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Abstract
In this article, we develop a reduced basis method for efficiently solving the coupled Stokes/Darcy equations with parametric
internal geometry. To accommodate possible changes in topology, we define the Stokes and Darcy domains implicitly via
a phase-field indicator function. In our reduced order model, we approximate the parameter-dependent phase-field function
with a discrete empirical interpolation method (DEIM) that enables affine decomposition of the associated linear and bilinear
forms. In addition, we introduce a modification of DEIM that leads to non-negativity preserving approximations, thus
guaranteeing positive-semidefiniteness of the system matrix. We also present a strategy for determining the required number
of DEIM modes for a given number of reduced basis functions. We couple reduced basis functions on neighboring patches
to enable the efficient simulation of large-scale problems that consist of repetitive subdomains. We apply our reduced basis
framework to efficiently solve the inverse problem of characterizing the subsurface damage state of a complete in-situ leach
mining site.

Keywords Model order reduction · Reduced basis method · Coupled Stokes/Darcy model · Beavers-Joseph-Saffman
conditions · Phase-field · Discrete empirical interpolation method · Non-negativity preserving DEIM · In-situ leach mining

1 Introduction

Fluid flow through porous media is typically modeled with
the Darcy equations. When there are large cracks and voids
in the porous medium, then a homogenization of the mate-
rial into a single permeability tensor is no longer appropri-
ate. The creeping flow in those domains can more accurately
be modeled with the Stokes equations. The coupling rela-
tions between the Darcy and Stokes flow regimes were first
studied by Beavers and Joseph [1], and later supplemented
by Saffman [2]. The resulting Stokes/Darcy equations cou-
pled via Beavers-Joseph-Saffman interface conditions play
an important role in many disciplines, for instance model-
ing groundwater flow [3] (such as in petroleum and karst
reservoirs [4, 5] and for in-situ leach mining [6]), perfusion
of blood through tissue [7, 8], filtration devices [9, 10], and
chemical reactors [11]. The wide range of applications has
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lead to significant interest in methods that computationally
approximate the coupled Stokes/Darcy problem, including
their numerical analysis and algorithmic treatment [12–20].
Many of these applications are characterized by incomplete
or uncertain data in terms of the geometry and topology of
the two flow domains (e.g., uncertain subsurface soil char-
acteristics, limited resolution of CT or MRI scans). At the
same time, they generally involve a wide range of length
scales (e.g., from small rock cavities to a complete mining
site, from small capillaries to a full organ).

In this article, our objective is to enable the efficient
simulation of such multiscale systems with parametrically
defined free-flow Stokes domains at the lowest scale. To
achieve this objective, we make use of model order reduc-
tion by means of reduced basis methods [21–23] on small
repetitive subdomains. A reduced basis method replaces a
computationally expensive high-dimensional finite element
discretization of a parametrized partial differential equation
(PDE) by a small low-dimensional set of basis functions that
have high approximation power with respect to the solu-
tion manifold of the parametrized problem [24, 25]. This
may reduce the number of degrees of freedom by several
orders of magnitude. We develop a reduced basis method
for the coupled Stokes/Darcy model on a variable internal
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geometry, and achieve reduction factors of ∼2500 for all
computations. Such significant cost reductions are crucial
for cases where many repetitive simulations are required,
such as for multi-scale systems. We model the large-scale
system consisting of many repetitive subdomains by cou-
pling together many such reduced basis functions. Similar
approaches to coupling reduced basis functions on repetitive
subdomains have been used in [26–31].

In a reduced basis context, the reduced basis functions
themselves are defined on a high-dimensional finite element
approximation space. Consequently, the high-resolution
finite element mesh must remain fixed. This requirement
conflicts with our aim of flexibly handling the geometry of
the internal Stokes and Darcy domains. Usually, paramet-
ric geometry is handled by mapping back to a reference
domain [22, 23], but such an approach does not permit
changes of topology as this would degenerate the Jacobian
of the mapping. We therefore require a method that is able to
model a topologically flexible Stokes domain that may
merge and disperse within the Darcy domain. Diffuse inter-
face methods [32–36], also known as diffuse domain or
phase-field methods, offer such a flexible framework for
solving coupled boundary value problems on non-boundary
fitted meshes. The internal geometry is implicitly repre-
sented by a phase-field function, which smoothly transitions
from zero to one. The phase-field indicator function and
its gradient can be leveraged to replace integrals on sub-
domains or interfaces by weighted volumetric integrals on
the complete domain. The resulting phase-field formula-
tion is equivalent to the sharp-boundary interface problem
when the width of the diffuse interface (controlled by a
characteristic length-scale parameter) limits to zero. Phase-
field geometry representations have been widely applied,
for instance in growth modeling of tissues and crystals [37,
38], for tracking the evolution of crack patterns [39–42],
for enforcing boundary conditions in imaging data based
analysis [43, 44], for modeling multi-phase flow [45–47],
for variational image processing and segmentation [48, 49],
or for modeling phase transition and segregation processes
[50–53].

A crucial aspect of a reduced basis method is the affine
decomposition of the linear and bilinear forms. Affine
decomposition enables the precomputation of reduced-basis
stiffness matrices such that the final reduced order model
is completely independent of the size of the original high-
fidelity model. However, the (bi)linear forms resulting from
the diffuse representation of the internal geometry do not
satisfy this criterion. This is a common issue for many
relevant parametrized PDEs, such as those that feature non-
linearities [54–57], complex material laws [58–60], or in
general, spatially varying model coefficients [61, 62]. For
those cases, the discrete empirical interpolation method
(DEIM) may be used [61, 63]. With DEIM, all non-affine

parameter dependent fields are replaced by a low-dimen-
sional interpolation on DEIM modes. For our diffuse rep-
resentation, this method solves the problem of non-affine
parameter dependence, but the interpolation of a domain
indicator function is likely to produce Gibbs-type oscil-
lations at regions with high gradients (i.e., the diffuse
interfaces). Oscillations necessarily imply negative values
and values larger than one, which in turn could produce
nonphysical domain representations and unstable system
matrices. In this paper, we mitigate this issue by introducing
a non-negativity preserving version of DEIM.

Our article is structured as follows: in Section 2, we
derive the diffusely coupled Stokes/Darcy equations. We
show that all three Beavers-Joseph-Saffman conditions can
be treated naturally within a diffuse interface framework.
In Section 3, we propose a non-negativity preserving vari-
ation of the discrete empirical interpolation method for the
dimensional reduction of the phase-field geometry repre-
sentation and show its effectiveness for three benchmark
problems. In Section 4, we use the same three benchmark
problems to study the relation between the required num-
ber of phase-field DEIM modes and the number of reduced
basis functions in the reduced order model. In Section 5,
we apply our methodology to efficiently estimate the sub-
surface flow characteristics of an in-situ leach (ISL) mining
site that consists of a large number of repetitive hexago-
nal units. In Section 6, we summarize our work and draw
conclusions.

2 Diffusely coupled Stokes/Darcy equations
on parametrically defined domains

We consider an incompressible fluid moving through a
partially porous medium at velocities that are sufficiently
small to neglect the convective components in the material
derivative. Steady state equilibrium of the fluid is then
described by:

− ∇ · σ = f in � ⊂ R
d , (2.1a)

∇ · u = 0 in �, (2.1b)

with σ the Cauchy stress tensor, u the fluid velocity, f the
body force, and � the d-dimensional spatial domain. Next,
we separate the domain into the subdomains where different
constitutive relations and different boundary conditions
apply. The notation for the subdomains, boundaries and
interfaces is illustrated in Fig. 1.

2.1Weak formulation of the coupled Stokes/Darcy
equations

Our porous medium in � contains voids and cracks where
the flow is unobstructed. We denote the union of
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Fig. 1 Subdomains, boundaries and interfaces

these (potentially disconnected) subdomains �S , and in
these subdomains we use the constitutive relation of an
incompressible Newtonian fluid:

σ = 2μ∇su − pI in �S , (2.2a)

f = 0 in �S , (2.2b)

with μ the viscosity and p the pressure field. Hence, in �S ,
the governing equations are the Stokes equations.

In the remaining domain, �D = � \ �̄S , the interaction
between the porous medium and the fluid produces a flow
resistance that is assumed to be sufficiently high such that
the viscous effects in the Newtonian fluid may be neglected.
The closing relations become:

σ = −pI in �D , (2.3a)

f = −μκ−1u in �D , (2.3b)

where κ is the second order permeability tensor. These
assumptions lead to the Darcy equations in �D .

The interface that couples the Stokes and Darcy domains
is denoted � = �̄S ∩ �̄D . On �, the unit normal vectors
nS and nD point out of the Stokes and Darcy domains,
respectively. Across the interface, the solution fields are
coupled due to the required balance of mass and balance
of linear momentum. Additionally, the porous material
introduces a shearing resistance to the fluid on the Stokes
domain. These considerations lead to the so-called Beavers-
Joseph-Saffman coupling conditions [1, 2]:

uS · nS = −uD · nD on � , (2.4a)

(2μ∇suS nS) · nS − pS = pD on � , (2.4b)

(2μ∇suS nS) · T = −α TuS on � , (2.4c)

where subscripts S and D refer to the solution fields in the
Stokes and Darcy domains, respectively. The tensor T =

(I − nS ⊗ nS) is the tangential projector and α is the shear
resistance parameter.

On the boundary of �, denoted ∂�, we permit the
following boundary conditions:

u · n = 0 on ∂�u , (2.5a)

σn · T = 0 on ∂�u , (2.5b)

σn = tnn on ∂�p . (2.5c)

The first two conditions represent no-inflow with free-
slip and the last condition is a pressure condition. These
specific boundary conditions are chosen because they are
valid essential and natural conditions for both the Stokes
and the Darcy equations. The inflow condition is chosen
homogeneous for simplicity, but it may just as well be set to
a non-zero value.

We obtain a weak formulation by multiplying Eq. (2.1a)
by test functions v and q, integrating over the domain �,
substituting the constitutive relations Eqs. (2.2) and (2.3) on
their respective domains, performing integration by parts,
and by substituting the coupling and boundary conditions of
Eqs. (2.4) and (2.5). This leads to the statement:

Find u, p ∈ H0(�S, �D, ∂�u) × L2(�) s.t. ∀ v,

q ∈ H0(�S, �D, ∂�u) × L2(�) :∫

�S

2μ∇su : ∇sv d� +
∫

�D

μκ−1u · v d� −
∫

�

p ∇ · v d�

+
∫

�

α TuS · vS dS =
∫

∂�p

tnn · v dS , (2.6a)

∫

�

q ∇ · u d� = 0 , (2.6b)

where the function space H(�S, �D) is defined as:

H0(�S, �D, ∂�u) = {v ∈ [L2]d : ||v||2
H 1(�S)

+||v||2H(div,�D) < ∞, u · n
= 0 on ∂�u} . (2.7)

This space ensures sufficient regularity on the vector valued
functions in the Stokes and Darcy domains.

2.2 Diffuse interface representation

Next, we consider a parametrically defined domain �S(β)

(and thus also �D = �D(β) = � \ �S(β)), where β is a
point in the parameter space P. The parameter space P is
finite dimensional and encodes in some sense the set of
potential geometries of �S . For example, parameters in P

could denote the number, position, size and/or orientation
of voids and cracks through the domain �. To handle this
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extensive geometric flexibility, we introduce a diffuse rep-
resentation of the interface geometry in the weak statement.
The strength of such an implicit interface representation is
that the computational mesh does not have to fit the internal
interface.

Let φ(β) ∈ C1(�) be a “phase-field” indicator function
with values between 1 and 0. The function φ(β) tends to
1 in the Stokes domain and to 0 in the Darcy domain, and
it monotonically decreases from 1 to 0 along straight lines
that cross a thin region around the Stokes/Darcy interface.
The thickness of the diffuse interface is characterized by
the parameter δ, as illustrated in Fig. 2. Based on this
indicator function, volume integrals on �S or �D and
surface integrals on � can be approximated by volume
integrals on � according to:

∫
�S(β)

g d� ≈ ∫
�

g φ(β) d�, (2.8a)∫
�D(β)

g d� ≈ ∫
�

g (1 − φ(β)) d�, (2.8b)∫
�(β)

g dS ≈ ∫
�

g ||∇φ(β)|| d� . (2.8c)

In the following, we indicate dependencies on β only when
relevant.

The normal vector nS may be approximated as −∇φ/

||∇φ||, such that:

T ≈ I − ∇φ

||∇φ|| ⊗ ∇φ

||∇φ|| . (2.9)

Finally, we assume that the solutions u are such that ||TuD||
� ||TuS ||. This permits us to approximate TuS on � as
twice the solution in the diffuse interface. We require this
closed form representation of TuS in the coupling condition
of Eq. (2.4c). Our approximation is generally valid, as the
flow magnitude in the porous domain is significantly lower
than in the free-flowing domain. The same approximation
already underlies the coupling condition of Eq. (2.4c), which
should equate to the difference in tangential velocities. This
approximation was introduced by Saffman [2], and is math-
ematically necessary to avoid operations on the tangential
component of a velocity field defined in H(div).

By making use of these approximations in Section 2.6,
the new weak statement becomes:

Find u, p ∈ H0(φ, ∂�u) × L2(�) s.t. ∀ v,

q ∈ H0(φ, ∂�u) × L2(�) :∫

�

2φμ∇su : ∇sv d� +
∫

�

(1 − φ)μκ−1u · v d�

−
∫

�

p ∇ · v d� +
∫

�

αu · v d� =
∫

∂�p

tnn · v dS , (2.10a)

∫

�

q ∇ · u d� = 0 , (2.10b)

where we introduce the new second order tensor field α,
defined as:

α = 2α

||∇φ|| (||∇φ||2I − ∇φ ⊗ ∇φ) , (2.11)

and the function space H0(φ, ∂�u), defined as:

H0(φ, ∂�u) = {v ∈ [L2]d : ||φv||2
H 1(�)

+||(1 − φ)v||2H(div,�)

< ∞, u · n = 0 on ∂�u} . (2.12)

As many researchers have shown, diffuse interface meth-
ods limit to sharp interface methods as the diffused interface
thickness shrinks to zero [7, 32–36, 43, 44]. To represent
such a diffuse interface on a computational mesh would
require an unfeasible mesh density. To balance computa-
tional expense for our applications, the error introduced due
to the diffused geometry representation is permitted to be in
the same range as the error introduced due to the reduced
order model that we develop in subsequent sections.

2.3 Relation with the Brinkmanmodel

Diffuse geometry representations are often plagued by non-
physical behavior in the diffuse interface region. The only
way to address this issue is to reduce the length-scale
parameter δ and thereby reduce the interface width. As

Fig. 2 Example
one-dimensional phase-fields φ

for different interface widths δ
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a result, significant adaptive mesh refinement is required
to ensure that the induced error is below a tolerance
threshold, which can easily lead to a prohibitive increase in
computational cost. We would like to point out, however,
that the weak formulation (2.10) corresponds to model
equations with physical relevance even for a non-vanishing
interface width.

Assuming that the obtained solution pair (u, p) is
sufficiently smooth, we can perform integration by parts to
arrive at the following statements:∫

�

{
−∇ · (2φμ∇su − pI) + [

(1 − φ)μκ−1+ α
]
u
}

· v d�

+
∫

∂�p

(2φμ∇sun − p n − tnn) · v dS = 0 , (2.13a)

∫

�

q ∇ · u d� = 0 , (2.13b)

which hold for all v ∈ H(φ) and all q ∈ L2(�). The
corresponding strong form equations are:

− ∇ · (2μ̃∇su − pI) = −κ̃−1u in �, (2.14a)

∇ · u = 0 in �, (2.14b)

2μ̃∇sun − p n = tnn on ∂�p , (2.14c)

with μ̃ = φμ and κ̃−1 = (1 − φ)μκ−1 + α. These are
the Brinkman equations [64], which are used frequently
for describing a sufficiently fast moving fluid in porous
media [4, 8, 65]. The field φ, which was originally a
domain indicator, is now a material parameter, and the
third Beavers-Joseph-Saffman coupling condition (2.4) has
emerged as an additional orthotropic contribution to the
material porosity.

2.4 Finite element approximation

A finite element formulation based on the weak formulation
(2.10) no longer requires a mesh that fits the interface.
Instead, we are able to use the same mesh for computing
the solution for all domain configurations in the parameter
space P. This is a crucial requirement for obtaining a
reduced basis representation of the parametric problem later
on.

The mixed nature of the equations, however, warrants
careful selection of the finite element spaces. This is partic-
ularly challenging for the coupled Stokes/Darcy equations:
the well-posedness requirements, i.e., the Ladyzhenskaya-
Babuška-Brezzi (LBB) conditions, in the Stokes limit are
different from those in the Darcy limit [66]. Since our
domain is parametric, but our mesh and approximation
spaces are fixed, we seek a pressure/velocity pair of ele-
ments that is stable for both a pure Stokes problem and a

pure Darcy problem. So, we require approximation spaces
Vh × Qh that are subspaces of the relevant function spaces
for all domain configurations:

Vh ⊂ H0(φ(β)) ∀ β ∈ P , (2.15a)

Qh ⊂ L2(�) , (2.15b)

and satisfy the LBB conditions in the limiting cases of both
the Stokes and the Darcy equations. One such pair is the
combination of linear nodal elements for the construction
of Qh and so-called MINI elements for the construction
of Vh [65, 67]. The MINI element is a simplicial element
and consist of linear interpolation functions enriched with a
bubble function [68]. We use this combination of elements
throughout the remainder of this article. For all simulations,
we make use of the FEniCS finite element library [69]
for computing the large stiffness matrices and the PETSc
library for manipulating those matrices [70].

3 Non-negativity preserving discrete
empirical interpolation of the phase-field

To ensure efficient formation of the stiffness matrix in the
reduced order model, it is imperative that the bilinear and
linear forms under consideration depend on the parameter β
in an affine sense. That is, we require:

B((u, p), (v, q); β) = B0((u, p), (v, q))

+
NB∑
i=1

θB
i (β)Bi((u, p), (v, q)) , (3.1a)

L((v, q); β) = L0((v, q)) +
NL∑
i=1

θL
i (β)Li((v, q)) , (3.1b)

where B(·, · ; β) and L(· ; β) are the bilinear and linear
forms corresponding to (2.10). The (bi)linear forms Bi(·, ·)
and Li(·) are parameter independent, and the parameter
dependency of B(·, · ; β) and L(· ; β) is captured through
multiplication with the scalar-valued functions θB

i (β) and
θL
i (β).

3.1 The discrete empirical interpolationmethod

In our case, the complex parameter dependency of the
phase-field φ(β) does not naturally permit a decomposi-
tion of the bilinear form as shown in Eq. (3.1a). To remedy
this deficiency, the affine decomposition can be approx-
imated with the discrete empirical interpolation method
(DEIM). DEIM produces the following low-dimensional
representation of a field:

f (x; β) ≈
Nf∑
i=1

θ
f
i (β)f̃i(x) , (3.2)
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where f̃i (x) are the parameter independent functions in
space (the DEIM interpolation modes) and θ

f
i (β) are the

corresponding parameter dependent weighting functions.
In summary, the DEIM algorithm for obtaining such a
decomposition is a two-step procedure:

1. The manifold Mf = {f (x; β) : β ∈ P} is explored
and the modes that best represent the complete manifold
in some norm are identified. In practice, a discrete
representation of the manifold is obtained as a snapshot
matrix of solution vectors of the projection of the
functions f (x; β) onto a finite element space for a
sampling of the parameter space. The modes f̃i (x)
follow from a principal orthogonal decomposition or
singular value decomposition of the snapshot matrix.

2. The functions θ
f
i (β) are designed such that Eq. (3.2)

induces an interpolation of f (x) by the modes f̃i (x)
at a selection of points. These points are iteratively
determined: the n-th point is the location where the
interpolation of the n-th mode by the first n − 1 modes
produces the largest error. When the interpolation
locations x̂j are defined for j = 1, · · · , Nf , the

weighting values θ
f
i (β) are computed by sampling

f (x̂j ; β) and by solving the interpolation system of
equations:

Nf∑
i=1

θ
f
i (β) f̃i(x̂j )=f (x̂j ; β) for j =1, · · · , Nf (3.3)

The reader is referred to [61, 62] for more details.

3.2 A non-negativity preserving alteration

The following properties of the phase-field φ and tensor
field α guarantee that the stiffness matrix is positive semi-
definite:

φ ≥ 0 , (3.4a)

(1 − φ) ≥ 0 , (3.4b)

(α u) · u ≥ 0 ∀u ∈ R
d . (3.4c)

These conditions are naturally satisfied by the true phase-
field. To guarantee stability of the reduced basis method,
they must also be satisfied by the DEIM approximation of
these fields after the reconstruction strategy of Eq. (3.2).
This is challenging due to the nature of the possible fields
φ(β): they are mostly constants of 1 or 0 except at thin
regions where they have steep gradients. The non-local
support of the DEIM interpolation functions would produce
Gibbs-like oscillations in the neighborhood of the interface.

To remedy this issue, we propose to rewrite the fields
(3.4) in the following form:

φ = ξ2 , (3.5a)

(1 − φ) := ψ = ζ 2 , (3.5b)

α =
d−1∑
i=1

ti ⊗ ti . (3.5c)

We will now approximate the new fields ξ , ζ and ti with
Eq. (3.2) and the DEIM algorithm. The affine representation
of the original fields then follows by expanding the
summation multiplication:

φ(x; β) ≈
⎛
⎝

Nξ∑
i=1

θ
ξ
i (β)ξ̃i (x)

⎞
⎠

⎛
⎝

Nξ∑
j=1

θ
ξ
j (β)ξ̃j (x)

⎞
⎠

=:
Nξ (Nξ +1)

2∑
k=1

θ
φ
k (β)φ̃k(x) , (3.6a)

ψ(x; β) ≈
⎛
⎝

Nζ∑
i=1

θ
ζ
i (β)ζ̃i (x)

⎞
⎠

⎛
⎝

Nζ∑
j=1

θ
ζ
j (β)ζ̃j (x)

⎞
⎠

=:
Nζ (Nζ +1)

2∑
k=1

θ
ψ
k (β)ψ̃k(x) , (3.6b)

α(x; β) ≈
(

Nt∑
i=1

θ t
i (β)t̃i (x)

)
⊗

⎛
⎝ Nt∑

j=1

θ t
j (β)t̃j (x)

⎞
⎠

=:
Nt (Nt +1)

2∑
k=1

θα
k (β)α̃k(x) , (3.6c)

where, in Eq. (3.6c), d is taken 2 for simplicity of notation.
Since the final approximations are constructed from

squares, these series expansions will satisfy the require-
ments of Eq. (3.4). The downside of this approach is the
increase of the cost for the summations involved.

3.3 Benchmark problems

In the following, we investigate the relation between the
quality of the approximation and the required number of
modes for three benchmark problems. For each of these
problems, we plot the first four DEIM modes φ̃k and t̃k ,
and we show reconstructions of the true fields φ and t
for representative parameter points. We also qualitatively
compare our non-negativity preserving DEIM reconstruc-
tion to a standard DEIM approximation of that same field.
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3.3.1 Circular domain with an inwards spiraling channel

The first benchmark problem consists of a circular domain
of porous material with a circular void in the center. The
phase-field, representing Stokes flow, is spiraling inwards.
The parameter space P = [180◦, 540◦] is one-dimensional
and denotes the number of full rotations of the spiral. The
material parameters are set to κ = 5 · 10−5m2, ν = 0.5Pa·s
and α = 10Pa·s·m−2, and the boundary pressures tn are
set to 1000Pa and 0Pa at the exterior and interior circles
respectively. The problem set-up is illustrated in Fig. 3a
and b shows the high-fidelity mesh that we use for all
subsequent computations.

First, we obtain the DEIM approximation modes of the
fields ξ(β), ζ(β) and t(β). We use a equidistantly spaced
discrete approximation of the parameter space with 1001
samples for the parameter sampling: Ph = {180◦, (180 +
360
1000 )◦, · · · , 540◦}. For each β ∈ P

h we construct discrete
approximations ξh(β), ζ h(β) and th(β) as interpolants of
the true fields on the high-fidelity mesh. We collect the
solution vectors corresponding to the interpolated fields in
a matrix, and performing a singular value decomposition on
this snapshot matrix. The first four left-singular-vectors of
the fields ξ(β) are shown in Fig. 4.

As an example, we use these interpolation modes to
reconstruct the field φ at the parameter point β = 360◦.
The original field φ(360◦) is shown in Fig. 5a. The
other subfigures show the reconstructions with the non-
negativity preserving DEIM method for different numbers
of modes. As may be observed from the color bar,
the reconstruction of φ is non-negative everywhere, as
guaranteed by our reconstruction strategy of Eq. (3.6).
When fewer than ten modes are used for the reconstruction

then there is still a significant mismatch between the
approximated and the true phase-field. From ten onward,
the reconstruction clearly resembles the true field, and the
difference between the approximated field and the true
field is minor when the reconstruction makes use of twenty
modes.

To demonstrate the importance of such a non-negativity
preserving reconstruction, we employ the standard DEIM
method for the reconstruction of the same field φ(360◦)
with the same interpolation modes. The result for five
and ten interpolation modes are shown in Fig. 6. As the
color bar indicates, there are banded regions around the
interface in the approximated phase-field that are negative.
Such undershoots would result in a negative diffusive term,
potentially rendering the weak formulation (2.10) unstable.

Next we focus on the approximation of the field t(β).
The first four interpolation modes are shown in Fig. 7,
and an example reconstruction for the case β = 360◦
with various numbers of modes is shown in Fig. 8. We
observe a similar trend as for the approximation of φ: ten
interpolation modes are required to yield an approximation
that resembles the true field, and for twenty interpolation
modes the approximation and the true field are qualitatively
difficult to distinguish.

The singular values of the singular value decomposition
of the different snapshot matrices can be leveraged to
quantify the approximation power of a certain number
of modes of either one of the fields ψ , ξ and t with
respect to the entire (discrete) parameter set. This notion is
made rigorous by the Eckart-Young-Mirsky theorem, which
relates the singular values to the optimal relative error (in the
Frobenius norm) that can be achieved when representing the
entire snapshot matrix with the first n interpolation modes

Fig. 3 Benchmark 1: a spiraling channel
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Fig. 4 Benchmark 1: first four DEIM modes of the field ξ(β)

[71]. Based on this theorem, we consider the following
quality measure:

ε(n) =

√√√√√√√√

dim(Ph)∑
i=n

σ 2
i

dim(Ph)∑
i=1

σ 2
i

(3.7)

where σi are the singular values.
Figure 9 shows ε(n) for the different fields ξ , ψ and t.

The overlap of the lines ξ and ψ for the majority of the
for graph indicates that the approximation of ξ and ψ may
be expected to perform equally well. This is to be expected
since they are closely related. The graphs also shows that
t is the most challenging field to represent accurately with
a finite-dimensional linear approximation. Still, with a total
of ∼30 modes, the measure for the relative error drops below

1%, which is more than sufficient for applications where
interface geometries are described by a phase-field. The 20-
mode reconstruction of φ, shown in Fig. 5d, corresponds
to an εξ -value of approximately 0.01, and the 20-mode
reconstruction of t, shown in Fig. 8d, corresponds to an εt -
value of 0.03. The difference between ε(n) for the fields
ξ , ψ and t implies that a computationally optimal reduced
basis method will require different numbers of interpolation
modes to represent the different phase-field quantities. We
explore this concept in more depth in Section 4.

3.3.2 Rotating channel

Next, we consider an angled straight channel of Stokes flow
that is embedded in a square domain of porous material. The
parameter is the angle of rotation of the channel, such that
the parameter space P = [0◦, 180◦] is one-dimensional. We
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Fig. 5 Benchmark 1: non-negativity preserving DEIM reconstruction of φ(360◦)

set κ = 5 · 10−5m2, ν = 0.5Pa·s and α = 10Pa·s·m−2,
and tn = 1000 at the left boundary and tn = 0 at the right
boundary. The problem is illustrated in Fig. 10a, and the
corresponding high-fidelity mesh is illustrated in Fig. 10b.
We may anticipate that the DEIM approximation is very
ineffective for this type of problem: for different parameter
points β, i.e., different angles of the rotating channel, the
phase-field is largely uncorrelated. Widely varying entries
in the φ(β)-manifold means that the Kolmogorov n-width of
the manifold is large and that linear dimensional reduction
requires many modes to produce accurate approximations.
The purpose of this benchmark is to investigate the impact
of this problem. We are interested in the required number of
DEIM modes such that we are still able to obtain acceptable
reconstructions of the internal geometry.

We again sample the parameter space with 1001 equidis-
tantly spaced samples, producing P

h = {0◦, 180
1000

◦
, · · · ,

180◦} as a discrete approximation of the full parameter
space. Figure 11 shows the DEIM modes of the field ξ .
Examples the reconstruction of the field φ(30◦) are shown
in Fig. 12 for the non-negativity preserving DEIM approxi-
mation and in Fig. 13 for the standard DEIM approximation.
We again observe large patches with negative phase-field
values in Fig. 13, and no regions with negative values
in Fig. 12. Figure 14 shows the DEIM modes for t, and
example reconstructions of t(30◦) are shown in Fig. 15.
The reconstructed fields still exhibit quite significant errors
away from the center of the channel. Where 20 modes were
sufficient to approximate an example phase-field in the pre-
vious benchmark, Figs. 12c and 15c still shows significant
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Fig. 6 Benchmark 1: classical DEIM reconstruction of φ(360◦)

deviations from the true fields. The approximation becomes
sufficiently accurate only when 40 modes are used for the
reconstruction, as illustrated in Figs. 12d and 15d.

To quantify these qualitative observations, we plot the
error measure ε for each of the three fields in Fig. 16. The
slow decay of the ε-values in this graph confirm that the
DEIM representation of the geometry for this benchmark is
less effective than it was for the first benchmark problem.
For example, the graph indicates that ∼70 modes are
required to reach an ε-values of ∼1% for the t-field, whereas
∼30 modes were required to reach the same threshold for
benchmark problem 1 (as shown in Fig. 5d). The acceptable
reconstructions of Fig. 12d and 15d again correspond to
εξ ≈ 0.01 and εt ≈ 0.03, implying that these are appropriate
target values.

3.3.3 Multiple holes

As a third benchmark, we consider a block of porous
material with three rectangular holes. For the materials
parameters we use κ = 5 · 10−4m2, ν = 0.5Pa·s and α =
0.01Pa·s·m−2, and we set the boundary pressures to 1000Pa
and 0Pa at bottom and top boundaries respectively. The
location of the three Stokes-flow governed holes is variable.
Each hole is permitted to displace by a distance of a single
width compared to the base configuration as illustrated
in Fig. 17. The three holes can thus partially overlap to
form two, or even just one single hole. This benchmark
illustrates the capability of describing internal geometry
variations with changing topology. Using our phase-field
representation of the geometry, we can naturally change the
topological properties of the Stokes and Darcy domains. As

emphasized in the introduction, this is not the case for the
standard approach to incorporating geometric flexibility in
a reduced basis method, which is based on a reinterpretation
of the geometric variability as a mapping from a reference
domain [22, 23].

The parameter space P of this benchmark problem
is three-dimensional. We construct the sampling set
P

h as a Cartesian product of 21 uniformly distributed
samples along each axis, yielding a set of 9261 samples:
Ph = {−0.5, −0.45, · · · , 0.5} × {−0.5, −0.45, · · · , 0.5} ×
{−0.5, −0.45, · · · , 0.5}. With this sampling set, we obtain
the DEIM modes for the fields ξ and t depicted in Figs. 18
and 21. Figures 19 and 20 then show reconstructions
of the field φ([0.35, −0.25, 0.1]) with the non-negativity
preserving DEIM and the standard DEIM approaches, and
Fig. 22 shows the reconstruction of t([0.35, −0.25, 0.1]).
Note that this parameter point produces an overlap of the
left two rectangular Stokes domains.

The approximations of φ and t still show defects even
when 40 interpolation modes are used. Naturally, this is due
to the higher dimensionality of the parameter space. We can
determine roughly how many modes would be required to
obtain adequate approximations by investigating the error
measure ε(n). This measure is plotted in Fig. 23 for each
of the three fields. When compared to Figs. 9 and 16,
we indeed observe a significantly larger overall ε. Where
benchmarks 1 and 2 require 30 and 70 modes respectively
to reach an εt of 1%, this threshold is not reached for
benchmark 3 within the first 100 modes. For benchmarks
1 and 2 ε-values of 1% and 3% are sufficient to obtain
an acceptable approximation of φ and t respectively. For
the current benchmark problem, these ε-values are reached
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Fig. 7 Benchmark 1: first four DEIM modes of the field t(β)

for ∼65 and ∼80 modes respectively. We consider this an
excessive amount. In the next section, we investigate the
importance of the accuracy of the DEIM reconstructions of
φ(β), ψ(β) and t(β) on the fidelity of the reduced basis
formulation.

4 Reduced basis method of the coupled
equations on the parametric domain

From Section 2, we have the following parameter dependent
finite element formulation:

Find uh(β), ph(β) ∈ Vh × Qh s.t. ∀ v, q ∈ Vh × Qh :
B((uh, ph), (v, q); β) = L((v, q)) , (4.1)

where the bilinear and linear forms are those of Eq. (2.10).
The mixed finite element space Vh × Qh is that described
in Section 2.4 and could be kept independent of β. This
approximation space is assumed to be sufficiently refined
such that the finite element solutions (uh(β), ph(β)) can
for all intents and purposes be considered the true solution
(u(β), p(β)). The meshes illustrated in Figs. 3b, 10b
and 17b satisfy this requirement for the previous three
benchmark problems.

We now wish to find a low-dimensional subspace RBr ⊂
Vh

0 ×Qh (with r = dim(RBr)) that has high approximation
power with respect to the full solution manifold M(uh,ph) =
{(uh(β), ph(β)) : β ∈ P}. Once this low-dimensional
subspace has been found, it may be used in place of
Vh

0 × Qh in Eq. (4.1) to produce a reduced order model
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Fig. 8 Benchmark 1: DEIM reconstruction of t(360◦)

for approximating any solution pair (uh, ph) ≈ (u, p) in
M(uh,ph) for any β ∈ P at a very low computational cost.

The procedure for determining RBr again relies on a
singular value decomposition of a snapshot matrix, which
is in this case constructed from solution vectors of high-
fidelity finite element solutions. We perform this com-
putation for all three benchmark problems. The snapshot
matrices are filled with solutions to Eq. (4.1) on the meshes
of Figs. 3b, 10b and 17b for the same parameter samplings
described in Sections 3.3.1, 3.3.2, and 3.3.3. Figures 24, 25
and 26 show the first four resulting reduced basis func-
tions for each of the three benchmark problems. The figures
show pressure fields overlapped by velocity fields. This is
indicative of the nature of these functions: since we per-
form a singular value decomposition of a snapshot matrix

of velocity-pressure pairs, each of the left singular vectors
represents a combination of a velocity and a pressure field.

The singular values corresponding to the reduced basis
functions again relate to the approximation power of the
cumulative basis compared to the full (discrete) solution
manifold. This is quantified by the measure ε from Eq. (3.7),
which is plotted for all three benchmark problems in
Fig. 27. We observe the same trends as we did for the
DEIM geometry representations in Section 3: benchmark
1 performs best, followed by benchmark 2, and bench-
mark 3 is worst. Again, this can be motivated from the
complexity of the problems, and the related Kolmogorov
n-width of the solution manifold. The higher irregularity
of benchmark 2 produces a higher Kolmogorov n-width
than the better-behaved benchmark problem 1, but the
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Fig. 9 Benchmark 1:
convergence of ε as defined in
Eq. (3.7) with the number of
modes for ξ , ζ and t

higher dimensionality of benchmark 3 has a more signif-
icant impact. Nevertheless, all three benchmark problems
achieve an ε-value below 5% for less than 20 solution
modes.

In order to efficiently use these functions as basis func-
tions in the reduced basis formulation of Eq. (4.1), we
require an affine decomposition of the (bi)linear forms into
parameter independent bilinear forms multiplied by param-
eter dependent weights. This permits a precomputation of
the corresponding stiffness matrices during an offline phase,
such that a full integration of the reduced basis functions
can be avoided during the online phase. Based on the
DEIM representation of all parameter dependent fields from

Section 3, an affine decomposition of the bilinear form
follows as:

B((uh, ph), (v, q); β) ≈ B0((uh, ph), (v, q))

+
Nφ∑
i=1

θ
φ
i (β)B

φ
i ((uh, ph), (v, q))

+
Nψ∑
i=1

θ
ψ
i (β)B

ψ
i ((uh, ph), (v, q))

+
Nα∑
i=1

θα
i (β)Bα

i ((uh, ph), (v, q)) , (4.2)

Fig. 10 Benchmark 2: a rotating channel
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Fig. 11 First four DEIM modes of the field ξ(β) of benchmark 3

with:

B0((uh, ph), (v, q)) = −
∫

�

ph ∇ · v d� −
∫

�

q ∇

·uh d�, (4.3a)

B
φ
i ((uh, ph), (v, q)) =

∫

�

φ̃i μ∇suh : ∇sv d�

for 1 ≤ i ≤ Nφ , (4.3b)

B
ψ
i ((uh, ph), (v, q)) =

∫

�

ψ̃i μκ−1uh · v d�for 1

≤ i ≤ Nψ , (4.3c)

Bα
i ((uh, ph), (v, q))=

∫

�

α̃iuh · v d�for 1≤ i ≤Nα . (4.4a)

With the functions from Figs. 24, 25 and 26 as approxima-
tion bases for the solution space, our final reduced order
model reads:

Find uRB ∈ RBr s.t. ∀ v ∈ RBr :

B0(u
RB, v) +

Nφ∑
i=1

θ
φ
i (β)B

φ
i (uRB, v) +

Nψ∑
i=1

θ
ψ
i (β)B

ψ
i

(uRB, v) +
Nα∑
i=1

θα
i (β)Bα

i (uRB, v) = L(v) , (4.5)
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Fig. 12 Benchmark 2: non-negativity preserving DEIM reconstruction of φ(30◦)

where u represents the solution tuple that combines the
velocity and the pressure solution. The matrix representa-
tion of this problem becomes:

Find ûRB ∈ R
r s.t. :⎛

⎝K0 +
Nφ∑
i=1

θ
φ
i (β)Kφ

i +
Nψ∑
i=1

θ
ψ
i (β)Kψ

i +
Nα∑
i=1

θα
i (β)Kα

i

⎞
⎠

ûRB = F , (4.6)

where all K ∈ R
r×r , F ∈ R

r , and ûRB is the vector of
coefficients for each of the reduced basis functions.

This reduced order model is operated by taking the
following steps:

1. In the offline phase (i.e., before operation), the matrices
corresponding to the bilinear forms B

φ
i , B

ψ
i and Bα

i are
precomputed.

2. Also in the offline phase, the interpolation matrix from
Eq. (3.3) corresponding to each of the weight vectors
θξ (β), θζ (β) and θ t (β) is inverted and stored.

3. In the online phase (i.e., during operation), the weight
vectors θξ (β), θζ (β) and θ t (β) are computed for the
given parameter β.

4. From those weights, we compute the weights θ
φ
i (β),

θ
ψ
i (β) and θα

i (β) for to the non-negativity preserving
approximation of Eq. (3.6).

5. The summation from Eq. (4.5) is carried out and the
resulting r × r system of equation is be solved.
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Fig. 13 Benchmark 2: classical DEIM reconstruction of φ(30◦)

Subsequently, the obtained low-order approximation can
be visualized in a postprocessing step by computing the
weighted sum of the reduced basis functions and the
computed coefficients.

Figures 28, 29, and 30 show example results of the com-
plete reduced order model for all three benchmark problems
for various numbers of reduced basis functions (i.e., var-
ious r). In all cases, 50 modes were used for the DEIM
approximation, which we consider the maximal number for
maintaining computational efficiency. For all three bench-
marks, 20 solution modes are sufficient to produce reduced
basis approximations that are sufficiently accurate in the
“eye-ball norm” for these particular parameter points. Only
upon careful inspection of the velocity magnitudes are we
able to distinguish the approximations from the high-fidelity
computations. At that point, the error in the diffused geom-
etry representation and in the reduced order model start to
compete. Interestingly, benchmark 1 and benchmark 3 pro-
duce seemingly acceptable results already for ten solution
modes, whereas benchmark 2 clearly does not.

The remaining open issue is the relation between the
number of DEIM modes for each of the three fields,
the number of solution modes in the reduced basis, and
the fidelity of the reduced order model throughout the
parameter space. Recall that ε(n) plotted in Figs. 9, 16, 23
and 27 represents the lowest possible relative error that
may be achieved when approximating all solutions in
the snapshot matrix with the first n modes. This does
not guarantee that the DEIM approximation and the
reduced order model yield solutions close to that optimum.
Additionally, the ε measure concerns an average over the
parameter space. This says little about the maximum relative
error, which is arguably the more important measure. Still,

these computed ε values may guide the design of the
reduced order model in terms of number of modes for the
various reduced order approximations.

As a first indicator of the quality of the reduced order
model, and its dependence on the DEIM approximation of
the phase-field geometry representation, we compute the
maximum L2-error of the velocity field of the reduced order
model over the complete (discrete) parameter space as a
function of r for various numbers of DEIM interpolation
modes. The results are plotted in Figs. 31a, 32a and 33a
for each of the three benchmark problems. The general
trend in each of the figures is the same: for small r values,
the maximum L2-error is independent of the number of
modes for the DEIM approximations. As r increases above
a certain threshold, the L2-error starts to drop. This drop
plateaus at different values for the different numbers of
DEIM modes. For the first two benchmark problems, an
acceptable maximum relative error of ∼3% is achieved for
fewer than 25 solution modes. For benchmark 3, however,
the maximum error does not drop below 10%. Apparently,
50 DEIM modes are insufficient to accurately represent the
internal geometry. Indeed, the ε-values for the phase-field
quantities of benchmark 3, previously graphed in Fig. 23,
decayed significantly slower than those of benchmarks 1
and 2.

The error in the geometry representation can be made
arbitrarily small by increasing the number of DEIM modes
far enough [22, 61]. To minimize computational expense,
we require an approach to reach an error threshold with
the fewest number of modes. In Section 3, we show that
the DEIM approximation of the three phase-field related
quantities performs differently well. At the same time,
the error in the reconstruction of the three fields may
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Fig. 14 Benchmark 2: first four DEIM modes of the field t(β)

have different impact on the final solution error. These
observations imply that a different number of modes may
be required for the DEIM approximation of the three fields.
A more targeted and optimized choice of the number of
DEIM interpolation modes for each field could reduce
the computational expense of operating the reduced order
model without adversely affecting the quality of the final
solution. We propose to equate the ε-value for the particular
choice of number of solution modes (i.e., those in Fig. 27)
to the average of the ε-values for the DEIM interpolation
modes (i.e., those in Figs. 9, 16 and 23). That is, we use the

minimal values nξ , nζ and nt for the DEIM reconstruction
of the respective fields such that:

εRB(n) = 1

3

(
εξ (nξ ) + εζ (nζ ) + εt (nt )

)
, (4.7)

which we solve by iteratively incrementing nξ , nζ or nt

depending on which reduces the right-hand-side of Eq. (4.7)
most. We limit the number of DEIM modes for each field to
50 to avoid excessive computational expense.

With the choice of number of DEIM interpolation modes
for ξ , ζ and t based on Eq. (4.7), we recompute the L2-errors
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Fig. 15 Benchmark 2: DEIM reconstruction of t(30◦)

throughout the entire parameter space. The results are graphed
for each of the three benchmark problems in Figs. 31b, 32b
and 33b. The graphs markers at intermediate points in the
graphs state the predicted number of DEIM interpolation
modes as (nξ , nζ , nt )-tuples. The figures also include a
copy of the blue 50-modes lines from Figs. 31a, 32a and 33a
as references. We observe that the maximum L2-errors
of the optimized approach closely follows the (“overkill”)
50-modes line while substantially reducing the required
number of DEIM interpolation modes. The optimized mode
number lines break shortly before the 50-modes lines plateau,
confirming that more than 50 DEIM modes are required

for at least one of the fields to maintain a drop of error.
These results indicate that Eq. (4.7) provides an effective
estimation for the required number of DEIM modes for all
fields such that the DEIM approximations do not dominate
the source of error of the reduced order model.

5 Example application: in-situ leachmining

In-situ leaching (ISL), also known as solution mining, is a
mining process for recovering underground minerals such
as copper and uranium. In 2019, ISL accounted for 57%
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Fig. 16 Benchmark 2:
convergence of ε for ξ , ζ and t
with the number of modes

of the total uranium mining worldwide [72]. During ISL,
a solution (typically a mixture of native groundwater, a
complex agent and an oxidant) is pumped through an
injection well down to an ore deposit. At this depth, the
solution flows towards the production well, while dissolving
minerals from the ore. The pregnant solution is then pumped
to the surface at the production well, where the dissolved
uranium is later extracted from the solution. The injection
and production wells are distributed in regular patterns.
The most frequently used pattern types are the 3-spot, 5-
spot, and 7-spot patterns, shown in Fig. 34. The choice of
pattern depends on factors such as subsurface permeability,

deposit type, ore grade and installation cost. The distance
between the injection and productions wells can be as high
as 50m−60m for the 3-spot pattern, and as low as 15 - 30m
for the 5-spot and 7-spot patterns. As a result, the 5-spot and
7-spot patterns have a higher installation cost but increased
uranium recovery rate and operation flexibility.

Challenges that are faced while constructing and oper-
ating an ISL mining site include (i) ensuring that nearby
groundwater is not contaminated by only operating sections
of the mine and continuously taking measurements at mon-
itoring wells surrounding the mine, and (ii) managing the
permeability of the ore deposit with hydraulic fracturing

Fig. 17 Benchmark 2: a filtering device
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Fig. 18 Benchmark 3: first four DEIM modes of the field ξ(β)

or controlled explosives. In both cases, a predictive simu-
lation tool with fast response time could facilitate decision
making processes, may serve to optimize long-term opera-
tion of the mining site and enables more targeted interven-
tions. We make use of the reduced order model described
in the previous sections to develop such a simulation tool.
We illustrate its operation capability by solving the inverse
problem of predicting the damage state of the ore deposit
based on inflow and outflow measurements at the injection
and production wells.

5.1 The high-fidelity model

In the following, we examine the Honeymoon mining
project illustrated in Fig. 35a. This mine is located in South

Australia and was active from 2011 to 2013, after which
operations were halted due to the low price point of uranium
[73]. The mine features a 7-spot pattern. A distinctive
property of this pattern is its tiling into hexagonal segments,
illustrated in Fig. 35b. The complete mining site consists of
225 such hexagons. We exploit this regular pattern in our
computational model for the subsurface flow throughout the
entire mining site: we develop a reduced basis method that
can represent the flow in a single hexagon, and reuse this
model in each tile. For each hexagon, the distance between
the single production well to each of the six injection
wells is 15m. The diameter of the injection and production
wells is 0.5m. The uranium-bearing sand lies 100 - 150m
underground, under sheets of gravel, clay, and sand. We treat
it as coarse-grained pyritic sand, with a permeability of 100
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Fig. 19 Benchmark 3: non-negativity preserving DEIM reconstruction of φ([0.35, −0.25, 0.1])

Fig. 20 Benchmark 3: classical DEIM reconstruction of φ([0.35, −0.25, 0.1])
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Fig. 21 Benchmark 3: first four DEIM modes of the field t(β)

millidarcy (10−13m2). Since the solution consists largely of
groundwater, we assume a fluid viscosity of 1mPa·s. The
boundary conditions that we assume for each hexagon are
a variable positive pressures at the injection wells, a zero
pressure at the production well and symmetry conditions on
the remaining boundaries. These conditions correspond to
the ones from Section 2 (i.e., Eq. 2.5).

The rate at which uranium can be leached depends not
only on the permeability of the sandstone but also on
the crack patterns running through it. These cracks create

pathways in the ore deposit for the solution to penetrate.
Once cracks become too large they reduce the effective-
ness of the uranium recovery. To include the crack patterns
in our model, we construct an evolving damage field that
runs from each of the six injection wells to the production
well. The damage field depends only on a single param-
eter, the damage parameter D, and represents the severity
of the cracked state for each sextant of the hexagon. The
damage parameter varies between 0 and 1, signifying an
undamaged state or a fully developed crack from injection
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Fig. 22 Benchmark 3: DEIM reconstruction of t([0.35, −0.25, 0.1])

well to production well. Figs 36 and 37 show the evolv-
ing damage field and the corresponding velocity profile for
D between 0 and 1 in one sextant. For D = 0 there is
no damage and the resulting velocity profile follows from
pure Darcy flow. While D increases it creates a mixed
Stokes/Darcy domain, which can be interpreted as a homog-
enization of smaller cracks in the sandstone. The result-
ing velocities in this created channel are therefore higher
than in the pure Darcy domain. This difference increases
with higher values of D. At D = 0.5 a thinner chan-
nel on top of the existing one is developing and represents
the growth of a single straight crack. At D = 1 this
thin crack is fully developed, represented by a domain of
Stokes flow.

5.2 The reduced order model in one hexagon

Computing finite element approximations of the high-
fidelity model on each of the 225 hexagons would yield an
excessive amount of degrees of freedom for the complete
system. Solving the resulting discrete system would be too
time consuming for optimization purposes or for solving
inverse problems. Moreover, for each new damage field
in each different hexagon, the system would have to be
reassembled, adding to the severe computational expense.
Hence, we create a reduced basis method with a very limited
number of degrees of freedom within each hexagon. To
ensure that our reduced order model is capable of accurately
representing the possible solution states up to a tolerance
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Fig. 23 Benchmark 3:
convergence of ε with increasing
number of modes for ξ , ζ and t

Fig. 24 First four reduced basis modes of benchmark 1
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Fig. 25 First four reduced basis modes of benchmark 2

level, we perform the procedure discussed at the end of
Section 4 to determine the required number of DEIM and
RB modes.

In each hexagon, there are six parameters running from
0 to 1 that determine the overall damage state. Additionally,
there are six pressure boundary conditions, which we vary
between 0 and 105. The resulting parameter space is thus
twelve-dimensional: P = [0, 1]6 × [0, 105]6. To explore the
solution manifold, we combine a tensor product sampling
grid with a random sampling set, giving P

h = P
h
U

⋃
P

h
R .

We construct P
h
U as {0.25, 0.5, 0.75, 1}6 × {105}6 such

that it contains 4096 points representing different internal

geometries (damaged states). To also include the variable
pressure, we construct P

h
R from another 6000 points that

are sampled with a uniform random distribution along every
axis in P. For each parameter point in P

h, we compute the
phase-field related fields ξ , ζ , t, as well as the solutions
(uh, ph) on the high-fidelity mesh. Figures 38a and 38b
show the ε measures from Eq. (3.7) as a function of
the number of modes for the phase-field quantities and
the solution fields respectively. Based on these results we
choose 25 solution modes per hexagon and, using the guided
choice discussed above, (21, 30, 48) for the DEIM modes
respectively.



Computational Geosciences

Fig. 26 First four reduced basis modes of benchmark 3

Fig. 27 Convergence of ε for
the solution fields with the
number of modes
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Fig. 28 Reduced order model simulation result for benchmark 1 with β = 360◦

With this set-up, we obtain the following reduced order
model in each individual hexagon:

Find (uRB, pRB) ∈ RBr s.t. ∀ (v, p) ∈ RBr :∫

�

2φμ∇suRB : ∇sv d� +
∫

�

(1 − φ)μκ−1uRB · v d�

−
∫

�

pRB ∇ · v d� +
∫

�

αuRB · v d� (5.1a)

=
6∑

j=1

∫

∂�i

pj n · v d�, (5.1b)

∫

�

q ∇ · uRB d� = 0 , (5.1c)

or, in matrix representation:

K(D1, · · · , D6) ûRB =
6∑

j=1

pj Fj , (5.2)

where, of course, the parameter dependence of K is affine due
to the DEIM approximation of the geometry representation.

5.3 Connecting reduced order models

Due to the symmetry conditions between the hexagons,
there is no mass-flow through any of the boundary facets,
nor is there a shear stress acting on those facets. These
homogeneous conditions are satisfied by each of the
solution snapshots in the snapshot matrix, and thus by each
of the reduced basis functions. All coupling between the
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Fig. 29 Reduced order model simulation result for benchmark 2 with β = 30◦

hexagonal cells then occurs through shared connectivity
with the injection well at each of the corners. The available
measurement data at each of these injection wells is the
total amount of fluid that is pumped into the underground
system from the surface. Since the distribution of the mass-
flow among the neighbouring hexagons is unknown, this
produces a coupled system of equations.

To introduce this connectivity, we add a Lagrange multi-
plier constraint that enforces a prescribed total inflow for
each of the injection wells. For injection well 2 in the exam-
ple of Fig. 39a, the variational statement corresponding to
the inflow condition reads:

q2u2,in =
∫

∂�I,j

q2n · uI dS +
∫

∂�II,j

q2n · uII dS +
∫

∂�III,j

q2n

·uIII ∀ q2 dS (5.3)

where q2 is the scalar test function that corresponding to the
constraint. The inflow conditions of Eq. (5.3) can be recog-
nized as the transpose of the pressure boundary conditions
of Eq. (5.1a). Indeed, the Lagrange multipliers correspond-
ing to the constraint of q2 is the pressure p2, which now
becomes a degree of freedom. The full system of equations
is then assembled as follows. The 25 degrees of freedom
for the reduced basis approximation within each hexagon
form a 25 × 25 block on the diagonal. For each of the
injection wells, another row and column are added to the
system. The column and the row are populated with three
Fj -vectors (respectively their transposes) corresponding to
the three neighboring hexagons. This procedure is illus-
trated in Fig. 39.

For the complete Honeymoon mining-site shown in
Fig. 35, this results in a system of equations of “merely”
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Fig. 30 Reduced order model simulation result for benchmark 3 with β = [0.35, −0.25, 0.1]

Fig. 31 Convergence of the relative maximum L2-error over the complete parameter space as a function of the number of reduced basis modes
for different number of DEIM modes for benchmark 1
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Fig. 32 Convergence of the relative maximum L2-error over the complete parameter space as a function of the number of reduced basis modes
for different number of DEIM modes for benchmark 2

Fig. 33 Convergence of the relative maximum L2-error over the complete parameter space as a function of the number of reduced basis modes
for different number of DEIM modes for benchmark 3

Fig. 34 Patterns of injection and production wells used in practice for ISL mining



Computational Geosciences

Fig. 35 Well field of the Honeymoon mining project. It contains 225 hexagons

6,077 degrees of freedom. Without the reduced basis
representation of the flow in each hexagon, the full system
would exceed 15 million degrees of freedom. For any given
new subsurface damage state in any particular hexagon, the
corresponding matrix K(D1, · · · , D6) has to be recomputed
(which is a cheap operation due to its affine dependence
on the local damage parameters), and then the block on

the system matrix can simply be overwritten. As a result,
we are able to recompute a solution state for a completely
new damage parameter in around 0.1s on an Intel i9-9900k
@5Ghz, computing in serial. The majority of the compute
time is spent on assembling the 225 diagonal blocks.
Since these blocks are completely independent of one
another, this computation could alternatively be performed
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Fig. 36 Damage field through sextant for different damage values D

Fig. 37 Velocity profile through sextant for different damage values D

Fig. 38 Convergence of ε as a function of the number of modes
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Fig. 39 Example of three
adjacent hexagons with
corresponding coupling matrix
(green bars indicating the
position of the coupling vectors
Fj )

in parallel very effectively. For our purposes, though, the
0.1s computation time suffices.

5.4 Solving an inverse problem: calibration
of the subsurface state

The subsurface state affects the flow profile, for which mea-
surement data is available in terms of mass throughputs at
the injection and production wells. Determining the sub-
surface state based on the measurement data thus involves

solving an inverse problem. Based on Sections 5.1, 5.2
and 5.3, we have a low-order computational model for the
subsurface flow through the entire Honeymoon mining site
of Fig. 35. To produce an example problem, we artificially
generate a distribution of inflow and outflow measurements.
We do so by assuming smoothly varying inflow pressure
values for the injection sites, ranging between 8.5 · 104Pa
and 1.0 · 105Pa. We also assume a smoothly varying dam-
age field. We overlay this damage pattern with random
noise of about 1% and add some larger damage values to

Fig. 40 Assumed measurements of outflow at production wells over entire well field
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Fig. 41 Error between measurements and computed outflows over the
number of iterations

Fig. 42 Velocity profile over entire well field with optimized damage parameters

represent local cracks. We then compute the outflow field
in �/s of the described problem by multiplying the result-
ing throughput in each production well by a height of 5m.
This is the assumed intake height of the production wells
inside the uranium deposits. Finally, we add random noise
to these computed values to ensures that our model will not
trivially be able to obtain the exact solution. The resulting
incompatibility between inflow and outflow also occurs in
actual mining sites due to leakage of the solute into differ-
ent ground layers and due to extraction of groundwater. The
final pattern of outflow measurements is shown in Fig. 40.

Given only this measurement data, we now solve an
optimization problem for the damage parameter D in each
sextant of each hexagon. The objective is to minimize the
error between the given measurements of Fig. 40 and the
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resulting outflow at each production well of the coupled
computation. As an initial state, the damage parameter is
homogeneously set to 0. We employ a gradient-descent
method to iteratively adjust each damage parameter, until
the model predicts the correct outflows for the given
inflow. The gradient is computed numerically with a central
difference finite difference scheme, which results in two
function evaluations per sextant for changes in the one-
dimensional damage parameter. Such an approach is only
feasible due to the reduced-order model. To track the
achieved accuracy of the scheme, we determine the error
between the computed outflow and the measured outflow
according to:

e =
√√√√ 1

225

225∑
i=1

(
ui,out − uh

i,out

ui,out

)2

, (5.4)

where ui,out is the measured outflow for production well
i, and uh

i,out is the computed outflow. The convergence of
this relative error with respect to the number of iterations
is shown in Fig. 41. As the graph indicates, we reach
a root mean square relative error below 1.5% in under
10 iterations. This residual error can be attributed to
the artificially added effects of leakage and groundwater
extraction.

Having obtained a prediction for the damaged state, we
can plot the resulting velocity field in Fig. 42, illustrated as
a distribution of velocity magnitudes. These velocity magni-
tudes confirm that the crack patterns are more developed in
the areas where higher mass flows are measured compared
to the areas where low mass flows are measured. In particu-
lar, in the bottom center a row of hexagons developed cracks
with damage parameters around 0.95. This area is of par-
ticular interest, because it is connected to the outside of the
well field and could lead to the uranium-rich solution escap-
ing into the groundwater. Such results should prompt the
installment of additional monitoring wells in the vicinity of
the area. In the top center of the mine, where low mass-flow
(under 1.5�/s) for one hexagon is measured, the subsur-
face soil is highly impermeable with damage parameters
around 0.05. Such results may instigate hydraulic fracturing
measures at these areas.

6 Conclusions

In this article, we have developed a reduced basis method
capable of handling the coupled Stokes/Darcy equations on
variable internal geometry. We based our model on a diffuse
interface representation of the Stokes and Darcy domains,
which permits changes in topology of the parameter
dependent internal geometry. We showed that all three of
the Beavers-Joseph-Saffman coupling conditions can be

treated straightforwardly in a diffuse geometry setting, and
we highlighted the equivalency with a particular type of
Brinkman model.

We used the discrete empirical interpolation method
(DEIM) to handle the non-affinity of the phase-field quan-
tities that arise in the coupled equations. To ensure non-
negativity of the domain indicator required by physics, we
introduced a non-negativity preserving version of DEIM.
We showed that in total, we require three such DEIM
representations of phase-field related quantities that arise
from the diffuse geometry representation and the Beavers-
Joseph-Saffman coupling conditions. We studied the per-
formance of the non-negativity preserving DEIM recon-
struction for three benchmark problems. The benchmarks
differed in complexity, which could also be observed in
the convergence graphs for ε, a relative error measure
depending on the singular values for the DEIM interpolation
modes.

The same three benchmarks were used to investigate
the performance of a complete reduced basis formulation.
The solution modes that act as reduced basis functions
were obtained from the singular value decomposition of
a snapshot matrix. We investigated the dependence of
the number of solution modes and the number of DEIM
interpolation modes for each of the three fields on the
maximum L2-error of the reduced order model throughout
the parameter space, and we proposed a strategy for
determining a required number of DEIM modes for each
of the phase-field quantities for a given number of solution
modes based on precomputed ε-values. Making use of
this strategy, we obtained the optimum maximum relative
L2-error for a given number of solution modes while
significantly reducing the number of DEIM interpolation
modes compared to a naive approach.

We then illustrated the application of our reduced order
model for a large-scale computations via the analysis
of an in-situ leach mining site. A reduced order model
for the subsurface flow throughout the entire mining site
was constructed from reduced basis approximations on
subdomains and by subsequently coupling the different
subdomains with Lagrange multipliers. We showcased the
capability of the resulting model for predicting subsurface
crack patterns for an existing in-situ leach mining site
based on measured inflow and outflow data at injection and
production wells. A complete model evaluation required
approximately 0.1 seconds on a desktop machine, and
involved solving a system of equation of 6,077 degrees
of freedom. This constitutes a significant cost reduction
compared to the 15 million degrees of freedom that are
required to solve the full problem without the reduced
order model at virtually the same fidelity level. The
cost reduction enabled us to solve an inverse problem
involving the sub-surface damaged state of the complete
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mining site. Future work could include problems where
the sub-surface state changes in time. Handling such time-
dependent problems would be feasible as long as all
temporally varying geometry states can be represented by
the DEIM approximation.
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