
cases (Lem. 5.20) and the fact that ARG(Γ) reduces to ARG-Rel(Γ) (via (∆, α) 7→ (∆ ∪ {ψ}, α ∧
ψ, ψ) where ψ is a new formula over fresh variables). For membership, we extend the proof of
Lemma 5.19 in such a way that an assignment for φ of weight k forces the given formula ψ to be
included in a support for α. The W[1]-membership for (4) is established in Lemma 5.23 using the
fact that the required changes in the reduction still yield a Γ1,r+1 formula. In contrast, for (3), we
only prove W[2]-membership in Lemma 5.24, since the modifications yield a Γ2,r+1 formula.

(5). This follows as classically ARG-Rel(Γ) ∈ P [22, Prop. 7.3].
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Intermediate Lemmas

Lemma 5.23. Let Γ be a CL such that Γ is ENs and EPs, then p-ARG-Rel(Γ, |α|) ∈W[1].

Proof. We reduce p-ARG-Rel(Γ, |α|) to p-WSAT(Γ1,2, κ) by slightly modifying the reduction from
Lemma 5.19. Let (∆, α, ψ, k) be an instance of p-ARG-Rel(Γ, |α|). Note that (by definition), any
Γ-formula can be written as a {T, F}-formula. In other words, ∆ is a set of terms and α, ψ both
are also terms. Let ∆ = {t0, . . . , tn} and α = α1 ∧ · · · ∧ αk. Moreover, assume that ψ = t0. Then
we have the following two observations.

Observation 1: For each αi a single tj ∈ ∆ is sufficient to support αi. In other words, for each
i ≤ k, if αi has a support then it has a support of size one at most. This implies that there is
a support for α iff there is a support of cardinality at most k.

Observation 2: Let Φ ⊆ ∆ be a set of terms. Then Φ is consistent iff Φ is pairwise consistent.

For each αi ∈ α, denote L+
i := { t ∈ ∆ | αi ∈ t } and L−i := { t ∈ ∆ | ¬αi ∈ t }. Clearly, each

L+
i , L−i ⊆ ∆. Moreover, every t ∈ L+

i is a candidate support for αi, whereas, no t ∈ L−j can be in
the support, for every i, j ≤ k. Let N =

⋃
i≤k

L−i and denote Li = L+
i \N. It is important to notice

that there is a support for α only if Li 6= ∅ for each i ≤ k. Otherwise, for some i, the support Φ
can not contain a term t for αi such that Φ is consistent. It remains to determine whether there is
a consistent set Φ that includes one term from each Li. The construction so-far is sufficient to
solve the argument existence problem. However, for ARG-Rel, we need to assure that ψ is also
contained in Φ, and that Φ \ {ψ} is not a support for α. To achieve this, notice first that if αi 6∈ ψ

for every i ≤ k then clearly ψ is not relevant for α. Moreover, a candidate support Φ has to be
consistent with ψ. Observe that ψ can be considered as a candidate explanation for each αi such
that αi ∈ ψ. As a result, we do the following.

1. For each i ≤ k such that αi ∈ ψ, we let Li := {ψ}. That is, if ψ ∈ Li, then we remove all
other terms from Li.

2. For each i, j ≤ k such that Li = Lj, then remove Lj. This removes the duplicates from the
collection L1, . . . Lk.

Assume that the above procedure results in a collection L1, . . . , Lk′ , where each Li is a set of terms
and k′ ≤ k. Proceed as in the proof of Lemma 5.19 and let Vi := {aj

i | tj ∈ Li}. That is, Vi includes
one variable corresponding to each term tj and the set Li. Finally, we let V :=

⋃
i≤k′ Vi. Let u ∈ Vi,

then T(u) denotes the term tj ∈ Li represented by the variable aj
i ∈ V. Then we let φ := φ1 ∧ φ2,

where

φ1 :=
k′∧

i=1

∧
` 6=j

(¬a`i ∨ ¬aj
i),

φ2 :=
∧

u ∈ Vi , v ∈ Vi′ s.t.
T(u) ∧ T(v) |= ∅

(
¬u ∨ ¬v

)
.
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The formula φ1 assures that at most one term is chosen for each αi, and φ2 assures that these terms
(from different Li’s) are pairwise consistent. The correctness follows from Claim 5.3. Clearly, φ

has a satisfying assignment of weight k′ iff there is a support Φ for α with ψ ∈ Φ.

We conclude by observing that the reduction can be performed in FPT-time. The sets L+
i

and L−i can be computed in polynomial time. Moreover, the formula φ can be constructed
in polynomial time since (for φ2) one needs to check the pairwise consistency for each of the
remaining k′ sets of terms. This proves that the reduction can be preformed in FPT-time and
k′ ≤ k where |α| = k is the parameter value of the input instance.

Lemma 5.24. Let Γ be a CL such that Γ is either ENs or EPs, then p-ARG-Rel(Γ, |α|) ∈W[2].

Proof. We reduce p-ARG-Rel(Γ, |α|) to p-WSAT(Γ2,d, κ) for some fixed d. This problem is W[2]-
complete as depicted in Proposition 2.12. Moreover, we only present the changes which are
required on top of the reduction in Lemma 5.19.

Let (∆, ψ, α, k) be an instance of p-ARG-Rel(Γ, |α|) with ∆ = {δ0, δ1, . . . , δn} with ψ = δ0 and
α = α1 ∧ · · · ∧ αk, where each αi is either a positive or negative literal, or a positive clause of size
≤ r. Notice that the two claims (Claim 5.1 and 5.2) are still true. Accordingly, let A1

i , . . . , Ami
i

denote all subsets of ∆ of size at most r that form a support for αi where i ≤ k. Furthermore,
consider the variables a1

i , . . . , ami
i for each αi, and let V :=

⋃k
i=1{a`i | 1 ≤ ` ≤ mi}. As before, S(u)

denotes the subset of ∆ represented by u for each u ∈ V.

Now we distinguish those subsets of ∆ (among Aj
i) that contain ψ. In other words, if ψ ∈ Aj

i

for some i ≤ k and j ≤ mi, then we know that there is a support for αi that contains ψ. Whereas,
if no subset Aj

i contains ψ then clearly ψ is not relevant for α. Now we only need to make sure
that a subset of ∆ containing ψ is considered in the support for αi for some i ≤ k. That is, there
are i ≤ k and j ≤ mi such that ψ ∈ Aj

i and s(aj
i) = 1 for any assignment s such that s |= φ. Let

A1
0, . . . , Am0

0 denote all subsets from the collection Aj
i such that ψ ∈ Aj

i for i ≤ k and j ≤ mi.
Moreover, let a1

0, . . . am0
0 denote their corresponding variables. Notice that we do not add any new

variable but only consider those that correspond to the sets containing ψ. Finally, we define the
desired Γ2,r+1 formula as φ := φ1 ∧ φ2 ∧ φ3, where

φ1 :=
k∧

i=1

∧
` 6=j

(¬a`i ∨ ¬aj
i),

φ2 :=
∧

U ⊆ Vs.t.
|U| ≤ r + 1,

S(U) |= ∅

( ∨
u∈U

(¬u)
)

,

φ3 :=
∨

q≤m0

(aq
0).

The formulas φ1 and φ2 are unchanged. The formula φ3 assures that an explanation is acceptable
only if it contains ψ.

Claim 5.4. (∆, α) admits a support Φ such that ψ ∈ Φ iff φ has a satisfying assignment of weight k.
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Proof of Claim. The equivalence between the existence of a support and the existence of a satisfying
assignment for φ of weight k follows from Claim 5.3. We only argue that the formula ψ is relevant for the
support Φ iff φ has a satisfying assignment of weight k.

If there is a support Φ for α and ψ ∈ Φ, then clearly there is some i ≤ k such that αi is explained
by some Aj

i ⊆ ∆ and ψ ∈ Aj
i for j ≤ mi. This implies that φ1 ∧ φ2 is satisfiable by an assignment s and

s(aq
0) = 1 for some q ≤ m0. As a result, s |= φ3 and therefore φ is satisfiable.
Conversely, if there is an assignment s such that s |= φ, then there is a support Φ for α since

s |= φ1 ∧ φ2. Moreover, since s has a weight k and s |= φ3, there is some q ≤ m0 and the variable aq
0

corresponding to the subset Aq
0 ⊆ ∆ such that s(aq

0) = 1 and ψ ∈ Aq
0. This implies that there is a support

Φ (guaranteed by the assignment s) with ψ ∈ Φ. Finally, Φ \ {ψ} can not be a support, since this removes
all those subsets that contain ψ, and thereby making φ3 unsatisfiable.

This completes the correctness proof and settles the claim.

We conclude by observing that φ is a Γ2,r+1-formula. Indeed the big disjunction in φ3 can be
rewritten as

∨
q≤m0

∧
(aq

0).

5.3.2 Parameters ‘the knowledge base’ (∆) and ‘the support’ (Φ)

Regarding ∆ and Φ, recall that they both yield two versions for the parameterization. For each
χ ∈ {∆, Φ} we consider (1) the number of variables, or equivalently, the encoding size of χ (see
Lemma 4.4), and (2) the number of formulas in χ.

We first prove FPT-membership of each problem for any constraint language Γ, if the number
of variables are considered.

Theorem 5.25. Let Γ be any CL. Then, p-ARG(Γ, |var(∆)|) and p-ARG-Rel(Γ, |var(∆)|) are FPT.

Proof. Notice that the number of subsets of ∆ is bounded by |∆|, which is in turn bounded by
the parameter |var(∆)| (see Lemma 4.4). Consequently, one simply checks each subset of ∆ as a
possible support Φ for α. Moreover, the size of each support Φ is also bounded by the parameter,
as a result, one can determine the satisfiability and the entailment in FPT-time. This is because
the satisfiability and entailment for Schaefer languages are in P. For non-Schaefer languages, the
result follows from Theorem 5.12 since p-IMP(Γ, |var(Φ)|) ∈ FPT. For p-ARG-Rel(Γ, |var(∆)|),
only consider those subsets of ∆ as a candidate support that contain ψ.

If a parameter related to the support {|Φ|, |var(Φ)|} is considered, the problems ARG and
ARG-Rel become irrelevant. Consequently, we only consider the problem ARG-Check.

Theorem 5.26. Let Γ be a CL. Then, ARG-Check(Γ, |var(Φ)|) is FPT.

Proof. We need to determine whether (1) Φ |= α, and (2) for each ψ ∈ Φ, Φ \ {ψ} 6|= α. The first
question can be answered in a similar way to the implication problem (Theorem 5.12). That is, the
problem can be reduced to checking whether the formula α[s] is a tautology for each s ∈ 2|var(Φ)|

such that s |= Φ. Finally observe that it can be checked in polynomial time whether α[s] is a



5.3. Logic-Based Argumentation 101

tautology. For the second question, notice that the number of formulas ψ ∈ Φ is also bounded
from above by |var(Φ)| due to Lemma 4.4. This implies that the second question is once again
asked FPT-many times, and each time it can be answered in FPT-time, again. This completes the
proof of the theorem.

Interestingly, the number of formulas as a parameter yields intractability for non-Schaefer
languages, as we prove next.

Theorem 5.27. Let Γ be a CL. Then, p-ARG(Γ, |∆|) is

1. paraDP-hard if Γ is neither Schaefer, nor ε-valid,

2. paraCoNP-complete if Γ is ε-valid, but not Schaefer,

3. FPT if Γ is Schaefer.

Proof. (1). We prove that the 1-slice of the problem is DP-hard. To achieve this, we reduce from
the abduction problem ABD(Γ) such that H = {h} and M = {m}. Observe that ABD(Γ) is
DP-hard when |H| = 1 and |M| = 1 (Thm. 4.18). Following Creignou et al. [22, Propositions 5.2],
we distinguish between two cases depending on whether Γ is complementive or not. If Γ is
complementive, we reduce ABD(Γ) to ARG(Γ∪ {x 6= y}) and then conclude by using Lemma 5.2
and Lemma 5.14. Recall that for ABD, the knowledge base KB can be written as a single formula
Ψ :=

∧
i≤|KB|

δi. We map an instance (V, H, M, KB) of ABD to (∆, α) such that ∆ := {Ψ} ∪ {h 6= f }

and α := (m 6= f ) for a fresh variable f . Since KB is complementive, it suffices to prove the
correctness for ∆[s] and α[s] where s( f ) = 0. Observe that (V, H, M, KB) admits an explanation iff
KB∧ h is consistent and KB∧ h |= m iff ∆ is consistent and ∆ |= α. This completes the correctness
of our reduction.

In the other case, if Γ is not complementive, we reduce (V, H, M, KB) to an instance (∆, α)

of ARG(Γ ∪ {x ∧ ¬y}) where ∆ := {Ψ} ∪ {h ∧ ¬ f } and α := (m ∧ ¬ f ). The final reduction is
obtained by implementing the constraint (x ∧ ¬y) using Lemma 5.2 and 5.14. We conclude the
proof by observing that |∆| = 2 in each case.

(2). The membership is trivial because ARG(Γ) ∈ CoNP. For hardness, notice that since Γ
is ε-valid, ∆ is trivially satisfiable. This implies that there is a support for α iff ∆ is the support.
As a result, one only needs to determine whether ∆ |= α. The result follows due to Lemma 5.9
because p-IMP(Γ, |∆|) is still paraCoNP-hard.

(3). Let |∆| = k, then there are 2k candidates for a support Φ and each candidate can be
verified in polynomial time for a support. This is due to the reason that both problems, SAT(Γ)
and IMP(Γ), are in P if Γ is Schaefer.

This completes the proof to the theorem.

Now, we classify the complexity of the relevance problem.

Theorem 5.28. Let Γ be a CL. Then, p-ARG-Rel(Γ, |∆|) is
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1. paraDP-hard if Γ is neither Schaefer, nor ε-valid,

2. paraCoNP-hard if Γ is ε-valid, but not Schaefer,

3. FPT if Γ is Schaefer.

Proof. (1+2). The hardness in each case follows because of the corresponding hardness for
p-ARG(Γ, |∆|) (Theorem 5.27). (3). As in Theorem 5.27, if |∆| = k, then there are 2k candidates
for a support Φ and each candidate can be checked in polynomial time for a support. The
only difference now is that the support should also contain the relevant formula, which is still
achievable in FPT-time.

The following theorem characterizes the complexity of the verification problem when
parameterized by |Φ|.

Theorem 5.29. Let Γ be a CL. Then p-ARG-Check(Γ, |Φ|) is

1. paraDP-complete if Γ is neither Schaefer, nor ε-valid.

2. paraCoNP-hard if Γ is ε-valid, but not Schaefer,

3. FPT if Γ is Schaefer.

Proof. (1). The membership is clear because classically ARG-Check(Γ) ∈ DP for this case. For
hardness, we argue that the reduction for proving the paraDP-hardness in Theorem 5.27 works
here as well. This is because taking Φ := ∆ implies that Φ is a support for α iff Φ is a minimal
support. This follows from the fact that Φ only contains two formulas, and removing any of these
two violates Φ |= α. This completes the correctness of our reduction.

(2). Observe that when Φ = {φ}, then the problem reduces to the entailment problem which
is paraCoNP-hard for this case (Cor. 5.9).

(3). Follows from a result by Creignou et al. [22, Theorem 6.1], since ARG-Check(Γ) ∈ P if Γ
is Schaefer.

Galois connection

We conclude this chapter on the parameterized complexity of argumentation by a discussion on
the Galois connection (Property 2.1). Recall from Proposition 2.19 that Galois connection fails
for ARG-Rel. Surprisingly, we have a diverse picture regarding the parameterized problems.
On the one hand, the Property 2.1 fails for p-ARG(|α|) and p-ARG-Rel(|α|). On the other
hand, it is true for p-ARG-Rel(|∆|). In particular, there are CLs Γ and Γ′ such that 〈Γ〉 = 〈Γ′〉 but
p-ARG(Γ, |α|) is W[1]-complete whereas p-ARG(Γ′, |α|) is paraNP-complete. Moreover, regarding
p-ARG-Rel(Γ, |α|), there is a violation of Property 2.1 in two places.

W[1] vs paraNP. There are CLs Γ and Γ′ such that 〈Γ〉 = 〈Γ′〉 but p-ARG-Rel(Γ, |α|) is W[1]-
complete whereas p-ARG-Rel(Γ′, |α|) is paraNP-complete.



5.3. Logic-Based Argumentation 103

FPT vs paraNP. There are CLs Γ and Γ′ such that 〈Γ〉 = 〈Γ′〉 but p-ARG-Rel(Γ, |α|) is FPT
whereas p-ARG-Rel(Γ′, |α|) is paraNP-complete.

Clearly, the Galois connection is violated for p-ARG(Γ, |α|) unless W[1] = paraNP. Moreover, it
is violated for p-ARG-Rel(Γ, |α|) unless FPT = W[1] = paraNP.

We present an example below that highlights how the Galois connection fails for certain CLs.

Example 5.30. Let Γ1 = {T, F} and Γ2 = {T, F,=} be two constraint languages. Then we have that
〈Γ1〉 = 〈Γ2〉 but p-ARG(Γ1, |α|) is W[1]-complete, while p-ARG(Γ2, |α|) is paraNP-complete.

Interestingly, the Galois connection is only violated when |α| is considered as a parameter.
The property 2.1 is true for each problem when parameterized by |χ| and |var(χ)|, for χ ∈ {∆, Φ}.

This concludes our parameterized complexity analysis for each problem in argumentation.
Figure 5.1 presents an overview of the complexity results for ARG(Γ, κ), ARG-Check(Γ, κ) and
ARG-Rel(Γ, κ) for each CL Γ and considered parameterization κ.
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Figure 5.1: Complexity landscape of each problem in argumentation with respect to the parameter
|α|. The results for parameters κ ∈ {|var(∆)|, |var(Φ)|, |∆|, |Φ|} have been omitted for better
presentation. Each result depicts completeness for the mentioned class except for FPT-cases, or
when specified otherwise.



CHAPTER 6
CONCLUSION

In this work, we systematically explored the parameterized complexity of various problems in
propositional dependence logic, as well as logic-based abduction and argumentation. For an
overview of the complexity analysis consult Table 3.1 (for PDL) and Figures 4.1, 5.1 (for ABD
and ARG, respectively).

6.1 Outlook for PDL
Regarding PDL, we focused on the model checking (MC) and the satisfiability (SAT) problem.
For both problems, we exhibited a complexity dichotomy: FPT vs. paraNP-completeness (see
Table 3.1). This is surprising, considering the fact that there is a well-known infinite W-hierarchy
in between FPT and paraNP. In other words, each considered parameterization either yields
tractability or renders the problem NP-hard for a fixed value of the parameter. Towards the
end, we introduced two problems, a variant of the satisfiability question (mSAT) and a variant
of model checking (mSubTeam). The problem mSAT asks for a satisfying team of a given size,
whereas mSubTeam asks for a satisfying subteam of a given size for the given team. To the best
of the author’s knowledge, these two problems have not been explored before in the setting of
team-semantics (except the maximal subteam membership problem for inclusion logic [53]). We
prove that mSAT is NP-complete classically. The parameterized complexity of mSAT behaves
similarly to SAT, though some parameterizations are open for further research. Moreover, we
prove that mSubTeam is also NP-hard, and NP-complete for Poor man’s PDL.

It is also interesting to explore various combinations of the studied parameters. Table 6.1
presents a starting point with an overview of results (already proven) in this direction.
Surprisingly, several combinations of our parameterizations already yield intractability. The
combination (dep-arity+ #atoms) is particularly interesting, as it completely bounds the number
and the arity of functions arising in terms of dependence atoms. It is also interesting to observe
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Parameter (κ) p-MC(κ) p-SAT(κ)

formula-tw+ dep-arity paraNP FPT
#conjunctions+ #splits paraNP FPT
#conjunctions+ #atoms paraNP -

#splits+ #atoms paraNP FPT

Table 6.1: Complexity classification overview with respect to the combination of parameters.

that in our reductions for proving the hardness of p-MC under these two parametrizations,
if dep-arity is fixed, then #atoms is unbounded and vice versa. The author believes that the
combination (#atoms+ dep-arity) might yield membership in FPT for MC, although this is just an
intuition.

6.2 Outlook for ABD

Regarding logic-based abduction, we presented a two-dimensional classification of three central
abductive reasoning problems (ABD, ABD≤ and ABD=). The first dimension was regarding
different parameterizations |H|, |M|, |V|, |E|, and the second regarding various constraint
languages defined by corresponding co-clones.

The parameter |V| always allows for FPT algorithms independent of the co-clone. The
parameter |H| is particularly interesting, recognizing that it bounds the solution space for an
abduction instance. Nevertheless, for non-Schaefer languages, the problem is still intractable
(either paraCoNP- or paraDP-hard). Even stronger, the intractability of these cases persists even
if |M| = 1. This compels one to ponder what other parameterization (together with |H|) can help
achieving tractability. We answered this question by using a result from Fellows et al. [93] that
the size of the smallest Horn backdoor is one such parameter. Regarding |E|, we argued that
only the two size-restricted variants are meaningful. Interesting to notice, if Γ is an essentially
negative CL then ABD≤(Γ, |E|) is FPT and ABD=(Γ, |E|) is W[1]-complete. A similar easy/hard
difference manifests itself for the parameterization |M|. However, here, we distinguish between
paraNP-completeness of ABD=(Γ, |M|) and FPT for ABD≤(Γ, |M|), if Γ is essentially negative.

Finally, we also proved that the Galois connection (Property 2.1) is true for each problem
ABD∗ ∈ {ABD, ABD≤, ABD=} in the classical as well as parameterized setting. Moreover, we also
developed several general results regarding the expressivity of equality constraints. Our results
imply that one can express equality in 〈Γ〉 6= for any CL Γ which is neither strict essentially positive,
nor strict essentially negative. Furthermore, this can be achieved with only two existentially
quantified variables (see Lemma 4.3). As a result, replacing an equality constraint with its
equivalent interpretation does not blow up the size of the knowledge base. Regarding the
remaining cases (where we did not prove a general expressivity of equality), we still proved by
other means that the Galois connection holds. Nevertheless, these techniques might not be useful
in other settings, and we already encountered an example where Property 2.1 fails (namely, the
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problem p-ARG(Γ, |α|)).
As a future work, one might explore the parameterized complexity of other versions of the

abductive reasoning, such as when M is not a term but an arbitrary Γ-formula. One can also
consider the parameterized enumeration complexity [25, 24, 85] of the aforementioned problems.
Last but not least, one could attack the open cases for affine co-clones.

A sneak peak into the Affine CLs. Unfortunately, we could not classify the parameterized
complexity of abductive reasoning for affine constraint languages. Affine co-clones (and clones)
are often considered notorious as the problems regarding them often resist a complete complexity
classification [4, 28, 27, 108, 5, 86, 99].

The tractable cases for affine languages are often proved using the notion of projection of affine
formulas. Consider the case when M := q, for a variable q. Then the problem (V, H, q, KB) can be
answered in polynomial time if KB is a Γ-formula for an affine language Γ. The proof idea ([30,
Prop. 9]) is to compute the projection of KB∧ (q = 0) on to H. That is, an affine formula ψ over
H whose satisfying assignments are exactly the satisfying assignments of KB∧ (q = 0) restricted
to H. An abduction instance (V, H, M, KB) has an explanation if and only if the formula KB∧ ¬ψ

is satisfiable. The author believes that the same idea ([30, Prop. 9]) can be generalized at least for
the parameter |M|. Given an instance (V, H, M, KB) where M =

∧
i≤k

mi, then one computes the

projections KB ∧ (
∧

i≤k
mi = 0) over H. This yields exponentially (in k) many projections ψj. The

only open question is to determine whether the satisfiability of KB∧ ¬ψ′j for some/every j relates
to the existence of an explanation for M. The parameter |H| already yields FPT-membership for
each problem for affine CLs. This follows as the solution space is bounded by the parameter and
that both (SAT and IMP) can be solved in polynomial time. Finally, the complexity concerning
the parameter |E| is again difficult to analyze since even the notion of projection does not yield
any further direction to explore.

6.3 Outlook for ARG

Regarding the logic-based argumentation, we performed a similar two-dimensional complexity
classification of three reasoning problems (ARG, ARG-Check and ARG-Rel). The conclusion
regarding argumentation is that the size of α as a parameter does not help to reach tractable
fragments of p-ARG, except for very restricted cases (see Theorem 5.13). The parameters |var(∆)|
and |var(Φ)|, on the other hand, yield FPT-results for each constraint language. Moreover, the
parameters |∆| and |Φ| also yield FPT-results for Schaefer languages.

We also explored the (parameterized) complexity of the tautology and the implication
problem in Schaefer’s framework. We were able to achieve membership in P for TAUT. For
χ ∈ {|Φ|, |var(α)|}, the problem p-IMP(Γ, χ) exhibits a dichotomy: FPT if Γ is Schaefer and
paraCoNP-complete otherwise. In contrast, the problem p-IMP(Γ, |var(Φ)|) is FPT for any
constraint language Γ.
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In the classical setting, the Galois connection (Property 2.1) failed for ARG-Rel [22, Thm. 7.1].
We proved that this failure is also transferred to the parameterized setting but only when |α|
is the parameter. When parameterized by |∆| and |var(∆)|, the Galois connection is preserved
for ARG-Rel somewhat unsurprisingly, since ARG-Rel(Γ, |var(∆)|) is FPT for any CL Γ, and
ARG-Rel(Γ, |∆|) is FPT if Γ is Schaefer. However, the surprise is retained as now we have
cases (Example 5.30) when Property 2.1 also fails for ARG when parameterized by α. This
implies that the NP-complete cases of ARG can be divided into two categories: (1) those cases
for which p-ARG remains paraNP-complete and (2) those for which the complexity drops to
W[1]-completeness, when parameterized by α (unless the W-hierarchy collapses at the first level
and W[1] = paraNP).

6.4 Concluding Remarks

Towards the end, we try to compare the problems from each chapter and conclude the overall
writing.

It might be interesting to compare ABD and ARG concerning their complexity. Both of
these problems are ΣP

2 -complete for CNF-fragments, and therefore, they are both equivalent
with respect to polynomial-time reductions. Moreover, both problems ask for an explanation
of a manifestation (resp., support for a claim). Nevertheless, their complexity classification is
much widespread, with ARG being mostly harder than ABD. One possible explanation for this
interesting behavior is that the claim α in an ARG(Γ)-instance can be any Γ-formula. In contrast
to that, the manifestation M in an ABD(Γ)-instance (our setting) must be a term. It might be
interesting to consider the version of ABD where M is also an arbitrary Γ-formula. Then, a
comparison of the parameterized complexity between the two formalisms would be interesting.

Dependence logic manifests its applications on various occasions in the database setting ([1,
11, 53]). One might ask whether it is interesting to consider abduction (or argumentation) for
PDL? Notice that the entailment or the implication problem (IMP) is a basic component of both
problems we explored. However, IMP for PDL is CoNEXPNP-complete [52, Thm., 6.1], which is
way more complex than PL-IMP. Nevertheless, it might be interesting to consider the syntactic
fragments of PDL such as Poor man’s PDL ([39, 87]) and study the abductive reasoning for
them. Moreover, one can also consider abduction with functional dependencies. Let T be an
inconsistent database1 (a team) with respect to a set Ψ of functional dependencies (dependence
atoms), and φ be a query. The task of abductive reasoning is then to find an explanation for
φ in T. It seems natural to impose a size-restriction for the subteam to avoid the cases when
the dependencies are trivially true (a singleton team). Then one can also explore whether this
problem has any connections to consistent query answering (CQA). Intuitively, this problem
corresponds to asking whether there exists significant evidence for believing that the query is true
even if the database is inconsistent. The author believes that this is in contrast to CQA, where

1Otherwise the question is simply the query evaluation
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a query has to be true in every repair of the database. Moreover, it might also be interesting to
study this problem in relation to the one we defined earlier (mSubTeam). The author believes that
the problem mSubTeam might have applications in repairing an inconsistent database when a set
of functional dependencies are violated. Moreover, the abduction problem for databases might be
related to the question of whether a query is true in some repair of the database. Nevertheless,
the goal of establishing the importance of these new problems (if any) is left open for further
discussion.
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