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An example of automated characterization and interpretation of the textural and
compositional characteristics of solids phases in thin sections using machine learning
(ML) is presented. In our study, we focus on the characterization of olivine in volcanic rocks,
which is a phase that is often chemically zoned with variable Mg/(Mg + Fe) ratios, so-called
magnesian number or mg#. As the olivine crystals represent only less than 10 vol% of the
volcanic rock, a pre-processing step is necessary to automatically detect the phases of
interest in the images on a pixel level, which is achieved using Deep Learning. A major
contribution of the presented approach is to use backscattered electron (BSE) images to:
1) automatically segment all olivine crystals present in the thin section; 2) determine
quantitatively their mg#; and 3) identify different populations depending on zoning type
(e.g., normal vs reversal zoning) and textural characteristics (e.g., microlites vs
phenocrysts). The segmentation of the olivine crystals is implemented with a pretrained
fully convolutional neural network model with DeepLabV3 architecture. The model is
trained to identify olivine crystals in backscattered electron images using automatically
generated training data. The training data are generated automatically from images which
can easily be created from X-Ray element maps. Once the olivines are identified in the BSE
images, the relationship between BSE intensity value and mg# is determined using a
simple regression based on a set of microprobe measurements. This learned functional
relationship can then be applied to all olivine pixels of the thin section. If the highest possible
map resolution (1 micron per 1 pixel) is selected for the data acquisition, the full processing
time of an entire thin section of ~ 3 × 4cm containing more than 1,500 phenocrysts and
20.000 microliths required 140 h of data acquisition (BSE + X-Ray element maps), 8 h of
training and 16 h of segmentation and classification. Our further tests demonstrated that
the 140 h of data acquisition can be reduced at least by a factor of 4 since only a part of the
thin section area (25% or even less) needs to be used for training. The characterization of
each additional thin section would only require the BSE data acquisition time (less than
48 h for a whole thin section), without an additional training step. The paper describes the
training and processing in detail, shows analytical results and outlines the potential of this
Deep Learning approach for petrological applications, resulting in the automatic
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characterization and interpretation of mineral textures and compositions with an
unprecedented high resolution.

Keywords: diffusion chronometry, olivine zoning, artificial intelligence, mineral analysis, CNN, automated
mineralogy, deep learning, BSE and X-Ray Maps

1 INTRODUCTION

Mineral compositions in rocks are often heterogeneous and the
characterization of this variation is extremely useful to interpret
pressure and temperature paths in metamorphic rocks and
history of crystal growth and fractionation in igneous rocks. In
volcanic rocks, chemical variations form as a response to changes
of magma storage conditions (e.g., pressure, temperature, oxygen
fugacity) in multi-level volcano plumbing systems. These
perturbations of magmatic variables are recorded by continuously
growing or partly dissolving crystals, forming complex patterns of
normal, reverse and oscillatory zoning, irregular shaped patchy
zoning, resorbed interiors and edges and embayments (Streck,
2008). Thus, compositional variations are often complex and
minerals within one rock sample can record different
thermobarometric information (Putirka, 2008). It is now generally
accepted that chemical zoning decoded from minerals in volcanic
rocks demonstrates that a single batch of magma transports a large
variety of crystals of different origins and ages (Davidson et al., 2007;
Cashman andBlundy, 2013; Ruth et al., 2018). Recent investigations of
chemical gradients and diffusion profiles in crystals collectedwithin an
area comparable to the size of a thin section, provide evidence for
mineral phases originating from different parts of the plumbing
system (called magmatic environments in the recent literature
(Kahl et al., 2011; Saunders et al., 2012; Kahl et al., 2013; Albert
et al., 2015)) with “mixing-to-eruption” timescales ranging from a few
hours to hundreds of years (Saunders et al., 2012; de Maisonneuve
et al., 2016; Ruth et al., 2018; Costa et al., 2020). Thus, volcanic samples
containing phenocrysts have a huge potential, but extremely time-
consuming work is necessary to disentangle the information recorded
by the different populations of crystals. For example, for the
application of diffusion chronometry (Chakraborty, 2008), a large
number of compositional profiles is required to get statistically
relevant and well constrained time scales as demonstrated by Shea
et al. (2015). For each mineral type, all zoning patterns need also to be
characterised (ideally all available crystals) to identify all magmatic
environments and to apply a systems analysis approach (Kahl et al.,
2011). This approach has the advantage to bracket populations of
minerals that have the same history (e.g. transfer from one magma
chamber to another), which allows us to constrain accuratelymagma
plumbing systems. Thus, extracting reliable identification of
magmatic environments for thermobarometry and diffusion
chronometry requires a statistical treatment of chemical element
maps with high spatial resolutions of hundreds and thousands of
crystals, which can be sometimes present within one rock thin
section (e.g., Saunders et al. (2012); Kahl et al. (2017); Cheng and
Guo (2017); Zeng et al. (2018)).

In summary, largescale analysis of entire thin sections of rock
samples is essential for a wide field of geological applications
(e.g., textural, mineralogical and geochemical analysis).

Although manual investigations based on a large amount of
data are theoretically possible, the required effort in data
acquisition and manual processing of the data makes it
impracticable. In this paper, we propose a framework that
uses machine learning, especially deep learning, and classical
methods of image analysis to automate this process and
dramatically reduce the manual effort for a largescale
analysis of rock samples, with specific applications to
volcanic rocks. The framework is described in Section 3,
followed by a description of the data sets. Then the results
are presented in Section 4 and thoroughly discussed in the
following Section 5. An outlook on future work concludes the
paper. An overview of the results of the paper are presented in a
webmap which can be accessed via https://www.icaml.org/
olmap/.

2 LIMITATIONS IN DATA ACQUISITION

In most studies, chemical element maps with spatial resolutions
of up to few microns are routinely obtained using conventional
techniques: scanning electron microscope (SEM, Goldstein et al.
(2018)) and electron probe microanalyzer (EPMA, Reed (2005))
equipped with backscattered electron (BSE) and energy-
dispersive (EDS) detectors and wavelength-dispersive
spectrometers (WDS). The benefit of EDS systems is their
ability to record data from a large number of elements over a
wide energy range simultaneously, whereas the WDS-based
microprobe records only a pre-selected set of elements,
depending on the number and type of the spectrometers
available. However, due to low peak-to-background ratios and
reduced energy resolution, the limits of detection provided by
EDS are poor (not below 0.5wt%1) when compared to WDS and
only major elements with high concentration can be confidently
measured (Seddio and Donovan, 2016). In contrast, the WDS-
based electron microprobe is the most versatile tool and in
addition to major elements it can easily address the low level
of trace elements concentrations (e.g., few ppm’s phosphorous in
olivine Ruth et al. (2018)). The main drawback of the EDS or
WDS X-ray mapping techniques is a relatively long acquisition
time needed to map quantitatively numerous chemical elements,
especially when applied to cm-size samples such as a 2.5 × 4.5 cm2

thin section (e.g., the total BSE + EDS acquisition and mosaic
image construction of a thin section composed of 9,000 individual
tiles, each with a size of 512 × 338 pixels and a resolution of 1 μm
per pixel such as in Figure 1, takes about 140 h).

1wt%: weight percent
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One of the most efficient and routine method employed by
petrologists to record fine-scale chemical zoning inminerals is the
use of grey scale calibrated high-resolution BSE images. The
intensity of the backscattered signal depends on the mean
atomic number (Z) of the targeted specimen (Goldstein et al.,
2018). For example, BSE scans of olivine and pyroxenes (Morgan
et al., 2004; Blundy and Cashman, 2008; Martin et al., 2008; Costa
andMorgan, 2010; Saunders et al., 2012) show primary variations
in the magnesian number mg# [mg# = Mg/(Fe + Mg)]; brighter
pixels indicate a higher concentration of Fe), whereas BSE images
of plagioclase (Ginibre et al., 2002) demonstrate variations in
Anorthite-Albite content [Anorthite content, An# = Ca/(Ca +
Na)]; brighter pixels indicate Ca-rich compositions). Using
modern field-emission EPMA and depending on the beam
conditions (accelerating voltage, current and contrast in
atomic number), BSE images can be now acquired with a
spatial resolution of 200–300 nm (Armstrong et al., 2013a;
Armstrong et al., 2013b).

Subsequent calibration of the grey scale intensities of these
high-quality BSE images against quantitative WDS point
analyses (expressed e.g., as mg# or An# for respective
minerals) provides 1D compositional traverses or 2D
quantitative maps with a submicron (100 nm or less)
spatial resolution and analytical uncertainty of < 1mol%.
When applied to diffusion chronometry, such high spatial
BSE resolution allows us to simulate a temporal resolution
that is better by a factor of 100 (Costa and Morgan, 2010) than
what can be achieved by a conventional EPMA analysis
(which has an excitation volume never smaller than
1–1.5μm3, (Reed, 2005; Saunders et al., 2014)).

In practice, the selection of individual minerals with
interesting zoning patterns (image segmentation) is usually
performed by masking tools and/or threshold or watershed
methods using commercial or freeware image processing
software, with a large proportion of interactive work (e.g.
Barraud (2006); Ebel et al. (2016); Zeng et al. (2018)).
However, the manual treatment becomes time-consuming
when applied to standard thin section areas, and this process
is difficult to automate because the distributions of the grey scale
intensities of different minerals (especially of solid solutions) in
BSE maps usually overlap (Hrstka et al., 2018). In addition, BSE
scans often contain numerous artifacts such as charging, surface
contamination, and surface damage from sample preparation.
In most studies dealing with small sample areas or large areas
with reduced resolution, BSE maps are simultaneously acquired
along with X-rays maps (EDS or WDS). In this case the task of
image pixel classification and segmentation is directly translated
into the task of construction of standard phase composition
maps (Kotula et al., 2003; Friel and Lyman, 2006), which can be
carried out using simple computer scripts (Togami et al., 2000;
De Andrade et al., 2006; Muir et al., 2012; Akkaş et al., 2015;
Münch et al., 2015; Buse and Kearns, 2018; Higgins et al., 2021;
Sheldrake and Higgins, 2021) or stand-alone programs with
graphical user interface (Pre’t et al., 2010; Lanari et al., 2014;
Chouinard and Donovan, 2015; Liebske, 2015; Zeng et al., 2018;
Yasumoto et al., 2018). This approach provides the best and
most consistent method of pixel recognition. However, it
becomes extremely time-consuming when applied to areas of
thin section scale, due to long EDS- or WDS-map acquisition
time. A few recent studies presented semi-automated analytical

FIGURE 1 | BSE map of the entire thin section with selected areas used for training (large yellow frames), testing (blue frames) and validation (red frames). Small
purple frames contain areas with olivines used for calibrations of the BSE grey scale against EPMAmg#. These purple frames and small white filled rectangular on a left
upper part of the Figure show the size of single EDS-BSE tiles. Numbers show analytical sessions. Olivines presented in this paper are white color contoured and labeled
as I, II etc.
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protocols to accurately and efficiently assign mineral (phase)
identities (and chemical composition) to image pixels using only
selected representative X-ray element intensity maps for
calibration (Crapster-Pregont and Ebel, 2020), or X-Ray
maps together with BSE grey scale scans parametrized
separately for each mineral phase (Willis et al., 2017).
Despite progress in facilitating image analysis, these
analytical protocols still involved significant amount of time-
consuming image pre- and/or post-processing steps.

It has also been shown recently that, as an alternative to
traditional thresholding methods, the task of image
segmentation can be successfully accomplished by Machine
Learning, in particular by Deep Learning (DL) algorithms
(Einsle et al., 2018; Volkenandt et al., 2018; Karimpouli and
Tahmasebi, 2019; Dong et al., 2020; Lou et al., 2020). For
example, Lormand et al. (2018) applied the trainable Weka
segmentation (TWS) plugin in the ImageJ software (Abràmoff
et al., 2004; Arganda-Carreras et al., 2017) for the sets of BSE
images of glassy volcanic shards. In this way, these authors
derived a plagioclase crystal segmentation for samples with low
crystallinities. However, they also found inconsistent
segmentations and failures in crystal boundary recognition in
more crystalline samples, most likely due to the insufficient data
for training. Since the training data must be generated by the
user in a time-consuming interactive process, only a limited
number of training examples are available. Even more
problematic is that in this way only a part of the variability
within the target class is mapped, since e.g., edges can only be
captured with difficulty. The generalization behavior of the Fast
Forest (FF) (Yates and Islam, 2021) model trained with this data
is limited. Therefore manual interaction is obligatory for the
application to new data. If sufficient training samples are
available, FF and other classical machine learning techniques
are outperformed by DL models like convolutional neural
networks (CNN) (Le Cun et al., 1989; Krizhevsky et al.,
2017) and their variants for pixel-wise classification,
especially Fully Convolutional Neural Networks (FCN) (Long
et al., 2015). This is thought to be due to the fact that DL
methods learn to extract meaningful features from a larger
receptive field in the training procedure, whereas traditional
classifiers such as FF rely on hand-crafted features that are
selected by the user at the beginning and they are not changed in
the training process. This problem is aggravated if the hand-
crafted features are only based on the pixel intensities, in which
case no information of the local pattern of grey values is
presented to the classifier. In contrast, DL methods explore
all possible features in principle and use the most appropriate
ones. However, this theoretical benefit of DL methods always
comes at the cost of the requirement of a large amount of
training data. Examples of the successful application of DL for
the segmentation of electron microscope data can already be
found in the literature. Chen et al. (2020) performed data
mining on 300 SEM images acquired in secondary electron
mode, and a FCN (a modified U-Net architecture (Ronneberger
et al., 2015)) was able to effectively separate clay particles from
the matrix mineral grains, with pixel grey scale levels that are
nearly indistinguishable even for experienced researcher.

In this work we present a framework for such a largescale
analysis covering a whole thin section and focusing on olivine
crystals in a volcanic rock sample. However, the proposed
methodology can be also applied to the analysis of other
minerals. Several steps are required to perform this largescale
analysis: 1) the identification of relevant areas, in our case the
segments in which olivine crystals are present; 2) the data
acquisition; and 3) the statistical analysis of the selected areas.
All steps have to be automated and in 2) the dependence on time-
consuming data acquisition methods has to be minimized. Our
framework can be divided in three processing steps:

1) BSE images are automatically segmented into olivine
patches using a FCN, which solves a) the identification of
relevant areas. 2) Based on the BSE input and the
segmentation results from step 1), the mg# is calculated for
each pixel using a calibration of BSE intensities against mg#
from microprobe data on selected areas (crystals). Applying the
calibration leads to the identification of the mg# for each pixel
with a quality comparable to the microprobe measurements.
The generation of such a huge dataset would be dramatically
time consuming when using microprobe measurements due to
the long acquisition time. This processing step addresses b), the
data acquisition within acceptable time. 3) Finally, a global
statistical analysis is carried out. The combination of connected
component analysis and estimation of rim to core ratio allows to
classify the olivine crystals by their size and zoning
characteristics. The respective results are used to tackle c),
the automation of the statistical analysis.

The key part of the framework is the semantic segmentation
of the olivine crystals. A major difference to the work of
Ronneberger et al. (2015) is the automatic generation of a
sufficient amount of training examples. We achieve this by
using EDS scans acquired simultaneously with BSE. The
advantage is that the pixel-wise classification of olivine in
EDS scans can easily be done by thresholding the intensity
signal values using key chemical elements. These olivine
classifications can directly be used as training data for the
BSE segmentation. Based on this method we train a model and
use it to create a olivine segmentation for an entire thinsection.
Subsequently, the segmentation is used for the prediction of the
mg# and large-scale analysis of olivine crystals.

3 METHODOLOGY AND DATA

3.1 Dataset Sample
In this study we used a standard thin section (48 × 28mm2 with
a sample working area of 40 × 24mm2) of a high-magnesia
basaltic andesite from the Bulochka cinder cone of the
Klyuchevskoy volcano, Kamchatka (12% MgO, 52% SiO2,
(Ariskin et al., 1995; Almeev et al., 2013; Portnyagin et al.,
2019). The investigated sample is a vesicular basalt with olivine
and clinopyroxene phenocrysts with sporadic occurrence of
orthopyroxene and rare spinel (which tend to occur as
inclusion in olivine). Large phenocrysts of plagioclase are
rare; this phase mostly occurs as microphenocryst or in
intergrowths with evolved clinopyroxene. The groundmass is
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composed of olivine, clinopyroxene, plagioclase, Fe-Ti oxides
and recrystallized matrix glass. The sample contains the most
primitive magnesian clinopyroxene and olivine from the
Klyuchevskoy volcano (e.g. mg# = 85–91mol%) and was
previously investigated for melt inclusion studies (Mironov
et al., 2015; Portnyagin et al., 2019). According to routine
point counting methods using an optical microscope (21,000
points), the phase proportions in this sample are as follows (on
vesicle-free basis, vesicles are ~ 20%): ~ 8.5% olivine, ~ 9%
clinopyroxene, < 0.2% orthopyroxene and oxides, 82%
groundmass (Almeev et al., 2013).

3.2 Analytical Methods
High quality BSE images of the entire thin section as well as EDS
X-ray maps of selected areas within the thin section (Figure 1)
were acquired at the Institute of Mineralogy, Leibniz University
Hannover (LUH) using a field emission JEOL JSM-7610FPlus
electron microscope, equipped with two Bruker XFlash 6|60 large
area SDDs. Analytical conditions were as follows: 15kV
acceleration voltage, 10 nA probe current, 10 cycles, 16μs dwell
time, line average of 15. The size of tiles was chosen to be 512 ×
338 pixels, which allowed a spatial resolution of 1 μm for
one pixel.

Chemical profiles along selected olivine crystals were obtained
using a Cameca SX-100 electron microprobe at the Institute of
Mineralogy, LUH. We used an accelerating voltage of 15kV, probe
currents of 40 nA and focused beam. The following internal
standards were used for Kα line calibration: Mongol olivine
standard (Batanova et al., 2019) for Si, Fe and Mg, wollastonite
for Ca, and Mn3O4 for Mn. Peak counting times were 10s and
background counting times were 5s on each side of the peak. The
accuracy and reproducibility of the measurements were controlled
by replicated measurements of Mongol (Batanova et al., 2019) and
San Carlos (Jarosewich et al., 1980) reference olivines.

3.3 Input Data for the Automatic Analysis
The input data is composed of three subsets dedicated to subtasks
of our framework.

DL-Data: consists of corresponding 2400 BSE and EDS tiles
and is used for the training, testing and validation of the DL
model. Note that the BSE and EDS tiles are pixel-wise aligned due
to the sensing setup. Table 1 and Figure 1 show the rectangular
areas which were used for the DL training (yellow frames), testing
(blue frames) and validation (red frames). The net acquisition
time for the DL-Data is ca. 7 days.

Calibration-Data: are used for the calibration of the BSE grey
intensities against the microprobe data (mg#). The olivines used
for the generation of this data are marked with purple
(calibrations) and brown (test of calibrations) frames in
Figure 1. For this purpose, the data consist of pairs of 1D
profiles, a microprobe profile and an extracted BSE profile.
BSE profiles are extracted from the BSE images by manually
setting the start and end points corresponding to the microprobe
profiles.

The acquired accurate microprobe compositional profiles
(from rim to rim of the olivine crystals) are used to calculate
mg# for further BSE grey scale calibrations.

Thin Section-Data consisting of 9000 BSE tiles are used for
statistical treatment and petrological assessments of all olivine
crystals in the investigated thin section. This data is visualized by
the whole grey value image in Figure 1. The net acquisition time
for the Thin Section-Data is ca. 6 days.

3.4 General Task
The overall task is to create a framework which, uses a single
channel BSE-image B, and automatically predicts: 1) a 2D
binary mask O that indicates which pixel in B corresponds to
an olivine crystal (we refer to this task as semantic
segmentation); and 2) a two-dimensional map M that
contains the corresponding mg# of all pixels in B (we refer to
this task as regression). Lastly, there is the task 3) which is to
detect complete instances of olivine crystals and typecast (see
Table 2) each instance. The predicted mask O as well as the map
M should be geometrically aligned with B such that the pixels
having the same row and column indices correspond to the
same location in the thin section. As shown in the literature, the
regression task can be solved by simple parametrization of the
BSE grey values against a mineral compositional proxy like mg#
(Willis et al., 2017) or An# (Ginibre et al., 2002). The required
measurements can e.g., be done by microprobe profiles through
entire zoned crystals with subsequent calibration of the BSE grey
scale intensity against its mg# for corresponding pixels. This
approach, described in Section 4.4, delivers a straightforward
solution for the regression task. However, the semantic

TABLE 1 | Analytical subsets (colour frames in Figure 1) used for training, testing
and validation.

Session nr Date N Tiles Olivine [%] Subset

5 2019.07.24 154 3 Train (yellow frames)
6 2019.07.25 154 5
7 2019.07.26 220 3
8 2019.07.28 220 3
9 2019.07.30 154 5
Analytical time gap
17 2019.08.26 168 10
24 2019.08.23 132 23
33 2019.08.20 126 7
23 2019.08.29 168 7 Test (blue frames)
32 2019.08.19 126 10
11 2019.08.30 168 5 Validate (red frames)
18 2019.08.27 168 8
28 2019.08.28 168 5
29 2019.08.24 156 7

TABLE 2 | Assignment rules for the automated classification of olivine crystals.

Crystal Type Zoning Pattern Crystal size [μm2] Core to Rim
Ratio of BSE

Signal

Microlite - 1,000 ≥ r > 100 -
Microphenocryst - 10,000 ≥ r > 1,000 -
Phenocryst Normal zoning r > 10,000 r < 0.96

Reverse zoning r > 1.04
No zoning 1.04 ≥ r ≥ 0.96
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segmentation task, i.e. the automated pixel-wise binary
classification of each pixel in B into the classes olivine and
background (non-olivine) is not straightforward, because the
same BSE grey values could correspond to both classes. As

experts can identify olivine crystals very precisely in BSE-
images, we assume that the task is not ill-posed under the
consideration of structural information, such as shape or
texture. We thus tackle the semantic segmentation by

FIGURE 2 | Working protocol of the presented method. 1. DL Training: BSE images are used as input and ground truth is generated from EDS data. 2) DL
Prediction: Olivine segmentation from BSE image. 3. a) Calibration: Estimation of the relationship between EPMA and BSE values to determinemg#. For the pixels that
are classified as Olivine, mg# values are predicted based on regression parameters. 3. b) Statistical analysis based on olivine segmentation.

FIGURE 3 | This figure shows crystal from the validation part othe DL-Data (Figure 1 VI). Panel (A) presents comparison between DL segmentation using the large
image inference method described in Section 3.6.3 (LI) and patch wise segmentation result (PW). The DL-Seg subfigures shows the binary segmentation and the DL-
Prob subfigures shows the inference result of the model before the application of the dlth. Red dashed lines represent the patch borders. Panel (B) is composed of the
BSE image and the Ca, Al, Mg X-Ray elemental maps used for the threshold segmentation and the resulting Th-Seg binary segmented olivine map.
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training a convolutional neural network as further described in
Section 4.5 Lastly, we exploit the availability of additional
sensors, in particular EDS element maps, for the automated
generation of the training data. Due to a lower precision (than
EPMA), EDS maps are not suited for a pixel-wise analysis of
chemical properties such as the mg#, but they contain enough
information to automatically generate reference olivine maps to
train the segmentation model, which is further elaborated in
Section 4.1. The framework is shown in Figure 2.

3.5 Automated Generation of Olivine Maps
Because the semantic segmentation task is tackled using a
learning approach, training samples are required. Each sample
consists of a BSE image B and the corresponding reference olivine
mask O. We propose to generate the reference masks by a pixel-
wise rule based classification using the EDS X-Ray intensity
criteria (Ca/Mg < 0.1, Al/Mg < 0.1 and Mg > 30) to
discriminate olivine and non-olivine pixels in BSE images. As
the absolute values for each element measured by the EDS also
depend on the analytical mapping settings, the Ca/Mg and Al/Mg
ratios are used in addition to the value of total Mg. IfMg = 0 then
Ca/Mg is assumed as infinite. A pixel is classified as olivine if all
rules hold.

An example of this threshold-based segmentation is shown in
Figure 3 B where green pixels represent olivines and black pixels
indicate the remaining non-olivine phases. It should be noted
that, although in this paper we focus on automated
segmentation of olivine crystals, the approach can be easily
applied for the classification of other minerals that can be
identified based on element ratios. In this way, a large
number of training examples (input: BSE and output: olivine
map) can be generated, which are used to train the Deep
Learning model in the subsequent step.

3.6 Semantic Segmentation Task
Based on the obtained training data, as described in the previous
section, a Fully Convolutional Neural Network (FCN) is trained
for the pixel-wise classification. To that end, we rely on a well-
known architecture DeepLabV3, shortly described in
Section 3.6.1.

3.6.1 Model
The DeepLabV3 architecture used in this paper was originally
designed for the pixel-wise classification of street-scenes, but it
has been shown to be useful for tasks from other domains like
medical image processing (Tang et al., 2018) and remote sensing
Niu et al. (2019). We use a network pre-trained on the Common
Objects in Context (CoCo) dataset (Lin et al., 2014). This dataset
consists of three-channel RGB images of everyday objects and
corresponding label maps. It is different from our data, but it
allows the network to learn a low-level feature representation that
can be reused.Whereas the high-level features may change during
the training on our data, the low-level features do not have to be
learned again, which enables a more efficient usage of the
available data (Yosinski et al., 2014). In our case the inputs of
the network are normalized BSE images with only one channel.
To be able to feed data into all three input channels of the (pre-

trained) network we replicate BSE images three times to
artificially adjust the number of channels. The direct output of
the model consists of a 2D map of probabilities between 0 and 1
for each pixel to belong to olivine. That is, a probability close to
zero indicates that a pixel does not correspond to olivine, whereas
a probability close to 1 indicates that a pixel is very likely to belong
to olivine. The probabilities are converted into a binary
segmentation by applying a threshold (dlth). dlth ∈ R ∩ (0, 1)
is a scalar chosen in the interval between 0 and 1.

3.6.2 Training
The network is trained by iteratively minimizing the prediction
error starting from a pre-trained state of the network.
Particularly, in each iteration a set of images (called a mini-
batch) of the training subset are presented to the network which
will make a pixel-wise prediction for each image. Then the pixel-
wise binary cross-entropy Murphy (2012) between the prediction
and the reference is computed, acting as a measure for the
difference between the two. In the update step of each
iteration the parameters of the network are adjusted according
to the negative gradient of the cross-entropy w.r.t. all parameters.
This procedure is called Stochastic Gradient Descent (SGD). To
be able to analyze the semantic segmentation accuracy and the
model, we split the DL-Data into three disjoint subsets—“train”,
“test” and “validate” (see Table 1). We use early termination
based on the performance of the network on the validation set as
measured by the cross-entropy on that set. The original tiles from
the analytical sessions (Table 1) are used in training process. In
order to avoid overfitting we rely on online data-augmentation,
i.e., each training sample is rotated by a random rotation [0°, 90°,
180°, 270°] and flipped horizontally and vertically with a
probability of 50%, respectively, before being presented to the
network.

3.6.3 Large Image Inference
Our preliminary test has shown that the model performs worse
with olivine only partially visible in the input image (cf. Figure 3
A). We assume that this is because the model’s predictions
depend on contextual information which is partially missing
when predicting close to the image border.

To counteract this effect, we apply two techniques. First, we
feed much larger image patches to the network compared to the
training stage, which reduces the fraction of pixels that are close
to the border of the input image. Second, we perform multiple
predictions for same areas in a sliding window approach with
overlapping windows. In this way a pixel at the border of one
input image will be classified again in an overlapping image,
however, this time being in the centre of the image. The analytical
sessions which are to be processed in the inference (as listed in
Table 1) consist of a certain number of tiles. We perform image
stitching based on the tiles to obtain larger, rectangular images SI
(ad 1) In general, SI can be used as input to the FCN for
segmentation. A FCN consists of a series of sequentially
applied convolutions and transposed convolutions. Due to the
nature of the (transposed) convolution operation a FCN can be
applied to images with an arbitrary size, although practically the
input size is limited by the available memory. Therefore we split
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the large input images into tiles of width LW and height LH pixel.
Here, LW and LH are much larger than the size of the tiles used
for training. The smaller size of the training tiles is necessary to
enable the training on graphics cards, which are often even more
limited in operational memory compared to CPUs but capable to
highly parallelize the computation which speeds up the training
process. The inference can, however, be performed on the CPU as
it is far less computationally expensive (ad 2) For the sliding
window approach we extend the approach described in Eq. 1 by
the overlapping of the tiles. Two horizontally neighbouring LTs
are shifted against each other by stride S. We select S always to be
far smaller then LW, this results in a overlap of two horizontally
neighbouring tiles of LW − S. The vertical dimension is processed
analogously. For all LTs from one SI we predict the olivine
probabilities per pixel, the direct output of the FCN. Due to
overlap there are multiple predicted probabilities for most pixels.
These probability values are aggregated by averaging them. To
retrieve a binary segmentation we apply the threshold dlth to the
averaged probability values.

3.7 Regression Task
In order to determine the mg# of the predicted olivine pixels, a
linear regression is performed based on a set of corresponding
BSE intensities and EPMA-determined mg# in selected
(predicted) olivines (Figure 1, purple frames). In this way, for
each olivine pixel a mg# can be determined, which is a
considerable advantage as opposed to EDS measurements,
which can only determine individual measurements. Although
EPMA measurements are significantly more accurate than e.g.,
the EDS measurements, EPMA still has two disadvantages. First,
it requires an additional instrument and machine time, which
affects automation. Second, the EPMA measurements do not fall
into the raster of the BSE images acquired on SEM. Therefore an
interpolation along the scanning line is required. Although
theoretically possible, this step is not yet completely
automated and a manual relocation of the microprobe scan-
line in the corresponding BSE-images is a prerequisite. We
performed a linear regression, which was then evaluated on
separate test areas of the thin section using the root mean
squared error (RMSE) between the predicted mg# and the one
measured by EPMA.

3.8 Outlier Detection
Natural minerals have cracks and holes (vesicles). These artefacts
are imaged with varying clarity by different sensors. EDS data
show these artefacts less clearly because, despite a nominal
resolution of 1μm, the sensor provides information over a
larger area. In contrast, a BSE detector has a much higher
spatial resolution and its images show the artefacts more
clearly (e.g., see Figure 3 B).

The reference segmentation for the DL training process was
generated from EDS data and the DeepLabV3 network used is less
effective at segmenting small structures such as cracks.
Accordingly, in the segmentation results by the DL network,
the artefacts are mostly classified as olivines.

Tominimize this effect, we applied an algorithm that identifies
and removes artefacts, i.e. outliers, based on BSE images. This

processing step is necessary in two places. When calibrating the
BSE values againstmg#, outliers in the BSE data are removed and
replaced by linearly interpolated values; when predicting themg#
from the segmented images, the procedure is used for the
second time.

The BSE values within the olivines are subject to natural
variation. There are continuous changes due to zoning within
the crystals and abrupt changes localised at the edge of the
crystals. The intensity values in the middle of the artefacts are
clearly different from those in the olivine itself. However, the
transition to these values is not singular, but often in the form of a
continuous gradient. Preliminary investigations have shown that
such a progression from the edge to the centre of the artefact can
only be poorly identified by a simple procedure such as Z-score
(Caouette et al., 1968), as this procedure is based on the statistical
distribution of the values and does not take spatial information
into account.

The local outlier factor (LOF) (Breunig et al., 2000) algorithm
is based on local density of the n-dimensional points, which is
determined using a k nearest neighbor algorithm. The local
orientation of the LOF algorithm is better suited to identify
the artefacts. To generate an input suitable for the LOF
algorithm from the BSE image, a 3D feature space is generated
with the column and row indices as the first two features and the
BSE intensity as the third feature.

3.9 Data Post-processing
As a result of DL segmentation, we obtained a thin section dataset
of 9,000 tiles with olivine pixels separated from the remaining
matrix. The next step includes automated evaluation of the entire
thin section (i.e., not only the coloured frames in Figure 1), where
olivine crystals can be distinguished according to their size and
type of zoning pattern (based on their mg#). In this study, we
define the crystal types as follows: first the crystals are categorised
according to their size into Microlites, Microphenocrysts and
Phenocrysts. In a last group the Phenocrysts are further divided
into three sub-groups according to their zoning pattern:
Phenocrysts with a normal zoning, where cores are more
magnesian than rims, the Phenocrysts with a reversed zoning
pattern, with rims that are more magnesian than cores, and
Phenocrysts that do not show chemical gradients.

In order to automatically categorise each detected crystal, we
implemented the following processing chain. Based on the binary
segmentation map a connected components analysis is carried
out. In this step a unique ID number is assigned to all olivine
pixels that belong to a connected region. In the further processing
steps we assume that each connected component represents one
crystal. Based on that mask for each crystal its size is computed by
counting the number of pixels.

To distinguish the zoning pattern in phenocrysts, the ratio of
the BSE signal between core and rim region is computed. This
requires a decision for every pixel of a phenocryst according to
whether it belongs to the core or to the rim region. To that end, a
distance transformation is carried out. In this step the shortest
distance di from each pixel i of a crystal to its outline is computed.
The result of the distance transformation allows us to separate
each crystal into a core and a rim region. Particularly, the core
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region contains all pixels with di > dmax/2, where dmax is the
largest distance from each pixel belonging to the same crystal to
the corresponding border. The remaining pixels correspond to
the rim region. However, we exclude the pixels in the border
region with a width of b [px], assuming that those are susceptible
to be wrongly classified as olivine pixels due to a noisy predictions
of the olivine maps. Consequently, the rim region contains pixels
with dmax/2 ≥ di > b. Finally, the core to rim ratio r is computed
for each phenocryst. The classification rules and the selected
thresholds are summarised in Table 2. After all detected crystals
were classified, global statistics were obtained (see below). It
should be noted that this is a simple approach, and further
developments are still required in order to address more
complex zoning, e.g., with repetitive (oscillatory) zoning
patterns. Sets of crystals classified as no zonning pattern
contain many crystals with more complex patterns, like
crystals with magnesian cores and rims and iron rich mantle.

4 EXPERIMENTAL RESULTS

4.1 Deep Learning Semantic Segmentation
In this section we present the results of the model with the best
test set performance. The model has been trained for 29 epochs.
In training process 1,328 unique tiles (before augmentation) has
been presented to the network. The training duration has been 8 h
using a GeForce GTX TITAN X (GM200) GPU. We applied a
threshold dlth of 0.1 to retrieve a binary segmentation.
Preliminary investigations have shown that a value of 0.1 for
dlth parameter leads to better results, especially when predicting
BSE images with shifted value ranges. We use overall accuracy
(OA, in %) and intersection over union (IoU) as performance
metrics to evaluate the accuracy and generalisation of the model.
IoU is a measure between 0 and 100% indicating how well the
predicted olivine segments fit to the ground truth and OA is the
percentage of pixels that were predicted correctly. These metrics
are defined and computed as follows:

OA � TP + TN

TP + TN + FP + FN
(1)

IoU � TP

TP + FP + FN
(2)

where True-Positive (TP) is the number of correctly identified
olivine pixels, True-Negative (TN) is the number of correctly
identified non olivine pixels, False-Negative (FN) denotes the
number of incorrectly identified non olivine pixels, and False-
Positive (FP) indicates the number of incorrectly identified
olivine pixels. The positive pixels are such that has been
identified by the model as olivine and negative are such pixels
that has been identified by the model as background. We

comparer the Prediciton of the model to the ground truth (see
Section 3.5) and if the prediction matchs the ground truth the
pixels are identified as True and therefore as TP and TN. In cases
where the prediction didn’t match the ground truth the pixels are
assumed as False and therefore as FP and FN. The performance
values can be seen in Table 3. For both test and validation sets the
IoU is approximately 85% and OA is over 98%.

Figure 4 shows two exemplary results of the DL segmentation
in detail. In both cases the model could correctly identify most
olivine pixels. The largest error source, however, is a large number
of false positive predictions in the area of the crystal rims (red
areas in Figure 4). The model tends to overestimate the size of
crystals and adds additional olivine pixels to the rim. In addition,
false positive predictions can also be observed where the crystal
has cracks and holes. However, larger holes as in Figure 4 A are
usually correctly classified. In general, the misclassified olivine
predictions have a very low probability to belong to an olivine.
This can be seen in both Figure 4 (DL-Prob).

It is very important to note that the model is also able to
distinguish clinopyroxene and olivine. This can be seen e.g., in
Figure 4, where the clinopyroxene subpenocrysts located in the
corners of the tile are correctly predicted as non-olivine pixels.
These minerals have overlapping BSE grey scale intensities, which
is the reason why they cannot be separated by merely
thresholding the grey values.

4.2 Variations in Input Data
Both BSE and EDS data can be strongly affected by the
instrumental drift which strongly alter the result of regression
(see below), and also has a serious effect on correctness of olivine
segmentation. Although we used the same EDS mapping settings
and also selected the same BSE contrast and brightness, in both
cases we observed a shift of the signals between analytical sessions
performed with a ~20 days’ time gap (Table 1). The histograms in
Figure 5 show a shift between the intensity of BSE and EDS
values. This can cause problems when applying the threshold
based approach described in 3.5 and lead to a noisy incomplete
ground truth (the false color image in Figure 5 demonstrates the
intensity difference between analytical sessions). The DL-Data
used in training was created in a shorter period of time, which
allowed us to reduce the effect of divergence. Furthermore, the
input data is normalized before being feed to the DL model. In
addition, DL models are known to be robust against a limited
amount of outliers in the training set and is capable to generalize
from imperfect data. The FCN trained on the DL-Data predicts
olivine with similar accuracy for the default and for the drifted
case (Figure 4 DL-Seg A and B). The model only erroneously
identifies pixels of small olivine in the last case (Figure 4, DL-
Seg B)).

4.3 Outlier Removal
In the next step, outlier olivine pixels are removed. Figure 6
shows BSE image with filtered outliers (red). This is a
representative example demonstrating the performance of
the algorithm to identify all cracks and holes within the
olivine crystal as outlier. Also small olivines next to the
phenocryst and the false positive segmented rim are

TABLE 3 | Performance statistics of the applied DL model.

IoU [%] OA [%]

Test set 85.0 98.5
Validation set 84.7 98.8
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FIGURE 4 | Result of the deep learning segmentation. The BSE image is used as input for the semantic segmentation model. For every pixel in the BSE image it is
knownwhether it is olivine or non-olivine (Th-Seg) from to the corresponding EDSmaps derived from threshold segmentation (e.g., Table 2). The semantic segmentation
produced by DL (DL-Seg) slightly overestimates olivine pixels, mostly at crystal rims (red line in DL-Error). DL-Prob shows probabilities between 0 and 1 of being an olivine
pixel predicted by the network. The threshold dlth is applied to DL-Prob to retrieve DL-Seg. FP-, TP-, TN- and FN- are false positive, true positive, true negative and
false negative pixels respectively. The panels (A) and (B) show the result for the crystals III and IV (cf. Figure 1) respectively. The BSE and Fe in the A panel show olivine
with almost nested clinopyroxene at the lower end.

FIGURE 5 | Panel (A) Samples I) and II) (cf. Figure 1) depict the same crystal obtained with a ~ 20 days time gap. BSE (left A) and EDS X-Ray Mg intensity (right A)
signal drift in sessions acquired with 20 days interval (clearly visible in histograms). False-color image show difference between analytical sessions. Panel (B) Threshold
segmentation results for 2 analytical sessions (I and II). Despite the difference in input data (intensity), the resulting DL segmentation is comparable (bottom images DL-
Seg I) and DL-Seg (B)).

FIGURE 6 | The BSE image of zoned olivine crystal (VI cf. Figure 1) with the outliers marked in red and the BSE grey scale intensity profile illustrating the presence of
signal outliers (cracks, impurities, holes, surface distractions). The green profile shows filtered data obtained along the white arrow.
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classified as outliers. The remaining few outlier pixels that
could not be identified are located at large bubbles and clusters
of cracks. Figure 6 shows that the natural zoning profile
(green) is preserved while outliers (black) are correctly
identified and removed. The points extracted from the
filtered profile show low BSE values (see regression in
Figure 6).

4.4 Regression to Determine Mg#
The linear regression of the BSE grey scale intensity against mg#
has been performed using the Calibration-Dataset composed of
1,357 olivine pixels. The total range of olivine mg# is within 0.70
and 0.93 in the training data. Only phenocrysts and
microphenocrysts were included in Calibration-Data and
microlites of olivine present in the matrix were not
considered. However, the linear character of the regression
allows us to consider that most evolved Fe-rich olivines
(which could be potentially under-represented in the training
part of Calibration-data) are correctly predicted by extrapolation
to mg# lower than 0.7. In future work, a larger compositional
range of olivine compositions would be useful. The result of the
regression is evaluated using the root mean squared error (RMSE)
and coefficient of determination (R2). They are defined in our case
as follows. BSEi and mg#i are the corresponding BSE intensity
value and mg# value with the same index i ∈ [1, N]. Furthermore
m̂g#i is the predicted mg# with the index i from the BSEi. The
total number of samples is N. Finally the mean mg# is mg#. The
R2 is defined in Eq. 3 and the RMSE is calculated for the predicted
and reference mg# is defined in Eq. 4.

R2 � 1 − ∑N
i�1 mg#i − m̂g#i( )2∑N
i�1 mg#i −mg#( )2 (3)

RMSE �
�����������������∑N

i�1 mg#i − m̂g#i( )2
N

√
(4)

RMSE10 �
������������������∑N−10

i�11 mg#i − m̂g#i( )2
N

√
(5)

The RMSE10 of a profile is same as the regular RMSE but
without taking in to account the first and last 10 points of a
profile, this allows to evaluate the error with reduced influence of
the manually registered ends of the profile. The RMSE10 is defined
in Eq. 5. In order to investigate the error without the systematic
part we define the shifted version of the metrics. We shift the
predicted profile along the mg# axis by the RMSE10 to the
microprobe reference profile and recalculate the RMSE, in
following we refer to it as RMSEsh for the shifted RMSE and
RMSEsh10 for the shifted RMSE10.

Table 4 and Figure 7 show the difference between the results
of the calibration with original BSE data (not filtered) and BSE
data after the outlier removal (filtered). The (RMSE) with and
without filtering are 0.0045 and 0.0076 respectively. The
regression was also tested on the test part of Calibration-Data
and resulted with 0.0101 (nonfiltered RMSE) and 0.0097 (filtered
RMSE) values. R2 of the filtered data is 0.9950 and is slightly better
than for not filtered data. The determined function for filtered
data is presented in Equation 6:

m̂g#i BSEi( ) � −7.4214BSEi + 1.0059 (6)
Examples of application of the filtered regression to image tiles

with segmented olivine phenocrysts are shown in Figure 8. In
Figure 8 A the BSE tile from the validation DL-Data was used in

FIGURE 7 | Regression task–simple parameterization of the microprobe mg# against SEM BSE grey level intensity performed on the Calibration-Data using
selected representative normally and reversely zoned olivines. The calibration lines are shown in orange. On the filtered left image outlier points are visible to the left of the
calibration line and on the right image the outliers are removed.

TABLE 4 | Performance statistics of the filtered and not filtered calibration.

Filtered Not filtered

R2 0.9950 0.9853
RMSE train 0.0045 0.0076
RMSE test 0.0096 0.0101
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DL training and the resulting mg# profile (red colored line)
predicted from the m̂g#i(BSEi) function is almost identical to
the reference EPMA profile (black) from the microprobe dataset.
The RMSE between those two profiles is 0.0064. There are mainly
two differences between the predictedmg# and the corresponding
reference. The first is that the predicted values have a light scatter
around the microprobe mg# profile. The second is the
discrepancy at both rims of the olivine crystal. The RMSE10
for the profiles (Figure 8 A) without the first and last 10
values is only 0.0033.

The second example in Figure 8 B shows the prediction of the
mg# in a 2D (map) and a 1D (profile below) for a reversely zoned
olivine in the image tile which was acquired during the session 32.
The RMSE between the profiles is 0.0889. If the first and last ten
values are ignored RMSE10 is 0.0877. These values represent
mainly the shift between the two profiles. The resulting
RMSEsh and RMSEsh10 are 0.0090 and 0.0053. Similar to the
olivine from the session 29, the predicted 1D profile has more
noisy patterns and problems at the crystal rims. However, the
most fundamental error is caused by a systematic shift of the
predicted and observed profiles due to the instrumental drift
discussed above.

4.5 Olivine Crystal Segmentation and
Classification in Thin Section
In Figure 9 A we present a compositemg#map for the entire thin
section with olivines segmented by the DL model. The automated
construction of the map using a standard personal computer with

32 GB RAM operational memory, an i5-9600KCPU and a M.2
SSD drive took 16 h. As described in Section 3.6.3, inference for
large images uses a larger input size and determines several
predictions per pixel. The input size leads to a high demand
of operational memory (approx. 128GB) which makes prediction
on our GPU impossible and makes it necessary to swap the
operational memory to the SSDmemory. This combined with the
repeated prediction determines the time required for the process.
Figure 9 A demonstrates that when the model is trained using in
Section 3.6.2 describedmethod (in case of this thin section, about
20% of its area was used in training), the trained model can be
used for other thin section BSE maps if BSE intensities of all
analytical sessions are corrected against the same references with
contrasting grey intensities to remove the instrumental drift. This
will dramatically increase the efficiency of studies (e.g., diffusion
chronometry) in which a large compositional dataset is necessary
to deduce statistical information.

As a main result of DL olivine segmentation and crystal
classification, we present a map of a thin section where all
olivine crystals are automatically contoured by different colors
depending on the crystal size (area in μm2) and the type of zoning
(Figure 9 B). In total, 20,293micolites (blue contoured areas), 975
microphenocrysts (magenta) and 660 phenocrysts in the entire
thin section have been segmented. Among the group of
phenocrysts, 124 (yellow), 61 (red) and 475 (white) crystals
with normal, reversed and no zoning pattern were classified,
respectively (Figure 10 A). As it can be seen in Figure 9 B (see
high resolution image https://www.icaml.org/olmap/), the simple
criteria (Table 2) proposed in this study for classification of the

FIGURE 8 | Panel (A)Compositional 2Dmap ofmg# in DL-segmented olivine (VII cf. Figure 1) predicted from the BSE grey level. The image tile is fromDL-Data and
was used in DL training. Red and black lines demonstrate predicted and original (EPMA)mg# profiles. Diffusion modelling along this profile reveals that Fe-Mg exchange
occurred for ~ 16.5 days, assuming following boundary conditions: T =1200C, 1atm pressure and NNO oxygen buffer, diffusion proceeds along [001] axis (Costa et al.,
2008). Panel (B) Compositional 2D map of predicted (from the BSE grey level)mg# in DL-segmented reversely zoned olivine (V cf. Figure 1). The image tile is from
the session 32 and was not used in DL training. Red and black lines demonstrate predicted and original (EPMA) mg# profiles. Diffusion modelling along this profile (its
right part) revealed that Fe-Mg exchange occurred for 10.5 days, assuming following boundary conditions: T = 1180C, 1atm pressure and NNO oxygen buffer, diffusion
proceeds along [010] axis (Costa et al., 2008). The left part of the profile is strongly distorted and cannot be modelled.
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phenocryst zoning were quite effective to successfully distinguish
crystals from the three suggested groups, although some
segmentation and classification problems still exist, for
example related to broken crystal fragments, mineral
inclusions, or olivines with more complex zoning patterns
(Figure 10 B-F, see also Discussion below).

5 DISCUSSION

5.1 General Performance of Semantic
Segmentation
The presented DL model for the pixel-wise classification of
olivine crystals is a nearly perfect tool to distinguish olivine

from other mineral phases like plagioclase and clinopyroxene
as well as the remaining matrix and holes.

All investigations are performed with data acquired from a
single thinsection and therefore there is no information on how
well the model performs on data from other thinsection with
possible differing background and unseen variations of olivine.
The experiments performed here show that the applied FCN
model well capable for the segmentation of olivine. Typical
features of the crystals such as shape, texture and density
variation seem to be sufficient to predict the olivine correctly
and also to distinguish it from other phases, despite of
overlapping BSE intensity values. The FCN models
automatically determines suitable features to perform a good
semantic segmentation. These features are encoded in the

FIGURE 9 | Panel (A) Compositemg#-in-olivine map for the entire thin section produced from 9000 BSE tiles. Olivine segmentation is performed by DL. Values of
mg# are recovered fromBSE grey intensities of representative olivines usingmicroprobe compositional data. The original image has a resolution of 1 pixel ~ 1micron and
requires 30 Gb of memory. Panel (B) Thin section image with highlighted olivine crystals classified into five groups: microlites (blue color contours), microphenocrysts
(magenta), phenocrysts with normal zoning (yellow), phenocrysts with reversed zoning (red) and phenocrysts with no zoning (white). See high resolution image
https://www.icaml.org/olmap/.
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network and can only be analysed by a human only with
difficulties or not at all.

5.1.1 Wrong Pixel Assignments
At the current state, our DL model has a good performance with
an IoU value of 85% for the test set and only 1.5–1.2% of
erroneously classified pixels (OA: 98.5–98.8%). In a study
based on a comparable approach to ours, Chen et al. (2020)
achieved an IoU of 0.917 for segmentation of electron microscope
data. However, those two values can’t be compared directly,
because they represent the performance for different tasks
with different properties and challenges. Nevertheless, this
shows that the performance achieved with the presented
method is close to a state-of-the-art level for electron
microscope image segmentation. The model demonstrates the
best performance when applied to large phenocrysts. Crystal
impurities (holes, inclusions of other phases and cracks)

occasionally present in phenocrysts are also identified and
segmented successfully. The largest error source is false-
positive predictions present at edges of cracks and small
structures resulting in a small overestimation of the crystal
sizes. These errors are negligible when large olivines are
segmented (Figure 4 B), but in the case of smaller crystals
they can have a strong negative impact on the predictions
(Figure 4 A). This problem can be reduced in future work by
applying three approaches: an optimisation of the model
parameters i. e., dlth, using a more suitable model for
segmentation of small structures, or improving the quality of
the training data. A combination of these measures is also
possible. A first solution could be to further optimise the
probability threshold for the binary segmentation, as the
predicted probabilities are lower for the rim and for the
cracks. These errors could be caused or amplified by the up-
sampling operation in the DeepLabV3 model that was used. A

FIGURE 10 | Examples of successful (A) and failed automated phenocryst classification (B–D) and olivine DL segmentation (E–F). (A) successful classification of
the “normal” (yellow), “reversed” (red) and “no zoning” (white) patterns. The overwhelming majority of the phenocrysts is correctly classified (see full thin section image
with segmented olivines here); (B) Two large olivine phenocrysts with normal zoning are classified as “normal” (correct) and “no zoning” (incorrect). The phenocryst with
incorrectly recognized zoning pattern in (E) represent a broken fragment (yellow) of a larger crystal; (C) and (D) demonstrate two incorrect cases of classification
into “no zoning” (C) and reversed (D) groups for crystals with more complex zoning pattern with iron rich core and rim andmoremagnesian mantle; (E) olivine phenocryst
with normal zoning (yellow) which was only partly recognized as olivine; (F) clinopyroxene phenocryst with areas incorrectly segmented as olivine (small inclusions and
triangle-shaped area). See text for details.
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better alternative could be to use another CNN architecture like
HRNet (Wang et al., 2020) which is more suitable to predict small
structures. The ground truth generated from EDS element maps,
even having a nominal spatial resolution of 1 μm, is in fact
characterised by lower spatial resolution when compared to
the corresponding BSE tile. This effect can be seen by
comparing BSE image (Figure 3 B BSE) and corresponding
threshold segmentation (Figure 6 A Th-Seg)). Cracks are less
pronounced in the threshold segmentation result than in the BSE
image. A pre-processing step could be applied to the training data
in order to merge the crack information from the BSE images and
the ground truth, i.e. by detecting crack-pixels in the BSE images
and not considering these pixels during training.

In order to perform a statistical analysis of the whole thin
section we presented an example post-processing step. By
applying the trained DL model to the whole thin section, a
binary mask was obtained and the regression model was used
to predict the mg#for all olivine pixels. Using only expert-
knowledge we performed a connected component analysis and
a succeeding classification of all crystal instances. Although this
approach already results in useful global statistics, there are still
some issues which are discussed in the following.

First, the instance segmentation itself may not result in correct
instances in all case. If a crystal is separated by a large crack (cf.
Figure 5 A, Figure 10 E), this would result in two instances,
leading to a wrong interpretation of the size of that crystal and all
further derived attributes, e.g. the type. However, in a visual
inspection of the instance segmentation, we observed only rarely
such a scenario (artificial separation of different crystals due to
cracks) and it is not expected to have a large impact on the
statistical results in the investigated sample. Nevertheless, this
could be improved in further developments.

In addition to systematic errors occurring mostly at olivine
boundaries, there are few non-systematic failures in olivine
segmentation in areas with a lack of strong BSE gradients in
the crystal interior. For example, in Figure 10 E the part of the
olivine phenocryst was erroneously not classified as olivine. In
addition, in this “non-olivine” area, one microlite was found by
the DL model (small blue contoured area). In Figure 10 F, some
areas in clinopyroxene phenocrysts were incorrectly classified as
olivine (small inclusions and triangular area at the right-bottom
side of the crystal). Although such artefacts are extremely rare, a
multi class segmentation approach with a dedicated class for
clinopyroxene may allow the model to better distinguish between
these mineral phases.

5.1.2 Best Model Performance Depends on Input Data
The segmentation model has shown to be robust against constant
shifts in the BSE input (cf. Figure 5B). This can be improved e.g.,
by the extension of the augmentation step with random shift of
the BSE input values.

The regression of themg# is possible with a low error (RMSE =
0.0097 on the test data) and the predicted profiles fit well to the
microprobe profiles. The most striking difference is the shift in
the profile that sometimes occurs (cf. Figure 8 B). This is caused
by the shifts of the BSE image values between different analytical
sessions (instrumental drift) and is not a calibration problem. To

prevent the BSE and EDS intensity instrumental drift, analytical
sessions should be conducted without interruptions. In addition,
analytical protocols should include measurements of the standard
samples with contrasting BSE intensity at the beginning and at
the end of the session.

5.1.3 Uncertainties due to Imperfect Fit Between Pixel
Signals Acquired by Different Analytical Instruments
The difference between the RMSE and RMSE10 presented in
Section 4.4 shows that the main drawback of the proposed
calibration process is the manual assignment of the
corresponding BSE intensity (in our case obtained using
SEM) and mg# values obtained using the electron
microprobe: in our current approach, corresponding pixels
have to be assigned manually. In future work, using an
automated algorithm to find correspondences between BSE
measurements and mg# of arbitrary pixels would allow us to
consider a larger amount of data and potentially lead to
significant reduction of the errors.

5.2 Crystal Classification
Figure 11 demonstrates an overview of the olivine crystal size
distribution obtained for all olivine crystals recovered from the
entire thin section. The plot demonstrates that the majority of the
crystals (> 80,−, 90%) of the phenocryst group range between
104–105 μm2 in size and can be confidently distinguished from
large phenocrysts with a size of ~ 105 − 106μm2. Another
observation is that almost all olivines with no zoning pattern
and reversely zoned olivines range in size between 104–3 ×
105 μm2. Groups of microlites and microphenocrysts can be
confidently separated from each other by a size gap of 500,
−,1000 μm2. In contrast, the transition between large
microphenocrysts and small phenocrysts seems more gradual,
and might require consideration of an additional cluster of e.g.,
subphenocrysts, to separate small microphenocrysts and super
large phenocrysts. An expert visual check of the zoning patterns
automatically determined within each group of phenocrysts
demonstrates that almost all phenocrysts with normal and
reversed zoning were correctly identified (see https://www.
icaml.org/olmap/with an example of phenocrysts categorized in
different groups.). Only three of 124 “normal” phenocrysts were
incorrectly determined as “reversed”; however in all three cases
they represent broken fragments of initially large crystals
(Figure 10 B). Figure 10 C and D. Rare crystals with more
complex zoning patterns with iron rich core and rim and more
magnesian mantle were classified as “no zoning” and “reversely
zoned” crystals. The third group of “no zoning” phenocrysts is
more problematic since it contains both crystals with normal and
reversed zoning.When compared to the previous two groups, this
zoning is weaker, less pronounced but real. It should be noted that
in general there are no crystals with complete lack of zoning.
Initially it was planned to use this “no zoning” group for a set of
phenocrysts with homogeneous interior and very thin iron rich
rims formed at the stage of lava cooling after the eruption (quench
compositions). However, the results of automated phenocryst
classification of the third group demonstrate that the numerical
parameters used in this study (e.g., core to rim ratio r) for
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classification are not accurate to predict such tiny variations in
natural zoning pattern and need further improvements. In
addition, the current classification approach tries to separate
the crystal into a core and a rim area, based on the shortest
distance to the boundary of the crystal. However, in the current
implementation, holes and cracks inside the crystal are also
considered as boundaries, implying that the separation may
fail if holes or cracks appear in the central area of the crystal
(cf. Figure 4 B). We observed such a situation in some cases,
leading to a misclassification of the crystals zoning pattern. This
could be improved, e.g., by considering only the external limit of
the crystal as boundary. Finally, the current implementation of
the connected component analysis and classification is rather
slow because it was not optimized yet with respect to the
computational efficiency. In the present work, we halved the
resolution by removing every second row and column before
performing the post-processing, which results in a processing
time of 10 h on a regular computer. However, we estimate that
after optimization of the implementation, the processing time of
the thin section at full resolution could be done in a few hours or
even minutes especially when using parallel processing. Future
studies may also include considerations of classification of olivine
into additional groups such as mineral inclusions, crystal clots
and crystal intergrowths.

5.3 Distribution of Mg# Within Groups and
Petrological Interpretations
The full petrological assessment of the results obtained for olivine
compositions from different crystal generations cannot be
conducted without proper classification of the olivines, which
is not yet fully solved at this stage. The main problem is the
classification of numerous phenocrysts with weak zoning
patterns. Nevertheless, we present a set of histograms
(Figure 12) of olivine compositions for four different
populations representing phenocrysts with normal zoning,

phenocrysts with reversed zoning, microlites and
microphenocrysts. An additional population representing
phenocrysts with no or little zoning is also given for
comparison. Figure 12 shows that almost all crystal
populations contain small artificial peaks with high (mg# ~
0.94) and low (mg# ~ 0.54) mg#, indicating cracks and
inclusion pixels in olivines, respectively. The presence of such
artefacts poses a problem, and the automated detection and
elimination of such artefacts needs to be considered in future
developments.

It is out of the scope of this study to discuss in detail the
petrological implications of the Machine Learning approach
presented here for the magmatic processes at Klyuchevskoy
volcano. Here we present briefly possible applications of the
data presented in Figure 12. By default phenocrysts represent
the earliest and microlites represent the latest crystallization
products and should differ in compositions. Thus, with
cooling, a magma is expected to have primitive phenocryst
cores (with high mg#) and evolved microlites (with lower
mg#), but compositions of microlites and phenocryst rims
can be more or less identical. The mg# in olivine phenocrysts
with normal zoning pattern (Figure 12 A) shows a complex
distribution which can result from the overlapping of two
major peaks at mg# = 0.88 and 0.84, and two minor peaks at
0.79 and possibly 0.74. The two minor peaks are
representative of the rims of the phenocrysts (where
compositional zoning is observed). The two major peaks
are representative of the core of the zoned phenocrysts and
clearly indicate that two populations of olivine were probably
affected by the same diffusion process at some stage of the
magmatic history. Phenocrysts with mg# = 0.88 may
represent a crystal generation from a very primitive
magma that mixed with a slightly more evolved reservoir
(mg# = 0.84). Note that these highest mg# numbers have been
recovered from the few most biggest superphenocrysts. The
population of normally zoned phenocrysts composed of

FIGURE 11 | Distribution of olivine crystal sizes (pixel area in μm2) in microlite, microphenocryst and phenocryst groups recovered from the entire thin section. See
text for details.
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olivines with mg# = 0.84 is compositionally similar to the
most prominent population of olivines with “no zoning”
(Figure 12 E). We interpret this peak at mg# of 0.84 as the
composition of the olivines which were formed in the original
host “magma” prior to hybridization processes.

The mg# distribution in the microlites has a clear bimodal
character with prominent peaks at mg# = 0.88 and 0.74
(Figure 12 B). The microlites have no zoning and, in general,
these unzoned microlites are supposed to be the last products
crystallizing in the magma and thus represent the last equilibrium
stage prior to the eruption. The presence of the two prominent
peaks in microlite compositions indicates that the investigated
sample results most likely from a mixture of two magmas which
contained microlites with different compositions. The microlites
with mg# = 0.74 could be formed in an evolved magma stored at
shallow level in the plumbing system. The second magma with
microlite composition ofmg# = 0.88 could be more primitive and
was probably stored deeper. Thus, the eruption may have been
triggered by the injection of the primitive magma into shallower
reservoirs filled with evolved magma. Since microlites withmg# =
0.88 were not re-equilibrated in this new magmatic environment
to more iron rich compositions, the mixing event was probably
immediately followed by subsequent ascent and eruption.

Although reversely zoned crystals are confidently classified
(Figure 12 D), the interpretation of the mg# distribution is
complex. This is not surprising, since the shape of these crystals
(irregular crystal shapes with extensive resorptions and embayments)
and the presence of numerous patchy zones within a more general
reversed zoning pattern indicate that these crystals record complex re-
equilibration history from evolved (perhaps at mg# = 0.74) towards
more primitive compositions during magma replenishments
preceeding the final mixing that triggered the eruption.

Finally, in addition to the identification of different populations
within one single phase, the automated processing of the zoned
olivine crystals provides a unique opportunity to understandmagma
mixing processes, to constrain thermal evolution of magmas, and to
extract time scales of geological processes by applying diffusion
chronometry on zoned crystals.

5.4 Olivine Crystal Curating and Catalogue
With Different Groups
The automated processing of the olivine crystals (including size,
and composition) presented in this study is an ideal tool to
characterise quickly and extract high quality 2D textural and
compositional information from a whole thin section. However,
in addition to this mapping facility, all olivines are separated and
classified and each crystal can be individually curated, since it has
an unique ID number, providing an excellent archive that can be
easily used by other scientists. In https://www.icaml.org/olmap/
we present an example of images, where classified olivines are
presented for each group in separate folders. The distribution of
the mg# number can be also automatically provided for each
olivine.

FIGURE 12 | Histograms showing distribution of olivine compositions
(mg#) for five automatically classified groups: Phenocrysts with normal (A),
reversed (D) and “no zoning” (E) zoning, microlites (B) and microphenocrysts
(C).Mg# distributions in (A) and (E) were de-convoluted to highlight the
presence of hidden compositional populations which exist in all crystal
generations. See text for details.
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6 CONCLUSION AND FUTURE WORK

In this work fully convolutional neural networks were used to
characterize thin sections of volcanic rocks. It has been shown
that a model (DeepLabV3) designed for segmentation of RGB
images can be used to segment back-scattered electron images
of thin sections from volcanic rocks composed of phenocrysts
and partly microcrystalline vesicular matrix. The requirement
for a large amount of training samples for the training of the
CNN has been solved by an automated generation of reference
data. The resulting model was found to be successful when
applying it to an unknown test dataset. All investigations were
performed using a single thin section, therefore future
investigations would profit from testing additional samples.
The results presented for olivine can be extended to other
minerals using a similar approach. A DL model based instance
segmentation, i.e., a segmentation that also identifies
individual instances of olivine crystals, can offer the
opportunity to calculate a large number of statistical features.

The example selected for this study is not an exception but
is rather representative of typical lavas from subduction-
related volcanoes. It clearly shows that Machine Learning
approaches are extremely useful to decode the multiple and
complex information that is stored in crystal-bearing lavas. A
significant part of the information stored by mineral phases
would be definitely unexploited if a simple approach based on
a manual selection of a few mineral of interest would have
been applied. By analyzing several selected thin sections with
the approach presented in this study, samples collected along
geological profiles (e.g., drill cores) would provide extremely
useful information on temporal and spacial evolutions of
volcanic rocks with a considerably reduced man-power and
an unprecedented high resolution.
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