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1 INTRODUCTION

A classical result in finite Coxeter groups states that the centralizer of a Coxeter element 𝑐 is the
cyclic group generated by 𝑐 provided that 𝑊 is irreducible (see [8, Proposition 30]). In [4], this
was then proved for infinite Coxeter groups of finite rank where the Coxeter diagram is either a
simply laced tree or of affine type. More recently, it has been shown that this result also holds for
well-generated complex reflection groups [3, Theorem 1.9].

© 2022 The Authors. Bulletin of the London Mathematical Society is copyright © London Mathematical Society. This is an open access
article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

682 wileyonlinelibrary.com/journal/blms Bull. London Math. Soc. 2022;54:682–693.

 14692120, 2022, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12596 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [25/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

mailto:patrick.wegener@math.uni-hannover.de
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/blms
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fblms.12596&domain=pdf&date_stamp=2022-03-24


THE CENTRALIZER OF A COXETER ELEMENT 683

In this paper, we prove that the same statement holds for arbitrary infinite, irreducible Coxeter
groups of finite rank.

Theorem1.1. Let (𝑊, 𝑆) be an infinite irreducible Coxeter systemof finite rank and 𝑐 ∈ 𝑊 aCoxeter
element. Then 𝐶𝑊(𝑐) = ⟨𝑐⟩.
It is worth noting that our proof does not depend on the results in [4]. The primary tool we will

use in the proof of this theorem are the outward roots introduced by Krammer in [14].
Our result adds to a surprisingly small list of results on centralizers of elements in infinite Cox-

eter groups. Note that the center of an infinite irreducible Coxeter group is trivial (for instance,
see [5] or [18, Proposition 1.1]). Only for very few classes of elements have full descriptions of
the centralizers been achieved so far. The most obvious class to start with — the reflections —
have been studied by Brink [7], whose results were then later refined by Allcock [1]. In the case
of right-angled Coxeter systems, Kaul and White [13] fully described the centralizers of parabolic
Coxeter elements (see Section 2.1 for the definition) of finite parabolic subgroups. However, to
the knowledge of the authors, there is no other class of elements for which the centralizers are
fully understood.
In some sense, our result can be understood as the counterpart to Brink’s result. While Brink

considered the parabolic Coxeter elements of shortest reflection length (reflections), our work is
concerned with those of longest reflection length (Coxeter elements). To elaborate on this con-
nection a little more, we remind the reader of Brink’s result. Given a reflection 𝑟 of an infinite
Coxeter system (𝑊, 𝑆), its centralizer 𝐶𝑊(𝑟) is the semidirect product of a reflection subgroup
which is generated by all reflections that commute with 𝑟 (including 𝑟 itself) and a free group
whose rank can easily be calculated. Our result now states that, for parabolic Coxeter elements
of longest length, there is no reflection part and we are left with only a free group. So what hap-
pens for the parabolic Coxeter elements in-between? As themethods in Brink’s, Allcock’s and our
papers are tailored to the specific class of elements considered, and differ quite substantially from
each other, a new approach will be necessary to answer that question.
The structure of the paper is as follows. In Section 2, we first recall some basic definitions and

facts about Coxeter groups. We then state some results about essential and straight elements as
well as maximal proper parabolic subgroups. Afterwards, in Section 2.5, we study the set of out-
ward roots for straight elements. All of these results will be crucial in our proof of Theorem 1.1.
This proof is finally carried out in Section 3. In Section 4, we give a short outlook on a possible
generalization of our main theorem to Artin groups.

2 COXETER GROUPS

2.1 Generalities

In this subsection, we state some well-known definitions and properties for Coxeter groups. For
details and proofs, we refer to [12].
Recall that a Coxeter group is a group𝑊 given by a presentation

𝑊 = ⟨𝑆 ∣ (𝑠𝑡)𝑚𝑠𝑡 = 1 ∀𝑠, 𝑡 ∈ 𝑆⟩,
where (𝑚𝑠𝑡)𝑠,𝑡∈𝑆 is a symmetric (|𝑆| × |𝑆|)-matrix with entries inℤ⩾1 ∪ {∞}. These entries have to
satisfy𝑚𝑠𝑠 = 1 for all 𝑠 ∈ 𝑆 and𝑚𝑠𝑡 ⩾ 2 for all 𝑠 ≠ 𝑡 in 𝑆. If𝑚𝑠𝑡 = ∞, then there is no relation for
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684 HOLLENBACH andWEGENER

𝑠𝑡 in the above presentation. The pair (𝑊, 𝑆) is called a Coxeter system and |𝑆| is called the rank
of (𝑊, 𝑆). Further, if |𝑊| is finite the system is called finite and otherwise it is called inifinite. We
assume all Coxeter systems in this paper to be of finite rank.
To each Coxeter system (𝑊, 𝑆) there is an associated labeled graph, called Coxeter diagram and

denoted byΓ(𝑊, 𝑆). Its vertex set is given by 𝑆 and there is an edge between distinct 𝑠, 𝑡 ∈ 𝑆 labeled
by𝑚𝑠𝑡 if𝑚𝑠𝑡 > 2. The Coxeter system (𝑊, 𝑆) is called irreducible if Γ(𝑊, 𝑆) is connected.
Each 𝑤 ∈ 𝑊 can be written as a product 𝑤 = 𝑠1⋯ 𝑠𝑘 with 𝑠𝑖 ∈ 𝑆. The length 𝓁(𝑤) = 𝓁𝑆(𝑤) is

defined to be the smallest 𝑘 for which such an expression exists. The expression 𝑤 = 𝑠1⋯ 𝑠𝑘 is
called reduced if 𝑘 = 𝓁(𝑤).
Let (𝑊, 𝑆) be a Coxeter system and let 𝑉 be a vector space over ℝwith a basis Δ = {𝑒𝑠 ∣ 𝑠 ∈ 𝑆}.

We equip 𝑉 with a symmetric bilinear form 𝐵 by setting

𝐵(𝑒𝑠, 𝑒𝑡) = − cos
𝜋

𝑚𝑠𝑡

for all 𝑠, 𝑡 ∈ 𝑆. This term is understood to be −1 if𝑚𝑠𝑡 = ∞. The group𝑊 can be embedded into
GL(𝑉) via its natural representation (or Tits representation) 𝜎 ∶ 𝑊 → GL(𝑉) that sends 𝑠 ∈ 𝑆 to
the reflection

𝜎𝑠 ∶ 𝑉 → 𝑉, 𝑣 ↦ 𝑣 − 2𝐵(𝑒𝑠, 𝑣)𝑒𝑠.

We set 𝑤(𝑒𝑠) ∶= 𝜎(𝑤)(𝑒𝑠) and

Φ = Φ(𝑊, 𝑆) ∶= {𝑤(𝑒𝑠) ∣ 𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆}.

The set Φ is called the root system for (𝑊, 𝑆) and we refer to Δ as the simple system for Φ. We
call a root 𝛼 =

∑
𝑠∈𝑆 𝑎𝑠𝑒𝑠positive and write 𝛼 > 0 if 𝑎𝑠 ⩾ 0 for all 𝑠 ∈ 𝑆 and negative if 𝑎𝑠 ⩽ 0 for

all 𝑠 ∈ 𝑆. Let Φ+ be the set consisting of the positive roots. It turns out that Φ decomposes into
positive and negative roots, that is, Φ = Φ+∪̇ − Φ+.
If 𝛼 = 𝑤(𝑒𝑠) ∈ Φ for some𝑤 ∈ 𝑊 and 𝑠 ∈ 𝑆, then𝑤𝑠𝑤−1 acts as a reflection on 𝑉. It sends 𝛼 to

−𝛼 and fixes pointwise the hyperplane orthogonal to 𝛼. We set 𝑠𝛼 = 𝑤𝑠𝑤−1 and call 𝑇 = {𝑤𝑠𝑤−1 ∣
𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆} the set of reflections for (𝑊, 𝑆).
The natural representation of𝑊 yields a dual action of𝑊 on 𝑉∗ defined by

(𝑤𝑥)(𝑣) = 𝑥(𝑤−1𝑣) for 𝑤 ∈ 𝑊, 𝑣 ∈ 𝑉, 𝑥 ∈ 𝑉∗. (1)

Let𝐶 = {𝑥 ∈ 𝑉∗ ∣ 𝑥(𝑒𝑠) > 0 for all 𝑠 ∈ 𝑆}. Recall that theTits cone is defined as𝑈 =
⋃
𝑤∈𝑊 𝑤𝐶

where 𝐶 denotes the topological closure of 𝐶 in 𝑉∗. We denote the topological interior of𝑈 in 𝑉∗
by 𝑈◦.
For each subset 𝐼 ⊆ 𝑆, the subgroup𝑊𝐼 = ⟨𝐼⟩ is called a standard parabolic subgroup of𝑊. A

subgroup of the form 𝑤𝑊𝐼𝑤−1 for some 𝑤 ∈ 𝑊 and 𝐼 ⊆ 𝑆 is called a parabolic subgroup. Note
that if 𝑤𝑊𝐼𝑤−1 is a parabolic subgroup, then (𝑤𝑊𝐼𝑤−1, 𝑤𝐼𝑤−1) is itself a Coxeter system. Fur-
thermore, we say that 𝑤𝐼𝑤−1 is of spherical type if 𝑤𝑊𝐼𝑤−1 is a finite Coxeter group. In this case,
we also call 𝑤𝑊𝐼𝑤−1 spherical. If 𝐼 ⊆ 𝑆, then we call

Φ𝐼 ∶= {𝑤(𝑒𝑠) ∣ 𝑤 ∈ 𝑊𝐼, 𝑠 ∈ 𝐼}
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THE CENTRALIZER OF A COXETER ELEMENT 685

the root system associated to (𝑊𝐼, 𝐼). The corresponding simple system is Δ𝐼 ∶= {𝑒𝑠 ∣ 𝑠 ∈ 𝐼}. Note
that Φ𝐼 = Φ ∩ spanℝ(Δ𝐼) [17, Lemma 3.1].
Let (𝑊, 𝑆) be a Coxeter system with 𝑆 = {𝑠1, … , 𝑠𝑛}. Recall that an element of the form 𝑐 =

𝑠𝜋(1)⋯ 𝑠𝜋(𝑛) is called a standard Coxeter element where 𝜋 is any permutation of {1, … , 𝑛}. Any
conjugate of a standard Coxeter element in 𝑊 is called a Coxeter element. Moreover, an ele-
ment is called a (standard) parabolic Coxeter element if it is a (standard) Coxeter element in a
parabolic subgroup.

2.2 Reduced reflection factorizations and parabolic subgroups

Let (𝑊, 𝑆) be a Coxeter system with set of reflections 𝑇. Since 𝑆 ⊆ 𝑇, each 𝑤 ∈ 𝑊 is a product of
elements in 𝑇. We define

𝓁𝑇(𝑤) ∶= min{𝑘 ∈ ℤ⩾0 ∣ 𝑤 = 𝑡1⋯ 𝑡𝑘, 𝑡𝑖 ∈ 𝑇}

and call 𝓁𝑇(𝑤) the reflection length of 𝑤. If 𝑤 = 𝑡1⋯ 𝑡𝑘 with 𝑡𝑖 ∈ 𝑇, we call (𝑡1, … , 𝑡𝑘) a reflec-
tion factorization for 𝑤. If in addition 𝑘 = 𝓁𝑇(𝑤), we say that (𝑡1, … , 𝑡𝑘) is reduced. We denote by
Red𝑇(𝑤) the set of all reduced reflection factorizations for 𝑤.

Theorem 2.1 [2, Theorem 1.4]. Let (𝑊, 𝑆) be a Coxeter system with set of reflections 𝑇 and let𝑊′
be a parabolic subgroup of𝑊. Then 𝑇′ = 𝑇 ∩𝑊′ is the set of reflections for𝑊′ and for each𝑤 ∈ 𝑊′
we have Red𝑇(𝑤) = Red𝑇′(𝑤).

Theorem 2.2. Let (𝑊, 𝑆) be a Coxeter system with set of reflections 𝑇,𝑊′ a parabolic subgroup of
𝑊 and 𝑤 ∈ 𝑊′ a Coxeter element (that is, 𝑤 is a parabolic Coxeter element of𝑊). If (𝑡1, … , 𝑡𝑘) ∈
Red𝑊′∩𝑇(𝑤), then

𝑊′ = ⟨𝑡1, … , 𝑡𝑘⟩.
Proof. Since 𝑊′ is a parabolic subgroup, there exist 𝐼 = {𝑠1, … , 𝑠𝑘} ⊆ 𝑆 and 𝑥 ∈ 𝑊 such that
𝑊′ = 𝑥𝑊𝐼𝑥

−1. After possible renumbering we can assume that 𝑤 = 𝑠𝑥
1
⋯ 𝑠𝑥

𝑘
, where 𝑠𝑥

𝑖
∶=

𝑥𝑠𝑖𝑥
−1. In particular, we have (𝑠𝑥

1
, … , 𝑠𝑥

𝑘
) ∈ Red𝑊′∩𝑇(𝑤) and𝑊′ = ⟨𝑠𝑥

1
, … , 𝑠𝑥

𝑘
⟩. Now, if (𝑡1, … , 𝑡𝑘) ∈

Red𝑊′∩𝑇(𝑤), then (𝑠𝑥1 , … , 𝑠
𝑥
𝑘
) and (𝑡1, … , 𝑡𝑘) lie in the same orbit under the Hurwitz action by [2,

Theorem 1.3]. It is easy to see from its definition that the Hurwitz action preserves the generated
group, that is ⟨𝑠𝑥

1
, … , 𝑠𝑥

𝑘
⟩ = ⟨𝑡1, … , 𝑡𝑘⟩. □

2.3 Essential and straight elements

Coxeter elements are both essential and straight. These properties will be crucial for our proof of
the main theorem. We recall the definitions and state the necessary properties in this subsection.
Let (𝑊, 𝑆) be a Coxeter system. An element 𝑤 ∈ 𝑊 is called essential if it does not lie in any

proper parabolic subgroup.

Proposition 2.3. Let (𝑊, 𝑆) be an infinite Coxeter system. Then every essential element in𝑊 has
infinite order.
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686 HOLLENBACH andWEGENER

Proof. This follows directly froma result of Tits, stating that each finite subgroup of𝑊 is contained
in a spherical parabolic subgroup [10, Corollary D.2.9]. □

Proposition 2.4 [16, Corollary 2.5]. Let (𝑊, 𝑆) be irreducible and infinite, 𝑤 ∈ 𝑊 and 𝑝 ∈ ℤ>0.
Then 𝑤 is essential if and only if 𝑤𝑝 is essential.

For a subset𝑋 ⊆ 𝑊, we definePc(𝑋) to be the parabolic closure of𝑋, that is,Pc(𝑋) is the smallest
parabolic subgroup of𝑊 containing 𝑋. This is well defined since parabolic subgroups are closed
under taking intersections [17, Proposition 1.1].
It is known that Coxeter elements (and therefore their powers) are essential [16, Theorem 3.1].

We will extend this fact to so-called (weak) quasi-Coxeter elements. An element 𝑤 ∈ 𝑊 is called
a weak quasi-Coxeter element (respectively, a quasi-Coxeter element) if there exists a reduced
reflection factorization (𝑡1, … , 𝑡𝑚) ∈ Red𝑇(𝑤) such that 𝑊 = Pc({𝑡1, … , 𝑡𝑚}) (respectively, such
that𝑊 = ⟨𝑡1, … , 𝑡𝑚⟩). Obviously, every Coxeter element is a quasi-Coxeter element.
Proposition 2.5. Let 𝑤 ∈ 𝑊 and (𝑡1, … , 𝑡𝑚) ∈ Red𝑇(𝑤). Then

Pc({𝑤}) = Pc({𝑡1, … , 𝑡𝑚}).

Proof. First observe that 𝑡1, … , 𝑡𝑚 ∈ Pc({𝑡1, … , 𝑡𝑚}), thus𝑤 ∈ Pc({𝑤}) ∩ Pc({𝑡1, … , 𝑡𝑚}). This inter-
section is again a parabolic subgroup by [17, Proposition 1.1]. Since Pc({𝑤}) is the minimal
parabolic subgroup containing 𝑤, we conclude Pc({𝑤}) ⊆ Pc({𝑡1, … , 𝑡𝑚}).
It remains to show that Pc({𝑡1, … , 𝑡𝑚}) ⊆ Pc({𝑤}). Since Pc({𝑤}) is a parabolic subgroup, its set

of reflections is given by 𝑇′ ∶= 𝑇 ∩ Pc({𝑤}). By Theorem 2.1, we haveRed𝑇(𝑤) = Red𝑇′(𝑤), hence
𝑡1, … , 𝑡𝑚 ∈ 𝑇

′ ⊆ Pc({𝑤}). Therefore, we have Pc({𝑡1, … , 𝑡𝑚}) ⊆ Pc({𝑤}). □

As a direct consequence of this proposition, we obtain the following.

Proposition 2.6. Weak quasi-Coxeter elements are essential.

An element 𝑤 ∈ 𝑊 is called straight if 𝓁(𝑤𝑚) = |𝑚|𝓁(𝑤) for all𝑚 ∈ ℤ.
Theorem 2.7 (Speyer, [19, Theorem 1]). Let (𝑊, 𝑆) be infinite and irreducible. Then standard Cox-
eter elements in𝑊 are straight.

2.4 Conjugacy and normalizers of standard parabolic subgroups

The goal of this subsection is to provide a criterion to decide whether two proper parabolic sub-
groups of maximal rank are conjugate in𝑊. Furthermore, we show that a proper parabolic sub-
group of maximal rank is self-normalizing if𝑊 is irreducible. Both results will be needed later in
our proof of the main theorem.
The following is a well-known fact about Coxeter groups. A proof can be found, for instance,

in [17, Lemma 3.2].

Lemma 2.8. Let (𝑊, 𝑆) be a Coxeter system and 𝐼, 𝐽 ⊆ 𝑆, 𝑤 ∈ 𝑊 such that𝑊𝐼 = 𝑤𝑊𝐽𝑤−1. Then|𝐼| = |𝐽|, 𝑤0(Δ𝐽) = Δ𝐼 and 𝐼 = 𝑤0𝐽𝑤−10 for some 𝑤0 ∈ 𝑤𝑊𝐽 .
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THE CENTRALIZER OF A COXETER ELEMENT 687

The situation is especially easy for proper parabolic subgroups of maximal rank.

Lemma 2.9. Let (𝑊, 𝑆) be an irreducible, infinite Coxeter system of rank 𝑛 and 𝐼, 𝐽 ⊆ 𝑆 with |𝐼| =
|𝐽| = 𝑛 − 1. Then𝑊𝐼 and𝑊𝐽 are conjugate in𝑊 if and only if 𝐼 = 𝐽.

To prove this Lemma, we will use a criterion of Krammer [14] to decide whether two standard
parabolic subgroups are conjugate. This criterion is based on previous work by Deodhar [11]. We
will give a short introduction.
Let (𝑊, 𝑆) be a Coxeter system, 𝐼 ⊆ 𝑆 and 𝑠 ∈ 𝑆 ⧵ 𝐼. We will identify a subset 𝐽 ⊆ 𝑆 with its full

subgraph of Γ(𝑊, 𝑆). Let 𝐾 be the connected component of 𝐼 ∪ {𝑠} containing 𝑠.

∙ If 𝐾 is of spherical type, we define 𝜈(𝐼, 𝑠) ∶= 𝑤𝐾⧵{𝑠}𝑤𝐾 , where 𝑤𝐾⧵{𝑠} (respectively, 𝑤𝐾) is the
longest element in𝑊𝐾⧵{𝑠} (respectively, in𝑊𝐾).

∙ If 𝐾 is not of spherical type, then 𝜈(𝐼, 𝑠) is not defined.

If 𝜈(𝐼, 𝑠) is defined, then we have 𝜈(𝐼, 𝑠)−1Δ𝐼 = Δ𝐽 for 𝐽 = (𝐼 ∪ {𝑠}) ⧵ {𝑡} for some 𝑡 ∈ 𝐾.
We define a directed graph𝐺 = 𝐺(𝑊, 𝑆)whose vertices are the subsets of 𝑆. For subsets 𝐼, 𝐽 ⊆ 𝑆

there is an edge 𝐼
𝑠
A→ 𝐽 if 𝜈(𝐼, 𝑠) is defined and 𝜈(𝐼, 𝑠)−1Δ𝐼 = Δ𝐽 .

Proposition 2.10 [14, Corollary 3.1.7]. Let (𝑊, 𝑆) be a Coxeter system and 𝐼, 𝐽 ⊆ 𝑆. Then𝑊𝐼 and
𝑊𝐽 are conjugate in 𝑊 if and only if 𝐼 and 𝐽 are in the same connected component of the graph
𝐺(𝑊, 𝑆).

Proof of Lemma 2.9. Let 𝐼 ⊆ 𝑆 with |𝐼| = 𝑛 − 1. If 𝑠 ∈ 𝑆 ⧵ 𝐼, then 𝐼 ∪ {𝑠} = 𝑆. In particular, since
(𝑊, 𝑆) is irreducible, the connected component 𝐾 of 𝐼 ∪ {𝑠} containing 𝑠 is the whole of 𝑆. There-
fore, 𝜈(𝐼, 𝑠) is not defined and 𝐼 is an isolated vertex in the graph 𝐺(𝑊, 𝑆). By Proposition 2.10, the
parabolic subgroup𝑊𝐼 is conjugate to𝑊𝐽 for some 𝐽 ⊆ 𝑆 if and only if 𝐼 = 𝐽. □

The graph𝐺(𝑊, 𝑆) also contains substantial information about the normalizers of the standard
parabolic subgroups. The following is from [14, Section 3.1]. We fix a subset 𝐼 ⊂ 𝑆 and denote the
connected component of 𝐺(𝑊, 𝑆) containing 𝐼 by◦. Let  be a spanning tree of◦. For 𝐽 ∈  ,
let

𝜇(𝐽) = 𝜈(𝐼0, 𝑠0)⋯ 𝜈(𝐼𝑡, 𝑠𝑡),

where

𝐼 = 𝐼0
𝑠0
AA→ 𝐼1

𝑠1
AA→ …

𝑠𝑡
A→ 𝐼𝑡+1 = 𝐽

is the unique nonreversing path in  from 𝐼 to 𝐽. For any edge 𝑒 = 𝐽1
𝑠
A→ 𝐽2 in◦ with 𝐽1, 𝐽2 ∈  ,

we set 𝜆(𝑒) = 𝜇(𝐽1)𝜈(𝐽1, 𝑠)𝜇(𝐽2)−1.

Proposition 2.11 ([7, Proposition 2.1], [14, Corollary 3.1.5]). Let (𝑊, 𝑆) be a Coxeter system and let
𝐼 ⊆ 𝑆. Then:

(a) 𝑁𝑊(𝑊𝐼) is the semidirect product of𝑊𝐼 by the group𝑁𝐼 = {𝑤 ∈ 𝑊 ∣ 𝑤Δ𝐼 = Δ𝐼};
(b) 𝑁𝐼 is generated by the 𝜆(𝑒) where 𝑒 is an edge of◦ that is not an edge of  .

As an easy corollary, we get the following.
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688 HOLLENBACH andWEGENER

Corollary 2.12. Let (𝑊, 𝑆) be an irreducible, infinite Coxeter system of rank 𝑛 and let 𝐼 ⊆ 𝑆 with
|𝐼| = 𝑛 − 1. Then𝑁𝑊(𝑊𝐼) = 𝑊𝐼 .
Proof. We already saw in the proof of Lemma 2.9 that 𝐼 is an isolated vertex. In particular, the
connected component ◦ of 𝐺(𝑊, 𝑆) containing 𝐼 consists only of 𝐼. Hence 𝑁𝐼 is trivial and
𝑁𝑊(𝑊𝐼) = 𝑊𝐼 by Proposition 2.11. □

2.5 Outward roots

Let (𝑊, 𝑆) be an infinite Coxeter system of finite rank and let 𝑐 ∈ 𝑊 be a Coxeter element. By
work of Krammer [14], the centralizer 𝐶𝑊(𝑐) of 𝑐 acts on the so-called outward roots for 𝑐. To
better understand 𝐶𝑊(𝑐) and eventually prove Theorem 1.1, we study this action in more detail in
the remainder of this paper. We start by describing the outward roots for straight elements.
Let 𝑤 ∈ 𝑊. We call a root 𝛼 ∈ Φ outward for 𝑤 if the following holds for some 𝑥 ∈ 𝑈◦. For

almost all 𝑚 ∈ ℤ, we have 𝑚(𝑤𝑚𝑥(𝛼)) < 0. The set of outward roots is denoted by Out(𝑤). It
is obvious that for every outward root 𝛼 ∈ Out(𝑤) and every 𝑘 ∈ ℤ we have 𝑤𝑘𝛼 ∈ Out(𝑤). In
other words, ⟨𝑤⟩ acts on Out(𝑤). By [14, Lemma 5.2.6], the cardinality 𝑟(𝑤) of the set of orbits
⟨𝑤⟩ ⧵ Out(𝑤) for this action is finite. Moreover, it follows from [14, Corollary 5.2.4] that 𝐶𝑊(𝑤)
acts on Out(𝑤) (note the connection between odd and outward roots described in [14, Definition
5.5.6]).

Proposition 2.13. If 𝑤 ∈ 𝑊 is straight, then 𝑟(𝑤) = 𝓁(𝑤).

Proof. By [14, Corollary 5.6.6], we have lim
𝑛→∞

𝓁(𝑤𝑛)
𝑛
= 𝑟(𝑤). The assertion follows since 𝑤 is

straight. □

For𝑤 ∈ 𝑊, we denote the set of positive roots that𝑤 sends to negative roots byΦ+(𝑤). This set
is finite and can be given explicitly. For simplicity, we denote a simple root 𝑒𝑠𝑖 by 𝑒𝑖 . If𝑤 = 𝑠𝑗1⋯ 𝑠𝑗𝑘
(𝑠𝑗𝑖 ∈ 𝑆) is a reduced expression, then Φ

+(𝑤) consists of the 𝑘 distinct roots 𝑠𝑗𝑘 𝑠𝑗𝑘−1⋯ 𝑠𝑗𝑖+1(𝑒𝑗𝑖 )
for 𝑖 ∈ {1, … , 𝑘 − 1} and 𝑒𝑗𝑘 (see, for example, [12, Exercise II.5.6.1]). In particular, Φ

+(𝑤−1) then
consists of the 𝑘 distinct roots 𝛽𝑖 ∶= 𝑠𝑗1⋯ 𝑠𝑗𝑖−1(𝑒𝑗𝑖 ) for 𝑖 ∈ {2, … 𝑘} and 𝛽1 ∶= 𝑒𝑗1 .

Proposition 2.14. Let𝑤 ∈ 𝑊 be straight. ThenΦ+(𝑤−1) is a set of representatives for ⟨𝑤⟩ ⧵ Out(𝑤).
Proof. Since𝑤 is straight, it follows thatΦ+(𝑤−1) ⊆ Φ+(𝑤−𝑚) for every𝑚 ⩾ 1. We will show that
Φ+(𝑤−1) ⊆ Φ+ ⧵ Φ+(𝑤𝑚) for every𝑚 ⩾ 1. Let𝑤 = 𝑠𝑗1⋯ 𝑠𝑗𝑘 be a reduced expression and let 𝛽𝑖 be
as above. Then

𝑤𝑚𝑠𝛽𝑖 = (𝑠𝑗1⋯ 𝑠𝑗𝑘 ⋯ 𝑠𝑗1⋯ 𝑠𝑗𝑘 )(𝑠𝑗1⋯ 𝑠𝑗𝑖−1𝑠𝑗𝑖
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

=∶𝑤′

𝑠𝑗𝑖−1⋯ 𝑠𝑗1).

Since 𝑤 is straight, the subword 𝑤′ is reduced. Hence 𝓁(𝑤′) = 𝑚𝑘 + 𝑖. Multiplying 𝑤′ with any
𝑠 ∈ 𝑆 decreases the length by at most 1. It follows that

𝓁(𝑤𝑚𝑠𝛽𝑖 ) ⩾ 𝑚𝑘 + 𝑖 − (𝑖 − 1) > 𝑚𝑘 = 𝓁(𝑤𝑚).

So we have 𝑤𝑚𝛽𝑖 > 0 by [12, Chapter II, Proposition 5.7]. Thus, Φ+(𝑤−1) ⊆ Φ+ ⧵ Φ+(𝑤𝑚).
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THE CENTRALIZER OF A COXETER ELEMENT 689

Let 𝑥 ∈ 𝐶 ∩ 𝑈◦. We observe that for every 𝛼 ∈ Φ, 𝑥(𝛼) > 0 if and only if 𝛼 > 0. If𝑚 ⩾ 1 by the
above, we therefore have

−𝑚(𝑤−𝑚𝑥(𝛽𝑖))
(1)
= −𝑚(𝑥(𝑤𝑚𝛽𝑖)

⏟⎴⏟⎴⏟
>0

) < 0,

and since Φ+(𝑤−1) ⊆ Φ+(𝑤−𝑚), we also have

𝑚(𝑤𝑚𝑥(𝛽𝑖))
(1)
= 𝑚(𝑥(𝑤−𝑚𝛽𝑖)

⏟⎴⏟⎴⏟
<0

) < 0.

Hence we have Φ+(𝑤−1) ⊆ Out(𝑤). Since 𝑤 is straight and by the explicit description of the
elements in Φ+(𝑤−1) given above, we obtain that each orbit in ⟨𝑤⟩ ⧵ Out(𝑤) contains at most
one element of Φ+(𝑤−1). By Proposition 2.13, Φ+(𝑤−1) is therefore a set of representatives for
⟨𝑤⟩ ⧵ Out(𝑤). □

3 THE PROOF

Throughout this section, we assume that (𝑊, 𝑆) is an irreducible, infinite Coxeter system of rank
𝑛 and 𝑆 = {𝑠1, … , 𝑠𝑛}.
As stated in the last section, our proof of Theorem 1.1 relies on a detailed study of the action of

𝐶𝑊(𝑐) onOut(𝑐). Furthermore, (for the Coxeter groups that are not affine) we will use the follow-
ing result which is an immediate consequence of [14, Corollary 6.3.10]. Note that every Coxeter
element 𝑐 of𝑊 is essential by Proposition 2.6.

Proposition 3.1. Let𝑤 ∈ 𝑊 be an essential element. Then each element in 𝐶𝑊(𝑤) has either finite
order or is essential.

Proof. By Proposition 2.3, an element of finite order cannot be essential. The assertion is obvi-
ously true for affine Coxeter systems since each proper parabolic subgroup is finite in these cases.
Therefore let (𝑊, 𝑆) be not affine. By [14, Corollary 6.3.10], the index of ⟨𝑤⟩ in 𝐶𝑊(𝑤) is finite.
Let 𝑘 be that index and let 𝑣 ∈ 𝐶𝑊(𝑐) be of infinite order. Then 1 ≠ 𝑣𝑘 ∈ ⟨𝑤⟩. In particular, there
exists 𝑚 ∈ ℤ such that 𝑣𝑘 = 𝑤𝑚. Since 𝑤 is essential, 𝑤𝑚 is essential by Proposition 2.4. That is,
𝑣𝑘 is essential. By applying Proposition 2.4 again, it then follows that 𝑣 is essential. □

Proof of Theorem 1.1. Since 𝐶𝑊(𝑤𝑐𝑤−1) = 𝑤𝐶𝑊(𝑐)𝑤−1 for every𝑤 ∈ 𝑊, we can assume our Cox-
eter element to be standard. After possible relabeling of our set 𝑆, we can therefore assume that
𝑐 = 𝑠1⋯ 𝑠𝑛. Let 𝛽𝑖 = 𝑠1⋯ 𝑠𝑖−1(𝑒𝑖) (with 𝛽1 = 𝑒1) be as in Section 2.5. Note that

𝑠𝛽𝑖 = 𝑠1⋯ 𝑠𝑖−1𝑠𝑖𝑠𝑖−1⋯ 𝑠1 = 𝑐(𝑠𝑛𝑠𝑛−1⋯ 𝑠𝑖+1𝑠𝑖−1⋯ 𝑠1). (2)

Let g ∈ 𝐶𝑊(𝑐). By Proposition 2.14 and the fact that 𝐶𝑊(𝑐) acts on Out(𝑐), there exist𝑚𝑖 ∈ ℤ and
𝑗 ∈ {1, … , 𝑛} such that g𝛽𝑖 = 𝑐𝑚𝑖𝛽𝑗 . In other words,

(g𝑐−𝑚𝑖 )𝑠𝛽𝑖 (g𝑐
−𝑚𝑖 )−1 = 𝑠g𝑐−𝑚𝑖 (𝛽𝑖) = 𝑠𝛽𝑗 . (3)
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690 HOLLENBACH andWEGENER

We set ℎ𝑖 ∶= g𝑐−𝑚𝑖 . Clearly, ℎ𝑖 ∈ 𝐶𝑊(𝑐). It follows from above that

ℎ𝑖𝑠𝛽𝑖ℎ
−1
𝑖

(2)
= ℎ𝑖𝑐(𝑠𝑛𝑠𝑛−1 … 𝑠𝑖+1𝑠𝑖−1 … 𝑠1)ℎ

−1
𝑖

= 𝑐
(
ℎ𝑖(𝑠𝑛𝑠𝑛−1 … 𝑠𝑖+1𝑠𝑖−1 … 𝑠1)ℎ

−1
𝑖

)

(3)
= 𝑐(𝑠𝑛𝑠𝑛−1 … 𝑠𝑗+1𝑠𝑗−1 … 𝑠1).

Thus,

ℎ𝑖(𝑠𝑛𝑠𝑛−1 … 𝑠𝑖+1𝑠𝑖−1 … 𝑠1)ℎ
−1
𝑖 = 𝑠

ℎ𝑖
𝑛 𝑠
ℎ𝑖
𝑛−1
… 𝑠
ℎ𝑖
𝑖+1
𝑠
ℎ𝑖
𝑖−1
… 𝑠
ℎ𝑖
1
= 𝑠𝑛𝑠𝑛−1 … 𝑠𝑗+1𝑠𝑗−1 … 𝑠1.

Since 𝑠𝑛𝑠𝑛−1 … 𝑠𝑗+1𝑠𝑗−1 … 𝑠1 is a (standard) parabolic Coxeter element, we have by [2, Lemma
2.1] that

𝑛 − 1 = 𝓁𝑇(𝑠𝑛𝑠𝑛−1 … 𝑠𝑗+1𝑠𝑗−1 … 𝑠1) = 𝓁(𝑠𝑛𝑠𝑛−1 … 𝑠𝑗+1𝑠𝑗−1 … 𝑠1).

Therefore, (𝑠ℎ𝑖𝑛 , 𝑠
ℎ𝑖
𝑛−1
, … , 𝑠

ℎ𝑖
𝑖+1
, 𝑠
ℎ𝑖
𝑖−1
, … , 𝑠

ℎ𝑖
1
) ∈ Red𝑇(𝑠𝑛𝑠𝑛−1⋯ 𝑠𝑗+1𝑠𝑗−1⋯ 𝑠1). Let 𝐼 = {1, … , 𝑛} ⧵ {𝑖}

and let 𝐽 = {1, … , 𝑛} ⧵ {𝑗}. By Theorem 2.2, it follows that

ℎ𝑖𝑊𝐼ℎ
−1
𝑖 = 𝑊𝐽.

Hence, by Lemma 2.9 𝐼 = 𝐽, that is, ℎ𝑖 ∈ 𝑁𝑊(𝑊𝐼). However, 𝑁𝑊(𝑊𝐼) = 𝑊𝐼 by Corollary 2.12. At
this stage of the proof, we need to distinguish between affine and non-affine Coxeter groups.
First, suppose that 𝑊 is not affine. Then, since ℎ𝑖 ∈ 𝑊𝐼 , ℎ𝑖 is not essential. So ℎ𝑖 has finite

order by Proposition 3.1. In particular, if 𝑘 denotes the index of ⟨𝑐⟩ in 𝐶𝑊(𝑐) (which is finite by [14,
Corollary 6.3.10] since𝑊 is not affine), then ℎ𝑘

𝑖
= 1. Hence, for every 𝑖 ∈ {1, … , 𝑛}, we have

g𝑘 = 𝑐𝑚𝑖𝑘.

Since the order of 𝑐 is infinite, it follows that all the 𝑚𝑖 are the same and we may set 𝑚 ∶= 𝑚1.
Thus all the ℎ𝑖 are the same and we may set ℎ ∶= ℎ1. Note that

⋂
𝐼⊆𝑆|𝐼|=𝑛−1

𝐼 = ∅.

In conclusion (for the first equality, see [12, Theorem 5.5]),

ℎ ∈
⋂
𝐼⊆𝑆|𝐼|=𝑛−1

𝑊𝐼 = 𝑊∅ = {1}.

Thus g = 𝑐𝑚.
Now, suppose that (𝑊, 𝑆) is affine. In this case𝑊𝐼 is a finite group for every 𝐼 ⊆ 𝑆 with |𝐼| =

𝑛 − 1. Let 𝑙 = lcm(|𝑊𝐼| ∣ 𝐼 ⊆ 𝑆, |𝐼| = 𝑛 − 1). Then ℎ𝑙𝑖 = 1, that is g 𝑙 = 𝑐𝑚𝑖𝑙 for every 𝑖 ∈ {1, … , 𝑛}.
Hence, as in the non-affine case, all the𝑚𝑖 are the same. Let𝑚 ∶= 𝑚1. Then, as beforewe conclude
that g = 𝑐𝑚. □
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THE CENTRALIZER OF A COXETER ELEMENT 691

However, it is not the case that 𝐶𝑊(𝑤) = ⟨𝑤⟩ for an arbitrary essential element 𝑤 ∈ 𝑊. The
centralizer of an essentialmight not even be cyclic. In contrast to Coxeter elements, the centralizer
of an arbitrary essential element can contain elements of finite order different from the identity
(compare Proposition 3.1). We illustrate this in the following example.

Example 3.2. Consider a Coxeter system (𝑊, 𝑆) of type 𝐷̃4, that is, the Coxeter graph Γ(𝑊, 𝑆) is
given as follows.

The element 𝑣 = 𝑠4𝑠3𝑠4𝑠5𝑠3𝑠2 is a quasi-Coxeter element (but not a Coxeter element) in the
spherical parabolic subgroup𝑊′ = ⟨𝑠2, 𝑠3, 𝑠4, 𝑠5⟩. Direct calculations yield 𝑠5𝑠4 ∈ 𝑊′ ⧵ ⟨𝑣⟩ as well
as 𝑠5𝑠4 ∈ 𝐶𝑊′(𝑣). The element 𝑤 = 𝑣𝑠1 ∈ 𝑊 is quasi-Coxeter, hence essential by Proposition 2.6.
In particular, since 𝑠1 commutes with 𝑠4 and 𝑠5, we have 𝑠5𝑠4 ∈ 𝐶𝑊(𝑤). But 𝑠5𝑠4 is not essential,
hence 𝑠5𝑠4 ∉ ⟨𝑤⟩ by Proposition 2.4.

4 OUTLOOK: ARTIN GROUPS

Let (𝑊, 𝑆) be a Coxeter system with 𝑆 = {𝑠1, … , 𝑠𝑛}. The Artin group associated to (𝑊, 𝑆) is the
group given by the presentation

𝐴(𝑊, 𝑆) = ⟨𝒔𝟏, … , 𝒔𝒏 ∣ 𝒔𝒊𝒔𝒋𝒔𝒊⋯
⏟⎴⏟⎴⏟
𝑚𝑖𝑗 terms

= 𝒔𝒋𝒔𝒊𝒔𝒋⋯
⏟⎴⏟⎴⏟
𝑚𝑖𝑗 terms

for all 𝑖 ≠ 𝑗 ⟩.

Although closely related to Coxeter groups, these groups are rather mysterious and not much is
known about them in general.
Similar to our study of the centralizer of Coxeter elements in Coxeter groups, we can consider

the element 𝒄 = 𝒔𝝅(𝟏)𝒔𝝅(𝟐)⋯ 𝒔𝝅(𝒏) ∈ 𝐴(𝑊, 𝑆) for any permutation 𝜋 of {1, … , 𝑛} and try to deter-
mine its centralizer in 𝐴(𝑊, 𝑆). Clearly the center of 𝐴(𝑊, 𝑆) is contained in every centralizer in
𝐴(𝑊, 𝑆). Therefore, we first might want to know what the center of 𝐴(𝑊, 𝑆) looks like. In fact, it
is trivial in most cases if (𝑊, 𝑆) is infinite and irreducible [9]. If (𝑊, 𝑆) is irreducible and finite,
the center of𝐴(𝑊, 𝑆) is infinite cyclic and either generated by the element (𝒔𝝅(𝟏)𝒔𝝅(𝟐)⋯ 𝒔𝝅(𝒏))ℎ or
the element (𝒔𝝅(𝟏)𝒔𝝅(𝟐)⋯ 𝒔𝝅(𝒏))ℎ∕2 [6, Satz 7.2], where ℎ denotes the Coxeter number and where
the permutation 𝜋 needs to fulfill some additional properties (as stated in [6, Lemma 5.2]).
We have a natural homomorphism

𝑝 ∶ 𝐴(𝑊, 𝑆) → 𝑊, 𝒔𝒊 ↦ 𝑠𝑖 (1 ⩽ 𝑖 ⩽ 𝑛).

Given a reduced expression 𝑤 = 𝑠𝑖1 … 𝑠𝑖𝑘 ∈ 𝑊, we call 𝒘 = 𝒔𝒊𝟏⋯ 𝒔𝒊𝒌 ∈ 𝐴(𝑊, 𝑆) the lift of this
expression. In particular, we have 𝑝(𝒘) = 𝑤 and the element 𝒔𝟏𝒔𝟐⋯ 𝒔𝒏 ∈ 𝐴(𝑊, 𝑆) is the lift of
the Coxeter element 𝑐 = 𝑠1𝑠2⋯ 𝑠𝑛 in𝑊.
As an easy consequence of Theorem 1.1, we obtain the following.
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Corollary 4.1. Let (𝑊, 𝑆) be an irreducible Coxeter system. If 𝒄 = 𝒔𝟏𝒔𝟐⋯ 𝒔𝒏 ∈ 𝐴(𝑊, 𝑆) is the lift of
the standard Coxeter element 𝑐 = 𝑠1𝑠2⋯ 𝑠𝑛 ∈ 𝑊, then 𝑝(𝐶𝐴(𝑊,𝑆)(𝒄)) ⊆ ⟨𝑐⟩. Furthermore, if (𝑊, 𝑆)
is infinite and 𝐶𝐴(𝑊,𝑆)(𝒄) is cyclic, then 𝐶𝐴(𝑊,𝑆)(𝒄) = ⟨𝒄⟩.
Proof. The first assertion follows directly from [8, Proposition 30] (for the finite case) and Theo-
rem 1.1 (for the infinite case). Therefore, let (𝑊, 𝑆) be infinite and assume 𝐶𝐴(𝑊,𝑆)(𝒄) to be cyclic
with generator 𝑥. We have to show that 𝑥 = 𝒄±1. Since 𝒄 ∈ 𝐶𝐴(𝑊,𝑆)(𝒄), there exists 𝑘 ∈ ℤ such that
𝑥𝑘 = 𝒄. By the first assertion, we have 𝑝(𝑥) = 𝑐𝑚 for some𝑚 ∈ ℤ. Hence, we obtain

𝑐𝑚𝑘 = (𝑐𝑚)𝑘 = 𝑝(𝑥)𝑘 = 𝑝(𝑥𝑘) = 𝑝(𝒄) = 𝑐,

that is, 𝑚𝑘 = 1 as 𝑐 ∈ 𝑊 has infinite order. Since 𝑚, 𝑘 ∈ ℤ, it follows that 𝑚 = 𝑘 = ±1. Thus,
𝑥 = 𝒄±1 as desired □

If (𝑊, 𝑆) is an irreducible affine Coxeter system, McCammond and Sulway showed that
𝐶𝐴(𝑊,𝑆)(𝒄) = ⟨𝒄⟩ (see the proof of [15, Proposition 11.9]). As a consequence of the work of Bessis
[3], this result also holds if (𝑊, 𝑆) is finite.

Corollary 4.2. If (𝑊, 𝑆) is an irreducible finite Coxeter system, then 𝐶𝐴(𝑊,𝑆)(𝒄) = ⟨𝒄⟩.
Proof. Let 𝑉 be the complexification of its natural representation. For 𝑛 ∈ ℕ, we let 𝜉𝑛 denote
a primitive 𝑛th root of unity. Then 𝑝(𝒄) = 𝑐 is a 𝜉ℎ-regular element (for instance, see [3, Defini-
tion 1.8] for the definition of 𝜉ℎ-regular elements) where ℎ is the Coxeter number of (𝑊, 𝑆). Let
𝑉′ ∶= ker(𝑐 − 𝜉ℎ) and interpret ⟨𝑐⟩ as a complex reflection group acting on 𝑉′. Further, let 𝑉′reg
be the associated hyperplane complement. By [3, Theorem 12.4], 𝐶𝐴(𝑊,𝑆)(𝒄) ≅ 𝜋1(⟨𝑐⟩ ⧵ 𝑉′reg). By
[20, Theorem 4.2], 𝑉′ is of dimension one and thus 𝑉′reg is homeomorphic to ℝ

2 ⧵ {0}. Hence,
𝜋1(⟨𝑐⟩ ⧵ 𝑉′reg) ≅ ℤ. The assertion follows by Corollary 4.1. □

In view of the previous statements, we want to pose the following question:

Question 4.3. Does the conclusion of Theorem 1.1 hold for Artin groups? More precisely, if (𝑊, 𝑆) is
an irreducible Coxeter system and 𝒄 = 𝒔𝟏𝒔𝟐⋯ 𝒔𝒏 ∈ 𝐴(𝑊, 𝑆) is the lift of a Coxeter element in𝑊, is
it true that 𝐶𝐴(𝑊,𝑆)(𝒄) = ⟨𝒄⟩?
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