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Abstract The Einstein–Hilbert action of the general the-
ory of relativity (GR) is the integral of the scalar curvature
R. It is a theory that is drawn from the Equivalence princi-
ple and has predictions that come out as a consequence of
the principle, in observables. Testing such observables to find
confirmation/infirmation of the principle has formed a signif-
icant chunk of tests of GR itself. It is expected that quantum
corrections to GR may add additional higher powers of R
to the Einstein–Hilbert action, or more generally, modify-
ing the action into a generic class of functions of the Ricci
scalar. Testing the fate of the prized equivalence principle,
in such modified theories of gravity, hence become impor-
tant in order to obtain a more generic theory of gravitation,
and consequently, of gravitating objects. In this study, it is
shown that a Post-Newtonian (PN) expansion of a class of
f (R) theories lead to a sequence of solutions to the two-body
problem, which follows the equivalence principle (EP) at the
Newtonian order, and generalizes to the ‘effacing principle’
at a higher PN order.

1 Introduction

The equivalence principle remains to this date a cornerstone
in an attempt to find the most general theory of gravita-
tion possible. Testing the principle of equivalence has almost
become synonymous with testing GR at all possible length
scales, as illustrated in [1]. However, it is entirely possible
that the picture is more subtle than that.

The Equivalence principle (EP), being a principle, is not
a theory, and its consolidation from assumption to fact in
the scientific community is based on empirical (but possi-
bly circumstantial) evidence. Hence it becomes all the more
important to keep on trying to find exceptions to the rule
in natural phenomenon to test the limits of a scientific prin-
ciple. The physical consequences of EP are found through
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the predicted effects of Galilean, Newtonian, and Einsteinian
relativity. Namely, the trajectory of an extended object in a
space-time with other gravitational sources, is independent of
the internal gravitational structure of the extended body, till
at a scenario where the ratio of object extendedness to inter-
object distances become significant. Tidal deformations of
individual objects then strongly affect the gravitational field
of the external space-time, and structural details of individ-
ual objects begin to play a significantly important role in the
evolutionary dynamics of the equations of motion of such
compact objects.

Various tests of the equivalence principle have been
attempted, some of which date quite far back into the past,
like the case of John Philoponus in the 6th century [2],
Galileo’s tests in 1610 [3], and Newton’s pendulum experi-
ments in 1680 [4]. However, the most rigorous tests of the
equivalence principle in the pre-modern times were the tor-
sion pendulum experiments of Eötvös in [5] and following
publications. Modern tests of the EP include [6,7], whereas
strong field tests of the strong EP was performed in [8,9]

The most extreme test of the equivalence principle con-
ceived so far is through the analysis of gravitational wave
(GW) data. In GW physics, the test of the equivalence prin-
ciple, or a consequence of it, is known as the ‘effacing prin-
ciple’ in literature [10,11]. The principle can be stated as
follows: the internal gravitational (strong or weak) details of
extended compact objects in a binary system, neutron stars
(NS) or black holes (BH), does not influence the eventual evo-
lution of the trajectory of the individual objects, till at a very
later stage of the orbital evolution. In other words, the defor-
mation of a compact object due to the presence of another
compact object in its vicinity, although changing the structure
of the first object, does not influence the gravitational field
of the external space-time, and the dynamics of the center of
mass (COM) of the massive compact objects remain unaf-
fected by said deformations. The effacing principle is broken
at scenarios where the average radii of the objects become

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10574-9&domain=pdf
http://orcid.org/0000-0001-8753-7799
mailto:soham.bhattacharyya@aei.mpg.de


611 Page 2 of 16 Eur. Phys. J. C (2022) 82 :611

comparable to the distances between objects where tidal
deformations have significant effects on the orbital dynam-
ics. Information about the equations of motion of a binary
system, for example, comes to an observer at asymptotic
infinity through the phase evolution of GWs. Studying such
data, one can estimate the efficacy of GR in terms of obtain-
ing an accurate relationship between orbital dynamics and
GW data.

In terms of testing the principle, if objects move on
geodesics of an external gravitational field, then the rate at
which they rotate and fall around (towards) each other is fixed
only by their masses and orbital separation. Perturbatively
solving GR field equations from a Newtonian/Keplerian ini-
tial data leads to a sequence of solutions that obey the effacing
principle till 2.5 Post Newtonian order [10], for two non-
spinning or slowly spinning compact objects in a binary sys-
tem. That is, their equations of motion are dependent only
on their masses and distance between their center of masses,
till at a much later stage of the orbital evolution.

However, consequences of the effacing principle might not
be unique to GR. To show this, we take a class of theories
which are generalizations of the Einstein–Hilbert action of
GR, collectively called as f (R) theories of gravity [12,13],
and expand an auxiliary field about a Minkowski space-time
using the Post-Newtonian formalism. The action S from
which the field equations of f (R) theories of gravity are
obtained is given by the following 4-integral over a manifold
M

S =
∫
M

√−g d4x

[
f (R)

2 κ2 + Tm

]
(1)

where f (R) is a generic function of the Ricci scalar R,
and

√−g d4x is the covariant infinitesimal volume element.
Tm is the classical matter action. The above reduces to the
familiar Einstein–Hilbert action for f (R) = R, and the
field equations of GR can hence be recovered. Geometrized
units, c = G = 1 will be used in this study, which implies:
κ2 = 8 π . The notations of [14] will be followed except a
few changes in variable and index labeling.

In this article, the two-body problem in f (R) theories of
gravity will be solved for, using an initial data on the met-
ric and matter that is asymptotically Newtonian/Keplerian
A relaxed form of the field equations will be used, similar
to the Landau–Lifshitz formulation of GR in [15–17], lead-
ing to a post-Newtonian sequence of solutions, as reviewed
in Sect. 2. The solutions will be expressed as functions of
multipole moments over two compact sources, and it will
be explicitly shown that the equations of motion of the two
sources are dependent only on the monopole moments of the
sources, and the distance between their ‘center of masses’.

In Sect. 3 a method to relax the field equations of f (R)

theories will be illustrated. Using the formalism of Sect. 2
“gauge invariant” modification to the 6 PN equations of

motion of GR due to f (R) will be derived. It will also be
shown that even though deviations from general relativistic
equations of motion exist, consequences of the equivalence
(and consequently the effacing) principle appear in the equa-
tions of motion of two compact objects in f (R) theories of
gravity, and is almost identical to GR.

2 The equivalence and the effacing principle in general
relativity

2.1 A coordinate system adapted for the internal problem

An asymptotic series of solutions based on Newtonian initial
data can be found as a function of multipole moments of
classical matter using a formalism developed by Schutz and
Futamase [18], by using two co-moving and scaled ‘body
zone’ coordinate systems for each of the constituents of the
binary, compared to an observer at Minkowskian asymptotic
infinity.

The formalism involves defining a scaled time coordinate
s (different from τ as was used in [19]), with respect to the
time coordinate t used by an asymptotic observer at rest, with
respect to the center of mass of the binary system,

s = ε t, (2)

which is well suited for the internal problem of the two bod-
ies, given they are non-spinning or slowly spinning, as was
found in [18]. ε is the post Newtonian parameter given by
|vorb|
c , with |vorb| being the absolute value of the orbital veloc-

ity, and c being the speed of light (unity in the current study).
The re-parameterized time s is also taken as the proper time
of a co-moving observer along either sources.

A transformation into the ‘body zone coordinate system’
involves first setting up of a Fermi–Walker coordinate system
along the center of mass of two compact objects [14,19,20],
whose centers of masses follow two world lines, denoted by
3-vectors ziL (s), for L = 1, 2. Under such a transformation,
various components of a contravariant tensor, as defined ini-
tially in the asymptotic observer’s frame (denoted in primed
lowercase Latin), transform into the co-moving frame as fol-
lows

T s s
L = T s s

L (3)

T s i
L = ε2T s i ′

L + viL T
s s
L (4)

T i j
L = ε4T i ′ j ′

L + 2ε2v
(i
L T

j ′)s
L + viL v

j
L T

s s
L (5)

The ‘smallness’ parameter ε is the ratio of the average orbital
velocities and the speed of light (unity in the current study),
as agreed upon by an observer at asymptotic infinity, who is
static with respect to the center of mass of the two bodies.
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Then the 3-velocity of the body viL

(
= dziL

ds

)
, as measured

by an external asymptotic observer, is of order unity.
The next step involves defining a specially scaled spa-

tial coordinate system for the internal problem. For compact
objects whose mass-radii ratios approach unity, given the
orbital separation is held fixed, both mass and radius scale as
ε2, if one were to utilize a Newtonian/Keplerian initial data.
Consequently, mass-energy densities scale as ε−4. Hence,
the internal problem can be solved in coordinate systems Xi

L
(as defined in [14,19,20]) that is scaled by the parameter ε2,
such that

Xi
L ≡ xi − ziL (s)

ε2 . (6)

Under the above transformation, various contravariant com-
ponents of the energy–momentum tensor Tμν scale as fol-
lows in the body zone

T s s
L = O

(
ε−2
)

(7)

T s i ′
L = O

(
ε−4
)

(8)

T i ′ j ′
L = O

(
ε−8
)

(9)

which completes the set of transformations necessary to solve
the internal problem. It is to be noted that, as seen in the
special coordinate systems (the body zone coordinates), the
radii of either compact objects are unity.

2.2 Equations of motion

Using the ‘special’ coordinate system defined in the previ-
ous section, a sequence of solutions can be found for the
internal problem. The relaxed form of the field equations of
GR, with a matter source tensor Tμν

m , in the asymptotically
Minkowskian observer’s coordinate system are given as fol-
lows

∂α βH
μανβ = 16 π (−g)

(
Tμν
m + tμν

LL

)
(10)

Hμανβ = gαβgμν − gανgβμ (11)

gμν is the square root of the determinant weighed contravari-
ant metric

(√−g gμν
)
. In this picture of GR, the dynamical

variable is not the metric gμν , but the contravariant metric
density gμν (also known as the gothic metric in PN litera-
ture), which propagates on a Minkowski background ημν .
An apparent separation of the metric of a maximally sym-
metric space-time (corresponding to the tensor Hμανβ ), from
the part of the metric that leads to curvature of space-time
(the effective energy–momentum pseudo-tensor of gravita-
tion tμν

LL ), is possible in this formalism. The exact form is
given by

16 π (−g) tαβ
LL

= ∂λg
αβ∂μg

λμ − ∂λg
αλ∂μg

βμ

+1

2
gαβgλμ∂ρg

λν∂νg
μρ − gαλgμν∂ρg

βν∂λg
μρ

−gβλgμν∂ρg
αν∂λg

μρ + gλμg
νρ∂νg

αλ∂ρg
βμ

+1

8

(
2gαλgβμ − gαβgλμ

)
× (2gνρgστ − gρσgντ

)
∂λg

ντ ∂μg
ρσ (12)

gμν ≡ gμν√−g
(13)

which has at most one derivative of gαβ . The purpose of
the metric g in this formalism is solely to raise and lower
indices of the auxiliary variable gαβ . It is to be noted that the
above definition is neither covariant nor unique. A covari-
ant proposition for the Landau–Lifshitz energy–momentum
pseudo-tensor can be found in [21].

From the old days of Schwarzschild [22], the relaxed form
of the field equations, or the Landau–Lifshitz formalism,
helps one to find exact solutions of the highly non-linear
field equations of GR, as was also explained clearly in [23].

With regards to observable effects, the biggest accom-
plishment of the relaxed formalism has been to obtain a series
of potentials known as the Post-Newtonian expansion of GR
in literature, as in [24,25], and later systematized in [26–30].
It involves defining tensor potentials hμν , given by

hμν = ημν − gμν (14)

along with a constraint

∂μh
μν = 0, (15)

which restricts the possible class of coordinates (or gauges),
in which one attempts to find solutions for hμν . In PN and
GW literature, the constraint is known as the harmonic gauge,
in which the coordinate chart xμ follow four massless and
homogeneous wave equations

� xμ = 0 (16)

where � is the d’Alembert operator or ημν∂μ∂ν . Such a class
of coordinates are consequently known as harmonic coordi-
nate systems, and the dynamical equations for hμν take the
following form

�hμν = −16 π �μν (17)

�μν = �μν + ∂α βχμναβ (18)

�μν = (−g)
(
Tμν + tμν

LL + tμν
H

)
(19)

χμναβ = 1

16 π

(
hανhβμ − hαβhμν

)
(20)

Eq. (17) can be solved for hμν in a series of multipole
moments of the energy–momentum pseudo-tensor �μν . It
is to be noted that the RHS of Eq. (20) manifests as a
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total derivative term in the field equations and can be trans-
formed into boundary terms using Gauss’s law. Choice of the
boundary condition fixes the form of the Green’s function.
For the case in study, the no incoming radiation from past
null Minkowskian infinity boundary condition will be used,
which was given in Sect. 4.1 of [14] as follows

lim
s → r , r → ∞

[
∂

∂ r

(
r hμν

)+ ∂

∂ s

(
r hμν

)] = 0 (21)

where r is the radial coordinate distance from the COM of
a compact source to a field point. Enforcing the condition
(21), the effect of the terms in the RHS of Eq. (20) on the
solution sequence hμν vanishes. Various components of the
tensor potentials hμν till O

(
ε6
)
, in the body zone coordinate

system, are given as follows [14,19,20]

hs sB = 4 ε4
∑
L=1, 2

(
Ps
L∣∣Zi
L

∣∣ + ε2 Dk
L Zk

L∣∣Zi
L

∣∣3
)

+ O
(
ε8
)

(22)

hs iB = 4 ε4
∑

L=1, 2

(
Pi
L∣∣Zi
L

∣∣ + ε2 J k iL Zk
L∣∣Zi

L

∣∣3
)

+ O
(
ε8
)

(23)

h
i j
B = 4 ε2

∑
L=1, 2

(
Y i j
L∣∣Zi
L

∣∣ + ε2 Y k i j
L Zk

L∣∣Zi
L

∣∣3
)

+ O
(
ε6
)

(24)

where Zi
L (s) = xi − ziL (s) is the displacement 3-vector

of the field point to the COM of the source. In the current
formalism, the above components of the tensor potential are
sufficient to obtain equations of motion of the two sources
till the first PN order. The monopole and dipole moments,
respectively, of various components of �μν are defined as
follows

Ps
L = lim

ε → 0

∫
BL

d3XL �s s (25)

Pi
L = lim

ε → 0

∫
BL

d3XL �s i (26)

Y i j
L = lim

ε → 0

∫
BL

d3XL �i j (27)

Di
L = lim

ε → 0

∫
BL

d3XL �s s Xi
L (28)

J i jL = lim
ε → 0

∫
BL

d3XL �s i X j
L (29)

Y i j k
L = lim

ε → 0

∫
BL

d3XL �i j Xk
L (30)

where the various pre-factors of εn for n = 2, 4, 8 for the
various multipole moment definitions have been removed,
compared to [14,19,20], in order to avoid any confusion
regarding the scaling of various components of a rank two
tensor �s s under the transformations (2) and (6).

The equations of motion at various PN orders come from
the definition of a quasi-local four-momenta of the COM of
each of the bodies in the binary as defined in [14,19,20,31]
as

Pμ
L (s) = ε2

∫
BL

d3XL �s μ, (31)

and the conservation law

�μν
, ν = 0, (32)

from which one obtains the evolution equation of the four-
momenta Pμ

L as surface integrals of the energy–momentum
pseudo-tensor, over the boundary of the body zone of the Lth

object, as was obtained in [14,19,20]:

dPμ
L

ds
= −ε−4

∮
∂BL

dSk �k μ

+ε−4 vkL

∮
∂BL

dSk �s μ, (33)

where dSk is an infinitesimal unit vector normal to the 2-
sphere ∂BL that is the boundary of the body zone BL . The
3-momentum vs 3-velocity relationship is given by

Pi
L = Ps

L viL + Qi
L + O

(
ε2
)

(34)

Qi
L = ε−4

∮
∂BL

dSk
(
�s k − vkL �s s

)
Xi
L (35)

Newtonian like equations of motion involve evolution equa-
tions of 3-velocities, which are the 3-accelerations. They
were given in [14,19,20] as

Ps
L
dviL

ds
= −ε−4

∮
∂BL

dSk �k i + ε−4 vkL

∮
∂BL

dSk �s i

+ε−4 viL

(∮
∂BL

dSk �k s − vkL

∮
∂BL

dSk �s s
)

−dQi
L

ds
, (36)

If one chooses a definition of the mass ML of the Lth body
as

ML = lim
ε → 0

Ps
L , (37)

then the equations of motion of the first body, for example,
till first PN order were obtained in [14,19,20] as

M1
dvi1
ds

= −M1 M2

r 2
1 2

ni + ε2 M1 M2

r2
1 2

[(
−v2

1 − 2 v2
2

+3

2

(
n̂ · v2

)2 + 4 (v1 · v2) + 5 M1

r1 2
+ 4 M2

r1 2

)
ni

+ {4 (n̂ · v1
) − 3

(
n̂ · v2

)} (
vi1 − vi2

)]
+ O

(
ε4
)

(38)
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where ni
(≡ n̂

)
is a unit vector pointing from the COM

of the first body zone to the COM of the second body
zone, and r1 2 is the distance between the COM of the
two body zones or the orbital separation. Mass multipole
moments of �μν , as seen by an observer at rest (w.r.t. the
COM of the binary system) at asymptotic infinity, go as
(mass)×(average radius of mass distribution)�. Using New-
tonian initial data, mass multipole objects appearing in the
equations of motion of the binary (36) scale as O

(
ε2 �+2

)
. In

terms of the classical notion of force on a particle,

Fi = Fi
N + ε2 Fi

1PN + O
(
ε4
)

(39)

corresponding to the first and second term of the RHS of Eq.
(38), respectively. If one simply uses the first term of (38),
as a crude approximation for the trajectory of two slow spin-
ning compact objects in the early inspiral phase, one obtains
the Newtonian force on the first body. The dynamics of the
first body then is independent of its own mass and depends
only on the Newtonian potential generated by the second
body, which is a consequence of the equivalence principle.
The generalization of the consequences of the equivalence
principle till first PN order comes through the effacing prin-
ciple, where the internal/structural details of either body, and
their effect on the external gravitational field, do not factor
into their trajectories around/towards each other. The com-
pact objects still behave like point particles moving along
the geodesics of an external gravitational field. Self force
effects through the appearance of velocity dependent terms
appear at the first PN order. Although from the first PN order
onward the dynamics of the first body zone is dependent on
the mass M1 enclosed in it, as was defined in Eq. (37), there
exist no multipole objects other than the monopole moments
of �μν , essentially making the two compact objects behave
like massive but point particles (not to be confused with test
masses).

The effects of spin in the equations of motion are depen-
dent on the scaling of the current multipole moments of
�μν . In the slow rotation approximation, the internal veloc-
ities scale as O (ε). Hence current multipole moments
go as (mass) × (average radius of mass distribution)� ×
(velocity of internal motion), which is O

(
ε2 �+3

)
, implying

that the spin-orbit coupling force is of the form (mass) ×
(orbital velocity) × (spin), or O

(
ε2 �+4

)
. It is also to be

noted that the scalings change when the velocity of internal
motion cannot be ignored for rapidly rotating constituents
of the binary. The time scaling in Eq. (2), then changes to
s ≡ ε−2 t , as was described in [19].

The above described consequence of GR is a way one may
choose to interpret the effects of the equivalence assumption.
But this kind of a consequence is not unique to GR, as will
be shown in the following section.

3 First PN equations of motion in f (R) gravity and the
effacing principle

3.1 Relaxing the f (R) field equations

The field equations of f (R) theories of gravity can be found
by varying the action in Eq. (1). It is however, for the sake
of understanding the physical consequences of such theories,
better to frame the field equations in an Einsteinian way; such
that possible observable deviations from GR can be expressed
as an effective energy–momentum tensor, that is different
from the ordinary matter energy–momentum tensor. In the
latter way, the contravariant field equations are expressed as
[32]

Gμν = 8 π

f ′
(
Tμν
m + Tμν

e f f

)
(40)

3 gμν ∇μ ∇ν f ′ + f ′ R − 2 f = 8 π Tm (41)

Tμν
e f f ≡ ∇μ ∇ν f ′ + gμν

2

(
f − R f ′)− gμν gαβ ∇α ∇β f ′

(42)

f ′ (R) ≡ f ′ = d f (R)

dR
Tm = gαβ T αβ

m ∇μ ≡ gμν ∇ν

(43)

where the subscript m has been utilized to distinguish the
classical matter energy–momentum tensor from the effective
one. Gμν is the Einstein tensor of GR, and ∇μ is the covariant
derivative associated with the metric gμν .

The above system of partial differential equations are
extremely non-linear in the metric and the scalar field f ′,
and needs some form of relaxing before a solution, similar
to the PN expansion in GR, can be generated as functions of
multipole moments of an effective source given by the RHS
of Eq. (40).

There has been a number of analysis on f (R) theories of
gravity. In the cosmological context and local gravity con-
straints, a review can be found in [33–35]. Early solutions for
spherically symmetric distributions of fluids can be found in
[36–40]. An analysis using null tetrads to obtain conditions
for deviations to a curvature invariant object (Weyl scalar) �2

was done in [41]. Perturbations about a completely homo-
geneous and isotropic space-time was performed in [42],
whereas perturbation studies about a spherically symmetric
space-time using the standard metric PN expansion (without
using the gothic metric density) was done in [43]. Stability
of solutions about perturbations in general space-times for
various deviation parameters was shown in [44].

In the spirit of the Landau–Lifshitz formalism, an auxil-
iary metric g̃μν , similar to the gothic metric gμν of GR, but
different from [42,43] can be defined as

g̃μν = f ′ (R)
√−g gμν (44)
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which will be the dynamical variable in the current study,
propagating in a Minkowski background ημν . It is to be noted
that, under linearization of the field equations of f (R) the-
ories of gravity with a well defined polynomial expansion
about R = 0, the RHS of Eq. (44) reduces to the transverse-
traceless metric deviation tensor h̄μν in [40].

Using the new definition, the field equations (40) can be
written as follows

∂α βH
αμβν =16 π (−g) f ′ (R)

(
Tμν
m +tμν

e f f +tμν
LL

)
, (45)

16 π (−g) f ′ tμν
e f f

= √−g
(
f − R f ′) g̃μν

+ 3

( f ′)2

(
g̃μα g̃νβ − 1

2
g̃μν g̃αβ

)
∂α f ′ ∂β f ′ (46)

f ≡ f (R) ; f ′ ≡ f ′ (R) (47)

where the forms of Hαμβν and tμν
LL remain the same as in

GR (with g replaced by g̃) as was defined in Eqs. (11) and
(12), whereas tμν

e f f is seen to be a quadratic function of only
first derivatives of f ′ (R). The functional forms of f (R) and
f ′ (R) can be written as a power series about R = 0 as

f (R) = R + f ′′ (0)

2
R2 (48)

f ′ (R) = 1 + f ′′ (0) R (49)

where the coefficients of expansion f ′ (0) is taken to be unity
to recover GR at the R = 0 limit, and f ′′ (0) will be taken
to be negative for the course of this article, following [36,
37,39,40]. The negative choice for the constant f ′′ (0) also
frames Eq. (41), after making the choices (48) and (49), into a
Klein–Gordon equation that is satisfied by the massive scalar
field.

Perturbing the configuration
(
g̃, R

)
about a Minkowski

space-time ημν , Eq. (45) can now be perturbatively solved
as functions of multipole moments of net energy–momentum

pseudo-tensors
(
�̃μν, �̃

)
. One can define a tensor potential

h̃μν , similar to hμν of GR, that propagates on a Minkowski
space-time ημν

h̃μν = ημν − g̃μν, (50)

and use a conformal-Lorenz gauge condition (referred to as
the “Lorentz” gauge condition in [45], and as conformal-
harmonic condition in [46])

h̃μν
, ν = 0. (51)

Since there is the Ricci scalar manifesting as a scalar field,
one needs to define a dynamical variable that propagates on
a Ricci flat background, and has a “proper” scaling relation-
ship with the trace of the classical energy–momentum tensor
(which may comprise of a pair of slowly spinning fluids,
gravitational mass monopoles, or a combination of both).
Noticing that �μν has an overall factor of (−g) in the RHS

of Eq. (19), such that � hμν is related to the classical energy–
momentum tensor Tμν

m with an overall (−g) factor. One may
choose to structure the trace of the field equations (41) in a
manner that connects the d’Alembert operated scalar density,
say �R, to the trace of Tμν

m with an overall (−g) factor.
In the action, the square root of the negative of metric

determinant multiplied with the Ricci scalar is akin to the
energy-density (if one uses geometrized units). Hence the
scalar variable, like the tensor variable gμν in GR and g̃μν in
f (R), is changed to be the following

R = √−g R (52)

One obtains the relaxed dynamics of h̃μν as

�h̃μν = 16 π �̃μν (53)

�̃μν = (−g)

[
Tμν
m

(
1 − f ′′ R√−g

)
+ tμν

LL + tμν
H + tμν

e f f

]
.

(54)

with the following conservation law being satisfied by �̃μν

�̃μν
,μ = 0 . (55)

tμν
e f f is comprised of various products of h̃μν , R, and first

derivatives of h̃μν and R; whose truncated form till the
quadratic order of f ′′ (0) is given as follows

16 π (−g) tμν
e f f

= f ′′ R2
√−g

ημν + 3
(
f ′′)2

4 (−g)

×
[
2
(
ημα ηνβ + ημβ ηνα − ημν ηαβ

)
R ∂αR ∂β h̃

+
(

ημα ηνβ − 1

2
ημν ηαβ

) (
4 ∂αR ∂βR + R2 ∂α h̃ ∂β h̃

)]

+O

[(
f ′′

√−g

)3
]

(56)

h̃ ≡ ημν h̃
μν (57)

It is to be noted that under the transformation (2), the covari-
ant Minkowski metric, using the (+ ,−,−, −) signature
becomes

ημν ≡ diag
(
ε−2, −1, −1, −1

)
(58)

therefore
∣∣det

(
ημν

)∣∣ ≡ (−g) scale as ε−2. It is to be noted
that the trace of the new (and the old) gothic metric density
deviation h̃ scale as ε2 under the transformation (2), com-
pared to the individual components of h̃μν at the spinless or
slowly spinning limit, which scale as ε4. It is important to
note the coefficients of (−g)−1 in the second term of Eq.
(56) (inside the square brackets) as a whole are sub-leading
(in powers of ε in the PN expansion), compared to the first
term of Eq. (56) which is in turn sub-leading with respect to
Tμν
m . Notice that the first appearance of a non GR term in

123



Eur. Phys. J. C (2022) 82 :611 Page 7 of 16 611

�̃μν in the ε sequence is a non-minimal coupling between
the Ricci scalar and the classical matter energy–momentum
tensor along with a term quadratic in R.

tμν
H appears in the PN formulation of GR as well, whose

form was given in Eqs. (18) and (20) through the term χ
μναβ

, αβ ,

with hμν replaced by h̃μν . The total derivative term allows
one to put tμν

H to zero at the boundaries of integration because
of the specific boundary condition choice of no incoming
tensor radiation from past null Minkowskian infinity.

Under the transformations in Eqs. (44) and (52), the trace
of the field equations, that is Eq. (41), reduces to the following

�R + √−g γ 2 R = −8 π (−g) γ 2 �̃ (59)

�̃ = Tm + f ′′ (0)

{
Tm R

3
√−g

+ 1

8 π (−g)

×
(
R2

3
− ∂μR ∂μh̃ − 1

2
R ∂μh̃

αβ ∂μh̃αβ

−1

4
R ∂μh̃ ∂μh̃ − 1

2
R�h̃

)}
+ O

([
f ′′ (0)

]2) (60)

γ 2 ≡ − 1

3 f ′′ (0)
(61)

Tm = ημν T
μν
m (62)

Derivation of the above differential equation from the trace
of f (R) field equations have been given in Appendix A. The
source side of Eq. (59) has an energy–momentum scalar �̃

that is multiplied by a factor of (−g), similar to the energy–
momentum tensor �̃μν of Eq. (53). It is to be noted that under
the transformation (2), the presence of the factor of

√−g puts
an ε−1 dependence on the inverse length squared factor γ 2.
This implies that for ε → 0, the inverse length is essentially
infinite, and the scalar field R cannot be excited. This also
implies that the scalar field excitation is more for values of ε

close to unity, that is strong curvature along with high veloc-
ities in the strong field point particle formalism ([14]). This
is known as the Chameleon mechanism or screening effect
in the literature of f (R) and scalar-tensor theories.

At this point one can impose the boundary conditions that
have no radiative degrees of freedom (time dependent), ten-
sor or scalar, coming from past null Minkowskian infinity
or from any other parts of the space-time. This assumption
implies that the objects in question are isolated objects at
s = 0, unaffected by other events in the universe. While this
assumption gets rid of tensor/scalar radiation, one still has to
consider non-radiative and time independent solutions of the
homogeneous Klein–Gordon equation.

3.2 Homogeneous solution of the Klein–Gordon equation

The time independent and homogeneous Klein–Gordon
equation, being a second order differential equation of only
spatial coordinates, is given by

∇ Rhom − γ 2

ε
Rhom = 0 (63)

where ∇ is the Laplace operator in Minkowski space-time,
and the square root of the negative metric determinant was
written in terms of the PN parameter, as seen after Eq. (58).
It is seen that the second term in the LHS of Eq. (63) is of
leading order in an ε → 0 series, and the system as a whole
corresponds to the Klein–Gordon equation of a scalar field
with infinite mass for ε → 0. Multiplying both sides of Eq.
(63) with ε, and taking the limit ε → 0, one obtains

Rhom = 0 (64)

implying that the homogeneous solution cannot be excited at
the leading order, or when the separation between a binary is
large enough / their relative velocities are vanishing. How-
ever, at larger values of ε, the first term in the LHS of Eq.
(63) cannot be ignored, that is, Eq. (64) does not hold true.
In spherical symmetry, for example, Eq. (63) can be written
as

1

r2

[
r2 (Rhom),r

]
,r

− γ 2

ε
Rhom = 0 (65)

which has a solution which is both regular at r = 0 and
r = ∞, and is given by

Rhom = C e
− γ r√

ε

r
(66)

whereC is a real constant of integration yet to be fixed. To fix
such an arbitrary integration constant, it is necessary to look
for the effect of the homogeneous solution on the solution of
redefined goth metric perturbation, or h̃μν . Specifically, one
needs to find the order of h̃μν at which the effect of the scalar
homogeneous solution first appear as a part of the effective
source tensor tμν

e f f .

3.3 The metric deviation in the presence of the
homogeneous Ricci scalar

Since the leading order Ricci deviation is O (1) due to the
presence of a homogeneous solution Rhom , it needs to be
included in �̃μν which sources h̃μν . The solution for h̃μν

within the boundary condition (21) is given by the following
integral

h̃μν
(
s, xi

)

= 4 (−g)
∫
C(s, xk ; ε)

d3y
�̃μν

(
s − ε

∣∣xi − yi
∣∣ , yi

)
∣∣xi − yi

∣∣
(67)

where the integral has its support in the past light cone of the
event

(
s, xi

)
, as fixed by the boundary condition, and denoted
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by C
(
s, xk; ε

)
. Concentrating only on the time-time com-

ponent of the above, for example, under the temporal trans-
formation (2), h̃t t = ε−2 h̃s s and (−g) = ε−2. Also, it is

to be noted that lim
ε → 0

d3y �̃t t = (
ε6 d3XL

) (
ε−2 �̃s s

)
∼

O
(
ε4
)

under the scalings (2) and (6). Therefore, under the
combined temporal and spatial coordinate scalings, the body-
zone integral becomes

h̃s s
(
s, xi

)
= 4 ε4

∑
L=1, 2

∫
BL

d3XL
�̃s s∣∣Zi

L (s) − ε2 Xi
L

∣∣
(68)

Now utilizing the definition of �̃μν from Eq. (54), at the
leading order, that is just considering the part of �̃μν pro-
portional to the classical matter energy–momentum–stress
density tensor, one obtains

h̃s s = 4 ε4
∑

L=1, 2

∫
BL

d3XL
T s s

(
1 − ε f ′′ R

)
∣∣Zi

L − ε2 Xi
L

∣∣ (69)

ε series of the first part of the integral out of the two terms
above lead to Eq. (22), same as in GR. However, a more
curious thing occurs when one considers the second term
with R = Rhom . That is the following

h̃s sextra = −4 ε5 f ′′ ∑
L=1, 2

∫
BL

d3XL
T s s Rhom∣∣Zi
L − ε2 Xi

L

∣∣ (70)

Considering now the particular form of the homogeneous
Ricci density (66), one obtains the following integral using
the scaled coordinate (6)

h̃s sextra = −4 ε3 f ′′ ∑
L=1, 2

CL

∫
BL

d3XL
T s s∣∣Zi

L (s) − ε2 Xi
L

∣∣ ∣∣Xi
L

∣∣ e−γ ε
3
2
∣∣Xi

L

∣∣

(71)

which seems to preceed the order at which the gothic metric
deviation first appears, that is O

(
ε4
)
. However, under an ε

series about 0, the leading order form of the above becomes
the following

h̃s sextra = −4 ε3 f ′′ ∑
L=1, 2

CL∣∣Zi
L

∣∣
∫
BL

d3XL
T s s∣∣Xi

L

∣∣ (72)

h̃s sextra = −4 ε3 f ′′ ∑
L=1, 2

CL NL∣∣Xi
L

∣∣ (73)

which is a Newtonian potential like term with negative one
multipole moment of the source, denoted by NL . Therefore,
the modified leading order metric deviation h̃s s can be written
in the following form

h̃s s = 4 ε4
∑
L=1, 2

[
P̃s
L∣∣Zi
L

∣∣ + O
(
ε2
)]

(74)

P̃s
L = Ps

L − lim
ε → 0

f ′′ CL

ε

∫
BL

d3XL
T s s∣∣Xi

L

∣∣ (75)

where Ps
L was defined in Eq. (25), and is the classical defi-

nition of quasi-local mass at the leading / Newtonian order.
From astrophysical observations, for example from solar sys-
tem tests of gravity, a two-body system obeys Newton’s law
of gravity quite well, especially when their relative veloc-
ity divided by the speed of light tends to zero. In Newton’s
law, the only parameter that arises is the classical quasi-local

mass (
c2 Ps

L
G in non-geometrized units). More importantly, it

is the very first / leading order parameter that arises in a
PN expansion of GR, which has a very well defined ε → 0
limit, and which has been shown to hold rather well, even
in situations like a binary neutron star system. In the cur-
rent formalism, the classical qausi-local mass definition first
appears at O

(
ε4
)

for a PN expanded hs s in GR. Noticing in
Eq. (75), that P̃s

L can be interpreted as a redefined mass for
the leading order h̃s s , it is important to note that while the
integral in the second term of Eq. (75) has a well defined limit
for ε → 0, the factor multiplying it does not. In fact, due to
the ε−1 nature of the factor, the second term as a whole blows
up in the ε → 0 limit. In order to avoid such a diverging
behavior for the classical quasi-local mass definition for the
small ε limit, the only choice one has is the following

CL = 0, (76)

which makes the homogeneous Ricci density vanish at all
orders of ε, leading to

P̃s
L = Ps

L (77)

implying the leading order behavior of the new gothic met-
ric deviation h̃μν is the same as in GR. It is to be noted that
such a limiting procedure to Newton’s law is also used to
fix the constant of integration for the homogeneous spheri-
cally symmetric solution of GR (the Schwarzschild mass).
The vanishing of the homogeneous solution leaves one with
just the inhomogeneous/particular solution, and Eq (59) can
now be solved in an order reduced method for the Ricci den-
sity R sourced by �̃, as a Klein–Gordon equation with a
scalar effective source respectively. The “non-linear terms”
and the derivation of the above from Eq. (41) has been given
in Appendix A.

Substantial amount of literature is dedicated to finding
non-trivial (non Ricci flat) black hole solutions, that simulta-
neously solve the system of homogeneous partial differential
equations (59) and (53). See for example constant curvature
black hole space-times obtained in [47], solutions obtained
from perturbing the Schwarzschild space-time in [48], and
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other non-trivial solutions in [49]. Also see [50] for spheri-
cally symmetric electro-vacuum solutions.

Given the solution is being presented only around R = 0,
imply that at the first approximation, only the classical matter
energy–momentum tensor trace Tm source the Ricci scalar
densityR. The structure of the differential equation (59), and
the effective source in Eq. (60), consists of a constant f ′′ (0)

with dimension of (length)2, and an inverse length scale γ .
Expansion about R = 0, and the assumption that the constant
f ′′ (0) has to be small compared to typical (length)2 scales
of the problem (from observations telling one that nature fol-
lows GR quite well) imply that in the RHS of Eq. (59) the
trace of the classical matter energy–momentum–stress den-
sity tensor affect the dynamics of R more strongly (that is,
leading order in the PN expansion) than terms in the curly
brackets of �̃, in Eq. (60), weighed by f ′′ (0). The inhomoge-
noeus problem can hence be simplified into the following at
the leading order

�R + γ 2

ε
R = −8 π (−g) γ 2 Tm (78)

Equations (53) and (59) form the complete set of equations
required to obtain a PN sequence of solutions for h̃μν and R.

3.4 The Ricci scalar and its effect on the equations of
motion

The net Ricci solution, including the particular solution, can
be written as a series about ε → 0, and is given by (deriva-
tion in Appendix B)

R
(
t, xi

)
≈ −8 π γ 2

�=∞∑
L , �,m

ε2 �+4

(
γ 2

ε
− m2 �2

) 2 �+1
4

2�+ 1
2 �
(
� + 3

2

)

×
K�+ 1

2

(√
γ 2

ε
− m2 �2

∣∣Zi
L

∣∣
)

√∣∣Zi
L

∣∣
×Y�m

(
Z θ
L , Zφ

L

)
ML �m ei m (φ0−� t) (79)

where � (n) is the Euler–Gamma function, K�+ 1
2

is the mod-
ified Bessel function of the second kind, and Y�m are spheri-
cal harmonic functions. � corresponds to the quasi-adiabatic
orbital angular frequency and φ0 corresponds to the phase lag
between the orbital phase � t and the corresponding phase
of the Ricci scalar deviation. The phase lag is a result of the
delay in response between the movement of the sources and
the corresponding Ricci deviation generated by the acceler-
ated motion of two ultra-compact object about each other.
The scalar multipole moments ML �m are defined as follows

ML �m = 2 π (−1)m N� −m

∫
BL

∣∣∣Xi
L

∣∣∣2+�

sin
(
X θ
L

)

× P� −m
(
cos X θ

L

)
Tm

(∣∣∣Xi
L

∣∣∣ , X θ
L

)
d
∣∣∣Xi

L

∣∣∣ dX θ
L

(80)

N�m = (−1)m

√
(2 � + 1)

4 π

(� − m)!
(� + m)! (81)

where P�m
(
X θ
L

)
are the associated Legendre polynomials. It

is to be noted that ML 0 0, or the monopole term is the usual
definition of mass, as in GR, as defined in Eq. (37).

It is seen that the Ricci scalar density scales as ε4 at the
dominant order (� = 0), and its dynamics is independent of
the dynamics of the modified gothic metric h̃μν . It is however,
for the sake of obtaining observational consequences of the
current theory, more interesting to look at the opposite, that
is the effect of the Ricci scalar deviation on the dynamics of
h̃μν , and consequently, its gauge invariant contribution to the
modified equations of motion of the binary system.

The equations of motion can be found by using the mod-
ified conservation law (55) alongwith the definitions of (33)
and (36) with �μν replaced by �̃μν . Since the equations of
motion involve a vector surface integral over the body zone
boundary, on which Tμν

m vanishes (the classical matter source
being a compact one), and consequently so does the effect
of the first term in the RHS of Eq. (56) in the equations of
motion. A vector surface integral over a sphere also vanishes
if the integrand is spherically symmetric, which (4)R is, as
seen in (B26). Therefore, the terms that might contribute to
a deviation from GR at the leading order are the space-space
components of the effective energy–momentum tensor tμν

e f f ,
given by

t i je f f = (−g)−2

192 π γ 4

[
2
(
ηi k η j l + ηi l η j k − ηi j ηk l

)
R ∂kR ∂l h̃

+
(

ηi k η j l − 1

2
ηi j ηk l

) (
4 ∂kR ∂lR + R2 ∂k h̃ ∂l h̃

)]

(82)

owing to the fact that at the leading order, both the metric
density deviation trace h̃ and the Ricci deviation density R

are time independent, and |ηs s | ∼ ε2.
One notices that the leading and sub-leading order Ricci

density scale as O
(
ε4
)
, and correspondingly, the deviation

from GR in the equations of motion of the binary appears at
O
(
ε12
)
, which leads to the modification of the 6 PN equa-

tions of motion, which are then given by the following

M1
dvi1

ds
= Fi

Newtonian + ε2 Fi
1PN ,GR

+ε4 Fi
2PN ,GR + ε5 Fi

2.5PN ,GR

+Fi
3PN ,GR + ...
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+ε12

(
Fi

6PN ,GR − 32 π M1 M3
2

9 r4
1 2

e
− 2 γ r1 2√

ε ni
)

+O
(
ε13
)

(83)

The derivation of the above is given in Appendix B. Fi
N and

Fi
kPN ,GR are the attractive Newtonian and kth (k = 1, . . . , 6)

PN forces in GR, respectively, on the first body zone.
The leading modification at 6 PN to the equations of

motion is seen to be repulsive at very short scales, and for
very high velocities and compactness, given the convention
chosen in this paper regarding the direction of the unit normal
ni , which points from the first body zone towards the COM
of the second source. The leading modification is dependent
on a length scale that acts like a new universal constant (if
nature follows such a quadratic theory) and is ∼ γ −1. It is
interesting to note that in the 6 PN extra force term, one can
cancel M1 from both sides leading to only M3

2 remaining as
a product in the entire RHS of Eq. (83). This establishes that
the equivalence/effacing nature of two ultra-compact sources
in a binary orbit around each other till the 6 PN order in poly-
nomial f (R) theories of gravity with f ′′ (0) < 0 remains
almost the same as in GR.

4 Discussions and conclusions

In this article the PN formalism of GR was reviewed using
the surface integral approach [24], using the specially scaled
co-moving coordinate system for the internal problem [14].
Using the strong field point particle mechanism developed for
the PN expansion of GR in [14], a quadratic f (R) model of
gravity was PN expanded in the conformal-harmonic gauge.
In doing so, it was clearly established that no deviation from
GR occurs in the quadratic f (R) theory till the sixth post
Newtonian order, thus automatically also taking care of the
effacing nature of sources in a binary orbit.

A scaled co-moving coordinate system, and the Einstein-
Infeld approach [24] was used in order to solve for the two
body equations of motion in f (R) theories of gravity. A con-
formal scaling of the old definition of the gothic metric of
GR was found to be more suited to get possible observational
consequences out of a theory that is highly non-linear and
fourth derivative of the metric tensor. Under the conformal
scaling, the field equations resemble the familiar equations of
the Landau–Lifshitz formulation of GR, with an extra ‘effec-
tive’ source term that is the manifestation of the extra scalar
degree of freedom in f (R) theories.

More notably, a dynamical scalar variable for solving the
combined tensor+scalar system of second order partial differ-
ential equations was found: the Ricci scalar density R. This
particular redefinition frames the tensor differential equa-
tions and the scalar Klein–Gordon equation in a similar foot-

ing; that is expanded in a series of f ′′√−g
, that is, ε f ′′. Cou-

pling the scalar variable, the Ricci scalar, with the volume
element

√−g in the harmonic gauge of Eq. (51) leads to a
system of differential equations that can be solved perturba-
tively in terms of the PN parameter ε, that smoothly evolves
from zero to unity. The redefinition allows one to ignore the
Klein–Gordon homogeneous solution; and to sieve through
non-linear terms of h̃μν and R (and their first derivatives) in
the effective energy–momentum tensor tμν

e f f , and obtain terms
that are leading with regards to the parameter ε, as well as
group them in terms of sub-leadingness.

It was shown that the homogeneous Ricci scalar density
has to vanish if the definition of mass at the Newtonian level
is well defined. This then leads to the inhomogeneous Ricci
scalar density solution appearing at O

(
ε4
)
, and sourcing

the metric density tensor deviation h̃μν through the effective
source term tμν

e f f of f (R) theories of gravity.
In this study, the change in the equations of motion of two

extended (but compact objects) from GR in the quadratic
Ricci model till the 6th PN order were obtained. The equa-
tions of motion till 5.5 PN order remain unchanged compared
to GR. A modification of the equations of motion from the
GR form, through the appearance of a repulsive Yukawa like
force at length scales comparable to γ −1 at the 6th PN order
was observed. However, the modified force is time indepen-
dent, conservative, and dependent only on the usual defini-
tion of mass & the orbital separation. A universal constant
f ′′ (0), other than the gravitational constant (put to unity in
Geometrized units), was defined, similar to other works in the
literature. The constant has dimensions of (length)2, and a
corresponding inverse length scale γ .

The above analysis also brings to light a possibly new
class of solutions of f (R) theories of gravity, and shows
that the appearance of structure in the equations of motion in
f (R) theories are exactly the same as in GR, to a very high
PN accuracy. At the leading order of deviation from GR,
no extra structure comes into the equations of motion due a
quadratic change in the action. The appearance of structure at
high PN orders till 6 PN is still solely a GR effect. This is the
strong equivalence principle of f (R) theories in action. The
current study establishes the proposition that both the weak
and strong equivalence principles hold for f (R) theories of
gravity, and tests for the validity of GR through tests of the
equivalence principle will not at all distinguish between the
two theories. Hence, the equivalence, and consequently, the
effacing principle is not unique to GR.
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Appendix A: Taming the scalar wave equation for the
extra massive degree of freedom of f (R)

The scalar wave dynamics of Eq. (41) is non-linear, as seen
in terms like f ′R. By using the definition of the Laplace-
Beltrami operator, one may write (53) as

3√−g

(√−g gμν f ′
, ν

)
, μ

+ ( f ′ R − 2 f
) = 8 π Tm (A1)

Noticing the old gothic metric definition
(√−g gμν

)
in the

first term, one can conformally transform the old definition
to the new definition using Eq. (44) and perform the pertur-
bation in Eq. (50), after which the above equations become

− 3√−g f ′

[
� f ′ − h̃μν f ′

, μν − 1

f ′
{ (

f ′) , μ
f ′
, μ

+ h̃μν f ′
, μ f ′

, ν

} ]
+ ( f ′ R − 2 f

) = 8 π Tm (A2)

The second and the fourth term inside the square brackets can
be transformed, by chain rule, into total derivative terms, and
terms where the Lorenz gauge conditions can be imposed.
Noting that boundary dependent terms can be discarded to
obtain gauge invariant objects, one obtains

� f ′ + √−g

[
1

3

(
f ′)2 R − 2

3
f f ′ − 8 π

3
f ′ Tm

]
= 0

(A3)

Now the particular forms for f (R) and f ′ (R) can be
imposed, according to Eqs. (48) and (49), as well as the
dynamical variable definition for the Ricci scalar density R

in Eq. (52), which leads to

�R + √−g γ 2 R = −8 π (−g) γ 2 �̃ (A4)

�̃ = Tm + f ′′ (0)

{
Tm R

3
√−g

+ 1

8 π (−g)

×
(
R2

3
− ∂μR ∂μh̃ − 1

2
R ∂μh̃

αβ ∂μh̃αβ

−1

4
R ∂μh̃ ∂μh̃ − 1

2
R�h̃

)}
+ O

([
f ′′ (0)

]2) (A5)

γ 2 ≡ − 1

3 f ′′ (0)
(A6)

Tm = ημν T
μν
m (A7)

where the argument ofO in the above have been made dimen-
sionless. Since in the scaled time, inverse of the square root
of the determinant of the metric scale as ε, corrections to the
effective energy–momentum scalar �̃ from Tm at the next-to-

leading order will be of O
[
ε2 f ′′(0)

(length)2

]
, with (length) being

typical length scales of the binary problem.

Appendix B: Expanding the solution of the order reduced
Klein–Gordon equation in orders of ε

The net solution to the Klein–Gordon problem (78) with the
boundary condition choice of no incoming scalar radiation
from past null Minkowskian infinity is then given as follows

R
(
xμ
) = −8 π γ 2 ε−2

∫
d4y G γ̃

(
xμ, yμ

)
Tm
(
yμ
)

(B1)

γ̃ 2 ≡ γ 2

ε
(B2)

where the factor of ε−2 arises because the metric determinant
(−g) multiplying the RHS of Eq. (78), under the transforma-
tion (2), scale as ε−2, as seen after Eq. (58). G γ̃ (xμ, yμ) is
the retarded Green’s function of the Klein–Gordon equation,
as was given in [40] with the (+ ,−,−, −) metric signature
as

G γ̃

(
t, q; xi , yi

)

=
∫ −γ̃ ,∞

−∞, γ̃

d ω

2 π
e−i ω(t−q) e

i
√

ω2−γ̃ 2
∣∣xi−yi

∣∣
4 π

∣∣xi − yi
∣∣

+
∫ γ̃

−γ̃

dω

2 π
e−i ω (t−q) e

−
√

γ̃ 2−ω2
∣∣xi−yi

∣∣
4 π

∣∣xi − yi
∣∣ (B3)

The notation
∫ −γ̃ ,∞
−∞, γ̃

involve two integrals, one from −∞
to −γ̃ , and the other from γ̃ to ∞. It is to be noted that
the three integrals whose domains encompass all of ω space
must be evaluated simultaneously in order for the solution to
converge. Tm

(
q, yi

)
, the trace of the classical matter energy–

momentum tensor, which being a scalar, does not transform
under any of the coordinate scalings.
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It is to be noted that the PN parameter ε appears explicitly
in the Green’s function, both as an argument of the exponen-
tial function, and as one (or both) of the limits of the two ω

space integrals at hand. Considering the first integral, that is

I1 =
∫ −γ̃ ,∞

−∞, γ̃

d ω

2 π
e−i ω(t−q) e

i
√

ω2−γ̃ 2
∣∣xi−yi

∣∣
4 π

∣∣xi − yi
∣∣ (B4)

In the Newtonian limit, or ε → 0, γ̃ diverges. But since
it appears in the argument of the oscillatory function, that is

ei
√

ω2−γ̃ 2
∣∣xi−yi

∣∣
, the Green’s function itself does not diverge

and remains finite in [−1, 1] as long as ω2 > γ̃ 2. Although
it becomes a highly oscillating function. At the same time
the limits of the integral are replaced with ±γ̃ → ±∞,
effectively shrinking the domain of integration to a vanishing
value (implying that the lower and upper limits of the two
integrals coincide for ε → 0). This leads to a vanishing value
of I1 for ε → 0. The second integral, that is when γ̃ 2 > ω2,
which is the following

I2 =
∫ γ̃

−γ̃

dω

2 π
e−i ω (t−q) e

−
√

γ̃ 2−ω2
∣∣xi−yi

∣∣
4 π

∣∣xi − yi
∣∣ , (B5)

The limit ε → 0 leads to the domain of integration covering
the whole of Real number space. However, the argument in

the decaying function e−
√

γ̃ 2−ω2
∣∣xi−yi

∣∣
blows up leading to

the exponential vanishing, and hence leading to I2 → 0 for
ε → 0.

Due to the the coordinate scalings in Eq. (6), the infinites-
imal 4-volume element d4y transform from the asymptotic
observer’s frame to either of the body zones BL in the fol-
lowing manner

d4y ≡ dt ∧ d3y (B6)

→ ε−1 ds ∧ ε6 d3XL (B7)

where ∧ denotes the wedge product between 1-form dt and
3-form d3y. In the current operational context ∧ is effectively
scalar multiplication.

Substituting Eq. (B3) in Eq. (B1), and transforming into
the body zone coordinates by substituting Eq. (B7) as the
infinitesimal covariant volume element in Eq. (B1), one
obtains the following integral for the particular solution
Rpart for the inhomogeneous Klein–Gordon equation

Rpart

(
t, xi

)
= −ε3 8 π γ 2

∫ ∞

−∞
ds′

×
∫
B L

d3XL

∫ −γ̃ , ∞

−∞, γ̃

dω

2 π
e−i ω (t−s′/ε)

×ei
√

ω2−γ̃ 2
∣∣Zi

L−ε2 Xi
L

∣∣
4 π

∣∣Zi
L − ε2 Xi

L

∣∣
[
ε4 Tm

(
s′/ε, Xi

L

)]

−ε3 8 π γ 2
∫ ∞

−∞
ds′
∫
B L

d3XL

×
∫ γ̃

−γ̃

dω

2 π
e−i ω (t−s′/ε)

×e−
√

γ̃ 2−ω2
∣∣Zi

L−ε2 Xi
L

∣∣
4 π

∣∣Zi
L − ε2 Xi

L

∣∣
[
ε4 Tm

(
s′/ε, Xi

L

)]

(B8)

In the body zones that surround each of the objects,

the energy–momentum tensor of classical matter
(
TBL =

lim
ε → 0

ε4 Tm
)

will be assumed to have a quasi-stationary/

adiabatic initial condition for solving the relaxed system of
equations, in the absence of any other time dependent driving
force inside the compact object, and is given by

TBL

(
Xi
)

=
∞∑

n=−∞
Tn

(∣∣∣Xi
L

∣∣∣ , X θ
L

)
ei nX (B9)

X
(
s/ε, Xφ

L

)
≡ X = Xφ

L − � s/ε + φ0 (B10)

where an axial+time symmetry was assumed for the ini-
tial condition, such that the time dependence of the source
body in the body zone coordinate system repeats after every
T = 2 π

�
, with a constant phase parameter φ0. The weighing

factors Tn are coefficients in the series expansion of the trace
Tm
(
or TBL

)
using stationary functions ei nX , and are func-

tions of the radial and azimuthal coordinates. Eq. (B9) phys-
ically implies that the variations in the energy–momentum
tensor sourcingR in the body zone of the first object is purely
generated by the effect of the motion of the second object
around it. The body zone coordinates

(
Xi
L

)
were defined in

Eq. (6), in which
∣∣Xi

L

∣∣ is the distance from the center of
mass of the body L to any point in the body zone coordi-
nates, as viewed in the respective body zones. The choice in
Eq. (B9) has a simplifying effect on the subsequent calcula-
tions and is justified by the adiabatic and stationarity in the
co-moving frame approximations, as found in the literature
on PN expansions.

Assuming quasi-periodicity for the source tensor, as in Eq.
(B9), one can substitute it into Eq. (B8), to obtain

Rpart

(
t, xi

)
= −ε3 8 π γ 2

2 π

×
∞∑

n=−∞

∫
B L

d3XL

(∫ −γ̃ ,∞

−∞, γ̃

dω e−i ω t

)
e
i n
(
Xφ
L+φ0

)

×ei
√

ω2−γ̃ 2
∣∣Zi

L−ε2 Xi
L

∣∣
4 π

∣∣Zi
L − ε2 Xi

L

∣∣ Tn

(∣∣∣Xi
L

∣∣∣ , X θ
L

)
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×
∫ ∞

−∞
ds′ ei (ω−n �) s′/ε − ε3 8 π γ 2

2 π

×
∞∑

n=−∞

∫
B L

d3XL

(∫ γ̃

−γ̃

dω e−i ω t

)
e
i n
(
Xφ
L+φ0

)

×e−
√

γ̃ 2−ω2
∣∣Zi

L−ε2 Xi
L

∣∣
4 π

∣∣Zi
L − ε2 Xi

L

∣∣ Tn

(∣∣∣Xi
L

∣∣∣ , X θ
L

)

×
∫ ∞

−∞
ds′ ei (ω−n �) s′/ε (B11)

Transforming

s′ → ε s (B12)

and using the integral representation of the delta function,
∫ ∞

−∞
ei k (x−x ′) dk = 2 π δ

(
x − x ′) , (B13)

one obtains

Rpart

(
t, xi

)

= −ε4 8 π γ 2
∞∑

n=−∞

∫
BL

d3XL
ei

√
n2 �2−γ̃ 2

∣∣Zi
L−ε2 Xi

L

∣∣

4 π

∣∣∣Zi
L − ε2 Xi

L

∣∣∣
×Tn

(∣∣∣Xi
L

∣∣∣ , Xθ
L

)
× e

−i n
(
� t−Xφ

L−φ0

)
(B14)

−ε4 8 π γ 2
∞∑

n=−∞

∫
BL

d3XL
e−

√
γ̃ 2−n2 �2

∣∣Zi
L−ε2 Xi

L

∣∣

4 π

∣∣∣Zi
L − ε2 Xi

L

∣∣∣
×Tn

(∣∣∣Xi
L

∣∣∣ , Xθ
L

)
e
−i n

(
� t−Xφ

L−φ0

)
(B15)

The Green’s function (B3) can be written as an infinite
sum of spherical harmonic functions, that are weighed by
functions of the radial coordinates

∣∣Zi
L

∣∣ and
∣∣Xi

L

∣∣, in the
following way for

∣∣Zi
L

∣∣ >
∣∣Xi

L

∣∣
ei k

∣∣Xi−Zi
∣∣

4 π
∣∣Xi − Zi

∣∣ = i k
∑
�,m

j�
(
k
∣∣∣Xi
∣∣∣
)
h(1)

�

(
k
∣∣∣Zi
∣∣∣
)

×Y ∗
�m

(
X θ , Xφ

)
Y�m

(
Z θ , Zφ

)
(B16)

e− k
∣∣Xi−Zi

∣∣
4 π

∣∣Xi − Zi
∣∣ =

∑
�,m

I�+ 1
2

(
k
∣∣Xi
∣∣) K�+ 1

2

(
k
∣∣Zi
∣∣)

√∣∣Xi
∣∣ ∣∣Zi

∣∣
×Y ∗

�m

(
X θ , Xφ

)
Y�m

(
Z θ , Zφ

)

Zi
L ≡ xi − ziL (s)

ε2 ; L = 1, 2. (B17)

The various functions appearing above are as follows

• j�: Spherical Bessel function of first kind.
• h(1)

� : Spherical Bessel function of third kind.
• I�+ 1

2
: Modified Bessel function of the first kind.

• K�+ 1
2
: Modified Bessel function of the second kind.

• Y�m, Y ∗
�m : Spherical harmonic functions and their com-

plex conjugates.

After using Eqs. (B16) and (B17) in the above, one obtains
for
∣∣Zi

L

∣∣ >
∣∣Xi

L

∣∣

Rpart

(
t, xi

)
= −ε4 8 π i γ 2

|n| > � γ̃
�

∑
n, �,m

√
n2 �2 − γ̃ 2

×
∫
BL

d3XL j�

(
ε2
√
n2 �2 − γ̃ 2

∣∣∣Xi
L

∣∣∣
)

× h(1)
�

(√
n2 �2 − γ̃ 2

∣∣∣Zi
∣∣∣
)

×Y ∗
�m

(
Xθ
L , Xφ

L

)
Y�m

(
Zθ , Zφ

)

×Tn

(∣∣∣Xi
L

∣∣∣ , Xθ
L

)
e
i n
(
Xφ
L+φ0−� t

)

− ε3 8 π γ 2
|n|< � γ̃

�
∑

n, �,m

×
∫
BL

d3XL

I
�+ 1

2

(
ε2
√

γ̃ 2 − n2 �2
∣∣∣Xi

L

∣∣∣
)

√∣∣∣Xi
L

∣∣∣

×
K

�+ 1
2

(√
γ̃ 2 − n2 �2

∣∣∣Zi
∣∣∣
)

√∣∣Zi
∣∣

× Y ∗
�m

(
Xθ
L , Xφ

L

)
Y�m

(
Zθ , Zφ

)

×Tn

(∣∣∣Xi
L

∣∣∣ , Xθ
L

)
e
i n
(
Xφ
L+φ0−� t

)
(B18)

one can substitute the following properties of spherical har-
monic functions in Eq. (B18)

Y ∗
�m = (−1)m Y� −m (B19)

Y� −m = N� −m P� −m
(
cos X θ

L

)
e−i m Xφ

(B20)

×
∫ 2 π

0
dXφ

L Y
∗
�m ei n Xφ

= 2 π (−1)m N� −m P� −m
(
X θ
L

)
δm n

(B21)

N�m = (−1)m

√
(2 � + 1)

4 π

(� − m)!
(� + m)! (B22)

where P�m
(
X θ
L

)
are the associated Legendre polynomials

and δm n is the Kronecker delta distribution. Since m takes
values between −� to �, application of the Kronecker delta
leads to the summation on � in the first term of Eq. (B18)
going from the lower integral part of γ̃

�
or � γ̃

�
 to ∞, whereas

the second terms’ summation range takes � from zero to
� γ̃

�
. The contributions to the particular solution from above

the cutoff energy scale γ̃ is highly suppressed (especially at
lower PN orders) because of the properties of j� and h(1)

� for
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asymptotically large values of �, and terms in R series con-
taining the same can be approximated to zero at the current
orders of calculation. Hence one can safely set the first sum-
mation in RHS of Eq. (B18) to zero and consider only the
second summation. Hence it is to be noted that the factors
that depend on ε in the above are only in the arguments of
the Bessel function I�+ 1

2
.

Hence the only relevant factors that explicitly contain ε in
both the sums in Eq. (B18), can be expanded about ε → 0
as follows

I
�+ 1

2

(
ε2 � |XL |

)
≈ ε2 �+1 �

2 �+1
2

2�+ 1
2 �
(
� + 3

2

) |XL |�+ 1
2 (B23)

The approximation of (B23), when substituted in for the rel-
evant factors of the RHS of Eq. (B18), leads to the following
polynomial series of ε about ε → 0

Rpart

(
t, xi

)

≈ −8 π γ 2
�=∞∑
L , �,m

ε2 �+4

(
γ̃ 2 − m2 �2

) 2 �+1
4

2�+ 1
2 γ̃
(
� + 3

2

)

×ei m (φ0−� t)
K�+ 1

2

(√
γ̃ 2 − m2 �2

∣∣Zi
L

∣∣)
√∣∣Zi

L

∣∣
×Y�m

(
Z θ
L , Zφ

L

)
× ML �m (B24)

ML �m = 2 π (−1)m N� −m

∫
BL

∣∣∣Xi
L

∣∣∣2+�

sin
(
X θ
L

)

×P� −m
(
cos X θ

L

)
Tm

(∣∣∣Xi
L

∣∣∣ , X θ
L

)
d
∣∣∣Xi

L

∣∣∣ dX θ
L

(B25)

From Eq. (B24), one can immediately notice that the lead-
ing order deviation for the particular solution of the Ricci
scalar for the Lth body zone comes at O

(
ε4
)

for � = 0 with
ML 0 0 ≡ ML being the mass monopole, and was found to
be

(4)Rpart ≡ (4)R = −8 π γ 2 ε4 ML e
− γ

∣∣∣ZiL
∣∣∣√

ε∣∣Zi
L

∣∣ (B26)

Appendix C: Contribution of the perturbed Ricci scalar
to the dynamics of h̃μν , and changes to the GR two-body
equations of motion till 6 PN

The leading order particular Ricci deviation densities are
given by the sum of contributions from the two body zones

(4)R = −8 π γ 2 ε4
∑

L=1, 2

ML e
− γ

∣∣∣ZiL
∣∣∣√

ε∣∣Zi
L

∣∣ (C1)

The new gothic tensor deviation trace at the leading order is
given as follows

(2)h̃ ≡ 4 ε2
∑
L=1, 2

ML∣∣Zi
L

∣∣ (C2)

The spatial derivatives of the two scalar densities are given
as follows

∂ j

(
(2)h̃
)

= −4 ε2
∑

L=1, 2

ML∣∣Zi
L

∣∣3 ZL
j (C3)

(4)R , j = 8 π γ 2 ε4
∑

L=1, 2

ML∣∣Zi
L

∣∣3
(

1 + γ
∣∣Zi

L

∣∣
√

ε

)
e
− γ

∣∣∣ZiL
∣∣∣√

ε ZL
j

(C4)

Therefore, the first appearance of the effective source term
tμν
e f f in the ε series of �̃μν , following the definition in Eq. (82),

was found to be O
(
ε12
)

(since (−g)−2 ∼ ε4 and h̃ ∼ ε2)
in the following

t i je f f = ε12

192 π γ 4

[
2 ε2

(
ηi k η j l + ηi l η j k − ηi j ηk l

)
(4)R ∂k (4)

×R ∂l

(
(2)h̃
)

+
(

ηi k η j l − 1

2
ηi j ηk l

)

× {4 ∂k
(
(4)R

)
∂l
(
(4)R

)
+ε4

(4)R
2
hom ∂k

(
(2)h̃
)

∂l

(
(2)h̃
)}]

(C5)

Equation (C2) is proportional the Newtonian potential
with the ’usual definition of mass’, and

∣∣Zi
L

∣∣ are the radial
distances from the center of mass of the two compact objects
to a point in the external Minkowski space-time.

The change in the equations of motion is given by the
boundary independent part of the following surface integral,
as was defined in Eq. (36)

Fi
e f f = −ε−4

∮
∂B1

dS j t
i j
e f f (C6)

= −ε−4
∮

∂B1

|dS| r1
j t

i j
e f f (C7)

= −ε−4
∮

∂B1

(ε a1)
2 sin θ dθ dφ r1

j t
i j
e f f (C8)

where a1 is the radius of the first body zone coordinate sys-
tem as seen by an observer at asymptotic infinity, and ε a1

is the radius as seen by an observer in the first body zone
coordinate system. The radius is ε a1 instead of just a1 since
the integral is being performed in the body zone coordinate
system to account for strong internal gravity. r1

k is a unit one-
form perpendicular at the surface of the sphere that forms the
boundary of the first body zone coordinate system. Substi-
tuting Eq. (C3) and (C4) in Eq. (C5), one obtains, after con-
tracting the extra effective energy–momentum–stress density
tensor t i je f f with the unit 1-form r1

j
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r ij t
i j
e f f = ε12

192 π γ 4

[
−512 π2 ε2 γ 4

×
2∑

L1, L2, L3=1

(
Zi
L2

rl1 ZL3
l + Zi

L3
rl1 ZL2

l − r i1 Zl
L2

ZL3
l

)

×ML1 ML2 ML3

×
(

1 + γ

∣∣∣Zi
L2

∣∣∣
)

∣∣∣Zi
L1

∣∣∣
∣∣∣Zi

L2

∣∣∣3
∣∣∣Zi

L3

∣∣∣3
e
− γ√

ε

(∣∣∣Zi
L1

∣∣∣+
∣∣∣Zi

L2

∣∣∣
)

+256 π2 γ 4
2∑

L1, L2=1

(
rl1 Zi

L1
ZL2
l − 1

2
r i1 Zl

L1
ZL2
l

)

×
ML1 ML2

(
1 + γ√

ε

∣∣∣Zi
L1

∣∣∣
) (

1 + γ√
ε

∣∣∣Zi
L1

∣∣∣
)

∣∣∣Zi
L1

∣∣∣3
∣∣∣Zi

L2

∣∣∣3

×e
− γ√

ε

(∣∣∣Zi
L1

∣∣∣+
∣∣∣Zi

L2

∣∣∣
)

+1024 π2 ε4 γ 4

×
2∑

L1, L2, L3 L4=1

(
rl1 Zi

L3
ZL4
l − 1

2
r i1 Zl

L3
ZL4
l

)

× ML1 ML2 ML3 ML4∣∣∣Zi
L1

∣∣∣
∣∣∣Zi

L2

∣∣∣
∣∣∣Zi

L3

∣∣∣3
∣∣∣Zi

L4

∣∣∣3
e
− γ√

ε

(∣∣∣Zi
L1

∣∣∣+
∣∣∣Zi

L2

∣∣∣
)
⎤
⎥⎦ (C9)

Contribution to the surface integral of the first two summa-
tions vanish for all combinations of {L1, L2} and {L1, L2, L3},
whereas the quartic product of the last term has only non-
vanishing contribution to the surface integral for {L1, L2, L3,

L4} = {2, 2, 2, 1} & {2, 2, 1, 2}, which then leads to the
following

Fi
e f f = −32 π ε12

3
M1 M

3
2

× lim
ε → 0

lim
a1 → ∞

∮
∂B1

(ε a1)
2 sin θ dθ dφ

× e
− 2 γ√

ε

∣∣−r1 2 ni+ε a1 r i1
∣∣

∣∣−r1 2 ni + ε a1 r i1
∣∣5 (ε a1)

3

×
[
rl1

(
−r1 2 n

i + ε a1 r
i
1

)
ε a1 r

1
l

−1

2
r i1

(
−r1 2 n

l + ε a1 r
l
1

)
ε a1 r

1
l

]
(C10)

= 32 π ε12

3

M1 M3
2

r4
1 2

e
− 2 γ r1 2√

ε

×
∮

∂B1

(
ni − 1

2
r i1 cos θ

)
sin θ dθ dφ (C11)

= −32 π ε12

9

M1 M3
2

r4
1 2

e
− 2 γ r1 2√

ε ni (C12)

which is an effect that comes at the 6 PN order in the equations
of motion, which is a very small deviation from GR. In the
above r i1 is the unit normal radially outward 3-vector on the

surface of the sphere ∂B1, or the body zone boundary of the
first object. ni is the unit vector pointing from the COM of
the first body zone to the COM of the second body zone,
whereas θ is the angle between ni and r i1. About ε → 0, Eq.
(C10) requires a1 or the radius of the body zone boundary
to go to infinity, as was described in [14]. Once the limit is
taken, the only part of Eq. (C10) that is independent of the
body zone boundary a1, is given by Eq. (C12).

The above leads to the following equations of motion till
6 PN

M1
dvi1

ds
= Fi

Newtonian + ε2 Fi
1PN ,GR

+ε4 Fi
2PN ,GR + ε5 Fi

2.5PN ,GR

+Fi
3PN ,GR + · · · + ε12

×
(
Fi

6PN ,GR − 32 π M1 M3
2

9 r4
1 2

e
− 2 γ r1 2√

ε ni
)

(C13)

where the forms of the various PN forces till O
(
ε6
)

can be
found in [52], whereas higher order dynamics can be found
in [53–55] and [56,57]. Eq. (C13) is an equation of motion
of two classical point particles with the mutual force given
by the RHS of the above. The potential is given by the the
line integral of the the conservative acceleration/force-per-
unit-mass along a radial direction, which in this case is along
−ni or pointing away from the COM of the first body zone
(antiparallel to the displacement vector between the first and
second body zone), and hence repulsive.
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