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Abstract
In dose–response analysis, it is a challenge to choose appropriate linear or curvi-
linear shapes when considering multiple, differently scaled endpoints. It has
been proposed to fit several marginal regression models that try sets of differ-
ent transformations of the dose levels as explanatory variables for each endpoint.
However, the multiple testing problem underlying this approach, involving cor-
related parameter estimates for the dose effect between and within endpoints,
could only be adjusted heuristically. An asymptotic correction for multiple test-
ing can be derived from the score functions of the marginal regression models.
Based on a multivariate 𝑡-distribution, the correction provides a one-step adjust-
ment of p-values that accounts for the correlation between estimates from differ-
ent marginal models. The advantages of the proposed methodology are demon-
strated through three example datasets, involving generalized linearmodels with
differently scaled endpoints, differing covariates, and a mixed effect model and
through simulation results. The methodology is implemented in an R package.
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1 INTRODUCTION

In applications of dose–response analysis in early phases
of research, the shape or functional form of the dose–
response relationship is usually unknown a priori. Often,
experimental designs with only few dose levels and one
control group are used in these situations. This is espe-
cially common in toxicological studies or early-phase clin-
ical trials for proof of concept (Ting, 2006; Hothorn, 2016).
Nonzero dose levels are often chosen using logarithmic
dose escalation to cover a wide range, reflecting lack
of prior knowledge about onset of effects. It may, how-
ever, be difficult to prespecify a dose–response model that
can accommodate all possible trends, which such flexible
designs allow.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.

A naive, yet common data-driven solution would be to
try out different models and choose the best fitting one for
subsequent inference. For instance, models correspond-
ing to different data transformations as well as subsequent
pairwise comparisons of dose levels may be considered.
Unfortunately, this leads to inflation of the type I error
rate. Another solution would be to define a certain model
beforehand and then use it for hypothesis testing. No infla-
tion of type I error would be the consequence, but at the
cost of discarding adaptive strategies for choosing a model
that would lead tomore efficient inference. Such problems
are further aggravated in toxicology because usually many
endpoints are involved: endpoints may differ in scale as
different toxicological effects of a single compound may
be recorded in terms of binary data, count data, or metric
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measurements taken from the same experimental units.
The onset of dose effects may differ between endpoints,
and, consequently, the shape of dose–response relation-
ships may differ between endpoints. Also, relevant covari-
ates may differ between endpoints (Hothorn, 2016).
In a 1985 Biometrics paper, Tukey, Ciminera, and Heyse

proposed a solution in the form of a series of trend tests
for a given single endpoint: Different transformations of
the dose levels were applied, and for each transformation a
linear regression model was fitted (Shirley, 1996). In other
words, multiple marginal models were fitted to the same
observations. This approach is sensitive to a wide range of
dose–response shapes, and it can be expected to have high
power in case of studies with small sample size because
it uses the sparse parameterization of a linear regression
model. We refer to this approach as the Tukey trend test.
Based on power assessment for various dose–response
shapes, it has been recommended over other procedures
(Capizzi et al., 1992; Aras et al., 2011). As different marginal
models were fitted to the same data in related parame-
terizations, the resulting estimates and test statistics were
highly correlated, rendering p-value adjustment challeng-
ing as Bonferroni adjustment would be too conservative
whereas no adjustment would lead to inflation of the type I
error rate (Capizzi et al., 1992). For application to multiple
endpoints, Tukey et al. (1985) proposed to use a correction
factor for the p-values that was derived in a heuristic man-
ner as the actual joint distribution of parameter estimates
from different marginal models was intractable.
Recently, it has become possible to approximate joint

distributions of estimates from multiple marginal models.
Indeed using such approximations is not a new idea: For a
number of special cases in survival analysis and analysis of
longitudinal data, results were obtained byWei and collab-
orators in a series of papers (Wei and Lachin, 1984;Wei and
Johnson, 1985; Wei et al., 1989), their initial developments
have been further generalized (Lin, 2005; So and Sham,
2011; Pipper et al., 2012). These authors paved the way for
a unified framework to obtain the asymptotic joint dis-
tributions of parameter estimates from multiple marginal
models. This development provides a means to carry out
simultaneous inference for differently scaledmultiple end-
points, modeled by different classes of linear models, with
different distributional assumptions, and possibly also dif-
ferent covariate adjustments, but without having to spec-
ify a joint statistical model. Pipper et al. (2012) provided a
general implementation of the approach in the statistical
environment R (R Core Team, 2017), which in the mean-
while has become part of the extension packagemultcomp
(Hothorn et al., 2008).
In this article, we develop appropriate asymptotically

correct multiplicity adjustment for the Tukey trend test,
replacing the heuristic correction proposed by Tukey

et al. (1985). We extend the Tukey trend test to combine
several regression-based tests with multiple contrasts.
Furthermore, the Tukey trend test is extended to joint test
procedures for multiple endpoints of generalized linear
models and linear mixed models. A simulation study
examines the proposed methodology in detail. The
extended Tukey trend test is also applied to examples from
toxicology. The methodology is implemented in the R
package tukeytrend.

2 MATERIALS ANDMETHODS

2.1 The Tukey trend test

Consider a design with 𝐺 dose levels, where the index 𝑔 =
1,… , 𝐺 identifies increasing dose levels, 𝑑1 < 𝑑2 < ⋯ <

𝑑𝐺 of a compound of interest. Usually there are several
replicates for each dose level. Tukey et al. (1985) propose to
test for a dose–response relation by fitting three marginal
regression models with three different transformations of
the original dose levels used as predictor. Denoted by 𝑥(𝑔)

𝑘
,

the transformed value of dose level 𝑑𝑔 under transforma-
tion 𝑘 = 1,… , 𝐾 = 3. We refer to these transformed values
as dose scores.
The first dose score (𝑘 = 1) uses the untransformed

dose levels: 𝑥(𝑔)1 = 𝑑𝑔. The second transformation (𝑘 = 2)
is the index 𝑔 of ordered dose levels 𝑑𝑔: 𝑥

(𝑔)
2 = 𝑔. Finally,

the third transformation is the logarithm (𝑘 = 3), 𝑥(𝑔)3 =

log 𝑑𝑔 if 𝑑1 > 0. For experiments including an untreated or
vehicle control group, that is 𝑑1 = 0, Tukey et al. (1985) pro-
posed the following dose score for 𝑔 = 1:

𝑥
(1)
3 = log 𝑑2 −

𝑑2 − 𝑑1
𝑑3 − 𝑑2

(log 𝑑3 − log 𝑑2) (1)

and to use the log-transformation for 𝑔 > 1. We refer to
these three dose scores as “ari” (arithmetic), “ord” (ordi-
nal), and “arilog,” respectively.
Let the experimental units have running index 𝑛 =

1,… ,𝑁 with 𝑁 denoting the total number of units in the
experiment. Initially, we assume that one measurement,
𝑦𝑛 say, of one endpoint is taken for the 𝑛th experimental
unit. Fitting three marginal simple linear regression mod-
els of 𝑦𝑛 versus the transformed dose levels 𝑥𝑛1, 𝑥𝑛2, 𝑥𝑛3,
respectively, 𝑦𝑛 = 𝛽0𝑘 + 𝛽1𝑘𝑥𝑛𝑘 + 𝜖𝑛𝑘, yields estimates of
the three slopes, 𝛽1𝑘 with corresponding standard errors
𝜎1𝑘 (𝑘 = 1,… , 3).
Evaluation of the null hypotheses 𝐻0 ∶ 𝛽11 = 0 ∩ 𝛽12 =

0 ∩ 𝛽13 = 0 versus 𝐻𝐴 ∶ 𝛽11 ≠ 0 ∪ 𝛽12 ≠ 0 ∪ 𝛽13 ≠ 0 with
test statistics 𝑡𝑘 = 𝛽1𝑘∕𝜎1𝑘, each following the 𝑡𝑑𝑓=𝑁−2 dis-
tribution under 𝐻0, leads to an union-intersection test,
requiring a multiplicity adjustment of the three marginal
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SCHAARSCHMIDT et al. 791

p-values, 𝑝𝑘 (𝑘 = 1,… , 3). Obviously, the three parameter
estimates and thus the resulting test statistics are highly
correlated, and Tukey et al. (1985) proposed to use the
minimal p-value for conclusions concerning an overall
trend because a Bonferroni correction 3 ⋅ min𝑘(𝑝𝑘) or 2 ⋅
min𝑘(𝑝𝑘) was considered too conservative due to the high
correlations. Also, Capizzi et al. (1992) showed that using
no multiplicity adjustment violates the type I error and
proposed an adjustment using the trivariate 𝑡-distribution.
Moreover, Tukey et al. (1985) discussed the necessity to

jointly test for the presence of a dose–response relationship
in at least one of 𝐽 multiple endpoints (𝑗 = 1,… , 𝐽) where
for each endpoint the threemarginal regressionmodels are
fitted. For assessing an overall trend in a group of 𝐽 end-
points, they propose to adjust the minimal p-value among
all p-values,𝑝𝑗𝑘 (𝑗 = 1,… , 𝐽, 𝑘 = 1,… , 3), using the approx-
imation 1 − {1 − min𝑗,𝑘(𝑝𝑗𝑘)

√
𝐽}. Tukey et al. (1985) pro-

posed the above procedure as an alternative to (1) multiple
comparisons of dose levels to control (Dunnett, 1955) and
(2) the Williams trend test (Williams, 1971).
Combining the approaches of Pipper et al. (2012) and

Hothorn et al. (2008), the following section will extend
the basic idea of Tukey et al. (1985) to formulate a union-
intersection test for the joint test of multiple, possibly
differently scaled endpoints. The heuristic adjustment of
p-values suggested by Tukey et al. (1985) is replaced by
a single-step adjustment that accounts for the empirical
correlation structure of the parameter estimates between
different regression models for the same endpoints and
between the regressionmodels for different endpoints. The
set of dose scores is extended to include dummy-coded
categorical dose variables. Thus, joint tests for a dose–
response relation, using the regression approach and mul-
tiple contrast tests corresponding to Dunnett or Williams-
type contrasts, can be performed.

2.2 Extensions to multiple endpoints
and categorical dose variables

Denote with 𝐘 an (𝑁 × 𝐽) matrix of response variables,
where 𝑛 = 1,… ,𝑁 is the index of observational units, and
𝑗 = 1,… , 𝐽 is the index of 𝐽 response variable of interest.
The 𝐽 variables 𝐲𝑗 may be differently scaled (e.g., continu-
ous or counts), but need to be observed for the same obser-
vational units 𝑛 = 1,… ,𝑁.
For each endpoint 𝐲𝑗 , a number of marginal models

𝐾𝑗 may be fit, with index 𝑘 = 1,… , 𝐾𝑗 . These models
may differ with respect to the variables and the number
of parameters that are used to model the dose–response
relationship. They may differ with respect to their design
matrices𝐗𝑗𝑘 because somemodels may contain covariates
that other models do not use. Denote the number of

parameters in the 𝑗𝑘th model with 𝐷𝑗𝑘. The models fitted
for differently scaled endpoints may belong to different
model classes such as the linear model in Equation (2)
or generalized linear models with different distributional
assumptions and different link functions 𝑔𝑗𝑘() and linear
predictors 𝜼𝑗′ as in Equation (3):

𝐲𝑗 = 𝐗𝑗𝑘𝜷𝑗𝑘 + 𝝐𝑗𝑘, (2)

𝜼𝑗′ = 𝑔𝑗′𝑘(𝐗𝑗′𝑘𝜷𝑗′𝑘). (3)

We now decompose the parameter vector 𝜷𝑗𝑘 of the 𝑗𝑘th
model into a subvector 𝜸𝑗𝑘, corresponding to effects of
covariates, sample stratifications, blocks, etc. and into a
subvector 𝜹𝑗𝑘, containing the parameters of interest for
inference with respect to the dose–response relation; the
length of this subvector is 𝐵𝑗𝑘.

𝜷𝑇
𝑗𝑘
=
(
𝜸𝑇
𝑗𝑘
, 𝜹𝑇
𝑗𝑘

)
. (4)

For some endpoint and/or models, 𝜹𝑗𝑘 may contain only
one slope parameter, that is, 𝐵𝑗𝑘 = 1, whereas for other
models the dose effect may be represented by dummy-
coded differences to the reference level leading to 𝐵𝑗𝑘 > 1
parameters in 𝜹𝑗𝑘. The above framework is also applicable
for linear and generalized linear mixedmodels by utilizing
that estimation of fixed-effects parameters may be based
on generalized least squares (Ritz et al., 2017).

2.2.1 Simultaneous inference for the joint
parameter vector

Now, interest is in joint inference for all 𝑀 =∑𝐽

𝑗=1

∑𝐾𝑗
𝑘=1

𝐵𝑗𝑘 parameters representing potential dose
effects for the set of models defined above: Let

𝜽𝑇 =
(
𝜹𝑇11, 𝜹

𝑇
12, … , 𝜹

𝑇
1𝐾1
, 𝜹𝑇21, … , 𝜹

𝑇
𝐽𝐾𝐽

)
(5)

define the vector of stacked parameter vectors 𝜹𝑇
𝑗𝑘

with
inner order by 𝑘 and outer order by 𝑗. For notational sim-
plicity, we identify its elements by 𝑚 = 1,… ,𝑀 in the fol-
lowing. Our interest is in testing hypotheses of the form

𝐻0 ∶

𝑀⋂
𝑚=1

𝜃𝑚 = 0 versus 𝐻𝐴 ∶
𝑀⋃
𝑚=1

𝜃𝑚 ≠ 0, (6)

or

𝐻0 ∶

𝑀⋂
𝑚=1

𝜃𝑚 ≤ 0 versus 𝐻𝐴 ∶
𝑀⋃
𝑚=1

𝜃𝑚 > 0, (7)

that is, performing an intersection union test, aiming at a
one-step procedure that controls the familywise error rate
(FWER) for the𝑀 individual hypotheses.
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792 SCHAARSCHMIDT et al.

Marginally fitting the 𝑗𝑘th model yields vectors with
the parameter estimates 𝜹𝑗𝑘, the corresponding standard
error estimates 𝝈̂𝑗𝑘, and (𝑁 × 𝐵𝑗𝑘)matrices containing the
standardized score contributions evaluated at the max-
imum likelihood (ML) estimates of the model parame-
ters (Pipper et al., 2012; Jensen and Ritz, 2015), denoted
by 𝚿̂𝑗𝑘. To define a joint test for the 𝑀 parameters
of interest, we stack in the order defined above and
obtain: 𝜽𝑇 = (𝜹𝑇11, 𝜹

𝑇
12, … , 𝜹

𝑇
𝐽𝐾𝐽
), 𝝈̂𝑇 = (𝝈̂𝑇11, 𝝈̂

𝑇
12, … , 𝝈̂

𝑇
𝐽𝐾𝐽
),

and 𝚿̂𝑇 = (𝚿̂𝑇11, 𝚿̂
𝑇
12, … , 𝚿̂

𝑇
𝐽𝐾𝐽
). The test statistic corre-

sponding to the𝑚th element of 𝜽, then is denoted

𝑡𝑚 =
𝜃𝑚
𝜎𝑚
. (8)

Note that the 𝑀 estimators 𝜃𝑚 may be correlated, and
thus test statistics in 𝒕 = (𝑡1, … , 𝑡𝑀) will also be correlated.
In the following, results of Pipper et al. (2012) will be used
to account for the correlation among test statistics: For
large sample sizes, the covariance among the estimators 𝜽
obtained from multiple marginal models can be estimated
from the row vectors 𝝍𝑛 of 𝚿̂, 𝑽̂ = 1∕𝑁

∑𝑁

𝑛=1
𝝍𝑇𝑛𝝍𝑛. Stan-

dardizing 𝑽̂ by its diagonal elements yields an asymptotic
estimator of the correlation between the𝑀 test statistics of
interest, 𝑹.
For an overall decision with respect to the hypothe-

ses in Equation (6), we may thus choose a critical value
𝑧1−𝛼,2−𝑠𝑖𝑑𝑒𝑑,𝑀,𝑹 as the equi-coordinate, two-sided quantile
of an𝑀-variate normal distributionwith correlation𝑹. Let
𝑧𝑞, with index 𝑞 = 1,… ,𝑀, denote the elements of an 𝑀-
variate normal random vector 𝒁𝑀,𝟎,𝑹 with expectation 𝟎,
and covariance𝑹. Then, the critical value 𝑧1−𝛼,2−𝑠𝑖𝑑𝑒𝑑,𝑀,𝑹 is
chosen such that 𝑃{max𝑞=1,…,𝑀(|𝑧𝑞|) ≤ 𝑧1−𝛼,2−𝑠𝑖𝑑𝑒𝑑,𝑀,𝑹} =
1 − 𝛼. One can then reject the null hypotheses in Equa-
tion (6) if at least one test statistic exceeds the criti-
cal value, that is |𝑡𝑚| > 𝑧1−𝛼,2−𝑠𝑖𝑑𝑒𝑑,𝑀,𝑹, ∈ 𝑚 = 1,… ,𝑀.
For one-sided hypotheses as in Equation (7), a one-sided
equi-coordinate quantile, 𝑧1−𝛼,1−𝑠𝑖𝑑𝑒𝑑,𝑀,𝑹, is chosen to
ensure that 𝑃{max𝑞=1,…,𝑀(𝑧𝑞) ≤ 𝑧1−𝛼,1−𝑠𝑖𝑑𝑒𝑑,𝑀,𝑹} = 1 − 𝛼,
and the null can be rejected if at least one 𝑡𝑚 exceeds
𝑧1−𝛼,1−𝑠𝑖𝑑𝑒𝑑,𝑀,𝑹.
Asymptotically, adjusted p-values, 𝑝𝑚, for each of the

𝑀 hypotheses of interest can be computed based on the
probabilities of the 𝑀-variate normal distribution with
correlation 𝑹. For two-sided hypotheses as in Equation
(6), 𝑝𝑚 = 𝑃(max𝑞=1,…,𝑀(|𝑧𝑞|) > |𝑡𝑚|), and for one-sided
hypotheses with positive trends in the alternatives, 𝑝𝑚 =
𝑃(max𝑞=1,…,𝑀(𝑧𝑞) > 𝑡𝑚). For the computational details of
multivariate normal quantiles and probabilities, we refer
to Genz and Bretz (2009) and Genz et al. (2017).

2.2.2 Heuristic small sample adjustment

In general, linear models with limited sample size
𝑁, univariate tests of 𝛿𝑗𝑘 based on the standard normal
distributionwould lead to inflated type I errors while using
the 𝑡-distribution with degree of freedom 𝜈𝑗𝑘 = 𝑁 − 𝐷𝑗𝑘
would be exact. In generalized linear models, improved
small sample performance can be expected when using
the 𝑡-distribution instead of standard normal distribution
in marginal tests, at least when dispersion parameters are
estimated from the data. In linear mixed models, tests for
𝛿𝑗𝑘 would be based on the 𝑡-distribution with estimated
denominator degrees of freedom (Kenward and Roger,
1997). It is thus natural to use p-values calculated from
the multivariate 𝑡-distribution instead of the multivariate
normal distribution above. Several marginal models may
have the same residual degree of freedom, 𝜈𝑗𝑘 = 𝑁 − 𝐷𝑗𝑘.
However, different marginal models may involve different
number of covariates in 𝛾𝑗𝑘, may use different number
of parameters to model the trend (one regression slope
or several differences to control), or may differ in the
estimated denominator degrees of freedom 𝜈𝑗𝑘 due to
differently sized variance components in linear mixed
models. Then, the marginal parameter vectors 𝜹𝒋𝒌 would
imply different degrees of freedom for the corresponding
𝑡-distributions. So far, computational methods for mul-
tivariate 𝑡-distributions with different marginal degrees
of freedom are not available (Genz and Bretz, 2009). We
thus propose to use the arithmetic mean of (estimated)
degrees of freedom across models, 𝜈, in a multivariate
𝑡-distribution 𝑡1−𝛼,2−𝑠𝑖𝑑𝑒𝑑,𝜈,𝑀,𝑹 instead of the multivariate
normal distribution above.

2.3 Software

The methods to combine multiple marginal models and
estimate the joint covariance matrix and corresponding
correlation matrix are implemented in the function mmm in
the R package multcomp (Hothorn et al., 2008). For com-
puting multivariate normal and t probabilities or critical
values, these functions rely on the R package mvtnorm
(Genz and Bretz, 2009; Genz et al., 2017). The R package
tukeytrend is available from the CRAN repository and
provides wrapper functions for computing the dose scores,
automatic updating of givenmodel object of classes lm, glm
(the package stats; R Core Team, 2017) as well as merMod
(the package lme4; Bates et al., 2015) and lme (the pack-
age nlme; Pinheiro et al., 2017) with different dose scores.
It also contains functions that simplify the combination of
multiple marginal models with different dose scores and
endpoints before doing the main computations using the
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SCHAARSCHMIDT et al. 793

functionality in multcomp. Further, a vignette is part of
the package tukeytrend, containing numerous additional
examples for multiple primary endpoints, several glms,
and mixed effect models.

2.4 Remarks

2.4.1 Redundant dose scores

In designs with dose levels being equidistantly spaced on
log scale, for example, dose levels being powers of 2, the
ordinal and log-transformed model have predictors and
thus slope estimates that are identical up to a rescaling
factor. In this case, the estimated correlation between the
two marginal dose parameter estimates is 1. The methods
of computing multivariate normal or 𝑡 probabilities (Genz
and Bretz, 2009) can deal with this case: Jointly consider-
ing such two identical models does not lead to any multi-
plicity correction.

2.4.2 Additional shift parameter for zero
dose level in arilog dose score

In case an untreated control 𝑑1 = 0 is log-transformed
using the extrapolation in Equation (1), the resulting trans-
formed value may still deviate substantially from an other-
wise linear relation between dose and response. In such
cases, it is possible to add further transformations 𝑘 (see,
e.g., Ekwaru and Veugelers, 2018). For example, these may
differ from the “arilog” transformation only by a factor
(𝑓𝑘 > 0) that modifies the amount of shifting of the first
dose score relative to second- and third-ordered dose lev-
els:

𝑥
(1)
𝑘
= log 𝑑2 − 𝑓𝑘

𝑑2 − 𝑑1
𝑑3 − 𝑑2

(log 𝑑3 − log 𝑑2) for 𝑔 = 1. (9)

The above framework allows to globally test on the pres-
ence of a trend while correcting for the multiple testing
problem of trying different amounts of shifting of the first
dose level. The vignette of the package tukeytrend con-
tains examples illustrating these modified versions of the
“arilog” dose scores.

2.5 Simulation study

To assess the small sample performance of the multiplicity
adjustment based on the empirical correlation matrix 𝑹,
we ran several simulation studies under the global null
hypothesis of no trend. For single endpoints, we investi-
gated: (1) A linear model with homoscedastic Gaussian
residuals, with 4, 8, or 12 dose levels and balanced sample

size ranging from 2 to 100 per dose level, considering
different sets of hypotheses (𝐾 = 3 regression slopes with
added Dunnett contrasts or multiple contrast tests, and
multiple tests of different dose shifts); (2) A generalized
linear model for overdispersed binomial data; (3) A
simple linear mixed effect model with random intercepts
to account for imbalanced subsampling. For the latter
two simulations, 𝐺 = 4 dose levels and different sets of
hypotheses were simulated.
We used copulas, as implemented in the R package

copula (Hofert et al., 2018) to simulate multivariate
normal, binomial, and Poisson data, to be fitted by linear
models, and generalized linear models with logit and log
link functions, respectively. To cover differently scaled
endpoints, correlated multivariate datasets with equal
numbers of endpoints from these three distributions were
simulated. The number of endpoints was varied from 2 to
20, the sample size per dose level ranged from 5 to 100, and
the correlation parameter was set 0, 0.5, and 0.9. Detailed
descriptions of the simulation scenarios and results are
available as Supporting Information.
Results indicate the control of the FWER when sam-

ple sizes per dose level are 20 or larger. Clear inflation
of the FWER is observed for situations, where the num-
ber of tested hypotheses 𝑀 is close to or higher than the
number of observations per marginal model. All simula-
tion results involving generalized linear models for count
data (single overdispersed binomial endpoint,multivariate
data including binomial and Poisson endpoints) indicate
that the proposed method is conservative for low sample
sizes, even when including high numbers of endpoints.

3 EXAMPLES

3.1 Tukey et al. (1985) revisited: Serum
albumin in dogs

Tukey et al. (1985) present an example where 𝑁 = 36 dogs
in 𝐺 = 5 treatment groups (with dose levels 𝑑1, … , 𝑑𝐺 =
0, 0.25, 1, 4, 16). The only endpoint is the serum albu-
min concentration. The control group 𝑑1 = 0 consisted
of 12 dogs, while the treated groups consisted of six
dogs. The dataset (Web Figure A9) is simulated to closely
reproduce the summary statistics published by Tukey
et al. (1985, Table 1 therein). Table 1 shows estimated
slopes, test statistics, unadjusted p-values, and adjusted p-
values obtained from our approach, using the three-variate
𝑡-distribution with 𝑑𝑓 = 34. The adjustment depends on
the empirical correlation of the three test statistics, which
are 0.772, 0.843, and 0.986 for the pairs (𝑡1, 𝑡2), (𝑡1,
𝑡3), and (𝑡2, 𝑡3), respectively. The smallest unadjusted p-
value follows from the arithmetic-logarithmic dose scores,
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TABLE 1 Estimated slopes (𝛽1𝑘), standard errors (𝜎1𝑘) (s.e.),
test statistics (𝑡), as well as raw and adjusted p-values for the serum
albumin data for arithmetic, ordinal, and arithmetic–logarithmic
dose scores

Dose score Slope s.e. 𝒕 p(raw) p(adj)
ari 0.013 0.006 2.198 0.0348 0.0579
ord 0.067 0.022 3.096 0.0039 0.0068
arilog 0.058 0.018 3.156 0.0033 0.0058

𝑝3 = 0.0033, and the corresponding adjusted p-value is
increased by slightly less than factor 2 as conjectured by
Tukey et al. (1985).

3.2 Multiple, differently scaled
endpoints with different covariates:
Litter weight and size

A total of𝑁 = 74 rat damswere randomized to four groups
with dose levels (𝑑1, … ., 𝑑4 = 0, 5, 50, 500), and sample
size 20, 19, 18, and 17, respectively. For each dam, 𝐽 = 2
endpoints were recorded: litter weight (𝑗 = 1), possibly
depending on the gestational time as a covariate, and the
number of pups per litter(𝑗 = 2) that may be modeled as
overdispersed Poisson (see Figure 1).
We applied our extension of the Tukey trend test to each

of three basic models, leading to a total of nine marginal
models: Litter weight (𝒚1) was described by linear models
without any covariates, assuming independent Gaussian
errors in each model,

𝒚1 = 𝑿1𝑘𝜷1𝑘 + 𝝐1𝑘, (10)

where 𝑿11, 𝑿12, 𝑿13 are the (𝑁 × 2) design matrices
corresponding to arithmetic, ordinal, and arithmetic–
logarithmic dose scores, respectively (intercept

and dose scores columns). In the parameter vec-
tors, 𝜷𝑇

1𝑘
= (𝛽1𝑘0, 𝛽1𝑘1), the 𝛽1𝑘1, 𝑘 = 1,… , 3 are the

regression slopes that are of interest for testing the
dose–response relation.
Additionally, litter weight was described by three

Gaussian linear models including the covariates gesta-
tional time and number of pups per litter as third and
fourth columns in the (𝑁 × 4) design matrices 𝑿1𝑘, 𝑘 =
4, 5, 6. In the corresponding parameter vectors 𝜷𝑇

1𝑘
=

(𝛽1𝑘0, 𝛽1𝑘1, 𝛽1𝑘2, 𝛽1𝑘3), 𝛽1𝑘1 model the dose–response rela-
tion with three different dose scores (𝑘 = 4, 5, 6), while
adjusting for the two covariates via 𝛽1𝑘2 and 𝛽1𝑘3.
Finally, three generalized linear models with log-link

were used to model the number of pups per litter, 𝒚2. The
mean and variance of 𝑦𝑛2, 𝑛 = 1,… ,𝑁 were assumed to
depend on 𝜇𝑛𝑘 and on the scale parameter 𝜙 that accounts
for the potential extra-Poisson variation, such that

log (𝝁𝑘) = 𝜼𝑘, (11)

𝜼𝑘 = 𝑿2𝑘𝜷2𝑘. (12)

The design matrices 𝑿2𝑘 have the same structure as 𝑿1𝑘,
𝑘 = 1,… , 3, such that 𝛽2𝑘1, 𝑘 = 1,… 3, are the regression
slopes of interest.
From Table 2, it is obvious that one cannot conclude for

the presence of a dose–response relationwith respect to lit-
ter weight or litter size. To illustrate the effect of multiplic-
ity correction by using themultivariate 𝑡-distribution,Web
Figure A10 shows the estimated correlationmatrix,𝑹: Cor-
relations between test statistics referring to the same end-
point showcorrelations between0.81 and 0.96, correlations
between parameters referring to different endpoints range
between 0.1 and 0.46, and the corresponding multivariate
𝑡-quantile is 2.54. Ignoring the multiple testing problem
would lead to a critical value of 𝑡1−0.05∕2,𝑑𝑓=71 = 1.99, while
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F IGURE 1 The left panel shows litter weights for each dam depending on the dose level, gray scale indicates different gestational time,
and a potential covariate for litter weight. The right panel shows the number of pups per litter depending on the dose level
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TABLE 2 Estimated slope parameters, standard errors (s.e.),
test statistics (𝑡), and adjusted p-values for nine marginal models
analyzing litter weights without covariate linear model (LM) and
with covariate adjustment (LM+cov) and litter size generalized
linear model (GLM)

Model Score 𝜷𝒋𝒌𝟏 Estimate s.e. 𝒕 p(adj)
LM “ari” 𝛽111 −0.002 0.003 −0.818 0.8273
LM “ord” 𝛽121 −0.773 0.454 −1.703 0.2808
LM “arilog” 𝛽131 −0.297 0.263 −1.128 0.6264
LM+cov “ari” 𝛽141 −0.002 0.002 −0.777 0.8507
LM+cov “ord” 𝛽151 −0.729 0.424 −1.717 0.2741
LM+cov “arilog” 𝛽161 −0.256 0.247 −1.036 0.6887
GLM “ari” 𝛽211 −0.000 0.000 −1.477 0.4010
GLM “ord” 𝛽221 −0.006 0.020 −0.317 0.9962
GLM “arilog” 𝛽231 −0.005 0.012 −0.449 0.9790

a Bonferroni correction would lead to 𝑡1−0.05∕(2⋅9),𝑑𝑓=71 =
2.86.

3.3 Linear mixed effect model with
multiple laboratories as simple random
factor

In an immunotoxicity study, the liver weights were
assessed for 𝑁 = 316 female rats in 𝐺 = 4 dose levels 0, 3,
30, and 100 (Hothorn, 2003). The study comprised eight
laboratories, each with initially 10 female rats per dose
level. Drop out of single rats lead to a slightly unbal-
anced design (Web Figure A11). To account for the vari-
ation between the eight labs (ℎ = 1,… ,𝐻) and possibly
different lab-specific deviation from overall trend, we fit-
ted linear mixed models (using restricted maximum likeli-
hood (REML)). Arithmetic, ordinal, and logarithmic dose
scores were included as fixed effects in 𝑿1𝑘𝜷1𝑘. The ran-
dom effects included in 𝒁𝒖1𝑘 comprise overall deviations
of laboratories and the dose-level–specific deviationwithin
each laboratory, such that the residual variance is the vari-
ance of the 7–10 liver weights within each dose level 𝑔 and
lab ℎ, 𝝐1𝑘:

𝒚1 = 𝑿1𝑘𝜷1𝑘 + 𝒁𝒖1𝑘 + 𝝐1𝑘, (13)

where 𝒚1 contains the log-transformed liver weights.
Results of applying our extension of the Tukey trend
test are shown in Table 3. Corresponding denomina-
tor degrees of freedom according to Kenward–Roger are
23.15, 23.12, 23.15, estimated correlations between the
three test statistics were 0.89, 0.87, and 0.95, and two-sided
0.95 quantile of the multivariate 𝑡-distribution is 2.315.

TABLE 3 Estimated slope parameters, standard errors (s.e.),
test statistic (𝑡), and adjusted p-values from three mixed model fits
with arithmetic, ordinal and arithmetic–logarithmic dose scores for
the immunotoxicity study on liver weights

Dose score Slope s.e. 𝒕 p-value
“ari” 0.0042 0.00035 12.07 <0.0001
“ord” 0.1548 0.01125 13.76 <0.0001
“arilog” 0.1127 0.00582 19.36 <0.0001

4 DISCUSSION

This paper provides an asymptotically correct and the-
oretically justified multiplicity adjustment for the trend
test, which was proposed more than three decades ago by
Tukey et al. (1985). The approach accounts for correlations
between parameter estimates and test statistics from dif-
ferent marginally fitted models by using the methodology
proposed by Pipper et al. (2012). Themethod can be applied
on generalized linear and linear mixed models, extend-
ing the work by Quan and Capizzi (1999), and it allows
simultaneous inference for the presence of a trend in mul-
tiple differently scaled endpoints that may be subject to
different covariate adjustments. The original framework of
Tukey et al. (1985) has been extended to joint tests of several
regression slopes for different dose scores and for arbitrary
multiple contrasts of means derived from the same dose
variable. The framework is made available through an R
package, including a manual (vignette) with many addi-
tional worked examples.
Compared to other approaches on dose–response analy-

sis under model uncertainty, we focus on aspects relevant
to toxicology. Establishing a dose–response relationship
was of primary interest, while dose estimation or predic-
tion of response is not. We focused on a scenario where the
number of dose levels, the sample size is limited, and the
interest lies in multiple, differently scaled endpoints and
nonmonotone trends are a plausible complication: Joint
testing of regression models and contrasts between means
enables using sparse parameterization of regression mod-
els when the trend ismonotone, while being robust against
downturn effects or nonmonotone trends using appropri-
ate contrasts.
Additional, prespecified transformations of the dose

variable may be included in addition to three transfor-
mations proposed by Tukey et al. (1985). One application
could be in epidemiology where exposure may be mea-
sured as a quantitative variable, but analyzed as a categori-
cal variable: The “optimal” number of exposure categories
and the position of the break points between them will be
unclear. The proposed framework allows for simultaneous
test of regression slopes and several definitions of exposure
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categories, whichmay differ in the number and position of
the breakpoints.
Alternative approaches to test for a dose–response

under model uncertainty have been proposed, either using
multiple contrast tests as in the MCPmod approach (e.g.,
Bretz et al., 2005; Bornkamp et al., 2009; Pinheiro et al.,
2014; Gould, 2019) or likelihood ratio tests for multiple
nonlinear dose–response models (Gutjahr and Bornkamp,
2017) or max-T tests over several transformation of the
covariates, such as multiple Box–Cox models (Liquet and
Riou, 2019). Notably, the MCPmod approach considered
different nonlinear models (using a priori defined guesses
for the model parameters); these models were represented
bymultiple contrasts of themeans of the dose groups. This
approach has been extended to models involving covari-
ates and assuming heterogeneous variances. There exist
also extensions to generalized linear models and hierar-
chical mixed effect models (Pinheiro et al., 2014). Further
extensions developed by Dette et al. (2015) and Gutjahr
and Bornkamp (2017) avoided the a priori definition of the
nonlinear model parameters by using a likelihood ratio
test instead of the maximum test of contrasts between
dose groups. However, in most cases, these approaches
relied on the assumption of independent, Gaussian errors.
Moreover, they focused on single endpoints and, to
our knowledge, they have not been extended to handle
multiple differently scaled endpoints. These assumptions
restrict a general application in fields like toxicology or
epidemiology, where binomial or Poisson-type count data
of pathological symptoms, lesions, or malformations are
important response variables.
The MCPmod approach may indeed be extended using

the proposed general framework for the Tukey trend test.
The important step is to define contrasts in the parameters
in 𝜽 in a matrix 𝑪 with𝑀 columns. These contrasts would
then represent both different nonlinear models, depend-
ing on guessed parameters of these models, and the origi-
nal dose scores (see Example 3.1 in the Supporting Infor-
mation). Based on 𝜽 and 𝑽̂ as previously defined, tests
for these linear combinations can be performed using 𝜽 =
𝑪𝜽 and 𝑽̃ = 𝑪𝑽̂𝑪𝑇 . The similarity betweenMCPmod and
parameter-dependent transformed nonlinear models into
linear models was demonstrated for continuous response
(Thomas, 2017).
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porting Information Section. The code primarily relies on
the R package tukeytrend (https://CRAN.R-project.org/
package=tukeytrend), and further packages listed in the
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