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Biocatalytic cascades play a fundamental role in sustainable chemical synthesis.

Fusion enzymes are one of the powerful toolboxes to enable the tailored

combination of multiple enzymes for efficient cooperative cascades.

Especially, this approach offers a substantial potential for the practical

application of cofactor-dependent oxidoreductases by forming cofactor

self-sufficient cascades. Adequate cofactor recycling while keeping the

oxidized/reduced cofactor in a confined microenvironment benefits from

the fusion fashion and makes the use of oxidoreductases in harsh non-

aqueous media practical. In this mini-review, we have summarized the

application of various fusion enzymes in aqueous and non-aqueous media

with a focus on the discussion of linker design within oxidoreductases. The

design and properties of the reported linkers have been reviewed in detail.

Besides, the substrate loadings in these studies have been listed to showcase

one of the key limitations (low solubility of hydrophobic substrates) of aqueous

biocatalysis when it comes to efficiency and economic feasibility. Therefore, a

straightforward strategy of applying non-aqueous media has been briefly

discussed while the potential of using the fusion oxidoreductase of interest

in organic media was highlighted.
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1 Introduction

Biocatalytic cascades have been widely explored to mimic natural biosynthetic routes

to produce high value-added chemicals (Muschiol et al., 2015; France et al., 2017;

Huffman et al., 2019; Walsh and Moore, 2019; Zhou et al., 2021; Benítez-Mateos

et al., 2022). In this context, the spatial organization of multi-enzymes plays a pivotal

role in surmounting barriers between different enzyme classes, averting the mutual

inhibition, limiting the long-range diffusion of intermediates, and enhancing the reaction

efficiency (Quin et al., 2017). Up to now, a variety of enzyme co-localization strategies

have been developed including 1) enzyme fusion (Elleuche, 2015; Aalbers and Fraaije,
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2019), 2) co-immobilization (attachment on a carrier or

encapsulation in a matrix) (Ren et al., 2019; Xu et al., 2020),

and 3) scaffolding (Kuchler et al., 2016; Ellis et al., 2019). In

particular, the direct fusion of enzymes has emerged as a

fascinating toolbox in its own right (Quin et al., 2017; Rabe

et al., 2017; Aalbers and Fraaije, 2019). It brings multiple enzymes

in close proximity to form a single multifunctional catalyst

through genetic fusion (Aalbers and Fraaije, 2017) or covalent

bonds between proteins formed post-transcriptionally (Keeble

and Howarth, 2020). By enzyme fusion, the sequential

channeling of substrates between enzyme active sites can be

easily achieved with a high degree of controllability (Huang et al.,

2001; Wilding et al., 2018). Consequently, the delicately tethered

enzymes gain many benefits, such as improved stability and

catalytic efficiency, as well as enhanced expression and ease of

production as a single construct.

Fusion approaches have been well-illustrated with many

types of cofactor-dependent enzymes including the

combination of cytochrome P450 with their redox partners

(Munro et al., 2007; Bakkes et al., 2017; Kokkonen et al.,

2019; Belsare et al., 2020; Kokorin et al., 2021; Kokorin and

Urlacher, 2022), and Baeyer-Villiger monooxygenases (BVMOs)

with alcohol dehydrogenases and transaminases (Torres

Pazmiño et al., 2008; Peters et al., 2017; Aalbers and Fraaije,

2019) (Scheme 1). These studies have largely demonstrated the

practicability and effectiveness of the fusion approach. However,

there are still some limitations to overcome in order to make it

practicable. The trial-and-error in the design of linkers and time-

consuming molecular experiments can lead to a huge workload.

Furthermore, most of these proofs of concept were explored at

low substrate loadings usually in μM ranges, which lags far

behind practical applications at a technical scale.

Some enzymes are of high interest for their use in cascades

for the biocatalytic production of valuable chemicals. In

particular, cyclohexanone monooxygenase (CHMO) has been

extensively investigated for the synthesis of ε-caprolactone, an
important precursor for polymer synthesis (Schmidt et al., 2015;

Scherkus et al., 2016; Engel et al., 2019a). Generally, most

cascades have been developed by coupling various alcohol

dehydrogenases (ADHs) (Bornadel et al., 2015; Schmidt et al.,

2015; Scherkus et al., 2016; Scherkus et al., 2017; Engel et al.,

2019b; de Gonzalo and Alcántara, 2021) as well as newly reported

thioredoxin/thioredoxin reductases pairs (Zhang et al., 2022)

with CHMO to form redox-neutral self-sufficient systems.

Despite these advances, in most one-pot systems, substrate

concentrations have been used up to 100 mM given the strong

substrate and product inhibition. By harnessing the fusion

approach not only the inhibition caused by substrates and

intermediates could be relieved but also the transport distance

of cofactors between active sites can be shortened to avoid the

degradation of nicotinamide cofactors in non-aqueous media

(Huang et al., 2019). This has inspired the design and generation

of various fusions of CHMO with its cofactor regenerating

enzymes as effective catalysts for cascades, demonstrating the

practicality of fusions for this type of enzyme (Aalbers and

Fraaije, 2017).

SCHEME 1
Design of fusion enzymes for two biocatalytic cascade processes.
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TABLE 1 List of fused and non-fused oxidoreductases, and their biocatalytic applications with varying substrate concentrations in various aqueous and non-aqueous media.

Entry Enzyme pairs Fusion
name

Linker Application
of enzyme
pairs

Substrate
concentration
(mM)

Reaction
media

Organic
solvent
(vol%)

References

1 ADH, BVMO CHMO-
ADHA

L1: (13) SSGGSGGSGGSAG cascade reaction, cyclic
alcohol to lactone

0.25, 10 water 0 Aalbers and
Fraaije, (2017)

CHMO-
ADHM

ADH-
CHMO

2 ADH, BVMO FDH-
CHMO

L1: (6) SGSAAG L2: (6) SRSAAG NADPH-recycling system 5 water, MTBE, DES
(choline chloride and
glycerol)

0, 10, 40, 20 Mourelle-Insua
et al. (2019)

GDH-
CHMO

PTDH-
CHMO

FDH-ADH

GDH-ADH

PTDH-
ADH

3 ADH, BVMO ADH-Gly-
BVMO

L1: (12) SGGSGGSGGSAG L2: (30)
SASNCLIGLFLNDQELKKKAKVYDKIAKDV L3: none

cascade reaction, alcohol to
ester

0.2 water 0 Jeon et al. (2015)

ADH-FOM-
BVMO

ADH-
BVMO

4 Ene reductase, BVMO XenB-
CHMO

L1: (13) SSGGSGGSGGSAG L2: (12) SSATGSATGSAG L3: (1) W cascade reaction,
unsaturated cyclic alcohols
to chiral lactones

3 water 0 Peters et al. (2017)

5 PTDH, P450 BF2 L1: (6) SGGGGS L2: (6) EPPPPK L3: (24) (SGGGGS) × 4 NADPH-recycling system 0.2 water 0 Kokorin et al.
(2021)F2B

F2B-P1

F2B-G1

F2B-G4

6 PTDH, P450 pCRE2-
P450-BM3

L1: (6) SRSAAG NADPH-recycling system 0.1 water 0 Beyer et al. (2018)

7 Styrene monooxygenase
(StyA), Flavin reductase
(StyB)

Fus-SMO L1: (30) ASGGGGSGGGGSGGGGSGGGGSGGGGSGAS L2: (20)
(GGGGS) × 4

electron transfer for
epoxidation of styrene

0.5 water 0 Corrado et al.
(2018)

8 P450, Alcohol oxidase OleTJE-
AldO

L1: (18) GSGLEVLFQGPGSGGGGS L2: (45) A (EAAAK) × 4-LEA-
(EAAAK) × 4A

hydrogen peroxide supply
for decarboxylation reaction

0.5–10 water 0 Matthews et al.
(2017)

(Continued on following page)
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TABLE 1 (Continued) List of fused and non-fused oxidoreductases, and their biocatalytic applications with varying substrate concentrations in various aqueous and non-aqueous media.

Entry Enzyme pairs Fusion
name

Linker Application
of enzyme
pairs

Substrate
concentration
(mM)

Reaction
media

Organic
solvent
(vol%)

References

9 Formate dehydrogenase FDH-AzoRo L1: (30) His Tag × 10 NAD+ regeneration 0.025 water 0 Ngo et al. (2022)

10 ADH, aminotransferase ADH-AT L1: PAS linker: (20) ASPAAPAPASPAAPAPSAPA L2: (40) PAS ×
2 L3: (60) PAS × 3

cascade reaction, alcohol to
amine, stabilization through
linker

300 water 0 Lerchner et al.
(2016)

11 Formate dehydrogenase,
Leucine dehydrogenase

FDH-
LeuDH

L1: none L2: (5) EAAAK L3: (10) (EAAAK) × 2 L4: (15) (EAAAK) ×
3 L5: (5) GGGGS L6: (10) (GGGGS) × 2 L7: (15) (GGGGS) × 3

L-tert leucine
biotransformation

4.5 water 0 Zhang et al. (2017)

12 P450 BM3 BM3-ADH L1: none L2: (10) (GGGGS) × 2 L3: (9) A × 9 L4: (10) (EAAAK) × 2 NADPH-recycling system 0.2, 0.5, 10 water 0 Kokorin and
Urlacher, (2022)ADH-BM3

13 Flavin-dependent
halogenase, flavin
reductase

FH-FR L1: (10) PSPSTDQSPS L2: (16) VLHRHQPVTIGEPAAR L3: (22)
VLHRHQPVSPIHSRTIGEPAAR

electron transfer for
halogenation

0.5 water 0 Andorfer et al.
(2017)

14 CHMO, ADH, CAL-A No fused — — 20, 100 water 0 Schmidt et al.
(2015)

15 CHMO No fused — — 3.4–11 water 0 Romero et al.
(2016)

16 CHMO, ADH, CAL-B No fused — — 1–25 water 0 Scherkus et al.
(2016)

17 P450, ADH No fused — — 2, 20 water 0 Tavanti et al.
(2017)

18 PTDH, BVMO PockeMO-
PTDH

L1: (6) SRSAAG NADPH-recycling system 0.2–0.8 water, dioxane 10 Furst et al. (2017)

CPDMO-
PTDH

CHMO-
PTDH

19 CHMO, ADH, CAL-B No fused — — 20 water 0 Scherkus et al.
(2017)

20 CHMO, ADH, CAL-B No fused — — 40–100 water 0 Wedde et al. (2017)

21 CHMO, ADH No fused — — 0, 100 water 0 Engel et al. (2019b)

22 CHMO, GDH No fused — — 10, 140 water, methanol 10 Delgove et al.
(2019)

23 CHMO, GDH No fused — — 30, 240 water, methanol 1.25, 10 Solé et al. (2019)

24 FMO, ADH FMO-ADH L1: (6) SGSAAG NADPH-recycling system 10–20 microaqueous 95 Huang et al. (2019)

25 PSMO, FDH No fused — — 10 water, methanol 10 Zhu et al. (2022)

26 CHMO, FDH No fused — — 5 water, methanol 10 Zhu et al. (2022)

CHMO, Cyclohexanone monooxygenase; ADH, Alcohol dehydrogenase; PTDH, Phosphite dehydrogenase; FDH, Formate dehydrogenase; GDH, Glucose dehydrogenase; PockeMO, Polycyclic ketone monooxygenase; CPDMO, Pseudomonad

cyclopentadecanone monooxygenase; MTBE, Methyl tert-butyl ether; DES, Deep eutectic solvent.
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Enzymes have naturally evolved to function optimally in

aqueous media. Accordingly, most enzyme-catalyzed

transformations take place in buffer systems to maintain

enzymatic stability and activity. However, for industrial

applications that mostly use hydrophobic non-natural

substrates, this can be a key obstacle (Holtmann and

Hollmann, 2022). In most studies, the concentrations of

poorly water-soluble reagents are often adjusted to the

millimolar range. The ‘diluted’ biocatalysis with low substrate

loadings is both poorly economical and unsustainable (Hollmann

et al., 2021). Using non-aqueous media with the presence of co-

solvents can effectively enable high substrate loadings required

by the industrial scale-up and commercialization (Dominguez de

Maria and Hollmann, 2015; Illanes, 2016). Biocatalysis in non-

aqueous media has seen a big rise since the pioneering work of

Klibanov (1989) on enzyme catalysis in organic solvents (Zaks

and Klibanov, 1988), which mainly focused on lipases with

distinctive stability (Kumar et al., 2016). However, applying

redox biocatalysis in non-aqueous media confronts several

major concerns, e.g., enzyme stability and cofactor recycling

(Kara et al., 2013; Huang et al., 2018; Vidal et al., 2018). A

recent study proved the feasibility of using a fused type II flavin-

containing monooxygenase (FMO-E) and horse liver alcohol

dehydrogenase (HLADH) in organic media (Huang et al., 2019).

Benefits can be promisingly envisioned by applying these fusions

for cascades with high substrate loadings in non-aqueous media

(Holtmann and Hollmann, 2022). Inspiringly, many enzymes of

interest especially the above-mentioned CHMO can be

optimized by a similar way for the cascades toward an

industrial application.

Here we present recent advances in the design and

application of fusion enzymes, which cover not only the

traditional aqueous systems but also non-aqueous media (e.g.,

organic solvents, and deep eutectic solvents). In detail, the

development and application of various fusion enzymes in an

aqueous environment (Section 1) and some recent examples

especially about oxidoreductases in non-aqueous media (Section

2) have been outlined. Meanwhile, the linker design regarding

classification, flexibility and rigidity, length, and orientation is

discussed in both sections. In particular, the potential of using

fusion enzymes for redox cascades with high substrate loadings

in pursuit of satisfactory space-time-yields is highlighted.

2 Fusion enzymes in aqueous media

Most fused enzymes are constructed by genetic fusion, which

requires a linker peptide to connect target proteins. A linker

peptide is a segment of the polypeptide, consisting of several or

hundreds of amino acids in length (Arai, 2021). The presence of

linkers allows for the separation of two enzymes and thus avoids

mutual interference during the folding and catalytic processes.

There are at least two factors to consider when designing an

enzyme fusion: 1) which type of linker to use and 2) in which

order proteins should be placed. In the first aspect, the

composition and length of a linker are two determining

factors of its physicochemical properties regarding flexibility

vs. rigidity and hydrophilicity vs. hydrophobicity. This can

highly affect the spatial distribution of fused subunits.

According to the characteristics of linkers, they are generally

classified into two types: 1) flexible linker peptides and 2) linker

peptides that can form α-helices (Chen et al., 2013). As a simple

summary, Table 1 lists the enzyme pairs in fused or non-fused

forms and the used linkers of mainly oxidoreductases described

in this mini-review. All examples are explained in more detail in

the entries.

The composition is a determinant factor for the flexibility or

rigidity of linkers. Flexible linkers are glycine-rich and can

produce a disordered loop, which usually could improve

protein solubility and provide flexibility for catalysis domain

separation (Arai et al., 2001). The flexible linker peptide does not

interfere with the folding domain of the protein, thus

theoretically allowing for natural folding and other

conformational movements (Reddy Chichili et al., 2013). This

type of linker has been widely used in biocatalysis with relative

success, such as cytochrome P450 fusions (Matthews et al., 2017;

Beyer et al., 2018; Kokorin et al., 2021; Kokorin and Urlacher,

2022), flavin reductase (FR) fusions (Andorfer et al., 2017;

Corrado et al., 2018), formate dehydrogenase (FDH) fusions

(Zhang et al., 2017), and Baeyer-Villiger Monooxygenases

(BVMOs) fusions (entries 1–13, Table 1). In detail, Fraaije

and coworkers reported a fusion of an ADH from

Thermoanaerobacter brockii (TbADH) and a CHMO from

Thermocrispum municipal (TmCHMO) with a glycine-rich

linker, which was used in a linear cascade fashion to

synthesize ε-caprolactone (entry 1, Table 1) (Aalbers and

Fraaije, 2017). They found the fused TmCHMO exhibited

around two-fold higher oxygenation activity compared to the

individual protein. The obtained fusion achieved 99% conversion

using 200 mM substrate (substrate-feeding applied) and gave a

turnover number (TON) of >13,000 (Aalbers and Fraaije, 2017).

Glycine-rich peptide linkers are structurally flexible and thus

hardly restrict the natural movement of enzymes, which to a high

extent leads to a more favourable performance of fusion enzymes

compared to that with rigid linkers. There is another example of

such enzyme that TmCHMO was fused with three different

cofactor regeneration enzymes using short flexible linkers.

Therein all fusion enzymes resulted in good soluble expression

and excellent conversions (entry 2, Table 1) (Mourelle-Insua

et al., 2019). Not only for isolated enzyme fusions, but also the

biotransformation activity of recombinant cells containing

overexpressed fusion enzymes was markedly influenced by the

type of fusion linkers. Therein, it turned out that flexible linkers

allowed for higher conversions than rigid α-helix linkers (entry 3,
Table 1) (Jeon et al., 2015). In general, other studies have shown

some similar effects by using flexible linkers, reaching higher
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conversions (Peters et al., 2017; Kokorin et al., 2021), improving

catalytic activities (Beyer et al., 2017; Beyer et al., 2018; Corrado

et al., 2018), and yielding higher productions (Peters et al., 2017)

(entries 4–7, Table 1). Therefore, flexible glycine-rich linkers are

safe options to try when it comes to the preliminary linker design.

The inclusion of helix-associated amino acids such as alanine

and lysine enables the introduction of stiff tethers in glycine-rich

linkers, providing the advantage of being resistant to proteolysis

and the well-controlled domain separation (Chen et al., 2013). In

some research, it has been studied that fusions with rigid peptide

linkers exhibited better activities than that with flexible linkers

due to the effective separation of protein moieties (Zhang et al.,

2017; Huang et al., 2021). For example, the α-helix-based rigid

linker between alditol oxidase (AldO) and cytochrome

P450 OleTJE (CYP152L1) highly contributed to the improved

decarboxylation of myristic acid in the presence of peroxide

(H2O2) when compared to equal amounts of isolated OleTJE and

AldO (entry 8, Table 1). The authors also mentioned the

enhanced activity may be attributed to the more efficient

channeling of H2O2 between enzyme active sites within the

proximity of these domains (Matthews et al., 2017).

Despite the potential of rigid linkers, flexible linkers have

received more attention than the research done so far on rigid

linkers. Overall, various studies have described glycine-rich

linkers are beneficial by enhancing flexibility between the two

partners, which could provide degrees of freedom for proper

folding and conformational changes (Chen et al., 2013). When

most studies have focused on the use of flexible or rigid linkers,

there is an interesting study that reported a fusion of FDH from

Candida boidinii and azoreductase from Rhodococcus opacus

1CP (AzoRo) with His 10-tag as the linker (Ngo et al., 2022). Due

to its high affinity for nickel-containing resins, histidine (His) is

often designed as a tag for affinity purification of recombinant

proteins. Since most recombinant proteins usually have His-tags

at the N or C-terminal, His-tags are used to combine the two

proteins with the expectation that it can have multiple biological

functions of proteins purification and fusion linkers at the same

time. The result showed using His-tag as a linker is achievable,

but it might affect the solubility of the fusion protein (entry 9,

Table 1). Evidently, each of these linkers has its own pros and

cons, and the application will depend on the specific reaction to

be achieved.

Besides the composition of linkers, the length of linkers has

recently been found to have a pronounced effect on the

properties of fusion enzymes. In one case, the effect of the

length of a glycine-rich linker with 15 amino acids as the

basic linker on the biocatalytic properties of TbADH-

TmCHMO fusion was investigated by evaluating 14 lengths

(Gran-Scheuch et al., 2021). All variants exhibited a high

expression level but varying activities. The fusions with linker

lengths of 10, 12, and 15 amino acids, showed a slight increase in

kobs for both activities while the fusions with 2, 3, 6, 7, 13, and

14 amino acid linkers resulted in the highest TONs (Gran-

Scheuch et al., 2021). Despite that, no clear correlation

between linker length and the catalytic performance of fusions

was established within limited studies. Nevertheless, the length of

linkers can be adjusted to make space for proper folding of both

enzymes, which consequently affects the expression and activity

of fusions. For example, three linkers consisting of repeated PAS

sequences (20, 40, and 60 amino acids) (entry 10, Table 1) were

used in the fusion of an ADH with an aminotransferase (AT) to

synthesize amines from alcohols. Therein, they found specific

effects for each linker, from short to long: PAS20 achieved two-

fold higher conversion compared to the individual enzymes;

PAS40 showed the highest activity while PAS60 resulted in

the highest soluble expression (Lerchner et al., 2016).

Likewise, in another study using NHase as a subunit, proper

longer linkers resulted in higher stability while overlong linkers

had a negative effect on the activity and expression of NHase.

(Guo et al., 2021). Based on current studies, there is still no clear

consensus on whether longer or shorter linkers are better.

Therefore, it is necessary to design and evaluate different

lengths of linkers in a certain case, which, obviously, can be

time-consuming. For this reason, a recent study reported a three-

step process in straightforward PCR that utilized reiterative

primer design, PCR-mediated linker library generation, and

restriction enzyme-free cloning methods to generate linker

libraries. The authors stated it to be applicable for most fusion

constructs (Norris and Hughes, 2018).

In addition to the composition and length of linkers, the

order of fused moieties is also critical for the catalytic

performance of fusions. An in-depth study of loops and

linkers illustrated that linkers are not just ‘connectors’ but

have a significant impact on the microenvironment and

orientation of fusions (Huang et al., 2021). The order of

protein sequences (N and C-terminal orientation) can

influence the correct folding, oligomerization state, stability,

and activity of the fusion constructs (Lai et al., 2015). Given

that, the gene order for a fusion enzyme was exemplarily

optimized by using simulations (Lai et al., 2015; Papaleo et al.,

2016). Zhang et al. (2017) predicted the orientation of the

cofactor binding domain of leucine dehydrogenase (LeuDH)

and formate dehydrogenase (FDH) by structural modelling

approach with an online server to ensure the favorable

orientation of active sites in the fusion enzyme complex

(entry 11, Table 1). This simulation revealed that fusing the

C-terminus of FDH with the N-terminus of LeuDH formed a

favorable face-to-face active cleft orientation. This would

promote the formation of intramolecular tunnelling and

accelerate the cofactor channel between FDH and LeuDH.

However, such a result could not be obtained in the other

direction (Zhang et al., 2017). In the case of BVMOs,

changing the order of the same linker led to a significant

increase in ADH activity: TbADH-TmCHMO showed higher

kcat than TmCHMO-TbADH (Aalbers and Fraaije, 2017). While

in another study of P450, there is no difference (entry 12, Table 1)
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(Kokorin and Urlacher, 2022). In general, the orientation

between the two enzymes can have a significant impact on the

efficiency of the reaction. Although, with the assistance of

computational simulations or using linker databases, the

orientation between enzymes can be designed in a more

rational way. However, in practice, this is still difficult to

control (Lai et al., 2015).

In addition to genetic fusion, post-transcriptional

interactions between tags have become popular to bring

multiple enzymes in close proximity to form a single

multifunctional catalyst (Keeble and Howarth, 2020). SpyTag/

SpyCatcher is one such protein coupling approach and it is by far

the most used tag. Schoene et al. (2014) reported that locking the

termini (often the most flexible part of a protein) together

through SpyTag/SpyCatcher altered the enzyme robustness.

The thermal and proteolytic stability of β-lactamase has been

improved significantly. Another proven way to enhance stability

and performance was to encapsulate enzymes with SpyTag/

SpyCatcher in protein cages (Mittmann et al., 2022). For

example, Pamela and coworkers encapsulated two enzymes via

SpyTag/SpyCatcher for the biosynthesis of indigo, enhancing

intracellular indigo production and increasing the stability by

90% (Giessen and Silver, 2016). SpyTag/SpyCatcher was shown

to facilitate substrate recruitment, thus improving enzyme

performance (Wang et al., 2017). Moreover, Spy technology

has increased resilience, promoted substrate channeling, and

assembled hydrogels for continuous flow biocatalysis (Keeble

and Howarth, 2020). Based on these studies, we can see that using

a combination of these tags could contribute to a better enzymic

performance, especially improving the stability of enzymes. It

will be exciting to see how the Spy toolbox develops in the field of

biocatalysis in the future.

3 Oxidoreductases in organic media
and perspectives

As aforementioned, the use of fusion proteins is mostly

documented for aqueous media. However, the use of water as

a “green” solvent has been intensely debated within the

biocatalysis field, which made it clear that the impact of

contaminated water surely needs to be quantified when

assessing the greenness of an enzymatic process (Ni et al.,

2014). For this reason, water has been included in the recently

modified E-factor to emphasize a fair comparison between the

use of water and other solvents (Tieves et al., 2019). When using

water as reaction media for chemical synthesis, not only

wastewater but also several other limitations should be

considered, such as 1) lower substrate solubility, 2) laborious

downstream processing, 3) unwanted water-related side

reactions, 4) enzyme inhibition, and 5) microbial

contamination. Given these problems especially the limited

substrate loadings, there is a high interest in the use of non-

aqueous media for enzymatic catalysis (Osterberg et al., 2015;

Rosinha Grundtvig et al., 2018; Bollinger et al., 2020). In this

context, organic solvents are often widely used in most synthetic

processes, especially in the pharmaceutical industry (Caron et al.,

2006; van Schie et al., 2021) and can be seen as a possible

improvement for different biocatalytic systems.

Research on biocatalysis in organic media has focused on

hydrolases (EC 3) mainly lipases some of which have been

applied at technical scales. Although oxidoreductases-

mediated selective oxidation is considered one of the most

important transformations in organic chemistry, studies on

oxidoreductases (EC 1) are still limited (Hollmann et al.,

2011; Ringborg et al., 2017; Dong et al., 2018). Between

2000 and 2015, 68% of the patents covering biocatalytic

applications were based on oxidoreductases, despite the

fact that they account for “only” one-third approximately

of all the known enzymes (Drenth et al., 2021). The limited

use of oxidoreductase at technical scales in organic media is

not only due to the instability of redox enzymes per se but

also the fact that up to 50% approximately of known

oxidoreductases are cofactor-dependent [NAD(P)H].

Given the expensive and unstable nature of NAD(P)H,

their regeneration and re-utilization are often necessary

for the economic feasibility on an industrial scale

(Velasco-Lozano et al., 2017; Selles Vidal et al., 2018). In

this case, enzyme-coupled cofactor regeneration approaches

have emerged as powerful tools to meet this demand. In

particular, dehydrogenase-promoted in situ cofactor

regeneration in whole cells (so-called “designer cells”)

(Groger et al., 2006) and in vitro multi-enzymatic

cascades have been widely reported in aqueous media. In

the case of cascade reactions, the distance between enzymes’

active sites has a significant effect. Fusing enzymes or co-

immobilizing enzymes are some of the different approaches

that can be used to shorten the transport distance of reaction

intermediates between active sites while increasing the

enzyme stability, jointly contributing to the improved

efficiency of cofactor regeneration (Hollmann et al., 2018;

Zhu et al., 2022).

Baeyer-Villiger monooxygenases (BVMOs) can oxidize

ketones to furnish value-added esters and lactones, which rely

on both NADPH and molecular oxygen (Schmidt et al., 2015;

Scherkus et al., 2016). One preparative application of BVMO

overexpressed in whole cells has been demonstrated in an in situ

substrate feeding and product removal process by using

adsorbent resin within a bubble column reactor (Hilker et al.,

2004a; Hilker et al., 2004b; Hilker et al., 2005). This set-up has

been scaled up to the kilogram level in a 50 L reactor. Therein, it

is concluded that overcoming the oxygen limitation could afford

higher productivity. Given the use of organic solvents offers

magnitudes higher oxygen solubility than water (Ramesh et al.,

2016), applying BVMOs in organic media to achieve oxygen

limitation removal is appealing. Furthermore, Sato et al. (2014)
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reported that the oxygen solubility increases with larger alkyl

chains of alcohol solvents while with decreased alkyl chains of

alkane solvents, which provided a basic guideline for solvent

selection.

Various multi-enzymatic cascades have been designed and

established involving oxidoreductases mostly in water and water-

organic mixtures to produce bulk and fine chemicals especially active

pharmaceutical ingredients (APIs). Some of representative studies

have been summarized in Table 1 which has a focus on

cyclohexanone monooxygenases and widely used cofactor

regeneration enzymes ADHs. These studies demonstrated the

screening, the characterization including mutation and fusion

(entries 1, 18, 2, and 24, Table 1) for more stable enzymes, and

the application of these enzymes in different reaction conditions and

set-ups. In addition, the optimization of an oxidative process by using

air or pure oxygen was illustrated. All these studies were performed

with a broad range of substrate concentrations and various enzymes

for the cofactor regeneration (14–17, 19–22, 25, and 26, Table 1). A

successful scale-up of a sequential cascade reaction has been reported

by adding the two enzymes separately, optimizing the dosing factor,

and increasing the reaction volume up to 100 L in a 200 L-reactor

(entry 23, Table 1) (Solé et al., 2019). Despite these advances, there is

still room for further improvement especially concerning the cofactor

recycling, substrate loadings, oxygen supply, and enzyme stability.

This is where enzyme fusions in organic media can fit in and provide

counterpart solutions.

To the best of our knowledge, there has been only one

study on the use of fused oxygenating enzymes in low-water

media (micro-aqueous media) so far. Huang et al. (2019)

reported the use of fused type II flavin-containing

monooxygenase (FMO-E) and horse liver alcohol

dehydrogenase (HLADH) by using a flexible linker in

micro-aqueous media (5 vol% aqueous buffer in organic

solvent) for the synthesis of γ-butyrolactone. It was

reported that the enzymes’ tolerance toward organic

solvents could be transmitted when enzymes are fused.

Depending on the art of combination, different stabilities

can be obtained. For instance, Mourelle-Insua et al. (2019)

reported that BsFDH-TmCHMO fusion achieved around 10%

conversion in 1 vol% 1,4-dioxane, while fusing PsPTDH with

TmCHMO by using two different short-flexible linkers led to

full conversion. These examples demonstrate the great

potential of applying fusion enzymes in organic media.

However, it is undoubtable that the rational design of

fusion enzymes with suitable linkers and the application of

fused enzymes for biocatalytic cascades in non-aqueous media

still remains complex and challenging. Moreover, further

research is urgently needed to bridge the gap between

laboratory-level study and the application under industrially

relevant conditions.

4 Conclusion and outlook

Overall, the development of fusion enzymes has highly

facilitated the design and application of enzymatic cascades

to produce valuable compounds in a more efficient manner.

Many gains have been firmly demonstrated. The fusion

approach enables the combination of target functional

domains to easily modularize these multifunctional

catalysts for custom applications. For cofactor-dependent

enzymes, especially oxidoreductases, fusions have been used

to provide efficient cofactor regeneration by shortening

diffusion pathways and stabilizing unstable cofactors both

in whole cells and in vitro using enzyme systems. Not only

the improved catalytic performance but also the enhanced

co-expression is achievable by optimizing fusion linkers.

Given complicated structure-function correlations, rational

and efficient design of linkers has so far remained a

challenge. However, it is becoming easier with the help of

in-silico modeling and the establishment of linker database

libraries. Along this path, more and more studies have

emerged, some of which have been outlined here to

provide a general overview. In particular, fusions of

oxidoreductase have been highlighted due to high interest

in them as well as their infinite potential for chemical

synthesis. Benefiting from the fusion mode, the

applications of cofactor-dependent oxidoreductases not

only in aqueous media but also in non-aqueous media

can be realized, expanding the biocatalytic toolbox for

sustainable industrial chemistry.
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