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Summary 

Agricultural ecosystems are anthropogenically highly transformed ecosystems, mainly designed to 

maximise the delivery of provisioning ecosystem services (ES) such as food, material and fuel, often at 

the expense of other ES. Especially, conventional agriculture and agricultural landscape simplification 

have become major causes of climate change, ecosystem degradation and biodiversity loss. At the 

same time, the production of provisioning services depends on other, mainly regulating, ES. In the 

long-term, the viability of agricultural ecosystems and the delivery of provisioning ES rely on more 

sustainable farming practices and the conservation of ES and biodiversity. This calls for a shift in the 

agricultural production paradigm, towards more multifunctional and sustainable agricultural 

landscapes. Spatially explicit assessments of ES are key components in supporting the shift towards 

sustainable land use management: they inform on how and where land use decisions can affect 

ecosystems, on potential trade-offs between the delivery of different ES and help to design targeted 

ES conservation measures. Understanding the distribution patterns and the main drivers influencing 

the delivery of ES is needed to determine where land use management measures can be improved to 

maximise the delivery of (specific) ES. Specifically, spatial information on ES can assist economical 

decisions underlying agricultural practices: for instance, higher pollination and natural pest control ES 

potentials can increase crop yields and save resources. 

The central question of this thesis is to assess how different ES assessment methods influence the 

predictions of ES supply potential, aiming to find the adapted level of information needed for an ES 

assessment at the local scale, in an agricultural landscape. To address this research question, several 

ES mapping and assessment methods, using simple (tier 1) to more complex (tiers 2 and 3) approaches, 

were developed and applied to a case study area in northern Germany. Additionally, this work aims at 

informing land use planners and decision-makers on the capacity of the landscape to deliver multiple 

ES. First, the ES matrix approach (tier 1) was used to assess the importance of spatial resolution and of 

accounting for ecosystem condition (tier 2). The two following studies developed and implemented 

more complex methods (tier 3) based on species distribution models (SDMs). SDMs were used to 

model the relationships between ES providers (ESP) (here wild bees and natural enemies of pests) and 

a combination of abiotic and biotic factors at different scales.  

The results of this thesis show that designing multifunctional landscapes ideally requires a rather 

comprehensive assessment. For most regulation and cultural ES, simple proxies are not suitable for a 

local quantitative assessment of ES, as they cannot sufficiently cover the spatial heterogeneity of ES 

capacities and functions that arise from different ecosystem properties and conditions. This is 

particularly the case of ES delivered by living and mobile organisms such as pollination and natural pest 

control, whose potentials are determined by multi-scale variables and processes.  

A comprehensive assessment of every ES is, however, often not feasible. This thesis shows how the 

use of different modelling methods and the tiered approach can assist in the assessment of multiple 

ES. Proxy indicators and models should be used whenever empirical data and knowledge of ecological 

processes are limited. Indicators and models are, however, only simplified representations of complex 

processes. ES mapping and assessment outputs should therefore be interpreted considering the 

assumptions behind the models and knowing the associated uncertainties.  

Keywords: Ecosystem service providers, species richness, ecosystem condition, pollination, natural 

pest control, arthropods, tiered approach, multifunctional landscapes, land use planning. 



 

 

Zusammenfassung  

Landwirtschaftliche Ökosysteme (ÖS) sind anthropogen stark veränderte ÖS, die hauptsächlich darauf 

ausgelegt sind, die Bereitstellung von Ökosystemleistungen (ÖSL) wie Nahrung, Material und 

Brennstoff zu maximieren - oft auf Kosten anderer ÖSL. Insbesondere die konventionelle 

Landwirtschaft und die Vereinfachung der Agrarlandschaft sind wesentlich mitverantwortlich für den 

Klimawandel, die Verschlechterung von ÖS und den Verlust der biologischen Vielfalt. Gleichzeitig hängt 

die Fähigkeit eines ÖS Nahrung und andere Rohstoffe zur Verfügung zu stellen von anderen, 

hauptsächlich regulierenden, ÖSL ab. Langfristig hängen die Lebensfähigkeit landwirtschaftlicher ÖS 

und die Bereitstellung von ÖSL von nachhaltigeren landwirtschaftlichen Praktiken und der Erhaltung 

von Ökosystemen in gutem Zustand und der Biodiversität ab. Räumlich explizite Bewertungen von ÖSL 

sind ein Schlüssel zur Unterstützung eines nachhaltigen Landnutzungsmanagements: Sie informieren, 

wie und wo Ökosysteme beeinflussen werden können, über potenzielle Kompromisse zwischen der 

Bereitstellung verschiedener ÖSL und helfen bei der Entwicklung gezielter Maßnahmen zur Erhaltung 

von ÖSL. Insbesondere räumliche Informationen zu ÖSL können wirtschaftliche Entscheidungen 

unterstützen: Höhere Bestäubungs- und natürliche Schädlingsbekämpfungspotentiale von ÖSL können 

beispielsweise die Ernteerträge steigern und Ressourcen sparen. 

Die zentrale Frage dieser Arbeit ist es zu bewerten wie verschiedene ÖSL-Bewertungsmethoden die 

Vorhersagen des ÖSL-Versorgungspotentials auf lokaler Ebene beeinflussen. Dafür wurden mehrere 

ÖSL-Kartierungs- und Bewertungsmethoden unter Verwendung einfacher (Stufe 1) bis hin zu 

komplexeren (Stufen 2 und 3) Ansätzen entwickelt und auf ein Fallstudiengebiet in Norddeutschland 

angewendet. Darüber hinaus sollen Landnutzungsplaner und Entscheidungsträger über die Fähigkeit 

der Landschaft informiert werden mehrere ÖS bereitzustellen. Zunächst wurde der ÖSL-Matrix-Ansatz 

(Stufe 1) verwendet, um die Bedeutung der räumlichen Auflösung und der Berücksichtigung des 

Ökosystemzustands (Stufe 2) zu bewerten. Die beiden nachfolgenden Studien entwickelten und 

implementierten komplexere Methoden (Stufe 3) auf der Grundlage von Artenverteilungsmodellen 

(„species distribution models“ - SDMs). SDMs wurden verwendet, um die Beziehungen zwischen ÖSL-

Anbietern (hier Wildbienen und natürlichen Feinden) und mit abiotischen und biotischen Faktoren auf 

verschiedenen Skalen zu modellieren.  

Die Ergebnisse dieser Arbeit zeigen, dass die Gestaltung multifunktionaler Landschaften eine 

umfassende Bewertung erfordert. Für die meisten regulatorischen und kulturellen ÖSLs sind einfache 

Proxys nicht für eine lokale quantitative Bewertung von ÖSL geeignet, da sie die räumliche 

Heterogenität von ÖSL-Kapazitäten und -Funktionen, die sich aus unterschiedlichen 

Ökosystemeigenschaften und -bedingungen ergeben, nicht ausreichend abdecken können. Dies gilt 

insbesondere für ÖSL, die von lebenden und mobilen Organismen wie Bestäubung und 

Schädlingsbekämpfung geliefert werden, deren Potenziale durch mehrskalige Variablen und Prozesse 

bestimmt werden. Eine umfassende Bewertung aller ÖSL ist jedoch oft nicht praktikabel. Diese Arbeit 

zeigt, wie die Verwendung verschiedener Modellierungsmethoden und der gestufte Ansatz bei der 

Bewertung mehrerer ÖSL helfen können. Proxy-Indikatoren und -Modelle sollten verwendet werden, 

wenn empirische Daten und Kenntnisse über ökologische Prozesse begrenzt sind.  

Schlüsselwörter: multifunktionale Landschaften, Landnutzungsplanung, abgestufter Ansatz, 

Ökosystemzustand, Arthropoden, Artenreichtum, Bestäubung, natürliche Schädlingsbekämpfung.
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1 Introduction 

1.1 Motivations and objectives 

Ecosystems are deteriorating worldwide and more rapidly than ever, with dramatic impacts on people 

and all other species (Díaz et al., 2020). These are key messages from the latest plenary session of the 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), based on 

the systematic review of scientific, government and local knowledge on the relationships between 

human activities and nature over the last five decades (IPBES, 2019). Human existence depends on 

healthy and resilient ecosystems. Ecosystems are, however, degraded by human activities and their 

consequences, such as land use change, pollution, resource overexploitation, biodiversity loss and 

climate change, which can jeopardise their capacity to deliver life-essential ecosystem services (ES). ES 

can be defined as “the contributions of ecosystem structure and function – in combination with other 

inputs – to human well-being” (Burkhard et al., 2012a). These contributions underpin several 

dimensions of people’s health and quality of life, including the provision of human basics needs such 

as food, clean air and water. The ES concept has gained importance in environmental management 

and policy, particularly in the European Union (EU) as it highlights the interactions between nature 

(conservation and use) and human well-being (Maes et al., 2012a). One of the triggers was the EU 

Biodiversity Strategy to 2020’s call on Member States to map and assess the state of ecosystems and 

their services, a necessary step to maintain and enhance ecosystems’ conservation status and their 

services (Maes et al., 2018).  

Agricultural landscapes represent nearly half of the total terrestrial surface of Earth (IPBES, 2019). Over 

the last 50 years, food security objectives coupled with technological progress and incentive policies 

have led to the adoption of intensive agricultural management in many regions of the world (IPBES, 

2019). Agricultural intensification is characterised by landscape simplification across scales, through 

large-scale monocultures, simplification of rotation schemes, less diversity in non-crop habitats and 

systems relying on high levels of synthetic fertilisers and pesticides. The intensification of agriculture, 

while supporting high yields, has enormous negative impacts on natural resources and biodiversity. It 

is furthermore a major factor contributing to land use change, pollution, resource overexploitation and 

climate change (Potts et al., 2016; Garibaldi et al., 2017; IPBES, 2019). Agriculture has become one of 

the primary causes of biodiversity loss globally (IPBES, 2019) and accounts for almost one quarter of 

the global anthropogenic greenhouse gas emissions (Arneth et al., 2019).  

Global warming, resource overexploitation and pollution make agriculture increasingly vulnerable to 

extreme weather, disease and pest outbreaks (Arneth et al., 2019). Global warming has already begun 

to alter growing seasons and reduce crop yields through warmer temperatures, increasing extreme 

climatic events and changing precipitation patterns. Biodiversity loss and the resulting decline in 

functional diversity can threaten ES delivery and ultimately the sustainability of crop production as 

well (Aizen et al., 2009; Bommarco et al., 2013; Gagic et al., 2015). There is evidence that essential ES 

such as crop pollination (Kremen et al., 2002; Potts et al., 2010), natural pest control (Bianchi et al., 

2006; Thies et al., 2011) and soil-related ES (Wall et al., 2015) can be jeopardised in highly intensified 

agricultural landscapes. Moreover, agricultural intensification is no longer enhancing the yields of 

many major crops (Ray et al., 2012; Gaba et al., 2016; Lechenet et al., 2017), partly because the benefits 

of intensification are limited by the decreasing availability of critical ES (Deguines et al., 2014; Catarino 

et al., 2019; Montoya et al., 2019). In the long term, ensuring crop production can therefore only be 

achieved by a sustainable management of landscapes, preserving biodiversity and various ES (Foley et 
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al., 2005; Tilman et al., 2011; UN, 2017) and by adapting to and mitigating climate change impacts (FAO 

et al., 2018).  

There are increasing social pressures to move towards a more sustainable agricultural management, 

with agricultural landscapes that deliver a broad range of ES instead of focusing solely on the 

maximisation of provisioning services (Rockström et al., 2017; IPBES, 2019; Kleijn et al., 2019). 

Improving the sustainability of agroecosystems has a high priority on (global) authorities’ agenda 

(Landis, 2017). Hence, promoting sustainable agriculture is one of the Sustainable Development Goals 

of the United Nations (UN, 2017). Similarly, increasing agroecosystems’ sustainability is one major goal 

of the European Commission, through the second pillar of the Common Agricultural Policy (CAP) 

(European Commission, 2013). Various existing farming approaches can help to reach this objective, 

including ecological intensification (Bommarco et al., 2013; Kleijn et al., 2019; Vanbergen et al., 2020). 

Ecological intensification is defined as an alternative land use management based on the integration 

of ES conservation and management into agricultural production systems to minimize the negative 

impacts of external inputs and sustain agricultural production (Bommarco et al., 2013). Ecological 

intensification practices include the establishment of semi-natural habitats (SNH) such as hedgerows 

and flower strips, intercropping, pesticide use reduction or increasing the proportion of fallow lands 

(Potts et al., 2016). These practices have been shown to benefit a variety of ES Providers (ESP) (Tschumi 

et al., 2015; Holland et al., 2017) and to help to tackle ES losses in agricultural landscapes (Holland et 

al., 2017). There are, however, still numerous barriers to the implementation of mitigation measures, 

including financial and institutional barriers, the absence of incentives or awareness and a limited 

demonstration of effectiveness (Vanbergen et al., 2020). Particularly, there is no consensus on how 

ecological measures contribute to (or affect) crop production and where these measures should be 

implemented to maximise their impacts on different ES at the landscape scale. As land is a limited 

resource, assuring crop production whilst restoring or maintaining multiple ES requires spatially 

optimising land use and management. This implies understanding local to landscape contexts and the 

spatial distribution of ES potentials.  

The spatial-explicit quantification of ES and ES mapping approaches are powerful tools to assess and 

communicate on the interdependency between human well-being, human activities and the 

environment as well as how ecosystems are impacted by human activities at various scales and to 

guide policy decisions (Maes et al., 2012a; Burkhard et al., 2012b; Schröter et al., 2015; Burkhard and 

Maes, 2017). In agricultural systems, ES mapping and assessment can be used to assist the 

transformation of agriculture systems towards more sustainable management, i.e., that conciliates 

multiple objectives on a specific territory and in particular, food security, rural development, climate 

change mitigation and biodiversity conservation. Specifically, it can inform on potential trade-offs and 

synergies between the delivery of different ES, such as between crop production and regulating 

services (e.g., pollination and natural pest control) (Egoh et al., 2008; Raudsepp-Hearne et al., 2010). 

Finally, ES mapping and assessment outputs can be used to design targeted and effective conservation 

measures for biodiversity and ES conservation. 

Driven by the needs of policy and decision-makers to assess ES at different scales, ES mapping, 

assessment and decision-support methods have expanded fast over the past decades (Egoh et al., 

2012; Martínez-Harms and Balvanera, 2012; Maes et al., 2016). The selection of the appropriate 

methods and providing useful information for a specific research question can therefore be complex. 

The mapping and assessment purpose, the scale of the study area but also technical capacity and 
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knowledge, data availability and quality affect the decision on which methods should be employed for 

each ES assessment. Different methods can be suitable for different mapping and assessment 

purposes, and all methods are not applicable to all cases. Grêt-Regamey et al. (2015) proposed the 

“tiered approach” to help to select ES mapping and assessment methods adequate to specific research 

or policy questions. The different tiers are distinguished according to the purpose and the needed level 

of detail of the ES analysis. This allows the ES analysis to provide relevant information to decision-

makers and to avoid the use of too complex or too simple methods. A general issue when studying 

ecosystems is the lack of appropriate data at an appropriate scale. ES assessments are therefore often 

partly driven by data availability and/or rely on the use of available models and indicators. For this 

reason, information on the limitations of the selected mapping and assessment approach, such as 

feasibility, reliability, accuracy and uncertainty, is essential. Besides, the multiplicity of stakeholders 

involved in different planning processes can require the use of ES assessment methods of different 

complexity levels (Dunford et al., 2017).  

The central objective of this thesis is to assess how different ES assessment methods influence the 

predictions of ES potential at the local scale. The aim was to develop and refine methodological 

approaches for modelling and mapping the delivery of ES in agricultural landscapes, building on the 

tiered approach framework, to support sustainable land management in agricultural landscapes. 

Specifically, this thesis aims to answer the following research questions: 

1) Does a high spatial resolution and the integration of ecosystem condition information affect 

the ES assessment and can patterns between different ES and ES categories be detected? How 

can the employed methods affect the resulting maps? 

2) How do biotic and abiotic factors affect pollinator and natural enemy species distributions and 

their associated ES potentials? What are the implications for an ES assessment in the case 

study area? 

3) Do we observe spatial asynchrony between ES potential and demand for pollination and 

natural pest control in the selected case study area? 

4) What conclusions can be drawn for practical applications in landscape management to 

optimise ES delivery and particularly the conservation measures for wild bee and natural 

enemy species?  

The developed models were applied in an agriculture-dominated case study area (CSA) in northern 

Germany to 1) explore the suitability of information derived from indicators and models to inform 

decision-making on land use planning and 2) derive recommendations for decision-making on land use 

planning, particularly to support the design of effective conservation measures for wild bee and natural 

enemy species. 

1.2 Structure of the thesis 

This thesis is a cumulative dissertation consisting of three original and peer-reviewed articles in 

international journals (Chapters 3, 4 and 5). In the first Chapter, the background information from 

which the topic of this thesis has emerged is outlined, including a description of the CSA and the 

definition of the central concepts. Chapter 2 describes the different methods used throughout this 

thesis. In Chapter 3, ES potential and the landscape multifunctionality of the CSA were assessed, with 

the following central question: how do spatial resolution and the inclusion of information on 

ecosystem condition influence the ES assessment at the local scale? Chapters 4 and 5 focus on 
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quantifying, modelling and mapping pollination and natural pest control service potentials using 

species distribution model (SDM) approaches and the Ecological Production Function (EPF) framework 

developed by Kremen et al. (2007). ES potential is extrapolated from species distribution based on the 

EPF framework: certain ES are directly provided by organisms or species communities, whose 

occurrence, abundance and capacity to provide ES are impacted by multiple environmental factors and 

the landscape context (Kremen et al., 2007). These two last ES models aimed to better understand 

ecological processes underlying the delivery of specific ES and how bioclimatic variables, land cover 

and landscape complexity impact the distribution patterns of ESPs and thereby the delivery of 

associated ES. This work also aimed at providing recommendations for decision-makers and 

stakeholders on how to optimise the delivery of multiple ES at the landscape scale in the selected CSA. 

The last chapter summarizes the main findings of the three research papers, followed by a discussion 

on the implication of the results for landscape management and the needed further research on this 

topic. 

The doctoral thesis was conducted within the BiodivERsA research project IMAGINE: “Integrative 

Management of Green Infrastructures Multifunctionality, Ecosystem integrity and Ecosystem Services: 

From assessment to regulation in socioecological systems”. The scope of this project was to quantify 

the multiple functions, ES and other benefits provided by green infrastructures in different contexts 

from rural to urban landscapes1. This research project involved six universities and research centres 

from five different European countries and the close collaboration with local stakeholders from five 

different CSAs. The outcomes aimed at developing an integrated framework for the assessment and 

management of green infrastructure multifunctionality in different contexts (e.g., Mortelmans et al. 

(2019) and Blust et al. (2021)) and at providing stakeholders with decision-making tools that integrate 

multiple green infrastructure design and management scenarios for a more sustainable landscape 

management (e.g., Suškevičs (2019), Billaud et al. (2020) and Turkelboom et al. (2021)). 

1.3 Conceptual and methodological framework 

1.3.1 Case study area: Bornhöved Lake District 

The different developed models for this thesis were applied in a CSA located in the region of the 

Bornhöved Lake District in the federal state of Schleswig-Holstein in northern Germany (Figure 1). The 

extent of the CSA is approximately 140 km². The central part of this study area was the focus of a long-

term ecosystem research project (Müller et al., 2006; Fränzle et al., 2008) and several previous 

research on ES assessment: for instance, the first theoretical use of the ES matrix approach (Burkhard 

et al., 2009; 2014), an assessment of the importance of scale when mapping provisioning ES (Kandziora 

et al., 2013b), a study on how to assess and map nutrient regulation ES potential (Bicking et al., 2018; 

Bicking et al., 2019) and an assessment of a broad range of ES using the matrix approach in the federal 

state of Schleswig-Holstein (Müller et al., 2020). 

Agroecosystems dominate the landscape (almost 75% of the area) that is located in a catchment area 

of several glacially formed and consecutively connected lakes (Figure 1). Agricultural production is 

dominated by the cultivation of annual crops such as barley, wheat and rapeseed. The CSA shows a 

suite of SNH with a high proportion of hedges and wall hedges, that are characteristic of the province, 

shaping a highly diverse and fragmented landscape (see Figure 1 and Fränzle et al., 2008). It contains 

 
1 https://imagine.inrae.fr 
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only small settlements, following a north-south alignment. Besides agricultural production, the study 

site is also a local recreation area for the inhabitants of the city of Kiel (250,000 inhabitants), located 

35 kilometres away.  

Locally, the main challenge is to optimise agri-environmental schemes (AES) to preserve the landscape, 

biodiversity and ES (Roche, 2021). Broader concerns about the drastic decline in insects due to 

agricultural intensification have recently emerged in Germany (Hallmann et al., 2017; Deutscher 

Bundestag, 2017; Seibold et al., 2019). This raised awareness of the need for a better integration of 

biodiversity and ES conservation in decision-making processes such as land-use planning and land 

management in agricultural areas. A local ES assessment has the potential to help to improve land-use 

planning and the design of AES. Particularly, it can support decision-makers to address the potential 

conflicts resulting from the implementation of ecological measures within the region, for a better 

understanding and acceptance among the different stakeholders. 

 

Figure 1: Location of the case study area in northern Germany and distribution of land use/land cover classes within the area 
(based on the Integrated Administration and Control System (InVeKoS) and the Authoritative Topographic-Cartographic 
Information System (ATKIS) data). 

1.3.2 Definitions and concepts 

1.3.2.1 Ecosystems and their services 

ES are defined as the direct and indirect benefits that people obtain from ecosystems (Costanza et al., 

1997; TEEB, 2010; Millennium Ecosystem Assessment, 2005). More recently, ES have been defined as 
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the contributions of ecosystems, in combination with other inputs, to human well-being (Burkhard et 

al. 2012a). This definition highlights that ES form only through interaction with human capital, social 

capital and their built environment (Costanza et al., 2014; Costanza et al., 2017). Ecosystems are 

defined as “dynamic complex of plant, animal and microorganism communities and their non-living 

environment interacting as a functional unit” (UN, 1992). Consistent ES description and classification 

are necessary preambles of any ES assessment (Burkhard and Maes, 2017). Several ES classification 

systems coexist (Potschin and Haines-Young, 2016). To fit with previous ES assessments in the studied 

region, the ES classification presented by Müller et al. (2020) was used throughout this thesis. In this 

classification, ES are categorised in “provisioning”, “regulation and maintenance” and “cultural” ES 

(similar to the Common International Classification of Ecosystem Services (CICES) typology (Millennium 

Ecosystem Assessment, 2005; Haines-Young and Potschin, 2012)). Provisioning services are the 

products and goods directly produced by ecosystems, such as cultivated crops, timber or wild food. 

Regulating services refer to how ecosystems can mediate natural processes, such as pollination, 

natural pest control, nutrient and air quality regulation. Cultural services are the intangible benefits of 

ecosystems that contribute to human well-being, including cognitive and spiritual enrichment, 

inspiration and recreational enjoyment.  

ES delivery can generally be distinguished between potential, supply, demand and flow (Villamagna et 

al., 2013; Burkhard and Maes, 2017). Throughout this thesis, the focus is on the supply side of ES, i.e., 

how ecosystems contribute to the provision of ES and particularly on ES potentials. ES potentials are 

defined as the amount of ES that can be provided sustainably, in a particular area (Burkhard and Maes, 

2017) or the hypothetical maximum yield of selected ES (Burkhard et al., 2014). In Chapters 4 and 5, 

ES demand was also considered, defined as the potential human need for specific ES in a particular 

area (Burkhard and Maes, 2017). The demand for pollination ES is generated by the farmers’ decision 

to plant pollination-dependent crops (Lautenbach et al., 2011). Similarly, the demand for natural pest 

control ES depends on the presence of cultivated crops potentially affected by pests, as pests are 

defined as species that compete with humans for common resources. ES flow is the amount of 

mobilized ES in a specific area and time; the notion was however not used in this thesis. Regulation 

services such as pollination and natural pest control are not final ES or consumed goods (Burkhard et 

al., 2014). They underpin the production of many crops that, in turn, directly contribute to human well-

being. Throughout this thesis, pollination potentials and pollination ES potentials were therefore 

distinguished: pollination can occur wherever pollinators are and it becomes an ES where it potentially 

contributes to crop production (the same distinction was made for natural pest control). 

This thesis builds on the Mapping and Assessment of Ecosystems and their Services (MAES) conceptual 

framework (Figure 2, Maes et al., 2016). This conceptual framework describes how biodiversity, 

ecosystem processes, functions and services benefit human well-being and illustrates the possible 

implications of ecosystem degradation for human well-being. The capacity of an ecosystem to provide 

ES depends on its properties and condition (or state), which underpin ecological functions, processes, 

services and final benefits that people retrieve from ecosystems. The MAES framework also highlights 

how societal and governance decisions on land use and management can affect ES delivery. The 

concept of ES is consequently socio-ecological, which implies research in the fields of ecology, 

economy and social sciences. The thesis focuses on the assessment of the capacity of ecosystems to 

deliver services (i.e., on the ecological side of the ES concept). The social aspects of ES demand are not 

addressed in detail. The presented thesis is part of a project with a larger scope (IMAGINE, presented 

in the Introduction), which addressed social and political implications of the conservation and ES and 
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biodiversity, using, among others, stakeholder perceptions and policy coherence assessments (Roche, 

2021). This thesis is therefore part of an interdisciplinary research project, aiming at providing a 

comprehensive ES assessment in the selected CSAs (Roche, 2021). 

 

Figure 2: MAES conceptual framework illustrating the interrelations between biodiversity, ecological processes, functions and 
services and the socio-economic systems (Maes et al. 2016). 

1.3.2.2 Ecosystem condition 

The capacity of an ecosystem to sustain ES is determined by its physical, chemical and biological 

characteristics, which together determine its condition (also called ecosystem quality, state or health) 

(Millennium Ecosystem Assessment, 2005; Maes et al., 2018). Information on the condition of 

ecosystems is therefore a prerequisite for a comprehensive ES assessment (Maes et al., 2016; Syrbe et 

al., 2017). Assessing ecosystem condition is still hampered by a lack of data and the limited knowledge 

of how different pressures quantitatively affect the physical, chemical, and biological characteristics 

and processes of an ecosystem (Maes et al., 2016). It is usually approached using indicators, mainly 

describing habitats, species and environmental quality of the ecosystem. To improve ES and ecosystem 

condition assessments and foster homogenisation throughout European countries, the MAES initiative 

provided guidance on how to integrate ecosystem condition in ES assessments, and lists sets of 

potential ecosystem condition indicators (Maes et al., 2018). The mapping of ecosystem condition at 

European or national scales has made significant progress following MAES’s works, but developments 

for multiple services and at a finer spatial resolution are still limited (Rendon et al., 2019). One issue 

when using these indicators is that they are hardly adapted to an assessment at a fine spatial resolution 

because the necessary information is not provided with sufficient quantitative spatially explicit 

information (European Environmental Agency, 2015). Another challenge is the general lack of 

knowledge on how ecosystem condition affects the supply of different ES. In Chapter 3, how the list of 

indicators provided by the MAES can be adapted to assess ecosystem condition at the local scale was 

illustrated. 
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1.3.2.3 Biodiversity and ecosystem services 

Biodiversity underpins ecological processes and functions and thereby plays a key role in the supply of 

many ES (Hooper et al., 2005; Cardinale et al., 2012; Mace et al., 2012; Haines-Young and Potschin, 

2010; Balvanera et al., 2014; Maes et al., 2016). It is however often still unclear how specific aspects 

and elements of biodiversity underlie the provision of different ES (Hooper et al., 2005; Bello et al., 

2010; Balvanera et al., 2014; Harrison et al., 2014). ES are generally generated from numerous 

biodiversity elements, processes and spatio-temporal interactions occurring in complex systems 

(Harrison et al., 2014). Complex interrelations have already been described between biodiversity 

elements, ecosystem functions and ES for specific ES. For instance, the production of food is supported 

by soil formation, nutrient cycling, water filtration and infiltration capacity, pollination and natural pest 

control, which in turn rely on different biodiversity attributes (Zhang et al., 2007). Similarly, Isbell et al. 

(2011) showed that a high level of plant diversity was essential to promote ecosystem functioning and 

increased grassland productivity. Some ES such as water purification and atmospheric regulation are 

facilitated at the species community level and by whole ecosystems, whereas other ES such as timber 

production tend to rely on fewer species (Harrison et al., 2014). Pollination ES is supported by 

pollinator diversity (Brittain et al., 2013; Senapathi et al., 2021), abundance and functional diversity 

(Hoehn et al., 2008; Woodcock et al., 2019) and diverse bee communities (Blitzer et al., 2016). It is 

however still argued that mainly few and abundant species might be doing most of the job in crop 

fields (Kleijn et al., 2015). Natural pest control ES has been shown to benefit from a high species 

diversity (Dainese et al., 2017; Dainese et al., 2019), however not in every landscape (Tscharntke et al., 

2012b; Martin et al., 2013; Jonsson et al., 2017). Because of the complex nature of ecosystems and ES, 

and of the lack of understanding of how ES are sustained by different biodiversity elements, ecosystem 

components, processes and functions, there is no consensus yet on how to define the (quantitative) 

relationships between biodiversity attributes and the delivery of many ES (Harrison et al., 2014). 

Numerous approaches to assess and map ES are therefore based on the use of simplified approaches 

based on proxy indicators and models (Eigenbrod et al., 2010; Harrison et al., 2014). Models are also 

valuable approaches to explore the role of biodiversity in ES delivery (Kremen, 2005). 

1.3.2.4 Ecosystem Service Providers 

In some cases, the supply of ES can be linked to the presence, abundance, richness and/or functional 

diversity of key species that act as Ecosystem Service Providers (ESPs, Kremen, 2005; 2007; Luck et al., 

2009). ESPs can be taxa, communities or functional groups that sustain the ES of interest. This approach 

has been used to assess different ES, including wood production, carbon sequestration, regulation of 

water quality and flow, pollination, natural pest control and landscape aesthetics (Luck et al., 2009; 

Cardinale et al., 2012; Harrison et al., 2014; Dainese et al., 2019). Chapters 4 and 5 focus on pollination 

and natural pest control provided by arthropods (i.e., the ESPs). These ES were selected as they are 

essential in agricultural landscapes and because there is extended knowledge of the corresponding 

ESPs. 

Pollination ES are defined as the fertilisation process done by living organisms that maintains or 

increases the abundance and/or diversity of plant species that people use or enjoy (Haines-Young and 

Potschin, 2018). A large majority of plants and approximately 75% of cultivated crops are, to some 

extent, dependent on animal pollination, mainly provided by birds, bats and insects (Ollerton et al., 

2011; Klein et al., 2007). By contributing to many crops’ productivity and quality, pollinators highly 

contribute to healthy diets (IPBES, 2016). The total global annual market value of animal pollination 
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has been estimated to be between 235 and 577 billion US dollars (Lautenbach et al., 2012). Beyond 

food provisioning, pollinators contribute to the provision of medicines, fibres and have inspirational 

and recreational values (Potts et al., 2016). Bees are important pollinators because of the diversity and 

complementarity of their functional traits (e.g., hairiness and visitation behaviour) (Potts et al., 2016; 

Ollerton, 2017). Many plant and bee species developed a highly specialized and mutual relationship, 

making the survival of both plants and bees dependent on each other presence and abundance. 

Honeybees are often the most abundant pollinator species in crop systems, but wild bee species are 

usually the more important crop pollinators, and for some plants, wild bees can be more efficient than 

honeybees (Garibaldi et al., 2013; Potts et al., 2016; Page et al., 2021). Most crop pollination is probably 

provided by a relatively small number of species (Kleijn et al., 2015). Pollinator diversity can however 

increase crop yield and quality through species synergy and complementarity (Brittain et al., 2013; 

Woodcock et al., 2019). Moreover, pollinator diversity can lead to more stable yields under different 

environmental conditions (Garibaldi et al., 2011; Brittain et al., 2013; Winfree et al., 2018). Wild bee 

individual species, richness and communities are therefore essential ESPs in agricultural landscapes, 

both for the production of crops and wild food as well as the delivery of cultural ES (IPBES, 2016). In 

Chapter 4, ESPs are wild bee species that pollinate rapeseed flowers (one of the main pollinator-

dependent crops in the CSA). 

Pest control ES are defined as the reduction by biological interactions of the incidence of pests, i.e., 

the species that reduce the output of food or material by consumption or reduction of biomass 

(Haines-Young and Potschin, 2018). Natural pest control or pest control by natural enemies (i.e., 

predators, pathogens or parasitoids of organisms that humans consider as pests) plays an essential 

role in reducing pests and therefore in maintaining or increasing crop yields (DeBach, 1964). Even when 

pesticides are used, natural pest control is a major factor in pest reduction (Pimentel et al., 2005). 

Natural pest control ES were evaluated at more than $400 billion per year globally (Costanza et al., 

1997). Besides, the intensive use of pesticides poses severe problems for environmental and human 

health. In some cases, it can even increase pest outbreak risks because of the inadvertent destruction 

of natural enemies and the capacity of pests to develop resistance to pesticides (Oerke, 2006). 

Moreover, the increasing use of pesticides over the last decades did not result in a reduction of crop 

losses due to pests (Oerke, 2006). There are therefore strong ecological and economic advantages to 

replacing the use of pesticides by enhancing the ability of natural enemies to reduce and control pest 

populations (Bommarco et al., 2013). Many arthropods are involved in natural pest control (Thies et 

al., 2011), as parasites, pathogens or predators. Most parasites and pathogens are highly specialized 

in a restricted number of host species. Predators can be generalists and feed on pests as well as other 

natural enemy species. Natural enemy species show complex interactions, including mutualism (Thies 

et al., 2011), predation and competition (Wilby et al., 2005; Straub and Snyder, 2006). Managing 

natural pest control ES is complex as increasing natural enemy diversity might increase intra-guild 

predation or competition in some configurations, especially in simplified landscapes (Tscharntke et al., 

2012b; Martin et al., 2013). In complex systems, however, species complementarity tends to be more 

frequent than negative interactions and a high species richness usually increases the overall natural 

pest control service potential (Thies et al., 2011; Letourneau et al., 2009; Snyder, 2019; Dainese et al., 

2019). Because natural enemies can interact with each other, modelling the associated ES potential 

requires not only assessing species richness and abundance but also accounting for negative and 

positive species interactions between natural enemies. In Chapter 5 of this thesis, the ESPs are 



Mapping and assessing ecosystem services in an agricultural landscape following a tiered approach           Marie Perennes 

 

11 
   

composed of natural enemies of aphids in crop fields (mainly spiders, carabids and rove beetles), 

considering positive and negative species interactions. 

1.3.3 Ecosystem services provider decline 

Biodiversity is currently declining globally at alarming rates, with evidence for a wide range of 

taxonomic groups (Ceballos et al., 2015; IPBES, 2019; Ceballos et al., 2020). A growing number of 

studies are specifically providing evidence of the decline of arthropod abundance and diversity 

(Sánchez‐Bayo and Wyckhuys, 2019; Seibold et al., 2019; van Klink et al., 2020; Wagner, 2020; 

Hallmann et al., 2021; Wagner et al., 2021). Butterflies, wild bees and dung beetles are probably 

globally the terrestrial species the most affected (Sánchez‐Bayo and Wyckhuys, 2019). In Europe, 

according to the International Union for the Conservation of Nature (IUCN) European Red Lists of 

threatened species, almost one in ten bee and butterfly species, one in five saproxylic beetle species 

and a quarter of all grasshopper species are at risk of extinction in Europe (Nieto and Alexander, 2010; 

van Swaay et al., 2010; Nieto et al., 2014; Hochkirch et al., 2016). 

The main drivers of this massive reduction of arthropod abundance and diversity are habitat change, 

pollution (which includes the widespread use of insecticides) and climate change (IPBES, 2019; Wagner 

et al., 2021) as well as their combined effects (see Figure 3). Habitat change is principally driven by 

land use changes such as urbanisation, agricultural expansion and intensification (Sánchez‐Bayo and 

Wyckhuys, 2019; Wagner et al., 2021). Especially, the disappearance, reduction and fragmentation of 

suitable habitats such as forests and other SNH like grasslands, hedgerows, and small set-aside areas 

negatively impact many arthropod species, populations and communities (Habel et al., 2019). 

Landscape homogenisation reduces species diversity, as arthropod species usually have specific needs 

for foraging, shelters, nesting and/or overwintering, and rely on the presence of multiple habitats, 

even if some species are more ubiquitous than others (Westrich, 2018).  

 

Figure 3: Impacts and combined effects of the many pressures faced by arthropod species (adapted from IPBES (2016) and 
Wagner et al. (2021)). 
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Complex agroecosystems can provide suitable habitats for numerous arthropod species (Rusch et al., 

2010; Kennedy et al., 2013; Senapathi et al., 2015; Potts et al., 2016; Wagner, 2020). Intensive 

agriculture and landscape simplification, however, have a substantial negative effect on arthropod 

diversity (Sánchez‐Bayo and Wyckhuys, 2019; Raven and Wagner, 2021; Wagner et al., 2021). The 

impact of urbanisation on arthropods is species-specific: Urban areas can for instance benefit wild bees 

(Baldock et al., 2015; Hall et al., 2017) depending on the degree of urbanisation (Fenoglio et al., 2020). 

However, this might not be the case for all arthropod species (Martinson and Raupp, 2013). Several 

factors can explain a relatively high insect diversity in urban areas: Urban gardens and parks can 

provide highly diverse habitats and therefore suitable environment, providing foraging and nesting 

resources for many species (Goddard et al., 2010; Baldock et al., 2015; Peng et al., 2020). Urban areas 

also tend to create warmer microclimates and therefore suitable conditions for the development of 

ectothermic species such as arthropods (Meineke et al., 2013). Finally, the lower use of pesticides can 

explain why some species can be better off in urban environments (Martins et al., 2017). 

Climate change has multifaceted effects on species: it can induce a shift in species’ geographic ranges, 

alteration in migration patterns and phenology, changes in community structure, compromise species 

interactions and induce population collapses, depending on species’ plasticity and its dispersal capacity 

(Potts et al., 2016; Sánchez‐Bayo and Wyckhuys, 2019). By shifting the suitable habitat ranges for wild 

plants, crops, pollinators, pests and natural enemies, climate change can also lead to 

desynchronisation in time and space of essential species interactions and thereby trigger the 

emergence of new pests (Biesmeijer et al., 2006; Renner and Zohner, 2018; Damien and Tougeron, 

2019). Climate change also causes increasing the frequency of extreme weather events, such as 

drought and flooding, which may lead to higher mortality rates and eventually population extinctions 

(Maxwell et al., 2019). Effective conservation of arthropods and the ES they deliver therefore implies 

understanding how multiple factors, from climatic to land use variables, shape the distribution of ESP 

species.  

1.3.4 Ecological niche of ecosystem services providers 

Mapping pollination and natural pest control relies on spatial information on the distribution of 

pollinators and natural enemies. While a high variety of species can provide these ES, this thesis 

focused on arthropods as pollination and natural pest control ESPs. Predicting species occurrence is 

still one of the greatest challenges in ecology and requires understanding how multiple biotic and 

abiotic factors shape species communities across scales. How landscape complexity, defined as 

landscape composition and configuration, influences arthropod species and the provision of ES has 

been widely explored (Bianchi et al., 2006; Chaplin-Kramer et al., 2011; Holland et al., 2017; Veres et 

al., 2013; Martin et al., 2019; Kleijn et al., 2019). Landscape complexity refers to the coverage and 

diversity of natural and semi-natural or non-crop habitats (Chaplin-Kramer et al., 2011). There is 

growing evidence that landscape complexity is essential to support pollinator and natural enemy 

species in agricultural landscapes (Chaplin-Kramer et al., 2011; Martin et al., 2016; Landis, 2017; Martin 

et al., 2019; Haan et al., 2020). Particularly, the amount of natural and semi-natural habitats and a high 

density of edges between crop fields and non-crop areas both largely contribute to arthropod 

abundance and richness in agricultural landscapes (Landis, 2017; Birkhofer et al., 2018; Martin et al., 

2019; Haan et al., 2020). Conversely, how different bioclimatic factors influence the presence of 

arthropods and their associated ES remains understudied (Lobo, 2016). In addition, how the different 
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drivers may interact with each other and increase the overall impact on arthropod species is still 

unresolved (Hallmann et al., 2017).  

Modelling the ecological niches of arthropod species can be tedious because each arthropod species 

has specific bioclimatic, habitat needs and dispersal capacities, which determine their occurrence and 

distribution in the landscape (Hill et al., 2015; Lobo, 2016; Carrié et al., 2017). Moreover, each organism 

experiences its environment at different scales, depending on its dispersal capacity and foraging 

behaviour (Miguet et al., 2016). In addition, biotic interactions can also shape species’ spatial 

distributions and are determinants to consider when assessing natural pest control service potentials 

as many natural enemy species are known to interact with each other (via predation, competition or 

mutualism) (Martin et al., 2013; Jonsson et al., 2017; Snyder, 2019). Multi-scales, multi-variables and 

multi-species assessment and modelling should therefore improve knowledge about the spatial 

distribution of ESPs and the delivery of the associated ES, thereby increasing the reliability of the 

models’ predictions. Moreover, assessing how different bioclimatic and land use factors influence 

species occurrence and diversity is essential to be able to predict the potential impacts of global change 

(i.e., climate change and land use change) on ESPs and how it can affect the delivery of the associated 

ES (Settele et al., 2016; Deutsch et al., 2018). In this thesis, new ES modelling methods based on 

previous knowledge about ESPs’ ecology were developed. By combining SDMs at the regional scale 

and species-specific habitat filtering at the local to landscape scale, the developed methods allow to 

simultaneously consider the main drivers affecting species occurrence. 

1.3.5 State of the art of mapping ecosystem services 

There is a high availability of ES mapping and assessment techniques, including maps that build on 

primary data or proxy indicators, process-based and correlative models and integrated modelling tools 

(Egoh et al., 2012; Crossman et al., 2013; Bagstad et al., 2013; Lautenbach et al., 2019). ES assessment 

methods based on primary data are generally considered more accurate than those relying on proxies 

or models (Crossman et al. 2013). However, the lack of primary data and the resource-intensity of field 

surveys often make the use of primary data unpracticable (Eigenbrod et al., 2010). Besides, not all ES 

are directly measurable or quantifiable. Their assessment, therefore, relies on modelling or 

extrapolation using proxy indicators (Maes et al., 2015). Land use/land cover (LULC) is a commonly 

used indicator to estimate ES supply (Egoh et al., 2012; Lautenbach et al., 2019), either based on simple 

look-up table methods (i.e., ES matrix), which attribute ES values for each land use category considered 

or embedded in more complex models using land use intensity, biophysical and socio-ecological 

variables (Jacobs et al., 2015). LULC has been shown to be a key determinant of the range of ES that a 

landscape can potentially provide (Campagne and Roche, 2017). However, in addition to land use, ES 

also depend on ecosystem processes, functions and therefore biophysical characteristics, which are 

not sufficiently accounted for when using solely LULC proxies (Eigenbrod et al., 2010; Stoll et al., 2015; 

Lavorel et al., 2017). Therefore, approaches only based on LULC as proxies for ES are usually associated 

with high uncertainties (Eigenbrod et al., 2010; Stoll et al., 2015; van der Biest et al., 2015).  

Approaches combining ES matrices with variables describing biotic and abiotic factors can increase the 

precision and reliability of the ES assessment outputs (Burkhard et al., 2012b; Jacobs et al., 2015; 

Lavorel et al., 2017). Correlative and process-based models usually address the role of ESPs (i.e., 

individual species, species richness, diversity or functional traits) for the delivery of specific ES. 

Correlative models refer to quantifying ES approaches, based on statistical relationships with 

biophysical variables and the delivery of specific ES. Process-based models are built on causal 
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relationships between driving factors, ecosystem properties, processes and ES. Process-based models 

have mostly been used to map provisioning services (e.g., food, fibre and fuel), climate regulation and 

erosion control (Lavorel et al., 2017). Correlative and process-based models can be particularly useful 

to accurately assess ES for which the ESPs are clearly identified (Lavorel et al., 2017). For instance, 

niche-based models have been used to assess cultural ES derived from the presence of key species 

(e.g., with spiritual or aesthetic values) and the provisioning of wild food (Schulp et al., 2014b).  

There are several existing integrated modelling approaches to map pollination ES. The Integrated Tool 

to Value Ecosystem Services and their Trade-offs (InVEST, Kareiva et al., 2011) is probably the most 

popular tool to model ES and particularly pollination. InVEST is an open-access suite of models that 

was developed under the Natural Capital Project. The Ecosystem Services Mapping tool (ESTIMAP, 

Zulian et al., 2014) has been initially designed to support policies at the European scale and contains a 

series of ES models, from outdoor recreation to crop pollination. Both tools use an expert-based 

assessment to estimate the capacity of different land cover categories to support different pollinators 

and thereby sustain pollination. One critical issue when relying on expert judgment is that the results 

can be biased depending on the experts selected and their knowledge of the whole system under 

assessment (Martin et al., 2012; Jacobs et al., 2015).  

Natural pest control services have been mainly modelled using correlative models and using 

mechanistic models (see Alexandridis et al., 2021 for a review on natural pest control models). Existing 

models generally suffer from a lack of generality or from a lack of realism, which limit their applicability 

(Alexandridis et al., 2021). For instance, models based on local field studies (e.g., Jonsson et al., 2014) 

aim at best fitting the local context, making the results not transferable to other contexts (i.e., lack of 

generality). Besides, local field studies often focus on one or few aspects of the landscape (typically 

proportion of crop cover, non-crop cover or SNH), at one single scale (typically between 500 m radius 

and 1 km radius around sampling plots (e.g., Rusch et al., 2016)), whilst other components (including 

landscape composition and configuration, i.e., landscape complexity) at multiple scales (from few 

meters to few kilometres) have been shown to be important drivers of species richness and diversity 

(Martin et al., 2019; Sirami et al., 2019; Haan et al., 2020). In addition, correlative approaches generally 

neglect the importance of climatic variables and biotic interactions in shaping species communities 

(e.g., Rega et al., 2018). Mechanistic models aim at a highly realistic description of pest-natural enemy 

interactions, generally described using numerous ecological processes such as reproduction, mortality, 

and dispersal capacity of pests and their predators (Alexandridis et al., 2021). These models, therefore, 

require a high amount of data and a detailed understanding of the underlying processes and 

considered species, restricting their use for many species communities (Holland et al., 2020; 

Alexandridis et al., 2021), particularly because natural enemies show a great diversity of traits. 

Finally, few ES modelling approaches are based on the use of ecological niche modelling (e.g., Civantos 

et al. (2012), Polce et al. (2013), Schulp et al. (2014b) and Nogué et al. (2016)). This approach can help 

to determine the habitat suitability of species based on bioclimatic variables, often neglected in other 

modelling approaches. However, existing ES models based on the ecological niche approach are 

typically developed at a coarse spatial scale (national or European scale) and do not consider important 

potential habitats at a finer scale such as hedgerows and flower strips, restricting their use to 

determine species and ES distribution at the landscape to local scales. 
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Combining the advantages of different approaches can improve our ability to predict ESP diversity and 

their associated ES: species distribution predictions through SDMs and correlative approaches to 

assess the importance of different landscape variables at different scales. 

1.3.6 Using ES mapping and assessment outputs for decision-making processes 

ES mapping and assessment methods are used to inform a variety of decisions in different contexts, 

including, among others, awareness-raising, communication, biodiversity conservation planning as 

well as ES accounting. The ES concept is increasingly integrated into environmental instruments, 

policies and practices (Grêt-Regamey et al., 2017). For instance, globally, the International Platform on 

Biodiversity and Ecosystem Services (IPBES) and the Convention on Biological Diversity (CBD) work 

towards raising awareness on biodiversity values and how to integrate these values in decision-making 

processes (UN, 1992; IPBES, 2019). Similarly, the Economics of Ecosystems and Biodiversity (TEEB) 

provided insights into the economic importance of ecosystems and their services and how to create 

market-based instruments to derive economic incentives for nature conservation, aiming at 

introducing the concept of ES in policy making (TEEB, 2010). In Europe, the EU Biodiversity Strategy to 

2020 aimed under Target 2 to maintain and enhance ecosystems and their services by establishing 

green infrastructure and restoring at least 15 % of degraded ecosystems (European Commission, 

2011). Besides, under Action 5 of the Strategy’s Target 2, ecosystems and their services shall be 

mapped and assessed. This initiated the MAES working group with one key task to develop an indicator 

framework for mapping and assessing ES (Maes et al., 2016). The general focus of MAES were the 

national ES assessments for each EU Member State and a European ecosystem assessment. Global and 

national ES assessments are essential for raising awareness and measuring progress toward national 

environmental conservation targets. ES mapping and assessment at the landscape to local scale are 

however often more appropriate for a wide range of land use planning, management and decision-

making tasks.  

In the EU, agricultural land use, management and practices are largely influenced by the CAP (Lefebvre 

et al., 2012). Originally targeting to increase agricultural production, the CAP has evolved and now 

includes environmental objectives, of which AES represent the most prominent available instruments 

(Hodge et al., 2015). AES measures provide incentives to compensate for the costs and income losses 

resulting from the adoption of nature-friendly practices. The role of AES in effectively halting 

biodiversity loss and enhancing environmental condition is still questioned, mainly due to unclear 

objectives and partly inadequate design (Batáry et al., 2015). ES mapping and assessment at the 

landscape and the local scales can support the design of context-specific and targeted AES measures. 

Thereby, it can help to increase their effectiveness in enhancing ES and biodiversity conservation. 

1.3.7 Importance of spatial scale 

Despite the development of a broad array of ES mapping methodologies and assessment frameworks 

consecutive to increasing interests of policy and decision-makers (e.g., MA 2005, TEEB 2010, MAES and 

IPBES), there are still some important aspects of the ES concept that need to be improved, such as how 

to determine the appropriate spatial scale to assess ES and how this choice can affect the accuracy, 

precision and therefore reliability of the ES assessment (Raudsepp-Hearne and Peterson, 2016). Scale 

refers to the spatial or temporal dimension of an object or process and is characterised by extent and 

resolution. Both extent (dimension of the considered geographic area, coverage or temporal period) 

and resolution (unit of measurement or grain size) of ES mapping have an impact on the assessment’s 



Mapping and assessing ecosystem services in an agricultural landscape following a tiered approach           Marie Perennes 

 

16 
   

results. For instance, carbon sequestration and climate regulation operate at highly different temporal 

and spatial scales. Carbon sequestration mechanisms are better explained at fine temporal and spatial 

scales (i.e., trees, one hectare of grassland, yearly) (Harmon, 2001), while climate regulation needs a 

global assessment, using longer temporal and broader spatial scales (West et al., 2011).  

This thesis focused on the spatial dimension of scale. The spatial extent of ES assessments is generally 

determined by the purpose of the analysis. However, only few ecological processes are associated to 

a specific geographical extent; most of them occur across extents and are shaped by interactions 

between different ecosystems at various spatial (and temporal) scales (Bennett et al., 2009; Raudsepp-

Hearne et al., 2010; Raudsepp-Hearne and Peterson, 2016). Similarly, the appropriate ES assessment 

resolution (or grain size) is generally ES-specific and depends on the underlying biophysical processes 

(Potschin and Haines-Young, 2011). Using different spatial extents and grain sizes can therefore lead 

to different conclusions for biodiversity trends (Rahbek, 2005; Steinbauer et al., 2012) and ES 

potentials (Grêt-Regamey et al., 2014). Provisioning ES can often be defined at a rather fine resolution: 

for instance, timber production can be assessed precisely and determined for single trees or forests 

(Grêt-Regamey et al., 2014). Similarly, crop production can be assessed for single-crop plants or fields 

(Kandziora et al., 2013b). Statistical data on provisioning ES capacity are nevertheless usually 

aggregated to coarser resolutions, typically corresponding to administrative borders, which usually do 

not correspond to ecological processes. Crop yield statistics are for instance often only available at the 

district resolution for the selected CSA (Kandziora et al., 2013b) and are therefore not usable for a finer 

spatial assessment. Regulation ES such as flood regulation capacity and cultural ES such as recreational 

ES are typically provided by processes that are better assessed at coarser spatial resolutions (Grêt-

Regamey et al., 2014).  

This study aimed at modelling ES in the CSA to test several ES mapping and assessment methods at a 

scale relevant to decision-making processes. The delimitation of the geographical extent was therefore 

determined by (district) administrative borders (see Figure 1). In practice, the resolution of the 

assessment is often determined by available data. The LULC resolution is of great importance as 

landscape patterns tend to disappear with increasing grain size. At coarser resolution, spatial 

information is aggregated and the landscape representation becomes more homogeneous, which can 

lead to a significant reduction of the variance in the ES assessment (Grêt-Regamey et al., 2014). 

Aggregated data or processes occurring at finer resolution also tend to increase data uncertainty and 

decrease the precision of the assessment. One of the research questions of Chapter 3 is to determine 

how spatial resolution influences the outputs when mapping ES at the local scale for different ES 

(analysing map structural similarity, i.e., correlation, variation and local mean (Jones et al., 2016)). 

Scale is also highly relevant for species distribution modelling: Macroecological studies generally have 

global scope and coarse resolution, whereas conservation planning requires detailed ecological 

understanding adapted to the local context. Besides, species distribution is determined by different 

processes at various scales (Pearson and Dawson, 2003; Pearson et al., 2004) and the appropriate 

assessment scale should be determined by the species characteristics and how each species interacts 

with the spatial arrangement of environmental predictors. For Chapters 4 and 5, a multiscale and 

hierarchical assessment was used to determine ESP occurrence and the associated ES potentials. 
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2 Methods 

The challenge of modelling and mapping ES lies in the variety of ES and the complexity of the different 

processes involved in the delivery of ES. This thesis follows the tiered approach to assess and map the 

potential supply of different ES in an agricultural landscape.  

2.1 The tiered approach 

The multitude of ES mapping and assessment methods can make the selection of an appropriate 

method tedious. The tiered approach presented by Grêt-Regamey et al. (2015) provides a conceptual 

framework on how to select an appropriate ES assessment method and how to combine different 

levels of complexity for an integrated approach. The method used should primarily be selected based 

on the purpose of the ES assessment, knowing the strengths and shortcomings of the selected 

method(s) and knowing that there is a general trade-off between feasibility and accuracy. Following 

this approach, depending on the research question, a tier 1 approach (such as simple assessments 

based on land use proxy) can be used to provide a rough overview of a phenomenon or for awareness-

raising. In case process-understanding is needed, such as, for instance, to support local planning 

decisions, a tier 3 (e.g., correlative, process-based or socio-ecological system models) approach should 

be envisaged.  

The simultaneous assessment of a broad range of ES is needed to understand the interrelations 

between services, potential trade-offs and synergies and how services are impacted by land use and 

land management but also climate change (Bennett et al., 2009). Particularly, the multi-functionality 

of ecosystems and landscapes can only be assessed when accounting for potential synergies and trade-

offs between different ES. Because of the high complexity of ecosystems and processes involved in ES 

delivery, ES assessment generally implies the simplification of the studied systems. The specific 

context, the scale of application and the purpose of the ES assessment should determine the degree 

of simplification of the whole system. There is often a compromise between a holistic assessment of 

multiple services and the reliable assessment of each ES. For an assessment of a broad range of ES, 

tiers 2 and 3 are hardly conceivable. This is particularly the case for an ES assessment adapted to local 

context and characteristics, for which correlative, process-based and socio-ecological system models 

set in another region of the world cannot easily be applied without adjustments. In practice, mapping 

ecosystems and their services depends to a very large extent on the availability of spatially explicit 

data, expertise and time constraints.  

The tiered approach can also be used to overcome the limitations of data availability, to build an 

integrated mapping and assessment using multiple approaches (Burkhard et al., 2018): for instance, 

combining a simple assessment based on LULC data as a basis and expert-based knowledge about ES 

and/or more complex and detailed information on ecosystem processes and functions whenever the 

ecological processes are better understood. Particularly, the complexity of agricultural landscapes and 

their interlinked social-ecological components call for integrated and flexible assessment approaches, 

addressing the various dynamics of ecosystems and ES at different scales. The use of a multi-tiered 

approach offers more flexibility than single assessment methods and is more adapted to reach multi-

stakeholders, which then increases the possibility to integrate ES considerations in land use and 

management decision-making processes (Dunford et al., 2017). Moreover, using a multi-tiered 

approach has the potential to increase the feasibility of the assessment, the accuracy and the 

understandability of the results.  
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The different ES assessment methods applied in this thesis follow this tiered approach (Figure 4). At 

tier 1, ES mapping was performed using the Coordination of information on the environment (CORINE) 

Land Cover dataset and the matrix approach, i.e., an expert-based ES assessment method. At tier 2, 

information on ecosystem condition and a LULC database with a higher spatial resolution was 

integrated into the assessment. The third tier corresponds to more complex modelling methods, which 

were developed to assess pollination and natural pest control ES potentials in the CSA. The application 

of a tiered approach also reflects the varying level of knowledge about different ES and gives the 

opportunity to integrate a wide range of data with different qualities and the use of different mapping 

methods with various levels of complexity, increasing the strength of the overall ES assessment. 

 

Figure 4: Illustration of the tiered approach for assessing and mapping ES, and the different methods presented in this thesis. 
The mapping outputs of the three tier levels can be used to address distinct decision-making issues. At tier 1, ES potentials 
were estimated using the ES matrix and land cover data. At tier 2, the assessment was completed by ecosystem condition 
indicators. At tier 3, more complex models were developed to assess pollination and natural pest control ES potentials in the 
case study area. 

 

2.1.1 Tier 1 

At tier 1, ES potentials were assessed using the expert-based ES matrix approach developed by 

Burkhard et al. (2009, 2014). The ES matrix approach is a flexible ES assessment method that links LULC 

classes, ecosystem types or other appropriate geospatial units to ES values (potential, supply, flow or 

demand) (Burkhard et al., 2009; 2014). The approach consists of a look-up table with the ES as columns 

(or rows) and the geospatial units (generally LULC classes) as rows (or columns) (see Figure 5). In a tier 

1 setting, a pool of appropriate experts is then asked to value or score the ability of each geospatial 

unit to provide each ES, on a scale of 0 (no relevant potential) to 5 (high potential). This expert-based 

method has been widely used, with various spatial and temporal scales as well as mapping purposes 

(Campagne et al., 2020). Expert-scoring tools have the advantage to provide a comparably fast and 

efficient way to evaluate ES (potential, supply, flow or demand) and are particularly useful in data-

scarce environments (Jacobs et al., 2015). The main critics are: they have a restricted capacity to cover 

ES spatial variability, because of the lack of mechanistic links between LULC and the delivery of ES and 
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a potential high variability in the results depending on the pool of selected experts (Hou et al., 2013; 

Jacobs et al., 2015). To overcome these shortcomings, the LULC- and expert-based ES matrix approach 

can be enhanced by more detailed geospatial data and the use of suitable indicators and methods for 

ES quantification. 

 

Figure 5: Principle of the ES matrix approach, illustrated in a fictive study area (from Burkhard and Maes (2017)). Each land 
cover type or geospatial unit (top-left corner) is given a value corresponding to its capacity to deliver specific ES according to 
a panel of experts (table in the middle). The resulting ES matrix can be then used to map the different ES capacities of the 
study areas (maps on the right side). 

 

2.1.2 Tier 2 

At tier 2, the ES matrix approach was combined with ecosystem condition indicators, based on the 

assumption that the capacity of an ecosystem to deliver ES is determined by its condition (i.e., its 

physical, chemical and biological quality). The condition of an ecosystem is determined by its biotic 

and abiotic characteristics (Maes et al., 2018). Identifying appropriate variables that define and capture 

the essential characteristics of an ecosystem is still challenging, with no ready-to-use data (Hein et al., 

2020; Czúcz et al., 2021). The condition of an ecosystem is therefore generally measured using 

indicators (Rendon et al., 2019). For this thesis, an ecosystem condition index was developed based on 

the indicator list provided by the MAES working group. Key features for good indicators are: they are 

quantifiable, spatially-explicit and sensitive to changes regarding ecosystem health and biodiversity 

policy targets (Maes et al., 2018). The major issue was to find quantifiable, with the required resolution 

and non-redundant data to build quantified indicators as recommended by the 5th MAES report. 

Among the multiple indicators listed in the 5th MAES report, three indicators were selected to this end: 

Landscape Fragmentation Index, the Red List Index (RLI) for ecosystems and Soil Organic Carbon (SOC). 

The Landscape Fragmentation Index measures the extent to which the ecosystems that compose the 

landscape have been transformed into smaller, isolated and unconnected ecosystems due to the 

construction of transport networks, built-up areas and natural barriers. The RLI measures the status 

and trends in the overall extinction risk of species living in each ecosystem presents in the CSA and is 
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a measure of the status of the different ecosystems in terms of biodiversity. The SOC is an indicator of 

the soil quality and of the below-ground microorganism activity. The indicators were combined into an 

ecosystem condition index and aggregated with the ES matrix outputs to map the ES potential of the 

CSA. 

2.1.3 Tier 3 

At tier 3, niche-based models were developed to predict the presence of ESPs and thereby the 

potential delivery of the related ES. The two model frameworks were inspired by the Ecological 

Potential Function (EPF) presented by Kremen et al. (2007) to model ES from mobile species (originally 

pollination ES from wild bees) and further developed by Jonsson et al. (2014) to model natural enemies 

and natural pest control ES. The EPF is a tool for framing current knowledge on how different ecological 

variables and processes are involved in the ES production (Bruins et al., 2017). It helps to express 

ecological processes through quantitative, qualitative expressions or models explaining the 

relationships between the geographical context, landscape characteristics, land use and management, 

biotic interactions, ESPs and the provision of ES.  

The presence of one specific ESP or species at a specific location is primarily determined by the 

physiological characteristics of this species and if this location has suitable bioclimatic conditions, 

mainly determined by temperature and precipitation at specific times of the year or the presence of a 

particular resource (Pearson and Dawson, 2003; Guisan and Thuiller, 2005; Soberón, 2007). At the local 

scale and within its bioclimatic niche, the ecological niche of a species is determined by specific biotic 

resources and biotic interactions. For instance, the presence of wild bees depends on the proximity of 

specific habitats, providing foraging and nesting resources (Lonsdorf et al., 2009; Kennedy et al., 2013; 

Westrich, 2018). The amount and spatial configuration of natural and semi-natural habitats (i.e., 

landscape complexity) are determinant to sustain natural enemy communities (Martin et al., 2019; 

Haan et al., 2020). The spatial configuration of the different landscape elements is determinant as ESPs 

often have limited mobility. Wild bees can fly between foraging sites and nesting sites, with typical and 

maximal flying distances correlated with their body size (Greenleaf et al., 2007). This flying distance 

determines the capacity of a bee to pollinate crop fields, as crop fields are typically not suitable nesting 

sites. Many wild bee species are specialists and pollination-dependent crops are not pollinated by 

every species. The resulting wild bee species pool determines the pollination ES potential of a specific 

area.  

Similarly, natural pest control ES potential is often determined by the capacity of natural enemies to 

colonise crop fields. The occurrence of natural enemies in crop fields frequently depends on the 

proximity of overwintering sites or shelters. Besides, the resulting ES potential depends on the feeding 

habits of each species. Some natural enemies are specialists and will only feed on the targeted pests, 

whereas other natural enemies are generalists and will feed on pests as well as on other natural 

enemies. Intraguild predation can potentially disrupt natural pest control potential (Martin et al., 2013; 

Jonsson et al., 2017). Behavioural interactions and apparent competition between natural enemy 

species can also negatively impact the final natural pest control potential in the fields (Straub et al., 

2008; Letourneau et al., 2009). Natural enemies can also show positive interactions linked to niche 

partitioning or redundancy. Therefore, the relationships among natural enemy species should also be 

accounted for when modelling natural pest control. The resulting community determines the natural 

pest control ES potential of a specific area.  
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2.2 Ecological niche modelling 

The niche-based models were built using species distribution models (SDMs). SDMs are statistical 

methods that derive species distribution patterns from observations of species occurrences and 

environmental variables. They are typically used to determine the main environmental drivers of a 

species, to assess the relationships between species and their environment, aiming at understanding 

and making species distribution pattern predictions (Guisan and Zimmermann, 2000; Elith and 

Leathwick, 2009). SDMs are also known as, among others, bioclimatic models or envelopes, habitat 

suitability modelling and ecological niche models. They have many application fields, e.g., to support 

the management of threatened or invasive species and to predict the impacts of climate or land use 

changes on the geographical range of a particular species (Guisan and Thuiller, 2005). SDMs are 

particularly adapted to assess the habitat suitability of an area for a specific species and can assist the 

design of biodiversity conservation measures (Kadoya et al., 2009; Sousa-Silva et al., 2014; Uden et al., 

2015). SDMs have already been used to assess ES, particularly for wild food provision (Schulp et al., 

2014b), pollination (Polce et al., 2013; Nogué et al., 2016) and natural pest control (Civantos et al., 

2012).  

SDMs derive from the niche concept of Hutchinson (1957), which is defined as the multidimensional 

environmental space with suitable conditions for a defined species, i.e., which allows population 

growth. The theoretical assumptions behind SDMs are the following: 1) there is an equilibrium or 

pseudo-equilibrium between species and their environment, 2) the main environmental predictors are 

being considered at the relevant resolution, and 3) species observations used to fit the models are 

suitable and contain no severe bias (Elith and Leathwick, 2009). Under these assumptions, SDMs can 

be used to predict species distribution in areas that are not sampled or under different scenarios of 

future environmental conditions. 

 

Figure 6: Principle of species distribution modelling, illustrated on a study area representing Europe (adapted from Guisan et 
al. (2017)).  
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SDMs minimally require species occurrence data, a set of environmental predictors representing the 

environmental space of the focal species and one or several modelling methods (Figure 6). One major 

challenge is to assemble a suitable species occurrence dataset. These data can be presence-only, 

presence-absence or abundance data. They can be provided by recording data in the field using a 

sampling approach specifically designed for the purpose of the study or extracting data from 

biodiversity databases such as GBIF (Global Biodiversity Information Facility2), CABI (Centre for 

Agriculture and Bioscience International3), IUCN’s red List (International Union for the Conservation of 

Nature4) and Map of Life5. Study-specific field sampling usually provides high-quality data and leads 

therefore to a better model accuracy (Amano et al., 2016). Field sampling is, however, time and energy 

intensive and only feasible for a limited number of species, time and geographic extents. Besides, 

models trained at small geographical scales are usually unable to capture the complete niche of species 

as the chances of missing important predictors are high, which can lead to inaccurate predictions 

(Titeux et al., 2017). Models trained at local scales are generally not adapted to assess the impact of 

climate change on species distributions and are not easily transferable to other regions with different 

bioclimatic contexts.  

Data from large biodiversity databases consist of accumulated collected data for different field surveys, 

historical museum collections or citizen science. Biodiversity databases have clear advantages over in-

field recorded data: they provide an unrivalled amount of data, covering a long period and a large 

spatial extent. However, as these data come from different sources, they potentially contain numerous 

issues and biases: mainly uncertainty in data quality (for instance, species misidentification or 

geographical mislocation) and a lack of sampling design and therefore potentially a biased (incomplete 

and uneven) spatial coverage of the species (Zizka et al., 2020). These issues can be partly addressed 

by carefully cleaning the extracted data and resampling the data to reduce spatial biases inherent to 

large biodiversity datasets (Zizka et al., 2020). There is, however, an inherent trade-off between 

keeping a high amount of (or even sufficient) species occurrence data and dealing with spatial biases. 

Moreover, spatial biases of occurrence data can be due to the uneven distribution of the species, for 

example, a species with a restricted niche. As spatial biases and species distribution can be 

confounded, dealing with not evenly distributed data is an issue with no perfect solution yet. 

Species data are usually in the form of presence-only records as absence of species is not easily 

recordable. This issue is exacerbated for mobile and/or small species, for which recording true absence 

is often unfeasible, even with dedicated field sampling (Mackenzie and Royle, 2005). As SDMs require 

presence-absence data, one way to deal with presence-only data is to inform the model with 

background data or pseudo-absences (i.e., inferred absence data based on the information available 

about the locations where the target species is present). Several methods have been presented by 

Barbet-Massin et al. (2012) and Phillips et al. (2009). In Chapters 4 and 5, the target background 

method was used, which consists of restricting background areas to sampled areas where the targeted 

species was not found. 

The selection of environmental predictors is a determinant step in the modelling process. 

Environmental predictors need to be as proximal as possible, i.e., physiologically and ecologically 

 
2 http://www.gbif.org 
3 https://www.cabi.org 
4 https://www.iucn.org 
5 https://mol.org 
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meaningful variables for the modelled species and thereby the main drivers of the species’ range 

(Austin, 2007). One issue is that many environmental variables are correlated with each other and 

therefore a correlation between species patterns and one factor does not necessarily imply a causal 

relationship (Dormann et al., 2013). For instance, most species show clear elevation patterns, whereas 

the direct physiological effect of elevation on species distribution is debatable (Körner, 2007). Instead, 

some proximal variables and particularly temperature and precipitation are strongly (locally) 

correlated with elevation, generally explaining the elevation patterns. As correlation between 

predictors can be an issue for most statistical techniques (also called multicollinearity issues), a 

necessary preliminary step is to assess and reduce multicollinearity between predictors (Dormann et 

al., 2013). Moreover, most statistical methods require a minimal number of observations for each 

variable considered (Pearce and Ferrier, 2000; Stockwell and Peterson, 2002). A high number of 

environmental variables can become an issue if only a low number of observations is available. Another 

hurdle is that predictors with sufficient quality and accuracy are not always available at the desired 

scale or not in a spatially explicit form. The spatial resolution of predictors is critical as using a too 

coarse resolution can lead to spurious correlations and undetected spatial patterns (Guisan and 

Thuiller, 2005). There are several approaches to reduce the number of variables considered, among 

them, assessing the correlation between the variables using Pearson or Spearman correlations, using 

the principal component analysis (PCA) or the Akaike information criterion (AIC or AICc, the Akaike's 

information criterion corrected for small sample-size) (Dormann et al., 2013). PCA is a popular 

approach for dimension reduction, i.e., to select a low-dimensional set of variables from a larger set. 

Basically, PCA are used to determine the directions of the data along which the observations vary the 

most and to select the variables (or combinations of variables) that explain most of this variation 

(Jolliffe and Cadima, 2016). The AIC is a stepwise variable selection procedure (Akaike, 1973; Harrell et 

al., 1984). AIC has two components: the log-likelihood, which measures how the model fits the 

observed response and bias correction factor, which increases with the number of parameters 

included in the model. Thus, AIC helps to identify the most parsimonious model from among the 

candidate set of predictors (Johnson and Omland, 2004). In Chapter 4, PCA and Pearson correlation 

were used to reduce the dimension of the set of explaining variables. In Chapter 5, variable importance 

was assessed using AIC and Spearman correlation.  

The relationship between species occurrence and environmental predictors is inferred using statistical 

modelling techniques. SDMs’ modelling techniques vary from (simple) regression-based approaches to 

machine learning techniques (Elith and Franklin, 2013): among them, generalized linear models (GLM, 

Nelder and Wedderburn (1972)), generalized additive models (GAM, Hastie and Tibshirani (1986)), 

artificial neural networks (ANN, Ripley (1996)), linear and flexible discriminant analysis (LDA, FDA, 

Hastie et al. (2009)), boosted regression trees (BRT, Friedman (2001) and Elith et al. (2008)), Random 

Forest (RF, Breiman (2001)) and maximum entropy (MAXENT, Phillips et al. (2006)). The choice of 

modelling algorithm can affect the model’s predictive performance (see Elith et al. (2006) for a 

comparison). As no single method has consistently better performances than others (Elith et al., 2006; 

Pearson et al., 2006), current standards advise developing ensemble models, i.e., to combine the 

outputs from different modelling techniques (IPBES, 2016; Araújo et al., 2019; Zurell et al., 2020a). 

Here, ensemble models were built based on three different algorithms: GLM, FDA and RF in Chapter 4 

and GLM, RF and BRT in Chapter 5.  

GLMs are extensions of regression models and allow the response variable to follow other distributions 

than the normal distribution (contrary to linear regressions). In GLMs, the predictors are linked to the 
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mean of the response variable through a link function, used to transform the response to linearity. If 

the response is not a linear function of predictors, the predictors can be transformed (typically into 

polynomial regressions). Commonly used distributions are: normal, Poisson, binomial (typically used 

for presence-absence data), gamma and negative binomial. GLMs tend to retrieve models with lower 

performance compared to more sophisticated ones but have the advantage of being relatively simple 

to describe, understand and interpret (Elith and Graham 2009). FDA is a classification model equivalent 

to multi-response, non-linear regression models, using optimal scorings and multiple adaptive 

regression splines to generate the discriminant surface between classes (Hastie et al., 1994). This 

algorithm does not make any assumption about the predictors, can deal with non-linear combinations 

of predictors and works particularly well with a high number of predictors. RF is a widely used bagging 

approach, which combines randomized decision trees and aggregates predictions by averaging them 

(Breiman, 2001). BRT is a boosting procedure that iteratively fits simple trees to the training data and 

then fits each new tree to the residuals of the trees previously developed. RF and BRT are so-called 

machine learning methods.  

Regression-based methods are less flexible than other statistical approaches and tend to underfit 

observed complex occurrence-environment relationships (Merow et al., 2014). As a result, they 

generally have a high bias. Overly complex models, on the contrary, tend to overfit the data and have 

higher variance (Merow et al., 2014) and can inadvertently ascribe patterns to noise observed in the 

data. This phenomenon is commonly known as the variance-bias trade-off: simple models tend to have 

low variance and high bias, whereas complex models tend to have high variance and low bias. Machine-

learning methods usually outperform regression-based methods in variable selection and predictive 

performance, because they allow to automatically detect and fit interactions between predictors (Elith 

et al., 2006). RF and BRT also have the advantage to have inherent procedures reducing the variance 

of the model predictions, mainly committee averaging (Breiman, 2001) and stochastic gradient 

boosting (Elith et al., 2008). Model complexity should nevertheless be constrained through model 

fitting, data resampling and algorithm selection (see Merow et al. (2014) for guidelines on how to 

design SDMs with appropriate levels of complexity). Here, model complexity was constrained by 

carefully selecting variables before modelling, minimizing multicollinearity, checking if data sampling 

was sufficient, using cross-validation assessments and combining simple with more complex 

algorithms to produce the final models. 

2.3 Measuring model fit 

Model fit (or performance assessment) can be assessed in terms of explanatory power, i.e., how well 

the model explains the patterns observed in the data that were used to fit the model, or predictive 

performance (or generality), i.e., how well the model predicts data not used to fit the model. SDMs’ 

predictive performance is evaluated by comparing model predictions (the probability of the presence 

of a species) to observations (presence-absence data) using independent data (i.e., different data than 

the dataset used to train the model) (Guisan and Thuiller, 2005; Guisan et al., 2017; Araújo et al., 2019; 

Zurell et al., 2020b). This is usually done through data partitioning, e.g., k-fold cross-validation, where 

the whole dataset is randomly divided into k groups and using one group for validation and the 

remaining k-1 groups as training set or, less frequently, using another dataset (from another sampling 

event for instance). Assessing the strengths and weaknesses of a particular model generally implies 

the use of different metrics. Model performance can be evaluated in terms of accuracy, discrimination, 

calibration and precision (Figure 7, Norberg et al. (2019)). Accuracy measures the degree of proximity 
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between the predicted and the true value (Figure 7a). Depending on the data and algorithm used, 

accuracy can be measured using the root mean squared error (RMSE), the coefficient of determination 

(R²) or the percentage of deviance explained. Model performance can also be evaluated according to 

its discrimination capacity, i.e., its capacity to discriminate presences from absences (or occupied from 

unoccupied sites) (Figure 7b). 

 

Figure 7: Accuracy, discrimination, calibration and precision are four aspects of model performance. In each panel, the grey 
dot shows the true value and the red dot with error bar shows the mean model prediction and its confidence interval (from 
Norberg et al. (2019)). 

Several metrics have been developed to measure discrimination, the most used being the area under 

the curve of the receiver operating characteristics (AUC/ROC, Fiedling and Bell, 1997) and the true skill 

statistics (TSS, Allouche et al. (2006)). AUC/ROC and TSS are both threshold-dependent metrics: 

comparing continuous predictions to presence-absence data requires converting the continuous 

prediction to a binary scale. This is done by choosing a threshold value above which the predictions 

are considered as presence. Then the sensitivity (proportion of true positives correctly identified) and 

the specificity (proportion of true negatives correctly identified) of the models are calculated. The 

AUC/ROC metrics are measured using a curve representing all values of sensitivity against the 

corresponding 1 – specificity value and then calculating the area under this curve (or surface). 

AUC/ROC values vary between 0 (no discrimination power) to 1 (perfect discrimination). The TSS is 

calculated using the following formula: TSS = sensitivity + specificity - 1 and relies on the selection of 

an appropriate threshold (Liu et al., 2005; Liu et al., 2013). The TSS ranges from – 1 to + 1, where + 1 

indicates a perfect agreement and 0 or less a performance no better than random (Allouche et al., 

2006). These methods, and particularly AUC/ROC, should not be used as standalone evaluation metrics 

when applied to presence-pseudo-absences (Phillips and Elith, 2010). However, they are still powerful 

metrics to compare models built with similar data and design (Zurell et al., 2020a). Calibration 

measures the distance between the test dataset and the predictions, i.e., the statistical consistency 

between distributional predictions and the true values. Measures of calibration include calibration 

plots, which compare the proportion of observed presence/absence to predicted probability classes, 

such as the presence-only calibration plot (Phillips and Elith, 2010) and the Boyce index (Boyce et al., 

2002) (Figure 7c). Precision measures the width of the predictive distribution and can be evaluated 

through confidence intervals and standard errors (Figure 7d). Finally, model predictions can be checked 

for plausibility by looking at the shape of the response of the fitted species-environment relationships 

and by comparing the predicted distribution to existing maps. 

Not all performance metrics can be used for all data types nor modelling frameworks. For instance, the 

use of presence-data, presence-absence data, continuous data or count data will imply different model 

fit assessments (Guisan et al., 2017). In Chapters 4 and 5, AUC/ROC, TSS and the Boyce index were 

used to compare the results of different modelling algorithms and to assess the overall model 

performance. The predictive performance of the final models developed in Chapters 4 and 5 was also 

evaluated using in-field collected data, using accuracy measures (R² or explained deviance). Plausibility 
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was also assessed by looking at the shape of the response of the fitted species-environment 

relationships and looking at existing distribution maps when available. 

2.4 Hierarchical species distribution modelling 

Species distribution is determined by many factors and processes operating at different scales. The 

relative importance of multiple factors to explain observed species distributions depends on the scale 

of the assessment and many patterns will only emerge at a specific scale (Soberón, 2007). At the global 

scale, the species’ fundamental niche is delimited by its physiological characteristics, abiotic 

constraints and dispersal limitations. Resource availability and biotic interactions shape the species 

distribution at the local scale. These drivers together influence and determine the species’ realized 

niche (i.e., the observed spatial distribution of the species). Figure 8 illustrates the hierarchical 

approach for modelling species occurrence used in Chapters 4 and 5. On one hand, models that are 

only trained at coarser spatial resolution and global or regional scales usually overpredict species 

distributions as they do not account for local ecological processes. On the other hand, models only 

trained at smaller spatial resolution are unable to accurately determine the whole ecological niche of 

a species. One approach to account for different ecological processes occurring at different scales is to 

apply a hierarchical modelling approach (Pearson et al., 2004; Mateo et al., 2019a; 2019b). This 

approach has been demonstrated to be more reliable than single-scale SDMs and has the advantage 

to provide applicable and ecological meaningful predictions to guide (local) conservation measures 

(Milbau et al., 2009; Hattab et al., 2014; Petitpierre et al., 2016; Fournier et al., 2017; Mateo et al., 

2019a; 2019b; Bellamy et al., 2020). 

 

Figure 8: Hierarchical view of the three main influences determining species occurrence at a given site (adapted from Guisan 
et al. 2017). 

Many techniques, from simple to more complicated, have been used to build hierarchical SDMs. Also, 

simple methods have been shown to perform well (Fournier et al., 2017; Mateo et al., 2019b; Mateo 

et al., 2019a; Bellamy et al., 2020). Building on Mateo et al. (2019b), the hierarchical models of 

Chapters 4 and 5 were built using a rather simple method: by combining models from different scales 

and multiplying the prediction values of the models produced at different scales. 
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2.5 Influence of landscape complexity on ecosystem services potential 

Arthropods represent an extremely diverse group and tend to have complex life cycles, composed of 

several stages (generally eggs, larvae, pupae and adults). They have different strategies for surviving 

winter, including overwintering, migrating and hibernating. They also have different feeding and 

foraging habits (generalists or specialists, ground-dwelling or foliage-dwelling) and different mobility 

capacities. Arthropods generally depend on the presence of SNH, which provide overwintering 

habitats, nesting sites, shelters and alternative resources (Roschewitz et al., 2005; Thies et al., 2005; 

Holland et al., 2016; Westrich, 2018; Tamburini et al., 2020). Their mobility is generally determined by 

their size, which in turn determines at which scale they experience their environment and the extent 

to which they can deliver ES. Heterogeneous landscapes should facilitate exchanges between SNH and 

crops and therefore benefit most of the species (Hendrickx et al., 2007; Holzschuh et al., 2010; Fahrig 

et al., 2011; Tscharntke et al., 2012b; Blitzer et al., 2012; Haddad et al., 2017; Martin et al., 2019; Haan 

et al., 2020).  

In Chapters 4 and 5, two different approaches are used to assess and account for the impact of 

landscape complexity on the ESP communities. For wild bees, following Londsdorf’s model (2009), a 

habitat filter was applied and each bee species was directly linked to its specific habitat(s). For natural 

enemy species, the meta-analysis from Martin et al. (2019) was used to assess and predict the effect 

of landscape complexity on the presence of each species, as this showed to be the main driver of 

species occurrence at the landscape scale (Bianchi et al., 2006; Chaplin-Kramer et al., 2011; Holland et 

al., 2017; Veres et al., 2013; Martin et al., 2019; Kleijn et al., 2019; Haan et al., 2020). 

2.6 The role of biotic interactions for ecosystem services potential 

Species rarely occur alone, instead, they are generally organized in communities and biotic interactions 

can play an important role in species distribution (van der Putten et al., 2010; Wisz et al., 2013). For 

instance, competition may restrict niches in otherwise environmentally suitable areas (Götzenberger 

et al., 2012) or the presence of other species or taxa can be an essential resource for the modelled 

species (Planillo et al., 2021). Biotic interactions can also be a determinant factor for the distribution 

of mutualistic species (Gutiérrez et al., 2005; Heikkinen et al., 2007). Complex biotic interactions have 

already been described in natural enemy communities, such as inter- and intraguild predations (Martin 

et al., 2013; Jonsson et al., 2017; Snyder, 2019), as well as mutualistic or facilitating relationships 

(Schmidt et al., 2003). 

Joint species distribution models (jSDMs) have been developed to account for biotic interactions in 

SDMs and to disentangle environmental and biotic influence on species occurrence (Pollock et al., 

2014; Warton et al., 2015; Hui, 2016; Ovaskainen et al., 2017; Wilkinson et al., 2021). jSDMs are 

Bayesian statistical models and can be considered as extensions of GLMs. jSDMs use latent variables 

(or residual correlations) between species occurrences after accounting for their response to 

environmental conditions to assess biotic interactions (Wilkinson et al., 2019). Residual correlations of 

species occurrence capture patterns in the co-occurrence of species that cannot be attributed to the 

considered environmental predictors. Such co-occurrence can be indicative of biotic interactions such 

as competition or facilitation (Pollock et al., 2014; Warton et al., 2015). In Chapter 5, how the presence 

of specific natural enemy species can affect the overall natural pest control potential of an area was 

assessed using the jSDM approach developed by Ovaskainen et al. (2017), called HMSC (for Hierarchical 

Modelling of Species Communities). This method was selected because it shows good performance 
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and a shorter running time compared to other models (see Wilkinson et al. (2019) for a comparison of 

the different jSDM approaches) and because it allows modelling nested sampling design. HMSC is a 

hierarchical multivariate generalized linear mixed model fitted with Bayesian inference (for conceptual 

and mathematical details see Ovaskainen et al. (2017)). jSDMs were used in Chapter 5 to determine 

which arthropod species are effective predators of aphids and which/if interspecific interactions 

potentially can decrease the capacity of natural enemy communities to provide pest control services. 

As wild bee communities are probably not primarily determined by biotic interactions (Westrich, 

2018), the community was determined simply using stacked SDMs in Chapter 4.  
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Chapter 3 

 

Refining the tiered approach for mapping and assessing ecosystem 
services at the local scale: A case study in a rural landscape in 
Northern Germany 

Perennes, M., Campagne, C. S., Müller, F., Roche, P. and Burkhard, B. 
Land (2020), 9, 348 

 
 
In this Chapter, ES potential and the landscape multifunctionality of the case study area were 
assessed, with the following central question: how do spatial resolution and the inclusion of 
information on ecosystem condition influence the ES assessment at the local scale? 
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Abstract: Spatially explicit assessments of ecosystem services (ES) potentials are a key component in 

supporting a sustainable land use management. The ES matrix method is a commonly used approach 

as it allows for a comparably fast, comprehensible and accessible ES assessment. As it is often based on 

land use/land cover data (LULC) with no spatial variability, a main critique is that the results fail to 

assess spatial variability at landscape levels, which limits the reliability of the outputs for spatial 

planning applications. By using the case study area of Bornhöved in northern Germany, we analyzed 

three assessment methods that combine expert judgments, LULC data with different resolutions and 

ecosystem condition indicators, in order to find the required resolution and data for ES assessment and 

mapping at a local scale. To quantify map discrepancies, we used the structural similarity index (SSIM) 

and analyzed the differences in local mean, variance and covariance between the maps. We found that 

using different spatial resolutions led to a relatively small difference in the outcomes, in which 

regulation and maintenance services are more affected than the other services categories. For most 

regulation, maintenance and cultural ES, our results indicate that assessments based only on LULC 

proxies are not suitable for a local quantitative assessment of ES, as they cannot sufficiently cover the 

spatial heterogeneity of ES capacities that arise from different ecosystem conditions. 

 

Keywords: ES matrix assessment; ecosystem condition indicators; statistical map comparison 

 

 

1. Introduction 

Ecosystem services (ES) are defined as the benefits that ecosystems provide in support of human 

well-being [1]. ES assessment and mapping have become popular approaches for sustainable planning 

and management of natural resources, for instance in EU policies [2,3]. ES approaches can also help to 

preserve and enhance landscape multifunctionality [4,5]. Different methodologies have been developed 

for assessing and mapping ES (for a review see [5]), that can be classified in three different tiers [6]. The 

appropriate ES assessment methods or tier depend on the purpose of the assessment (e.g., research   
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or policy questions). The first tier includes simple methods that establishes binary links between LULC, 

and ES scores obtained from previous studies or based expert knowledge approaches: experts are asked 

to rank LULC classes according to the potential of these classes to supply an ES. The second tier includes 

the methodologies that rely on information about relationships between indicators and ES, mainly 

obtained from literature. Methodologies of the third tier extrapolate ES estimates of primary data and 

quantitative regression model approaches. Depending on the research question, a Tier 1 approach can 

be used to provide a rough overview of a phenomenon or for awareness raising. However, a Tier 3 is 

needed to support local planning decisions. For an assessment of multiple ES, the Tiers 2 and 3 are 

hardly applicable, as higher Tier approaches are usually more data-intensive. This is particularly the 

case for an ES assessment adapted to local characteristics, for which regressions and socio-ecological 

system models set in another region of the world cannot be applied without adjustments. 

One commonly used method for ES potential assessment is the ES matrix approach by Burkhard et al. 

[7–9] (Tier 1 to 2), in which ES “potential” was defined as the capacity of an ecosystem to deliver ES 

based on ecological properties and functions, independent of an actual demand for these services [10]. 

With the ES matrix approach, the ES potential of a landscape can be estimated based on various ES 

quantification approaches [11]. Expert scorings of ES potentials—in combination with geospatial units 

such as LULC types—are one of the most commonly used approaches in ES matrix applications [12,13]. 

Thus, LULC types are used as basic units for the capacity of a given area to supply ES, under the 

assumption that there are explicit causal relationships between LULC types and the delivery of ES. The 

ES matrix approach is a tool for decision support in sustainable resource management as it is highly 

adaptable to various socio-ecological system settings, easily accessible and enables an efficient and 

relatively fast comprehensible assessment [14]. This method allows the spatial modelling and mapping 

of multiple ES at different scales and reflects the multifunctionality of landscapes, i.e., the capacity of 

different ecosystem types within a landscape to provide a broad range of ES. 

ES matrix models are often used along with CORINE land cover data (CLC) [12,15], as this dataset 

is freely accessible, is regularly updated by the European Environmental Agency and covers all EU 

member states. A landscape analysis based on LULC may be adequate for some ES and ecosystems, e.g., 

heavily human-managed ecosystems dedicated to the production of one or a few services [16]. This is 

particularly the case for biomass production in forests or food production in croplands, as these 

ecosystems mainly rely on human inputs and less on natural processes (via e.g., the selection of plant 

and animal species, the use of fertilisers and pesticides, irrigation water input, energy and labor use). 

However, the CORINE dataset is quite coarse (usually 25 ha minimum mapping unit (MMU)) and may 

not be suitable for local-scale assessments, as semi-natural elements, small habitats but also transport 

networks are not well identified in this dataset. Moreover, the assessment of non-target ES or non-

marketed ES such as many regulation services is generally more challenging than the valuation of 

provisioning ES [10]: the supply of most of the regulation ES depends on several ecosystem structures 

and processes, which often occur over larger spatial and temporal scales. There is also a considerable 

lack of knowledge on the mechanisms of the processes underlying the supply of these services [17–19]. 

Moreover, regulation and maintenance ES supply usually varies considerably within one land cover 

type [14,20–22] and depends on additional ecosystem conditions such as vegetation cover and 

biodiversity, soil types and texture or water availability [23,24]. Cultural ES potentials usually also 

depend on a complex mix of biophysical and anthropogenic landscape characteristics such as 

topography, presence of species and accessibility. Thus, regulation and maintenance and cultural ES 

tend to rely on additional ecological and management features and may not be appropriately assessed 

solely based on LULC proxies. 

This summarizes two of the main critiques in regard to LULC-based approaches. First, CLC data 

are too coarse for an accurate ES assessment supporting local decision-making processes [22,25,26]. 

Second, ES assessments cannot be done simply based on LULC data as the assessment tends to be not 

accurate enough to catch spatial variability within individual land cover classes and between landscapes  
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[13,14,22]. Accuracy is defined as how well a model estimates the true distribution of a phenomenon 

[16]. The accuracy of a model partly depends on its capacity to capture ES heterogeneity, i.e., the “degree 

of spatial variation within the spatial distribution of an ES”, so on how ES potential relies on ecosystem 

conditions [16]. The application of a suitable method for modelling heterogeneous ES potentially 

increases the accuracy of the outputs, but it usually requires more effort and increases information costs. 

Furthermore, different research questions or mapping issues require different resolutions. 

This paper explores how different levels of spatial resolution and ES matrix assessment complexity 

impact the outcomes of a local-scale analysis by applying three different levels of assessment. Using the 

ES matrix approach, we first examine how spatial resolution influences the assessment by comparing 

predicted ES potentials based on the open-access CLC dataset with the ATKIS (authoritative 

topographic and cartographic information system)/InVeKoS (Integrated Administration and Control 

System) datasets, which have a finer spatial resolution and include small habitats and landscape 

elements. We then select and calculate ecosystem condition indicators based on the fifth mapping and 

assessment of ecosystems and their services (MES) report (http://biodiversity.europa.eu/mes) to develop 

an ecosystem condition index. This assessment level combines the resulting index with the ES potential 

matrix to analyze how data on ecosystem condition influence the outputs of ES assessments. We applied 

these three assessment methods in a case study area in northern Germany. 

The following three research questions are addressed in this study: 

• How does a higher spatial resolution with more information on small landscape elements 

affect the results of an ES-matrix assessment on a local scale? 

• Does the integration of ecosystem condition information add value to the ES assessment and 

can patterns between different ES and ES categories be detected? 

• What conclusions can be drawn for practical applications in landscape management? 

2. Material and Methods 

2.1. Case Study Area (CSA) 

The CSA is located in the region of the Bornhöved Lake District in the province of Schleswig–

Holstein in northern Germany (Figure 1). It was the focus of a former integrative ecological study project 

and is a long-term ecological research (LTER) site. The present study area is bigger than the former 

LTER site and includes the administrative borders of the constitutive municipalities, resulting in a CSA 

of 147 km2. Agroecosystems dominate the landscape in a catchment area of five glacially formed and 

consecutively connected lakes. The CSA is composed of relatively small and diverse ecosystems, as well 

as a high proportion of hedgerows, shaping a highly diverse and fragmented landscape (see Figure 1 

and [27]). The former LTER site was used in several ES assessments focusing on one single ES [28] or a 

group of ES [7–9,26]. 

2.2. Ecosystem Services Assessments 

To guide through the following section, we introduce the workflow of the different levels of 

assessment developed in this study. Figure 2 illustrates this workflow and how the different datasets 

are integrated in the different levels of assessment. We prepared two geospatial maps using three 

different datasets: the CLC datasets for the first assessment level, the ATKIS and InVeKoS datasets were 

combined for the second and third assessments. We used the LULC classes from the three datasets to 

build a unique ES matrix based on a common typology and solicited local experts. For the first and 

second level assessment, we applied the resulting matrix to the different geospatial datasets to map ES 

potential in the CSA. For the third level assessment, we added ecosystem condition indicators to the 

analysis: ES potentials were calculated based on the environmental condition scores of each ecosystem 

and the ES scores from the matrix. Finally, we statistically compared the different levels of assessment 

and the differences in the resulting ES potential maps. 

http://biodiversity.europa.eu/mes
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Figure 1. Location of the study area in northern Germany (on the right) and distribution of 

administrative districts and Corine land-cover classes (CLC2018) (on the left). 
 

Figure 2. Working flow chart. 



Mapping and assessing ecosystem services in an agricultural landscape following a tiered approach           Marie Perennes 

 

35 
   

5 of 23 Land 2020, 9, 348 

 

 

 

2.2.1. Geospatial Datasets 

The LULC typology used for the first level assessment is derived from the CLC 2018 dataset 

(https://land.copernicus.eu/pan-european/corine-land-cover/clc2018). 

The geospatial dataset used in the second level assessment is composed of ATKIS (version 2012) 

and improved by using InVeKoS data (version 2010). ATKIS is a national standardised topographic 

information system provided by the German Federal Surveying Authorities. InVeKoS is a control 

system established by the European Commission to control payments of income support from the 

European Common Agricultural Policy to farmers. Both datasets feature an object-based comprehensive 

description of the Earth’s surface. Topographical and LULC features are modeled as points, polylines 

or polygons. The spatial resolution of these two datasets depends on the feature classes and has a MMU 

between 0.1 and 1 hectare [29] compared to the 25 hectares of CLC. 

The two datasets differ in represented LULC classes: “transitional woodland-shrub” and “land 

principally occupied by agriculture, with significant areas of natural vegetation” from the CLC dataset 

are not part of the ATKIS/InVeKoS classification systems. The CLC class “transitional woodland/shrub” 

corresponds to “areas representing natural development of forest formations, consisting of young plants 

of broad–leaved and coniferous species, with herbaceous vegetation and dispersed solitary adult trees. 

Transitional process can be for instance natural succession on abandoned agricultural land, regeneration 

of forest after damages of various origin (e.g., storm, avalanche), stages of forest degeneration caused 

by natural or anthropogenic stress factors (e.g., drought, pollution), reforestation after clearcutting, 

afforestation on formerly non-forested natural or semi-natural areas, etc.” 

(https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-

guidelines/html/index-clc-324.html). The CLC class “land principally occupied by agriculture, with 

significant areas of natural vegetation” is defined as “areas principally occupied by agriculture, 

interspersed with significant natural or semi-natural areas (including forests, shrubs, wetlands, water 

bodies, mineral outcrops) in a mosaic pattern.” (https://land.copernicus.eu/user-corner/technical-

library/corine-land-cover-nomenclature-guidelines/html/index-clc-243.html). 

Table 1 and Figure 3 show all LULC classes and their respective proportions for each LULC dataset 

are shown in Table 1. The main differences between CLC and ATKIS/InVeKoS are found in the higher 

number of LULC classes and also in total surface covered by “arable land”, by landscape elements 

(LULC subclass which regroups the classes “hedgerows”, “tree rows”, “copse, thickets”, “single trees”, 

“field borders”) as well as by artificial surfaces. 

 

Table 1. Differences in land use/land cover data (LULC) classes shares in the study area in 2018 (CLC) and 2010 

(ATKIS/InVeKos) for the two LULC datasets. 

 

  
 

https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
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Mapping and assessing ecosystem services in an agricultural landscape following a tiered approach           Marie Perennes 

 

36 
   

6 of 23 Land 2020, 9, 348 

 

 

 

 

2.2.2. ES Matrix Approach 

The ES matrix approach by Burkhard et al. [7–9] is based on a look-up table where the capacity of 

each geospatial unit (e.g., LULC types) to supply ES is quantified. In this study, we assessed the ES 

potential of the different LULC classes. We did not consider the actual use or flow of ES, nor the demand 

for ES (see Syrbe et al. [30] for definitions of ES potential, stock, use and demand). ES potentials are 

scored on a scale from zero (no relevant potential) to five (very high relevant potential). The 

methodology is also described in Burkhard and Maes [31] and in Campagne and Roche [13]. We 

adhered to the following steps: (1) identification of the relevant ES and ecosystems to be assessed, (2) 

selection of an expert panel, (3) collection of expert scorings and (4) compilation of the final matrix 

values. 

The list of ES in the matrix is based on the common international classification of ecosystem 

services (CICES V5.1) [32] and covers all three main CICES sections, i.e., regulation and maintenance 

ES, provisioning ES and cultural ES. Each ES is briefly explained in the matrix in the supplement 

materials (Table 1). The list of ecosystems corresponds to the CLC, ATKIS and InVeKoS LULC classes 

in the CSA (see Table 1 “Corresponding ATKIS/InVeKoS classes”). The experts had a wide range of ES 

and ecosystems expertise, had researched the study area and were familiar with ES concepts. 

Müller et al. [33] developed an ES assessment matrix for CLC land cover classes within the German 

Federal State of Schleswig–Holstein, to which more than 55 experts contributed. We used this matrix 

for the first ES assessment, as all the selected ES and LULC were scored in this matrix. For the second 

assessment, we completed the matrix with all the missing LULC, i.e., the LULC classes within the 

ATKIS/InVeKoS datasets that were not represented in CLC classes. These classes were assessed through 

a new evaluation process, in which several preliminary discussion rounds were organized with four 

experts, in order to identify in the missing values of the matrix. Other experts were then contacted by  
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email and asked to modify the potential scores in the preliminary matrix in case of differing opinions 

(only for the LULC classes missing in the matrix from Müller et al. [33]). Materials that were provided 

to experts included a map of the CSA as well as a matrix. In total, 10 local experts in environmental 

management, soil, ecology, agriculture and climate sciences contributed to the new assessment. The 

final matrix included 31 LULC classes and 34 ES and can be found in the supplement materials (Table 

1). 

 

 

Figure 3. Distribution of CORINE land cover data (CLC) (Level 1, 2018) and ATKIS/InVeKoS (Level 

2, 2010) land cover classes in the study area Bornhöved. Agriculture represents 81.2% (CLC) or 72.4% 

(ATKIS/InVeKoS) of the total area, from which 67.2% (CLC) or 60.6% (ATKIS/InVeKoS) is dedicated 

to arable land. Forests covers only 9.2% (CLC) or 10.7% (ATKIS/InVeKoS) of the case study area. 6.4 

(CLC) to 3.8% (ATKIS/InVeKoS) of the area is covered by artificial surfaces. In the CLC datasets, 0.1% 

of the area is covered by transitional woodland-shrub which has no equivalent in the other dataset. 

Landscape elements represent 2.9% of the total area in the ATKIS/InVeKoS datasets. 

2.2.3. Ecosystem Condition Indicators 

Selecting Suitable Indicators  

The MAES working group of the European Commission (http://biodiversity.europa.eu/maes) aims at 

providing support to the EU member states in regard to ES mapping and assessment [34]. The fifth 

MAES report presents a list of key indicators for mapping and assessing ecosystem condition of the 

main ecosystem types at the European level [35]. From this report, we selected ecosystem condition key 

indicators for which we could find local data or easily develop an equivalent that was spatially explicit 

and sensitive to local land use change. Whereas MAES provides one list of indicators per ecosystem 

type, the indicators selected for this study are not ecosystem type-dependent and are relevant for  
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artificial areas, agroecosystems, forests as well as other natural and semi-natural ecosystems. Three 

indicators were selected: the landscape fragmentation index, a Red List Index for ecosystems and the 

soil and organic carbon (SOC) (Table 2). 
 

 
 

Landscape Fragmentation Index 

Landscape fragmentation results from the transformation of large natural and semi-natural 

ecosystems into smaller and isolated, fragmented ecosystems [36]. This process can for instance be 

caused by the construction of transport networks and built-up areas, which have greatly expanded over 

the last 50 years. Accessibility is a prerequisite for the exploitation and supply of a wide range of ES. Up 

to a given density, there is a positive relationship between road density and the potential use of 

provisional and cultural services, as it generally depends on access to the ES supply areas. However, a 

high fragmentation has a negative impact on agricultural and timber production, as small land parcels 

tend to have lower yields [36]. Transportation networks also have negative impacts on cultural ES, 

above all for recreational use and landscape aesthetics. Fragmentation seriously affects regulation ES 

by, among other, species movement impediment and habitat reduction [37], water cycle disruption [38] 

and erosion phenomenon exacerbation [38]. A detailed list of the effects of fragmentation on ecosystem 

conditions and services can be found in the report of the European Environment Agency (EEA) [36]. 

The EEA applied the method of effective mesh density to measure the degree of landscape 

fragmentation in the EU member states [36]. This landscape metric unit is based on the probability that 

two points chosen randomly in an area are connected and not separated by any natural or man-made 

barriers. The effective mesh size represents the degree of fragmentation of a landscape: the smaller the 

value, the more fragmented the landscape. The datasets used to calculate the mesh are CLC (2006) for 

artificial areas such as urban and industrial units but also waterbodies, TeleAtlas Multinet for the roads 

and railroads, WorldClim and Nordregio for topographic and climatic barriers [36]. The resulting map 

presents landscape fragmentation at 1 km2 resolution. 

Local Red List Index 

The Red List Index (RLI) is one prominent indicator in the Convention for Biological Diversity 

(CBD) indicator sets for biodiversity conservation [39], but has until now not been used for ES 

assessments. RLI is a key condition indicator in the fifth MAES report that indicates “conservation status 

and trends of species of community interest” and “conservation status and trends of habitats of 

community interest” [35] and that aims at supporting the evaluation of the efficiency of conservation 

policies. The RLI measures status and trends in the overall extinction risk of species by using weight 

scores based on the Red List status of each assessed species, which range from 0 (least concern) to 5 

(extinct/extinct in the wild). To date, global RLIs have been calculated for birds, mammals, amphibians, 

corals and cycads [40]. They serve as indicators to evaluate progress towards meeting the CBD “2010 

biodiversity target” and help to develop a better understanding of which taxa, regions or ecosystems 

are declining or improving globally. Global RLIs and Red List assessments are hardly sensitive to local 

land-use management and decisions, so we instead used local extinction risk assessments lists provided 

by the State Agency for Nature and Environment of Schleswig–Holstein [41–43]). Moreover, as we  
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needed a spatially explicit indicator, we calculated local RLIs for each ecosystem and not for each species 

group, following the method by Juslén et al. [44]. Each species was associated to one or more ecosystems 

based on their habitats described in national or Schleswig–Holstein Red List assessments. A total of 214 

species of birds, 44 mammals and 18 amphibians and reptiles were included in the assessment. 

The RLI values were calculated following the method developed by Butchart et al. [40]. We 

multiplied the number of taxa in each ecosystem by the category weight (0 for least concern, 1 for near 

threatened, 2 for vulnerable, 3 for endangered, 4 for critically endangered and 5 for extinct/extinct in the 

wild). These products are summed up and then divided by the number of taxa multiplied by the 

maximum weight 5, the “maximum possible denominator”, which corresponds to the “worst case 

scenario”. To obtain the RLI value, this sum is subtracted from 1. The resulting index varies between 

zero and one: the lower the value, the closer the set of taxa living in the ecosystem is heading towards 

extinction. The Red List status of the pool of species living in an ecosystem is used as a proxy for this 

ecosystem condition. To make this indicator sensitive to land management change, we included the RLI 

value trends as well as the values from the last Red List assessment. The “RLI status” corresponds to 

the values from the last Red List assessment. The “RLI trend” corresponds to the difference between the 

last and the first Red List assessment values (i.e., RLI status—RLI 1990 (or 1995)) for each ecosystem. 

Soil Organic Carbon (SOC) 

Soil is a key component of terrestrial ecosystems and plays an essential role in ecosystem 

functioning [45]. Despite its importance, relatively little emphasis has been placed on soil in studies that 

map ES, mainly because our understanding on how soils support ES delivery is incomplete [46,47]. Soil 

quality and its capacity to provide a wide range of ES depend on key properties such as soil type and 

texture, soil organic carbon content, pH, soil porosity and structure [48–50]. Soil organic carbon (SOC) 

is mainly determined by the balance between net primary production and the rate of decomposition of 

organic material, which both depend on land use, climate and microorganism action. A literature review 

showed that SOC can be (directly or indirectly) linked to a broad range of ES, in all three ES CICES 

categories [48]. As no map was readily available at the desired local scale, we developed a SOC map 

based on the data and method from the Federal Institute for Geosciences and Natural Resources’ (BGR) 

soil information system (FISBo), which provides soil information at land and national scale [51,52]. The 

method from the BGR allows us to determine the SOC from soil characteristics, climatic data and land 

cover types. 

2.3. ES Potential Maps 

2.3.1. First and Second Level 

Ecosystem mapping was carried out for the CSA using CLC (first assessment level) and 

ATKIS/InVeKoS (second assessment level) datasets. All spatial analyses were executed using ArcGis 

10.6.1. ES potential maps were obtained by joining each LULC map with the ES potential matrix. 

Exemplary ES potential maps (crop production, pollination and recreation and tourism) are presented 

in the results, the other maps can be found in the Supplementary Materials. 

2.3.2. Third Level 

For the third level assessment, we assume that good ecosystem condition is prerequisite for a high 

supply of ES [35] and therefore first combined the three selected indicators into one ecosystem condition 

map (Figure S1). However, most provisioning ES, such as agricultural production (crop, livestock, 

biomass for energy, fodder and fiber production) but also timber production, often arise much more 

from human interventions than from ecological properties and functions of the ecological system [53] 

(but see Balvanera et al. [54] and Harrison et al. [55]). Some ecosystem properties have a direct positive 

impact on agricultural production, but it can be generally substituted by human actions.  
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For example, a high SOC maximises crop and pasture biomass. A low SOC can be however 

compensated by adding off-farm organic residues. As we cannot assume that the potential of 

agricultural and timber production services increases with ecosystem conditions, we did not include 

them into the third assessment level.  

A second assumption, in the absence of further evidence [19], was that each indicator equally 

contributes to the ecosystem condition of each ecosystem type except aquatic ecosystems for which the 

SOC is not relevant, following the Equation (1): 

𝐸𝐶 =
1

4
(𝐹𝐼 + 𝑅𝐿𝐼𝑡𝑟𝑒𝑛𝑑 +  𝑅𝐿𝐼𝑠𝑡𝑎𝑡𝑢𝑠 + 𝑆𝑂𝐶   (1) 

where EC is the aggregated indicator value for the ecosystem condition, FI the fragmentation 

index, RLIstatus the RLI for Schleswig–Holstein for 2014 and RLItrend the improvement or degradation of 

the RLI over the years, SOC the soil organic content. All indicators are scaled down to the interval [0,1], 

to give all the indicators an equivalent weight. The EC values are also scaled into the range [0,1]. EC 

values from zero (the ecosystem is in a very bad condition) and one (the ecosystem is in a very good 

condition). 

As the SOC is not relevant for aquatic ecosystems, we did not include this indicator in the EC of 

water bodies nor water courses. For these ecosystems, Equation (2) is defined as follows: 

𝐸𝐶 =
1

3
(𝐹𝐼 + 𝑅𝐿𝐼𝑡𝑟𝑒𝑛𝑑 +  𝑅𝐿𝐼𝑠𝑡𝑎𝑡𝑢𝑠 + 𝑆𝑂𝐶   (2) 

The ecosystem capacity to deliver ecosystem services is determined by the ecosystem condition, 

following Equation (3): 

𝐸𝑆𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝐸𝐶 × 𝐸𝑆     (3) 

where ESpotential is the calculated ecosystem services potential resulting from the ecosystem condition 

(EC) and the ES potential scores (ES) from the matrix. 

2.4. Influence of Typology and Resolution 

The CLC and ATKIS/InVeKoS datasets use different typologies to describe some of the LULC 

classes. The differences in the ES maps resulting from the different LULC datasets are therefore not only 

due to different resolutions but also to a difference in typologies. To differentiate these two effects, we 

compared the two maps using the Union tool from ArcGIS. The resulting map is a map containing each 

input feature from the two LULC datasets, associated with its attributes. The resulting attribute table 

shows how the two datasets overlap and this allowed to determine which CLC LULC classes 

corresponds to each ATKIS/InVeKoS class. Using this attribute table, we then calculated the percentage 

of each CLC class, which was classified (or not) to the corresponding ATKIS/InVeKoS class (see Table 

1). To assess the effect of spatial resolution, we assessed the percentage of LULC classes that were 

misclassified according to the size of each feature. 

2.5. Statistical Maps Comparison 

We first compared the maps resulting from the first and second assessments to evaluate the 

improvement in mapping precision. We then compared the maps resulting from the second and third 

assessments to estimate the mapping accuracy discrepancy. We used the structural similarity index 

(SSIM index) from Jones et al. [56] for visual interpretation and statistical analysis. This index provides 

three distinctive measures of spatial heterogeneity in map structures: similarity in means (SIM), 

similarity in variance (SIV) and similarity in pattern (SIP) of spatial covariance. SIM is the ratio of twice 

the product of the local means to their summed squares. It ranges from 0 to 1, in which 0 characterizes 

two maps for which means are dissimilar (in this case, different modelled ES local abundances), 1 if 

means are similar (similar modelled ES local abundances). The SIV is the ratio of twice the product of 

the local standard deviations to their summed variances. SIV ranges from 0 to 1, in which 0 is indicated  
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if variances are dissimilar (ES are not similarly distributed), 1 if variances are similar (ES are similarly 

distributed). The SIP is the ratio of the local covariance to the product of the local standard deviation. It 

ranges between −1 and 1, in which −1 indicates a negative spatial correlation, 1 a positive spatial 

correlation and 0 indicates that the distributions are independent. The SSIM index compares output 

values of maps at pixel level and accounts for the values of neighboring pixels through a window of 3 

× 3 pixels. The method allows for a spatially explicit difference analysis between two maps, including 

spatially explicit differences in means, variances and covariances, taking spatial dependencies between 

neighboring cells into account. All statistical analyses were conducted using the software R [57] and 

based on the script provided by Jones et al. [56]. 

3. Results 

3.1. First Level Assessment 

For the first level assessment, the ES potential supply was evaluated and mapped using the ES 

assessment matrix and CLC data. Figure 4 shows the spatial distribution of three ES potentials in the 

CSA: crop production, pollination and recreation and tourism services. A relative scale ranging from 

zero (no relevant capacity) to five (very high relevant capacity) was used. As the study area is mainly 

composed of “arable land” (see Table 1 for a description of land use classes share within the CSA), the 

maps show an overall high crop production potential, a low pollination potential and a moderate 

recreation and tourism potential for the area. High and very high pollination potentials are patchily 

distributed and correspond to “broad-leaved forest”, “coniferous forest”, “Pastures” and “land 

principally occupied by agriculture, with significant areas of natural vegetation”. High and very high 

recreation and tourism potentials correspond to “broad-leaved forest”, “coniferous forest” and “water 

bodies”. 

 

 

Figure 4. Examples of three ecosystem services (ES) potential maps (crop production, pollination and 

recreation and tourism) using CLC land cover data and the ES potential matrix. 0.0: no potential, 0.1–

1.0: very low potential, 1.1–2.0: low potential, 2.1–3.0: moderate potential, 3.1–4.0: high potential, 4.1–

5.0: very high potential. 

3.2. Second Level Assessment 

Figure 5 shows the spatial distribution of three ES in the CSA: crop production, pollination and 

recreation and tourism services. These maps are based on the ATKIS/InVeKoS datasets and show a more 

fragmented ES potential than the maps from the first level assessment, due to the inclusion of small 

habitats and landscape elements. Yet the resulting maps show the same global patterns (Figure 5): 
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fewer areas sustain crop production, but have an overall high crop production potential, a low 

pollination potential and a moderate recreation and tourism potential. 

 

 
Figure 5. Examples of three ES potential maps (crop production, pollination and recreation and tourism) 

using ATKIS and InVeKoS land cover data and the ES potential matrix. 0.0: no potential, 0.1–1.0: very 

low potential, 1.1–2.0: low potential, 2.1–3.0: moderate potential, 3.1–4.0: high potential, 4.1–5.0: very 

high potential. 

3.3. Third Level Assessment 

The final ES potential maps (Figure 6) were obtained by combining the ecosystem condition index 

map (Figure S1 in the Supplementary Materials) and the ES potential maps from the second level of 

assessment. Only those ES which have a positive relationship with EC were included in this assessment 

(see Section 2.2.3), so for instance crop production was excluded. As none of the ecosystems in the CSA 

is in a very good condition (EC values are between 0.052 and 0.514, whereas the maximum achievable 

value is 1), the overall potentials of the CSA to supply ES are greatly reduced. 

 

Figure 6. Examples of two ES potential maps (pollination and recreation and tourism) using ATKIS and 

InVeKoS land cover data, the ES potential matrix and ecosystem condition indicators. 0.0: no potential; 

0.1–1.0: very low potential; 1.1–2.0: low potential; 2.1–3.0: moderate potential; 3.1–4.0: high 

potential; 4.1–5.0: very high potential. 
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3.4. CORINE Land Cover and ATKIS/InVeKoS Typology Differences 

Overall, there is a relatively high correspondence between the two datasets: around 70% of the 

CSA area is classified in the same LULC class in the two datasets. The main difference between CLC 

and ATKIS/InVeKoS datasets comes from the different resolutions for the LULC classes in both datasets, 

as LULC classes, which are mainly composed of large elements in the ATKIS/InVeKoS dataset, have a 

high matching level with CLC LULC classes: this is the case for “water bodies” (99%), “non-irrigated 

arable land” (81%), “industrial or commercial units” (64%) and “coniferous forest” (63%) classes. The 

LULC classes “discontinuous urban fabric”, “mineral extraction sites”, “pastures” and “broad-leaved 

forest” have however a matching level around 50% with a perfect correspondence for elements bigger 

than the CLC MMU. 

There is a clear typology mismatch between the two datasets for the LULC classes that can be 

found only in the CLC dataset: The CLC LULC class “land principally occupied by agriculture, with 

significant areas of natural vegetation” mainly corresponds to arable land (27%) or pastures (42%) in 

the ATKIS/InVeKoS LULC classification, whereas “transitional woodland/shrub” is mainly classified as 

arable land (52%) or mixed forest (37%). Unlike the CLC classification, the ATKIS/InVeKoS dataset does 

not differentiate conventional arable land or pastures from agricultural land with natural areas. The 

ATKIS/InVeKoS classification considers “transitional woodland/shrub” areas as arable land or mixed 

forest, but does not consider afforestation/deforestation processes unlike the CLC classification (see 

Section 2.2.1 for a definition of CLC classes). 

ES scores were recalculated for each CLC LULC class according to the percentage of each 

composing ATKIS/InVeKoS LULC class and their ES matrix scores (for instance, if the CLC LULC Class 

1 was composed of 10% ATKIS/InVeKoS Class 1 (ES score 2) and 90% of the ATKIS/InVeKoS Class 2 

(ES score 0), then the CLC LULC Class 1 has a ES score of 0.2 in the recalculated matrix). The ES scores 

from the original and the recalculated matrix were then compared. The LULC class “land principally 

occupied by agriculture, with significant areas of natural vegetation” showed a low variance between 

the ES scores from the initial matrix and the recalculated matrix (0.6 point) but showed a high variance 

for the CLC class “transitional woodlands, sclerophyllous vegetation” (1.6 point). This explains some 

variations in ES mapping, however only for a relatively small fraction of the CSA (the LULC classes 

“land principally occupied by agriculture, with significant areas of natural vegetation” and “transitional 

woodlands, sclerophyllous vegetation” represent less than 1% of the area). 

For those LULC classes that were not included in the CLC dataset, the landscape elements 

correspond in the CLC map to the “non-irrigated arable land” (77%) and “pastures” (17%). This 

indicates that landscape elements are not considered in the CLC map, as they do not match the “land 

principally occupied by agriculture, with significant areas of natural vegetation” CLC LULC class. We 

can therefore assume that this LULC class is not integrated in the CLC map because the MMU is too 

coarse. 

3.5. Statistical Comparison of First and Second Level Assessment 

The resulting maps have similar ES potentials local abundance, variance and are highly correlated 

with a high to very high similarity in mean values (73.85 to 99.80% of the CSA has a SIM > 0.5), a high 

similarity in their variances (83.24 to 99.19% of the CSA has a SIV > 0.5) and a high positive spatial 

correlation (99.61 to 100% of the CSA has a SIP > 0) (Table S2 in the Supplementary Materials). Different 

patterns can be observed for the different ES and ES categories: the higher discrepancies between ES 

maps are for nutrient regulation, crop (Figure 7) and fiber productions, water purification and global 

climate regulation services, whereas minerals and fish provisioning have the lowest discrepancy. The 

differences between crop and fiber supply maps are mainly due to higher dissimilarity in local 

abundance, whereas the nutrient regulation maps differ in local abundance and variance. Cultural 

services tend to have a higher SIM than other services maps. Most of the regulation and maintenance 

services such as pollination, nutrient regulation and global climate regulation, but also cultural services 

and wild food production maps have a relatively lower SIV, whereas provisioning services are  
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characterised by a high SIV (see Figure 7 for exemplary spatial agreement maps showing crop 

production services). 

 

Figure 7. Map comparison between the crop production service potential with CLC and ATKIS/InVeKoS 

datasets. SSIM—structural similarity Index; SIM—similarity in means; SIV—similarity in variance; 

SIP—similarity in pattern of spatial covariance. 

3.6. Statistical Comparison Second and Third Level Assessment 

For most of the ES maps, the two mapping methods show highly different local ES potentials, 

however the variances and covariances have a low to a very high similarity in means (21.71 to 99.11% 

of the CSA has a SIM > 0.5), but very high similarity in variance (89.09 to 99.82% of the CSA has a SIV > 

0.5) and an almost perfect spatial correlation (99.96 to 100% of the CSA has a SIP > 0) for all the ES (Table 

S3 in the Supplementary Materials). The correlation between the maps is to be expected as the map of 

the third level assessment is calculated based on the other map. We observe different patterns for each 

ES category: cultural services have the lowest SSIM values, followed by regulation services (except 

nutrient regulation) and provisioning services, which have the highest SSIMs. Overall, regulation and 

maintenance services tend to have a lower SIV than other ES categories (except for groundwater 

recharge and air quality regulation). 

The spatial agreement between the maps depends on the number of ecosystems that deliver each 

ES, their sizes, the state of the ecosystem and the proportion of the area that potentially deliver each ES. 

ES that rely on few and in good condition LULC classes tend to have a higher SIM: fish provisioning 

has the higher SIM values and is sustained by few LULC classes (water bodies and water courses), 

which represent a small fraction of the CSA and tend to have a better ecological condition than other 

LULC classes. Nutrient regulation is supplied by a broader range of LULC types and has a high SIM 

(Figure 8). This may be due to the fact that this ES is mainly sustained by ecosystems that do not 

represent a high share of the total CSA (landscape elements and forests). 
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Figure 8. Map comparison between the nutrient regulation service potential with only LULC data and 

LULC combines with EC indicators. SSIM—structural similarity index; SIM—similarity in means; 

SIV—similarity in variance; SIP—similarity in pattern of spatial covariance. 

4. Discussion 

4.1. Discrepancies in ES Maps Based on Different Spatial Resolutions 

The results of the statistical map comparisons show that using coarse spatial resolution leads to a 

relatively small, but still nonnegligible differences. Most of the provisioning services and regulation and 

maintenance services maps are more affected by the spatial resolution than the cultural services maps. 

The differences in SSIM can be explained by the overestimation or underestimation of different 

ecosystems in the CLC dataset and by the capacity of these ecosystems to provide multiple or single ES. 

Arable lands mainly deliver one provisioning ES: crop production. Arable lands are overestimated in 

the CLC dataset, and increasing the spatial resolution reduces the total arable land area. Hence, the 

capacity of the CSA to produce crops diminishes in the second assessment. Landscape elements (such 

as hedgerows and field borders) can provide a wide range of ES, particularly maintenance and 

regulation services. Landscape elements only appear in high resolution LULC data; therefore, 

maintenance and regulation services are not appropriately mapped when using CLC as input data. As 

landscape elements are relatively small, the two mapping approaches using different LULC datasets 

still have a high similarity in variance. Cultural services are generated by more diverse LULC classes 

and are therefore relatively less affected by the spatial resolution. 

For an ES assessment at the scale of the CSA, using CLC or more detailed LULC data would 

provide outputs with a low degree of structural differences, particularly for cultural services. There is 

however no unique appropriate resolution and our conclusions may be valid only for a similar scale of 

assessment. Kandziora et al. [26] showed for instance that the ATKIS/InVeKoS dataset was required for 

a reliable ES assessment of provisioning services at the plot scale. Similarly, Rioux et al. [58] showed 

that a spatial resolution of 5 m or finer is required to adequately map the ES provided by small 

greenspaces in urban areas. This would be especially true for highly fragmented landscapes, with a high 

share of linear elements and small habitats, which cannot be captured by coarse spatial resolution data 

such as CLC [59]. On the other hand, a high level of accuracy can be misleading when working at a 

larger scale and the results may not be serviceable for or understood by decision makers. 
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4.2. Discrepancies in ES Maps Based on Different Data Complexity 

The results of the statistical map comparisons show that including ecosystem condition indicators 

in ES assessments has a high influence on the resulting maps for most of the ES, mainly because of the 

dissimilarities in mean values, however with a low variance discrepancy and a high spatial correlation. 

This suggests that LULC proxies, even with a high spatial resolution, do not sufficiently capture spatial 

heterogeneity in ES potential: for most of the considered ES potentials, local abundance would change 

considerably when accounting for ecosystem condition. These results concur with the studies by 

Eigenbrod et al. [25] and van der Biest et al. [22] who question the appropriateness of using LULC data 

as ES delivery proxies for different assessment scales and for different mapping purposes (but see Roche 

and Campagne [13] for contrasting results). LULC proxies are not appropriate for a local quantitative 

assessment i.e., to assess how much ES can be delivered at a specific location, under the assumption that 

it substantially depends on ecosystem condition. However, the high similarity in variances implies that 

the maps have similar spatial ES clusters and therefore that mapping ES hot spots and cold spots with 

the two different LULC datasets would obtain similar results. 

4.3. Validation 

We compared statistical maps to measure the degree of spatial conformity between comparable 

models with different spatial resolutions and data complexities. This does not constitute a measure of 

the overall accuracy of the assessment. Assessing model accuracy generally implies a validation using 

independent data such as primary data, which is generally feasible only for some provisioning services 

such as agricultural or timber productions [60], but see Sinclair et al. [61] and Chabert and Sarthou [62]. 

However, models adapted to a local context, with a higher spatial resolution or taking site-specific 

characteristics into account, generally provide a more precise assessment of ES processes, and their 

outputs are more reliable [63]. Moreover, if we assume that the capacity of an ecosystem to deliver ES 

depends on its condition, the results including EC indicators should be closer to the true distribution of 

ES potential. 

4.4. Sources of Uncertainties of the Method 

ES assessment at the landscape scale is subject to intrinsic uncertainties, which originate from the 

complexities of landscape and ecosystem processes. First, land cover classifications can imply 

uncertainties, mainly because of scale mismatches between landscape structure and the spatial data [21]. 

Even though the accuracy of spatial data has significantly increase with the development of remote 

sensing technologies, LULC classifications still contains landscape simplifications (as every map), 

generalizations or even misclassifications [64]. The use of higher spatial resolution data can help to 

reduce data uncertainties, so in this sense, the use of ATKIS/InVeKoS datasets is more reliable than the 

CLC dataset. 

Second, uncertainties are inherent to the ES assessment field and our still insufficient knowledge 

on the relationships between ecosystems and ES supply [17–19]. For many ES, it is difficult to allocate 

ES delivery to specific LULC classes, above all for regulation and cultural services, as they are often 

provided by a combination of LULC with specific characteristics. Even if the importance of a good 

ecosystem condition for the delivery of ES is widely recognized [24,55,65], the effects of ecosystem 

condition parameters on ecosystem functioning and the basic mechanisms are still poorly understood 

[4,66]. van Oudenhoven et al. [67], Kandziora et al. [68], Balvanera et al. [18] and Harrison et al. [55] 

provide overviews of relationships between different EC/ES indicators and (some) ES, but they do not 

reach a consensus. Moreover, according to Braat and Brink [69] and Cardinale et al. [70], there may not 

be a linear relationship between biodiversity, EC and ES. As there is no clear and quantifiable 

information, it was not possible to adjust the importance of each indicator for each ES. 

Lastly, the method entails uncertainties inherent to expert-based methods. Resulting ES 

assessments are strongly dependent on the level of knowledge of experts which can be subjective in 
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scoring procedures [21]. For instance, less well-known ecosystems and non-directly used services may 

be underestimated by experts [14,71]. The number and selection of experts are critical and can reduce 

the level of uncertainty of the model [13,21]. The small size of the CSA considerably reduced the number 

of potentially relevant experts, as the task necessitates local knowledge on ecosystems and related ES. 

4.5. Suggestions for Improvement 

4.5.1. Data Availability 

The feasibility of the different levels of assessment generally depends on the data availability for 

the study area. Among the data used in this study, only CLC and landscape fragmentation data are 

directly available and usable for all EU member states. Land cover datasets with a high resolution 

(covering for landscape elements) may or may not be available for other countries or regions. In 

Germany, this information can however not be accessed freely, due to data protection (InVeKoS) or 

commercial (ATKIS) reasons. For most of the ecosystem condition indicators recommended by the MES 

report, the needed data were not available for our CSA. Another issue is the scale for which the different 

indicators have been developed: most of them are not adapted to the local scale and their spatial 

resolutions do not allow for a local differentiation, and therefore spatially explicit assessment. Even if 

the availability of remote-sensing data has increased (e.g., Sentinel-2 based data products), data 

accessibility and availability is still a major issue for ES assessment. A typical example is data on 

ecosystem pressures such as the use of pesticides, fertilisers and biomass uptake that would greatly 

improve the index. The data should be made available and used in models to increase the accuracy of 

results. 

4.5.2. Selecting Adapted Ecosystem Condition Indicators 

The three ecosystem condition indicators used for this study were chosen because they were 

recommended in the fifth MAES report (see Maes et al. [35]). These indicators were developed to 

support national ecosystem assessments and were selected due to their spatial explicitness and 

sensitivity to change. Indicators that are suitable at the national scale may not necessarily be suitable for 

a sub-national or a local assessment: the spatial resolution may not be adaptable, and the indicators may 

be not sensitive to local land management and/or ecosystem condition changes. From the MAES list of 

recommended key indicators, we selected only relevant and complementary indicators, as a relatively 

large number of the indicators proposed in the report can be considered redundant and/or not adaptable 

to the local scale. The three ecosystem condition indicators selected for this study are still not completely 

independent and to some extent contain redundant information. For example, as biodiversity is usually 

positively affected by SOC values and negatively by landscape fragmentation, RLIs probably already 

include some information on the first two indicators. Despite their redundancy, the chosen indicators 

provide different information on ecosystem condition and their combination provides a relatively good 

estimation of the condition of different ecosystems. Another issue is that the different indicators are 

strongly linked to LULC: the different RLIs were calculated per ecosystem type and the SOC and 

fragmentation values are also largely a consequence of local land use. The outcomes of the second and 

third level assessments could have been more contradictory if the ecosystem condition indicators would 

have been measured differently, e.g., based on field data or if we had selected other ecosystem condition 

indicators. 

5. Conclusions 

Our study addresses some important issues in regard to ES assessments at a local level, where the 

quality of data is often critical. To our knowledge, this is one of the first studies to assess and map ES at 

the local scale based on ecosystem condition indicators recommended by the fifth MAES report. 
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In contrast to most of the previously published work, a broad range of ES was considered, and we 

compared the effects of different assessment methods on individual ES and on ES categories. 

One of the main challenges for local ES assessments and mapping is finding and applying 

indicators, related quantification methods and data for comprehensible, reliable and feasible 

assessments. A reliable analysis should be as detailed as necessary and possible but is however often 

hampered by the lack of appropriate data for the quantification of each service. The context in which 

the assessment is implemented should guide the selection of the ES assessment methods and data. Yet 

a critical aspect for mapping accuracy is the capacity of the used model to capture spatial heterogeneity 

of ES potentials at the desired level. This paper compared three assessment methods that combine expert 

judgments, LULC data and ecosystem condition indicators in order to find the required resolution and 

data for an assessment in a local-scale case study. 

Our results suggest that a high spatial resolution including landscape elements (such as hedgerows 

and field borders) does not drastically change the output of the spatial assessment at the local scale. 

However, by introducing LULC classes spatial variability, the use of EC indicators in the mapping can 

lead to different ES potential spatial patterns. This mainly depends on the number and characteristics 

of the chosen LULC classes, but also the landscape patterns of the studied area: map discrepancies tend 

to increase with the variety and size of LULC that are linked to ES in the matrix and the proportion of 

small elements in the studied area. 

The results of this study show that expert-based methods combined with local data on ecosystem 

condition can be a feasible and efficient method for a local assessment of the capacity of a landscape to 

provide a wide range of ES. Nevertheless, the ES assessment method needs to be improved by exploring 

the different relationships between ES and the different EC indicators, but also by adding other essential 

ecosystem condition indicators and socioecological factors. Knowledge of the causal relationships 

between ES and ecosystem conditions needs to be better documented in different ecosystem types. This 

should also increase the accuracy of ES models. 
 

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-445X/9/10/348/s1, 
Table S1: ES assessment matrix with expert scores. Figure S1: Distribution of the ecosystem condition index values 
within the CSA. Figure S2: Crop (human nutrition) production service potential maps using CLC (left) and 
ATKIS/InVeKoS (right) land cover data and the ES potential matrix. Figure S3: Biomass for energy service potential 
maps using CLC (left) and ATKIS/InVeKoS (right) land cover data and the ES potential matrix. Figure S4: Crop 
(fodder) production service potential maps using CLC (left) and ATKIS/InVeKoS (right) land cover data and the ES 
potential matrix. Figure S5: Livestock production service potential maps using CLC (left) and ATKIS/InVeKoS 
(right) land cover data and the ES potential matrix. Figure S6: Timber service potential maps using CLC (left) and 
ATKIS/InVeKoS (right) land cover data and the ES potential matrix. Figure S7: Fibers service potential maps using CLC 
(left) and ATKIS/InVeKoS (right) land cover data and the ES potential matrix. Figure S8: Wood fuel service potential 
maps using CLC (left) and ATKIS/InVeKoS (right) land cover data and the ES potential matrix. Figure S9: Wild 
food service potential maps using CLC land cover data and the ES potential matrix (left), ATKIS/InVeKoS land 
cover data and the ES potential matrix (middle), ATKIS/InVeKoS land cover data, the ES potential matrix and 
ecosystem condition indicators (right). Figure S10: Fish and seafood service potential maps using CLC land cover 
data and the ES potential matrix (left), ATKIS/InVeKoS land cover data and the ES potential matrix (middle), 
ATKIS/InVeKoS land cover data, the ES potential matrix and ecosystem condition indicators (right). Figure S11: 
Beach wrack and flotsam organic material service potential maps using CLC land cover data and the ES potential 
matrix (left), ATKIS/InVeKoS land cover data and the ES potential matrix (middle), ATKIS/InVeKoS land cover data, 
the ES potential matrix and ecosystem condition indicators (right). Figure S12: Ornamental service potential maps 
using CLC land cover data and the ES potential matrix (left), ATKIS/InVeKoS land cover data and the ES potential 
matrix (middle), ATKIS/InVeKoS land cover data, the ES potential matrix and ecosystem condition indicators 
(right). Figure S13: Drinking water service potential maps using CLC (left) and ATKIS/InVeKoS (right) land cover 
data and the ES potential matrix. Figure S14: Abiotic energy service potential maps using CLC (left) and 
ATKIS/InVeKoS (right) land cover data and the ES potential matrix. Figure S15: Mineral production service potential 
maps using CLC (left) and ATKIS/InVeKoS (right) land cover data and the ES potential matrix. Figure S16: 
Groundwater recharge service potential maps using CLC land cover data and the ES potential matrix (left), 
ATKIS/InVeKoS land cover data and the ES potential matrix (middle), ATKIS/InVeKoS land cover data, the ES 
potential matrix and ecosystem condition indicators (right). Figure S17: Local climate regulation service potential maps 
using CLC land cover data and the ES potential matrix (left), ATKIS/InVeKoS land cover data and the ES potential 
matrix (middle), ATKIS/InVeKoS land cover data, the ES potential matrix and ecosystem condition indicators 
(right). Figure S18: Global climate regulation service potential maps using CLC land cover data and the ES potential 
matrix (left), ATKIS/InVeKoS land cover data and the ES potential matrix (middle), ATKIS/InVeKoS land cover data, 
the ES potential matrix and ecosystem condition indicators 
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(right). Figure S19: Flood protection service potential maps using CLC land cover data and the ES potential matrix 
(left), ATKIS/InVeKoS land cover data and the ES potential matrix (middle), ATKIS/InVeKoS land cover data, the ES 
potential matrix and ecosystem condition indicators (right). Figure S20: Air quality service potential maps using 
CLC land cover data and the ES potential matrix (left), ATKIS/InVeKoS land cover data and the ES potential matrix 
(middle), ATKIS/InVeKoS land cover data, the ES potential matrix and ecosystem condition indicators (right). 
Figure S21: Erosion regulation (wind) service potential maps using CLC land cover data and the ES potential matrix 
(left), ATKIS/InVeKoS land cover data and the ES potential matrix (middle), ATKIS/InVeKoS land cover data, the 
ES potential matrix and ecosystem condition indicators (right). Figure S22: Erosion regulation (water) service 
potential maps using CLC land cover data and the ES potential matrix (left), ATKIS/InVeKoS land cover data and 
the ES potential matrix (middle), ATKIS/InVeKoS land cover data, the ES potential matrix and ecosystem condition 
indicators (right). Figure S23: Nutrient regulation service potential maps using CLC land cover data and the ES potential 
matrix (left), ATKIS/InVeKoS land cover data and the ES potential matrix (middle), ATKIS/InVeKoS land cover data, 
the ES potential matrix and ecosystem condition indicators (right). Figure S24: Water purification service potential 
maps using CLC land cover data and the ES potential matrix (left), ATKIS/InVeKoS land cover data and the ES 
potential matrix (middle), ATKIS/InVeKoS land cover data, the ES potential matrix and ecosystem condition 
indicators (right). Figure S25: Pest and disease control service potential maps using CLC land cover data and the 
ES potential matrix (left), ATKIS/InVeKoS land cover data and the ES potential matrix (middle), ATKIS/InVeKoS land 
cover data, the ES potential matrix and ecosystem condition indicators (right). Figure S26: Pollination service potential 
maps using CLC land cover data and the ES potential matrix (left), ATKIS/InVeKoS land cover data and the ES 
potential matrix (middle), ATKIS/InVeKoS land cover data, the ES potential matrix and ecosystem condition 
indicators (right). Figure S27: Recreation and tourism service potential maps using CLC land cover data and the ES 
potential matrix (left), ATKIS/InVeKoS land cover data and the ES potential matrix (middle), ATKIS/InVeKoS land 
cover data, the ES potential matrix and ecosystem condition indicators (right). Figure S28: Landscape esthetic and 
inspiration service potential maps using CLC land cover data and the ES potential matrix(left), ATKIS/InVeKoS land 
cover data and the ES potential matrix (middle), ATKIS/InVeKoS land cover data, the ES potential matrix and 
ecosystem condition indicators (right). Figure S29: Knowledge systems service potential maps using CLC land 
cover data and the ES potential matrix (left), ATKIS/InVeKoS land cover data and the ES potential matrix (middle), 
ATKIS/InVeKoS land cover data, the ES potential matrix and ecosystem condition indicators (right). Figure S30: 
Cultural heritage service potential maps using CLC land cover data and the ES potential matrix (left), 
ATKIS/InVeKoS land cover data and the ES potential matrix (middle), ATKIS/InVeKoS land cover data, the ES potential 
matrix and ecosystem condition indicators (right). Figure S31: Regional identity service potential maps using CLC 
land cover data and the ES potential matrix (left), ATKIS/InVeKoS land cover data and the ES potential matrix (middle), 
ATKIS/InVeKoS land cover data, the ES potential matrix and ecosystem condition indicators (right). Figure S32: Natural 
heritage service potential maps using CLC land cover data and the ES potential matrix (left), ATKIS/InVeKoS land 
cover data and the ES potential matrix (middle), ATKIS/InVeKoS land cover data, the ES potential matrix and ecosystem 
condition indicators (right). Table S2: Spatial agreement between ES potential maps based on CLC and 
ATKIS/InVeKoS datasets for three ES. Table S3: Spatial agreement between ES potential maps based on 
ATKIS/InVeKoS dataset only and ATKIS/InVeKoS combined with ecosystem condition indicators for three ES. 
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Abbreviations Definitions 

ATKIS Authoritative Topographic and Cartographic Information 

System BGR Federal Institute for Geosciences and Natural Resources 

CBD Convention for Biologic Diversity 

CICES Common International Classification of Ecosystem 

Services CLC CORINE land cover 

CSA Case study area 

EC Ecosystem condition 

EEA European Environment Agency 

ES Ecosystem service 

EU European Union 

FISBo Soil Information System of the Federal Geosciences and Natural Resources (BGR)  

InVeKoS Integrated administration and control system 



Mapping and assessing ecosystem services in an agricultural landscape following a tiered approach           Marie Perennes 

 

50 
   

20 of 23 Land 2020, 9, 348 

 

 

 

LTER Long-term ecological research 

LULC Land use/land cover 

MES Mapping and assessment of ecosystems and their services  

MMU Minimum mapping unit 

RLI Red List Index 

SIM Similarity in means 

SIP Similarity in pattern 

SIV Similarity in variance 

SOC Soil and organic carbon 

SSIM Structural similarity index 
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Chapter 4 
 

A hierarchical framework for mapping pollination ecosystem service 
potential at the local scale 

Perennes, M., Diekötter, T., Groß, J. and Burkhard, B. 
Ecological Modelling (2021), 444, 109484 

 
 
This Chapter focuses on quantifying, modelling and mapping pollination service potentials using 
hierarchical species distribution models (SDMs) and the Ecological Production Function (EPF) 
framework. With this study, we aimed at better understanding ecological processes underlying the 
delivery of specific ES and how bioclimatic variables, land cover and the presence of semi-natural 
habitats impact the distribution patterns of ESPs and thereby the delivery of ES. 
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A B S T R A C T   
 

Wild bees play a major role in the cultivation of crops for human use, in the reproduction of many wild plants and are 

a key component of biodiversity. Mainly due to human activities, wild bees, like other insects, face a rapid  decline in 

Europe. Understanding species distribution can help to design efficient conservation measures. Species distribution 

can also be used to estimate pollination ecosystem service potential, which can benefit the pro- duction of crops 

relying on pollination and the reproduction of wild plant communities. The presence of pollinators  depends on a 

combination of environmental and biotic factors, each playing a determining role at different spatial scales. We 

therefore developed a model composed as a hierarchical framework for environ- mental predictors: climatic data 

and Land Use/Land Cover (LULC) variables at the European scale and species-specific habitat information at the local 

scale. The model combines the advantages of two different existing approaches: pollinator species distribution 

predictions based on their environmental requirements and knowledge on bee species life-history traits and habitats. 

This paper presents the predicted distribution of twenty-five wild bee species of the Andrena genus in an agricultural 

region in Northern Germany. We used oilseed rape pollinators as a case study and compared the potential pollination 

services to the potential demand in the Case Study Area. The developed framework allows to determine the capacity 

of landscapes to support pollination ecosystem services from wild bees at the local scale, which can support the 

identification of vulnerable areas and the design of local scale measures for habitat improvement and for 

conservation. The hierarchical approach leaves potential for further adaptations in order to improve the prediction 

of wild bee species dynamics and factors influencing their spatial distribution. 
 

 

 

1. Introduction 

Pollination is a key ecosystem service, vital to both wild plants and 

cultivated crops (Klein et al., 2007). Gallai et al. (2009) estimated that 10% 

of the total economic value of food production in Europe depends upon 

insect pollination. There is growing evidence that wild bees play a significant 

role in crop pollination (Javorek et al., 2002; Greenleaf and Kremen 2006a; 

Klein et al., 2007; Bommarco et al., 2012; Garibaldi et al., 2013), and that 

the pollination service delivered by wild pollinators cannot entirely be 

substituted by honeybees (Brittain et al., 2013; Garibaldi et al., 2013). An 

increasing number of insect pollinators are in decline or threatened, mainly 

because of anthropogenic stressors such as environmental pollution, land  

 

use change and agricultural intensification but also climate change (Winfree 

et al., 2009; Potts et al., 2010; Cameron et al., 2011; Ollerton et al., 2014; Nieto 

et al., 2014). This decline of pollinating species will not only have an 

impact on agricultural productivity and resilience (IPBES 2016), it can also 

lead to a parallel decline of wild plant species (Biesmeijer et al., 2006), as 

globally estimated 85% of flowering plants (78% in temperate zones) are 

adapted to animal pollination (Ollerton et al., 2011), mainly to bees (Potts et 

al., 2010). Therefore, ongoing declines in pollinator diversity may result in 

community cascade effects, i.e., the subsequent loss of other species that 

directly or indirectly rely upon extinct or declining species (Chapin et al., 

1997). This in turn can have an impact on wild food, fibre and medicine 

supplies, as well as decrease the cultural and aesthetic values of the cultural  
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and aesthetic values of a landscape (IPBES 2016). 

In light of these observations, there are increasing calls and efforts to 

conserve wild pollinator species and their habitats (IPBES 2016). An 

effective biodiversity conservation policy should provide a clear guidance to 

planning authorities on how to develop targeted species-specific 

conservation options for organisms that contribute to pollination ser- vices 

at relevant scales (Kremen et al., 2007). To this end, there is a need for better 

spatial assessments of pollination. Understanding spatial patterns of 

pollinators is also crucial for estimating their availability to pollinate 

cultivated crops and wild plants (Kremen et al., 2004), to facilitate 

monitoring and inform on the habitats and vulnerability of local pollinators 

(Kremen et al., 2007; Kremen and Chaplin-Kramer 2007). 

Up to now, the main approaches for building pollinator ecosystem service 

maps are by using InVEST (Integrated Valuation of Ecosystem Services and 

Tradeoffs) (Sharp et al., 2016) and ESTIMAP (Ecosystem Service Mapping 

Tool) (Zulian et al., 2013). InVEST and ESTIMAP models are primarily based 

on expert judgements on the presence and preferences of pollinators 

(essentially nesting places and floral feeding resources). The main issues 

with expert-based knowledge are that this knowledge may strongly depend 

on their selections, experience and expertise (Polce et al., 2018; Lonsdorf et 

al., 2009), and therefore can be biased towards specific species or species 

groups. Fewer studies are based on Species Distribution Models (SDMs) and 

actual species records (Polce et al., 2013; Polce et al., 2018; Nogué et al., 

2016). SDMs rely on the correlation between environmental variables and 

geo-localized species records to determine the environmental variables that 

drive species presence and delineate potential species distribution (Guisan 

and Zimmermann 2000; Elith and Leathwick 2009; Araújo and Guisan 2006). 

Contrary to SDMs, InVEST and ESTIMAP models do not allow to dynamically 

consider different environmental conditions (Lonsdorf et al., 2009; Zulian et 

al., 2013). When mapping pollination ecosystem service potential at national 

or sub-national scales, bioclimatic conditions can largely vary and be a major 

determinant of bee species occurrence. Conversely, existing pollination 

models based on SDMs are at relatively coarse resolution, constrained by 

occurrence data and environmental variables typically available at coarse 

spatial resolution. Especially in highly fragmented landscapes, this resolution 

may fail to cover important habitats such as hedgerows, small pastures and 

forests, and therefore obtain biased pollinator distribution maps. Thus, to 

improve our ability to predict pollinator diversity and the associated 

pollination ecosystem service, one possibility could be to combine the 

advantages of the two different approaches: species distribution pre- 

dictions through SDMs and knowledge on bee species life-history traits and 

habitat requirements as implemented in InVEST and ESTIMAP frameworks. 

The aim of this study is to develop a high-resolution pollinator species 

model to predict spatial patterns of pollination ecosystem services potential 

from wild bees at the local scale. Hereby we assume that pollinator species 

richness and landscape suitability are good proxies of pollination service 

potential. This is a common assumption in existing pollination models 

(Kremen et al., 2007; Lonsdorf et al., 2009; Zulian et al., 2013) and is 

supported by the fact that pollination quantity, quality and stability tend to 

increase in landscapes with a diverse pollinator community (Klein et al., 

2007; Albrecht et al., 2012; Dainese et al., 2019). The model is used as a tool 

to provide clear guidance for potential users such as planning authorities on 

how to optimise con servation measures for wild bee conservation and to 

inform on how management decisions can affect pollination ecosystem 

services and therefore pollination-dependant crop productivity. We apply 

the model in an agriculture-dominated case study area in northern Germany 

to test this approach at the local scale and its applicability for landscape 

management, using selected bee species as an example. The approach 

also allowed us to assess how and which environmental variables affect wild 

bee species distribution, as well as the role of life-history traits on their 

spatial distribution. 

 
2. Materials and methods 

2.1. Case study area (CSA) 

The CSA is located in the region of the Bornhöved Lake District in the 

federal state of Schleswig-Holstein in Northern Germany (Fig. 1). The extent 

of the area is approximately 140 km2. Agroecosystems dominate the 

landscape in a catchment area of five glacially formed and consecutively 

connected lakes. The CSA shows a suit of habitats with a high proportion of 

hedges and wall hedges that are characteristic in the province, shaping a 

highly diverse and fragmented landscape (see Fig. 1 and Fränzle et al. 2008). 

Only small settlements, following a north-south alignment, are located in 

the CSA. 

2.2. Datasets 

 
2.2.1. Bees 

We selected species from the genus Andrena, also called mining bees, as 

they represent a highly various group including small bees to ones larger 

than honey bees, species that differ in seasonality or soil preference as well 

as specialists (oligolectic) and generalist (polylectic) species. This genus of 

bees is therefore a good representative of a broad range of bee species. From 

the Andrena genus, we selected species that were identified in the region and 

documented in the federal red list (van der Smissen 2001). This step 

accounts for historical and current dispersal limitations and helps to 

determine which species in the global source pool could have dispersed to 

the CSA (Guisan et al., 2017). The selected Andrena species are listed 

amongst the most important pollinators for crops in Europe, particularly of 

oilseed rape flowers and apple trees (Klein et al., 2007; Kleijn et al., 2015), 

or wild flowers (Westrich 2018). Plant families visited by each species are 

listed in Table 1 in the supplementary material. We obtained 125,681 

presence-only records of twenty-six wild bees from the Global Biodiversity 

Information Facility1 (GBIF). Occurrence records retrieved from GBIF were 

cleaned using the “CoordinateCleaner v.2.0–14′′ package (Zizka et al., 2019). 

Occurrences with sea coordinates, zero coordinates or without 

geographic coordinate, country mismatches, country centroids, outlier 

coordinates and coordinates assigned to biodiversity institutions were 

excluded. We also removed data older than 1950 as old records are more 

likely to be unreliable (Maldonado et al., 2015), data records with unprecise 

coordinates and duplicates. We also checked for taxonomic errors, including 

spelling mistakes and synonyms. To reduce model overfitting derived from 

spatial autocorrelation and overdominance of specific regions due to 

sampling bias, we then thinned the records using the package “spThin 

v.0.2.0′′ (Aiello-Lammens et al., 2015). 

We only selected species that had more than 50 GBIF occurrence records, 

as this is a key criterion for SDM modelling quality (Guisan et al., 2017). 

After geographic and taxonomic cleaning, only 10,928 records of twenty-five 

wild bee species were retained for modelling (Table 1 in the supplementary 

material). 

2.2.2. Environmental variables 

We used bioclimatic and Land Use/Land Cover (LULC) data as 

environmental predictors (see Table 2 in the supplementary material for a 

complete list of the environmental variables). We first selected the main 

drivers of species ranges based on knowledge about mechanistic 

relationship between environmental variables and physiology of the 

targeted species. We further reduced the number of variables as too many 

variables increase the risk of overfitting and collinearity issues between the 

variables (Dormann et al., 2013; Guisan et al., 2017). Collinearity refers to 

the non-independence of predictor variables and can be a problem for the  

 
  

1 https://www.gbif.org/ 

  

2 

https://www.gbif.org/


Mapping and assessing ecosystem services in an agricultural landscape following a tiered approach           Marie Perennes 

 

57 
   

M. Perennes et al. Ecological Modelling 444 (2021) 109484 

 

 

Fig. 1. Location of the study area in Northern Germany (on the right) and distribution of Land Use / Land Cover classes (AKTIS/InVeKoS (2010)) in the case study area 

(on the left). 

 
parameter estimation as it inflates the variance of regression parameters 

and potentially leads to the wrong identification of relevant predictors. 

Therefore, reducing the number of environmental variables maximises the 

performance of SDMs and the accuracy of the predictions (Araujo and Guisan 

2006). A Principal Component Analysis (PCA) was used to visualize the 

correlation between variables, to identify the main environmental gradients 

in the study area and to investigate the distribution of species in the 

environmental space (Guisan et al.,2017). We conducted our PCA using the 

“ade4 v.1.7–16′′ package from R (Dray and Dufour 2007). We also analysed 

correlations between environmental variables with a Pearson analysis for 

all bioclimatic and LULC variables. Only the most relevant uncorrelated 

variables, i.e., with a Pearson’s correlation coefficient below 0.7, were finally 

selected (Dormann et al., 2013). 

The bioclimatic variables were first selected based on their impact on 

diurnal foraging activity of bees, nesting success and plants availability. 

During active months, low temperatures and high precipitation values 

reduce the number of foraging days and consequently potentially decrease 

bee fitness (Westrich 2018). High precipitation values probably impact the 

nesting success for ground nesters (Bystriakova et al., 2018). Extreme 

temperature and precipitation also indirectly affect bees by impacting the  

 

bloom of plants and therefore resource availability (Nieto et al., 2014). 

Climatic data were retrieved from WorldClim2 on a 30 second resolution 

raster grids (~1 km2 at the equator) from WorldClim 2.0 (Fick and Hijmans 

2017). From the 19 available climatic variables, we first selected the variables 

expected to be the most causal for the species distribution: Bio_02 (Mean 

Diurnal Range), Bio_5 (Max Temperature of Warmest Month), Bio_6 (Min 

Temperature of Coldest Month), Bio_7 (Temperature Annual Range, Bio_5 - 

Bio_6), Bio_8 (Mean Temperature of Wettest Quarter), Bio_10 (Mean 

Temperature of Warmest Quarter), Bio_11 (Mean Temperature of Coldest 

Quarter), Bio_14 (Precipitation of Driest Month), Bio_16 (Precipitation of 

Wettest Quarter), Bio_18 (Precipitation of Warmest Quarter) and Bio_19 

(Precipitation of Coldest Quarter). The results of the PCA indicated that from 

the nine pre-selected bioclimatic variables, eight were strongly correlated 

(Bio_5, Bio_6, Bio_10 and Bio_11, Bio_14 and Bio_18 as well as Bio_19 and 

Bio_16) and one (Bio_8) did not significantly contribute to the overall 

environmental variation (see Fig. 1 in the supplementary material). We 

selected Bio_19, Bio_11, Bio_2, Bio_7 and Bio_14 for the modelling, as they are 

good variables for discriminating between bee species and the rest of the 

environment. 
  

2   http://worldclim.org/version2 

3 

http://worldclim.org/version2
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In temperate zones, wild bee species distributions are influenced by 

the proportion of heathland, woodland, grassland and urban areas 

coverages at the landscape scale (Senapathi et al., 2015). As major threats 

to wild bees in Europe, agricultural intensification and expansion, pollution 

and urban sprawl will generally have a negatively impact wild bee species 

distribution (Nieto et al., 2014). For this study, LULC data was derived 

from the CORINE (Coordination of Information on the Environment) Land 

Cover 2018 dataset3, with a 100 m resolution. This dataset is produced by 

the European Environmental Agency (EEA) and is composed of 44 different 

LULC classes belonging to the five main land cover categories artificial 

surfaces, agricultural, forest, semi-natural areas, wetlands or water bodies. 

We used the hierarchical level 3 from CORINE and first aggregated the data 

in 1 km * 1 km grid cells, representing the percentage cover of each LULC per 

1 km * 1 km grid. This was a necessary first step to generate a clean data 

structure for modelling (all predictors having the same resolution). The 

resolution of the predicted results is the same as the one of the 

environmental variables (1 km * 1 km). We first selected 15 LULC classes 

based on their ecological relevance: Continuous urban fabric, discontinuous 

urban fabric, road and rail networks and associated land, non-irrigated 

arable land, pastures, complex cultivation patterns, broad-leaved forest, 

coniferous forest, mixed forest, natural grasslands, moors and heathland, 

transitional woodland-shrub, sparsely vegetated areas, water courses and 

water bodies. We run the complete model a first time to select the most 

important variables for the select wild bee species distribution. This led to 

the selection of the following LULC variables: discontinuous urban fabric, 

non-irrigated arable land, pastures, coniferous forest, sparsely vegetated 

areas, water courses and water bodies. The selected LULC variables are 

neither correlated within each other nor with the selected bioclimatic 

variables (see Pearson correlation coefficients in Table 3 in supplementary 

material). 
In total, five bioclimatic variables and seven LULC classes were 

selected for modelling the potential distribution of the twenty-five bee 
species. 

2.2.3. Habitat filter variables 

We used the ATKIS (version 2012, Authoritative Topographic and 

Cartographic Information System), the official topographic information 

system for Germany and the InVeKoS (version 2010, Integrated 

Administration and Control System) datasets to build our species- specific 

habitat filters. The ATKIS dataset is originally mapped at a scale of 

1:25.000 and describes 182 object classes that belong to artificial surfaces, 

traffic, vegetated areas (mainly agricultural, forest and natural areas), water 

bodies and relief (such as dams, cliffs, dunes). The InVeKoS dataset was used 

to obtain landscape elements such as hedge- rows and tree rows for the CSA. 

For both datasets, the spatial resolution depends on the feature classes and 

has a MMU between 0.1 and 1 hectare (Bach et al., 2006). The 

ATKIS/InVeKoS datasets was used to map bee species habitat as described 

by Westrich (2018). To our knowledge, it is the most appropriate way to map 

bee species habitat at a high thematical and spatial resolution in our CSA. 

Though the latest generation of satellite products may allow to map LULC at 

a high resolution and to describe the presence of landscape elements at 

European scale, this data is not available yet. We created a habitat filter for 

each of the twenty-five selected bee species, by keeping only the LULC 

classes described as potential habitats (Table 4 in the supplementary 

material). 

2.3. Model calibration and evaluation 

 
2.3.1. Conceptual model 

We aimed at developing a species-centered approach based on the 

Ecosystem Services Providers (ESP) concept, i.e., species, functional groups, 

species communities, or habitats that produce ecosystem services (Kremen  
 

3  https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 

 

et al., 2007). In our model, the ESP are wild bees that provide pollination 

ecosystem services. The conceptual framework (Fig. 2) is inspired by the 

Ecological Production Function framework from Kremen et al. (2007). Key 

elements for species geographical distribution depend on the spatial scale of 

the influencing factors (Pearson and Dawson 2003; Thuiller 2004; Milbau et 

al., 2009; Hortal et al., 2010). At the global scale, species occurrence is 

governed by bioclimatic and land cover variables (Fig. 2a) (Hegland et al., 

2009). For bee species, distribution drivers at the global scale are not yet 

well understood (Bystriakova et al., 2018), while local determinants are 

relatively well known and mainly depend on the presence of nesting places 

and floral resources at the local scale, which define the habitat of a 

species (Fig. 2b) (Westrich 2018). The analysis of the role of different 

environmental drivers at their operating scales is required to appropriately 

predict wild bee occurrences at the local scale. We therefore use a 

hierarchical framework that builds on the work of Milbau et al. (2009): 

environmental drivers operating at large scales are used to predict species 

distribution using SDMs, and the outputs are combined with a species-

specific habitat suitability filter to refine the suitability maps at the local 

scale. The pollination efficiency of each species depends on life-history 

traits, such as morphology and behaviour (Willcox et al.,2017). One 

important trait for the pollination of crops is the foraging range (Fig. 2c), 

because it determines the distance over which pollen can be transported and 

if crop fields or target plants are reachable for the different species. The 

pollination potential is defined as the sum of each predicted species 

probability of presence combined with foraging distances. The pollination 

ecosystem service potential on crop fields was restricted to the probability 

of presence of crop pollinators on potential pollination-dependant fields 

(Fig. 2d). 

2.3.2. Species distribution model 

Species distribution modelling was carried out with the “biomod2 

v.3.4.6′′ library (Thuiller et al., 2016) implemented in R (Version 4.0.3) (R 
Core Team 2017). All maps were created using ArcGIS (Version 10.6.1). 

Occurrence data from GBIF are typically presence-only data, with no 

recorded absence data, whereas the algorithms used for modelling need 

presence-absence points, so pseudo-absence points were generated with the 

following approach: several sets of pseudo-absence data were generated to 

prevent sampling bias and to be able to test the effect of each pseudo-

absence selection on the predictive ability of the model. Following Phillips et 

al. (2009), we restricted the selection of the background points in a 10 km 

buffered convex hull around the GBIF Andrena records to reflect species 

sampling bias. One thousand pseudo-absence data points were sampled 

randomly from the back- ground region and we repeated the random 

selection ten times to build a ten-fold internal cross-validation of the models 

(Phillips et al., 2009; Barbet-Massin et al., 2012). 

We chose to combine different algorithms with ensemble modelling as 

no statistical tools will per se perform better than any other (Elith and 

Leathwick 2009; Aguirre-Gutiérrez et al., 2013; Araújo et al., 2019) and as 

predictions based on an ensemble of several algorithms are often more 

robust than predictions derived from a single model (Araújo and New 2007; 

Araújo et al., 2019). For each bee species model, we used three different 

algorithms: Generalized Linear Model (GLM), a flexible regression model 

allowing to handle non-normally distributed response variables, Flexible 

Discriminant Analysis (FDA), a flexible classification approach derived from 

Linear Discriminant Analysis methods and Random Forest, a bagging 

approach. To train the SDMs and test their predictive performances, we used 

a cross-validation with a random subset of 70% of the points to calibrate the 

model for every single species, while the remaining 30% of the points were 

used for validation. Each single model was run on the training data and 

evaluated on the test data using performance evaluation metrics. This process 

was repeated four times with different partitioning of the original dataset into 

a training and a test set. Cross-validation was used to decrease bias in the 

predictive performance of the measuring models (Pearce and Ferrier 2000). 
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Fig. 2.  Flow chart representing the different steps of the hierarchical modelling approach to predict pollination potential at the local scale. 
 

 

We used different performance evaluation metrics: Area Under the 

Curve (AUC) of the Receiver Operating Characteristic (ROC) plot, True 

Skills Statistics (TSS) and the continuous Boyce index (CBI). AUC is a 

threshold-independent model evaluation indicator (Franklin 2010), 

which continuously discriminates between suitable and unsuitable 

habitats, independently of prevalence of target species (Elith and 

Burgman 2002). It plots the commission error against omission error and 

ranges between 0.5 and 1, where 1 represents a perfect discrimination 

between presence and absence, and 0.5 represents a random fit. TSS is a 

threshold-dependant measure of model accuracy and, contrary to AUC, is 

based on binary predictions of predicted suitability/unsuitability for each 

species (Allouche et al., 2006). It ranges from -1 to 1, with 1 indicating 

perfect agreement between predictions and observations, and 0 or less 

indicating an agreement no better than a random classification (Zhang et al., 

2015). This metric is negatively related to species prevalence (Allouche 

et al., 2006). Contrary to AUC and TSS, CBI does not require absence data 

and is therefore considered as more appropriate when working with 

presence-only data. The metric measures how observed presences are 

distributed across the gradient of predicted presences and how this differs 

from a random distribution. It also varies from -1 to 1, where positive values 

indicate a good agreement between predictions and the distribution of 

presences in the evaluation dataset, values close to zero indicate 

predictions not different from a random distribution and negative values 

indicate incorrect models (Hirzel et al., 2006). 

One of the main challenges in modelling pollination potential is that each 

pollinator species has its specific potential geographical range and habitat 

needs, so each species needs to be modelled independently. For each bee 

species, a total of 120 models was built (using three algorithms, four cross-

validations to sample test and training data and ten pseudo-absences 

samplings). Only models with a TSS greater or equal to 0.6 were kept to  

 

 

build the final ensemble (Landis and Koch 1977). Ensemble predictions were 

calculated as weighted averages of single-model pre- dictions, with weights 

assigned to each modelling technique using the TSS (Allouche et al., 2006). 

To ensure transparency and reproducibility of our SDMs, we included 

an Overview, Data, Model, Assessment, and Prediction (ODMAP) protocol 

from Zurell et al. (2020) in the supplementary material. 

2.3.3. Habitat filter 

The next step was to combine the SDM ensemble models with the 

corresponding habitat filters for each modelled bee species into a unique 

predicted distribution (or environmental suitability) map for the CSA (Fig. 

2b). To do so, for each species and each grid cell of the CSA, we multiplied 

the species distribution prediction and the binary habitat filter values. The 

resulting maps represent the suitability of the area to support the different 

bee species, according to its environmental conditions and the presence of 

potential habitats for each species. 

2.3.4. Foraging range 

As bees are central place foragers, their foraging ranges determine their 

capacity to pollinate and to potentially increase the yield of adjacent crop 

fields. The foraging ranges of the species were added to the model to 

determine the final pollination potential map (Fig. 2c). Foraging distances 

are species-specific and are a function of the inter- tegular distance (i.e., the 

distance between the wing-attachment points on either side of the thorax) 

(Greenleaf et al., 2007). Kendall et al. (2019) implemented the “pollimetry 

v.1.0.1′′ library, which allows to calculate foraging distances based on 

intertegular measurements of bees and provide the resulting database 

intertegular measurements of 4035 bee specimens. We used this package 

in R to estimate the average foraging range of the twenty-five selected 

bee species. When no data were found, we used the average of all foraging 
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ranges over the Andrena genus. Foraging range values are presented in 

Table 5 in the supplementary material. Using the “raster v3.4–5′′ package 

(Hijmans et al., 2013), we then implemented a circular moving window, with 
a focal corresponding to the average foraging distance of each bee species. 
For each grid cell of the CSA, the pollination potentials were computed 

based on the foraging ranges and the suitability of the area to support 
the different bee species. 

2.3.5. Relative pollination potential 

The total pollination potential of the CSA was calculated as the sum of 

the pollination potential of each species, determined in the previous step. 

We made the assumption that local species communities are made of 

species with the same environmental requirements and we neglected 

macroecological controls on community assembly such as competition and 

synergies between species (Guisan and Rahbek 2011). We chose to work 

with occurrence probability maps and not with binary pre- 

sence/absence maps, as Calabrese et al. (2014) and D’Amen et al. (2015) 

showed that the addition of predictions of occurrence probabilities from 

individual SDMs is preferable to setting arbitrary thresholds to obtain 

binary predictions and then combining those into a stacked-SDM, as this 

tend to be biased and overpredict of species richness. 

The resulting map represents the relative pollination potential of the 

area, i.e., the potential of the area to sustain pollination from the selected 

Andrena species. 

2.3.6. Comparison with independent field data 

In the CSA, flower visiting insects were collected using one yellow pan 

trap in 12 rapeseed fields between May 4th to June 6th 2018. Traps were set 

up at one border of each field, close to a near-natural habitat (such as 

hedgerows or forests), with their tops approximately even with the 

surrounding oilseed rape flowers. The traps were filled with diluted 

detergent solution and emptied weekly. All bees were identified to species 

level. The trap locations were selected to cover the landscape diversity in the 

CSA: from locations surrounded by a landscape with a high proportion of 

near-natural habitats to locations with a low pro- portion of near-natural 

habitats. 

We used linear regression to assess whether the pollination model 

outputs reflect the pollinator community abundance and species rich- ness 

collected in the field. We compared the abundance and richness of oilseed 

rape pollinators from the Andrena genus from the collected data with the 

predicted pollination potential. We also compared Andrena species richness 

from the collected data with the predicted richness of Andrena species 

obtained with the model (the sum of all the predicted suitability using the 

SDMs and the habitat filters, Fig. 2b in the work- flow). For this comparison, 

we calculated the mean predicted species richness for all pixels within a 

radius of 200, 300 and 500 m radius of trap locations. 

3. Results 

 
3.1. Model evaluation 

The evaluation scores of all ensemble models were high to very high 

(ROC between 0.892 and 0.978, TSS between 0.623 and 0.887 and CBI 

between 0.965 and 1), which means that the predictive accuracies of the 

models were good to very good. An overview of all these performances 

measures can be found in Table 7 in the supplementary material. 

The importance of each predictor for each species model varied with the 

tested algorithms and modelled species. Bioclimatic variables indicated a 

higher percentage of the data variances than LULC variables. Bio_2 (Mean 

Diurnal Range), Bio_11 (Mean Temperature of Coldest Quarter) and Bio_7 

(Temperature Annual Range) appear to be generally the most important 

variables, followed by Bio_19 (Precipitation of Coldest Quarter) and Bio_14 

(Precipitation of Driest Month). LULC variables have a more minor 

importance for the models and generally only few categories are relevant for  

 

each species. Discontinuous urban fabric is overall the most important LULC 

variable, followed by non- irrigated arable land and sparsely vegetated areas 

(Table 6 in the supplementary material). 

3.2. Species distribution models 

Figs. 3 and 4 illustrate the different results for two species (Andrena 

barbilabris and Andrena carantonica). The predicted presence of each 

species is determined through a SDM at the European scale (Figs. 3 and 4 

(B)) based on occurrence data (Figs. 3 and 4(A)). Even at the local scale of 

the CSA, we obtained different distribution predictions for each spe cies. 

For instance, the model predicted that overall, the area is slightly more 

suitable for A. carantonica than for A. barbilabris (Figs. 3 and 4(C)). Habitat 

filtering was done with a buffer of 2 km around the CSA to ac- count for 

foraging distances and the possibility that bees can nest outside and forage 

inside the CSA (Figs. 3 and 4(D)). The differences in the final predicted 

presence of species were also due to habitat preferences of each species: 

For instance, A. carantonica has a wider range of potential habitats and a 

broader distribution over the CSA than A. barbilabris. A. carantonica has a 

wider foraging range than A. barbilabris (700 m compared to 200 m), 

which also explains the differences in species respective pollination 

potential in the final maps (Figs. 3 and 4(E)). 

3.3. Potential pollination map for the CSA 

The model predicted the CSA as suitable for all the target species. The 

predicted pollination service potential (sum of the pollination potential of 

all target wild bee species) scores from 0 (none of the modelled species is 

potentially present) to 15 (highest predicted scores when adding the 

pollination service potential of the twenty-five wild bee species) for each 

grid cell (see Fig. 2 in the supplementary material). Areas where none of the 

species is potentially present have no potential pollination ecosystem 

service performed by the selected and modelled species, whereas a high 

predicted landscape suitability and wild bee species richness increase the 

pollination service potential of the area. 

Fig. 5 compares the predicted spatial patterns of oilseed rape pollinators 

and the potential pollination ecosystem service demand for oilseed rape 

(the main pollination-dependant crop in the CSA), estimated with the 

ATKIS/InVeKoS “arable land” LULC class. The location of rapeseed fields 

generally changes annually, as a result of crop rotation, changing market 

prices and changes in political schemes and subsidies. The demand for 

pollination ecosystem services will therefore change annually and can 

potentially occur on all arable fields. This is why we did not directly map 

rapeseed fields and assumed that it could potentially grow on every arable 

field. For this analysis, we restricted the pool of modelled wild bee species 

to oilseed rape flowers visitors (as documented in Table 1 in the 

supplementary material). Our model predicted that most of the fields have a 

low pollination potential and the mean pollination potential value on arable 

fields was 1.5. The model predicted low mean pollination ecosystem service 

potentials particularly the North-Eastern part of the CSA (e.g., in Fig. 5(C)). 

Fields with relatively high mean pollination ecosystem service potentials are 

more evenly distributed over the CSA. 

3.4. Comparison with independent field data 

Yellow pan traps captured 801 individual bees from 42 different 

species. From the collected wild bees, 681 were from the genus Andrena, 

from 19 different species. Form the genus Andrena, 576 individuals were 

known oilseed rape flower visitors, from 9 different species. Abundance 

and richness of oilseed rape visitors from the genus Andrena increased 

with the predicted pollination service potential (r = 0.28, d.f. = 10, p = 

0.07) and (r = 0.29, d.f. = 10, p = 0.07), however not significantly (Fig. 

6(a) and (b)). Oilseed rape visitor richness increased with the mean 

predicted pollinator richness within a radius of 500 m (r = 0.28, d.f. = 10, p 
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Fig. 3. Examples of species distribution model outputs for A. carantonica. (A): Occurrence points, retrieved from the GBIF database a nd cleaned, (B): predicted probability 

of presence at the European level (ensemble model of the best performing algorithms), (C): Zoom of the predicted probability of presence covering the  CSA, (D): predicted 

probability of presence on potential habitats (SDM results X habitat filter; including buffer around the CSA), (E): pred icted pollination ecosystem service potential by A. 

carantonica in the CSA. 

= 0.07, not shown here), 300 m (r = 0.38, d.f. = 10, p = 0.03) and 200 m (r 

= 0.48, d.f. = 10, p = 0.01) (Fig. 6(c) and (d)). 

4. Discussion 

We have predicted the current potential occurrence of twenty-five 

selected bee species at the local scale in order to estimate the potential 

pollination ecosystem service supply for pollination-dependant crops and 

wild plants. The aim was to develop a model based on peer- reviewed 

knowledge rather than on expert-judgement, adapted to the region of 

interest and its bioclimatic conditions and with consideration to the 

availability of foraging resources and nesting places, for which a fine 

resolution is needed. One further novelty of the developed method is that 

it combines environmental drivers at larger and local spatial scales and 

thereby goes beyond existing pollination models, which typically focus on 

one scale, despite the importance of integrating environmental drivers at 

multiple geographical scales (Milbau et al., 2009; Mateo et al., 2019b). 

 
4.1. Modelling pollination service potential 

SDMs results highlighted the role of bioclimatic factors in bee species 

occurrence at continental to local scales, as previously illustrated by Polce 

et al., (2013); Nogué et al., (2016); Polce et al., (2018) and Bystriakova et 

al., (2018). This is indicated by the predicted suitability maps (Figs. 3b & 

4b): SDMs predicted that the suitability for A. carantonica and A. barbilabris 

is highly variable across Europe countries and we also obtained different 

predictions at the local scale (Figs. 3c & 4c). As the ESTIMAP and InVEST 

models only express the relative suitability for pollinators in terms of 

availability of floral re- sources and nesting sites (Lonsdorf et al., 2009; 

Zulian et al., 2013), they neglect the variability of bee species distributions 

due to bioclimatic factors. To our knowledge, no study has yet assessed these 

models in regard to the use or non-use bioclimatic factors. Furthermore, 

SDMs provide an effective alternative to local expert opinion on species 

potential occurrence (Gastón et al., 2014) and can be used to discriminate 

present from absent species in a given location. In addition, as the modelling 

framework allows to assess the relative importance of environmental 

variables on different species, it can be also used to analyse the impact of 

climate and land cover changes on wild bee species and future pollination 

service potential. 
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Fig. 4. Species distribution model outputs for A. barbilabris. (A): Occurrence points, retrieved from the GBIF database and cleaned, (B): predicted probability of presence 

at the European level (ensemble model of the best performing algorithms), (C): Zoom of the predicted probability of presence covering the CSA, (D): predicted probability 

of presence on potential habitats (SDM results X habitat filter; including buffer around the CSA), (E): predicted pollination  ecosystem service potential by A. barbilabris 

in the CSA. 

 
As they do not account for natural and semi-natural areas, previous 

pollination (or wild bee species distribution) models based on SDMs also 

probably overpredict the distribution of bee species at the local scale (Polce 

et al., 2013; Nogué et al., 2016; Polce et al., 2018; Bystriakova et al., 2018). 

These models may therefore significantly overpredict the pollination 

potential and minimize areas where pollination demand exceeds pollination 

service potential, as only specific areas in croplands provide suitable 

habitats for wild bee species (mainly natural and semi-natural habitats) 

(Westrich 2018). This is particularly problematic when pollination-

dependant crops are isolated from natural and semi-natural habitats 

(Ricketts et al., 2008; Garibaldi et al., 2011). The importance of the presence 

of natural and semi-natural areas at small spatial scales within agricultural 

landscapes for wild pollinator species has been described in many studies 

(Gathmann and Tscharntke 2002; Zurbuchen et al., 2010; Ricketts et al., 

2008; Kennedy et al., 2013) and is also supported by our results. This is 

indicated by the differences be- tween the predicted suitability and 

pollination potential maps (Figs. 3 & 4): our results of SDMs predict that 

the whole CSA is highly suitable for A. carantonica and A. barbilabris, 

whereas their final suitable areas are much more restricted when accounting 

for habitat availability. This is consistent with Fournier et al., (2017) and 

Hattab et al., (2014), which also found that adding species-specific habitat 

filters greatly refined habitat suitability for terrestrial and marine species.  

 
As it integrates information on drivers operating across different scales, our 

multi-scale approach should provide more accurate predictions and a better 

understanding of processes underlying species distribution compared to 

single-scale models (Pearson et al., 2004; Mateo et al., 2019b; Mateo et 

al., 2019a; Bellamy et al., 2020; Fournier et al., 2017). 

Despite the low number of sampling sites and the restricted sampling 

period during the mass-flowering of oilseed rape, our model correlated fairly 

well with the data observed in the field. The model was able to predict a 

significant proportion of the variation in oilseed rape pollinator richness from 

independent data. Oilseed rape pollinator richness and abundance from the 

collected data were also correlated with the predicted pollination service 

potential, however with no significance. This analysis can be considered as a 

first approach to evaluating the model results, but not yet a validation of our 

model due to the small number of sampling sites and the absence of 

replication. 

 
4.2. Limitations and uncertainties of the study 

The presented approach comes with several modelling limitations. First, 

the performance of each SDM is constrained by the quantity and quality of 

the GBIF occurrence data. In principle, the performance of each SDM can be  
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Fig. 5. Predicted mean pollination potential on 

arable lands (A) and zoom over two contrasting 

pollination service potential results (B and C). 

Brown areas represent potential suitable habi- 

tats for the different bee species. Light yellow 

areas represent unsuitable habitats other than 

arable lands. Arable lands are marked with a 

gradient from light to dark blue, depending on 

the predicted mean pollination service poten- 

tial for each parcel of the CSA (the mean is 

calculated over each parcel). In (B), the land- 

scape has a larger proportion of potential hab- 

itats such as grasslands and forests, whereas in 

(C), the landscape is largely dominated by arable 

lands. In (C), the mean pollination potentials 

tend to be lower than in (B) (values between 0.9 

and 6.2 in (B); 0.2 and 4.2 in (C)). 

The circles represent the principal foraging 

ranges of the selected bee species (100, 300 and 

500 m radius), so the principal distances around 

fields within which the presence of habitats for 

pollinators can increase pollination ecosystem 

service supply. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
improved by including more species occurrence data. For the selected bee 

species, GBIF occurrence data are particularly biased towards higher 

occurrences in Northern European countries including Great Britain, 

Sweden, Belgium and Germany, which may make the outputs of the SDMs 

less reliable for regions with very different bioclimatic conditions such as 

Southern European countries. This is however less problematic in the 

studied CSA, located in Northern Germany. 

Second, our model might overpredict single species occurrences because 

there is no limit on the number of species that can occupy a given area, i.e., 

the carrying capacity of ecosystems is not considered in SDM approaches 

(Graham and Hijmans 2006; Thuiller et al., 2015). This is particularly the 

case when interactions between species (competition, parasitism, 

mutualism, predator-prey) strongly influence species co-occurrences and 

can exclude species from a community. For instance, honeybees have been 

reported to negatively impact the presence of wild bees because of their 

density and their outstanding foraging capacity (Thomson 2004; Hudewenz 

and Klein 2013), although this is debatable (Greenleaf and Kremen 2006b;  

 
Westrich 2018). One way to account for biotic interactions in SDMs is to test 

models’ residual for evidence of species interaction using Joint Species 

Distribution Models (jSDMs) (Pollock et al., 2014). Using jSDMs instead of 

SDMs may increase the explanatory power when modelling pollinator 

communities. However, when restricted to relatively few species, the present 

model should not lead to an overprediction of the local pollination 

potential. 

Our habitat filter is based on the work from Westrich (2018), which 

gathered knowledge on wild bees in Germany based on more than 3000 

scientific publications. As the habitat preference of wild bee species may be 

different in other countries, the habitat filter should be adapted to local 

characteristics when using the model in other regions of the world. 

We found that two precipitation variables and three temperature- 

related variables were the most important for predicting the potential 

distribution of bee species over Europe: Precipitation of the Coldest Quarter 

and of the Driest Month, Temperature Annual Range, Mean Temperature of 

Coldest Quarter and Mean Diurnal Range. 
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Fig. 6. Linear regressions with one independent dataset from the CSA: between oilseed rape pollinator abundance and the predicted pollination potential (a),  between 

oilseed rape pollinator richness and the predicted pollination potential (b), between oilseed rape pollinator richness and the mean predicted oilseed rape pollinator 

richness for a radius of 300 m (c) and 200 m (d) around the pan trap locations. 
 

These variables all have a direct or indirect ecological implication that can 

be explained. Precipitation and temperature extremes affect nesting suit- 

ability, foraging behaviour and resource availability. Low temperature and 

high precipitation values might have a higher impact on the presence of bees 

during their active season (principally spring and early summer), by directly 

reducing their foraging capacity. Instead of using bioclimatic variables from 

WorldClim, SDM predictions might be improved by using temperature and 

precipitation values restricted to each respective bee-active season. We 

found that LULC variables have a much lower impact on species distribution, 

except discontinuous urban fabric, non-irrigated arable land and sparsely 

vegetated areas for some species and depending on the algorithm. These 

results on the relative importance of environmental data for predicting bee 

species distribution are comparable to Polce et al., (2013) but not 

Bystriakova et al., (2018) nor Polce et al., (2018). This may be due to the 

selected bee species, as the latter two studies were calibrated with 

Bumblebee species or bees of the subfamily Colletinae, whereas the study 

from Polce et al., (2013) was calibrated with species from different genera, 

including some Andrena species. Besides, Polce et al., (2013) found that the 

use of pesticides plays a significant role in bee distribution. As there is 

growing evidence that pesticides inputs can have a considerable negative 

impact on wild bee species (Brittain et al., 2010; Whitehorn et al., 2012), this 

variable should be used when available to refine the different SDMs. 

Effective pollination depends on the pollination effectiveness or 

performance of each species, which in turn depends on a broad range of 

factors, e.g., pollinator morphology and behaviour, flower visitation 

rates, pollen deposition but also plant health (Willcox et al., 2017). There 

is growing evidence that not all species are equally important for the 

pollination of a given crop (Kleijn et al., 2015; Winfree et al., 2015) or wild 

plant species (Gorenflo et al., 2017). Empirical data linking yield gain 

specifically to one pollinator taxon are however still scarce (but see Rader 

et al., (2009) and Jauker et al., (2011)), so we did not include information 

about pollination efficiency of each wild bee species in our model. 

Furthermore, there are a wide range of community-level factors that may 

influence pollination efficiency, such as species interactions and niche 

complementarity (Willcox et al., 2017). Instead, we assumed that the 

pollination ecosystem service potential of an area increases with the  

 

likelihood of the presence of bees and bee species richness, which is 

supported by Klein et al., (2009), Garibaldi et al., (2011) and Woodcock et 

al., (2019). Accounting for functional diversity and specifically choosing bee 

species with a high functional divergence (characterised by non-

overlapping traits) could however greatly improve the informative value of 

pollination models and allows to ultimately link crop pollination service 

potential to service provision and contribution to crop yield, seed quality 

and eventually economic return (Woodcock et al., 2019; Gagic et al., 2015). 

Building on Woodcock et al., (2019), the framework could be further 

improved by adding an extra step converting species probability of presence 

into a functional divergence index (i.e., a composite index derived from 

species effect traits that play an important role for the pollination of the 

considered crops), whenever this data is available. To do this, the function 

divergence index from Woodcock et al., (2019) or a similar composite of traits 

influencing species pollination efficiency could be included in step (c) (Fig. 2) 

of the framework, along with the foraging range, a trait which is already 

accounted for in the model. Similarly, including information about temporal 

dynamics, particularly about bee flight seasons can further increase the 

robustness of the model predictions. This could be done by adding flighting 

season filters (similar to the habitat filters) between step (b) and (c) (Fig. 

2) of the framework and running the model for each month of the crop 

flowering season to estimate the monthly pollination service potential 

throughout the entire crop flowering season. This will allow to assess 

whether the entire crop flowering time is covered by a high pollination 

potential or if there is a temporal mismatch between ES demand and 

potential. 

Lastly, the presented pollination potential maps are based on solely one 

genus (Andrena) and twenty-five species, whereas around 300 species have 

been observed in the region – of which only 110 species are not threatened 

by extinction nor are already extinct (van der Smissen 2001). As we selected 

species from the genus Andrena and only species that are soil-nesting and 

solitary, the results certainly do not represent each single bee species 

occurring in the region. For a better wild bee species richness assessment, 

other genera should be included in the model. For instance, above-ground 

nesting bees and species with different degrees of sociality are not 

represented in our model. Including bees with these characteristics could  
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have an impact on the resulting pollination potential maps, if sociality and 

nesting requirements play a major role in species distribution. The selected 

bees are nevertheless suitable for pollination potential modelling, as they 

represent a highly variable group due to their varied size, seasonality, soil 

preference for nesting and foraging behaviour and as the vast majority of 

wild bees are soil-nesting and solitary (Westrich 2018). 

 
4.3. Applications 

The pollination potential maps in the studied CSA can help to assess the 

needs for practical conservation measures to promote insect pollinators in 

agri-environmental schemes. Spatially explicit maps of the pollination 

potential in comparison to maps of pollination demand will allow the 

identification of areas where pollination service is deficient. The resulting 

maps can support land management recommendations such as where to 

prioritize habitat conservation measures in agricultural landscapes to 

sustain biodiversity, ecosystem functions and services that support crop 

production. One advantage of the developed model is the combination of 

SDMs and species-specific habitat filters. This can help to develop relevant 

habitats for species, for which large-scale factors such as climatic 

parameters are also suitable. For example, in Fig. 4 (C), the dark blue zones 

indicate a high suitability for A. barbilabris. However, as there are only few 

potential habitats for this species at these spots, the species cannot colonise 

a large part of these suitable areas. These areas could thus be potential 

targets for A. barbilabris conservation measures, such as the inclusion of 

fallow in the crop-rotation pattern. Conservation measures such as 

hedgerows, field margins and flower strips have been shown to have a 

positive and significant effect on wild bee abundance and diversity 

(M’Gonigle et al., 2015), particularly for bumblebees (Pywell et al., 2005; 

Carvell et al., 2011; Pywell et al., 2012). This demonstrates the 

importance of these habitats at the small scale for pollinator community 

conservation. Furthermore, Pywell et al., (2012) highlighted the importance 

of using ecological knowledge of targeted species when designing 

conservation measures and showed that species-specific measures are 

much more efficient and sustain a higher species richness than 

generalized conventional conservation measures. As climatic factors have 

a significant effect on the distribution of bees, climate change will 

certainly affect bee distribution in the future and disrupt plant–pollinator 

interactions (Memmott et al., 2007; Bies meijer et al., 2006). Our results 

show that the consideration of climatic factors (and therefore climate 

change) is essential when developing conservation measures for the long 

term, for pollinator biodiversity and to preserve plant-pollinator 

interactions. 

 
5. Conclusions 

To our knowledge, this is the first work that developed a framework that 

predicts geographical patterns of pollinators based on SDM and multi-scale 

environmental drivers to predict pollination ecosystem ser vice potential at 

the local scale. The results of the different models show that the framework 

can be adapted for a local scale assessment. This approach allowed us to 

predict the pollination potential from mining bee species and to identify 

areas with high or low pollination ecosystem services potential. The 

comparison with independent samples showed good agreement between 

the model outcomes and species occurrence data collected in the field. The 

developed model can support land-use decisions but also help to identify 

conservation measures and areas for prioritizing species conservation 

planning. This method is transferable to other European regions and 

other countries in the World, provided that they have enough species 

occurrence data. It can also be used to investigate the effect of climate and 

land-use changes on pollinators’ distribution and pollination potential and 

help to implement mitigation measures for vulnerable areas and species. 
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Nogué,  Sandra,  Long,  Peter  R.,  Eycott,  Amy  E.,  Nascimento,  Lea  de,  Fernández- Palacios,  
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Chapter 5 
 

Modelling potential natural pest control ecosystem services 
provided by arthropods in agricultural landscapes 

Perennes, M., Diekötter, T., Hoffmann, H., Martin, E. A., Schöder B. and Burkhard, B. 
Agriculture, Ecosystems & Environment (2023), 342, 108250 

 
 
This Chapter focuses on quantifying, modelling and mapping natural pest control service potentials 
based on the Ecological Production Function (EPF) framework, using hierarchical species distribution 
models (SDMs) and analysing species interactions. With this study, we aimed at better 
understanding ecological processes underlying the delivery of natural pest control ES and how 
bioclimatic variables and landscape complexity impact the distribution patterns of ESPs and thereby 
the delivery of ES. 
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A  B  S  T  R  A  C  T  
 

Natural pest control has the potential to reduce pesticide use. Therefore, it has an essential role to play in the 

transition towards a more sustainable agriculture. For the prediction of natural pest control, it is essential to 

understand the distribution of the species providing this ecosystem service. The presence of pests and natural 

enemies depends on a combination of abiotic and biotic factors, each playing a determining role at different  

spatial scales. We developed a hierarchical model composed of environmental predictors including bioclimatic 

and land use variables at the European scale, as well as landscape complexity and biotic interactions at the 

landscape scale. This paper presents the predicted distribution of 111 species from seven different arthropod 

families (two pest aphid species and their natural enemy species) in an agricultural region in northern Germany. The 

hierarchical framework allows determining the capacity of landscapes to support pest control ecosystem services 

provided by arthropods at the local scale and informs on vulnerable areas or potential mismatches between 

natural pest control demand and supply. Thereby it can support the design of local scale measures for habitat 

improvement, biodiversity conservation and the increase of ecosystem services supply. The hierarchical approach 

can be adapted to other agroecosystems and leaves potential for further adaptations to improve the prediction 

of pests and their natural enemy distribution, dynamics and factors influencing their spatial distribution. 
 

 

 
 

1. Introduction 

 
Pests are defined as species that compete with humans for resources. 

They can be responsible for substantial agricultural losses despite the 

widespread use of pesticides (Oerke, 2006). The deleterious impacts of 

pesticide use on human health, its toxicity for non-target organisms and 

the induced disturbance on ecological communities, which can favour the 

emergence of new pests (DeBach and Rosen, 1991) and disrupt ecosystem 

services essential to agricultural production (Chagnon et al., 2015) have 

become a major environmental issue (Bommarco et al., 2013). 

Consequently, there is an increasing pressure to reduce pesticide inputs 

while minimizing agricultural losses due to pests. One approach is 

 
to rely on natural pest control, i.e., control of pests by their natural 

enemies and land use management (Naylor and Ehrlich, 1997). How- 

ever, replacing insecticide use by natural pest control requires under- 

standing the mechanisms underlying pest outbreaks and their control. In this 

regard, spatially explicit tools are needed to predict natural pest  

control potential, potential mismatches between pest control demand and 

supply and to inform on how it can be affected by planning and land 

management decisions (Daily et al., 2009; Groot et al., 2010; Maes et al., 

2012; Kleijn et al., 2019). The current knowledge on the different 

ecological processes influencing the delivery of natural pest control 

ecosystem services (ES) in agroecosystems is however fragmented 

(Jonsson et al., 2014; Holland et al., 2017), (but see Haan et al., 2020 for 
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a recent review on our current understanding on the effect of landscape on 

pest control), and there is currently no widely accepted and applicable tool 

to assess, map and predict this ecosystem service (Englund et al., 2017; 

Alexandridis et al., 2021). 

In this study, we aimed to model and predict the potential for natural 

pest control ES by arthropods using hierarchical, mechanistic and multi- 

trophic models, combining and synthesizing prior knowledge on the main 

factors that shape local species distribution and pest control po- tential. 

We focused on natural pest control of aphids by arthropod nat- ural 

enemies, an important but still poorly quantified ecosystem service 

(Landis et al., 2008; Tschumi et al., 2015), mainly because it differs 

widely among landscapes, agroecosystems and local contexts (Tscharntke 

et al., 2005; Jonsson et al., 2014; Karp et al., 2018). Reasons  

for this variability include a variety of factors, such as differences in 

temperature, precipitation, land use and management, the structure and 

composition of the landscapes as well as biotic interactions. Each of these 

factors plays a role at different spatial scales: distributions at  

global to regional scales are shaped by factors that vary slowly across 

space, such as bioclimatic variables, whereas predictors influencing a 

species’ mobility, resource distribution or biotic interactions are 

important at finer scales (Pearson and Dawson, 2003; Pearson et al., 

2004; Thuiller et al., 2004; Wisz et al., 2013; Mateo et al., 2019). In this 

regard, hierarchical modelling approaches are an appropriate way to 

account for environmental factors driving species distribution and 

associated ecosystem services at different scales (Pearson et al., 2004; 

Gallien et al., 2012; Fournier et al., 2017; Mateo et al., 2019; Bellamy et 

al., 2020). 

Another challenge when modelling natural pest control is that this 

service is the result of mutual interactions among at least three trophic 

levels: the primary producers, the pests, the natural enemy communities 

(Wilby and Thomas, 2002; Tscharntke et al., 2012), and interactions 

between enemies which may even constrain pest control (Duffy et al., 

2007; Martin et al., 2013; Tscharntke et al., 2016; Karp et al., 2018). To 

address this latter issue, we assessed the co-occurrence patterns of nat- 

ural enemy species using joint Species Distribution Models (jSDMs, 

Pollock et al., 2014). Hereby, we analysed the assemblage of the natural 

enemy community by identifying which species tend to co-occur and 

whether species interactions or environmental factors are the main 

drivers of the observed co-occurrence patterns. 

As pest control mechanisms differ with the agroecosystem type, we 

did not attempt to develop a global model that would fit all agro- 

ecosystems (e.g., Alexandridis et al. 2022). We focused on arthropod 

species playing a role in the natural pest control of cereal aphids, which 

dominate the herbivore community of many crop systems in temperate 

regions (Schmidt et al., 2003; Dedryver et al., 2010). We applied the 

model in a region of northern Germany (Schleswig-Holstein). We 

assumed that a high natural enemy species richness enhances natural 

pest control ecosystem service potential. A higher species richness may 

enhance pest control ecosystem services through complementarity, niche 

partitioning, facilitation, and a higher probability of having effi- cient 

predators included in a species-rich community (Letourneau et al., 2009; 

Cardinale et al., 2012). This assumption is supported by two  

meta-analyses by Letourneau et al. (2009) and Dainese et al. (2019),  

although the strength of the relationship between species richness and 

pest control tends to vary substantially among studies (Karp et al., 2018; 

Kleijn et al., 2019). 

With the work presented in this paper, we aimed at developing a 

natural pest control ecosystem service potential model framework that 

could be adapted to other agroecosystems and new knowledge on 

ecological processes. Using the framework, we assessed how abiotic and 

biotic factors affect the spatial distribution of cereal aphids and their 

natural enemies at different spatial scales. Thereby we investigated if 

interactions between natural enemies can reduce pest control potential. 

Model performance was assessed using independent field data. Finally, 

we investigated the spatial (a)synchrony between aphids and their natural 

enemies in a study area in northern Germany.

 

2. Materials and methods 

 
2.1. Conceptual framework and model workflow 

 
We aimed at quantifying the potential of an exemplary landscape to 

support aphids and aphids’ natural enemies and thereby its natural pest 

control ecosystem service potential in a spatially explicit way. We 

assumed that natural enemy richness enhances pest suppression in 

agroecosystems. Our model was built on the ecological production 

function framework presented by Jonsson et al. (2014), a mechanistic 

model for natural pest control of cereal aphids and based on the 

Ecosystem Service Providers (ESP) concept by Kremen et al. (2007) and 

Luck et al. (2009). ESP are biodiversity elements that provide a specific 

ecosystem service. Jonsson’s framework defines all ecological processes as 

well as abiotic and biotic interactions that need to be considered when 

modelling natural pest control at the landscape and local scales. This 

framework was integrated in a hierarchical approach at two different 

spatial scales, as key elements for species geographical distribution 

depend on the spatial scale of the influencing factors and are assumed to 

operate hierarchically (Pearson and Dawson, 2003; Thuiller, 2004; 

Milbau et al., 2009; Hortal et al., 2010). First, we considered Species 

Distribution Models (SDMs) fitted at the regional scale using bioclimatic 

predictors to assess the distribution and realized niche of aphids and their 

natural enemies (Fig. 1). SDMs rely on the correlation between 

environmental variables and geo-localized species records to determine 

the environmental variables that drive species presence and delineate 

potential species distribution (Guisan and Zimmermann, 2000; Elith and 

Leathwick, 2009; Araújo and Guisan, 2006). We then considered jSDMs 

fitted at the landscape scale to account for landscape complexity (i.e., 

landscape configuration and composition) (Martin et al., 2019) and bi- 

otic interactions (Martin et al., 2013; Tscharntke et al., 2016) (see Section 

2.4). jSDMs also help determining potential assemblages of the natural 

enemy community. The pest control ecosystem service is defined as the 

reduction by biological interactions of the incidence of species that 

consume and reduce the production of food, material or energy (Haines-

Young and Potschin-Young, 2018). The ES is therefore determined by the 

spatial overlap of pest control potential (i.e., the natural enemies) and the 

demand (i.e., the fields dedicated to the production of food, material or 

energy that can be infested by aphids). Here, we defined pest control 

potential as the sum of the probabilities of presence of each predicted 

natural enemy species, after accounting for intraguild predation. The pest 

control ecosystem service potential was then determined by the spatial 

overlap of the pest control potential with the potential ecosystem service 

demand, i.e. the presence of crop fields (Fig. 1). 

 
2.2. Species data 

 
In Germany, one of the main pests for cultivated cereal crops are 

aphid species (mainly Sitobion avenae, Metopolophium dirhodum, and 

Rhopalosiphum padi) (Schmidt et al., 2003; Thies et al., 2005). Aphid 

populations are preyed on by a complex community of arthropods 

including generalist ground-dwelling natural enemies, more specialized 

vegetation-dwelling predators, and flying parasitoids. Abundant natural 

enemies of aphids in agricultural landscapes are ground beetles (Lang, 

2003; Schweiger et al., 2005; Diekötter et al., 2010), rove beetles 

(Schmidt et al., 2003), wolf and sheet-web spiders (Schmidt et al., 2003, 

2008; Schmidt and Tscharntke, 2005; Schweiger et al., 2005; Bosem 

Baillod et al., 2017; Redlich et al., 2018), lady beetles (Bosem Baillod et 

al., 2017; Redlich et al., 2018), syrphids (Schweiger et al., 2005; Bosem 

Baillod et al., 2017; Redlich et al., 2018), chrysophids (Bosem Baillod et 

al., 2017), and parasitoids (Schmidt et al., 2003; Snyder and Ives, 2003; 

Thies et al., 2005). 

For the regional scale models, presence-only records of aphid and 

natural enemy species were gathered from the Global Biodiversity In- 

formation Facility (GBIF) (GBIF, 2021b, 2021a). Occurrences were 



Mapping and assessing ecosystem services in an agricultural landscape following a tiered approach           Marie Perennes 

 

71 
   

3 

M. Perennes et al. Agriculture, Ecosystems and Environment 342 (2023) 

108250   

 
 

Fig. 1. Flow chart representing the different steps of the hierarchical modelling approach to predict natural pest control ecosystem service potential at the local scale 

based on regional scale SDMs, landscape scale jSDMs and the potential ecosystem service demand. 

 

retrieved at the European geographical extent. Occurrence records 

retrieved from GBIF were cleaned using the “CoordinateCleaner v.2.0–

14” package in R (Zizka et al., 2019). We excluded occurrences with sea 

and other water body coordinates, zero coordinates or without geographic 

coordinates, country mismatches, country centroids, outlier coordinates, 

coordinates assigned to biodiversity institutions, records with unprecise 

coordinates and duplicates. As old records are more likely to be unreliable 

(Maldonado et al., 2015), we only selected data between 1979 and 2013 to 

match the time extent of environmental variables. We also checked for 

taxonomic errors, including spelling mistakes and synonyms. To reduce 

model overfitting derived from spatial autocorrelation and 

overdominance of specific regions due to sampling bias, we then thinned 

the records using the package “spThin v.0.2.0” (Aiello-Lammens et al., 

2015). We only selected species that had more than 50 GBIF occurrence 

records, to assure a sufficient sample size for accurate model fitting (Wisz 

et al., 2008; Guisan et al., 2017). After geographic and taxonomic 

cleaning, records of 111 species were retained for modelling (see Table S1 

in the supplementary material S1). Due to a lack of data on many natural 

enemy species, it was not possible to apply the model to parasitoid species. 

For the same reason, only two aphid species, (Rhopalosiphum padi and 

Sitobion avenae) were included in the model. 

For the landscape scale models, we used the dataset published by 

Martin et al. (2019), which represents a large collection of European 

studies measuring arthropod abundance in crop fields. The original 

dataset was composed by studies that included observations of pollinator, 

pest and natural enemy abundance across a gradient of surrounding 

landscape composition and configuration. It also includes 

 

landscape variables such as the percentage of arable and semi-natural 

habitat around each sampling plot at a high spatial resolution (see Martin 

et al., 2019 for more details). From this dataset, we selected data on aphids 

and their natural enemy abundance collected in cereal crop fields. From 

these, we only selected species that had more than 30 occurrence data in 

GBIF (corresponding to the regional scale selection). We selected datasets 

which had landscape data covering at least 1 km radius around sampling 

points as it has been identified as a relevant scale to understand landscape 

complexity effects and trophic interactions of natural enemy species (Thies 

and Tscharntke, 1999; Thies et al., 2005; Rusch et al., 2016; Dainese et al., 

2019). As landscape variables, we only selected the percentage of semi-

natural habitats (SNH) and edge density at 100 m to 1 km radius around 

sites. To ensure reliable model parameter estimation, only species with 

prevalence of at least 5% in all sampling plots were retained for statistical 

analyses. After applying prevalence criteria, six studies, 186 sampling plots 

and 111 species were retained for statistical analyses. The data were 

organized as a binary presence/absence matrix indicating the presence (1) 

or absence(0) of a particular species for each plot. 

We used an independent opportunistic stratified sampling strategy to 

evaluate the performance of the regional, landscape and hierarchical 

models using field data. The sampling sites were located in Schleswig- 

Holstein, the northernmost federal state of Germany, bordered by the 

North Sea to the West and by the Baltic Sea to the East (Fig. 2a). This 

federal state has an area of approximately 15’800 km2 (Statistische 

Ämter des Bundes und der Länder, 2018). Agriculture is the predomi- 

nant land use (non-irrigated landscapes and pastures, Fig. 2b). It is also 

characterised by relatively small cultivated fields and forests and 
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Fig. 2. Location of the study area and of the sampling sites in northern Germany (a) and distribution of Land Use / Land Cover classes (b) (Data source: CORINE Land 

Cover 2012). 

 

overall, a highly diverse and fragmented landscape. It has a sub-oceanic 

climate, with mean annual temperature around 8,4 ◦C and mean annual 

precipitation values around 760 mm (Anon, 2020). The sampling loca- 

tions were selected to cover the landscape diversity in Schleswig-

Holstein: from locations surrounded by a landscape with a comparably 

high proportion of semi-natural habitats to locations with a lower 

proportion of semi-natural habitats (Fig. 2b). Full methods and results of 

sampling are reported in Hoffmann et al. (2021), but shortly: the presence 

and abundance of spiders, ground and rove beetles were recorded using 

pitfall traps in 20 sampling plots for three years. The species were 

sampled from end of May until mid-July 2017–2019 using three pitfall 

traps per sampling plot and two plots per site (one in flower strips, one in 

the adjacent arable fields). 

From all the species sampled by Hoffmann et al. (2021), 100 species 

corresponded to the species modelled for our study and were used to 

evaluate the performance of the hierarchical models (spiders, ground and 

rove beetles species but no aphid, lady beetle, damsel bug nor green 

lacewing species). 

 
2.3. Environmental variables 

 
We selected two sets of environmental variables with different ex- 

tents and resolutions, one for each considered scale: the regional scale and 

the landscape scale. 

For the regional scale, we selected bioclimatic variables based on 

knowledge about the mechanistic relationship between environmental 

variables and the physiology of the targeted species (Araújo et al., 2019). 

At regional scales, arthropod populations are mainly affected by 

 

variations in temperature, precipitation patterns, and vegetation cover 

(Netherer and Schopf, 2010; Settele et al., 2014; Giezendanner et al., 2020; 

Mammola et al., 2020). In temperate areas, longer warm seasons and mild 

winters without frost, tend to facilitate the proliferation of arthropods, 

while they generally suffer from extreme rainfall and warming events (Bale 

et al., 2002; van Nouhuys and Lei, 2004; Harmon et al., 2009; Bale and 

Hayward, 2010; Settele et al., 2014). An increase in temperature towards 

species optima will generally promote arthropod growth and survival rates 

by accelerating development stages and/or by allowing additional 

generations within a year (Bale et al., 2002; Rouault et al., 2006; Halsch 

et al., 2021). Temperature optima vary among species, depending on each 

species’ thermal tolerance and heat/frost sensitivity, the life stage at which 

they experience high/low temperatures and their capacity to adapt to or 

flee unfavourable environmental conditions (Bale et al., 2002; Kruse et al., 

2008; Schmitz and Barton, 2014). We therefore selected the following 

variables from CHELSA (Karger et al., 2017) to characterize the 

geographical range of the selected species: Annual mean temperature 

(Bio_1), Max temperature warmest month (Bio_5), Min temperature 

coldest month (Bio_6), Mean temperature wettest quarter (Bio_8), Mean 

temperature driest quarter (Bio_9), Mean temperature warmest quarter 

(Bio_10), Mean temperature coldest quarter (Bio_11), Precipitation 

wettest quarter (Bio_16), Precipitation driest quarter (Bio_17), 

Precipitation warmest quarter (Bio_18), Precipitation coldest quarter 

(Bio_19), Normalized Different Vegetation Index in summer 

(NDVI_summer), Growing degree days (GTS0, GTS5, GTS10) and Number 

of frost days (NFD). Degree days are the sum of all monthly temperature 

values greater than a given threshold temperature (here 0, 5 and 10 ◦C) 

multiplied by the total number of days and NDVI is an index of vegetation 



Mapping and assessing ecosystem services in an agricultural landscape following a tiered approach           Marie Perennes 

 

73 
   

5 

M. Perennes et al. Agriculture, Ecosystems and Environment 342 (2023) 

108250 

productivity. 

These variables were retrieved from CHELSA V1.2 at a resolution of 

30 arc-seconds (~1 km2 at the equator) (Karger et al., 2017, 2018). These 

environmental variables were standardized (so that the mean of observed 

values is 0 and the standard deviation is 1) to maximise uniformity. To 

reduce multicollinearity, we then reduced the number of variables 

selected: We assessed univariate variable importance for each predictor 

using Generalized Linear Models (GLM) with linear and quadratic terms 

in a five-fold cross-validation and assessed the percentage of explained 

deviance for each variable (Zurell et al., 2020b). We then ran a pairwise 

Spearman correlation analysis. In case of highly correlated variables (|r| < 

0.7), we removed the variables with the lower univariate importance value 

(Dormann et al., 2013; Zurell et al., 2020b). We obtained a final set of 

seven ecologically meaningful variables for arthropods in temperate 

climates, which we used for model calibration at the regional scale: GTS5, 

Bio_5, Bio_9, Bio_18, Bio_19, NDVI_summer and NFD. 

At the landscape scale, arthropod species distribution is mainly driven 

by the landscape composition, commonly described as the amount of 

semi-natural habitats (SNH) in a given area, and by the landscape 

configuration, which can be characterized by its edge density (ED) 

(Bianchi et al., 2006; Chaplin-Kramer et al., 2011; Veres et al., 2013; 

Holland et al., 2017; Martin et al., 2019; Kleijn et al., 2019). Changes in 

species’ host, predator and parasite populations also impact their 

distribution (Netherer and Schopf, 2010; Settele et al., 2014). Both pest 

populations and their enemies can profit from complex landscapes with 

high amounts of SNH or high edge density, as they usually provide a 

higher availability of overwintering habitats, shelters and alternative food 

resources (Thies et al., 2005; Roschewitz et al., 2005; Holland et al., 2016; 

Tamburini et al., 2020). Many aphid species exhibit complex life-histories 

involving multiple host plants (for instance on Rosa ssp., Prunus padus or 

on perennial grasses (Powell and Bale, 2005; Honek et al., 2018), and 

they may profit from complex landscapes (Thies et al.,2005, 2011; Östman 

et al., 2003; Schmidt et al., 2003). However, during mild winters, aphids are 

able to survive on winter cereals, independently of the presence of 

overwintering host plants and this might partly explain why pest 

abundance shows no consistent relationship to landscape complexity 

(Caballero-Lopez et al., 2012; Veres et al., 2013; Bosem Baillod et al., 

2017; Elliott et al., 2018; Ulina et al., 2019). Besides, fine-grained 

landscapes with high edge density should facilitate exchanges between 

SNH and crops and therefore enhance pest and natural enemy richness 

(Hendrickx et al., 2007; Holzschuh et al., 2010; Fahrig et al., 2011; 

Tscharntke et al., 2012; Blitzer et al., 2012; Haddad et al., 2017; Martin et 

al., 2019; Sirami et al., 2019; Haan et al., 2020). Landscape composition 

(share of SNH) and landscape configuration (ED) may contribute 

additively or interactively to natural enemy abundance and richness 

(Martin et al., 2019; Haan et al., 2020). 

As harvesting and soil cultivation eradicate a high share of species 

living in arable fields, recolonization of fields by pests and their natural 

enemies mainly comes from the surrounding habitats and crops (Blitzer et 

al., 2012). The effect of landscape complexity on natural enemy 

populations in fields is therefore assumed to decrease with increasing 

distance from such habitats (Tscharntke et al., 2016; Holland et al., 2016; 

Miguet et al., 2017). Each species is likely to experience landscape 

complexity at different scales (Thies et al., 2005), depending on traits 

such as body size, foraging range and specialization (Östman et al., 2001; 

Thies et al., 2005). From Martin et al. (2019), we included landscape 

variables (% of SNH and ED) from 100 m to 1 km radius around sampling 

plots (which include 250 and 500 m radius as well). This spatial extent 

corresponds to the typical foraging distance of most arthropod natural 

enemies (Rusch et al., 2016; Dainese et al., 2019). Prior to modelling, the 

variables were standardized to maximise uniformity. Similar to the 

regional variable selection, we first assessed the univariate variable 

importance of each predictor to reduce the number of variables in the 

model. As the plots are spatially nested (with random effects), we assessed 

univariate variable importance for each predictor 

 

using Generalised Linear Mixed Models (GLMMs) with linear and 

quadratic terms in a spatial block five-fold cross-validation design. We 

then ran a Spearman pairwise correlation analysis to detect multi- 

collinearity. In case of variables with a correlation value greater than | 

0.7|, we removed the variable with the lower univariate importance value 

(Dormann et al., 2013). Predictor variable ranking varied with species. 

However, as jSDMs require a unique set of predictor variables, we then 

selected the variables with the highest mean cross-validated univariate 

importance for all species. We obtained a final set of four ecologically 

meaningful and not highly correlated (|r| < 0.7) variables for arthropods 

at the landscape scale: proportion of SNH within 100 m (SNH_100), 

proportion of SNH within 250 m (SNH_250), proportion of SNH within 1 

km (SNH_1000) and ED at 1 km radius (ED_1000). 

 
2.4. Regional models 

 
For the regional models, species distribution modelling was carried 

out with the biomod2 (v.3.4.6) package (Thuiller et al., 2016). Occur- 

rence data from GBIF are typically presence-only data, with no recorded 

absence data, whereas the algorithms used for modelling need presence-

absence points, so pseudo-absence points were generated with the 

following approach: several sets of pseudo-absence data were generated 

to prevent sampling bias and to be able to test the effect of each pseudo-

absence selection on the predictive ability of the model. Following Phillips 

et al. (2009), we restricted the selection of the background points in a 10 

km buffered convex hull around the GBIF species records to reflect 

species sampling bias. One thousand pseudo-absence data points were 

sampled randomly from the back-ground region (which kept prevalence 

> 0.01 and < 0.9 see Table S1 in the supplementary material S1), and we 

repeated the random selection ten times to build a ten-fold internal cross-

validation of the models (Phillips et al., 2009; Barbet-Massin et al., 2012). 

Following Araújo et al. (2019), SDMs were fitted using an ensemble 

approach with three different algorithms: Generalized Linear Models 

(GLM), Boosted Regression Trees (BRT) and Random Forests (RF). GLMs 

were fitted with linear and quadratic terms and using AICc (Zurell et al., 

2020b). BRTs were estimated with 6000 trees, an interaction depth of 3, a 

bag fraction of 0.5 and a shrinkage of 0.01 (Elith et al., 2008; Guisan et 

al., 2017). Random forests were fitted with 1000 trees, and a minimum 

node size of 20 (Zurell et al., 2020b). To train the SDMs and test their 

predictive performances, we used a cross-validation with a random subset 

of 70% of the points to calibrate the model for every single species, while 

the remaining 30% of the points were used for validation. Each single 

model was run on the training data and evaluated on the test data using 

performance evaluation metrics (explained below). This process was 

repeated four times with different partitioning of the original dataset into 

a training and a test set. Cross-validation was used to decrease bias in the 

predictive performance of the measuring models (Pearce and Ferrier, 

2000). 

We used different evaluation metrics to evaluate the performance of 

the regional models: Area Under the Curve (AUC) of the Receiver 

Operating Characteristic (ROC) plot, True Skills Statistics (TSS), and the 

continuous Boyce index (CBI). AUC/ROC is a threshold-independent 

model evaluation indicator (Franklin, 2010), which continuously dis- 

criminates between suitable and unsuitable habitats, independently of 

prevalence of target species (Elith et al., 2002). It plots the commission 

error against omission error and ranges between 0.5 and 1, where 1 

represents a perfect discrimination between presence and absence, and 

0.5 represents a random fit. TSS is a threshold-dependent measure of 

model accuracy and, contrary to AUC/ROC, is based on binary pre- 

dictions of predicted suitability/unsuitability for each species (Allouche et 

al., 2006). It ranges from - 1 to + 1, with + 1 indicating perfect agreement 

between predictions and observations, and 0 or less indicating an 

agreement no better than a random classification (Zhang et al., 2015). The 

CBI measures how observed presences are distributed across the gradient 

of predicted presences and how this differs from a random 
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distribution. It also varies from - 1 to + 1, where positive values indicate a 

good agreement between predictions and the distribution of presences in 

the evaluation dataset, values close to zero indicate predictions not 

different from a random distribution and negative values indicate 

incorrect models. 

For each species, a total of 120 models was built (using three 

algorithms, four cross-validations to sample test and training data and ten 

pseudo-absences samplings). Only models with a TSS greater or equal to 0.6 

were kept to build the final ensemble (Landis and Koch, 1977). Ensemble 

predictions were calculated as weighted averages of single-model 

predictions, with weights assigned to each modelling technique using the 

TSS (Allouche et al., 2006). 

 
2.5. Landscape models 

 
In addition to bioclimatic and landscape factors, natural enemy 

communities are also structured by biotic interactions such as mutu- 

alism, parasitism and facilitation or competition (Gilman et al., 2010). 

For instance, it has been shown that the pest control ecosystem service 

potential of an area can be impeded by interactions among natural enemy 

populations, such as intraguild predation but also behavioural 

interferences (Ives et al., 2005; Straub et al., 2008; Birkhofer et al., 2011; 

Martin et al., 2013; Rusch et al., 2013). Facilitation has also been re- 

ported, for example between lady beetles and ground beetles, leading to 

more effective aphid suppression (Losey and Denno, 1998). As SDMs do 

not explicitly consider biotic interactions (Kissling et al., 2012; Wisz et 

al., 2013), jSDMs have been developed to account for biotic interactions 

in SDMs and model community ecology. jSDMs estimate the effect of 

biotic interactions after assessing alternative explanations for species’ co-

occurrence patterns due to environmental factors. These interactions are 

modelled in jSDMs by measuring the covariance of the models’ residuals, 

after environmental factors have been controlled for (Pollock et al., 2014; 

Warton et al., 2015; Ovaskainen et al., 2017; Dormann et al., 2018). jSDMs 

are thus composed of two stages (Warton et al., 2015; Wilkinson et al., 

2019). Negative residual correlations suggest that species have a negative 

interaction (for instance if the species are competitors or 

predators/preys). Positive residual correlations suggest that the species 

potentially facilitate each other’s occurrence (D’Amen et al., 2018). 

We fitted a jSDM with the Hmsc (v.3.0–11) package (Tikhonov et al., 

2020), which is based on the hierarchical modelling of species com- 

munities (HMSC) framework from Ovaskainen et al. (2017). This 

package allows the specification of nested study designs (through 

random effects as spatial latent variables), large species communities 

and reasonable computation times compared to other jSDM packages 

(Norberg et al., 2019; Wilkinson et al., 2019). We fitted probit-models 

(binomial error distribution for presence-absence data) using both 

linear and quadratic terms of the selected landscape variables, with 

random effects on sites and datasets. Each model was built using height 

Markov Chain Monte Carlo (MCMC) chains. Each chain was run for 30, 

000 iterations, out of which the first 5000 were removed as burn-in and 

the remaining ones were thinned by 50 to yield 500 posterior samples 

per chain, and thus 4000 posterior samples in total. We checked 

convergence using the Gelman–Rubin convergence diagnostic (Gelman 

and Rubin, 1992) and trace plots (Plummer et al., 2006). For each 

model, we computed the matrix of pairwise species associations and 

classified estimates as having high statistical support if their 95% 

credible interval did not include zero. Posterior distributions with 95% 

highest posterior density (HPD) intervals not overlapping zero were 

interpreted as evidence for non-random association within a species 

pair. The predictive model performance of the different models was 

assessed using AUC/ROC and TSS using two-fold cross-validation. We 

also assessed variable importance and decomposed the explained vari- 

ance (Tjur’s R2 values) into fixed effects (landscapes predictors) and 

random effects (sites and datasets) through variance partitioning anal- 

ysis (Ovaskainen et al., 2017; Tikhonov et al., 2019). The overall 

 

performance of the models was evaluated by averaging AUC/ROC and 

TSS values across species. 

 
2.6. Hierarchical models 

 
The gridded layers generated by the regional models (SDMs, 1 

km × 1 km) were disaggregated to the pixel size of the landscape models 

(jSDMs, 100 m × 100 m) using bilinear interpolation. Following Bellamy 

et al. (2020), the hierarchical models for each species were generated by 

multiplying the prediction values of the two gridded layers on a pixel-by-

pixel basis. The hierarchical models were evaluated with independent 

field data (i.e., data that were not used to train the regional and landscape 

models) using generalized linear mixed models (GLMM) (“LME4” 

package (Bates et al., 2014)) to account for the nested structure of the 

sampling design. The performance of the models was evaluated 

based on deviance explained by the regional, landscape and hierarchical 

models’ habitat suitability predictions. 

We then used the hierarchical model results to determine natural pest 

control service potential and investigate the spatial (a)synchrony between 

pest control demand and potential in a study area located in the region of 

the Bornhöved Lake District (Fig. 2b), in Schleswig-Holstein. The extent 

of the area is approximately 140 km2. The study area is characterised by 

a catchment area of five glacially formed and consecutively connected 

lakes and a few settlements within an agricultural landscape (Fränzle et 

al., 2008). 

Statistical analysis, SDMs and jSDMs were implemented in R 4.0.3 (R 

Core Team, 2020). All maps were created using ArcGIS 10.6.1. To ensure 

transparency and reproducibility of our models, we include an Overview, 

Data, Model, Assessment, and Prediction (ODMAP) protocol following 

Zurell et al. (2020a) in the supplementary material S2. 

 
3. Results 

 
The evaluation scores of all ensemble models at the regional scale 

were high to very high (AUC/ROC: 0.935 ± 0.020, TSS: 0.734 ± 0.063 

and CBI: 0.983 ± 0.025). An overview of all performance measures for 

each species included in the analysis can be found in Table S1. The 

importance of each predictor for each species regional model varied 

highly with algorithms and modelled species. Number of frost days (NFD) 

and Maximum temperature of warmest month (Bio_5) were overall the 

most important variables explaining arthropod species occurrence, 

followed by Growing degree days above 5 ◦C (GDD5) and Mean 

temperature of driest quarter (Bio_9). An overview of variable 

importance for each species and each algorithm can be found in 

Table S2. Partial dependence plots can be found in Fig. S1. 

The jSDM models converged well and most of the species showed 

statistically significant responses to most of the landscape variables (Fig. 

S2). Significant negative responses to the squared effects of SNH and ED 

at 1 km were observed for most of the species (corresponding to a slightly 

‘hump-shaped’ relationships, but which do not appear when species are 

aggregated by families/orders, see partial dependence plots in Fig. S4). 

This suggests an optimum percentage of SNH and ED value at 1 km for most 

of the species. Similar responses were observed for the percentage of SNH 

at 100 m but for fewer species: 25% of the species showed a positive 

response to SNH_100, 13% an optimum value, which maximized 

occurrence probability and 3% of the species showed a negative response 

to SNH_100. Almost half of the species had a significant negative 

response to the effect of SNH_250 and 16% of the species had a significant 

positive response to the squared effects of SNH_250. The predictive 

performance (based on cross-validation) of the jSDM models was overall 

good: the mean AUC/ROC value was 0.86 (SD: 0.10), mean TSS was 0.54 

(SD: 0.25) and the mean RTjur2 value was 0.37 (SD: 0.23). See Tables S3 

and S4 in the supplementary material for the evaluation metrics of each 

species. Variance partitioning results indicated that the random effect 

associated with the datasets themselves was the most important predictor 

of species  
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occurrence (79.4%), followed by landscape variables (17.2%) and the 

random effect associated with the sampling sites (4.4%). Landscape 

variable importance varied considerably between species (see Fig. 3, Fig. 

S3 and Table S4). Overall, the proportion of semi-natural habitat 

(SNH_1000) and the edge density (ED_1000) at 1 km radius were the 

most important landscape variables for the arthropod species 

composition and explained 11.7% of the explained variance. Landscape 

variables explained a higher percentage of the explained variance for 

ground beetles, followed by spiders, rove beetles, lady beetles, and aphids. 

Variable importance and explained variance of each species can be found 

in Table S4. 

Most species pairs did not present a significant residual correlation (i. 

e., 95% HPD intervals of residual correlations that exclude zero), which 

would have indicated non-random species associations after accounting 

for environmental effects (Fig. 4). Most natural enemies covaried posi-  

tively (significant positive residual species correlations showed in red in 

Fig. 4). Only some spiders covaried negatively with some ground and lady 

beetle species (significant negative residual correlations showed in blue 

in Fig. 4). Aphids covaried negatively with many natural enemy species, 

particularly spiders. 

We evaluated the regional, landscape and hierarchical models 

(combining results from the models at the regional and landscape scales) 

using the independent field data (see Section 2.3). The hierarchical 

model’s habitat suitability predictions explained 16% of the variation in 

species richness and 18% of the variation in species abundance observed in 

the independent field data (see Table S5). Particularly, the hierar-  

chical models better explained the variation in ground beetle and spider 

species richness, as well as rove beetle abundance. However, ground 

beetle abundance was better explained by the landscape models (Vari- 

ance explained: 0.23 vs. 0.17), and spider abundance respectively rove 

 

beetle species richness were better explained by the regional models alone 

than by the hierarchical models (Variance explained: 0.13 vs. 0.01 

respectively. 0.05 vs. 0.02). 

As expected, the regional and landscape model outputs showed 

substantially different habitat suitability patterns and the suitable area 

predicted by the regional models for each species was greater than the one 

predicted by the landscape models (see for instance the predicted habitat 

suitability from the different models for the spider Erigone dentipalpis and 

the ground beetle Anchomenus dorsalis, Fig. 5). 

Fig. 6a displays the predicted natural pest control ecosystem service 

potential on cereal fields across the study area. The ecosystem service 

potential values are mapped at a 100 m resolution and reached a 

maximum value of 16.3 and a minimum value of 4.9 (with 0 = minimum 

potential and 109 = theoretical maximum potential). Areas predicted as 

not suitable for the modelled natural enemy species have no natural pest 

control ecosystem service potential (performed by the modelled spe- 

cies), whereas a high predicted habitat suitability for a broad range of 

natural enemy species increases the pest control service potential of the 

area. Our model predicted an overall low pest control potential on crop 

fields (mean pest control potential value of 10.6). More heterogeneous 

agricultural areas, characterized by relatively small fields and a high share 

of SNH, have higher pest control potential values, whereas larger fields 

have a lower natural pest control service potential (Fig. 6a). 

The landscape models predicted that the landscape complexity (i.e., 

proportion of SNH and ED, see Fig. S5) has a (small) positive effect on 

aphids’ abundance. This was, however, not observed in the pest distri- 

bution map (Fig. 6b) and is probably the result of natural enemy sup- 

pression (see negative residual correlations between natural enemies and 

pests, Fig. 4), particularly in areas with small fields (e.g., Eastern 

 
Fig. 3. Outputs of the variance partitioning analysis for 

each species. Species are grouped by families/orders to which 

they belong (Bottom to top: aphids, spiders, ground beetles, 

lady beetles, rove beetles and others (common green 

lacewings and damsel bugs)). The variance explained by each 

landscape variable, by the spatial location of each dataset 

(random factor: Block) and by the spatial location of the site, 

which also yields the species association matrix (random 

factor: Site) are represented with barplots. 
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Fig. 4. Residual correlations among arthropods species. Species were ordered by families (top to bottom: aphids, spiders, ground beetles, lady beetles, rove beetles 

and others (common green lacewings and damsel bugs)). Only values with high statistical support are shown in the figure, in red for positive residual correlations and blue 

for negative residual correlations. 

 

part of the study area, see Fig. S6). Overall, the hierarchical models 

predicted a low suitability for aphids for the whole study area (Fig. 6b), 

except in larger crop fields. 

 
4. Discussion 

 
This study presented a new approach to model natural pest control 

ecosystem service potential of aphids in cereals focusing on the arthropod 

natural enemy community. The use of a hierarchical model  

allows to assess how different factors at different scales influence natural 

enemy distribution. These are novel findings, as most previous models 

focus on environmental variables at a single scale (i.e. at regional or 

landscape scale) and neglect biotic interactions (e.g., Civantos et al., 2012, 

Jonsson et al., 2014, and Rega et al., 2018). The presented  

framework to model and predict pest control ecosystem service potential  

at the local scale can be adapted to different pests, agroecosystems and 

regions and is meant to evolve with new knowledge about ecological 

processes underlying pest control. 

The principal advantages of the presented framework are to combine 

two different research fields (biogeography and landscape ecology),  

which are usually considered separately (but see Bellamy et al., 2020  

and Perennes et al., 2021) and the use of independent field data to assess 

the hierarchical model performance and reliability (Fiedling and Bell,  

1997; Schröder and Richter, 1999). Landscape models only assess if the 

local ecological conditions are suitable for the targeted species, but they 

can fail to represent the realized climatic niche of species and their 

transferability is questionable (Thuiller et al., 2004; Petitpierre et al., 

2016). Regional models are expected to better capture the realized cli-  

matic niche of the targeted species, but they tend to overpredict suitable 

 

areas for the species at the landscape scale as they are unable to reflect 

fine-scale ecological processes influencing spatial species distribution  

patterns at the local scale (Fournier et al., 2017; Bellamy et al., 2020; 

Perennes et al., 2021). This is also what our results indicate and for each 

modelled species, the predicted suitable areas by the regional SDMs  

were larger than that of the landscape SDMs (Fig. 5). Hierarchical SDMs 

jointly consider regional and landscape drivers of species distributions, 

account for the hierarchical habitat selection process and can thus 

overcome the limitations that separate landscape and regional SDMs  

have and should provide more accurate and realistic predictions (Lin- 

denmayer, 2000; Whittingham et al., 2007; Zeller et al., 2017; Mateo et 

al., 2019; Bellamy et al., 2020). 

This study demonstrates, with the help of a study area in northern 

Germany, how hierarchical SDM approaches can be used to model pest 

control ecosystem services. Assessing how bioclimatic variables can affect 

pest and natural enemy species distribution is essential to determine the 

impact of global climate change on pest control and therefore  

crop production. Particularly, global climate change can affect pest and 

natural enemy phenology (Thomson, 2010), promote range expansion or 

shift, disturb current space and time synchrony between presence and 

abundance of pests and their natural enemies and favour the emergence of 

new pests (Schmitz and Barton, 2014) and lead to significant yield  

losses (Civantos et al., 2012; Deutsch et al., 2018). Anticipation of  

climate change effects on pest control can therefore help to adapt land 

management to mitigate yield losses while limiting the use of and reli- 

ance on pesticides. 

A combination of bioclimatic and biotic variables with a landscape 

context was found to be affecting pest and natural enemy species dis- 

tribution. Our results highlight the importance of bioclimatic variables 
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Fig. 5. Prediction maps for a spider species (Erigone dentipalpis) and a ground beetle species (Anchomenus dorsalis). (a) and (d) are the predictions retrieved with 

the regional models, (b) and (e) predictions from the landscape models and (c) and (f) the final predictions from the hierarchical models. The maps from the regional model 

were rescaled to fit the spatial resolution of the landscape models. 

 

in arthropod species distribution, which is consistent with Ulrich and 

Fiera (2009), Hortal et al. (2010), Kotze et al. (2011), and Giezendanner et 

al. (2020). The variables “Number of frost days” (NFD) and “Maximum 

temperature warmest month” (Bio_5), followed by “Growing degree days 

above 5 ◦C” (GTS5) and “Mean temperature driest quarter” (Bio_9) 

exhibited the highest relative contribution to the models for most of the 

species, in line with Titeux et al. (2009), Harrington et al. (2007), Barredo 

et al. (2015), Pellissier et al. (2013), and Cerasoli et al. (2020). At the 

regional scale, species distributions are mainly limited by frost (or frost 

sensitivity), temperatures in summer (or heat sensitivity) and mean 

temperature in spring, i.e., during the development stage of most of the 

species (see Fig. S1). Similarly to Ulrich and Fiera (2009) but contrarily to 

Titeux et al. (2009), we found that precipitation is not one of the main 

influencing factors for species occurrences in the study re-  

gion. Model evaluation scores were high for most of the species but were 

lowest for ubiquitous species, with a broad ecological range such as 

Haplodrassus signifier, Carabus violaceus, Pisaura mirabilis, Harpalus latus, 

and Alopecosa pulverulenta. It has been shown that species with these 

characteristics tend to be harder to model and retrieve poorer or more 

unreliable predictions (mainly because of their low specificity) (Mateo et 

al., 2019; Mammola et al., 2020; Vermeiren et al., 2020). 

At the landscape scale, we found that landscape complexity (i.e., % of 

SNH and ED) is an important driver of natural enemy richness, in line with 

Dainese et al. (2019), Kleijn et al. (2019) and Martin et al. (2019). Results 

in the literature are, however, often inconsistent for single spe-  

cies or families: for instance for lady beetles (Puech et al., 2015; Woltz 

 

and Landis, 2014; Dominik et al., 2018), spiders (Schmidt et al., 2008; 

Gallé et al., 2018; Li et al., 2018) and ground beetles (Puech et al., 2015; 

Gallé et al., 2018). We found that the relationship between species 

occurrence and the landscape complexity is highly species-specific but 

most of the considered species were positively influenced by landscape 

complexity, mainly at the highest measured radius of 1 km around the 

sampling plots. While many empirical studies measure landscape met- 

rics in the 1 km radius (or less) around the sampling plots (Chap- 

lin-Kramer et al., 2011; Dainese et al., 2019), landscape variables have 

been shown to influence species occurrence up to 3 km radius (Holland et 

al., 2016; Martin et al., 2019), particularly for spiders (Schmidt et al., 

2008) and lady beetles (Holland et al., 2016). Similarly, other landscape 

variables might have significant effects on natural enemy species (e.g., the 

proportion of cropland, forest or grassland (Jonsson et al., 2014)). 

Landscape complexity variables at any spatial scale are typically highly 

correlated with other spatial scales and disentangling their single effect on 

species richness is therefore challenging. We thus cannot entirely exclude 

that the observed species responses to landscape complexity are also due 

to other landscape variables or to effects at broader scales (Jackson and 

Fahrig, 2015). 

Our results also highlight the role of species interactions in arthropod 

communities in agroecosystems. We found that many of the natural 

enemy species considered showed a negative correlation with aphids, 

suggesting that the natural enemy community reduces the occurrence of 

aphids (predator-prey interactions). This can be the consequence of 

additive or synergetic effects between individual species, which cannot 
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Fig. 6. Natural pest control ecosystem service potential (a) and predicted suitability for aphids (b) in the study area. Crop fields are marked with a gradient from light to 

dark blue, depending on the predicted natural pest control ecosystem service potential (resp. Predicted suitability of the area for aphids) for each parcel of the study 

area. 

 

be disentangled using jSDMs. The residual negative correlation between 

natural enemies and pests is consistent with empirical studies (for 

instance from Rusch et al., 2013 and Liere et al., 2015) and the synthesis 

from Dainese et al. (2019). However, other meta-analyses and reviews 

reported the influence of natural enemy richness on pest suppression as 

not significant or inconsistent (Bianchi et al., 2006; Letourneau et al., 

2009; Tscharntke et al., 2016). Our results indicate that not explicitly 

considering abiotic variables and species interactions can partly explain 

the differences in the links between landscape complexity, arthropod 

richness and pest suppression observed in the literature. 

Many natural enemy species did not significantly influence each other 

and most of the significant correlations were positive indicating potential 

facilitation between natural enemy species. Significant nega-  

tive residuals were mostly found between spiders and ground beetles 

species pairs. This is in line with empirical studies: For instance, facili- 

tation between lady and ground beetles has been reported (Losey and 

Denno, 1998). Ground beetles are known to feed on spiders (Roubinet et 

al., 2017; Lang, 2003). Spiders are generally not ground-beetle-

predators and tend to avoid them. For instance, Snyder and Wise (1999) 

found that when lycosid spiders were present with ground beetles, no 

intraguild predation took place, but spiders altered their feeding  

habitats and/or emigrated. In the literature, other cases of competitive 

interactions between natural enemies have been reported, which we did 

not observe in our results: for instance between lady beetles 

(Hoogendoorn and Heimpel, 2004; Cardinale et al., 2006),  

particularly between introduced lady beetle species (Harmonia axyridis) 

and native ones (Coccinella septempunctata) (Alyokhin and Sewell, 2004; 

Snyder et al., 2004). Spiders have been shown to frequently prey on other 

spiders (Lang, 2003; Davey et al., 2013; Raso et al., 2014; Roubinet et al., 

2017) or to have other antagonistic behaviour (Wilby et al., 2005; Straub 

and Snyder, 2006), whereas only positive correlations between spiders 

were found in our models. These differences between residual 

correlations and other empirical studies can be explained by a lack of 

observational studies across multiple taxa as existing studies are 

generally limited to simple systems including few species (Thies et al., 

2011). However, residual correlations can support but do not infer 

 

species interactions (Dormann et al., 2018; Warton et al., 2015) as co-

occurrence patterns can also be due to missing environmental pre- dictors 

influencing species similarly (Pollock et al., 2014; Zurell et al., 2018). 

Moreover, species interactions have been shown to be scale-dependent 

(Barner et al., 2018; Mod et al., 2020; Sander et al., 2017; König et al., 2021) 

and some responses described in the literature might be only detectable at 

broader or finer spatial scales. Nevertheless, the species interactions 

detected by the jSDMs are globally supported by empirical studies and are 

therefore likely to be reliable. 

 
 

4.1. Uncertainties and potential future framework improvements and 

future research 

 
A potential future improvement of the presented framework would be 

to assess the actual benefit, i.e., how the presence of natural enemies 

influences crop yield. This was not done in the proposed framework as 

there are still considerable knowledge gaps on the different mechanisms 

involved in pest control ecosystem service delivery (Holland et al., 2017, 

2020). The relationships between natural enemies and pest densities, 

crop damage and yield decrease are context-dependent and underlying 

processes remain mostly unexplained as only relatively few studies have 

quantified the effects of natural enemies on pest reduction or crop 

production (Bianchi et al., 2006; Chaplin-Kramer et al., 2011). Crop yield 

is primarily affected by land management decisions including 

agrochemical inputs, crop variety and water availability (Tscharntke et 

al., 2016) and extricating the influence of natural enemies is challenging. 

Because of the lack of data on species abundance, we only modelled 

species occurrence and richness. Beside species richness, natural enemy 

abundance also plays a key role in natural pest control services (Dainese et 

al., 2019). Effective pest control also depends on temporal synchro- 

nisation between pest populations and their natural enemies as aphids 

and their arthropod predators have short life cycles and a significant 

inter-annual variation in abundance (Roschewitz et al., 2005; Iuliano and 

Gratton, 2020). Moreover, each natural enemy species may not have the 

same importance for pest control, depending on its voracity and its 
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degree of specification (Letourneau et al., 2009). During early stage of 

aphid colonization, parasitoids may deliver a more efficient pest control 

service than other natural enemies, mainly due to a good synchronisa- 

tion in time and space between aphids and their parasitoids (Schmidt et 

al., 2003). However, parasitism rates are often too low to influence aphid 

outbreaks after the colonization stage (Roschewitz et al., 2005). During 

the aphid population growth phase, other aphid-specific preda- 

tors (particularly syrphids and lady beetles) may be the main factor 

influencing aphid population reduction (Östman et al., 2003; Winder 

et al., 2005). Generalist predators such as rove beetles, ground beetles 

and spiders contribute continuously to aphid density reduction, how- 

ever at relatively low rates compared to specialist predators (Nienstedt 

and Poehling, 2004; Harwood et al., 2005). Including information on 

species abundance, predator-prey populations temporal synchronisation and 

pest control efficiency according to aphid consumption rates represent 

three desirable future improvements of the presented model. Similarly, 

improving knowledge on inter and intra-guild predation mechanisms 

would greatly help to better understand the role of species richness in pest 

control (Roubinet et al., 2017). We mainly found facilitation interactions 

between natural enemy species, without being able to disentangle 

complementary, additive and synergistic interactions between species. 

This would imply to characterize resource partitioning and 

complementary foraging modes, which probably depend on diversity 

in natural enemy habitat preferences, phenology, body size and foraging 

behaviour (Schmidt et al., 2008; Thies et al., 2011; Martin et al., 2015; 

Dainese et al., 2017; Perez-Alvarez et al., 2021). Besides, species 

interactions might depend on environmental factors (Crain et al., 2008; 

Garnier et al., 2017). For instance, the intensity of intra- and interguild 

predation is probably affected by landscape simplification (Birkhofer et 

al., 2011), which can, in specific cases, lead to pest control disruption 

(Martin et al., 2013; Jonsson et al., 2017; Perez-Alvarez et al., 2019). These 

aspects were not included in the presented modelling framework 

because of their complexity but could greatly increase the reliability and 

transferability of natural pest control service potential 

models. 

A model is always a simplified version of complex phenomena 

occurring in the real world. Here we focused only on some properties of 

real agroecosystems. Despite the simplifications we made, the model 

predictions appear reliable and supported by comparison with inde- 

pendent field data. The developed framework therefore provides a useful 

tool for pest control conservation decisions and to predict the magnitude 

of pest control mismatch in crop fields. 

 
5. Conclusions 

 
To our knowledge, this is the first framework that uses a hierarchical 

modelling approach, integrating climate, landscape and species in- 

teractions, to map natural pest control ecosystem service potential at the 

landscape scale. The developed modelling framework synthesizes the 

knowledge on the relationships between environmental variables, 

landscape complexity, and the distribution of aphids and their natural 

enemies. The aim of the presented framework is to provide spatially- 

explicit natural pest control service potential information to support 

decision-making processes at different scales. As hierarchical SDMs 

generate a more complete understanding of species distributions and 

communities, they should therefore provide more accurate predictions 

and support more effective land-management decisions. Effective mea- 

sures to sustain natural pest control have the potential to play a key role in 

shifting towards a more sustainable agriculture by decreasing the use of 

pesticides while maintaining crop yield. 

There are multiple potential applications for the presented model, 

among them to identify areas with a potential mismatch between pest 

control demand and existing ecosystem service potential or to guide the 

design of effective measures to enhance pest control potential, particu-  

larly in the frame of agri-environmental schemes or Green Infrastructure  

 

as defined by the EU Biodiversity Strategy to 2020. The developed model 

framework can also be used to assess, anticipate and mitigate the effects of 

climate change on natural pest control, which is essential in main- 

taining future crop yields and increasing agriculture sustainability in a 

changing environment. Our capacity to rely on natural enemies for pest 

management highly depends on our understanding of the ecological 

processes underlying it and the presented model contributes to this 

objective. 
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6 Synthesis 

Ecosystems are being degraded at an alarming rate, with direct consequences on human health and 

well-being (IPBES, 2019). In agricultural landscapes, agricultural intensity is accompanied by high 

biodiversity decline rates, which is and will be intensified by climate change (Pereira et al., 2010; IPBES, 

2019; Raven and Wagner, 2021). This has cascading effects on ecosystem functioning and services 

(Cardinale et al., 2012; IPBES, 2019), and potentially will have dramatic consequences on agriculture 

production, as it relies on the delivery of various ES (Aizen et al., 2009; Bommarco et al., 2013; Gagic 

et al., 2015). Particularly, it is widely acknowledged that the decline in arthropods can compromise the 

capacity of ecosystems to deliver ES (Ross et al., 2021) and translate into lower crop production and 

yields (Reilly et al., 2020). Achieving efficient and productive agriculture, while conserving biodiversity 

and a wide range of ES is therefore a major current challenge, with a high priority on the political and 

research agendas (Bommarco et al., 2013; Landis, 2017). ES have become an increasingly popular 

concept to illustrate the consequences of ecosystem degradation and biodiversity loss on people’s 

lives (Braat and Groot, 2012; Potschin and Haines-Young, 2016). Ecological and ES research conducted 

over the last decades is providing concepts aiming to guide the design of multifunctional and 

sustainable agricultural landscapes (Rossing et al., 2007; Renting et al., 2009; Duru et al., 2015). This 

thesis contributes to this research field and aims at providing an integrated approach to assess and 

map ES in an agricultural landscape in northern Germany. This thesis particularly focuses on pollination 

and natural pest control ES, compiling and analysing previous knowledge on ecological processes 

underpinning these specific ES. The findings of this thesis show the advantages and disadvantages of 

several ES assessment approaches and help to select appropriate methods to support land use 

decision-making at the local scale. The outputs of the different ES mappings also support the 

assessment of the capacities of different ecosystems to deliver specific ES, understanding the impacts 

of land use decisions on ecosystems. They can thereby improve the design of biodiversity and ES 

measures in agricultural landscapes. 

The central question of this thesis was to assess whether and how different ES assessment methods 

influence the predictions of ES potential, aiming at finding the appropriate level of information needed 

for ES assessment at the local scale. Specifically, this thesis aimed to answer the following research 

questions: 

5) Does a high spatial resolution and the integration of ecosystem condition information affect 

the ES assessment and can patterns between different ES and ES categories be detected? How 

can the employed method affect the resulting maps? 

6) How do biotic and abiotic factors affect pollinator and natural enemy species distributions and 

their associated ES potentials? What are the implications for an ES assessment in the case 

study area? 

7) Do we observe spatial asynchrony between ES potential and demand for pollination and 

natural pest control in the selected case study area? 

8) What conclusions can be drawn for practical applications in landscape management to 

optimise ES delivery and particularly the conservation measures for wild bee and natural 

enemy species?  

These research questions are answered and discussed in the following Section (Section 6.1). The 

remaining challenges and uncertainties in modelling and mapping ES are presented in Section 6.2. 
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Sections 6.3 and 6.4 present the contributions of this thesis to the ES modelling research and the 

implications for planning, management and decision-making. 

6.1 Main results 

6.1.1 Spatial resolution, model complexity and ecosystem service potentials 

According to the ES matrix assessment alone (tier 1), the case study area (CSA) has a relatively high 

capacity to provide a wide range of ES, for all ES categories. The CSA is however characterised by an 

overall low ecosystem condition, especially for agricultural ecosystems of which the CSA is mainly 

composed (see Figure 1). This is mainly explained by a low Red List Index (RLI) status and trend and 

low Soil Organic Carbon (SOC) values in agricultural ecosystems. Especially, agroecosystems are the 

only ecosystems to have a negative RLI status, i.e., the status of the species living in these habitats is 

overall worsening. In other ecosystem types, species in the RLIs are recovering, especially in forest and 

freshwater habitats. This is consistent with an improvement in water quality in the past two decades 

(European Environmental Agency, 2012) and an overall improvement in the management of European 

forests (European Environmental Agency, 2008). Fragmentation affects all ecosystems equally. Under 

the assumption that the capacity of ecosystems to deliver a broad range of ES relies on their good 

condition, considering ecosystem condition in the ES assessment significantly decreased the capacity 

of the CSA to provide a wide range of ES (tier 2). 

With different spatial resolutions and levels of detail, the resulting ES maps showed different spatial 

patterns. Particularly, provisioning services seem to be overestimated when using a coarse spatial 

resolution, whereas regulation and maintenance services tend to be underestimated when using a 

coarse spatial resolution. This is mainly because landscape elements are not appropriately mapped 

when using a coarse resolution. Cultural services are less affected by spatial resolution than 

provisioning, regulation and maintenance services. The overall ES assessment for the whole CSA 

showed a high congruence in the mapping outputs using the two different resolutions. It was also 

observed that, especially for cultural, regulation and maintenance ES, not accounting for ecosystem 

condition makes a significant difference in the mapping results. This means that using the ES matrix 

approach only based on LULC tends to retrieve incomplete assessments as it does not sufficiently 

capture spatial heterogeneity due to ecosystem condition in ES potentials. These results are coherent 

with previous studies on provisioning ES (Kandziora et al., 2013b), nutrient regulation services (Bicking 

et al., 2018; Bicking et al., 2019) and multiple services (van der Biest et al., 2015). Besides LULC, soil 

properties, local biodiversity and the landscape configuration are important parameters to consider 

when mapping ecosystems and ES. 

The expert-based assessment highlighted the importance of the smaller landscape elements (such as 

hedgerows and field borders) in the delivery of a broad range of ES, particularly regulation and 

maintenance services. However, as landscape elements are usually relatively small, their importance 

at the landscape scale is not well-captured by mapping methods based on LULC data-based look-up 

table approaches. Typically, spatial spillover-effects or interactions between different LULC classes are 

not accounted for and the capacity of landscape elements to deliver ES to adjacent fields is ignored. 

At tier 3, a hierarchical, multi-scale assessment was conducted, building on the Ecological Production 

Function (EPF) and using species distribution models (SDMs). The scales of the assessment were 

determined by ecological processes determining the distribution of the different species: regional scale 

for biogeographical niches, whereas habitat filter and biotic interactions were assessed at a finer 
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spatial resolution. The two developed approaches were based on existing knowledge of ecological 

processes underlying the provision of pollination and natural pest control ES potentials. This should 

increase the reliability and accuracy of the results compared to tier 1 and 2 approaches (Lavorel et al., 

2017). Contrarily to the first two tier models, the developed modelling frameworks allow for exchanges 

between ecosystems and characterize the spillover-effect between semi-natural habitats (SNH) and 

agricultural fields. This spillover-effect was determined based on species richness and species life-

history traits such as foraging strategies and flying ranges. Model performance was evaluated by 

comparing model predictions to independent in-field collected data. The pollination potential model 

performed rather well when compared with in-field sampled data, even if a high proportion of the in-

field species richness variation remained unexplained. The natural pest control potential model 

performance depended on the taxon; spiders and ground beetles were overall better predicted than 

other species. 

6.1.2 Pollination and natural pest control service ES potentials’ main drivers 

At tier 1 (Chapter 3), the main drivers of ES supply were hypothesized to be LULC classes. The capacity 

of each LULC class to deliver ES potentials was then determined by experts using the ES matrix 

approach. According to the expert assessment, the main LULC classes sustaining pollination and 

natural pest control service ES potentials in the CSA are SNH (such as heathlands), forests, fallows, 

orchards and landscape elements (such as hedgerows). At tier 2 (Chapter 3), ecosystem condition was 

assumed to be essential for the delivery of these ES (Maes et al., 2018). Fragmentation, soil quality and 

biodiversity (here used to estimate ecosystem condition) have been shown to largely influence the 

delivery of pollination and natural pest control ES (Kandziora et al., 2013a; Adhikari and Hartemink, 

2016; Maes et al., 2018). 

At the tier 3 level (Chapters 4 and 5), it was shown that bioclimatic variables are important predictors 

of wild bees and natural enemy species occurrence. Bioclimatic variables determine the presence or 

absence of each species based on their physiological tolerance. For wild bees, precipitation and 

temperature variables, particularly during spring, were found to be the main drivers of species 

presence. For pests and natural enemies, frost, growing degree days and temperature during spring 

and summer were found to be determinant for most of the species. Besides, the presence of habitats 

is often used as a proxy for ESPs and ES (e.g., Lonsdorf et al. (2009), Jonsson et al. (2014), Zulian et al. 

(2013) and Rega et al. (2018)). For wild bees, a habitat filter at the local scale combined with foraging 

ranges was used to refine the ecological niche of each species at the local scale. For pests and natural 

enemies, the importance of landscape complexity (proportion of SNH and edge density) was tested for 

each species. Landscape complexity at 1 km and 100 m radii were found to be important predictors 

for species occurrences. The relationships between the presence of species and the percentage of SNH 

and edge density were found to be hump-shaped. This suggests an optimum percentage of SNH and 

edge density, which is coherent with the intermediate landscape-complexity theory (Tscharntke et al., 

2012b).  

The results also demonstrated the importance to assess the role of biotic interactions in shaping 

natural pest control enemy communities. jSDMs results described mainly positive biotic interactions 

between natural enemies and negative interactions between pest and natural enemy species. This 

tends to demonstrate that the whole natural enemy species community reduces the occurrence of 

pest and that intra- and interguild interactions do not disrupt the natural pest control ES potential. This 
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result should be however carefully interpreted and would need to be further investigated by empirical 

studies explaining the mechanisms behind species co-occurrence patterns.  

6.1.3 Pollination and natural pest control ecosystem service spatial patterns 

Most pollination and natural pest control ESPs are to some extent dependent on the presence of SNH 

such as forests, heathlands and hedgerows. Satisfying the ES demand on arable fields, therefore, 

requires a flow from the SNH into the arable fields during the crops’ flowering or growing period. This 

flow is determined by the capacity of the ESPs to move from the SNH to the fields, which is in turn 

determined by foraging behaviour, overwintering strategies and dispersal capacity of pollinator and 

natural enemy species. The dispersal capacity of arthropod species is restricted to a few metres or 

kilometres, mainly depending on their body size (Bianchi et al., 2006; Greenleaf et al., 2007; Ekroos et 

al., 2013; Steffan‐Dewenter et al., 2002; Shackelford et al., 2013). The CSA is characterised by a 

relatively high share of SNH. Still, at the tier 3 level (Chapters 4 and 5), the model predicted important 

spatial mismatches between pollination and natural pest control potentials and demands, with an 

overall low mean pollination and natural pest control ES potentials on arable fields. This is comparable 

to other ES models at the local scale (Lonsdorf et al., 2009; Fernandes et al., 2020). Potential 

explanations for the predicted spatial mismatches are: there is a need for more SNH in the CSA and, 

probably, more importantly, a need for a better design of SNH at the landscape scale, with smaller 

fields (i.e., a higher edge density) to account for the low dispersal capacity of most of the ESPs 

(Tscharntke et al., 2005; Hendrickx et al., 2007; Tscharntke et al., 2012b). Another possible explanation 

for the predicted low pollination ES potential in some parts of the CSA is the relatively low local SNH 

diversity when a higher SNH diversity could support a higher bee species richness (Westrich, 2018; 

Bartual et al., 2019). 

6.1.4 Conclusions for practical applications in landscape management 

One of the main goals of ES mapping and modelling is to inform and assist decision-makers in making 

more sustainable land management decisions and policies, by reducing pressures on ecosystems or by 

restoring, enhancing or protecting ecosystems (Burkhard and Maes, 2017). Although there are still 

knowledge and data gaps (see Chapter 6.2), the outputs from the modelling approaches can be used 

to support landscape management decisions. The ecosystem condition and ES potential maps (tiers 1, 

2 and 3) can inform on how land use and management decisions affect ecosystems and the delivery of 

multiple ES in the CSA. ES potential maps (tier 3) can help to design suitable ecosystem restoration or 

conservation measures and thereby improve different ES potentials.  

Particularly, the pollination and natural pest control ES potential maps in the studied CSA (tier 3) can 

help to assess the needs for practical conservation measures to promote pollinators and natural enemy 

species in agri-environmental schemes (AES). Spatially explicit maps of ES potential in comparison to 

maps of ES demand allow the identification of areas where ecosystem service potentials are deficient 

(= areas of unmet demand). The resulting maps can support land management recommendations, such 

as where to prioritize habitat conservation measures in agricultural landscapes to sustain biodiversity, 

ecosystem functions and services and thereby crop production. The combination of SDMs and species-

specific habitat filters or effects of landscape complexity on species can help to develop relevant 

ecological measures for specific species, for which global-scale bioclimatic conditions are also suitable. 

Species-specific measures have been shown to be much more efficient and sustain a higher species 

richness than generalized conventional conservation measures (Pywell et al., 2012). As each species 
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has different bioclimatic and habitat needs, designing landscapes that will support a high ESPs diversity 

and resilient communities require considering the amount and configuration of SNH at the landscape 

scale as well as the geographical context, as all these factors together will influence the presence of 

specific species at the local scale. Moreover, as bioclimatic factors have a significant effect on the 

distribution of arthropods, climate change is and will affect species diversity and their distribution, at 

increasing rates in the near future. Biodiversity-friendly agricultural management and SNH can 

mitigate the detrimental effects of climate change on species richness and abundance (Outhwaite et 

al., 2022) and considering the combined effects of land use and climate on species communities is 

essential when developing conservation measures for the long term (Wilson et al., 2007).  

The pollination and natural pest control ES models indicated that land use decisions at the plot scale 

has consequences at broader spatial scales through spillover-effects between different ecosystems: 

many ESPs can move over larger distances than single SNH or single fields and therefore ecological 

measures implemented by one farmer can benefit a neighbouring farm as well. This highlights the 

importance of the coordination of the ecological measures at the landscape scale to optimise efforts, 

to achieve multifunctional landscapes and sustainable land use management in agricultural landscapes 

(Tscharntke et al., 2005; 2012a). Overall, the findings of this thesis call for better conservation of 

ecosystems and particularly of SNH for (climate-)resilient agricultural production, implying land use 

management changes and changes in agricultural practices. 

6.2 Challenges and uncertainties when modelling ecosystem services 

This thesis emphasized the complexity of quantifying and mapping ES, dealing with ecosystem 

complexity and the lack of appropriate spatially-explicit data for ES quantification. Understanding how 

ecosystem components and functions determine ES delivery and how ecosystems can be affected by 

anthropogenic, biotic and abiotic factors is a prerequisite to designing robust ecological measures and 

therefore for a shift towards a more sustainable land use (Kremen, 2005; Maes et al., 2012a; Lavorel 

et al., 2017). However, many processes affecting the delivery of ES are not well explored and 

quantifying ES potential is still a challenge for many ES (Martínez-Harms and Balvanera, 2012; Harrison 

et al., 2014). Besides, the lack of data at the suitable spatial and temporal resolutions is still an obstacle 

to accurately assess and map many ES (Eigenbrod et al., 2010). Indicators and simple models help to 

overcome knowledge and data scarcity but are usually associated with important uncertainties 

(Eigenbrod et al., 2010; Egoh et al., 2012; Schulp et al., 2014a). Uncertainties may also arise from the 

selected assessment methods (Hou et al., 2013). Modelling uncertainties are also inherent to the 

complexity of ecological systems and processes (Hou et al., 2013). Ecological processes are 

characterised by a large number of different components, that interact with each other in various 

ways, at various scales and often show non-linear dynamics (Bond and Chase, 2002; Harrison et al., 

2014). Besides, ecological processes are directly and indirectly impacted by external variables and 

feedback loops, at different scales (Chave, 2013; Heffernan et al., 2014; Miyasaka et al., 2017). This 

complexity also explains why, even after long years of research, there is still a lack of knowledge about 

the different processes and dynamics underlying the ES supply. Therefore, modelling and mapping ES 

imply making simplifications, assumptions and dealing with uncertainties, which one has to be aware 

of when presenting and using the results. 

The first approaches (Chapter 3) apply rather simple methods, including expert-based assessments and 

the use of indicators. This approach allows to assess multiple ES potentials and the importance of 

ecosystem condition for mapping ES. The ES matrix approach has many advantages, amongst others, 
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it allows for a rapid assessment at various spatial scales and is highly adapted in case of data scarcity 

(Jacobs et al., 2015; Roche and Campagne, 2019). It allows a consistent assessment of multiple ES, 

which is essential to account for trade-offs between ES and when studying landscape 

multifunctionality. Besides, it can easily be combined with other information, such as socioeconomic 

variables when available (Vihervaara et al., 2010). The main critics of the ES matrix approach are: the 

evaluations are based on experience and personal beliefs (Jacobs et al., 2015), even though this bias 

can be limited through expert selection and increasing expertise and background variability between 

experts (Jacobs et al., 2015; Campagne et al., 2017). Moreover, LULC-based methods generally do not 

account for the capacity of ES to be delivered by nearby LULC elements (Vrebos et al., 2015) and are 

unable to account for the spatial heterogeneity of biophysical processes (Eigenbrod et al., 2010). This 

can be particularly an issue for maintenance and regulation services sustained by SNH, such as 

pollination and natural pest control potentials. The approaches used at the tier 2 level (Chapter 3) rely 

on the assumption that good ecosystem conditions indicate an ecosystem capable to provide a broad 

range of services in a sustainable way (Balvanera et al., 2006; Maes et al., 2018). Uncertainties of these 

approaches come from 1) a general lack of spatially explicit data that could allow to map and assess 

ecosystem condition with a high accuracy and reliability (Erhard et al. 2017), particularly affecting the 

local scale, for which a fine spatial resolution is suitable, 2) lack of knowledge on how ecosystem 

condition impacts the delivery of ES, even if some ES have been shown to be more dependent on a 

good condition than others (Harrison et al., 2014). Applications of tier 1 and 2 methods are still 

constrained by the availability of suitable data at the needed resolution. For instance, while the 

importance of ecosystem pressures such as land use change and degradation, pollution and over-

exploitation to determine ecosystem condition is well known, data on different pressures at suitably 

fine resolution (i.e., here the plot scale) for the extent of the CSA are typically not available. 

The approaches used at tier 3 rely on the main assumption that pollination and natural pest control ES 

are provided by the presence and richness of ESPs (Chapters 4 and 5). This assumption is debatable 

(Kleijn et al., 2015), but several mechanisms can explain how species richness can contribute to a 

higher ES delivery, amongst them the functional complementarity and redundancy (Hooper et al., 

2005; Tscharntke et al., 2005). Functional complementarity implies that species richness can increase 

the ES delivery by increasing the functional diversity of the species pool. For example, an increase in 

bee species richness can increase the pollination ES potential by increasing the trait diversity of the 

species community (such as body size or daily-activity patterns) (Hoehn et al., 2008). Functional 

redundancy assumes that several species have a similar role within an ecosystem, and implies that the 

loss of species due to environmental changes can be compensated by the remaining species, hereby 

enhancing the ES stability (Tscharntke et al., 2005; Oliver et al., 2015). There is increasing evidence 

that besides species richness, specific traits are determinant factors for the delivery of many ES (Bello 

et al., 2010; Lavorel et al., 2011; Hanisch et al., 2020). For specific ES, the relationships between traits 

and ES have already been quantified through empirical evidence: trait approaches have been for 

instance used to assess nutrient regulation (Bouskill et al., 2012; Pommier et al., 2018) and fodder 

production on grasslands (Grigulis et al., 2013). This approach could also be explored for pollination 

and natural pest control ES to better quantify the relationship between ESPs and ES. 

The approaches developed in Chapters 4 and 5 build on SDMs. In general, uncertainties in SDMs can 

result from data deficiency and from errors in the specification of the models (Zurell et al., 2020a). 

Deficiency in species occurrence data mainly occurs when the data are temporally or spatially biased 

or the sample is too small (Phillips et al., 2009; Merow et al., 2014). There is an exponential increase 
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in species presence data availability from species record portals. The global biodiversity information 

facility (GBIF) is currently the largest biodiversity database with over 1.6 billion species occurrences 

and growing daily (GBIF, 2021), reducing the issue of dealing with small samples. Data stored in this 

platform, however, come from a wide array of sources (e.g., citizen science networks, natural history 

museums and scientific surveys) and are therefore of varying quality (Maldonado et al., 2015). Data 

quality is improving as an increasing amount of data from biodiversity platforms are going through a 

peer-review process before publication, to check for taxonomic identification and georeferencing 

(GBIF, 2021). However, this practice is not yet common and will still be a challenge in the future, mainly 

because of the lack of taxonomic specialists. A first step to reduce species data uncertainty is to 

standardise (i.e., data cleaning) the occurrence data retrieved from species occurrence portals. This 

includes identifying erroneous or imprecise data such as temporal and spatial outliers, with high 

coordinate uncertainty or sea coordinates for terrestrial species (Zizka et al., 2020). Occurrence data 

can also be compared to previous knowledge about the species occurrence, such as IUCN distribution 

maps, when available. In the case of the studies presented here, IUCN distribution maps were available 

for some of the wild bee species but not for most of the other arthropod species, so comparison with 

distribution maps provided by the IUCN was done only for wild bee species.  

An important bias in species occurrence can come from spatial autocorrelation of data as species data 

are usually not evenly spatially distributed, even in rather well-studied areas such as European 

countries. There is a huge discrepancy in available data depending on the region of the World and 

between countries. Arthropod data for instance were more common in northern European countries 

than in the southern European countries, whereas arthropod biodiversity should be higher in southern 

countries, particularly in the Mediterranean countries (Nieto et al., 2014). SDMs can generally deal 

with biased occurrence data, but models can be improved with data availability in data-poor regions 

(El-Gabbas and Dormann, 2018). This can only be solved by increasing the sampling effort and higher 

data sharing from data-scarce regions. Another common issue when using data from biodiversity 

platforms is the lack of absence data. Absence data is generally hard to determine for mobile species, 

even using in-field samplings. Pseudo-absence data was therefore used in the models developed in 

Chapters 4 and 5. Pseudo-absence data proved to be useful and adapted (Barbet-Massin et al., 2012), 

“true” absence data could however significantly improve SDMs performance (Lobo et al., 2010).  

Errors of specification of SDMs result from errors in predictor variables, using variables that are not 

proximal and do not explain the distribution of the species and missing variables. Predictor variables 

were selected through sophisticated processes in Chapters 4 and 5, combining existing knowledge 

about the modelled species and different statistical approaches. The choice of potential variables was 

however here again determined by data availability and resolution. For instance, microclimate has 

been shown to be determinant for arthropod occurrence (Austin 2002), but microclimate data are very 

scarce and were not available for the selected CSA. It was therefore not included in the developed 

models. Advances in remote-sensing technology will increasingly provide the necessary resources to 

determine microclimatic conditions and help to model micro-habitats. Furthermore, the number of 

variables in SDMs was restricted by occurrence data availability (Guisan et al., 2017). This can become 

an issue when assessing community assemblages (Chapter 5), as jSDMs imply the use of the same set 

of variables for all modelled species. If the proximal predictors are not the same for all species in the 

community, this can decrease the model performance compared to a species-specific model. However, 

species-specific models are unable to account for species co-occurrence and biotic interactions, 
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whereas assessing co-occurrence can improve the performance and accuracy of the models (Harris 

and Warton, 2015).  

Besides, in addition to deterministic factors, species occurrence and assemblages are also determined 

by stochastic processes such as random colonisation and extinction (Chase and Myers, 2011). This can 

induce variation among species occurrence and assemblages under otherwise identical conditions, 

which by definition will remain unexplained. Uncertainties can also come from algorithm selection 

(Elith et al., 2006). In Chapters 4 and 5, different SDM algorithms were used to quantify the relations 

between species and predictors and combined through ensemble frameworks, decreasing model 

uncertainty (Araújo and New, 2007). Finally, the models were developed by following current 

standards (Araújo et al., 2019; Zurell et al., 2020a), improving the robustness and reliability of the 

predictions and increasing the transparency of the models. 

A common challenge for all modelling approaches is the difficulty to assess the accuracy and reliability 

of the predictions, which usually implies to evaluate the predictive performance of the models, and 

comparing predictions with other models or independent data (Araújo and Guisan, 2006; Ochoa and 

Urbina-Cardona, 2017). ES assessment and predictions are rarely compared with in-field data, mainly 

because of the low data availability but also because there is a general difficulty to quantify ES (Seppelt 

et al., 2011; Crossman et al., 2013; Lavorel et al., 2017). In Chapter 3, the overall accuracy of the ES 

assessment was not assessed, mainly due to the limited availability of measured or reference values 

in the CSA. In Chapters 4 and 5, species occurrence probability predictions were compared with species 

data collected in the field. This evaluation process was data and resource intensive and was only 

possible for some species. This is nevertheless an advantage of the approaches presented in Chapters 

4 and 5, as the performance of comparable approaches is rarely assessed (e.g., Civantos et al. (2012), 

Zulian et al. (2013), Polce et al. (2013), Nogué et al. (2016), Rega et al. (2018) but see Lonsdorf et al. 

(2009)). Prediction evaluation using independent data is particularly important to assess model 

performance when transferred to different locations (Yates et al., 2018). However, model performance 

when compared with in-field sampled data can also depend on the design of the data sampling and 

the species modelled (Tsoar et al., 2007; Newbold et al., 2010; Marshall et al., 2015) and is particularly 

challenging for models covering large extents. How methods to collect data can influence the collected 

data has also been demonstrated by Westphal et al. (2008). Some species are harder to detect than 

others. Besides, sampling can be spatially biased and/or not perfectly adapted to the seasonality of all 

species. Similarly, our model performance varied with species and taxon, for instance, spider and 

ground-beetles species tended to be better predicted and achieved higher model performance than 

rove beetles when compared to in-field collected data, whereas this is not observed when using cross-

validation assessment methods.  

6.3 Conceptual and methodological contributions 

In Chapter 3, how spatial scale and modelling complexity can influence ES modelling outputs at the 

local scale was analysed. There are many ways to compare maps, i.e., the spatial patterns of the 

different mapping outputs (Long and Robertson, 2018). To date, the mainly used approach for 

comparing ES mapping outputs is to assess the degree of correlation (e.g., van der Biest et al., 2015; 

Roche and Campagne, 2019). Besides correlation, differences in variation and local abundance are also 

important to consider when comparing mapped results (Zulian et al., 2018). The structural similarity 

index (SSIM) allows to consider the local magnitude and spatial structure of the underlying data, as 

well as spatial dependencies between neighbouring cells when comparing maps (Jones et al., 2016). 
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The SSIM index was therefore selected to compare ES mapping outputs from tiers 1 and 2. ES maps 

based on different ES assessment methods (such as primary data and land use proxies) are often highly 

correlated (Chapter 3, Roche and Campagne, 2019). This implies that LULC data-based assessments 

are useful for mapping ES patterns at coarser scales, such as ES hotspots and coldspots. However, 

methods using land use proxies often fail to correctly determine local high and low abundances of ES 

(Chapter 3 and Eigenbrod et al., 2010) and to correctly predict the local ES variance (Chapter 3 and 

Zulian et al., 2018). More work is needed to explore if the benefits of improving ES mapping outreach 

the costs of misidentifying important areas for ES conservation (Eigenbrod et al., 2010). 

Up to now, the main approaches for building ES maps following the ESP approach are primarily based 

on expert judgements on the potential presence and habitat preference of ESPs (see Section 1.3.5). 

This is particularly the case for pollinators and pollination. These approaches are therefore associated 

with typical expert-based approach issues and biases (Lonsdorf et al., 2009; Polce et al., 2013; Jacobs 

et al., 2015), such as the difficulty to find taxonomical (entomological) expertise at the desired spatial 

and temporal scales. Fewer studies are based on empirical data or use ecological niche modelling 

theories to determine ESP species occurrence drivers and limiting factors. SDMs are one suitable 

method to determine the ecological niche of the targeted species and to determine if the 

environmental conditions in the study area of interest are suitable for the targeted species. SDMs have 

the advantage to build on actual data records and thereby can provide an effective alternative to local 

expert knowledge on species' potential occurrence or absence in a given location (Chapters 4 and 5, 

Polce et al., 2013, Gastón et al., 2014). Existing SDMs are however usually fitted at relatively coarse 

resolution, constrained by occurrence data and environmental variables, typically available at rather 

coarse spatial resolution. Bioclimatic conditions are the main determinant of species occurrence at 

national and broader scales, but this resolution is not adapted to map ESPs occurrence at the local 

scale (Chapters 4 and 5). Particularly in highly fragmented landscapes, this resolution may fail to cover 

important habitats such as hedgerows, small pastures and forests, and therefore obtain biased species 

distribution maps (Polce et al., 2013; Nogué et al., 2016; Marshall et al., 2021). To tackle these issues 

and increase the ESP approach’s realism, a hierarchical framework was applied to account for the 

different assembly processes that determine where species occur at different scales following Soberón 

and Peterson (2005) (Chapters 4 and 5). Hereby, it was assumed that: 1) abiotic environmental 

conditions outline the physiological limits under which species can persist and are determinant at 

global or regional scales, 2) biotic variables determine the resource availability, nesting and 

overwintering places as well as potential refugees from disturbances at finer scales and 3) biotic 

interactions, such as predation and competition can further limit the presence of species at local scales. 

Thus, combining the advantages of the two different approaches (the ecological niche concept at 

biogeographical scale and landscape ecology theories at the landscape scale) should improve our 

ability to predict species occurrence and the associated ES. This approach helped to build modelling 

frameworks based on knowledge of life cycle requirements of the modelled species at different spatial 

scales, increasing the reliability of the model outputs. This thesis showed the potential of using SDMs 

for ES assessment and the need for species-specific approaches when modelling pollination and 

natural pest control potentials. Assessing and understanding spatial patterns of species distribution 

provide information on where and why species are present or absent, which is essential to design 

adapted conservation measures and assess potential threats of extinction for each species (Rodríguez 

et al., 2007; Guisan et al., 2013). In addition, as the modelling framework allows to assess the relative 
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importance of environmental variables on different species, it can also be used to analyse the impact 

of climate and land cover changes on ESP species and their associated ES potentials. 

ES mapping and assessment methods are constantly improved and applied to different scopes. 

However, the proliferation of ES mapping methods can also be contra-productive and can render the 

selection of a suitable ES assessment method particularly tedious (Willemen et al., 2015). The 

appropriate method depends on the decision-making process at stake and the intended audience 

(Grêt-Regamey et al., 2015). For instance, in highly fragmented landscapes, with a high share of linear 

elements and small habitats, the spatial heterogeneity cannot be captured by coarse spatial resolution 

data (Chapter 3). However, a high spatial resolution can be misleading when working at national or 

regional scales and the results may not be serviceable for or understood by decision-makers. Using 

LULC as a proxy has been criticised because of its simplicity (Chapter 3, Eigenbrod et al., 2010), it is 

however useful because of its availability and high spatial coverage. Besides, this proxy is highly 

suitable to distinguish which ES can and cannot be sustained at the landscape scale (Chapter 3, 

Burkhard et al., 2009; Maes et al., 2012a; Burkhard et al., 2014). For instance, at all tiers (Chapters 3, 

4 and 5), the presence of SNH is one of pollination and natural pest control ES main drivers. Using 

simple approaches such as ES matrix assessments and LULC-data-based assessments are therefore 

suitable for awareness raising, particularly on the importance of habitats and SNH for the delivery of 

multiple ES. Besides, they can provide a comprehensive assessment of multiple ES, when most ES 

studies focus on few ES (Chapter 3; Seppelt et al., 2011). Land use-based assessments are however not 

adapted to design specific policies as important variables are missing and such assessments do not 

include the spillover potentials between different ecosystems (Chapters 4 and 5). The influence of 

biotic variables, ecosystem condition and landscape configuration is typically ignored when using land 

use-based assessments. Besides, the complexity of species-habitat relationships is also not well 

addressed. These approaches, therefore, imply a loss of information in ES quantification. 

Recommendations for land use management such as the implementation of effective AES, therefore, 

require assessing spatial patterns with a high spatial resolution and model complexity. More complex 

models are however more resource-intensive and modelling outputs are not free from assumptions 

and uncertainties (see Chapter 6.2). The importance of scale and modelling complexity required may 

depend on the ES at stake (Chapter 3; Kremen and Ostfeld, 2005) and complex methods may be only 

required to assess regulation and maintenance ES, whereas provisioning and cultural ES assessment 

should be less dependent on an extensive understanding of ecological processes (Villamagna et al., 

2013).  

Supporting decision-making for ES and biodiversity conservation at the local scale requires robust 

assessments based on evidence of ecological processes, with a high reliability, to avoid false 

predictions and ineffective conservation measures (Guisan and Thuiller, 2005; Schröter et al., 2015). 

However, because of the inherent complexity of natural systems and a general lack of knowledge on 

how biodiversity supports different ES, this is not always feasible (see Chapter 6.2). In practice, there 

is generally a trade-off between the feasibility and accuracy of the analyses of complex systems. 

Besides, analyses are often limited by resource availability (of data, human resource and knowledge). 

This thesis highlighted the issue of data availability at a fine spatial resolution, particularly affecting 

how ecosystem condition was assessed. The different ES mapping and assessment methods applied 

for this thesis are not exclusive and can be coupled to take advantage of the different approaches and 

limit the uncertainties of the mapping outputs. This thesis presented different methods from three 

different tier levels following Grêt-Regamey et al. (2015) and the different approaches should be 
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considered together to support land management decisions (Figure 4). Particularly, combining data-

driven approaches (such as SDMs) with expert knowledge increases the reliability of model predictions 

for ecological complex systems with (expert) knowledge gaps and patchy ecological data. Increasing 

the reliability and accuracy of the model results potentially also increases the efficiency of land 

management solutions, adapted to current and future situations (Schwartz, 2012). Using different 

approaches is also needed to address different decision-making issues and processes that can affect a 

particular area (Grêt-Regamey et al., 2015; Dunford et al., 2017). Besides, the different methods were 

developed within an adaptive framework, that could be adapted to new knowledge on the 

relationships between biodiversity and ES and to environmental changes in the CSA. 

6.4 Outlook 

6.4.1 Biodiversity and ecosystem services conservation in agricultural landscapes 

Achieving sustainable and productive agriculture, while conserving a wide range of ES, is a global 

challenge (Tscharntke et al., 2012a; Landis, 2017; Vanbergen et al., 2020). Different farming 

approaches can help to achieve more sustainable agricultural systems whilst preserving agricultural 

production (Vanbergen et al., 2020). Ecological intensification or maximising nature-based ecosystem 

processes in support of agricultural production is one promising management approach (Bommarco 

et al., 2013; Kleijn et al., 2019; Vanbergen et al., 2020). The transition to a more ecological intensive 

agriculture requires adapting farming management practices and is still a challenge (IPBES 2019). 

Knowledge gaps on the effect of ecological intensification on farm yields and profitability are one of 

the barriers to a shift to more nature-friendly agriculture systems (IPBES, 2019; Vanbergen et al., 2020). 

Particularly, the relationships between biodiversity, ES and crop production are still not well 

understood (Cardinale et al., 2012; Harrison et al., 2014; Ricketts et al., 2016), making it hard to predict 

the overall impacts of a shift towards an ecological intensification, especially if different measures are 

implemented.  

A key challenge for managing ES is to determine synergies and trade-offs between multiple ES within 

and across landscapes (Duncan et al., 2015). Some studies showed a trade-off between the intensive 

production of agricultural goods and other ES (Power, 2010; Maes et al., 2012a; Raudsepp-Hearne et 

al., 2010). Implementing ecological measures can therefore imply yield reductions, at least in the short 

term. There are however also examples of enhanced crop production and yield assurance when 

applying ecological intensification measures (Blaauw and Isaacs, 2014; Pywell et al., 2015), highlighting 

the potential synergies between natural pest control, pollination and crop yields (Rusch et al., 2016; 

Garibaldi et al., 2018). Besides, many ES are similarly affected by the same drivers of change (e.g., land 

use change, habitat degradation, pollution and over-exploitation) and/or are underpinned by 

analogous ecological processes (e.g., soil formation, water and nutrient cycles) and biodiversity aspects 

(Raudsepp-Hearne et al., 2010; Maes et al., 2012b). Determining potential synergies between different 

ES can be a strong argument for ES conservation and support land-management decisions towards 

multifunctional landscapes. It however requires a higher quantitative understanding of the different 

mechanisms and interlinkages between multiple ecosystem processes and ES at different scales. 

Besides these knowledge gaps, there are well-known social barriers to shifting to a more ecological 

agriculture model (Vanbergen et al., 2020). These aspects were not directly analysed during this thesis. 

However, this thesis was part of the BiodivERsA project IMAGINE, which involved ES experts and local 

stakeholders. For instance, local stakeholders’ social values for a better management of green 
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infrastructure (including natural and semi-natural habitats) were analysed, focusing on the social and 

ecological aspects they would like to see prioritised. The results of the social valuation analysis showed 

that, despite potential social frictions regarding the management of green infrastructure, the local 

stakeholders have a common understanding of the importance of biodiversity in agricultural 

production (Roche, 2021). The different local stakeholders were clearly in favour of a better 

biodiversity conservation and called for better design of agricultural production systems, explicitly 

considering biodiversity and ES conservation (Roche, 2021). The research presented in this thesis 

provides information to decision-makers in the CSA on how to design a multifunctional landscape, with 

a focus on pollination and natural pest control ES and therefore could support decision-makers in a 

shift towards a better management of green infrastructures. 

In agricultural landscapes, conservation measures are often implemented through AES from the CAP. 

However, the effectiveness of AES for biodiversity and ES conservation is still questioned (Concepción 

et al., 2008; Batáry et al., 2011; 2015). Reasons suggested to explain the low effectiveness of individual 

AES measures is the lack of planning and coordination at the landscape scale (Concepción et al., 2012; 

Gonthier et al., 2014), along with the intermediate landscape-complexity theory (Tscharntke et al., 

2012b). According to this theory, AES will not increase biodiversity in both the simplest and the most 

complex landscapes, because of the non-linear relationships between landscape complexity and 

species richness. This thesis showed the importance of compositional and configuration complexity of 

the landscape to sustain ESPs and ES and that species and communities often experience and are 

impacted by their environment at different scales. SNH diversity is also crucial to sustain a wide 

diversity of species, particularly wild bees (Concepción et al., 2012; Senapathi et al., 2015). The low 

effectiveness of AES measures can be therefore also due to a lack of consideration of the complexity 

of species’ life cycles and needs. If specific AES are effective at sustaining specific species depends on 

the targeted species‘ life-history traits and ecological needs such as nesting and feeding preferences. 

In addition, species respond to their environment at different spatial and temporal scales.  

Effective conservation measures, therefore, need to be guided by scientific knowledge of species 

suitable ecological niches and to be coordinated at the landscape scale. AES are currently based on 

voluntary agreements with farmers and are therefore mostly applied at field scales, without 

coordination nor cooperation at the landscape scale. AES therefore often translate into the patchy 

distribution of temporal and individual measures, whereas species communities and ecological 

processes require perennial measures, designed at a broader scale (Concepción et al., 2008). The 

design of AES measures at the landscape scales, as it should optimise efforts and benefits, should be a 

strong argument for cooperation in the implementation of AES. The adoption of landscape scale 

strategies implies a social shift towards shared efforts and long-term interests of several stakeholders, 

that may differ from their immediate individual costs and benefits (Barnaud et al., 2018). Farmers have 

different beliefs, interests and capacities to adapt their management to promote multifunctional 

landscapes, making it difficult to build shared objectives at the landscape scale (Smith and Sullivan, 

2014). The number of farmers that are potentially involved and the diversity of farming systems 

increase the complexity of the social system when the needed changes rely on the spatial and temporal 

consistency of nature-friendly farming practices. 

The research presented in this thesis showed the importance of conservation and management of 

biodiversity for the conservation of regulation and maintenance ES. The analysis was restricted to a 

few ESPs, i.e., Andrena wild bees for pollination and some arthropod species for natural pest control, 
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but other species have been shown to play a significant role in ES delivery: birds, bats and other insects 

for pollination services (Rader et al., 2016), mammals, birds and bats for natural pest control services 

(Maas et al., 2016), but also fungi, earthworms and nematodes for soil formation and nutrient 

regulation (Nielsen et al., 2015), among others. In addition, a large diversity of species, populations 

and communities is essential for the delivery of a wide range of ES and a sustainable agricultural 

production (Hooper et al., 2005; Bommarco et al., 2013; Letourneau et al., 2009; Dainese et al., 2019; 

Woodcock et al., 2019; Senapathi et al., 2021). Each species has a specific ecological niche, suitable 

habitat and dispersal capacity and therefore their conservation and the conservation of the associated 

ES is quite a complex issue. Besides, as species are differently affected by bioclimatic variables, global 

change will not affect each species or group of species the same way. Some management measures 

might favour some species over others, and might in the end not benefit the overall biodiversity nor 

ES delivery. There is still a lack of consensus on how to maximise the benefits of land management 

options such as AES measures for biodiversity conservation and to restore or sustain ES delivery (Duru 

et al., 2015). The results of this analysis can nevertheless support a better design of AES measures at 

the local and landscape scale. The shift towards a more sustainable agricultural management should 

ideally be associated with other land management changes, which were not addressed in this thesis, 

such as a reduction of the use of pesticides and fertilisers (Gallé et al., 2019). This shift implies an 

important change in practices, from simplified agroecosystems, where many ecological processes have 

been replaced by human inputs to less predictable and controllable systems, relying on a complex 

network of ecological processes (Vanbergen et al., 2020).  

6.4.2 Future research 

The previous discussion leads to the formulation of three major recommendations for needed research 

and efforts to improve ES modelling and mapping. This includes: 1) increasing the availability and 

resolution of data on ecosystem pressure and condition indicators, species occurrence, and 

environmental variables at a high spatial resolution, 2) increasing the realism of ES models and 3) 

developing methods for validation of ES models and mapping efforts. 

Information on LULC management at a high spatial resolution will help to better quantify provisioning 

ES and to better assess the condition of different ecosystems. For example, farming management and 

practices highly influence soil quality, species diversity at different scales as well as the ecological 

status of neighbouring water bodies. Organic farming (generally characterised by lower pesticide and 

fertilizer inputs) (Happe et al., 2018; Muneret et al., 2018; Gallé et al., 2019), crop rotation and 

diversification (Marrec et al., 2017) and reduced tillage (Rowen et al., 2020) can support higher 

arthropod diversity. Accounting for land use management types might therefore increase the accuracy 

of ES modelling, particularly at the tier 2 and 3 levels, where this information should be included as 

ecosystem condition indicators or environmental variables determining the habitat suitability of each 

species.  

Higher temporal and spatial resolution of environmental data should be increasingly available with the 

advance in remote-sensing tools. Especially, increasing the LULC spatial resolution. This can help to 

capture habitat quality information such as the availability of specific nesting and feeding resources, 

which might greatly improve habitat suitability modelling for arthropod species. This level of spatial 

resolution when estimating and predicting LULC from aerial photographs and satellite images is not 

yet available for the CSA. Therefore, coarser LULC data were used as proxies to determine species’ 

suitable habitat for this work. Future research should explore the feasibility of SDMs at higher 
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thematical, temporal and spatial resolutions and their capacity to better predict species occurrence. 

Crucially, increasing sampling efforts and sharing existing recorded species data are needed to improve 

the availability of species occurrence data and the accuracy of SDMs. In Europe, data are particularly 

scarce in southern countries and sampling in these areas would drastically improve modelling 

performances. Besides, increasing the share of and access to species record data (from monitoring 

schemes or individual scientific studies) between researchers can also considerably increase data 

availability and quality. Another way to increase data availability is the use of standardised citizen 

science monitoring. Citizen-science records offer a low-cost approach to collecting species occurrence 

data covering a wide extent with a high temporal and spatial resolution, otherwise hardly feasible 

(Feldman et al., 2021). 

Despite considerable research on ES and although it is well understood that ES supply strongly relies 

on biodiversity (Hooper et al., 2005; Balvanera et al., 2006; Cardinale et al., 2012; Harrison et al., 2014), 

there is still limited empirical research on the explicit causal and quantified relationships between the 

different aspects of biodiversity, ecosystem condition and ES (Mace et al., 2012; Harrison et al., 2014). 

There is definitely a need for more research to explain the mechanisms underpinning the relationships 

between the different biodiversity elements and the different ES (Duncan et al., 2015; Hossain et al., 

2018). For pollination and natural pest control ES potentials, for instance, the relationships between 

ESPs occurrence, richness, abundance and how it influences crop production is still not well 

understood (IPBES, 2016) as only a few empirical studies have demonstrated that enhancing 

pollination or natural pest control ES potentials positively affect crop production and agronomic 

benefits (Kleijn et al., 2019). Therefore, in Chapters 4 and 5, only ES potentials were assessed, whereas 

the ES flows (contribution to crop production) were not determined. There are many different 

methods to assess the impacts of ESPs on crop production, ranging from simple to more complex 

methods (see IPBES, 2016 for an overview). Comparing open-fields and pollinator-excluded sub-

samples can allow for an accurate assessment of the benefits of pollination and natural pest control. 

To date, this methodology is not standardised and analysing the gain due to ESPs is measured 

considering a wide range of parameters, including flower visitation, pollen deposition, crop yield, crop 

quality, plant damage and/or profitability (IPBES, 2016). Besides, this method does not account for the 

potential gain in sustainability and resilience (or stability) that comes from a high diversity of ESPs. In 

addition, only few studies have considered opportunity costs and the loss of cropped area and harvest 

implied by the establishment of AES (Kleijn et al., 2019). A better understanding of how ESP 

communities and the establishment of different AES affect the economic benefit of farmers and yield 

stability are therefore still needed to convince and support these actors to shift from conventional to 

more nature-friendly practices (Kleijn et al., 2019). 

The developed ES potential models are mainly based on SDMs, i.e., correlative models that do not 

explain the mechanisms behind species distribution. In SDMs, species are typically assumed to be at 

equilibrium with their environment and dispersal capacity, species plasticity and source-sink 

populations are not taken into account (Guisan and Thuiller, 2005). By contrast, mechanistic models 

(or process-based models) aim at explaining distribution or occurrence patterns based on a theoretical 

understanding of the biology of the different species (Cuddington et al., 2013). Mechanistic 

approaches may therefore be able to describe non-equilibrium dynamics such as dispersal, migration 

and demographic processes (Gallien et al., 2012) and better assess extinction risks than SDMs. 

Physiology and demographic constraints are however generally implicitly integrated into statistical 

models, as they are sensitive to environmental conditions. Several ecological, species-specific 
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processes can still increase the realism of ESP and ES models when incorporated. For instance, 

including information on how environmental variables affect survival, population growth, fitness and 

reproductive capacity and how it determines habitat suitability can be a way to improve models’ 

performance and transferability (Kearney and Porter, 2009; Cabral and Schurr, 2010). Such models 

require considerable data and knowledge for model calibration and evaluation, which are currently 

not available for many species. Besides, the feasibility for multiple species assessment is questionable. 

Further research on species’ ecological processes will nevertheless help to determine the level of detail 

needed to accurately model species-specific responses to environmental variables (Jeltsch et al., 

2008). 

A wide range of ES modelling and mapping tools have been developed over the last years but their 

performances are generally not assessed, mainly because of the scarcity of empirical data, but also 

because many ES are inherently difficult to measure (Bennett et al., 2015; Ochoa and Urbina-Cardona, 

2017). As few studies have validated ES model results against independent datasets, the uncertainties 

associated with most ES models remain largely unknown (Bryant et al., 2018). Another approach 

consists of assessing model performance using different methods and evaluating if there is a consensus 

in the results (Araújo and New, 2007; Marmion et al., 2009). Overall, more research is required on ES 

model validation and towards the standardisation of model performance assessment within the ES 

research community. This could increase confidence in ES research and findings and help to increase 

the inclusion of ES assessments in policy and decision-making processes (Wong et al., 2015). However, 

as sampling of independent high-quality data is resource-intensive, there will always be financial and 

practical limits to model validation using independent datasets. 

6.5 Final conclusions 

This thesis shows how different modelling methods can assist in the assessment of multiple ES. The 

use of indicators, models and maps can guide land use decisions, particularly when empirical data and 

knowledge on ecological processes are limited. Models are however only simplified representations of 

complex processes and only consider specific properties of ecological systems. The results should be 

interpreted considering the assumptions behind the models and knowing the associated uncertainties. 

Mapping using proxies and simplified relationships between ecosystem condition and the delivery of 

ES is a rough simplification of reality. Similarly, ecological niche models are only a representation of 

the habitat suitability of species, given the considered environmental variables and prior assumptions. 

The different ES mapping and assessment methods are not exclusive and coupling different 

approaches may be the way forward to take advantage of different approaches and limit uncertainties. 

For this thesis, different model types of varying complexity and level of detail including field 

observations, expert-based approaches and habitat suitability modelling approaches were applied. 

The mapping outputs were then presented for a case study area in northern Germany. Together, the 

results of the different approaches can help managers to design more effective conservation 

strategies. Spatial information on ES can also assist economical decisions underlying agricultural 

practices. For instance, higher pollination and natural pest control ES potential can increase crop yields, 

save resources and have a positive impact on nature management and biodiversity conservation. 

The concept of ES has great potential to influence land use planning and decisions because it links – 

via ES - biodiversity and ecosystem processes to human well-being. As a major thread for ES and 

because it relies on a broad range of ES, agricultural landscapes can greatly benefit from applying the 

ES concept. This thesis highlights the importance of numerous arthropod species in providing essential 
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ES and the importance of considering species’ life cycles and ecological niches to be able to predict 

where they occur. The results of this thesis contribute to the knowledge of arthropod species 

distributions in agricultural fields. The modelling results highlight the complexity of designing 

conservation measures for different species and species communities. One of the main findings of the 

thesis is that a comprehensive assessment implies a multi-scale assessment, as the delivery of ES is 

determined by multi-scale variables and processes. Ecosystems and their biophysical properties are 

also affected by various variables at different scales: Typically, bioclimatic variables at global scale and 

land use management at local scale. Moreover, ecosystems may deliver ES outside of their boundaries. 

Understanding the spatial context and distribution patterns of ES informs of where and how land use 

management measures can be improved to maximise the delivery of (specific desired) ES. This thesis 

also highlighted numerous knowledge gaps and needed future research to increase the reliability of 

ESP and ES models. However, we should not wait to take actions until all knowledge gaps have been 

answered. Both abundance and diversity of arthropod species are currently declining at alarming rates 

due to agricultural intensification, habitat loss, pollution and climate change. If the arthropod decline 

are not rapidly halted, they will have serious repercussions for ecosystem functions and human well-

being.  
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