
Geometriae Dedicata (2022) 216:2
https://doi.org/10.1007/s10711-021-00671-6

ORIG INAL PAPER

The generic isogeny decomposition of the Prym Variety of a
cyclic branched covering

Theodosis Alexandrou1,2

Received: 18 November 2021 / Accepted: 17 December 2021 / Published online: 3 January 2022
© The Author(s) 2022

Abstract
Let f : S′ −→ S be a cyclic branched covering of smooth projective surfaces over C whose
branch locus� ⊂ S is a smooth ample divisor. Pick a very ample complete linear system |H|
on S, such that the polarized surface (S, |H|) is not a scroll nor has rational hyperplane sec-
tions. For the general member [C] ∈ |H| consider theμn-equivariant isogeny decomposition
of the Prym variety Prym(C ′/C) of the induced covering f : C ′:= f −1(C) −→ C :

Prym(C ′/C) ∼
∏

d|n, d �=1

Pd(C
′/C).

Weshow that for the very generalmember [C] ∈ |H| the isogeny componentPd(C ′/C) isμd -
simple with Endμd (Pd(C ′/C)) ∼= Z[ζd ]. In addition, for the non-ample case we reformulate
the result by considering the identity component of the kernel of the map Pd(C ′/C) ⊂
Jac(C ′) −→ Alb(S′).

Keywords Jacobian variety · Prym variety · Isogeny decomposition · Cyclic covering

Mathematics Subject Classification 14K02 · 14K12 · 14H40 · 14H10

1 Introduction

For a cyclic cover f : X −→ Y of smooth complex projective curves with deg( f ) = n, we
fix a generator σ ∈ Aut(X/Y ) of the automorphism group of f . The μn-action of X induces
a Q-algebra homomorphism

ρ : Q[μn] ∼= Q[T ]/(T n − 1) → End(Jac(X)), T �→ σ ∗,
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and we define Pd(X/Y ):= ker0(�d(σ
∗)) for d|n, where �d ∈ Z[T ] is the d-th cyclotomic

polynomial. In what follows we freely use the following well-known results, which can be
easily checked:

(1) P1(X/Y ) = ker0(σ ∗ − id) = f ∗(Jac(Y )) ∼ Jac(Y )

(2) The additionmap Jac(Y )×Prym(X/Y ) −→ Jac(X), (α, β) �→ f ∗(α)+β is an isogeny.
(3) Similarly, the additionmap gives rise to the isogeny

∏
d|n, d �=1 Pd(X/Y ) ∼ Prym(X/Y ).

Then, we can state the main result of this paper, which is the following:

Theorem 1.1 Let S be a smooth projective surface over C with an ample line bundle L.
Assume � ∈ |L⊗n | is smooth and consider the n-fold cyclic covering f : S′ −→ S branched
along the divisor �. Given a very ample complete linear system |H| on S, such that (S, |H|)
is not a scroll nor has rational hyperplane sections. Then, for the very general member
[C] ∈ |H| we have that

Prym(C ′/C) ∼
∏

d|n, d �=1

Pd(C
′/C),

with Endμd (Pd(C ′/C)) ∼= Z[ζd ]. Especially, each Pd(C ′/C) is aμd -simple abelian variety.

If we restrict to the case of double coverings, we note that the involution σ of the cov-
ering f acts as − id on P2(C ′/C) = Prym(C ′/C) and thus, Endμ2(Prym(C ′/C)) =
End(Prym(C ′/C)). In particular, (1.1) can be stated as follows:

Corollary 1.2 Let S be a smooth projective surface over C with an ample line bundle L.
Assume � ∈ |L⊗2| is smooth and consider the double covering f : S′ −→ S branched
along the divisor �. Given a very ample complete linear system |H| on S, such that (S, |H|)
is not a scroll nor has rational hyperplane sections. Then, for the very general member
[C] ∈ |H| we have that

End(Prym(C ′/C)) ∼= Z.

The condition the line bundle L is ample in (1.1) implies that Alb( f ) : Alb(S′) −→ Alb(S)

is an isomorphism cf. page 11 and therefore the map Pd(C ′/C) −→ Alb(S′) is trivial. For
the general situation one needs to consider the abelian subvariety

Rd(C
′,C, S′):= ker0(Pd(C

′/C) −→ Alb(S′)).

Then, the result can be reformulated as follows:

Theorem 1.3 Let S be a smooth projective surface over C with a line bundle L. Assume
� ∈ |L⊗n | is smooth and consider the n-fold cyclic covering f : S′ −→ S branched along
the divisor �. Given a very ample complete linear system |H| on S, such that (S, |H|) is not
a scroll nor has rational hyperplane sections. Then, exactly one of the following assertions
holds true:

(i) For the general member [C] ∈ |H| we have that Rd(C ′,C, S′) = 0.
(ii) For the very general member [C] ∈ |H| we have that Endμd (Rd(C ′,C, S′)) ∼= Z[ζd ].
In this paper we present a complete proof for the above results, inspired by Ciliberto and
Van der Geer’s approach in [3]. We note that this method does not capture the étale situation,
cf. (3.2), (3.3) and (3.4). In addition, if we rephrase the statement for n > 2 by requiring
simplicity instead of μd -simplicity to the isogeny components, we observe that this method
cannot be adopted. Namely, the abelian variety B in (3.4) cannot be chosen in general to
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be μd -invariant and for this reason the last combinatorial argument in (3.4) fails. Lastly, a
result due to Ortega and Lange, cf. [6] may be used to find counter-example for the case the
covering f is étale of degree 7.
Notations and Conventions. For n ∈ N, μn is the constant group scheme over C, which
is associated to the abstract group Z/nZ. The symbol ζn stands for a primitive n-th root of
unity. If A is an abelian variety over C, which is endowed with a μn-action, then Endμn (A)

is the ring of μn-equivariant endomorphisms of A. A very general point of a given variety X
is a closed point x ∈ X , that lies in the complement of a countable union of nowhere dense
closed subvarieties.

2 Preliminaries

In this section, we state some well-known results, which are needed later.

Proposition 2.1 Let π : A −→ S be a projective abelian scheme over a Noetherian base
S. Then, the endomorphism functor of A over S is representable by an S-scheme EndA/S,
which is a disjoint union of projective and unramified S-schemes.

Proof This is well-known, cf. [4, pp. 133]. ��
The following proposition relates the correspondences on C × C with the endomorphisms
of the Jacobian Jac(C).

Proposition 2.2 Let π : X −→ S be a projective smooth morphism over a Noetherian base
S, whose fibres are geometrically integral curves. Furthermore, assume that the morphism
π admits a section, i.e. X (S) �= ∅. Then, there is a natural and functorial isomorphism

CorrS(X ):= Pic(X ×S X )/(pr1)
∗ Pic(X ) ⊗ (pr2)

∗ Pic(X ) ∼= EndS(Pic
0
X /S).

Proof Consider the commutative diagram:

0 Pic(X )/π∗ Pic(S) Pic(X ×S X )/(pr2)
∗ Pic(X ) CorrS(X ) 0

0 PicX /S(S) PicX /S(X ) EndS(Pic0X /S) 0

(pr1)
∗

∼=

q

∼= g

c:=−◦π d

The first row is clearly exact: Indeed, the relative Picard functor is an fppf-sheaf, cf. [13, Tag
021L], [5, Thm. 2.5] and thus, the restriction map (pr1)

∗ is injective. Furthermore, the map
q is just the cokernel of (pr1)

∗. Next, we give the definition of the map d . Fix x ∈ X (S) and
let φ : X −→ PicX /S be any S-morphism. Then, dφ is the unique endomorphism of Pic0X /S ,
making the diagram below commutative.

X AlbX /S ∼= Pic0X /S

PicX /S Pic0X /S

can

φ−φ◦x◦π dφ

Note that under our assumptions the Albanese map can : X −→ AlbX /S exists and has the
desired universal property, cf. [1, Thm. 2.17], [1, Rem. 2.19] and [[8], Thm. 10.2]. Moreover,
the construction of the map d indicates that d is surjective and also that the second row in
the diagram above is exact at the middle. Now, the existence of g and the fact that it is an
isomorphism are clear, since the first two vertical maps are isomorphisms by [5, Thm. 4.8]
and [5, Thm. 2.5]. ��
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The following proposition is well-known.

Proposition 2.3 Suppose that the polarized surface (S, |H|) is not a scroll nor has rational
hyperplane sections. Then, the following assertions hold true:

(i) The discriminant divisor D is irreducible and has codimension one in |H|, i.e. D is a
prime divisor of |H|.

(ii) The general curve [C] ∈ D is irreducible and has a single ordinary double point as its
only singularity.

Proof Cf. [3, Lem. 3.1]. ��
We close this section by introducing the μn-equivariant isogeny decomposition in (1.1). Let
f : C ′ −→ C be a cyclic branched covering of smooth complex projective curves with
deg( f ) = n and let σ stand for a generator of the Galois group of f . The μn-action on C ′
induces an action on Jac(C ′) and thus, it defines a Q-algebra homomorphism

ρ : Q[μn] ∼= Q[T ]/(T n − 1) −→ End0(Jac(C ′)), T �→ σ ∗.

For any divisor d|n, we define Pd(C ′/C):= ker0(�d(σ
∗)), where �d(T ) ∈ Z[T ] is the d-th

cyclotomic polynomial. Then, the addition map

μ :
∏

d|n
Pd(C

′/C) −→ Jac(C ′)

is a μn-equivariant isogeny. Lange and Recillas [7] have stated and proved the relation
between Q-representations and the G-equivariant isogeny decomposition of an abelian
variety with G-action, in terms of the finite group G involved, cf. [7, Thm. 2.2]. The μn-
equivariant isogeny decomposition of Jac(C ′) given above is in fact identical with the one
introduced by Lange andRecillas [7]. This can be seen for example by using [2, Rem. 5.5] and
[2, Cor. 5.7]. Moreover, we also note that the isogeny components Pd(C ′/C) are non-trivial
as long as the genus g(C) ≥ 1, cf. [7, Thm. 3.1], [11, Thm. 5.12] and [11, Thm. 5.13].

3 Reduction to the generic fibre

Let S be a smooth projective surface overCwith an ample line bundleL. Assume� ∈ |L⊗n |
is smooth and consider the n-fold cyclic covering f : S′ −→ S branched along the divisor
�. Furthermore, fix a very ample complete linear system |H| on S, such that the polarized
surface (S, |H|) is not a scroll nor has rational hyperplane sections. In this section we reduce
the proof of Theorem 1.1 to showing that Pd(C ′

η/Cη) is a μd -simple abelian variety, where
[Cη] is the generic member of |H|.

Let x ∈ S be a closed point of S. We denote by |H|x the linear system of hyperplane
sections in |H| passing through x . In the following we impose restrictions on the point x , i.e.
x ∈ S will be taken from some appropriate non-empty open subset of S.

Let g : X ⊂ S × |H|x −→ |H|x denote the universal family of hyperplane sections
and h : Y ⊂ S′ × |H|x −→ |H|x its pullback to S′, i.e. Y:=X ×S S′. Note that over the
non-empty open subset U ⊂ |H|x of smooth curves which intersect the branch locus �

transversally both g and h are smooth families of curves having a section. The latter allows
us to consider their families of Jacobians over U , which we denote by p : Pic0X /U −→ U

and q : Pic0Y/U −→ U , respectively.
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A generator σ : S′ −→ S′ of the Galois group of the covering f induces an automorphism
of Y over U and thus, an automorphism σ ∗ : Pic0Y/U −→ Pic0Y/U . We define

Pd := ker0(�d(σ
∗)) for any divisor d|n.

Then, ϕd : Pd −→ U is an abelian fibration with fibres (Pd)[C] = Pd(C ′/C) for [C] ∈ U .
As a first step we use the representability of the endomorphism functor of abelian schemes

cf. (2.1) to reduce the proof of Theorem 1.1 to showing that Endμd ((Pd)η̄) ∼= Z[ζd ], where
η̄ is a fixed geometric generic point of |H|x . The proof of this is standard and so we omit it.

Lemma 3.1 Assume that Endμd ((Pd)η̄) ∼= Z[ζd ]. Then, for the very general member [C] ∈
U, one has that Endμd ((Pd)[C]) ∼= Z[ζd ].
Let [C] ∈ |H|x be an irreducible member with a single ordinary double point as its only sin-
gularity and intersecting the branch locus � transversally. Then, C ′:= f −1(C) is irreducible
and has n ordinary double points as its only singularities. In this case the group variety
Pd(C ′/C) is semi-abelian. In particular, the result is the following:

Lemma 3.2 For an irreducible member [C] ∈ |H|x with a single ordinary double point
as its only singularity and intersecting the branch locus � transversally, there is an exact
sequence:

0 G
ϕ(d)
m Pd(C ′/C) Pd(C̃ ′/C̃) 0,

where ν : C̃ −→ C is the normalisation map and ϕ(d) is the Euler’s totient function.

Proof We have a commutative diagram

C̃ ′ C ′

C̃ C,

ν′

f̃ f

ν

where f̃ is the cyclic covering branched along the divisor ν∗�|C ∈ |ν∗L|⊗n
C | and ν′ is the

normalisation ofC ′. Fix a generator σ of Aut(C ′/C) and let σ̃ be the corresponding generator
of Aut(C̃ ′/C̃), i.e. the one for which the diagram below commutes

C̃ ′ C ′

C̃ ′ C ′.

ν′

σ̃ σ

ν′

Let {y, σ (y), σ 2(y), . . . , σ n−1(y)} be the set of ordinary double points of C ′. Then, we find
a commutative diagram with exact rows and columns

0 ker(α) �d(σ
∗)Pic0(C ′) �d(σ̃

∗)Pic0(C̃ ′) 0

0 C
∗
y × · · · × C

∗
σ n−1(y)

Pic0(C ′) Pic0(C̃ ′) 0

0 C
∗
y × · · · × C

∗
σϕ(d)−1(y)

ker(�d(σ
∗)) ker(�d(σ̃

∗)).

α

γ

ν′∗

β
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We show that β induces a surjection Pd(C ′/C) = ker0(�d(σ
∗)) →→ Pd(C̃ ′/C̃) =

ker0(�d(σ̃
∗)). Indeed, by Snake lemma we have the exact sequence

ker(�d(σ
∗)) −→ ker(�d(σ̃

∗)) −→ coker(γ ) −→ 0.

Note that coker(γ ) is an affine algebraic group, as it is the quotient of a commutative affine
algebraic group by an algebraic subgroup. Since ker(�d(σ̃

∗)) is a projective variety and
the last arrow in the above sequence is surjective, [14, Cor. 12.67] shows that coker(γ )

is finite. The latter provides the surjectivity of the map ker0(�d(σ
∗)) −→ Pd(C̃ ′/C̃) =

ker0(�d(σ̃
∗)), as claimed. ��

We are now in the position to prove the following:

Proposition 3.3 The abelian variety (Pd)η̄ isμd -simple if and only ifEndμd ((Pd)η̄) ∼= Z[ζd ].
Proof The one direction is clear: Indeed, if Endμd ((Pd)η̄) ∼= Z[ζd ], then every non-zero
μd -equivariant endomorphism of (Pd)η̄ is an isogeny and thus, (Pd)η̄ is a μd -simple abelian
variety. Conversely, assume that (Pd)η̄ is μd -simple. We divide the proof into steps.
Step 1. There is a closed subscheme Endμd

Pd/U (0) ⊂ Endμd
Pd/U whose points parametrise the

μd -equivariant endomorphisms of Pd , which are not isogenies, i.e. the ones, which are of
degree 0. ��
Proof of Step 1 Observe that the functor of μd -equivariant endomorphisms of Pd denoted by
Endμd

Pd/U is representable by a closed subscheme of EndPd/U , since the equivariant condition
is closed. It follows that we have a universal endomorphism α, such that every other μd -
equivariant endomorphism of Pd over some scheme T is obtained by pulling-back α along
a morphism T −→ Endμd

Pd/U . By [14, Prop. 12.93] the set

V:={x ∈ Endμd
Pd/U | αx :=α × idκ(x) is an isogeny}

is open. Therefore, Endμd
Pd/U (0):=Endμd

Pd/U \V with the reduced induced closed subscheme
structure has the desired property. ��
Step 2. The fibre (Pd)[C] for the very general member [C] ∈ |H|x is a μd -absolutely simple
abelian variety.

Proof of Step 2 Recall that the U -scheme Endμd
Pd/U (0) is unramified cf. (2.1). It follows that

a geometric fibre of this U -scheme is a disjoint union of points, corresponding to the μd -
equivariant endomorphisms of Pd , which are not isogenies cf. Step 1. Since (Pd)η̄ is a
μd -simple abelian variety, the only μd -equivariant endomorphism of (Pd)η̄, that is not an
isogeny is the zero-morphism. In particular, this means that the geometric generic fibre of
the U -scheme Endμd

Pd/U (0) is connected and therefore, we can determine countably many

non-empty open subsets Ui ⊂ U , such that the U -scheme Endμd
Pd/U (0) has (geometrically)

connected fibres for all points lying in the intersection of the Ui ’s, cf. [13, Tag 055C]. Thus,
for the very general member [C] ∈ |H|x , the only μd -equivariant endomorphism of (Pd)[C],
which is not an isogeny is the zero-morphism. The latter is equivalent to the μd -simplicity
of (Pd)[C], proving the claim. ��

Pick a Lefschetz pencil (Ct )t∈P1 ⊂ |H|x . We may assume that all its singular members
are irreducible and intersect the branch locus � transversally, cf. (2.3).
Step 3. Given a Lefschetz pencil (Ct )t∈P1 as above, we construct a homomorphism:

ρ : Endμd ((Pd)μ̄) −→ End(Gϕ(d)
m ),

where μ̄ is a fixed geometric generic point of P1.
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Proof of Step 3 Since the endomorphism ring of any abelian variety is finitely generated, cf.
[[9], Thm. 12.5], we find a finite field extension L ⊃ κ(μ), such that every endomorphism
of Pd over κ(μ̄) is defined over L , i.e. End((Pd)μ̄) = End((Pd)L). Consider the smooth
projectivemodel E of L togetherwith themorphism E −→ P

1 induced by this field extension
and fix a closed point y ∈ E lying over a point of the pencil that corresponds to a nodal
curve. The map ρ : Endμd ((Pd)μ̄) −→ End(Gϕ(d)

m ) is constructed as follows: Let f ∈
Endμd ((Pd)L). Then, f extends to an endomorphism over the local ring R of E at the point
y, cf. [12, Prop. 7.4.3]. The restriction of the first projection of Pd ×R Pd to the graph of f is
an isomorphism. We set α:= pr1 |(� f )y . By pulling back α along Gϕ(d)

m ↪→ (Pd)y , we get an

isomorphism α : α−1(G
ϕ(d)
m ) −→ G

ϕ(d)
m . We claim that α−1 is the graph of a homomorphism

G
ϕ(d)
m −→ G

ϕ(d)
m . Indeed, it suffices to show that pr2(α

−1(G
ϕ(d)
m )) ⊂ G

ϕ(d)
m . To see this,

observe that the composite

G
ϕ(d)
m

∼=−→ α−1(Gϕ(d)
m ) ⊂ (� f )y

pr2−→ (Pd)y −→ Pd(C̃ ′
y/C̃y)

is the zeromap by [[9], Cor. 3.9] and hence, pr2 |
G

ϕ(d)
m

factors through the kernel of (Pd)y −→
Pd(C̃ ′

y/C̃y) which isG
ϕ(d)
m . Finally, we define ρ( f ) to be this endomorphism ofGϕ(d)

m . One
checks that ρ is a homomorphism of rings. ��
ConclusionEventually,we are in theposition to complete the proof. SupposeEndμd ((Pd)η̄) �=
Z[ζd ] and choose a μd -equivariant endomorphism f not in Z[ζd ]. The endomorphism f can
be described as a κ(η̄)-point of Endμd

Pd/U and we let Z ⊂ Endμd
Pd/U be the irreducible com-

ponent containing this point. Then, the generic point θ ∈ Z corresponds to a μd -equivariant
endomorphism not in Z[ζd ]. Consider the finite set

�:={n:=(n0, n1, . . . , nϕ(d)−1) ∈ Z
ϕ(d) | im([n]1) ∩ Z �= ∅}.

Each im([n]) ∩ Z is a proper closed subset of Z . Setting1

Zn :=π(im([n]) ∩ Z),

for n ∈ �, we get finitely many nowhere dense closed subsets ofU , such that for every point
u ∈ U \ ⋃

n∈� Zn the fibre π−1(u) contains a point, which is not in Z[ζd ]. We can choose
a Lefschetz pencil as above, such that (Pd)μ̄ is μd -simple, cf. Step 2 and Endμd ((Pd)μ̄) �=
Z[ζd ]. By Step 3 this leads to a contradiction. Indeed, using that every non-zero element of
Endμd ((Pd)μ̄) is invertible in Endμd ((Pd)μ̄) ⊗Q, it is readily checked that the composition

of the map ρ constructed in Step 3 with ψ := pr1 ◦−: End(Gϕ(δ)
m ) −→ Hom(G

ϕ(δ)
m ,Gm) ∼=

Z
ϕ(δ) is injective. It follows that Endμd ((Pd)μ̄) ⊗ Q ∼= Q(ζd). Since Z[ζd ] is a maximal

order in Q(ζd), we also obtain Endμd ((Pd)μ̄) ∼= Z[ζd ]. The proof is complete. ��
The next lemma consists of the final reduction step.

Lemma 3.4 The abelian variety (Pd)η is μd -simple if and only if it is μd -absolutely simple.

Proof Clearly, if (Pd)η is μd -absolutely simple, then it is μd -simple. Conversely, assume
that (Pd)η is μd -simple but not μd -absolutely simple. Then, there is a finite field extension
L ⊃ κ(η) and a non-zero and proper μd -simple abelian subvariety B of (Pd)L , such that
(Pd)L can bewritten up to isogeny as a product

∏
Bτ , where Bτ stands for aGalois conjugate

of B and τ runs through a finite subset J ⊂ Gal(L/κ(η)) of cardinality greater equal to 2.
The field extension L ⊃ κ(η) gives rise to a morphism g : U ′ −→ U , which we may assume

1 [n]:=n0 id+n1σ
∗ + n2(σ

∗)2 + · · · + nϕ(d)−1(σ
∗)ϕ(d)−1.
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is étale. For τ ∈ J , we let ϕτ be the endomorphism of (Pd)L whose image is Bτ . More
explicitly, ϕτ is given by

(Pd)L
∼−→

∏
Bτ proj−→ Bτ ⊂ (Pd)L .

Pick a Lefschetz pencil (Ct )t∈P1 , such that its singular members are irreducible and intersect
the branch locus � transversally. Let X be any irreducible component of g−1(P1 ∩ U ).
Then, X dominates P1 ∩ U and if θ ∈ X is its generic point, then each ϕτ determines an
endomorphismofPd over θ , e.g. using theNéronmapping property, such that if Bτ := im(ϕτ ),
then

∏
Bτ ∼ (Pd)θ . Let X̄ be a smooth compactification of X and X̄ −→ P

1 the extension
of g : X −→ P

1 ∩ U . Fix a point y ∈ X̄ lying over a point of the pencil which corresponds
to a nodal curve and consider the local ring R of X̄ at y. Since Pd admits a semi-abelian
reduction over R , cf. (3.2) the same is true for all Bτ , cf. [12, Cor. 7.1.6]. We denote by
B̃τ the identity component of the Néron model of Bτ . Then, the isogeny of the generic fibre
extends to an isogeny

∏
B̃τ ∼ Pd over R, cf. [12, Prop. 7.3.6]. Since (Pd)y is an extension

of an abelian variety by a torus of rank ϕ(d), cf. (3.2), it follows that the toric part of B̃τ
y has

rank δ, 1 ≤ δ ≤ ϕ(d), such that δ|J | = ϕ(d). As in Step 3, one constructs a homomorphism
ρτ : Endμd (B

τ ) −→ End(Gδ
m). Since the restriction of ψ ◦ ρτ to Z[ζd ] ⊂ Endμd (B

τ ) is
injective, whereψ := pr1 ◦−: End(Gδ

m) −→ Hom(Gδ
m,Gm) ∼= Z

δ and Z[ζd ] has rank ϕ(d)

as a free abelian group, we conclude that δ = ϕ(d). But then |J | = 1, which is absurd. ��

4 The Proof of Theorem 1.1

According to the results of Sect. 3, our task to prove Theorem 1.1 is reduced to showing
(Pd)η is a μd -simple abelian variety. Recall, that we have an isogeny

Jac(C ′
η) ∼ Jac(Cη) ×

∏

d|n, d �=1

(Pd)η.

Given a non-zero endomorphism ε ∈ Endμd ((Pd)η). Then, by considering the composite

ε′ : Jac(C ′
η)

∼−→ Jac(Cη) ×
∏

d|n, d �=1

(Pd)η
prd−→ (Pd)η

ε−→ (Pd)η ↪→ Jac(C ′
η),

we get an endomorphism of Jac(C ′
η) whose restriction to (Pd)η is simply ε ◦ [n]. Hence, it

suffices to show that that the restrictionof ε′ to (Pd)η lies inZ[ζd ]. Recall, that abelian schemes
satisfy a stronger Néron mapping property, cf. [10, Sec. 3.1.5]. Thus, the endomorphism ε′
extends to an endomorphism

ε′ : Pic0Y/U −→ Pd ⊂ Pic0Y/U .

Let [T ] ∈ CorrU (Y) be the class of a correspondence T onY×UY associated to the endomor-
phism ε′, cf. (2.2).Wewrite T = ∑

ni Ti , where Ti are prime divisors. Let� be a general two
dimensional linear system in |H|x , i.e. the general member of � is smooth and intersects the
branch locus � transversally. Then, the correspondences Ti are all defined over a non-empty

open subset of� and we can construct a rational map φ�,Ti : S′ Div+(S′), y �→ �i
y

, cf. [3, pp. 38]. Especially, we get a rational map

φ�,T : S′ Pic(S′), y �→ [�y]:= ∑
ni [�i

y].
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Let [C] ∈ |H|x be a general member and choose a general two-dimensional linear system
� containing [C]. Consider the rational map φ�,T . Then, for a general point y ∈ C ′ we get
a divisor �y = φ�,T (y) on S′. Set w = f (y) ∈ C , f −1(w) = {y, σ (y), . . . , σ n−1(y)} and
f −1(x) = {z, σ (z), . . . , σ n−1(z)}, where σ is a generator of the Galois group of the covering
f . The following lemma computes the divisor Ey in C ′ corresponding to the intersection of
C ′ with �y .

Lemma 4.1 We have that Ey = α0z+α1σ(z)+ . . .+αn−1σ
n−1(z)+β0y+β1σ(y)+ . . .+

βn−1σ
n−1(y)+γB′

x,w +TC ′(y), where αi , βi , γ ∈ Z and B′
x,w is the pull-back of the divisor

of base points different from x and w of �w under the covering f .

Proof Cf. [3, Lem. 3.6]. ��

4.1 Regular case

The branched locus � of the covering f is a smooth ample divisor and thus, the canonical
map Alb( f ) : Alb(S′) −→ Alb(S) induced by f is an isomorphism. Indeed, since f∗OS′ ∼=⊕n−1

i=0 L−i , the Kodaira Vanishing theorem gives H1(OS′) = H1(OS) and hence, Alb( f ) is
an isogeny. From this one immediately sees that the induced action on Alb(S′) is trivial, i.e.
Alb(σ ) = id. Consider the Albanese map Albξo : S′ −→ Alb(S′), where the point ξo ∈ S′
lies over a point of the branch locus � ⊂ S and observe that the map is invariant under
the μn-action. Therefore, we find a homomorphism Alb(S) −→ Alb(S′) that is inverse to
Alb( f ), proving the claim. In particular, we deduce that q(S) = q(S′). Here, we give the
proof for the case S is regular, i.e. q(S) = 0.

Proof of Theorem 1.1 for the regular case If S is regular, then Pic(S′) is discrete and thus, the
rational map φ�,T is constant. Hence, for a general point y ∈ C ′, the curves �y and �σ(y)

are linearly equivalent. It follows that Ey and Eσ(y) are also linearly equivalent and so,
Ey − Eσ(y) = β0(y − σ(y)) + β1σ(y − σ(y)) + . . . + βn−1σ

n−1(y − σ(y)) + TC ′(y −
σ(y)) ∼ 0. Since Prym(C ′/C) = im(id−σ ∗), the latter forces TC ′(y) = (−β0)y + . . . +
(−βn−1)σ

n−1(y) for all y ∈ Prym(C ′/C). Eventually, we see that the restriction of TC ′ to
Pd(C ′/C) takes the desired form. This yields that the restriction of ε′ to (Pd)η lies in Z[ζd ],
as claimed. ��

4.2 Irregular case

The closed embedding i : C ′ ↪→ S′ defines the natural map i∗ : Pic0(S′) −→ Pic0(C ′)
whose kernel is finite, since H1(S′,OS′(−C ′)) = 0. In what follows we view Pic0(S′) as
an abelian subvariety of Jac(C ′) by identifying it with im(i∗). We shall use the following
lemma.

Lemma 4.2 Let a : Jac(C ′) −→ Pd(C ′/C) ⊂ Jac(C ′) be a homomorphism and let Ta be a
correspondence associated to it, cf. (2.2). Assume that there existα0, . . . , αn−1 ∈ Z, such that
for general y ∈ C ′ the divisor class Ta(y−σ(y))+α0(y−σ(y))+. . .+αn−1σ

n−1(y−σ(y))
lies in Pic0(S′). Then, the restriction of a to Pd(C ′/C) lies in Z[ζd ] ⊂ End(Pd(C ′/C)).

Proof Recall that Prym(C ′/C) = im(id−σ ∗) and for this reason the closed points of
Prym(C ′/C) are generated by elements of the form y − σ(y), where y ∈ C ′. Hence,
the assumption clearly implies that η(y):=a(y) + α0y + . . . + αn−1σ

n−1(y) ∈ im(i∗) ∩
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Prym(C ′/C) (note that Pd(C ′/C) ⊂ Prym(C ′/C)) for all y ∈ Prym(C ′/C), where
i∗ : Pic0(S′) −→ Pic0(C ′) = Jac(C ′) is the natural pull-back induced by C ′ ↪→ S′. We
show that the intersection im(i∗) ∩ Prym(C ′/C) is finite. Indeed, consider the commutative
square:

Pic0(S) Pic0(C)

Pic0(S′) Pic0(C ′).
f ∗

i∗

f ∗

i∗

The canonical map Alb(S′) −→ Alb(S) induced by f is an isomorphism and so, is its dual,
which is f ∗. Hence, the latter yields that im(i∗ : Pic0(S′) −→ Pic0(C ′)) ⊂ f ∗(Pic0(C)). By
the definition of Prym(C ′/C), we know that f ∗(Pic0(C)) ∩ Prym(C ′/C) is finite and so, is
the intersection im(i∗)∩Prym(C ′/C), as claimed. From the latter one deduces that the endo-
morphism η of Prym(C ′/C) defined above is the zero-map, simply because η(Prym(C ′/C))

is irreducible subvariety of im(i∗) ∩ Prym(C ′/C), which is a finite union of points. Finally,
by restricting to Pd(C ′/C) ⊂ Prym(C ′/C), we conclude that a lies in the image of the map
Z[ζd ] ⊂ End(Pd(C ′/C)), ζd �→ σ . The proof is complete. ��
Proof of Theorem 1.1 for the irregular case Using the curves�y we find that Ey −Eσ(y) lies in
the image of Pic(S′) −→ Pic(C ′). Therefore, we have that TC ′(y −σ(y))+β0(y −σ(y))+
β1σ(y − σ(y)) + . . . + βn−1σ

n−1(y − σ(y)) ∈ im(i∗ : Pic(S′) −→ Pic(C ′)) for general
y ∈ C ′. It follows that ε′ ∈ Z[ζd ] ⊂ End((Pd)η), cf. (4.2). ��

5 The proof of Theorem 1.3

The proof is similar to the case of (1.1). First, we need to replace our earlier family
ϕd : Pd −→ U . In particular, we consider the abelian fibration

Rd := ker0(Pd −→ Alb(S′) ×U ).

Assume that the abelian fibration ϕd : Rd −→ U is non-zero, i.e. R[C] �= 0 for [C] ∈ U .
Then, we show that for the very general member [C] ∈ U , we have that Endμd ((Rd)[C]) ∼=
Z[ζd ]. One checks that the results (3.3) and (3.4) still hold true for the family ϕd : Rd −→ U .

We proceed as in the proof of Theorem 1.1. A non-zero endomorphism ε ∈ Endμd ((Rd)η)

gives rise to an endomorphism ε′ ∈ End(Jac(C ′
η)) and it is enough to check that the restriction

of ε′ to (Rd)η lies in Z[ζd ]. The following lemma is needed.

Lemma 5.1 Let a : Jac(C ′) −→ Rd(C ′,C, S′) ⊂ Jac(C ′) be a homomorphism and let Ta
be a correspondence associated to it, cf. (2.2). Assume that there exist α0, . . . , αn−1 ∈ Z,
such that for general y ∈ C ′ the divisor class Ta(y − σ(y)) + α0(y − σ(y)) + . . . +
αn−1σ

n−1(y − σ(y)) lies in Pic0(S′). Then, the restriction of a to Rd(C ′,C, S′) lies in
Z[ζd ] ⊂ End(Rd(C ′,C, S′)).

Proof Clearly, we have that a(y) + α0y + . . . + αn−1σ
n−1(y) ∈ im(i∗) for all y ∈

Prym(C ′/C), where i∗ : Pic0(S′) −→ Pic0(C ′) = Jac(C ′) is the pull-back induced
by C ′ ↪→ S′. Let K(C ′, S′):= ker(Jac(C ′) −→ Alb(S′)) and observe that the inter-
section im(i∗) ∩ K(C ′, S′) is finite. Since Rd(C ′,C, S′) ⊂ K(C ′, S′), we find that
a(y) + α0y + . . . + αn−1σ

n−1(y) = 0 for all y ∈ Rd(C ′,C, S′). Therefore, the restric-
tion of a to Rd(C ′,C, S′) belongs to Z[ζd ], as claimed. ��
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Proof of Theorem 1.3 Using the curves �y one sees that Ey − Eσ(y) lies in the image of
Pic(S′) −→ Pic(C ′). It follows that TC ′(y − σ(y)) + β0(y − σ(y)) + β1σ(y − σ(y)) +
. . .+βn−1σ

n−1(y−σ(y)) ∈ im(i∗ : Pic(S′) −→ Pic(C ′)). Now, the result is an immediate
consequence of (5.1). ��
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