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Abstract
Assessing the risk of yield loss in African drought-affected regions is key to identify feasible
solutions for stable crop production. Recent studies have demonstrated that Copula-based
probabilistic methods are well suited for such assessment owing to reasonably inferring important
properties in terms of exceedance probability and joint dependence of different characterization.
However, insufficient attention has been given to quantifying the probability of yield loss and
determining the contribution of climatic factors. This study applies the Copula theory to describe
the dependence between drought and crop yield anomalies for rainfed maize, millet, and sorghum
crops in sub-Saharan Africa (SSA). The environmental policy integrated climate model, calibrated
with Food and Agriculture Organization country-level yield data, was used to simulate yields
across SSA (1980–2012). The results showed that the severity of yield loss due to drought had a
higher magnitude than the severity of drought itself. Sensitivity analysis to identify factors
contributing to drought and high-temperature stresses for all crops showed that the amount of
precipitation during vegetation and grain filling was the main driver of crop yield loss, and the
effect of temperature was stronger for sorghum than for maize and millet. The results demonstrate
the added value of probabilistic methods for drought-impact assessment. For future studies, we
recommend looking into factors influencing drought and high-temperature stresses as
individual/concurrent climatic extremes.

1. Introduction

Sub-Saharan Africa (SSA) has the highest number of
food-insecure people (about one out of five) in the
world [1]. Around 239 million people in this region
suffer from undernourishment [2]. The continent
is far from food self-sufficiency, especially regarding
cereal production. The cereal demand in SSA will fur-
ther increase, with threefold population growth pre-
dicted by 2050 [3]. Drought, a climate-related shock
that results in significant damage to agriculture, is

among the major causes of food insecurity in SSA.
Crop production in SSA is vulnerable to drought
[4, 5] due to the limited copingmechanisms and inad-
equate contingency planning for drought mitigation
[6]. Between 2003 and 2013, SSA alone accounted for
more than three-quarters of all drought-induced crop
and livestock production losses worldwide [7]. The
situation will worsen in the future, as studies forecast
increases in the frequency and severity of droughts
[8–10], highlighting South Africa and the Horn of
Africa among global drought hotspots. Other studies
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in western and central Africa show that temperature
increase is expected for these regions [11, 12]. For
this reason, in-depth understanding of crop response
to drought and high-temperature stresses as two
important climatic extremes and the fine-scale map-
ping of risk of potential crop yield losses are essen-
tial for supporting decisions about closing the existing
yield gap and ensuring sustainable crop production in
a changing climate.

Assessing crop response to climatic extremes such
as drought requires detailed information on the bio-
physical processes governing cropping systems [13].
In recent decades, process-based crop models have
been the primary tools for understanding the com-
plex dynamics of agricultural systems by represent-
ing the mechanisms that control plant growth and
describing the roles of various drivers on biomass
growth and crop yield formation [14, 15]. These
models have been employed to assess large-scale cli-
mate change impacts on crop production [16–19];
explore the spatiotemporal variability of agricultural
drought risks [14, 20]; and model the impact of
adaptation strategies designed to increase agricultural
productivity [21–23]. One of the remaining gaps in
current studies on the large-scale application of crop
models is that in most cases, crop models have not
been sufficiently calibrated against long-term historic
yields (or other state variables)mainly due to a lack of
continuous observations. This problem is more pro-
nounced in regions such as SSA that feature poor data
availability and quality [24]. A lack of high-quality
data creates major uncertainty regarding the simu-
lated outputs of impact assessment studies, highlight-
ing the importance of using uncertainty-based calib-
ration methods [20].

Different methods have been used to assess the
impact of climatic extremes on crop dry grain yield
(hereafter yield) in SSA [25–28]; to identify the
drivers of yield variability [13, 29, 30]; and to meas-
ure drought-driven risks [4, 5, 31]. For instance,Hoff-
man et al [29] revealed that improved agricultural
technology played an important role in explaining
changes in crop yields. Kamali et al [4] showed that
societal factors can induce a greater degree of vulner-
ability than physical factors can, particularly in west-
ern African countries. Despite the literature’s valuable
insights into drought impacts on crop yield [32–35],
most studies are based on deterministic methods in
which the output is determined by a single model
with a single set of parameter values and initial con-
ditions. Deterministicmethods are not able to inform
about the uncertainty of the prediction, resulting
from uncertainties of processes, model parameters
and input data [36]. To date, few studies have been
conducted to evaluate the risk of yield loss under
drought in a probabilistic manner [37–39], which
provides information on the probability of an event

with certain magnitude occurring in a certain region.
A recent approach by Leng and Hall [40] dealt with
the probabilistic estimation of yield changes under
a specific severity of drought across global agricul-
tural regions. However, the study was conducted at
a country level, and lacked the insight that fine, intra-
national spatial resolution would provide. In another
study, Madadgar et al [41] developed a multivari-
ate probabilistic model to estimate precipitation and
soil moisture deficit impacts on rainfed-crop yields
in Australia. Kamali et al [20] quantified the phys-
ical vulnerability of crops to drought using prob-
abilistic approaches in SSA, by aggregating drought
exposure and crop loss indices (as the two compon-
ents of drought vulnerability) into a single vulnerab-
ility index. Although the study used a probabilistic
approach to define drivers of drought vulnerabil-
ity, it did not provide information on the temporal
dynamic of the aggregated vulnerability index. In
another study, Zhang et al [42] assessed the rela-
tionship between different drought indices and crop
yield in India. Implementing probabilistic methods
that take into account the temporal dynamic of crop
drought risk in SSA have received little attention in
the literature.

Apart from the important role of the probabil-
istic methods and their application in the context of
cropmodeling for fine-scale crop-drought risk assess-
ment, understanding the relative contributions of the
climatic (different meteorological elements, particu-
larly during different growth stages of a given crop)
and soil property factors to yield drought risk is also
important. A better understanding of these relation-
ships between drought risk and influencing factors
will greatly aid in developing strategies to reduce that
risk.

This study attempts to address the afore-
mentioned gaps. We developed and implemented
an uncertainty-based calibrated crop model to sim-
ulate maize (Zea mays L), sorghum (Sorghum bicolor
L Moench), and millet (Pennisetum glaucum L R Br)
yields at 0.5◦ spatial resolution in SSA. These crops
represent 70% of the total cereal production in SSA
(53% of the total cereal production in Africa), cov-
ering 78% of the total cereal harvested area in SSA
(66% of the cereal harvested area in Africa) [43]. The
simulated yields at grid level were used to probabil-
istically map yield-loss risk due to drought using the
Copula theory. More specifically, we answered four
key research questions: (a) how much overall uncer-
tainty is associated with different yield simulations?;
(b) How large is the possible risk of cereal-crop yield
loss in response to different severities of drought?; (c)
Which crop appears to be at greatest risk of drought,
and how does this risk vary spatially?; (d) Which bio-
physical factors contribute the most to increasing the
risk of yield loss due to drought?
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2. Methods

2.1. Model simulation and calibration
We investigated three staple crops (i.e. maize, mil-
let, and sorghum), widely grown and adapted to the
environmental conditions of SSA, for their specific
response to drought events. The crop yields were sim-
ulated throughout SSA during 1980–2012 period, at
0.5◦ spatial resolution using the environmental policy
integrated climate (EPIC) model version extended
with a calibration module i.e. EPIC+ [44]. EPIC sim-
ulates crop growth processes in daily time steps using
weather, soil, land use, and crop management para-
meters [45]. EPIC+ develops a spatially explicit ver-
sion of original EPIC in a Python framework. This
allows the extension of the EPIC application to larger
scales by dividing the region of study into grids based
on a specified resolution (here 0.5◦) and executing
EPIC on each grid cell.

Additionally, EPIC+ uses the sequential uncer-
tainty fitting (SUFI-2) algorithm [46] for automatic
calibration and uncertainty assessment of the model.
According to SUFI-2 algorithm, uncertainty is quan-
tified as the 95% prediction uncertainty (95PPU),
calculated at the 2.5% and 97.5% levels of the vari-
able’s cumulative distribution using Latin hypercube
sampling in the parameters’ space. We used two
statistics—the p-factor and the r-factor—to quantify
the goodness of model calibration and the uncer-
tainty level [47]. The p-factor, the fraction of the
observed data bracketed by the 95PPU band, varies
from 0 to 1, where 1 indicates 100% bracketing of the
observed data within the model PPU. Values around
0.5 are often considered acceptable for crop simu-
lations [48]. In contrast, the r-factor is the ratio of
the average width of the 95PPU band to the standard
deviation of the measured variable. The ideal value
for the r-factor is 0, with an acceptable practical value
of around 2 for crop yields [4]. The SUFI-2 algorithm
endeavors to achieve a high p-factor while keeping the
r-factor as small as possible [48].

The simulated maize yields are obtained from a
study conducted by Kamali et al [20] in which the
resulted gridded yields were aggregated to country
level formodel calibration.Here, we implemented the
same procedure for simulation runs andmodel calib-
ration for the case of sorghum andmillet crops across
SSA. The site-specific input data included longitude,
latitude, slope, elevation (DEM), climate, soil, crop
calendar, fertilizer, and soil, which were harmonized
at the same resolution (see table S1 available online
at stacks.iop.org/ERL/17/024028/mmedia). The grid
level simulated yields were aggregated to country level
and comparedwith country level observed yields (text
S1). The standardized root mean square error (RSR)
criterion proposed by Singh et al [49] was used as
the objective function to evaluate themodel perform-
ance when comparing country-level simulated yield

Table 1. Six categories of the SPI, the SSI, the CSI (crop sensitivity
index) and YRisk (risk of yield loss under drought).

Ranges SPI, SSI CSI YRisk

1.5–3.0 Extremely
wet

Very high
yield

Very low

1.00–1.49 Very wet High yield Low
0–0.99 Moderately

wet
Moderately
high yield

Moderately
low

−0.99–0 Moderate
drought

Moderately
low yield

Moderately
high

−1.49 to−1.00 Severe
drought

Severely
low yield

High

−3.0 to−1.5 Extreme
drought

Extremely
low yield

Very high

with country-level yield from the Food and Agricul-
ture Organization (FAO) [50] over a 33 years period
(1980–2012). Further information on EPIC crop-
related processes is available inWilliams et al [45]; the
procedure for calibration of EPIC+ is found in sup-
plementary text S1 and in Kamali et al [20].

2.2. Probabilistic modeling of drought-related risk
of crop yield loss
Different drought indices offer different information
about a given drought phenomenon. A meteorolo-
gical drought resulting from a precipitation deficit
may develop rapidly, while a deficit in soil moisture
as a measure of agricultural drought may occur with
a time lag. Recently, Rigden et al [51] found that root-
zone soil moisture is a better proxy than using stand-
ard approaches based on temperature or precipita-
tion for agricultural purposes and yield prediction. In
this study, we used and compared two standardized
indices—the standardized precipitation index ((SPI)
[52]) and the standardized soil moisture index (SSI
[53, 54])—to justify the suitability of soilmoisture for
our analysis in the study area and also to quantify both
variants and describe their severity.

The indices can be calculated at different time
scales. As also suggested by Kamali et al [20], the 3
and 6 months time scale were identified to be most
suitable for SSA. We here also selected these two time
scales depending on the highest correlation with crop
yield. Table 1 shows the six levels of drought sever-
ity grouped according to the World Meteorological
Organization standards [55] used for characterizing
SPI and SSI.

The CSI for each year t was calculated using the
yield values (Yt,i) simulated in each grid cell (i) for
each crop as:

CSIt,i =
Yt,i − Ȳ

σY
, (1)

where Ȳ and σY indicate the mean and the stand-
ard deviation of the yield values, respectively over
33 years (1980–2012) for each crop and each grid

3
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Figure 1. A conceptual image of the joint distribution of (a) the SPI and the SSI, and (b) the crop yield sensitivity index (CSI).
Black lines present the Copula isolines and the map stratifies the severity levels of (c) YRisk (risk of yield loss under drought)
based on the classification defined in table 1.

point, the CSI time series has amean of 0 and a stand-
ard deviation of 1. Generally, EPIC estimates differ-
ent stress factors caused by water, nutrients, tem-
perature, aeration, and radiation [45]. These stress
factors vary between 0 and 1 (with 1 indicating no
stress and 0 the highest stress). The potential bio-
mass and yield will be constrained by using the low-
est factor among the stresses. The impacts of nitrogen
stress were of course considered during model calib-
ration. In order to explore the impact of drought on
crop yield (crop drought risk analysis), we deployed
the calibrated crop model, and simulated three crops
across grids in SSA under a condition in which the
model’s response to nitrogen stress was turned off.
Simulating yields under no nitrogen stress provided
the possibility to directly assess the impact of drought
and high-temperature stresses in different regions.
The simulated yields affected by water stress only
were then used for the probabilistic modeling of crop
drought risk. Similar to SPI and SSI, six categories of
yield levels were defined to characterize and classify
CSI (table 1).

We modeled the risk of yield loss under drought
(YRisk) probabilistically using Copula functions.
Copula functions are multivariate cumulative distri-
bution functions used to describe the dependence
between random variables. The aim of this step is

to estimate the responses of crop yields to differ-
ent droughts of various severity levels. The main
advantage of Copula-based methods is that they
enable researchers to model the dependence struc-
ture between variables with different, including non-
normal, marginal distributions [56]. We therefore
described the relationship between a drought index
(here, the SPI or the SSI) and the CSI using a Cop-
ula function [56] (figure 1). Assuming that X is the
random variable of drought derived from soil mois-
ture deficit or precipitation deficit, and Y is the ran-
dom variable of crop yield levels, the joint probab-
ility distribution between the two (X and Y) can be
expressed as:

Prob(X≤ x,Y≤ y) = fX,Y, (2)

where fX,Y denotes the joint probability distribution
of the soil moisture (or precipitation) level and the
crop yield level, we used a nonparametric joint distri-
bution concept to construct the joint probability dis-
tribution. In doing so, the empirical joint probabil-
ity in the bivariate case using the Gringorten plotting
position formula [57] emerged as:

fX,Y =
mk − 0.44

n+ 0.12
(3)

4
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where n is the number of observations (here, 33 years)
and mk is the number of occurrences of the pair
(xk,yk) for xi ≤ xk and yi ≤ yk [58]. Generally, vari-
ables such as temperatures, precipitation, and soil
moisture can be non-stationary especially under a
changing climate [57]. This makes it difficult to inter-
pret fitted extreme value of distribution functions
using parametricmethods. Therefore, the application
of nonparametric methods is appropriate [54]. The
main advantage of the nonparametricmethods is that
they do not require making presumptions about the
distribution of the variables. Besides, they alleviate
the computational burdens in fitting the parametric
distribution. Having determined the joint distribu-
tion, the risk of crop yield loss given a drought event
(YRisk) is defined as [54]:

YRisk= ∅−1 (fX,Y) , (4)

where ∅ is the standard normal distribution function.
Almost all values of YRisk vary between −3 and 3
where −3 indicates the highest risk and 3 indicates
the lowest risk. YRisk was then grouped into six cat-
egories of severity showing the risk level of crop loss
under a drought event (table 1).

2.3. Contribution of drought-related factors to the
risk of crop yield loss
We quantified how much each of the various drivers
(climatic conditions and soil types) contributed to the
risk of crop-yield loss (YRisk) by computing variance-
based sensitivity indices [14, 59]. We used variance-
based methods in which the variance of output (here
YRisk) is decomposed into fractions and are attrib-
uted to inputs or sets of inputs (to different factors).
This allows us to compare the levels of influencing
factors on each crop. The variance based method can
deal with nonlinear responses, and they can meas-
ure the effect of interactions in non-additive system.
The decomposition analysis is conducted consider-
ing soil type, precipitation amount, and temperat-
ure during the main development stages of the crops.
Accordingly, the contributing factors included: (a)
the soil type; (b) precipitation from sowing to emer-
gence (PCPSE); (c) precipitation from emergence to
flowering (PCPEF); (d) precipitation from flowering
to grain filling (PCPFG); (e) the average temperature
from sowing to emergence (TMPSE); (f) the average
temperature from emergence to flowering (TMPEF);
and (g) the average temperature from flowering to
grain filling (TMPFG). Specifically, two sensitivity
indices,—the first-order or main effect (Ei) and the
total effect (TEi)—were applied to estimate the vari-
ance caused by one factor from the variance caused by
the interaction of the rest of the factors:

Ei =
var(E[YRisk|Vi])

var(YRisk)
(5)

and,

TEi = 1− var(E[YRisk|Vi−1])

var(YRisk)
, (6)

where var is the variance and E[YRisk|Vi] denotes
the expected value of YRisk across factor Vi, while
E[YRisk|Vi−1] is the expected value of YRisk across
all factors except Vi. The main effect Ei measures the
effect of varying factor alone. On the other hand, not
only does the TEi include the variance of an input,
it also accounts for the variance created by interac-
tion with other parameters. The total effect index is a
summary sensitivitymeasure inclusive of interactions
effect of any order [60].

3. Results

3.1. Model accuracy
The yields of maize, millet, and sorghum were sim-
ulated by EPIC+ at grid level. The simulated yields
were then aggregated at the country scale and com-
pared with the country-level yields reported by the
FAO [50] over the 1980–2012 period. The goodness
of fit (R2) values of 0.94, 0.90, and 0.96 for maize,
sorghum, and millet, respectively with their corres-
ponding p-value close to 0.0 for all crops show the
level of agreement between the country-level simu-
lations and observations (figures 2(a)–(c)). However,
aggregated results can mask the regional uncertain-
ties of the model simulations as well as their tem-
poral trends. We then analyzed the temporal dynam-
ics of simulated yields during 1980–2012 and their
uncertainty using the SUFI-2 algorithm at the coun-
try level, relative to observations. For some regions
(South Africa, Kenya, Benin, and Chad) as shown in
figure S1, the RSR values are smaller than 2, indicating
acceptable yield simulations. The p-factors with val-
ues around 0.5 or more in all countries indicate that
over 50% of the data is bracketed within the 95PPU
band, which is acceptable given the complex nature of
the problem (table 2). Furthermore, the r-factor val-
ues, representing the width of the 95PPU band, are
smaller than 2.5 (table 2), indicating reasonable levels
of uncertainty for crop simulations [20].

3.2. Risk of crop yield loss under extreme drought
events
Using the SPI and the SSI, we identified the drought
events that affected most parts of SSA during
1980–2012. Both indices were consistent with each
other, revealing 1983, 1984, 1987, 1992, and 1995
as the drought years. However, there is a slight dis-
crepancy in terms of severity levels (supplementary
figure S2). As shown in figure S2, the SSI showed
with a higher severity than the SPI for all five drought
events. The extreme drought event of 1983 affected all
of SSA, but with less severity in eastern Africa. A year
later (1984), eastern African countries experienced
extreme drought, while the drought in western Africa

5
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Figure 2. Comparison of the long-term average yields reported by the FAO and simulated yields across SSA countries for
(a) maize (in 40 countries), (b) sorghum (in 31 countries), and (c) millet (in 33 countries). Each point represents a country in SSA
(i.e. country-level historical and simulated average yields). The observed yields from FAO were de-trended (see text S1 for details).

was less severe than in 1983. The drought of 1987
influenced mostly southern and western Africa. The
1992 drought developed with higher severity in the
SSI as compared with the SPI, affecting most regions
of SSA particularly with extreme severity in the
southern and eastern parts. Another drought event
was identified in 1995, mostly affecting central SSA
(figure S2).

Next, we looked at the relationship between
the drought indices (SSI or SPI) and CSI at the
country level for the five identified drought years
(figures 3(Aa–o)) and five other randomly selec-
ted years of 1996, 1999, 2000, 2006, and 2012
(figures 3(Ba–o)). As shown in figures 3(Aa–o) for
five drought years, the relationships between the SSI
and the CSI indicate a consistent decrease in crop
yields as a result of decreases in SSI values. Overall, the
CSI variability could be explained by the SSI drought
index to a large extent in all five selected drought
years. However, depending on the crop and country,
the CSI responded differently to various severities of
the drought events. Generally, the correlation coef-
ficient between two indices (r) exhibited higher val-
ues for maize and millet than for sorghum, for which
the (r) values were lower than 0.5 in all five drought
events. The high correlation means that a drought of
a specific severity results in a corresponding yield loss
of the same severity. However, lower r values indicate
that yield losses may also be related to factors other
than drought.

In 1983, for example, the correlation coefficient
valueswere 0.71 formaize and 0.70 formillet, whereas
it was only 0.41 for sorghum. Analyzing the relation-
ship between the SSI and the CSI at the country level
also indicated different responses from one region
to the other. For instance, in 1984 eastern African
countries exhibited higher CSI values under the influ-
ence of the SSI (figures 3(Ag) and (Ai)), meaning that
the drought that year resulted in less yield reduction.
A similar pattern emerged for the western African

countries in the same year. This implies that the
occurrence of a drought event of similar severity
may not necessarily lead to the same magnitude of
yield reduction. The relationship between the SPI and
the CSI during these drought years shows compar-
able trends, but with different r values (supplement-
ary figure S3). We further, investigated the feasibility
of the proposed approach in five randomly selected
years (i.e. 1996, 1999, 2000, 2006, and 2012) through-
out the study period (figures 3(Ba–o) and supple-
mentary figures S3(Ba–o)). Comparing drought years
with non-drought years show that both SPI and SSI
can clearly distinguish the events from each other. It
is also the case for the regional drought events, for
instance, in the year 2000 some eastern African coun-
tries were experiencing severe to extreme droughts
with high to very high YRisk while other African
countries were in a better condition in terms of SSI
and SPI with low to very low YRisk level (figures 3
and S3 ((Bc), (Bh), (Bm))). However, under moder-
ate drought to moderately wet conditions (SPI or SSI
between−0.99 and 0.99), CSI varies in a wider range
and the correlation coefficient (r) between drought
indices and CSI are low, again implying the import-
ance of other factors in the yield production during
these conditions.

We then looked at YRisk (equation 4) at the
grid cell level for the whole SSA. The results for the
drought years (figure 4(A)) and randomly selected
years (figure 4(B)) showed that YRisk varied sub-
stantially by location, crop, and year. For example,
the drought of 1984 resulted in a high risk of
sorghum loss in almost all western African coun-
tries, while the risk of maize yield loss was higher
for the Sahel countries (of western Africa) than for
the other western African countries. Similar differ-
ences among different crop drought risks were seen
in 1983, where YRisk for millet was slightly lower.
By visually comparing the spatial distribution of risk
severity (figure 4(A)) with drought severity (figure

6
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Table 2. Country-level results of the EPIC calibration with the SUFI-2 algorithm based on the RSR, the p-factor, and the r-factor for
maize, millet, and sorghum. The results for maize were obtained from Kamali et al [20]. The regional grouping of countries follows
FAO’s classification.

Country

Maize Millet Sorghum

RSR p-factor r-factor RSR p-factor r-factor RSR p-factor r-factor

Eastern Africa Burundi 1.38 0.52 1.80 1.06 0.64 2.58 1.13 0.52 2.31
Comoros 1.13 0.42 1.95 — — — — — —
Eritrea 1.45 0.58 1.98 1.03 0.61 1.68 1.04 0.58 1.62
Ethiopia 0.91 0.52 1.81 1.18 2.34 0.54 1.20 0.52 0.83
Kenya 0.86 0.61 1.74 1.00 0.61 1.85 1.00 0.55 1.53
Madagascar 1.42 0.79 2.54 — — — 1.85 0.53 1.85
Malawi 0.94 0.45 2.25 1.01 0.49 2.33 1.73 0.49 2.39
Mozambique 1.12 0.61 1.56 1.06 0.52 1.80 1.91 0.51 2.71
Rwanda 1.08 0.43 1.04 0.99 0.64 2.50 1.00 0.51 2.49
Sudan 1.33 0.48 1.05 2.11 0.52 1.68 — — —
Somalia 1.24 0.42 1.08 — — — 1.31 0.49 2.58
Tanzania 1.20 0.58 0.94 1.01 0.61 1.69 1.00 0.56 1.43
Uganda 0.85 0.58 2.48 1.06 0.78 2.27 1.23 0.52 1.88
Zambia 0.89 0.45 1.31 0.96 0.51 1.98 1.62 0.54 1.99
Zimbabwe 1.12 0.37 1.67 0.97 0.52 1.43 1.7 0.52 2.1

Central Africa Angola 0.99 0.88 2.38 1.13 0.54 1.59 — — —
Cameroon 1.00 0.48 1.38 1.07 0.58 2.01 1.24 0.71 2.13
Central African
Republic

1.16 0.49 0.74 1.08 0.80 2.53 1.07 0.45 2.48

Chad 0.84 0.67 1.92 0.99 0.61 1.90 1.08 0.67 1.62
Democratic
Republic Congo

1.63 0.48 1.05 1.10 0.77 2.38 1.15 0.77 2.03

Gabon 1.35 0.70 1.95 — — — — — —
Republic of
Congo

2.16 0.88 2.39 — — — — — —

Southern Africa Botswana 1.39 0.52 2.33 — — — 1.18 0.76 2.12
Lesotho 1.27 0.42 2.45 — — — — — —
Namibia 1.02 0.42 1.23 1.30 0.56 2.64 1.81 0.52 2.21
South Africa 0.92 0.55 0.79 1.29 0.55 1.95 1.29 0.64 1.95
Swaziland 1.06 0.42 1.49 — — — — — —

Western Africa Benin 1.08 0.70 1.83 1.25 0.67 1.80 1.20 0.58 1.63
Burkina Faso 0.97 0.52 1.07 1.07 0.67 2.56 0.79 0.88 2.73
Gambia 0.93 0.82 2.97 1.04 0.82 2.24 1.17 0.64 2.87
Ghana 1.07 0.52 1.14 1.11 0.67 2.08 1.08 0.84 2.51
Guinea 1.96 0.45 2.02 0.93 0.94 2.71 — — —
Cote d’Ivoire 1.08 0.48 1.44 1.10 0.51 2.48 — — —
Mali 0.98 0.55 1.55 1.04 0.80 2.30 0.98 0.76 2.00
Mauritania 1.18 0.61 2.25 1.15 0.50 2.04 1.15 0.80 1.93
Niger 0.85 0.70 1.88 0.95 0.67 1.78 1.31 0.80 2.37
Nigeria 0.98 0.70 1.84 1.05 0.52 1.71 1.05 0.62 2.22
Sierra Leone 1.09 0.53 2.07 1.48 0.74 1.86 0.99 0.49 2.10
Senegal 0.92 0.86 2.44 1.58 0.49 1.66 1.10 0.74 1.74
Togo 1.26 0.52 1.18 1.03 0.51 2.38 — — —

∗RSR: the standardized root mean square error;

p-factor: the fraction of the observed data bracketed by the 95PPU band;

r-factor: the ratio of the average width of the 95PPU band to the standard deviation of the measured variable.

S2), a strong correspondence between the occur-
rences of drought and yield reduction emerged.
This is also found in the case of regional droughts,
for instance in the year 2006, the western coun-
tries were experienced drought with high to very
high YRisk (figures 3 and 4((Bd), (Bi), (Bn))).
However, the levels of severity varied remark-
ably in both cases, confirming the appropriateness
of applying spatially distributed and probabilistic

approaches in analyzing the drought effects on
crops.

The shape of the kernel density functions was
compared for the three crops (figure 5), exhibiting
variable shapes depending on the crop and country.
As shown in figure 5, for the sorghum crop there is a
shift in the density function to the left side, revealing
a higher risk of yield loss due to drought compared to
other crops. The higher risk of drought for sorghum
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Figure 3. The sensitivity of different crops (top row, maize in 40 countries; middle row, millet in 33 countries; bottom row,
sorghum in 31 countries) to (A) the five most extreme drought events of 1983, 1984, 1987, 1992, and 1995 and (B) in five
randomly selected years (i.e. 1996, 1999, 2000, 2006, 2012) during study period. Each point denotes a country. The background
colors represent the severity of YRisk obtained from joint probability densities. See figure 1 for more information. p and r show
the p-value and correlation coefficient between SSI and CSI.

(compared to the other two crops) was more evident
in countries like the Central African Republic (Cent-
ral Africa), Gambia, Ghana, and Somalia than in the
rest of SSA. In most countries, we also see elongated
tails on the left side compared to the right side, which
confirms the higher probability of YRisk with higher
density.

3.3. Understanding the drivers of crop drought risk
Next, we conducted a decomposition analysis based
on themain and total effect indices for the three crops
during drought years to understand which of the
seven factors considered here contributed the most
to the risk of yield loss under drought conditions.
The results show that factors contributing to the level
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Figure 4. Spatiotemporal patterns of risk of crop loss due to drought (YRisk) during (A) the selected extreme drought events
(i.e. 1983, 1984, 1987, 1992, and 1995) and (B) in five randomly selected years (i.e. 1996, 1999, 2000, 2006, and 2012) for the three
crops (top row, maize; middle row, millet; bottom row, sorghum). Countries and regions with ‘no data/no related crop
distribution’ are left blank.

of risk were the same for all three crops, but their
relative contributions varied slightly from one crop to
another (figure 6). Generally, the amount of precip-
itation during vegetation and grain filling, i.e. PCPEF
and PCPFG, contributed the most to YRisk. The rel-
ative contribution of temperature during vegetation
and grain filling, i.e. TMPEF and TMPFG, were highest
for sorghum, followed by millet and maize, respect-
ively. The results for the total effect showed higher
interactions of soil type with precipitation and tem-
perature variables (figure 6).

4. Discussion and conclusions

This paper linked agro-ecosystem modeling with a
Copula-based probabilistic framework to explore the
spatiotemporal dynamics of crop loss risk under
drought situations in SSA.We evaluated the perform-
ance of a crop model in replicating historic year-to-
year maize, millet, and sorghum yields (1980–2012),
simulating yield variability based on country-level
yield data from the FAO. One new aspect of this
study was the country-level adjustment of the model
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Figure 5. Country-level normalized histograms (bars) and non-parametric kernel density plots (lines) of crop drought risk for
maize, millet, and sorghum during 1980–2012. The black dashed vertical lines show the middle boundary between ‘moderately
low’ and ‘moderately high’ severities of YRisk defined in table 1.

parametrization during calibration. Although the
FAO’s yield datasets are subject to some uncertainty,
as some data values originated from data imputa-
tion or unofficial data sources [61], to the best of
our knowledge, it is still the best source of accessible
long-term data across SSA. However, due to this lim-
itation, the model was not tested for external data.
So, any interpretation of results for future prediction
should consider this aspect. As a complementary step
to model evaluation [62], we quantified the uncer-
tainty associated with themodeling process (i.e. input
data and model parameters) for each country and
year by using the SUFI-2 procedure for calibration.
This approach enabled us to understand which con-
ditions (e.g. location, year) led to relatively small or
larger uncertainty levels in crop yield predictions [63]
or estimated crop loss risk in follow-up analysis.

All this notwithstanding, some crop modeling
studies have reported much better model perform-
ance by using harvested area data [64]. Such crop-
specific data, however, were only available for specific
areas and over short periods. Besides, as repor-
ted by previous studies [65], unreliable information
for operation parameters in developing countries is
another source of discrepancies. Although a direct
comparisonwith outcomes fromdifferent studies was
difficult—mostly due to substantive differences in
input datasets, the timespan considered, and the data
used for evaluation—our results were consistent with
previous modeling efforts in SSA. Sultan et al [61]
reported good performance of the SARRA-H model
in simulating sorghum and millet yield anomalies
in West Africa compared with FAO data; however,
they reported relative changes in yield rather than
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Figure 6.Main effect (left column) and total effect (right column) of the seven factors (i.e. soil type, TMP SE: average temperature
from sowing to emergence, TMP EF: average temperature from emergence to flowering, TMP FG: average temperature from
flowering to grain filling, PCP SE: precipitation from sowing to emergence, PCP EF: precipitation from emergence to flowering,
PCP FG: precipitation from flowering to grain filling) contributing to the risk of maize, millet, and sorghum yield loss under
drought.

absolute values because of overestimations in crop-
yield values. Folberth et al [66] used a combination
of FAO and harvested area data in the evaluation of
EPIC model performance and obtained a coefficient
of determination (R2) of 0.25 across all SSA coun-
tries, but achieved a much higher value of R2 (∼0.5)
by excluding countries with reported yield from the
FAO. Overall, in this study, the model reasonably
reproduced annual yield variability for the three crops
under consideration. However, there were discrepan-
cies between simulated and reported yields due to a
wide range of reasons, including assumptions, model
simplifications, the quality of the reported yield data,
and uncertainty in input datasets (such as soil and
land use). This indicates that the probability based
risk analysis in this paper is tightly associated with
the quantified uncertainty for the simulated yield
data. Therefore, any interpretation from risk analysis
should be accompanied by these data and take into
account this aspect.

The identified droughts using SPI and SSI are
consistent with literature. For example, the drought
in 1992 is consistent with Chikoore [67] who used
a precipitation-minus-evapotranspiration anomaly
index and found that the 1992 drought was the most
severe drought over southern Africa in that period.
We also found the outperformance of soil moisture-
based index over precipitation-based index in our
analysis. This corroborate the results of Rigden et al
[51] and Svoboda and Fuchs [68] in which the suit-
ability of soil moisture for crop yield prediction are
emphasized.

Based on the Copula-based analysis of crop yield
loss due to drought, we found substantial differ-
ences among the yield responses of maize, millet,
and sorghum to different levels of drought sever-
ity (figure 3(A)). Moreover, the spatial response of
crop yield to the five drought events across SSA
(figure 4(A)) demonstrated that a drought of a given
severity may lead to a different level of yield loss risk
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for the same crop in other agro-ecological conditions,
indicating the importance of a probability assess-
ment. Beillouin et al [69] also reported that extremes
in climate variables had varying impacts on yield pro-
duction across different parts of Europe. This implies
that the occurrence of a drought eventmay not neces-
sarily lead to the same magnitude of yield reduc-
tion.We found that even under extreme drought con-
ditions, there was often still a considerable amount
of crop production, indicating that droughts rarely
or never led to a complete yield loss. This suggests
that other facets of agriculture, such farmers’ man-
agement strategies and use of technology to improve
soil moisture, may have improved crop resilience to
drought.

The results revealed that in general there was a
trend of high production (low risk of crop loss) as soil
moisture increased (figure 3). However, a closer look
at the findings revealed an inconsistent direction in
some cases. The drought of 1995 in western African
countries is an example of a very wet condition (with
the SPI varying around 1.5) leading to a moder-
ately low or severely low yield (with the CSI vary-
ing between−0.5 and−1.5) (figure S3(A)). This may
partly be due to oxygen deprivation because of soil
waterlogging [70] under excessive rainfall/flooding
or direct impacts from storms, or flood inundation
[71, 72].

Generally, sorghum copes better with drought
thanmaize andmillet [73]. Although the regional dif-
ference in the presented risk maps supporting this
finding in many parts of SSA, some discrepancy espe-
cially at country level (figure 5) was discernable. One
reason for such behaviors was related to processes
representation in the EPIC crop model which is not
detailed in terms of carving out difference among
crop growths. Basically, EPIC simulates stage growth
explicitly and does not distinguish different growth
stages for different crops which might lead into vari-
ous response of crop to specific drought and tem-
perature at specific growth stage. A crop model com-
parison for future studies is recommended to address
those aspects of uncertainty related to model struc-
tures and their embedded model processes. Another
limiting factor is related to the coarse resolution data
with huge uncertainty available for SSA. For coun-
try level calibration and analysis, we aggregated the
results based on cultivated area in each grid for each
crop. These values do not have sufficient accuracy and
vary from one crop to the others. Over the past few
decades, agricultural efforts in SSA mainly have been
focused on increasing the production of few energy-
rich cereal crops such as maize and wheat to improve
food availability and access. This has resulted in some
of the cereal crops being cultivated in less suitable
areas [74]. In the case of sorghum, the short matur-
ity period of some of its varieties—as early as 65–70 d
after sowing—is another reason for extending its area

in less suitable regions where length of rainy sea-
son limits crop production [75]. The early matur-
ing varieties of sorghum not only characterized by
yield penalty, but with considerable yield loss, up to
87% of grain yield, under drought stress [76, 77]. In
addition, literature shows that sorghum show very
different drought response to climatic patterns [78].
Therefore, future studies on comparison of different
crops to drought should be based on regional datasets
which provides information on different cultivars and
also model improvement and considering dynamic
physiological response of different cultivars to cli-
mate. Last but not least, the prolific (deep and dense)
root system is one of the main features of sorghum
which made it more drought tolerant than other cer-
eals. However, in soils with high bulk density, root
penetration might be restricted and consequently,
water use might be negatively affected. Considering
higher resolution of soil data for future studies can
provide a deeper understanding on root response to
soil water dynamics.

We performed crop simulations without adding
irrigation, since considerable agricultural areas (e.g.
93% of all cropping systems and 97% of maize-
cultivated areas) are rainfed in SSA [20, 61]. Here, we
also removed the nutrient stress on simulated yields,
primarily because of a lack of data, but also because
the focus of this study was on water stress. However,
future studies may benefit more from the interaction
between water stress and nitrogen stress, especially
in Sahel regions, where soils are nutrient-deficient
due to overexploitation [79]. Under such stress con-
ditions, the agricultural system is less responsive to
changes in other variables, such as temperature and
moisture [80, 81]. It can also be the case that the mar-
ginal benefits from low levels of water stress (due to
increased rainfall) are offset by the increased nitro-
gen stress induced by leaching [16]. Our proposed
approach, however, is transferable in this respect, and
can be considered a framework to understand the
effects of different stresses on crops.

One part of our study included a disentangling
of the biophysical factors that contributed most to
crop drought risk. The role of temperature was more
apparent for sorghum than for maize and millet,
which implies a need for future research on the
impact of concurrent drought and high-temperature
stress on crop failure. EPIC considers neither expli-
cit crop phenology nor atmospheric heat stress, and
therefore we could not specify critical temperature
and canopy temperature [82] during crop growth
stages in this study. One potential future direction
would be to improve the cropmodel to overcome this
limitation. Last but not least, one of the limitations of
this study was a lack of detailed input data on vegeta-
tion development, such as leaf area index, during crop
growing seasons at the regional scale. Future stud-
ies may benefit from linking ever-increasing satellite
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information with crop modeling using data assim-
ilation techniques to reduce the level of uncertainty
[83–85].
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[35] Hlaváčová M et al 2018 Interactive effects of high
temperature and drought stress during stem elongation,
anthesis and early grain filling on the yield formation and
photosynthesis of winter wheat Field Crop Res.
221 182–95

[36] Abbaspour K C 2022 The fallacy in the use of the ‘best-fit’
solution in hydrologic modeling Sci. Total Environ.
802 149713

[37] Ribeiro A F S, Russo A, Gouveia C M, Páscoa P and
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